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Abstract

Background: An optimal system for interpreting fractional flow reserve (FFR) values derived from CT (FFRCT) is
lacking. We sought to evaluate performance of three FFRCT measurements in detecting ischemia by comparing them
with invasive FFR. Methods: For 73 vessels in 50 patients who underwent coronary CT angiography (CCTA) and
FFRCT analysis followed by invasive FFR, the greatest diameter stenosis on CCTA, FFRCT difference between distal
and proximal to the stenosis (ΔFFRCT), FFRCT 2 cm distal to the stenosis (lesion-specific FFRCT), and the lowest
FFRCT in distal vessel tip were calculated. Significant obstruction (≥50% diameter stenosis) and ischemia (lesion-
specific FFRCT ≤0.80, the lowest FFRCT ≤0.80, or ΔFFRCT ≥0.12 based on the greatest Youden index) were
compared with invasive FFR (≤0.80). Results: Forty (55%) vessels demonstrated ischemia during invasive FFR. On
multivariable generalized estimating equations, ΔFFRCT (odds ratio [OR] 10.2, p<0.01) remained a predictor of
ischemia over CCTA (OR 2.9), lesion-specific FFRCT (OR 3.1), and the lowest FFRCT (OR 0.9) (p>0.05 for all). Area
under the curve (AUC) of ΔFFRCT (0.86) was higher than CCTA (0.66), lesion-specific FFRCT (0.71), and the lowest
FFRCT (0.65) (p<0.01 for all). Addition of each FFRCT measure to CCTA showed improvement of AUC and significant
net reclassification improvement (NRI): ΔFFRCT (AUC 0.84, NRI 1.24); lesion-specific FFRCT (AUC 0.77, NRI 0.83);
and the lowest FFRCT (AUC 0.76, NRI 0.59) (p<0.01 for all). Conclusions: Compared with diameter stenosis,
ΔFFRCT, lesion-specific FFRCT, and the lowest FFRCT improved ischemia discrimination and reclassification, with
ΔFFRCT being superior in identifying and discriminating ischemia.
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Abbreviations

AUC = area under the curve

CI = confidence interval

CCTA = coronary computed tomography angiography

FFR = fractional flow reserve

FFRCT = fractional flow reserve derived from coronary computed tomography 

angiography

ICA = invasive coronary angiography

NPV = negative predictive value

PPV = positive predictive value

ROC = receiver operating characteristics
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1. Introduction

Fractional flow reserve (FFR) is currently considered as the gold standard for 

the assessment of ischemia and guides the revascularization in patients with stable 

coronary artery disease.1,2 The application of computational fluid dynamics to 

coronary computed tomography angiography (CCTA) enables noninvasive FFR 

measurement without hyperemia, which provides information on FFR along the 

entire coronary artery based on CCTA data sets.3 Recently, large accuracy and 

clinical utility studies have validated the FFR derived from CCTA (FFRCT).4–8

However, in the clinical setting, it is uncertain how physicians should interpret 

the FFRCT results. In the accuracy trials, diagnostic performance has been 

determined through a comparison of single measurements at specified locations 

within the coronary artery corresponding to the location of FFR pressure wire 

sensor between FFRCT and invasive FFR.4–6 The data set of FFRCT can provide 

FFR values along the entire course of the epicardial coronary arteries. Due to a 

gradual decrease in the FFRCT value even without a focal stenosis, different 



measurement locations for FFRCT and invasive FFR will produce a different 

diagnosis, if the respective values are discordant regarding the defined threshold 

for ischemia of 0.80. Invasive coronary angiography (ICA) and FFR are generally 

downstream tests of CCTA and FFRCT analyses. Thus, when physicians interpret 

FFRCT results, they cannot apply the position where invasive FFR is measured to 

FFRCT, and reported FFRCT values may not reflect the precise location of the FFR 

pressure wire sensor. Therefore, an interpretation method for FFRCT results is 

required in the clinical setting. The lowest FFRCT is the value at the distal end of the 

coronary vessel, which is commonly used in clinical trials.9–11 Kueh reported that 

lesion-specific FFRCT, defined as the value within 2 cm distal to the greatest stenotic 

lesion, could effectively reclassify the positive result in the lowest FFRCT.12

During invasive FFR, a pullback of the pressure wire is usually performed, with 

the jump-up of coronary pressure and FFR across the stenosis observed. If 

coronary stenosis is more severe, pressure gradient across the stenosis becomes 

higher. Thus, considering pressure gradients across the hemodynamically 



significant stenosis, we hypothesized that a difference of FFRCT value between 

distal and proximal to an anatomical stenosis with the greatest diameter stenosis 

(ΔFFRCT) could become a predictor for ischemia. In this study, we investigated 

discrimination power, diagnostic performance, and reclassification ability of 

ΔFFRCT, lesion-specific FFRCT, and the lowest FFRCT for the detection of ischemia 

compared with invasive FFR as the reference standard.

2. Methods

2.1. Study design and population

This retrospective single-center study was approved by an institutional review 

board, and included patients from a prospective registry assessing the diagnostic 

value of noninvasive FFRCT in coronary care (ADVANCE registry, ClinicalTrials.gov 

#NCT02499679).13 We obtained written informed consent for the registry from all 

participants, and the institutional review board waived the requirement of additional 

informed consent for this sub-analyses. Table S1 (supplementary material) provides 



inclusion and exclusion criteria for the registry. Consecutive participants in the 

prospective registry who underwent CCTA with FFRCT analysis followed by invasive 

FFR measurement in our institution between September 2015 and September 2017 

were included. Patients were excluded if they had prior coronary artery bypass graft 

surgery or percutaneous coronary intervention.

2.2. CT acquisition and interpretation

All patients underwent coronary CT calcium scoring and angiography,14 using 

the following CT scanners: 0.5 mm × 320-row detector CT scanner (Aquilion ONE 

ViSION or Genesis Edition, Canon Medical Systems, Otawara, Japan), 0.25 mm × 

128-row (TSX-304R, Canon Medical Systems) or 0.25 mm × 160-row (Aquilion 

Precision, Canon Medical Systems) ultra-high-resolution CT scanner.15 Patient 

preparation and CT scanning were performed based on the Society of 

Cardiovascular Computed Tomography (SCCT) guidelines.16,17 All patients took 

nitroglycerin. Patients with a heart rate of 65 beats/min received intravenous beta-

blockers 5–7 min before CCTA scan. All CCTA procedures were performed with a 



prospective electrocardiogram-gated scan. The detailed CCTA protocol is 

summarized in Table S2 (supplementary material). The optimal stationary cardiac 

phase with minimum motion-free datasets was determined by cardiovascular CT 

technologists. Both the volumetric CT dose index and dose-length product were 

recorded for each patient. The corresponding effective radiation dose was 

calculated using a conversion factor of 0.014 mSv/mGy･cm.18 Coronary stenosis 

severity was assessed by radiologists with more than 20 years experience (RT and 

KY) using a commercially available workstation (Ziostation2, Ziosoft, Tokyo, Japan). 

The degree of coronary stenosis was graded as minimal (<25%), mild (25%–49%), 

moderate (50%–69%), and severe (70%–99%) according to the SCCT guideline.19 

Significant obstruction was defined as luminal stenosis of ≥50%.

2.3. FFRCT analysis

FFRCT analysis was blindedly and independently performed at HeartFlow Inc., 

Redwood City, CA, USA. The results provide FFRCT value throughout the coronary 

arterial tree. For each coronary artery, a radiologist (HT with 7 years experience) 



calculated three parameters as follows: a difference of FFRCT values between distal 

and proximal to an anatomical stenosis with greatest stenosis on the coronary 

vessel (ΔFFRCT), FFRCT value within 2 cm distal to the tightest point (lesion-specific 

FFRCT), and the lowest FFRCT value in the distal vessel tip (the lowest FFRCT) 

(Figure 1). Figure 2 shows a detailed method on how to obtain the ΔFFRCT. For 

lesion-specific FFRCT, the tightest point similar to that employed in ΔFFRCT was 

used, and the position 2 cm distal to the location was measured on a curved planar 

reconstructed image. When serial lesions were observed, only the lesion with 

greatest diameter stenosis was used, and the value was measured strictly at 2 cm 

distal to the tightest point regardless of the presence or absence of plaque. If lesion-

specific FFRCT was distal to the distal vessel tip on FFRCT, values in the distal tip 

were employed as the lesion-specific FFRCT (i.e. lesion-specific FFRCT = the lowest 

FFRCT). Given that FFRCT does not provide a value of less than 0.50, the value of 

<0.50 was defined as 0.50. Ischemia was defined as an FFRCT value of ≤0.80 for 

lesion-specific FFRCT and the lowest FFRCT. To assess interobserver 



reproducibility, another radiologist (MO with 10 years experience) independently 

and blindly calculated these FFRCT measures for consecutive 30 vessels. The 

optimal threshold value of ΔFFRCT was defined as values corresponding to the 

maximum Youden index in the receiver operating characteristic (ROC) curve.20

2.4. ICA and FFR measurements

Cardiologists performed ICA and FFR on a biplane angiography system. FFR 

was performed with a 0.014-inch pressure monitoring wire (PressureWire Aeris, St. 

Jude Medical Systems, USA). Hyperemia was attained after administration of 

intravenous adenosine triphosphate (140 µg/kg/min, n = 37) or intracoronary 

nicorandil (2 mg, n = 13). FFR was calculated automatically by dividing the mean 

distal coronary pressure by the mean aortic pressure during hyperemia. The 

position of the distal pressure sensor was recorded, and compared with 2 cm distal 

to the tightest point (i.e. position of lesion-specific FFRCT) and the distal end of 

FFRCT (i.e. position of the lowest FFRCT) (Figure 3). FFR was considered diagnostic 

of ischemia at a threshold of ≤0.80.



2.5. Statistical analysis

No power analysis was performed because of the lack of previous studies on 

the topic. Descriptive statistics were presented as mean ± standard deviation (SD) 

for normally distributed variables (Shapiro-Wilk test, p≥0.05), as medians with 

interquartile ranges for non-normally distributed variables, and as numbers of cases 

(and percentages) per group for categorical variables. The interobserver 

reproducibilities were assessed using intraclass correlation coefficients (ICC) for 

absolute agreement of single measures with 95% confidence interval (CI). The per-

vessel area under the curve (AUC), accuracy, sensitivity, specificity, and positive 

predictive (PPV) and negative predictive value (NPV) for the detection of ischemia 

compared with invasive FFR were calculated with 95% CI. AUC comparisons were 

performed as previously described by DeLong.21 Comparisons of accuracy, 

sensitivity, and specificity were performed by using the Cochran’s Q tests, followed 

by between-group comparisons using post-hoc Dunn’s tests with Bonferroni 

correction.22 Bootstrapping with 10,000 samples was used for adjustment for 



clustering effects in the 95% CI, and for comparison of diagnostic performance. 

Binary logistic generalized estimating equations were used to evaluate the 

relationship between FFRCT parameters and ischemia determined by invasive FFR, 

since multiple vessels per patient were counted. Additive values of each FFRCT 

measure was evaluated by category-free net reclassification improvement 

(NRI).23,24 Computations were performed using JMP Pro 12.2 (SAS Institute Inc., 

Cary, NC, USA), SPSS Statistics version 25 (IBM corporation, Armonk, NY, USA) 

or R 3.3.3 (R Foundation for Statistical Computing, Vienna, Austria) software. Two-

sided p<0.05 indicated statistical significance.

3. Results

3.1. Study population and characteristics

Among 106 patients who underwent FFRCT analysis, forty-one (39%) patients 

defer ICA based on CCTA/FFRCT results. Fourteen patients who underwent ICA 

without invasive FFR measurement and one patient with history of PCI were 



excluded. Consequently, this study included 73 vessels with >25% stenosis in 50 

patients (1.5 vessels per patient) (Figure 4). Patient and CCTA characteristics are 

summarized in Table 1 and 2, respectively. Ischemia was found in 55% (40/73) of 

vessels of 66% (33/50) patients during invasive FFR; mean invasive FFR value was 

0.76 ± 0.17. Table 3 provides details on the extent of coronary stenosis. For 

invasive FFR measurements, five positions of distal wire sensor were missing. In 

the remaining 68 vessels, the positional relationships of distal pressure sensor to 

measurement points for lesion-specific FFRCT and the lowest FFRCT were as 

follows: proximal, 10% (7/68) and 63% (43/68); distal, 60% (41/68) and 13% (9/68); 

and same position, 29% (20/68) and 24% (16/68), respectively (Figure 3).

3.2. Discrimination of ischemia

Per-vessel AUC for CCTA, ΔFFRCT, lesion-specific FFRCT, and the lowest 

FFRCT were 0.66 (95% CI, 0.56–0.76), 0.86 (95% CI, 0.75–0.92), 0.71 (95% CI, 

0.59–0.80), and 0.65 (95% CI, 0.55–0.74), respectively (Figure 5 A). The optimal 

threshold value for ΔFFRCT was 0.12 based on the greatest Youden index. Table 4 



provides measures of diagnostic characteristics. The AUC for ΔFFRCT was higher 

than all the other parameters: differences in AUC for CCTA, 0.20 (95% CI, 0.09–

0.30, p<0.01), lesion-specific FFRCT, 0.15 (95% CI, 0.05–0.26, p<0.01), and the 

lowest FFRCT, 0.21 (95% CI, 0.11–0.31, p<0.01), respectively (Figure 5 A). The 

specificity for ΔFFRCT with threshold value of 0.12 was higher than those for CCTA 

and the lowest FFRCT (adjusted p<0.01 for both). The accuracy and sensitivity 

showed no statistical significance between CCTA, ΔFFRCT, lesion-specific FFRCT 

and, the lowest FFRCT (accuracy, p = 0.126; and sensitivity, p = 0.059, respectively 

by Cochran’s Q test). Figure 6 displays a representative case of patients with a 

positive result for the lowest FFRCT without ischemia for the invasive FFR. 

3.3. Diagnosis of ischemia

On univariable generalized estimating equations, CCTA (X2, 6.8, odds radio 

[OR], 8.0 [95% CI, 1.7–38.4], p<0.01), ΔFFRCT (X2, 21.2, OR, 18.0 [95% CI, 5.3–

61.2], p<0.01), lesion-specific FFRCT (X2, 10.6, OR, 6.0 [95% CI, 2.0–17.8], p<0.01), 

and the lowest FFRCT (X2, 7.7, OR, 5.9 [95% CI, 1.8–20.4], p = 0.018) were related 



to the ischemia determined by invasive FFR (Table S3, supplementary material). 

On multivariable generalized estimating equation, ΔFFRCT (X2, 12.3, OR, 10.2 [95% 

CI, 2.8–37.3], p<0.01) remained a predictor over CCTA (X2, 1.1, OR, 2.9 [95% CI, 

0.4–21.8], p = 0.30), lesion-specific FFRCT, (X2, 2.9, OR, 3.1 [95% CI, 0.8–11.1], p = 

0.091), and the lowest FFRCT (X2, 0.01, OR, 0.9 [95% CI, 0.2–5.1], p = 0.95) (Table 

S3, supplementary material).

3.4. Additive values of FFRCT parameters

All diagnostic models using CCTA and FFRCT measures demonstrated higher 

AUC than the model with CCTA alone (CCTA alone, 0.66 [95% CI, 0.56–0.75]; 

CCTA + ΔFFRCT, 0.84 [95% CI, 0.73–0.91]; CCTA + lesion-specific FFRCT, 0.77 

[95% CI, 0.65–0.86]; and CCTA + the lowest FFRCT, 076 [95% CI, 0.65–0.85], 

p<0.01 for all) (Figure 5 B, C, and D). All FFRCT parameters enabled effective 

reclassification of CCTA diameter stenosis as follows: ΔFFRCT (NRI, 1.24 [95% CI, 

0.87–1.60], p<0.01); lesion-specific FFRCT (NRI, 0.83 [95% CI, 0.40–1.25], p<0.01); 

and the lowest FFRCT (NRI, 0.59 [95% CI, 0.21–0.97], p<0.01).



3.5. Relationship between FFRCT parameters and stenosis grading

The relationships between FFRCT measures and anatomical stenosis 

determined by CCTA are displayed in Figure 7. All 20 vessels with severe (70%–

99%) stenosis demonstrated hemodynamic significance on invasive FFR. Vessels 

with mild (25%–49%) and moderate (50%–69%) stenoses included 19% (3/16) and 

46% (17/37), respectively, of vessels with ischemia. For the 37 moderate stenotic 

lesions, ΔFFRCT, lesion-specific FFRCT and the lowest FFRCT correctly reclassified 

43% (16/37), 32% (12/37), and 24% (9/37), respectively, of vessels into the non-

ischemia (invasive FFR >0.80). For the remaining 16 vessels with mild stenotic 

lesions, ΔFFRCT could not reclassify into the ischemia (invasive FFR ≤0.80), while 

lesion-specific FFRCT, and the lowest FFRCT correctly reclassified 13% (2/16) and 

13% (2/16) of vessels, respectively into the ischemia (invasive FFR ≤0.80).

3.6. Interobserver reproducibility

For each FFRCT measures, intraclass correlation coefficients were as follows: 

ΔFFRCT, 0.90 (95% CI, 0.79–0.95); lesion-specific FFRCT, 0.86 (95% CI, 0.73–



0.93); and the lowest FFRCT, 1.00 (95% CI, 0.99–1.00).

4. Discussion

At present, interpreting or reporting FFRCT result system in a clinical condition is 

lacking. We developed ΔFFRCT as a predictor of ischemia, and investigated 

discrimination power, diagnostic accuracy and reclassification ability of ΔFFRCT, 

lesion-specific FFRCT, and the lowest FFRCT. Each FFRCT measures showed 

improvement of AUC and effective reclassifications for the detection of ischemia, 

compared with those of CCTA alone. Among these FFRCT measures, ΔFFRCT 

showed the highest AUC, and the specificity of ΔFFRCT with threshold value of 0.12 

was higher compared to that of the lowest FFRCT. The per-vessel sensitivity and 

specificity of ΔFFRCT were comparable to those in the NXT trial (sensitivity and 

specificity of 84% and 86%, respectively).6 Multivariable generalized estimating 

equation showed that ΔFFRCT remained a predictor of ischemia over CCTA, lesion-

specific FFRCT, and the lowest FFRCT. Furthermore, these FFRCT measures could 



efficiently reclassify moderate stenotic lesions and be limited to vessels with mild or 

severe stenosis. Combined with anatomical stenosis evaluation, ΔFFRCT, lesion-

specific FFRCT, and the lowest FFRCT will aid in the diagnosis of ischemia. 

Moreover, from the perspective of clinical use, the advantage of these parameters 

is that the measurement is not based on the position of the pressure wire sensor. 

Thus, these FFRCT measurements, which are intended for clinical use, will enhance 

the clinical value of FFRCT when managing patients with suspected ischemia.

However, in our study, more than half (63%) of invasive FFR measurements 

were performed proximal to the lowest FFRCT, whereas 60% were performed distal 

to the lesion-specific FFRCT. Considering that there is a gradual decrease in the 

FFRCT value even without a focal stenosis, positional differences could cause 

discordances in values between FFRCT and invasive FFR. If the same threshold 

value of 0.80 for ischemia is used, the lowest FFRCT could overestimate the severity 

of the lesion compared with invasive FFR, whereas lesion-specific FFRCT could 

underestimate the severity. Thus, these measurements do not precisely reflect 



invasive FFR results, and simply reporting the lowest FFRCT or lesion-specific 

FFRCT alone can confuse rather than help in clinical decision-making when 

considering referral for ICA. Especially, the AUC (0.65) and specificity (39%) of the 

lowest FFRCT were modest, which probably account for the disagreement of the 

measurement location. The lowest FFRCT might have a tendency to become lower 

than those measured at the proximal to the distal vessel tip. These results indicate 

that simply using the lowest FFRCT is unreliable, and a system for interpreting 

FFRCT results should be reconsidered in clinical settings.

Our study has some limitations. It is a single-center study with a small sample 

size. Moreover, although this study included patients from the prospective registry, 

this subanalysis is not prespecified. Additionally, the population consisted of 

patients who underwent invasive ICA and FFR, which causes a potential selection 

bias of patients referred for FFRCT evaluation and those subsequently referred for 

ICA and FFR. Patients who had previously undergone revascularization were also 

excluded from the study. Thus, the usefulness of FFRCT parameters warrants 



further investigation. Furthermore, this study lacks clinical outcome data, such as 

reduction of unnecessary ICA or adverse cardiac events. For those reasons, we 

could just conclude that ΔFFRCT, lesion-specific FFRCT, and the lowest FFRCT will 

help in interpreting FFRCT results in patients referred for ICA and invasive FFR 

measurement. To show the usefulness of these methods, a further clinical outcome 

study is needed.

5. Conclusions

Although FFRCT is a clinically useful diagnostic tool, a standardized 

interpretation system is lacking in clinical settings. Adding ΔFFRCT, lesion-specific 

FFRCT, and the lowest FFRCT to the diameter stenosis determined by CCTA 

showed improvements in discriminating and effectively reclassifying ischemia, with 

ΔFFRCT being superior in identifying and discriminating ischemia. In contrast, the 

lowest FFRCT was of limited value, which suggests that positional difference 

between FFRCT and invasive FFR may have a potential harm; thus, cautious clinical 



interpretation of FFRCT values is crucial.
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Figure legends

Figure 1 – Quantitative parameters derived from FFRCT.

ΔFFRCT was calculated as the difference of values in proximal and distal sites, 

which were manually selected to be the most adjacent points to the maximal 

stenosis in which there was minimal or no plaque. Lesion-specific FFRCT was 

defined as the value at 2 cm distal to the maximal stenosis. The lowest FFRCT was 

the value at the distal end of the coronary vessel in FFRCT.

FFRCT = fractional flow reserve derived from computed tomography.

Figure 2 – Detailed methods in obtaining ΔFFRCT.

We obtained ΔFFRCT using the following 3 steps (A): (1) we identified the greatest 

stenosis in the coronary tree; (2) selected proximal and distal adjacent points to the 

tightest point in which there is minimal or no plaque; (3) and subtracted FFRCTdistal 

from FFRCTproximal, where FFRCTproximal and FFRCTdistal were defined as FFRCT values 

at the proximal and distal points, respectively. If there was a diffuse plaque (B), we 



selected the proximal or distal points for ΔFFRCT far from the tightest point (arrow 

head), and the distance between proximal or distal points became longer. In a case 

with serial lesions (C), we strictly selected proximal and distal points adjacent to the 

tightest point (arrow head) in which there is minimal or no plaque, independently of 

other stenosis severity.

FFRCT = fractional flow reserve derived from computed tomography

Figure 3 – Positional relationship of the pressure wire sensor to the lesion-specific 

FFRCT and the lowest FFRCT.

The position of the distal pressure sensor (star) was compared with the position 2 

cm distal to the tightest point (i.e. position of lesion-specific FFRCT) (circle) or that at 

the distal end of FFRCT (i.e. position of the lowest FFRCT) (triangle). A shows a 

pressure sensor positioned proximal to the lesion-specific FFRCT and the lowest 

FFRCT, whereas B and C show a sensor positioned between lesion-specific FFRCT 

and the lowest FFRCT, and distal to both, respectively. In our study, five positions of 



distal wire sensor were missing. In the remaining 68 vessels, the positional 

relationships of distal pressure sensor to measurement points for lesion-specific 

FFRCT (D) and the lowest FFRCT (E) were as follows: proximal, 10% (7/68) and 63% 

(43/68); distal, 60% (41/68) and 13% (9/68); and same position, 29% (20/68) and 

24% (16/68), respectively.

FFRCT = fractional flow reserve derived from computed tomography

Figure 4 – Study enrollment.

Among 106 patients who underwent FFRCT analysis, forty-one (39%) patients defer 

ICA based on CCTA and FFRCT results. The other fourteen (13%) patients 

underwent ICA or revascularization without invasive FFR measurement. 

Consequently, fifty-one patients underwent invasive FFR. One patient with history 

of PCI was excluded. A total of 73 vessels in 50 patients were analyzed.

FFRCT = fractional flow reserve derived from computed tomography, ICA = invasive 

coronary angiography, FFR = fractional flow reserve, and PCI = percutaneous 



coronary intervention.

Figure 5 – Receiver operating characteristic (ROC) curves of CCTA, ΔFFRCT, 

lesion-specific FFRCT, and the lowest FFRCT in predicting ischemia (N = 73 

vessels).

A shows ROC curves for predicting ischemia using CCTA, ΔFFRCT, lesion-specific 

FFRCT, and the lowest FFRCT. B, C and D show the ROC curves of models using 

CCTA with and without ΔFFRCT, lesion-specific FFRCT, and the lowest FFRCT, 

respectively. Threshold value of 0.12 corresponding to the maximum Youden index 

was used for the comparison between CCTA and CCTA with ΔFFRCT.

*Indicates statistically significant difference between AUC for CCTA and CCTA with 

parameters derived from FFRCT (B, C, and D) using DeLong test.21

CCTA = coronary computed tomography angiography, FFRCT = fractional flow 

reserve derived from computed tomography, and AUC = area under the curve.



Figure 6 – Representative case example from a study.

A 70-year-old man with atypical chest pain. Curved planar reconstruction image of 

CCTA (A) shows a moderate stenosis (50%–69% diameter stenosis) in the proximal 

left anterior descending artery (arrow head). Although the lowest FFRCT is 0.76, 

which suggests ischemia, ΔFFRCT and lesion-specific FFRCT suggest non-ischemic 

lesion (B). Invasive FFR measurement was performed at the proximal to the distal 

vessel tip of FFRCT (circles), in which the value of 0.81 suggests non-ischemia (C 

and D).

FFRCT = fractional flow reserve derived from computed tomography, and CCTA = 

coronary computed tomography angiography.

Figure 7 – Relationship between FFRCT measures and anatomical stenosis 

determined by CCTA.

Distributions of ΔFFRCT (A), lesion-specific FFRCT (B), and the lowest FFTCT (C) in 

each group with 25%–49%, 50%–69%, and 70%–99% diameter stenosis 



determined by CCTA are shown. Box and plots show the medians, quartiles, and 

ranges in FFRCT parameters. Individual values are also shown as a circle (invasive 

FFR ≤0.80) or a square (invasive FFR >0.80). Threshold values of each FFRCT 

parameter are displayed as dashed lines. All 20 vessels with 70%–99% diameter 

stenosis demonstrated functional significance during invasive FFR, and vessels 

with 25%-49% or 50%–69% included 19% (3/16) or 54% (20/37) of vessels without 

ischemia, respectively.

FFRCT = fractional flow reserve derived from computed tomography, and FFR = 

fractional flow reserve



Table 1. Patient characteristics (N = 50)

Variables Values

Sex (woman)* 14 (7/50)

Age (years) 71 (57–75)

Height (cm) 164 (160–172)

Weight (kg) 67 (60–75)

Body mass index (kg/m2) 26 (23–27)

Hypertension* 74 (37/50)

Diabetes* 34 (17/50)

Dyslipidemia* 62 (31/50)

Current/past smoker* 50 (25/50)

Serum creatinine (mg/dl) 0.82 (0.74–0.90)

Estimated glomerular filtration rate (ml/min/1.73m2) 70 (62–78)

Note – Unless otherwise noted, data are medians, with quartiles in parentheses.

*Data are percentages, with raw data in parentheses.



Table 2. CT characteristics (N = 50)

Variables Values

CT scanner

 0.5 mm × 320-row CT (Aquilion One ViSION)

 0.5 mm × 320-row CT (Aquilion One GENESIS)

 0.25 mm × 128-row CT (TSX-304R)

 0.25 mm × 160-row CT (Aquilion Precision)

24 (12/50)

26 (13/50)

44 (22/50)

6 (3/50)

Agatston score14*

 0–400

 >400

251 (51–531)

62 (31/50)

38 (19/50)

Nitrate administrated 100 (50/50)

Beta-blocker administrated 48 (24/50)

Arrhythmia 2 (1/50)

Mean heart rate during CCTA (beats per minute)* 57 (52–61)

Dose of iodine contrast medium (ml)* 57 (45–67)



Volumetric CT dose index for CCTA (mGy)* 23 (9–31)

Dose-length product for CCTA (mGy･cm)* 329 (111–449)

Effective radiation dose for CCTA (mSv)*† 4.6 (1.6–6.3)

Note – Unless otherwise noted, data are percentages, with raw data in 

parentheses.

*Data are medians, with quartiles in parentheses.

†Effective radiation dose was calculated using a conversion factor of 0.014 

mSv/mGy･cm.18

CCTA = coronary computed tomography angiography



Table 3. Extent of coronary stenosis (N = 50 patients; N = 73 vessels) 

Variables Values

Vessel with CCTA maximum stenosis of 25–49%

Vessel with CCTA maximum stenosis of 50–69%

Vessel with CCTA maximum stenosis of 70–99%

22 (16/73)

51 (37/73)

27 (20/73)

Patients with CAD-RADS 3*

Patients with CAD-RADS 4A*

Patients with CAD-RADS 4B*

Patients with CAD-RADS 5*

38 (19/50)

52 (26/50)

6 (3/50)

4 (2/50)

Vessel with FFR ≤0.80

 RCA with FFR ≤0.80

 LAD with FFR ≤0.80

 LCX with FFR ≤0.80

55 (40/73)

57 (8/14)

61 (25/41)

35 (6/17)

Patients with FFR ≤0.80 in >1 vessel 66 (33/50)

Note – Data are percentages, with raw data in parentheses.



*All patients were graded using Coronary Artery Disease: Reporting and Data 

System (CAD-RADS) as previously described.25

CCTA = coronary computed tomography angiography, FFR = fractional flow 

reserve, RCA = right coronary artery, LAD = left anterior descending artery, and 

LCX = left circumflex.



Table 4. Per-vessel diagnostic accuracy of CCTA, ΔFFRCT, lesion-specific FFRCT 

and the lowest FFRCT (N = 73).

Variables CCTA† ΔFFRCT‡ Lesion-specific FFRCT§ The lowest FFRCT§

True positive* 37 32 31 36

True negative* 13 27 21 13

False positive* 20 6 12 20

False negative* 3 8 9 4

% Accuracy 69 (59–74) 81 (70–88) 71 (60–80) 67 (58–73)

% Sensitivity 93 (84–97) 80 (71–87) 78 (68–86) 90 (81–96)

% Specificity 39 (29–45) 82 (70–90) 64 (51–74) 39 (29–46)

% PPV 65 (59–68) 84 (74–91) 72 (63–80) 64 (58–68)

% NPV 81 (60–93) 77 (66–85) 70 (57–81) 77 (56–90)

AUC 0.66 (0.56–0.76) 0.86 (0.75–0.92) 0.71 (0.59–0.80) 0.65 (0.55–0.74)

Note – Unless otherwise noted, data are measures, with 95% confidence intervals.

*Data are raw data.



†For CCTA, significant obstruction was defined as diameter stenosis of ≥50%.

‡For ΔFFRCT, diagnostic characteristics were calculated using the threshold value 

of 0.12 corresponding to the maximum Youden index.

§For lesion-specific FFRCT or the lowest FFRCT, functional significant was defined 

as FFRCT value of ≤0.80.

CCTA = coronary computed tomography angiography, FFRCT = fractional flow 

reserve derived from computed tomography, AUC = area under the curve, NPV = 

negative predictive value, and PPV = positive predictive value.

















Supplementary material

Table S1. Inclusion and exclusion criteria for patient enrollment of ADVANCE 

registry (ClinicalTrials.gov. # NCT02499679 ).

Inclusion

1. Provide written informed consent

2. Clinically stable, symptomatic patients who undergo cCTA and are diagnosed 

with CAD and meet eligibility criteria for FFRCT

Exclusion

1. cCTA showing no CAD

2. Uninterpretable cCTA by site assessment, in which severe artifacts prevent 

angiographic evaluation

3. Any active, serious, life-threatening disease with a life expectancy of less than 

1 year

4. Inability to comply with follow-up requirements

ADVANCE = Assessing Diagnostic Value of Non-invasive FFRCT in Coronary Care; 



FFRCT = fractional flow reserve derived from computed tomography; cCTA = 

coronary computed tomography angiography; CAD = coronary artery disease.



Supplementary material 

Table S2. Coronary CT angiography acquisition protocol.

320-row detector CT Ultra-high-resolution CT

CT scanner
Aquilion ONE ViSION

Aquilion ONE GENESIS

TSX-304R

Aquilion Precision

Scan mode Axial Helical

Tube voltage
120 kV or 100 kV in patients with a body mass index < 22 kg/m2 

and Agatston score11 of < 400

Tube current Targeting image noise of 28 HU

Collimation 0.5 mm x 200–280
0.25 mm x 128 (TSX-304R) or

0.25 mm x 160 (Precision)

Gantry rotation (s/rotation) 0.275 0.35

Scan RR window

Heart rate of <70 beats/min

Heart rate of ≥70 beats/min

Diastolic phase

Systolic to diastolic phase

Intravenous access A 20-gauge catheter was placed in the right antecubital vein.

Iodine contrast medium (mgI/ml) 350 or 370

Injection rate (ml/s) 0.07 ml/s/kg x body weight (kg)



Injection duration (s) 10 Scan time + 5

Saline flash (ml) 35

Scan delay

A computer-assisted bolus tracking system (SureStart, Canon 

Medical Systems) automatically determined.

A trigger threshold was150 HU in the ROI within the ascending 

aorta. Subsequent to triggering, image acquisition began 

automatically at 5 s.

Reconstruction field of view (mm2) 200 x 200

Slice thickness and increment (mm) 0.5 mm and 0.5 mm

Reconstruction kernel

Smooth kernel (FC13 or FC44) with hybrid IR (AIDR 3D, Canon 

Medical Systems) for ViSION and ultra-high-resolution CT

Full IR (FIRST, Canon Medical Systems) for GENESIS

BMI = body mass index, ROI = region of interest, and IR = iterative reconstruction.



Supplementary material 

Table S3. Univariable and multivariable binary logistic generalized estimating 

equations for CCTA and FFRCT measures to identify ischemia.

Univariable Multivariable

X2 OR (95% CI) P value X2 OR (95% CI) P value

CCTA† 6.8 8.0 (1.7–38.4) <0.01* 1.1 2.9 (0.4–21.8) =0.30

ΔFFRCT‡ 21.2 18.0 (5.3–61.2) <0.01* 12.3 10.2 (2.8–37.3) <0.01*

Lesion-specific FFRCT§ 10.6 6.0 (2.0–17.8) <0.01* 2.9 3.1 (0.8–11.1) =0.091

The lowest FFRCT§ 7.7 5.9 (1.8–20.4) <0.01* 0.01 0.9 (0.2–5.1) =0.95

*shows statistically significance

†For CCTA, significant obstruction was defined as diameter stenosis of ≥50%.

‡For ΔFFRCT, threshold value of 0.12 corresponding to the maximum Youden index 

was applied.

§For lesion-specific FFRCT or the lowest FFRCT, functional significance was defined 

as FFRCT value of ≤0.80.



CCTA = coronary computed tomography angiography, FFRCT = fractional flow 

reserve derived from computed tomography, OR = odds ratio, and CI = confidence 

interval.
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Table of Content Summary

A standardized system for interpreting FFRCT values for ischemia detection is 

necessary in clinical settings. Adding ΔFFRCT, lesion-specific FFRCT, and the lowest 

FFRCT to the diameter stenosis showed improvements in discriminating and 

effectively reclassifying ischemia, with ΔFFRCT being superior among the three 

measurements in ischemia detection. In contrast, the lowest FFRCT was of limited 

value, suggesting that positional difference between FFRCT and invasive FFR may 

have a potential harm; thus, FFRCT values should be interpreted clinically with 

caution.


