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Abstract. We show evident crystal orientation effect on pure spin current transport

in Si-based lateral spin-valve (LSV) devices with epitaxially grown CoFe/MgO tunnel

contacts. When we compare nonlocal spin signals between LSV devices along 〈100〉
(Si〈100〉) and 〈110〉 (Si〈110〉), we find that the magnitude of the spin signals for Si〈100〉
LSV devices is always larger than that for Si〈110〉 LSV devices. The analyses based

on the one-dimensional spin diffusion model reveal that the spin-diffusion length and

spin lifetime between Si〈100〉 and Si〈110〉 LSV devices are comparable, while the spin

injection/detection efficiency in Si〈100〉 LSV devices is evidently larger than that in

Si〈110〉 ones. Possible origins of the difference in the spin injection/detection efficiency

between Si〈100〉 and Si〈110〉 LSV devices are discussed.
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1. Introduction

In the field of spintronics [1–4], spin-based logic devices using semiconductors have so far

been proposed theoretically [5–8]. To achieve these concepts, electrical spin injection,

transport, and detection in semiconductors have been explored by using nonlocal

magnetoresistance measurements in lateral spin-valve (LSV) devices with GaAs [9–15],

Si [16–21], and Ge [22–28]. Although almost all the studies have used single crystalline

semiconductor layers as the pure-spin-current transport channels, there has still been

lack of information on the influence of the crystal orientation on the spin injection,

transport, and detection in semiconductors.

To date, Li et al. have clarified the influence of the g-factor anisotropy in the

Ge conduction band on the spin relaxation of electrons by combining a ballistic hot

electron spin injection-detection technique with changing in-plane applied magnetic

field directions [29]. Unfortunately, the above study did not show the pure spin

current transport in the nonlocal magnetoresistance measurements. Recently, Park et al.

reported the crystallographic-dependent pure spin current transport in GaN-based LSV

devices with nanowire channels at room temperature [30]. They discussed the influence

of the spontaneous polarization, interface-specific spin filtering, or the strength of the

spin-orbit coupling on the pure spin current transport in GaN nanowires. However, the

detailed mechanism is still an open question.

On the other hand, the crystal orientation effect on the spin injection in

semiconductors has been discovered in (Ga,Mn)As/GaAs LSV devices [31]; for

ferromagnetic (Ga,Mn)As contacts, there is the tunneling anisotropic spin polarization

depending on the crystal orientation of GaAs. After that, using three-terminal Hanle-

effect measurements, similar phenomena for various ferromagnetic metal contacts have

been observed in Si [32, 33]. According to the previous works on Si [32, 33], the

anisotropy of the tunneling spin polarization is attributed to the magnetization direction

of ferromagnetic contacts relative to the crystal orientation of semiconductors. However,

since the the pure-spin-current transport cannot be investigated by the three-terminal

Hanle-effect measurements, the relationship between the crystal orientation of Si and

the pure-spin-current transport in Si remains an open question.

In this article, we investigate the effect of crystal orientation on the pure-spin-

current transport in Si-LSV devices with epitaxially grown CoFe/MgO tunnel contacts.

When the crystal orientation of the spin-transport channel in LSV devices is changed

from 〈110〉, which is a conventional cleavage direction, to 〈100〉, the magnitude of the

spin signals is always enhanced at various conditions. From the analyses based on

the one-dimensional spin diffusion model, we reveal that the spin-diffusion length and

spin lifetime between Si〈100〉 and Si〈110〉 LSV devices are comparable, while the spin

injection/detection efficiency in Si〈100〉 LSV devices is evidently larger than that in

Si〈110〉 ones. Possible origins of the difference in the spin injection/detection efficiency

between Si〈100〉 and Si〈110〉 LSV devices are discussed. This study clarifies that the

anisotropic spin injection/detection efficiency should be considered for developing Si-
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based spintronic devices.

2. Growth and device fabrication

First, we grew epitaxial CoFe/MgO layer as spin injector and detector on a phosphorous-

doped (n ∼ 1.3 × 1019 cm−3) (001)-SOI (∼ 61 nm) substrate. Note that a 1.1 nm-

thick MgO layer was deposited by electron-beam evaporation at 200 ◦C on the Mg-

terminated SOI layer [34]. During the growth, the crystalline MgO layer can be observed

by reflection high-energy electron diffraction (RHEED) patterns, as shown in figures

1(a) and 1(b). Then, a 10-nm-thick CoFe layer was sputtered on the MgO surface

under a base pressure better than 5.0 × 10−7 Pa. From the RHEED observation,

good two-dimensional epitaxial growth can be confirmed, as shown in figures 1(c) and

1(d). Finally, a Ru cap layer (7 nm) was sputtered on top of it. The MgO and CoFe

layers were epitaxially grown on (001)-SOI, where the (001)-textured MgO layer was

grown on (001)-Si owing to an insertion of thin Mg layer into MgO/Si interface [35].

From the detailed characterizations, the CoFe(001)〈100〉/MgO(001)〈110〉/Si(001)〈110〉
heterostructures were confirmed [35]. Figure 1(e) shows normalized field-dependent
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Figure 1. (Color online) In-situ RHEED patterns of the surfaces for MgO and

CoFe epilayers observed along Si[110] [(a), (c)] and Si[100] [(b), (d)] directions. (e)

Normalized field-dependent magnetization curves of epitaxially grown CoFe/MgO

layer on (100)-SOI at room temperature. The inset shows in-plane crystallographic

orientations of (100)-SOI.



J. Phys. D: Appl. Phys. 4

(a)

<100>

<110>
Si substrate
SiO2

Ru/CoFe/MgO

FM2FM1
z

y

x

n-Si (~1.3 × 1019 cm-3)

or

Si<100>

Si<110>

By

By

(b)

I 
(m

A
)

Vint (V)

0.5

0

-0.5
50 K

-1 10

Si<110>
Si<100>

I 
(m

A
)

0.5

0

Vint (V)
-1 10

303 K

Si<110>
Si<100>

-0.5

(c)

[110]
[100][010]

[110]

[010]

d

I
V

NL

Figure 2. (Color online) (a) Schematic diagram of a lateral spin-valve (LSV) device

with Si spin-transport channel along Si〈100〉 or Si〈110〉. Here the relationship among

the crystal orientations, 〈100〉 or 〈110〉, the fabricated Si spin-transport channels, the

applied field directions is shown. I − Vint characteristics for the CoFe-MgO/Si spin-

injector interfaces at (b) 50 K and (c) room temperature (303 K).

magnetization curves measured along Si〈100〉 and Si〈110〉 at room temperature. It

should be noted that weak magnetocrystalline anisotropy of epitaxial CoFe layer can be

observed. Since the direction of Si〈110〉 is corresponding to that of CoFe〈100〉, we can

confirm a magnetic easy axis for the measurement along Si〈110〉. On the other hand,

the direction of Si〈100〉 is a magnetic hard axis, but there is the distribution of the

magnetic anisotropies because of the presence of the two-step switching.

To explore the influence of the crystal orientation of the Si spin-transport channel,

we designed two kinds of devices along 〈100〉 and 〈110〉, as shown in figure 2(a).

Conventional processes with electron beam lithography and Ar ion milling were used

to fabricate LSVs [20, 23–26]. The Ru/CoFe/MgO contacts were patterned into 2.0

× 5.0 µm2 and 0.5 × 5.0 µm2 in sizes, respectively, and the width of the Si spin-

transport channel was 7.0 µm. As a result, the cross-sectional area of the n-Si layer was

0.305 µm2. To estimate the spin diffusion length of the Si spin-transport channel, we

fabricated LSV devices with various center-to-center distances (d) between CoFe/MgO

contacts from 1.75, 2.25, 3.25, and 4.25 µm. Finally, Au/Ti ohmic pads were formed

for all the contacts. Note that there is no difference in the size of the spin-injector

contact between Si〈100〉 and Si〈110〉 LSVs [21]. Figures 2(b) and 2(c) show the I − Vint
characteristics for CoFe-MgO/Si spin-injector interfaces at 50 K and room temperature

(303 K), respectively, where Vint is the applied voltage to the CoFe-MgO/Si interfaces.

These data were measured by the three-terminal configuration. Each interface clearly
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shows tunneling conduction and the I −Vint behavior for both Si〈100〉 and Si〈110〉 LSV

devices are almost the same irrespective of temperature, indicating the same interface

condition at CoFe-MgO/Si heterostructure. These data means that the quality of the

spin injector in both LSV devices is equivalent to explore the effect of the crystal

orientation of the spin transport channel on the nonlocal spin transport. We also

confirmed that the quality of the spin detector is also the same as well as the spin

injector. Apart from them, the resistivity and Hall mobility (µHall) of the Si spin-

transport channel were evaluated from Hall-effect measurements for Si〈100〉 and Si〈110〉
Hall-bar devices.

3. Nonlocal spin transport

Figures 3(a) and 3(b) show four-terminal nonlocal magnetoresistance signals (∆RNL =

∆VNL/I) for Si〈100〉 and Si〈110〉 LSV devices, respectively, at a bias current (I) of -

0.5 mA at 50 K, where d in the LSVs was 1.75 µm. Here in-plane external magnetic

fields (By) were applied along the directions shown in figure 2(a) for each Si〈100〉 or

Si〈110〉 LSV devices. First, we can see differences in the shape and magnitude of the

signals between Si〈100〉 and Si〈110〉 LSV devices. These differences were always observed

for more than ten LSV devices fabricated here. Also, we have already confirmed the

reliable lateral spin transport detected by nonlocal-Hanle measurements in the same

LSV devices, similar to the data in Ref. [20].

From the magnetization measurements of the epitaxial CoFe layer in figure 1(e),

we have confirmed the presence of the magnetocrystalline easy axis along Si〈110〉
(CoFe〈100〉). Namely, as the direction of By (along Si〈100〉 ([100] or [010])) is switched

from negative to positive, the magnetization reversal in the wider CoFe contact occurs

but the magnetization direction is pinned along a certain direction between Si〈110〉
and the direction of By (Si〈100〉), as shown in figure 3(c)-1. With increasing By, the

magnetization rotation in the wider CoFe contact can be induced [figure 3(c)-2], leading

to the antiparallel magnetization state. After further increase in By, the magnetization

of the narrower CoFe contact can switch toward the direction of By, as shown in figure

3(c)-3, resulting in the parallel magnetization state. This feature can clearly be seen in

the nonlocal magnetoresistance hysteresis loop for Si〈100〉 LSV device, as denoted by

the number from 1 to 3 in figure 3(a).

On the other hand, for Si〈110〉 LSV devices, we can interpret that the magnetization

reversal process of the CoFe contacts can occur just along Si〈110〉 parallel to the easy

axis of the CoFe epilayer as the direction of By (along Si〈110〉 ([110] or [110])) is switched

from negative to positive. Since the effect of the shape anisotropy in the wider CoFe

contact is not so large, the magnetization rotation in the wider CoFe contact from one

easy axis to another one can be considered in low By region, as shown in figure 3(c)-4.

In figure 3(b) the nonlocal signal is gradually changed from negative By to zero field.

Then, as the magnetization direction of the wider CoFe contact is switched toward

the direction of By, the antiparallel magnetization state is formed, as shown in figures
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Figure 3. (Color online) Nonlocal magnetoresistance curves at 50 K for (a) Si〈100〉
and (b) Si〈110〉 LSVs. (c) Schematics of the magnetization states of the CoFe contacts

under applying in-plane magnetic fields for Si〈100〉 and Si〈110〉 LSVs.

3(c)-5 and 3(c)-6. Finally, with increasing By, the parallel magnetization state can be

formed, as shown in figure 3(c)-7, because of the magnetization reversal of the narrower

CoFe contact. From these considerations, the hysteretic features observed in nonlocal

magnetoresistance measurements can roughly be interpreted.

However, the difference in the magnitude of the magnetization switching fields

between Si〈100〉 and Si〈110〉 LSV devices cannot be understood yet. Because these

measurements were conducted within ± 100 mT, we can expect that the magnetization

of the CoFe contacts was not to be fully saturated. Thus, to compare the magnetization

reversal process of the CoFe contacts between Si〈100〉 and Si〈110〉 LSV devices,

we probably should take into account the complicated domain-wall nucleation and

propagation in the CoFe contacts fabricated epitaxially on Si. Although this feature

is also under discussion, the complicated magnetic configuration may influence the

presence of the broad change in the resistance at around zero-field. To discuss the

magnitude of the nonlocal spin signlas, we focus on steep nonlocal magnetoresistance

changes with the maximum value of ∆RNL, as denoted in figures 3(a) and 3(b), when

the magnetization state between the narrower and wider contacts is switched from anti-

parallel to parallel at a higher By. Therefore, we hereafter define |∆RNL| as a steep

change in the value of ∆RNL at a higher By, as shown in figures 3(a) and 3(b).
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Figure 4. (Color online) (a) Bias current (I) dependence of ∆RNL at 50 K and (b)

temperature dependence of ∆RNL for Si〈100〉 and Si〈110〉 LSVs.

In figure 4(a) we investigate bias current dependence of |∆RNL| at 50 K by using

LSV devices with d = 1.75 µm. Here the negative bias current (I < 0) means the

condition of the spin injection from CoFe/MgO contacts into Si. The value of |∆RNL|
is slightly decreased with increasing negative I, similar to those reported in previous

works. It should be noted that |∆RNL| for the Si〈100〉 LSV device is larger than that for

the Si〈110〉 LSV device in all the used I values. In this study, the observed difference in

|∆RNL| between Si〈100〉 and Si〈110〉 LSV devices does not depend on the value of I (I <

0). As a bias current of -0.5 mA, we next compare the value of |∆RNL| as a function of

temperature, as shown in figure 4(b). From 50 K to 303 K, we can evidently see that

|∆RNL| for the Si〈100〉 LSV device is larger although the value of |∆RNL| is decreased

with increasing external temperature. Thus, the difference in |∆RNL| observed here

might be intrinsic nature for Si-based LSV devices with crystallographic effect.
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Figure 5. (Color online) d dependence of |∆RNL| at 50 K and 250 K for Si〈100〉 and

Si〈110〉 LSVs. The dashed lines show the results of fitting to Eq. (1).

4. Extraction of parameters

To understand the above phenomena, we measured d dependence of |∆RNL| for both

Si〈100〉 and Si〈110〉 LSV devices, as shown in figure 5. Here the one data plot in figure

5 means the average of the |∆RNL| value obtained from five LSV devices. For both LSV

devices, the value of |∆RNL| is decreased with increasing d, indicating the exponential

decay of |∆RNL| from 50 K to 303 K. In general, |∆RNL| in the LSVs with sufficiently

large contact resistance can be expressed by the following equation: [36–39]

|∆RNL| =
4|Pinj||Pdet|rSir2b exp

(
− d
λSi

)
SN{(2rb + rSi)

2 − r2Siexp
(
− 2d
λSi

)
}
, (1)

where P inj and P det are spin polarizations of the electrons in Si created by the

spin injector and detector, respectively, and
√
|Pinj||Pdet| generally means the spin

injection/detection efficiency of the spin injector and detector contacts. rb (∼ 10 kΩ

µm2) and rSi (= 0.0054 Ω cm × λSi) are the spin resistances of the CoFe/MgO interface

and the n-Si layer, respectively. λSi (=
√
DτSi, where D and τSi are the diffusion constant

and the spin lifetime, respectively) is the spin diffusion length in Si, SN (= 0.305 µm2)

is the cross-sectional area of the Si spin transport layer. Using Eq. (1), we can fit the

experimental data, as shown in figure 5, and extract λSi for both Si〈100〉 and Si〈110〉
spin-transport channels.

In figure 6 we display the temperature-dependent λSi, estimated from d-dependence

data described above, for Si〈100〉 and Si〈110〉 LSV devices. From 50 K to 303 K, the

value of λSi is decreased with increasing temperature, which can be interpreted in terms

of the intervalley spin-flip scattering induced by the electron-phonon interactions [20,40].
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Figure 6. (Color online) Temperature dependence of λSi, estimated by d dependences

of nonlocal spin signals at various temperatures, for Si〈100〉 and Si〈110〉 LSVs. The

inset shows the temperature-dependent µHall.

Note that the difference in the temperature dependence of λSi between Si〈100〉 and

Si〈110〉 LSV devices is quite small in the measurement temperature range. Here we

also measured µHall in the inset of figure 6 and we confirmed that there is almost no

difference in µHall between Si〈100〉 and Si〈110〉.
When we use these data, the spin lifetime (τSi) can roughly be discussed. For

example, by using the following relation,
√
DτSi, whereD values of 5.03 cm2/s for Si〈100〉

(µHall = 87.0 cm2/Vs) and 5.17 cm2/s for Si〈110〉 (µHall = 89.5 cm2/Vs) estimated

from the Hall mobility [41], room-temperature τSi of 1.3 ns and 1.5 ns for Si〈100〉 and

Si〈110〉, respectively, can be calculated. These τSi values were nearly consistent with

those estimated from four-terminal nonlocal Hanle measurements. These tendencies

were also confirmed at lower temperatures. From these experimental facts, we can

judge that the difference in the spin relaxation between Si〈100〉 and Si〈110〉 is relatively

small compared to other parameters.

On the other hand, the obtained
√
|Pinj||Pdet| value of ∼ 0.16 for the Si〈100〉 LSV

device is valuably larger than that (
√
|Pinj||Pdet| ∼ 0.11) for the Si〈110〉 LSV device

even at room temperature. Figure 7 shows the temperature dependence of
√
|Pinj||Pdet|

for both Si〈100〉 and Si〈110〉 LSV devices. Although the values of
√
|Pinj||Pdet| are

decreased with increasing temperature for both LSV devices, the
√
|Pinj||Pdet| value for

the Si〈100〉 LSV device is always larger than that for Si〈110〉 LSV device. Thus, we can

expect that the spin injection/detection efficiency for Si〈100〉 LSV devices is intrinsically

large compared to that for Si〈110〉 LSV devices.
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efficiency (
√
|Pinj||Pdet|) for Si〈100〉 and Si〈110〉 LSVs.

5. Discussion

We discuss possible origins of the difference in the spin injection/detection efficiency,√
|Pinj||Pdet|, between Si〈100〉 and Si〈110〉 LSV devices. First, the g-factor anisotropy in

Si is negligibly small compared to that in Ge because of the weak spin orbit interaction

[43,44]. This fact means that, unlike Ge, we cannot see the change in the spin transport

data only by changing the direction of the applied magnetic fields [29]. Actually, we

performed oblique Hanle measurements for a Si LSV and confirmed the negligible change

in the Hanle curves by changing the applied field directions (not shown here).

Next, we should consider the presence of the tunneling anisotropic spin polarization

on, which was discovered in (Ga,Mn)As/GaAs LSV devices [31]. In general, the

tunneling anisotropic spin polarization is due to the magnetization direction of the

ferromagnetic contacts relative to the crystal orientation of semiconductors [31–33].

Although the origin of the presence of the tunneling anisotropic spin polarization has not

been discussed in detail [31–33], the magnetization direction of ferromagnetic contacts

relative to the crystal axis in between Si〈100〉 and Si〈110〉 LSV devices should be

considered. We infer that the tunneling anisotropic spin polarization is one of the

possible origins of the crystal orientation effect on the spin injection/detection efficiency

in Si LSV devices.

Finally, as another possible origin, we discuss the crystallographic effect of the

conduction band valleys in Si. Figure 8(c) illustrates the conduction-band valley

positions in the k-space in Si; six valleys are located close to the X point along 〈100〉.
Using a full-orbital tight-binding model, similar to those in previous reports [45,46], we

roughly calculate the spin polarization of the tunnel current, spin-resolved tunnel current

I↑ and I↓, for a ferromagnet (FM)/MgO/Si junction. Here the tunnel junction used

in this calculation is a CoFe-MgO(0.5 nm)/Si stacked structure for simplicity, and the
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tunneling spin polarization (TSP) as a function of bias voltage.

electronic structure of CoFe is given by shifting the up-spin and down-spin Fe bands [47]

to −1.12 eV and −0.74 eV, respectively. The electronic structure of Si is given by

Boykin’s parameters [48]. The tight-binding parameter of MgO and the hopping matrix

of each interface are determined by the Harrison method [49]. Figures 8(a) and 8(b)

show the momentum-resolved I for spin-up (↑) and spin-down (↓), respectively, where

the barrier height, barrier thickness, and bias voltage are 1.0 eV, 0.5 nm, and−0.1 V [50],

respectively, and the magnetization of the CoFe layer is aligned long 〈100〉 because of

the magnetocrystalline anisotropy. In both spin states, not only the component of I

around the Γ point but also that around the X point can be seen evidently because the

six conduction-band valleys are located close to the X point along 〈100〉 in the k-space

in Si, as shown in figure 8(c). This feature means that the tunneling spin polarization

(TSP) in the FM/MgO/Si junctions can be affected by the X-point component in the

electrical spin injection and detection. Figure 8(d) presents the calculated TSP as a

function of bias voltage applied to the CoFe/MgO/Si junction. In all the calculated bias

conditions, the magnitude of TSP is governed by the Γ-point component but the bias-

dependent behavior is evidently affected by the X-point one. From these calculations,

we can expect that the conduction band valleys in Si contribute to the anisotropy of the

electrical spin injection and detection through the FM/MgO/Si junctions.

The calculated data in figures 8 depended strongly on the barrier height and barrier

thickness of the MgO tunnel barrier. When the barrier height and barrier thickness are
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higher and thicker than 1.0 eV and 0.5 nm, respectively, the magnitude of TSP from

the X-point component was markedly suppressed because of the enhancement in the Γ-

point component. As a result, the X-point component in the electrical spin injection and

detection was strongly limited. Thus, the influence of the conduction band valleys in Si

on the spin injection/detection efficiency is probably limited for LSVs with a thin MgO

tunnel barrier. On the other hand, the tunneling anisotropic spin polarization described

before was observed in other junction conditions in Si devices [32, 33]. Although the

precise origin is still unclear, we infer that possible origins of the difference in the spin

injection/detection efficiency between Si〈100〉 and Si〈110〉 LSV devices are the tunneling

anisotropic spin polarization due to the magnetization direction of the ferromagnetic

contacts relative to the crystal orientation of semiconductors [31–33] or the influence

of the conduction band valleys in Si, discussed in figures 8. For Si-based spintronic

applications, it is important to consider the crystal orientation effect described in this

paper.

6. Conclusion

We have investigated the crystal orientation effect on pure spin current transport in

Si-based LSV devices with epitaxially grown CoFe/MgO tunnel contacts. When we

compared nonlocal spin signals between LSV devices along 〈100〉 (Si〈100〉 and 〈110〉
(Si〈110〉), the magnitude of the spin signals for Si〈100〉 LSV devices was always larger

than that for Si〈110〉 LSV devices. From the analyses based on the one-dimensional spin

diffusion model, we judged that the spin injection/detection efficiency in Si〈100〉 LSVs

is evidently larger than that in Si〈110〉 ones. Possible origins were discussed on the basis

of the tunneling anisotropic spin polarization shown in Ref. [31–33] or the influence of

the conduction band valleys in Si. This study clarifies that it is important for Si-based

spintronic applications to consider the crystal orientation effect.
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