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ABSTRACT

Considering the importance of the poultry industry and the increasing interest in alternative growth
promoters, probiotics are considered as a potential candidate for use in the poultry industry. In this
study, Lactobacillus species were isolated from 21 rectal swabs of 11 healthy 6-day-old and 10 healthy
21-day-old chickens and their fecal and feed samples. The isolates were characterized and their probiotic
characteristics, including resistance to gastric acid and bile salts, biofilm formation and adherence to
epithelium or mucus, amylase and protease activity and production of inhibitory compounds, were
assessed. From 31 acid and bile resistant lactobacilli, only 2 Lactobacillus brevis and 1 Lactobacillus reuteri
strains showed significant probiotic properties. These isolates indicated detectable attachment to Caco-
2 cells and significant antibacterial activities against Gram-positive and Gram-negative pathogens.
Additionally, phenotypic and genotypic diversity of lactobacilli isolates were studied by Phene Plate (PhP)
system (PhP-LB) and random amplified polymorphic DNA (RAPD)-PCR, respectively. PhP-LB results of 24
L. brevis isolates showed a high phenotypic variation among the isolates. In comparison, results of RAPD-
PCR highlighted a low diversity. Therefore, it seems that combination of the 2 techniques (PhP and RAPD-
PCR) could result in a significant discriminatory power than each of them used alone.
© 2021, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting
by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Nava et al.,, 2005; Zhang et al., 2018). Gastrointestinal diseases are
one of the most important threats, as they lead to lost productivity,

The Iranian poultry industry is the largest in the Middle East
with nearly 1.2 million tons of output (meat and eggs). Therefore,
this industry has a special status in the Iranian industry
(Shariatmadari, 2000). The significant concerns related to this in-
dustry are health issues that threaten not only animal production,
but also the people using their products (Griggs and Jacob, 2005;
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increased mortality, and contamination of poultry products for
human consumption (Patterson and Burkholder, 2003).

The balance among the gastrointestinal microbiota plays a sig-
nificant role in maintaining the normal physiology of host animals.
Gastrointestinal microbiota help direct the normal formation or
development of gut structure and morphology, support immune
responses, offer protection from intestinal pathogens, and play an
active role in the digestion of nutrients (Slizewska et al., 2020;
Rodrigues et al., 2020). In the past, using antibiotics to promote the
growth of animals and manage gut microbiota was a norm. Feeding
of antibiotics to food animals has been recognized as one leading
cause of the spread of antimicrobial resistance in human pop-
ulations. The gradual emergence of populations of antibiotic
resistant bacteria has become a major public health problem of
global proportions. Due to this concern, since 2006 the European
Union banned the use of antibiotics as growth promoters in animal
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feed (de Souza et al., 2018). Therefore, several alternative strategies
have been proposed with some success that mimic the functions of
antibiotics. Probiotics have been widely studied because of their
ability to modulate gut microbiota and immunological systems in
both humans and livestock. They have been used to increase milk
production and to reduce diarrhoea both in cattle and pigs, and to
control the colonisation of the intestinal tract by pathogenic bac-
teria (Alayande et al., 2020).

The microbes which are suitable for probiotic purposes in
human and animals are mainly members of a metabolically
defined group of Gram-positive bacteria, known as lactic acid
bacteria (LAB) (Naidu et al., 1999). These microbes are widely
distributed in the environment and play a significant role in the
gastrointestinal tract (GIT) of a diverse array of animals
(Bermudez-Brito et al., 2012; Butel, 2014). A main part of the
candidate strains, which have been introduced for probiotic
purposes, fall into the genus Lactobacillus which is a major
genus of LAB and harbor more than 200 species (Goktepe et al.,
2005). Lactobacillus species, with a record of safe use as pro-
biotics in humans and animals, are among the common in-
habitants of the broiler GIT (Lu et al, 2003). In poultry,
administration of the probiotic Lactobacillus strains improves
not only the feed digestion, but also the nutrient uptake. In
addition, probiotics increase the growth performance, neutral-
izing various enterotoxins and enhancing immune responses
(Ghadban, 2002; Al-Khalaifa et al.,, 2019). Additionally, pro-
biotics reduce the risk of gastrointestinal colonization by
foodborne pathogens, such as Campylobacter (Ghareeb et al,
2012; Khan et al, 2019; Neal-McKinney et al., 2012), Clos-
tridium (Li et al., 2017) and Salmonella (Kizerwetter-Swida and
Binek, 2009; Tellez et al., 2012), and increase the safety of
poultry-based foods (Gaggia et al., 2010). Such antagonistic
activities against the pathogens is highly linked to lactic acid
produced by Lactobacillus strains, which can be toxic for many
bacteria, can compete for nutrients, and affect cell attachment
capabilities of the beneficial microbes to the intestinal epithe-
lium (Patterson and Burkholder, 2003).

Despite the importance of the poultry industry in Iran, little
attention has been given to the isolation of probiotic bacteria and
determination of their biological activities in this country. In this
study, we aimed to isolate and characterize Lactobacillus species
from indigenous poultry farms with a special focus on their pro-
biotic properties.

2. Materials and methods
2.1. Isolation of lactic acid bacteria

A total of 21 rectal swabs of 11 healthy 6-day-old and 10 healthy
21-day-old chickens, their fecal and their feed samples, were
collected from 2 poultry farms near Tehran, Iran. The chicken breed
was Ross and diets were standard according to the breed re-
quirements, containing maize and soybean balanced with minerals,
vitamins, and amino acids without growth promoting antibiotics.
To isolate LAB from fecal samples, 6 chicken feces from 2 poultry
farms (each sample was 1 g) were collected randomly in Man
Rogosa and Sharpe (MRS) broth (Merck, Germany). The samples
were serially diluted in phosphate-buffered saline (PBS) pH 7.4 and
aliquots of them were plated on MRS agar medium in 8-cm plates.
The plates were incubated for 48 h at 37 °C in microaerobic con-
ditions. From each sample, different morpho-type colonies were
selected for further purification and then the LAB isolates were
cryopreserved at —80 °C in MRS broth containing 20% glycerol
under defined designations.
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2.2. Resistance to low pH and bile salts

Tolerance of isolates to low acidity and bile salts were deter-
mined in triplicate experiments as described by Cano Roca et al.
(2014). Briefly, exponentially growing cells in MRS broth were
washed by centrifugation (4,000 x g at 25 °C for 10 min) and re-
suspended in PBS. After serial dilutions, an initial dilution of the
bacterial suspension was prepared for plating on MRS agar. To
investigate the reaction of the isolates to low pH values, 100 pL of
the cell suspension (10% CFU/mL) was added to 900 pL of sterile PBS
(pH = 3) in a 1.5-mL microtube. The endurable cell counts were
measured after 3 h of incubation at 37 °C. A similar procedure was
performed using PBS (pH = 7) as a control. To determine the
tolerance of isolates to bile salts, 50 pL of bacterial suspension was
added into tubes containing 4,950 puL of MRS broth (Merck, Ger-
many) with 0.4% (wt/vol) of bile salts (Merck, Germany) and
incubate at 37 °C for 6 h.

The harvested cells from the acid in both bile salt stress exper-
iments were washed in PBS (pH = 7.4) and cultured on MRS agar
and finally counting was performed. Based on 2, 2—4, 4—6 and >6
log reduction in comparison to the initial suspension after 3 and 6 h
of incubation in acid and bile salts, isolates were grouped as
strongly resistant, resistant, intermediate and susceptible,
respectively.

2.3. Phenotypic classification

All of the acid-bile resistant isolates were subjected to a
biochemical fingerprinting with the PhPlate system according to
the manufacturer's instructions (PhPlate Micro-plate Techniques
AB, Stockholm, Sweden) which was modified for isolates typing
(PhP-LB). The microplates contained 4 sets of dehydrated reagents
(23 different sugars including arabinose, xylose, galactose, maltose,
cellobiose, trehalose, palatinose, sucrose, lactose, melibiose, man-
ose, melezitose, inosin, mannitol, arbutin, sorbitool, gallac, sorbose,
rhamnose, taghatose, amigdalin, gluconate, salicin), which have
been specifically selected for phenotypic typing of Lactobacillus
species. After the incubation of PhP-LB plates at 37 °C, the utiliza-
tion of the substrates in each well was measured by scanning the
images after 24, 48, and 72 h. Scanned images were analyzed by
software package PhPWIN (PhPlate micro-plate techniques AB,
Sweden). The mean similarity between duplicate assays of all
strains +2 SD was calculated as the identification level (ID), which
was 0.975 and strains with >0.975 similarities were grouped into
the same Phene Plate (PhP) type.

2.4. Molecular identification

Total DNA of the acid-bile resistant isolates was extracted using
a peqGOLD Bacterial DNA Kit (peQlab, Germany) according to the
manufacturer's instruction. Preliminary characterization of lacto-
bacilli was performed based on the phenotype. Then, molecular
identification of the Lactobacillus spp. was performed using primers
which were specific for amplification of a 247 bp region of the 16S
rRNA gene in the genus Lactobacillus (McOrist et al., 2002). The PCR
amplification program was as follows: a single initial denaturation
cycle (5 min at 94 °C) followed by 30 cycles (30 s at 94 °C [dena-
turation], 30 s at 57 °C [annealing], and 30 s at 72 °C [elongation]),
with a final extension of 7 min at 72 °C. As the next step, multiplex
PCR amplifications were used for Lactobacillus species identifica-
tion. Hence, the previously designed species specific primer pairs
which were already confirmed for detection of Lactobacillus aci-
dophilus, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus
gasseri, Lactobacillus rhamnosus, Lactobacillus plantarum, and
Lactobacillus reuteri were used to identify the Lactobacillus isolates
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(Kwon et al., 2004). Multiplex PCR reactions for amplifications
entailed a cycle of 94 °C for 5 min, followed by 40 cycles (94 °C for
305,51 °Cfor 40 s and 72 °C for 30 s), plus one additional cycle with
a final 7 min chain elongation at 72 °C. The amplified genomic
regions of Lactobacillus brevis strains were sequenced. Additionally,
species specific primers were used for identification of L. brevis
strains as described by Guarneri et al. (2001).The thermo-cycling
conditions for the L. brevis specific PCR reaction was as follows:
after one cycle at 94 °C for 2 min, 25 cycles of 94 °C for 1 min, 40 °C
for 1 min and 72 °C for 1 min, followed by an additional 10 min
cycle of extension (Table 1).

2.5. RAPD-PCR genotypic classification

Acid-bile resistant isolates, which were identified as lactobacilli,
were subjected to Random amplified polymorphic DNA (RAPD)-
PCR using a previously designed oligonucleotide by Tilsala et al.
(1998) with some modifications. The PCR amplification conditions
were as follows: 2 min at 94 °C for initial denaturation followed by
40 cycles of 30 s at 94 °C for denaturation, 30 s at 37 °C for
annealing, and 2 min at 72 °C for elongation. The final extension at
72 °C was prolonged to 10 min. PCR reaction was performed for
each primer in a separate tube and run in the same well in 1.5%
agarose gel to increase the discrimination. The UPGMA method
using the software Gel compare II version 4.0 was used to compare
banding patterns (Applied Maths, Sint-Martens-Latem, Belgium).

2.6. Biofilm assay

Biofilm formation of lactobacilli was studied as previously
described by Lebeer et al. (2007) with minor modifications. For
each strain, 200 pL aliquots of a modified tryptic soy broth (TSB)
medium (15 g/L TSB enriched with 20 g/L Bacto proteose peptone),
which was already inoculated by approximately 3 x 107 CFU of a
Lactobacillus isolate, were added into 96-well plates (8 wells for
each strain) and incubated at 37 °C. After 72 h of incubation, the
wells were washed with PBS and stained for 30 min with 200 pL
crystal violet (0.1%) in an isopropanol-methanol-PBS solution
(1:1:18). After washing with double distilled water, the wells were
air-dried for 30 min at room temperature. Extraction of the dye
bound to the adherent cells was done with 200 pL ethanol-acetone
(80:20) solution. The optical density of 135 uL of each well was
measured at 570 nm. Data were normalized to the indicated posi-
tive control, which was taken as 100% to compare different exper-
iments. The results are presented as means + SD. Additionally, the
sterile medium and Pseudomonas aeruginosa were used as negative
and positive controls, respectively.

Table 1
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2.7. Attachment to Caco-2 cells

Detection of adhesion ability in lactobacilli isolates was per-
formed according to Jacobsen et al. (1999). A monolayer of Caco-
2 cells was cultured in Roswell Park Memorial Institute (RPMI)
medium (Gibco, Carlsbad, CA, USA), supplemented with 20% (vol/
vol) fetal calf serum (Gibco, Life Technology, USA), penicillin (100
U/mL) and streptomycin (100 mg/mL), and incubated at 37 °C in
5% CO, atmosphere. At first, 3 mL of Caco-2 cells containing
1.5 x 10 cells/mL were seeded on a 6-well cell culture plate and
after confluency, the cells were washed twice with 3 mL PBS.
After adding 2 mL of RPMI (without antibiotics) to each well, the
plates were incubated for 3 h at 37 °C. Overnight cultures of the
isolates (cell concentration of approximately 10° CFU/mL) were
suspended in 1 mL RPMI1640 medium (without antibiotics) and
added to different wells and incubated for 1 h at 37 °C. The wells
were washed 4 times with PBS to remove the unbound bacteria.
Then, the cells were fixed with 3 mL of methanol and incubated
for 5 to 10 min at room temperature for the removal of methanol.
Staining was made with 3 mL of Giemsa stain solution (1:20)
(Sigma—Aldrich Co., Mo, USA) and incubated for 30 min at room
temperature. After washing the plates with distilled water, the
air-dried plates were examined microscopically under oil im-
mersion. Adherent isolates were counted in 20 random micro-
scopic fields. Cells showing <40, between 40 and 100, and >100
attached bacteria were regarded as non-adhesive, adhesive, and
strongly adhesive, respectively.

2.8. Detection of amylase and protease activities

Enzymatic activity of 31 acid-bile resistant lactobacilli was
determined according to the method described by Taheri et al.
(2009) with minor modifications. For assessment of the
amylase activity, the selected Lactobacillus strains were cultured
on modified MRS broth described by Taheri et al. (2009) (0.25%
starch instead of glucose), and inoculated on a medium con-
taining starch (2%), meat peptone (0.5%), yeast extract (0.7%),
NaCl (0.2%), and agar (1.5%). After 48 h of incubation at 37 °C,
lugol's solution (5 g iodine [Merck, Germany] and 10 g potassium
iodide [KI] [Merck, Germany] in 100 mL distilled water) was
poured over the agar for detection of any clear zones as indica-
tive of amylolytic activities.

For detection of proteolytic activity, Lactobacillus strains were
inoculated into MRS broth and were incubated at 37 °C for 24 h.
Bacterial suspension (30 pL) was moved onto a disc placed over a
MRS agar containing 1% skim milk. Finally, the halo zone sur-
rounding each disc was measured.

Sequence of primers used to identify different species of Lactobacillus bacteria.

Target bacteria Sequence

References

All Lactobacillus

5" TGGAAACAGGTGCTAATACCG 3’

McOrist et al. (2002)

5" CCATTGTGGAAGATTCCC 3’

L. casei-group

5" CCACCTTCCTCCGGTTTGTCA 3’

Kwon et al. (2004)

L. acidophilus 5" AGGGTGAAGTCGTAACAAGTAGCC 3’
L. delbrueckii 5" TGGTCGGCAGAGTAACTGTTGTCG 3’
L. gasseri 5" AACTATCGCTTACGCTACCACTTTGC 3’
L. reuteri 5" CTGTGCTACACCTAGAGATAGGTGG 3’
L. plantarum 5" ATTTCAAGTTGAGTCTCTCTCTC 3’

L. rhamnosus

5" ACCTGATTGACGATGGATCACCAGT 3'

5" CTAGTGGTAACAGTTGATTAAAACTGC 3/
5" GCCAACAAGCTATGTGTTCGCTTGC 3’

L. brevis

5" CTTGCACTGATTTTAACA 3’

Guarneri et al. (2001)

5" GGGCGGTGTGTACAAGGC 3/
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2.9. Antimicrobial activity

The antimicrobial activity of the lactobacilli, which showed a
detectable attachment to Caco-2 cells, was studied against Shigella
soneii (ATCC 12022), Pesudomonas aeruginosa (ATCC 27853), Sal-
monella typhi (ATCC, 19430), Proteus mirabilis (ATCC 25933), Yersi-
nia enterocolitica (ATCC 23715), Streptococcus agalactiea (ATCC
12386), Listeria monocytogenes (ATCC, 19113), wild types of
Escherichia coli strains belonging to 3 pathotypes i.e. enteropatho-
genic E. coli (EPEC) (ATCC 43887), enterotoxigenic E. coli (ETEC) and
enteroaggregative E. coli (EAEC). These strains were provided by the
Microbial Collection of Iran (Davoodabadi et al., 2015; Shahrokhi
et al.,, 2011). The antimicrobial activity was observed based on the
well diffusion method as described by Fernandez et al. (2003).
Suspensions containing approximately 108 CFU/mL of the above-
mentioned pathogens were poured on Muller Hinton agar medium
in 8-cm plates, except for L. monocytogenes where brain heart
infusion (BHI) agar medium was used. Then, 100 uL of an overnight
culture of the selected Lactobacillus strains in MRS broth was
poured into 6 mm agar wells created by punching in 8-cm plates.
After 24 h of incubation at 37 °C, the antimicrobial activity was
measured as the zone of growth inhibition around the wells. The
inhibition zones of 1, 2, 2 to 5 mm, and more than 5 mm were
classified as strains of no (—), mild (+), strong (++), and very strong
(+-++) inhibition, respectively.

2.10. Antibiotic susceptibility testing

The susceptibility of isolates to different antibiotics including
penicillin G (10 pg), gentamicin (120 pg), erythromycin (15 pg),
tetracycline (30 pg), amoxicillin (25 pg), ciprofloxacin (5 pg),
chloramphenicol (30 pg), oxacillin (1 pg), and streptomycin (10 pg)
(MAST Diagnostics, U.K.) was determined by the agar disc diffusion
method on MRS agar plates instead of the Muller Hinton agar. Lactic
acid bacteria require special growth conditions and conventional
media, as Mueller Hinton agar are not uniformly suitable for to
susceptibility test them (Klare et al.,, 2005). After incubation of
plates at 37 °C for 48 h, the diameter of the inhibition zones was
measured and the results were expressed as sensitive or resistant
according to CLSI standard (Institute, 2009).

2.11. Plasmid profiles

The isolation of plasmid DNA from the selected bacterial strains
was performed by GF-1 plasmid DNA extraction kit (Vivantis,
Malaysia). E. coli V517 was used as a positive control. Electropho-
resis of the extracted plasmids was performed in a 1% agarose gel
and the plasmids were visualized with UV trans-illumination in a
Gel Doc apparatus.

3. Results
3.1. Isolation and identification

A total of 168 LAB were isolated from rectal swabs, fecal and feed
samples, among which 89 (53%) and 79 (47%) isolates were from 21
to 6 days old chickens, respectively. Furthermore, out of 168 LAB
isolates, 51 (30.3%) isolates were resistant to low pH (pH 3.00) and
bile salts (0.4%), among which 20 and 31 isolates were identified as
members of the genera Pediococcus and Lactobacillus, respectively.

The results of the molecular identification showed that 31 iso-
lates belonged to the genus Lactobacillus. Out of these, 24 (77.4%), 3
(9.6%), 2 (6.4%), and 2 (6.4%) were identified as L. brevis,
L. plantarum, L. reuteri and L. vaginalis, respectively (Table 2).
Interestingly, a considerable part of the isolates which originated
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from the rectal-swabs were identified as L. brevis. The same results
were observed in fecal samples.

3.2. Phenotypic and genotypic classification

Acid-bile resistant lactobacilli were typed using Phene Plate
system (PhP-LB) followed by genotype-based identification using
RAPD-PCR. PhP-LB results of 24 L. brevis isolates showed a high
phenotypic diversity and most of the isolates gave unique pheno-
types, denoted as single types (3 common types with 10 isolates
and 14 single types) (Fig. 1). On the other hand, the results of RAPD-
PCR showed a low genetic diversity in L. brevis species (3 common
types with 20 isolates and 4 single types) (Fig. 2).

3.3. Biofilm and attachment to Caco-2 cells assay

Out of the 31 acid-bile resistant lactobacilli strains examined in
this study, L. brevis L2, L6, L31, and L. reuteri L26 had the biofilm
formation capability. Adhesion to Caco-2 cells showed that 22 (71%)
isolates were non-adhesive (with less than 40 bacteria attached in
20 microscopic fields), 7 (22.5%) isolates (L. brevis L3, L29, L30, L31,
L. reuteri 126, L27, and L. vaginalis L25) were adhesive (with 41 to
100 bacteria) and 2 (6.4%) isolates (L. brevis L2 and L6) were
strongly adhesive (>101 bacteria) (Fig. 3).

3.4. Antibacterial activity

The assay of antagonistic activity of lactobacilli with an
acceptable ability of attachment to Caco-2 cells showed that
L. brevis strains L2, L6, L31 and L. reuteri strains L26 and L27 have a
strong inhibitory effect against different serotypes of E. coli (EAEC,
EPEC, and ETEC) (Table 3). L. brevis strains L2 and L6 had antibac-
terial activities against all the tested pathogenic bacteria with the
exception of L. monocytogenes and Staphylococcus aureus.

3.5. Detection of amylase and protease activities

Measuring the size of the halo zones surrounding the colonies as
an indicative of extracellular enzyme level showed that all 31 lac-
tobacilli isolates investigated here were protease positive but
extracellular-amylase negative.

3.6. Plasmid profiles and antibiotic susceptibility testing

No plasmid was found in L. brevis strain L6 but L. brevis L2 and
L. reuteri L26 harbored a single plasmid. Antibiotic susceptibility
tests showed that the Lactobacillus isolates were sensitive to aug-
mentin, amoxicillin, erythromycin, penicillin G, chloramphenicol,
and rifampin and were resistant to ciprofloxacin, amikacin, tobra-
mycin, oxacillin and streptomycin. L. reuteri L26 was sensitive to
tetracycline but L. brevis L2 and L6 were resistant to this antibiotic.

4. Discussion

Probiotics have been emerging as a safe alternative to antibiotics
for increasing performance in livestock. Administration of probiotic
strains may have a significant effect on absorption and utilization of
feed, and increase the body weight of various animals, including
chicken, piglets, sheep and cattle (Markowiak et al., 2018). Lacto-
bacillus species with a record of safe use as a probiotic in humans
and animals is regarded as a significant part of chicken-GIT
microbiota (Wei et al., 2013; Yadav, 2019). Among such a diverse
array of Lactobacillus species, some defined species have been
frequently reported as chicken-GIT inhabitants. L. reuteri,
L. salivarius and L. johnsonii are among the most detected
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Table 2
Determination of acid and bile resistant Lactobacillus species isolated from different samples.
Item L. brevis L. plantarum L. reuteri L. vaginalis
21-day-old 6-day-old 21-day-old 6-day old 21-day-old 6-day-old 21-day-old 6-day-old
Feed sample 0 1 3 0 0 0 0 0
Rectal swab 14 6 0 0 1 1 0 2
Fecal sample 3 0 0 0 0 0 0 0

Samples: Co-phenetic corr: 0.954 Di: 0.953 (True Di: 0.953)

05 06 07 08 19
T T T T : age/day sample

| : L1 21 Rectal swab

v L5 24 Rectalswab

= L8 6 Rectal swab

I 1 122 21 Rectal swab
i L4 21 Fecal sample

= 1223 6 Rectal swab

L_ L12 21 Rectal swab

. L6 21 Rectal swab

= L11 21 Rectal swab

: L3 21 Rectal swab

i L20 6 Rectal swab

'm L10 21 Rectal swab

11 L31 21 Rectal swab

= L30 21 Rectal swab

L L2 6 Rectal swab

™= L16 21 Rectal swab

™ L21 21 Rectal swab

] L24 6 Rectal swab

— L19 21 Rectal swab

V| L14 21 Fecal sample

rtes 6 Feed sample

- 29 21 Rectal swab

— L13 6 Rectal swab

: L9 21 Fecal sample

Fig. 1. Cluster analysis of Phene plate (PhP) assay of 24 bile and acid resistant Lacto-
bacillus brevis.

458 S 6 28910

Fig. 2. Agarose gel electrophoreses of RAPD-PCR products of Lactobacillus brevis
strains. RAPD = random amplified polymorphic DNA.
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lactobacilli in chicken-GIT samples (Adhikari and Kwon, 2017; Dec
et al., 2016; Pan and Yu, 2014). Interestingly, L. reuteri, L. salivarius
and L. johnsonii have been repeatedly isolated from the GIT samples
of a wide range of hosts and this harsh environment is among their
preferred ecological niches (Lebeer et al.,, 2008; Walter, 2008;
Pokorna, 2019). However, L. brevis have also been found in GIT
samples in a diverse range of warm-blooded animals (Feyereisen
et al, 2019, Fraunhofer, 2019). Considering the results of this
study, 3 lactobacilli strains were isolated, which showed promising
probiotic characteristics. Those strains fall into L. brevis (L2 and L6)
and L. reuteri (L26) species. L. brevis shows a significant prevalence
in the GIT of chickens although the GIT is not the preferred
ecological niche for this species. The species L. brevis falls into a
Lactobacillus phylogenetic group which harbors mostly foodborne
species (Papizadeh et al., 2017). Strains of this species have been
isolated from a diverse array of samples, including water, feces of
various animals, and various food-associated samples (Feyereisen
et al., 2019). Hence, the findings of this study shed more light on
the ecological distribution of L. brevis.

Considering the results, L. brevis species were isolated from the
rectal swabs of both 21- and 6-day-old chickens and also from their
feed and fecal samples. Hence, it can be inferred that this species
has the ability to survive on a wide range of substrates (Ramos et al.,
2013).

Phenotypic characterization of the isolates indicated a high
intra-species diversity among L. brevis isolates. In comparison, re-
sults of RAPD-PCR highlighted a low diversity. Therefore, it seems
that combination of 2 techniques (PhPlate and RAPD-PCR) could
result in a more significant discriminatory power than each of them
used alone. In this study, biochemical fingerprinting of lactobacilli
was used primarily for the screening of biodiversity in lactobacilli
strains to reduce their number for the next tests; a significant
number of single types indicated that PhP system alone cannot
serve as a method for determining relationships between Lacto-
bacillus strains (Skelin et al., 2012).

Adhesion to mucosal surfaces has been used as a criterion for
the selection of probiotic bacteria because this character has a
major role in the colonization of the GIT by these bacteria
(Broderick and Duong, 2016; Kosin and Rakshit, 2006). Addition-
ally, mucosal adhesion is important for pathogenic antagonism,
modulation of the immune system and healing of damaged gastric
mucosa (Oelschlaeger, 2010; Ohland and MacNaughton, 2010;
Monteagudo-Mera et al., 2019). In this study, 2 strongly adhesive
strains (L. brevis strains L2 and L6) showed the highest biofilm
formation capacity. Furthermore, we observed specific correlation
between adhesion to Caco-2 cells and biofilm formation by lacto-
bacilli isolates.

Antimicrobial resistance poses a serious global threat of growing
concern to human, animal and environmental health. This is due to
the consumption of antibiotics in animals (raised for food or kept as
pets) and humans (Aslam et al., 2018). Therefore, probiotics with
antibacterial activity against pathogens are a promising alternative
to antibiotics (Baldwin et al., 2018). The strong antibacterial activity
of L. brevis strains L2, L6, L31 and L. reuteri strains L26 and L27
against various serotypes of E. coli (EAEC, EPEC and ETEC), which is
shown in Table 3, have highlighted the probiotic capabilities of



N. Noohi, M. Papizadeh, M. Rohani et al. Animal Nutrition 7 (2021) 119-126
L. brevis (L31) !

L. brevis (L29)

L. reuteri (L27)

L. vaginalis (L25)

L. brevis (L23)

L. brevis (L21)

L. brevis (L19)

L. plantarum (L17)

W Attachment
L. brevis (L15)

Biofilm formation
L. brevis (L13)

L. brevis (L11)

L. brevis (L9)

L. plantarum (L7)

L. brevis (L5)

L. brevis (L3)

L. brevis (L1)

0 50 100 150 200 250

Fig. 3. Biofilm formation and attachment in 31 bile and acid resistant lactobacilli. Dark gray bars show the number of attached lactobacilli in 20 microscopic fields to Caco-2 cell line
and light gray bars show the percentage of biofilm formation.

Table 3
Spectrum of antimicrobial activity exhibited by Lactobacillus strains L2, L3, L6, L25, L26, L 27, L 29, L 30 and L 31.

Item L2 (L. brevis) L3 (L. brevis) L6 (L. brevis) 125 (L. vaginalis) 126 (L. reuteri) 127 (L. reuteri) L29 (L. brevis) L30 (L. brevis) L31 (L. brevis)

ETEC + - + + + 4 _ _ -

EPEC ++ - ++ - ++ ++ - - ++

EAEC ++ - ++ - + + - - ++

Salmonella entritidis  ++ - ++ + + + — — +

Salmonella typhi + - + — - _ _ _ _

Pseudomonas + — + — _ _ _ + _
aeruginosa

Shigella flexneri + - + — + + _ _ _

Klebsiella + — + — _ _ _ _ _
pneumonia

Citrobacter freundii ~ + - + — — _ n + _

Proteus mirabilis + - + — — _ + + _

Yersinia. + - + — _ _ _ _ _
enterocolitica

Listeria — — — — — _ _ _ _
monocytogenes

Staphylococcus — — — — — _ _ _ _
aureus

Staphylococcus + — + — — _ _ _ _
saprophyticus

Streptococcus group  + - + — — _ _ _ _
A

ETEC = enterotoxigenic E. coli; EPEC = enteropathogenic E. coli; EAEC = enteroaggregative E. coli.
Note: no (—), mild (+), and strong (++) inhibition.
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these strains. Interestingly, such a capability among the isolates of
this study was highly detectable in cases of L. brevis strains L2 and
L6, which showed significant antibacterial activities against all the
tested pathogenic bacteria (except for L. monocytogenes and
S. aureus). Such an antibacterial activity of Lactobacillus isolates is
essentially associated with the production of bacteriocins, H,05,
lactic acid and other metabolites which inhibit the growth of
pathogens (Vieco-Saiz et al., 2019). Considering the fact that various
serotypes of E. coli (EAEC, EPEC, and ETEC) are considered as the
most important cause of enteric bacterial infections in poultry, the
use of such isolates with functional probiotic competence can
significantly reduce the infection rate. Another finding was that all
31 lactobacilli isolates investigated in this study, were protease
positive with no extracellular amylase activity and this has shed
light on the importance of these isolates since amylase, lipase, and
protease enzymes play very important roles in the digestion of
nutrient materials.

The probable existence of transferable resistant genes in the 3
probiotic Lactobacillus strains was observed by the determination of
antibiotic resistance patterns and plasmid profiling, but no plasmid
was detected in L. brevis strains L2 and L6 and only a single plasmid
was detected in L. reuteri strain L26. Furthermore, L. reuteri L26 was
sensitive to tetracycline, but L. brevis L2 and L6 were resistant to this
antibiotic. The properties of antibiotic resistance in various Lacto-
bacillus species seem to be associated with drug resistant genes
which are mainly located on the chromosome.

According to the criteria, the potential probiotic strains, which
are assumed for animal or human applications, have to be non-
pathogenic and from the same origin (host). Additionally, such
strains should resist intestinal tract, gastric and bile acids, adhere to
the epithelium or mucus, and produce inhibitory compounds.
Among the lactobacilli isolated in this study, we found 3 lactobacilli
strains with probiotic characteristics, L. brevis (L2 and L6) and
L. reuteri (L26), which could be considered probiotic strains for use
in the poultry industry.

5. Conclusion

In this study, the most common acid and bile resistant lacto-
bacilli strains isolated from chickens belonged to the L. brevis spe-
cies, with a high intra-species phenotypic diversity. In vitro
evaluation in this study showed that 3 Lactobacillus strains (2
L. brevis strains and 1 L. reuteri strain) could be considered as pro-
biotic. Further in vivo evaluation for determination of the beneficial
effects of our isolates in natural conditions could be highly ad-
vantageous to the Iranian poultry industry.
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