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Abstract 
Pax6 transcription factor is a key player in several aspects of brain development 
and function. Autism spectrum disorder (ASD) is a neurodevelopmental disorder 
in which several loci and/or genes have been suggested as causative candidate 
factors. Based on data obtained from meta-analyses of the transcriptome and 
ChIP analyses, we hypothesized that the neurodevelopmental gene PAX6 
regulates and/or binds to a large number of genes (including many ASD-related 
ones) that modulate the fate of neural stem/progenitor cells and functions of 
neuronal cells, subsequently affecting animal behavior. Network analyses of 
PAX6/ASD-related molecules revealed significant clusters of molecular 
interactions involving regulation of cell-cell adhesion, ion transport, and 
transcriptional regulation. We discuss a novel function of Pax6 as a chromatin 
modulator that alters the chromatin status of ASD genes, thereby inducing 
diverse phenotypes of ASD and related neurodevelopmental diseases. 
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Introduction 
Pax6 is one of the key transcription factors in brain development and was 
originally cloned as a member of the paired box (Pax) family based on its 
homology to the Drosophila gene paired (Walther and Gruss, 1991). Pax6 
contains two DNA binding domains: a paired box-domain and a homeodomain 
(Kessel and Gruss, 1990; Treisman et al., 1991; Walther et al., 1991). The paired 
domain is subdivided into two DNA binding domains, the PAI and the RED motifs 
(Cai et al., 1994; Czerny et al., 1993; Jun and Desplan, 1996; Treisman et al., 
1991; Xu et al., 1995). The molecular structure of Pax6 is well conserved, and 
the functions of Pax6 are interchangeable across species; the fly eyeless, 
mouse Pax6 and human PAX6 genes can all induce compound eyes in the 
imaginal discs of the fly (Halder et al., 1995).  
 Pax6 has crucial roles not only in eye formation but also in brain 
development (Fig. 1A). There are many studies on neurogenesis of the cortex, 
and brain structure has increased in size and complexity throughout mammalian 
evolution (see review by (Osumi et al., 2008)). These changes may be due to the 
role of Pax6 in balancing proliferation and differentiation of neural 
stem/progenitor cells (Estivill-Torrus et al., 2002; Fukuda et al., 2000; Gotz et al., 
1998; Heins et al., 2002; Warren et al., 1999). Because Pax6 is a transcription 
factor, it regulates expression of many genes during corticogenesis. Recent 
genome-wide transcriptomic analyses have identified a few thousands of Pax6 
downstream genes that are involved in cortical development (Kikkawa et al., 
2013; Sansom et al., 2009; Sun et al., 2015; Walcher et al., 2013; Xie et al., 
2013). 
 If corticogenesis drastically fails, microcephaly will develop. Similarly, 
subtle abnormalities occur in neural development, resulting in 
neurodevelopmental disorders, such as intellectual disability, attention 
deficit-hyper activity disorder, and autism spectrum disorder (ASD). Many loci 
and/or genes have been suggested as potential causative factors for ASD. Since 
PAX6 is one of the responsible genes for ASD (see below, (Davis et al., 2008; 
Maekawa et al., 2009; Yamamoto et al., 2014)), Pax6 regulatory molecular 
networks might be involved in pathogenesis of ASD. In this review, we discuss 
the involvement of PAX6 in the onset of neurodevelopmental diseases based on 
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meta-analyses of comprehensive datasets of Pax6 downstream and 
Pax6-binding genes. 
 
Expression patterns and functions of Pax6 in the brain 
Many studies in rodents have identified brain regions in which Pax6 is expressed 
in the embryonic and/or adult stages (see (Georgala et al., 2011; Hiraoka et al., 
2016; Manuel et al., 2015; Osumi et al., 2008) and the references therein). Pax6 
expression is first activated around the time of neural plate induction (Inoue et al., 
2000). In the neural tube, Pax6 is expressed in neural stem and progenitor cells, 
i.e., radial glial (RG) cells. Pax6 plays an important early role in establishing 
specific brain territories, including the forebrain/midbrain border and the border 
between the dorsal and ventral telencephalon (i.e., the cerebral cortex and basal 
ganglia, respectively) (Fig. 1B). In the developing neocortex, Pax6 expression 
turns off in differentiated neurons; thus, the Pax6-positive nuclear layer 
demarcates the ventricular zone from the cortical plate (Fig. 1C). Loss of Pax6 
function causes premature neurogenesis in the neocortex, resulting in a net 
reduction in the number of neurons (Estivill-Torrus et al., 2002; Fukuda et al., 
2000). The demarcation of brain territories based on Pax6 expression is also 
used to track the migration of specific neurons such as “lot cells”, which 
subsequently guide mitral cells to project from the olfactory bulb to the tubercles 
(Tomioka et al., 2000). In the hindbrain and spinal cord, Pax6 plays an essential 
role in establishing progenitor domains for somatic motor neurons (Ericson et al., 
1997; Osumi et al., 1997; Takahashi and Osumi, 2002).  
 In the developing brain, Pax6 is also expressed robustly in specific 
regions, including the preoptic area, the olfactory neuroepithelium, the ventral 
thalamus, the internal germinal layer of the dorsal thalamus and epithalamus, 
the anterior amygdaloid area, the nucleus raphe dorsalis, and the cochlear, 
vestibular, and hypoglossal nuclei (Duan et al., 2013; Stoykova and Gruss, 
1994). In the amygdaloid complex, Pax6 is required for the specification and 
development of the lateral, basolateral, and basomedial nuclei (Soma et al., 
2009; Tole et al., 2005). Pax6 also plays a key role in establishing specific 
excitatory and inhibitory neuronal subpopulations in the amygdala (Cocas et al., 
2011). Pax6 is expressed in the developing diencephalon (Stoykova and Gruss, 
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1994), and development of the thalamocortical tract requires Pax6 expression 
(Kawano et al., 1999; Pratt et al., 2000; Pratt et al., 2002; Simpson et al., 2009). 
In the developing midbrain, Pax6 plays a pathfinding role in dopaminergic 
projections from the substantia nigra (SN) and ventral tegmental area (VTA) 
(Vitalis et al., 2000). In the developing cerebellum, Pax6 is expressed in granule 
cells in the external granular layer (EGL); these cells differentiate and migrate 
radially across the Purkinje cell layer (PCL) to the internal granular layer (IGL) 
(Fig. 1D). Pax6 regulates the migration of post-mitotic neurons from the rhombic 
lip to form the granule cell layers in the cerebellum and precerebellar nuclei, 
including the pontine nucleus (Benzing et al., 2011; Engelkamp et al., 1999). 
Pax6 also regulates the polarization of cerebellar granule cells during parallel 
fiber formation (Yamasaki et al., 2001).  

In the adult rodent brain, Pax6 expression persists in the subventricular 
zone of the lateral ventricle and in the subgranular zone of the dentate gyrus in 
the hippocampus (Hevner et al., 2006; Kohwi et al., 2005; Maekawa et al., 2005; 
Nacher et al., 2005). Pax6 expression is detected in neurons within the olfactory 
bulb, the amygdala, the pallidum, the thalamus, the hypothalamus, the midbrain, 
and the cerebellum (Haba et al., 2009; Hack et al., 2005). A recent study by 
Duan et al. (2013) reported that nearly 40% of Pax6-positive cells in the cortex 
are neurons. Dorsal telencephalon-derived cortical excitatory neurons are 
negative for Pax6. However, Pax6 is expressed not only in the dorsal 
telencephalon but also in the caudal ganglionic eminence (CGE), which 
produces cortical interneurons (Tang et al., 2012). Thus, Pax6-positive neurons 
in the cortex may be the CGE-derived inhibitory interneurons. Therefore, Pax6 
has several important functions, including the specification, differentiation, and 
migration of neurons; Pax6 also likely plays a role in the maintenance of neurons, 
as well as in the pathfinding of neuronal circuits via an indirect mechanism. 
Notably, Pax6 is expressed weakly in astrocytes throughout the entire central 
nervous system, where it appears to play a role in astrocyte maturation (Sakurai 
and Osumi, 2008). Importantly, these patterns of Pax6 expression in rodents 
appear to be conserved within the human brain as well (Terzic and Saraga-Babic, 
1999).  

Recently, Miller and colleagues performed a comprehensive 
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transcriptome study combined with ultra-high-resolution magnetic resonance 
imaging (MRI) in the brains of human fetuses at mid-gestation (Miller et al., 
2014). In their study, the authors observed minimal differences in gene 
expression levels in both humans and rodents between the inner and outer 
subventricular zones (i.e., the germinal zones), even though the latter zone is 
substantially larger in humans than in rodents. Moreover, in the developing 
human brain, PAX6 is expressed in both the inner and outer subventricular 
zones, the latter of which contains neural progenitor cells and—as mentioned 
above—is dramatically larger in primates, particularly humans, than rodents (see 
(Miller et al., 2014) and the references therein). This finding may suggest that 
PAX6 expression has a strong contribution to neural stem cells and progenitor 
cells in human neural development. 
 
PAX6 is related to ASD 
In recent years, the prevalence of ASD has increased considerably in various 
countries, up to 1/68 in the United States (see media release from Centers for 
Disease Control and Prevention; 
https://www.cdc.gov/media/releases/2014/p0327-autism-spectrum-disorder.html
). ASD comprises a broad spectrum of neurodevelopmental disorders. The most 
recent standard established by the Diagnostic and Statistical Manual of Mental 
Disorders, 5th Edition (DSM-5) defines ASD as the presence of both i) defects in 
social interactions, including vocal communication; and ii) stereotypic/repetitive 
behaviors and restricted interest, beginning in early childhood (e.g., by three 
years of age). However, several additional symptoms can be present, including 
abnormalities in sensory systems, motor control, sleep disorders, 
gastrointestinal disturbances, epilepsy, and comorbid psychiatric conditions 
(Chen et al., 2015; Geschwind, 2009). Indeed, it is commonly noted that from a 
clinical perspective, no two autistic people are alike. This heterogeneity with 
respect to clinical presentation reflects the high complexity associated with the 
mechanisms that underlie the pathogenesis of ASD. 
 Based on classic genetic analyses of monozygotic twins, the heritability 
of ASD is extremely high, ranging from 60% to as high as 90% (Deng et al., 
2015; Gupta and State, 2007). This finding has prompted researchers to perform 
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genome-wide genetic analyses, allowing to screen many genes across 
chromosomes (Pinto et al., 2010; Weiss et al., 2009; Yu et al., 2013). Notably, 
many de novo mutations have been associated with ASD (Chang et al., 2015; 
Pinto et al., 2014; Sanders et al., 2011; Sebat et al., 2007). 
 Because the symptoms of ASD generally present in early childhood, 
the disorder is believed to originate from defects that occur during brain 
development when the expression of many genes is harmonically coordinated. 
As noted above, the transcription factor Pax6 is a neurodevelopmental molecule 
that governs brain development, neurogenesis, and gliogenesis (Manuel et al., 
2015; Osumi, 2001; Osumi et al., 2008; Ypsilanti and Rubenstein, 2016). Thus, 
there has been interest in how human PAX6 is involved in neurodevelopmental 
diseases such as ASD. 
 In the human genome, the PAX6 gene is located on the chromosomal 
region 11p13, and its deletion causes WAGR (Wilms tumor in the kidney, Aniridia 
in the eye, Genital ridge defect, and mental Retardation) syndrome (Ton et al., 
1991). In the mouse genome, the Pax6 gene was identified from the genetic 
analysis of a spontaneous mutant called Small eye (Hill et al., 1991), and other 
mutations have also been identified in the Small eye mutant rats (Matsuo et al., 
1993; Osumi et al., 1997). 
 Clinically, patients with WAGR syndrome are often diagnosed as 
having ASD. Several studies have indeed reported abnormalities in the 
psychosocial states of patients who have a mutation in the PAX6 gene; these 
patients often present aggression, mental retardation, and/or autism (for review, 
see Davis et al. (2008) and the references therein). A previous genome-wide 
linkage study found that the chromosomal region 11p12-13 is associated with 
ASD (Abrahams and Geschwind, 2008; Szatmari et al., 2007). We previously 
sequenced all of the exons and flanking introns of the PAX6 gene in 285 
Japanese patients with ASD and found 15 single-nucleotide polymorphisms that 
were present in the autistic patients but absent in 2120 controls (i.e., 
non-autistic) subjects (Maekawa et al., 2009). A recent case report has further 
suggested that a 1.6 Mb region containing PAX6, WT1, and PRRG4 is 
responsible for the severe developmental delays and autistic behaviors in 
WAGR syndrome (Yamamoto et al., 2014). 
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 Behavioral phenotypes have been examined in rodent models that 
have deficiencies in Pax6 function. Cortex-specific Pax6 knockout mice 
(Emx1-Cre; Pax6fl/fl mice) also showed deficiencies in sensorimotor information 
integration and both hippocampus-dependent short-term and 
neocortex-dependent long-term memory recalls (Tuoc et al., 2009). We 
examined the behavior of spontaneous Pax6 mutant heterozygous (rSey2/+) rats 
as a model for a neurodevelopmental disorder and found deficits in vocal 
communication, social behavior, emotional behavior, sensorimotor gating, and 
fear-conditioned memory (Umeda et al., 2010). We have confirmed behavioral 
abnormalities in Pax6 heterozygous mutant mice (Sey/+), but very intriguingly, 
the phenotypes are different in offspring derived from young or aged Pax6 
mutant fathers, i.e., offspring born to young Pax6 mutant fathers show 
vocalization impairment, while offspring born to aged Pax6 mutant fathers show 
hyperactivity (Yoshizaki et al., 2016). Importantly, these findings indicated that 
there is an interaction of a genetic risk factor and a non-genetic factor (e.g., 
paternal aging), to which basic researchers working on animal models of 
neurodevelopmental diseases should pay more attention. In addition, current 
human genetic studies may overlook some risk genes if the genes are related to 
multiple diseases (e.g., ASD and hyperactivity). In any case, it is possible that 
Pax6 may affect various animal behaviors related to neurodevelopmental 
diseases. 
 Below, we discuss the molecular possibilities that PAX6 may be 
associated with the pathogenesis of ASD. Based on meta-analyses of the Pax6 
downstream transcriptome and chromatin immunoprecipitation (ChIP) studies, 
we show that Pax6 may regulate and/or bind to hundreds of ASD-associated 
genes. Taking these facts into account, we propose a novel scenario to explain 
the multifactorial mechanism that underlies the complex and heterogeneous 
symptoms associated with ASD. 
 
The role of PAX6-regulated and PAX6-binding molecules related to ASD 
A major function of PAX6 is transcriptional regulation of various target genes via 
binding to their regulatory regions. Since PAX6 is a highly conserved gene 
among species as mentioned above (Manousaki et al., 2011), we searched 
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ASD-associated human genes among Pax6-regulated/-binding rodent genes 
that are expressed in the developing brain (Fig. 2A). Here, we assessed both 
downregulated and upregulated genes in the developing brain of Pax6 mutants 
because ASD-related genes include both loss-of-function and gain-of-function 
conditions. 
 We first identified 1,074 genes that are either upregulated or 
downregulated in the developing brain of Pax6 mutants relative to wild-type 
animals (defined as a >1.5-fold change in either direction) based on microarray 
datasets of ours and other laboratories (Kikkawa et al., 2013; Sansom et al., 
2009; Walcher et al., 2013). Next, we used published ChIP-on-Chip data to 
identify genes that have promotor regions bound by the Pax6 protein. We 
focused on the 2,696 Pax6-binding genes suggested by ChIP-on-Chip analyses 
using the mouse cortical primordium; genes significantly positive for 
Pax6-binding were selected by criteria of Sansom et al. (2009) and Xie et al. 
(2013).  
 A comprehensive list of ASD-associated genes is maintained in the 
Simons Foundation Autism Research Initiative (SFARI) database, a curated 
dataset of putative ASD candidate genes/loci (Banerjee-Basu and Packer, 2010). 
We therefore screened this publicly accessible web-based dataset containing 
910 SFARI genes (updated in September 2017), among which 886 have 
homologs in the mouse (Blake et al., 2017). As a result, we found 95 
PAX6-regulated/ASD-related genes and 167 PAX6-binding/ASD-related genes, 
including 16 overlapped ones, listed in the order of SFARI scores based on the 
number of corresponding reports (Supplementary Table 1). 
 SHANK3, at the top of our list, is a well-known ASD-associated gene 
along with its family members SHANK1 and SHANK2 (Durand et al., 2007; 
Leblond et al., 2014; Moessner et al., 2007). SHANK3 encodes a scaffold 
protein that localizes to the postsynaptic density structure and interacts with 
Neuroligin (NLGN) and Neurexin (NRXN) to form the connection between 
presynaptic and postsynaptic neurons (for review, see (Banerjee et al., 2014)). 
Because Pax6-regulated genes also include NLGN1 and NRXN3, it is 
reasonable to hypothesize that synaptic dysfunction can be caused by 
perturbations in a Pax6-dependent molecular pathway. 
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 PTEN, a tumor suppressor gene, is expressed in the developing central 
nervous system (Luukko et al., 1999). Pten-deficient mice have an enlarged 
cerebral cortex because of the negative regulation of neural stem/progenitor 
cells proliferation (Groszer et al., 2001; Kwon et al., 2006; Page et al., 2009). 
Some patients with ASD have a transient increase in cerebral growth during 
early childhood (Amaral et al., 2008). Interestingly, PTEN deletion corresponding 
to a mutation in ASD patient with macrocephaly (Marchese et al., 2014) 
increased proliferation of PAX6-positive neural stem/progenitor cells in 
organoids induced from human fetal cerebral primordium, resulting in surface 
folding (Li et al., 2017). However, there is a discrepancy between phenotypes; 
Pax6 mutant heterozygous rats show decreases in volume in various brain 
regions (Hiraoka et al., 2016). Possible explanations for the different phenotypes 
between PTEN and Pax6 mutants are as follows: i) more than one thousand of 
Pax6-regulated genes may regulate the balance between proliferation and 
differentiation of neural stem/progenitor cells, and ii) PTEN is a PAX6-binding 
genes but not a PAX6-regulated gene; therefore, the expression level of PTEN 
may not be changed in Pax6 mutant embryos. 
 PAX6 protein interacts with FOXP2, which is known as a “language 
gene” in both humans and songbirds (Fisher and Scharff, 2009). Thus, a deficit 
in FOXP2 function may be associated with ASD, given that language impairment 
is a hallmark feature of ASD (Scherer et al., 2003). Notably, FOXP2 binds 
directly to intron 1 in CNTNAP2, a gene that also plays a major role in language 
development and in the onset of ASD (Alarcon et al., 2008; Peter et al., 2011; 
Vernes et al., 2008). In the mouse cerebellum, Foxp2 and Pax6 are expressed 
specifically in Purkinje cells and granule cells, respectively (Fig. 1D; (Fujita and 
Sugihara, 2012; Yamasaki et al., 2001)). In Pax6 homozygous mutant rat 
embryos, migration of granule cells is abnormal (Yamasaki et al., 2001). Given 
that cerebellar Purkinje cells receive input from granule cells, the development of 
Purkinje cells might be affected by impaired development of granule cells. In the 
developing neocortex, Foxp2 expression appears to be repressed in RG cells (in 
which Pax6 is highly expressed), whereas Foxp2 expression is present in layer 
VI cortical neurons (in which Pax6 is not expressed) (Ferland et al., 2003). Deep 
layer cortical neurons project long distances, and Foxp2 is important for 
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extending neurites (Vernes et al., 2011). Therefore, impaired Pax6 function may 
affect Foxp2 expression, ultimately causing impaired cerebellar and/or 
neocortical function. A ChIP analysis using zebrafish embryos showed that Pax6 
can bind to an enhancer of FoxP2, which is evolutionarily conserved from 
zebrafish to human (Coutinho et al., 2011). We thus hypothesized that PAX6 
may bind to FOXP2 and regulates its expression in mammals. 

Another interesting target for PAX6 is FMR1, a gene responsible for 
fragile X syndrome, which is characterized by mental retardation and autistic 
behaviors. The FMR1 gene encodes an RNA-binding protein called FMRP. 
FMRP transports mRNAs that encode synaptic molecules to synapses over 
extremely long distances (Dictenberg et al., 2008) and regulates translation of 
mRNA into protein (Ascano et al., 2012; Darnell et al., 2011). During neocortical 
development, FMRP is expressed in RG cells at the apical and basal tips of long 
processes and suppresses differentiation of the RG cells into neurons (Saffary 
and Xie, 2011). A previous study using Fmr1 KO mice identified N-cadherin 
(Cdh2) mRNA as a target of FMRP and revealed neuronal mispositioning that 
may affect the balance of excitatory and inhibitory input in the neocortex (La 
Fata et al., 2014). More recently, FMRP was shown to control transportation and 
localization of mRNA at the basal tip of RG cells (Pilaz et al., 2016). Thus, it 
would be interesting to determine the precise target mRNAs that are bound by 
FMRP and thereby transported within RG cells and/or regulated through 
translation during cortical development. 
 
GO analyses of PAX6-related ASD genes 
To understand the role of the molecular networks associated with Pax6, we 
performed a functional screen of 246 genes (95 PAX6-regulated/ASD genes and 
167 PAX6-binding/ASD genes, in which 16 genes are overlapped, Fig. 2B) using 
the Gene Ontology (GO) Biological Process with the gene-function annotations 
from the Mouse Genome Informatics (MGI) (Blake et al., 2017). The resulting 
GO terms reveal enrichment of genes assigned to terms related to functions and 
development of the nervous system (Fig. 2C, Supplementary Table 2). 
 The GO term “behavior” containing 54 genes was identified as the most 
significant GO. As discussed above, ASD is characterized by difficulties with 
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social interactions—including communication deficits—and stereotypic/repetitive 
behaviors. Interestingly, the SLC1A2 gene categorized in “behavior” encodes a 
major glutamate transporter (GLT-1), and mice that lack Slc1a2 expression in 
the forebrain display pathological repetitive behaviors (Aida et al., 2015). 
Conditional knockout mice that lack cortex-specific expression of the 
transcription factor Mef2c show social behavior abnormalities due to the 
imbalance of excitatory and inhibitory synapses in the cortex (Harrington et al., 
2016). Thus, these PAX6 downstream molecules can explain—at least to some 
extent—the range of behavioral phenotypes found among patients with ASD. 
 Unsurprisingly, the GO categories “central nervous system 
development” and “neurogenesis” also appeared in our list of 
Pax6-regulated/-binding/ASD-related genes. Indeed, we previously reported that 
Pax6 regulates the expression of a gene that encodes a brain-type fatty acid 
binding protein (Fabp7/BLBP) and is required for the maintenance of 
proliferating neural stem/progenitor cells in the developing cortex (Arai et al., 
2005), as well as in the hippocampus (Matsumata et al., 2012). Interestingly, 
genetic evidence suggests that the FABP7 gene plays a role in ASD and 
schizophrenia (Maekawa et al., 2010; Shimamoto et al., 2014). 
 During corticogenesis, complex transcriptional networks play important 
roles in neuronal specification. For example, the transcription factors DLX1 and 
DLX2 are mainly expressed in the ventral telencephalon that produces inhibitory 
interneurons (Cobos et al., 2005). Pax6 mutant mice have an expanded ventral 
region of the telencephalon, which expresses Dlx family genes that are involved 
in the production of interneurons (Stoykova et al., 2000). These findings suggest 
that Pax6 may regulate interneuron development. Furthermore, Pax6 negatively 
regulates the transcription factor Fezf2 that control projection identities via a 
complex network, including Tbr1 and Satb2, which are required for the 
differentiation of excitatory neurons (Britanova et al., 2008; Hevner et al., 2001; 
Srinivasan et al., 2012; Sun et al., 2015). Therefore, these transcription factors 
regulate the expression of their target genes, gradually producing specific 
cortical neurons in a time-dependent manner. We therefore hypothesized that 
ASD is caused by inadequate expression of PAX6-regulated genes in the 
developing cortex in the embryonic stages. 
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Interaction of PAX6-related proteins with ASD 
To elucidate the interaction of Pax6 with other ASD proteins, we analyzed the 
Pax6-related protein network using STRING version 10.5 database (Szklarczyk 
et al., 2017). Notably, the resulting graph shows interesting clusters of molecular 
interactions (Fig. 2D, Supplementary Table 3). 
 One of these clusters is “Cell surface receptor signaling pathway 
involved in cell-cell signaling”, which contains the cadherin family members 
CDH8 and CDH10 that play an important role in cell adhesion. This is an 
expected finding, as chimeric analyses have previously shown that Pax6 plays a 
role in cell adhesion during cortical development (Inoue et al., 2001; Talamillo et 
al., 2003); abnormal cell aggregation is occasionally observed in the brain 
cytoarchitecture of patients with neurodevelopmental diseases (Wegiel et al., 
2010). These cadherins contain an intracellular domain that binds b-catenin 
(encoded by the CTNNB1 gene) and a juxtamembrane domain that binds 
p120-catenin (Katafiasz et al., 2003; Ozawa et al., 1989). A recent study found 
that Pax6 mediates b-catenin signaling, driving the self-renewal of RG cells in 
the developing neocortex (Gan et al., 2014). CTNND2, which encodes 
delta-2-catenin, is also involved in the cadherin–catenin cell adhesion complex 
(Zhou et al., 1997). A previous study found that Ctnnd2 is regulated by Pax6 in 
the developing neocortex and retina in the mouse (Duparc et al., 2006). Notably, 
the CTNND2 gene was recently identified in a human genetics study based on 
female-enriched severe cases of ASD (Turner et al., 2015); loss of delta-catenin 
may strongly be correlated with mental retardation in a severe form of ASD. 
Protocadherins, especially those clustered on the 5q31 region, could also be 
intriguing genes because a combination of these protocadherins was shown to 
be important for diversification of neurons (Mountoufaris et al., 2017; Toyoda et 
al., 2014). 
 The categories “Regulation of calcium ion transport” and “Regulation of 
ion transport” include genes that encode ion channels. Many studies have 
suggested that several disease-inducing mutations in ion channel genes play a 
role in the pathogenesis of ASD (“channelopathies”; e.g., reviewed in (Schmunk 
and Gargus, 2013)). Because Pax6 is postnatally expressed at high levels in 
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neurons within the olfactory bulb, amygdala, thalamus, hypothalamus, and 
cerebellum (summarized in (Hiraoka et al., 2016)), Pax6 may play a role in the 
pathogenesis of ASD by modulating multiple channels that respond to changes 
in membrane potential and driving neuronal action potentials. We also found a 
cluster with nitric oxide synthase 1 (Nos1) at its center. Nitric oxide displays 
many properties as a neurotransmitter (Ignarro et al., 1990; Toda and Okamura, 
1990). Nos1 is expressed in a distinct subpopulation of interneurons in the 
cortex, hippocampus, and olfactory bulb (Tricoire and Vitalis, 2012). In the 
olfactory bulb, the density of Nos1+ cells was reduced in Pax6 heterozygous 
SeyDey mice (Curto et al., 2014). Further analyses of the role of Pax6 in the ion 
channel and Nos1 pathways might yield new insight into ASD pathogenesis. 
 
PAX6 functions as a chromatin remodeling modulator  
We found that only 16 genes within the 246 putative Pax6/ASD-related genes 
were bona fide ones that were bound and regulated by Pax6. One possibility is 
that the change in expression levels could not be detected by microarray 
analyses using whole cortical primordia because some molecules may be 
downregulated or upregulated in specific cell types (e.g., neural stem cells, 
neurons, and glial cells) or specific parts of the cell (e.g., the apical or basal part 
of RG cells). We also considered that Pax6 may have a function other than a 
canonical transcription factor. Consistent with this notion, a novel function of 
Pax6 as a chromatin modulator has been proposed in recent years.  
 Fig. 2D shows EP300, a transcriptional co-activator, in the center of the 
cluster “regulation of transcription”; EP300 acts as a histone acetyltransferase 
that regulates transcription via structural changes in chromatin and appears to 
have molecular interactions with several Pax6/ASD-associated molecules, 
including PTEN, TAF1, HOXB1, MED12, STAT1, CAMK4, ESR1, and PAX6 (Fig. 
2D). Indeed, Pax6 was previously reported to interact with EP300 for 
transactivation of a gene encoding glucagon (Hussain and Habener, 1999). A 
more recent study found that recruitment of EP300 into AUT2 (autism 
susceptibility candidate 2)/polycomb complex induces gene activation via 
histone modification (Gao et al., 2014). Thus, Pax6 may play a role in chromatin 
remodeling together with other chromatin molecules in pathogenesis of ASD. 
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 Pax6 also interacts with several BAF (SWI/SNF-like 
Brg1/Brm-associated factor) complexes that are involved in chromatin 
remodeling during neural development both in vitro and in vivo (Ninkovic et al., 
2013; Tuoc et al., 2013a; Tuoc et al., 2013b). A previous study (Tuoc et al., 
2013a) showed that BAF170 competes with BAF155 subunit of the BAF 
complex in the promoter of Pax6 target genes. BAF155 decreases a repressive 
condition of transcription (i.e., DNA methylation and/or H3K27me3) and 
conversely increases an activated condition (H3K9Ac). Meanwhile, BAF170 
recruits the REST (RE1-silencing transcription factor)-corepressor complex to 
these promoter regions and represses the expression of Pax6 downstream 
genes involved in the embryonic cortical neurogenesis. Therefore, it is 
reasonable to assume that different combinations of Pax6 and BAF155 or 
BAF170 in the complex may affect the status of the euchromatin structure and 
regulate the transcription of Pax6 target genes involved in the embryonic cortical 
neurogenesis. 
 Another important chromatin remodeling factor that may be related to 
ASD is chromodomain helicase DNA binding protein 8 (CHD8) (Neale et al., 
2012; O'Roak et al., 2012; Sanders, 2015; Talkowski et al., 2012). Heterozygous 
Chd8 mutant mice show ASD-like behavior and activation of REST, which 
suppresses the transcription of neuronal genes, thereby causing a delay in 
corticogenesis (Katayama et al., 2016). Intriguingly, we did not identify CHD8 but 
its closely related family members, CHD2 and CHD7, in our 
Pax6/ASD-associated molecules. 

Pax6 is also reported to recruit H3K4-specific methyltransferase Mll1, 
Mll2, and Set1a in promoters and distal enhancers of developmentally controlled 
genes in lens, subsequently changing their H3K4 methylation states (Sun et al., 
2016). These findings provide new insight into complicated modification of the 
chromatin state of ASD genes by Pax6 as a chromatin remodeling modulator. 
This is why we took into account not only downregulated but also upregulated 
genes in the developing brain of Pax6 mutants based on microarray analyses. 
All these lines of evidence suggest a new role of Pax6 as a chromatin regulator, 
which may be related to the pathogenesis of ASD. 
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Conclusion 
A variety of complex genetic and epigenetic factors play a role in the etiology of 
ASD. PAX6 dysfunction can lead to abnormal brain development via several 
pathways. As discussed above, we speculate that complex Pax6 regulatory 
molecular networks may be involved in the onset of ASD during brain 
development. Given that distinct missense mutations in the PAX6 gene cause 
distinct phenotypes (Walcher et al., 2013), and given that the PAX6 gene 
contains many regulatory elements (for a recent review, see (Manuel et al., 
2015)), the clinical outcomes can vary widely. Recent studies also identified 
specific microRNAs that regulate the expression of Pax6 in the developing 
mouse brain (Cheng et al., 2014; de Chevigny et al., 2012; Kaspi et al., 2013; 
Needhamsen et al., 2014); interestingly, mutations in these microRNA loci can 
also indirectly affect the function of Pax6 in a highly complex manner. The 
emergence of novel sequencing technologies (RNA-seq, HiC-seq, ChIP-seq, 
and others) enabled us to perform genome-wide analyses to produce more big 
data. We hope that the combination of such approaches for identifying 
complicated genomic architectures will help identify new Pax6 regulatory 
networks in the future.  
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Figure Legends 
Figure 1. Expression patterns and functions of Pax6 in the rodent brain. (A) A 
summary of Pax6 functions in specific brain areas during embryogenesis. (B) 
Whole-mount in situ hybridization of an E13.5 rat neural tube. (C) 
Immunostaining of the E14.5 mouse cortex. Pax6 protein (magenta) is restricted 
to the ventricular zone (VZ), where neural progenitor cells reside, while Pax6 is 
not expressed in the cortical plate (CP) where neurons are located. (D) 
Immunostaining of Pax6 (green) and FoxP2 (magenta) in the mouse cerebellum 
at postnatal day 6. Pax6 is expressed in granule cells, which migrate radially 
across the FoxP2-positive Purkinje cell layer (PCL) to the internal granular layer 
(IGL). Abbreviations: CP, cortical plate; Di, diencephalon; dTel, dorsal 
telencephalon; EGL, external granular layer; HB, hindbrain; IGL, internal 
granular layer; MB, midbrain; PCL, Purkinje cell layer; SN, substantia nigra; VTA, 
ventral tegmental area; vTel, ventral telencephalon; VZ, ventricular zone. Scale 
bar: 100 µm.  
 
Figure 2. Putative functional analyses of the roles of PAX6-regulated and 
PAX6-binding molecules in ASD. (A, B) PAX6-regulated and PAX6-binding 
genes related to ASD. SFARI-derived ASD-related genes that overlap with 
“PAX6-regulated” genes (i.e., >1.5-fold downregulated or upregulated in the 
developing brain of Pax6 mutants relative to wild-type animals based on 
microarray analyses including [1] Kikkawa et al., 2013, [2] Walcher et al., 2013, 
[3] Sansom et al., 2009). ASD-related genes that overlap with “PAX6-binding” 
genes based on ChIP-on-Chip analyses ([3] Sansom et al., 2009, [4] Xie et al., 
2013). (C) GO analyses of 246 overlapped genes derived from the 
PAX6-regulated and PAX6-binding genes that overlapped with the SFARI genes. 
Functional screening was performed by using GO Biological Processes in 
gene-function annotations from MGI. (D) Significant clusters of PAX6-related 
proteins with ASD. The molecular interaction network of PAX6-regulated and 
PAX6-binding proteins related to ASD was analyzed using STRING version 10.5 
database. Functional clusters are different colors. 
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Supplemental Information 
 
Supplemental Table Legends 
 
Supplementary Table 1. List of PAX6-regulated and PAX6-binding genes 
related to ASD. SFARI-derived ASD-related genes that overlap with 
“PAX6-regulated” genes and are downregulated or upregulated in the 
developing brain of Pax6 mutants relative to wild-type animals based on 
microarray analyses (>1.5-fold change, [1] Kikkawa et al., 2013, [2] Walcher et 
al., 2013, [3] Sansom et al., 2009). ASD-related genes that overlap with 
“Pax6-binding” genes based on ChIP-on-Chip analyses ([3] Sansom et al., 2009, 
[4] Xie et al., 2013). 
 
Supplementary Table 2. GO analyses of PAX6-regulated and PAX6-binding 
genes related to ASD. GO analyses of 246 overlapped PAX6-regulated and/or 
PAX6-binding and SFARI genes by using GO Biological Processes in 
gene-function annotations from the Mouse Genome Informatics (MGI) (see Fig. 
2C).  
 
Supplementary Table 3. Significant clusters of PAX6-related proteins with ASD. 
Molecular interaction network of PAX6-regulated and PAX6-binding proteins 
related to ASD analyzed using STRING version 10.5 database (see Fig. 2D). 
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