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Abstract. Structural health monitoring (SHM) is a promising method for maintaining the integrity of structures. A reasonable 
approach is necessary to quantify its detection uncertainty by taking into account the effect of random sensor locations on 
inspection signals. Recent studies of the authors proposed a model that adopts Monte Carlo simulation to numerically obtain 
the distribution of inspection signals influenced by random sensor locations. This model can evaluate the effect not only of 
multiple defect dimensions but also of the placement of sensors on the detection uncertainty. However, its effectiveness has 
only been confirmed using pseudo-experimental signals generated by artificial pollution. This study aims to examine the 
effectiveness of the proposed model in quantifying the detection uncertainty of SHM methods using the experimental signals 
of low frequency electromagnetic monitoring for inspecting wall thinning in pipes. The results confirm the capability of the 
proposed model to correctly characterize the distribution of inspection signals affected by random sensor locations and to 
determine the reasonable probability of detection. 

Keywords: non-normal noise, probabilistic calibration, non-parametric probability density function, finite element simulation 
 
 
 
 
 
1. Introduction 
 

 
Structural health monitoring (SHM) is a promising technique for maintaining the integrity of 

structures with the aid of permanently installed sensors [1,2]. This method allows more frequent 

inspections than the traditional one-off nondestructive inspection and is able to acquire the time-varying 

information about the state of a target structure without disrupting the operation [3]. Nevertheless, during 

the inspection process, SHM is influenced by various in-situ factors that introduce noise into inspection 

signals and lead to detection uncertainty, namely, the errors in the decision over the presence of defects 

[4,5]. In practice, the quantification of the detection uncertainty of SHM systems is a major part of the 

reliability analyses of structures, and it demands a reasonable quantifying approach. 

The probability of detection (POD) is a common metric adopted to quantify the detection uncertainty 

of a specific inspection method by determining the probability that a given defect is correctly detected 

by the method [6]. Therefore, accurately characterizing the distribution of practical inspection signals 

for a valid POD is essential. In the case of SHM, the placement of sensors is a decisive contributor to 

the detection uncertainty in addition to defect size [7-9], which arises from the dependence of signals 

on the distance between a sensor and a defect to be detected. Generally, the location where a defect 

appears in a structure is usually unknown. Therefore, the distance between a sensor and the defect is 

stochastic, thus causing the SHM signals to change correspondingly. 

The most common method for determining POD aims to formulate a linear function with normal noise 

to correlate the signal amplitude with only a single variable, usually the size of a defect [10]. However, 

the SHM signals influenced by a random sensor location does not necessarily follow a normal 

distribution. Recent studies proposed several methods to determine POD by considering multiple 
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parameters at once [11-13], for example, the length and depth of defects, based on the idea of model-

assisted POD [14] to reduce the number of experimental signals required to satisfy the statistical 

significance. In these methods, the simulated signals are presumed to be invariant for a specific defect 

profile. However, this assumption is not applicable to SHM methods because, for the same defect, the 

inspection signals also vary with the placement of a sensor relative to the defect. 

Previous studies of the authors proposed a Monte Carlo simulation-based POD model that could 

correctly characterize the distribution of inspection signals affected by random sensor locations, thus 

quantifying the detection uncertainty of SHM methods more reasonably. The effectiveness of the 

proposed model has been confirmed using pseudo-experimental signals created by artificially polluting 

simulated signals. However, the verification based on real experimental signals has not been conducted 

yet. 

Given the above background, this study aims to verify the effectiveness of the proposed POD model 

using experimental signals of low frequency electromagnetic monitoring (LFEM) [15] for inspecting 

wall thinning in pipes. 
 

 
2. Materials and methods 
 

 
Numerical simulations and experiments were performed in this work to obtain the simulated and 

experimental signals of LFEM to inspect pipe wall thinning. The obtained signals were subsequently 

analyzed by the proposed model to determine the POD to verify its effectiveness in quantifying the 

detection capability. 
 
2.1. Numerical simulation 
 

This section aims to gather the simulated LFEM signals for the POD analyses. Fig. 1 illustrates the 

numerical model considering the inspection of full circumferential wall thinning on the inner surface of 

a carbon steel pipe. The pipe was constructed to be 300 mm in length, 5.7 mm in thickness, and 45.1 

mm in inner radius and was designed to be consistent with the pipe samples used in experiments. The 

magnetic fields were induced by an excitation coil surrounding the pipe and carrying alternative currents. 

The excitation coil had a square cross-section of 10 mm edge length and was mounted 45 mm away 

from the end of the pipe. The full circumferential wall thinning was located at the middle of the pipe 

and characterized by length, 𝑙, and residual thickness, 𝑡r, at its deepest position. The cross-section of the 

wall thinning was shaped into a rectangle, and its fillets had a radius same as the depth (5.7-𝑡r mm) of 

the wall thinning as shown in Fig. 1. Different defect profiles determined by different combinations of 𝑙 
and 𝑡r were considered, and they are summarized in Table 1. As the full circumferential wall thinning 

was the target of interest, the imaginary magnetic sensors were deployed only along the axial direction 

equidistantly with a spacing, s, and the distance between the center of the wall thinning and its nearest 

sensor was denoted as x, which is supposed to follow a uniform distribution x~U(-𝑠/2, 𝑠/2). The axial 

component of the magnetic flux density was measured along the pipe with a lift-off of 0.75 mm, so that 

the signals received by a sensor deployed at any location were available. 

The numerical simulations to acquire the axial component of the magnetic flux density were 

performed using the finite element method with commercial software COMSOL Multiphysics +AC/DC 

module version 5.2 (Comsol Inc., USA). As the LFEM uses a weak magnetic field, the magnetic 

property can be supposed to be linear. The governing equation to be solved in the numerical simulations 

is 
 

(𝑗𝜔𝜎-𝜔2𝜀)𝜜+∇×(𝜇-1∇×𝜜) =𝑱𝑒 (1) 
 

where 𝑗 is the imaginary unit, 𝜔 is the angular frequency, 𝜎 is the electric conductivity, 𝜀 is the 

permittivity, 𝜜 is the magnetic vector potential, 𝜇 is the magnetic permeability, and 𝑱𝑒 is the external 

current density flowing in the excitation coil. The excitation frequency and current used in the 

simulations were 1 Hz and 20 Ampere-turn, respectively. The pipe was assumed to have a constant 

relative permeability of 160, an electrical conductivity of 5.2×106 S/m, and a relative permittivity of 1. 

The geometry was constructed in a 2D axisymmetric dimension because of the symmetry of the 

simulation model. The simulation domain was completely discretized into 99,391 quadratic triangular 

elements. The boundary condition imposed on the outmost boundary of the domain was 𝒏×𝑨=𝟶. 
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Fig. 1 Simulation model of LFEM to inspect full 

circumferential wall thinning, unit: mm 

Fig. 2 Normalized magnetic flux density obtained in 

simulation and experiment when l =30 mm, tr=2 mm 

 

 

Table 1 Parameters of wall thinning in numerical simulations 

Parameter Value 

Length of wall thinning, 𝑙 (mm) 10, 20, 30, 40, 50, 60, 70 

Residual thickness, 𝑡r (mm) 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 

 
2.2. Experiment 
 

This section presents the implementation of the LFEM experiments for which a constructed 

experimental system [15] was adopted. Fig. 3 shows a simplified diagram of the system that is also 

pictured in Fig. 4. The function generator 1, WF1973 (NF Corporation, Yokohama, Japan), provided an 

alternating current of 1 Hz and 0.9 Vp-p, which was subsequently amplified 10 times through a power 

amplifier, HSA4104 (NF Corporation, Yokohama, Japan), to an excitation coil surrounding the pipe. 

The excitation coil had 20 turns and was fabricated using copper wire of 1 mm diameter. The current 

flowing through each turn of the excitation coil was indirectly monitored using a lock-in amplifier 1, 

LI5640 (NF corporation, Yokohama, Japan), by measuring the voltage of a shunt resistor of 1 Ω, which 

was indicated to be 0.9–1.0 A. Ten magneto-impedance (MI) sensors of MI-CB-1DM A type (Aichi 

Micro Intelligent Corporation, Tokai, Japan) were carefully aligned and mounted on a support to 

compose a sensor array to measure the magnetic fields parallel to the pipe surface. The resultant distance 

between two neighboring MI sensors was 11 mm. Each sensor was activated in turn through relay boards, 

which demanded a 5 V DC voltage offered by a DC power and an AC of square wave characterized by 

2,000,000/3 Hz in frequency, 5 Vp-p in amplitude, and 2.5 V in offset offered by a function generator 2, 

WF 1974 (NF Corporation, Yokohama, Japan). Each sensor was kept active for 15 s to stabilize the 

signals. The axial component of the magnetic flux density measured by each sensor was filtered by a 

lock-in amplifier 2, LI5640 (NF Corporation, Yokohama, Japan), given the reference frequency. Finally, 

the output voltage of each MI sensor together with the excitation current was recorded by a PC using 

the RS-232 interface embedded in the lock-in amplifiers. The entire experimental system was controlled 

using Labview. 

Carbon steel (STPG 370) pipe samples have the same dimensions (90A) as the numerical model 

presented in Figure 1. Full circumferential grooves with different profiles, which are summarized in 

Table 2, were artificially machined on the inner surface at the middle of the pipes to simulate wall 

thinning. In total, nine defective and one defect-free pipe samples were prepared. 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

 
 

Fig. 3 Illustration of the experimental system, unit: mm Fig. 4 Picture of experimental system 
 

For each pipe sample, the measurement was performed at three different circumferential locations. 

For each circumferential location, the signals at 60 different axial positions within x∈[-55 mm, 55 mm] 



were collected along the pipe surface using the sensor array. 

 

Table 2 Parameters of the pipe samples 

 

 

 

 

The amplitude of the axial component of the magnetic flux density obtained in both numerical 

simulation and experiment was normalized by that obtained when there was no wall thinning to obtain 

signal 𝐵 which is exemplified by Figure 2, as 𝐵= (Amplitude of the axial component of the magnetic 

flux density when a pipe has wall thinning/ 𝐼coil)/(Amplitude of the axial component of the magnetic flux 

density when a pipe has no wall thinning/ 𝐼coil), where 𝐼coil is the current flowing through the coil. 𝐵 was 

used in the following POD analyses. 
 
2.3. POD analyses by the proposed model 
 

The probability distribution of inspection signals for POD analyses should always be correctly 

characterized, but a proper closed-form probability density function is not always achievable. Therefore, 

this section explains the proposed POD model that leverages Monte Carlo simulations to numerically 

obtain the distribution of inspection signals affected by random sensor locations. 

Because of the discrepancy between the signals measured in the actual monitoring, 𝐵mea, and the 

signals obtained in the numerical simulations, 𝐵sim, this method assumes that the relationship between 

two types of signal are represented in the following general form: 
 

𝐵mea=𝑁(𝜇1,𝜎12)(𝐵sim-min(𝐵sim)) +𝑁(𝜇2,𝜎22)+min(𝐵sim) (2) 
 

where 𝑁(𝜇1,𝜎1) and 𝑁(𝜇2,𝜎2) are the normal distributions with means of 𝜇1 and 𝜇2 and standard 

deviations of 𝜎1 and 𝜎2, respectively. The probability distribution of 𝐵mea due to wall thinning with a 

certain profile was evaluated by estimating the four parameters, 𝜇1, 𝜇2, 𝜎1, and 𝜎2, using the following 

procedure: 

1. Assume 𝜇1, 𝜇2, 𝜎1, and 𝜎2 to be certain values. 

2. Obtain 𝐵sim due to the 𝑖-th wall thinning by finite element simulation. Note that the finite element 

simulation takes 𝐵sim as a function of x, and thus the distribution of 𝐵sim can be evaluated when x 

follows any distribution including the uniform distribution. 

3. Randomly and individually choose three values following 𝑁(𝜇1,𝜎1) and 𝑁(𝜇2,𝜎2) and the 

distribution evaluated in 2 to calculate 𝐵mea according to Eq. (3). Perform this step many times to 

obtain the distribution of 𝐵mea approximately. 

4. Normalize and smooth the distribution obtained in 3 with the aid of kernel density estimation 

(KDE) [16] to obtain the probability distribution of 𝐵mea due to the 𝑖-th wall thinning, 𝑝𝑚,𝑖(𝐵).  
 

𝑝𝑚,𝑖(𝐵)=1/(𝑛ℎ)∑𝑗𝐾(𝐵-𝐵𝑗
 mea)/ℎ (3) 

 
where 𝑛 (𝑗=1,…, 𝑛) denotes the number of 𝐵mea generated in the procedure 3, ℎ is a smoothing 

parameter called bandwidth, and 𝐾 is a kernel smoothing function. In this study, the Epanechnikov 

kernel function was adopted because of its high efficiency [16]. 

5. Calculate the likelihood of 𝐵𝑖exp with the assumed values of 𝜇1, 𝜇2, 𝜎1, and 𝜎2, 𝑝𝑚,𝑖(𝐵𝑖exp; 𝜇1, 𝜇2, 

𝜎1, 𝜎2). 

6. Perform (2)–(5) for all wall thinning under consideration, and evaluate the total likelihood by 

multiplying the values (or summing the log-transformed values) calculated in 5. 

General derivative-free optimization algorithms enable us to find the combination of 𝜇1, 𝜇2, 𝜎1, and 

𝜎2 that maximizes the total likelihood. This study used the particle swarm algorithm [17] which is a 

global optimization algorithm so that the setting of initial values has little impact on estimation can be 

avoided.  

POD was determined using 𝑝𝑚(𝐵) for the defects with different 𝑙 and 𝑡r given the decision threshold, 

𝐵th. The confidence bounds of the POD curve were built using the basic bootstrap method [18]. 

 

3. Results and discussion 

3.1. Validation of the estimated distribution 
 

Parameter Value 

Length of wall thinning, 𝑙 (mm) 10, 30, 50 

Residual thickness, 𝑡r (mm) 1, 2, 3 



As a precondition of a reasonable POD analysis, the validity of the proposed model to characterize 

the probability distribution of inspection signals affected by random sensor locations was initially 

examined. 

The four parameters in Eq. (3), 𝜇1, 𝜇2, 𝜎1, and 𝜎2, were estimated to be 0.837, 0.090, -0.027, and 0.059, 

and the corresponding confidence intervals for each estimate were [0.728, 0.924], [0.054, 0.178], [-

0.099, 0.111], and [0.024, 0.1182], respectively. For this estimation, one experimental signal from each 

of the three measurements for each pipe sample shown in Table 2 was selected according to a randomly 

sampled sensor location and used as 𝐵exp. As a result, 27 observations of 𝐵exp were utilized for the 

estimation and it has been examined that a larger dataset does not improve the estimation significantly. 

Fig. 5 compares the estimated distribution and real distribution of inspection signals when 𝑠 is 

assumed to be 40 mm, so that the sensor location, x, follows U(-20 mm, 20 mm). A wall thinning with 

𝑙=10 mm and 𝑡r=2 mm was considered here. A total of 100,000 observations of experimental signals 

sampled at random sensor locations were probabilistically evaluated to form the histogram shown in 

Figure 3. The same number of observations of 𝐵sim was calculated at randomly sampled x. The 

observations were subsequently employed to obtain 𝐵mea according to Eq. (3) based on the estimated 

values of the four parameters to acquire the distribution, which is smoothed by KDE with ℎ=0.01 and 

indicated by the solid line in the figure. The general agreement between the estimated distribution and 

real distribution indicates that the proposed model can correctly characterize the probability distribution 

of the inspection signals affected by random sensor locations. Some discrepancies were also observed 

from the comparison, and they were caused by the experimental signals obtained at different locations 

that were not smooth and fluctuated. 
 
3.2. POD analyses 
 

The effectiveness of the proposed model to determine the POD of LFEM for inspecting full 

circumferential wall thinning was examined. Based on the parameters estimated in section 3.1, POD 

analyses were implemented with a decision threshold, 𝐵th=1.15, and the inspection signals were 

exempted from censoring. In Fig. 6, the consequent POD contour indicates that the detection uncertainty 

of LFEM is affected by both length of wall thinning and residual thickness. The lower 95% confidence 

bound of 0.9 POD shows that LFEM can reliably detect the full circumferential wall thinning whose 

profiles fall on the top-left corner. The low capability of LFEM for the defects with large residual 

thickness (> 4 mm) is attributed to the small amplitude of inspection signals. The detectability of defects 

reduces as their length decreases because of the spacing between the neighboring sensors, 𝑠=40 mm. 

The detection uncertainty of LFEM reflected by the generated POD contour is consistent with this result, 

and thus the effectiveness of the proposed model to quantify the defection uncertainty of LFEM is 

confirmed. 

 

  

Fig. 5 Estimated probability distribution of LFEM signals 

affected by random sensor locations when 𝑠=40 mm, 𝑙=10 

mm, 𝑡r=2 mm 

Fig. 6 POD contour with the 95% confidence bounds of 

LFEM for inspecting full circumferential wall thinning 

when 𝑠=40 mm 
 
3.3. Effect of the sensor’s placement on POD 

 

The effect of the placement of sensor, namely, the spacing between neighboring sensors, on POD was 

investigated. The POD analysis was implemented by the proposed model with s presumed to be 20 mm 

and 30 mm. Fig. 7 suggests that the defects with a shorter length can be detected with a higher probability 

by LFEM in comparison with the defects shown in Fig. 6, which were caused by the reduced spacing. 

This finding is consistent with the empirical evidence that denser sensors have a higher detection 



capability with respect to the defects with a shorter length. It further confirms the validity of the proposed 

method to quantify the detection uncertainty of the LFEM method. 

 

  
(a) (b) 

Fig. 7 POD contour with the 95% confidence bounds of LFEM for inspecting full circumferential wall thinning when (a) 𝑠=20 

mm and (b) s=30 mm 

 
4. Conclusion 
 

This study conducts experiments on LFEM for inspecting full circumferential wall thinning in carbon 

steel pipe samples and acquires the experimental signals affected by random sensor locations. The 

effectiveness of the proposed model developed on the basis of Monte Carlo simulation to quantify the 

detection uncertainty is examined by applying it to the POD analysis using the experimental signals. 

The results conclude that the proposed POD model can correctly characterize the distribution of the 

inspection signals affected by random sensor locations and reasonably quantify the detection uncertainty 

of SHM methods. 
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