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A B S T R A C T   

Development of multidrug resistance is the main obstacle for treating infections of Pseudomonas aeruginosa, an 
opportunistic pathogen responsible for a wide range of persistent infections throughout the body. Hence, 
identifying the major genes contributing to the development of multidrug resistance in Pseudomonas aeruginosa 
could help to introduce new efficient drugs to prevent resistance development. Here we conducted a differential 
gene expression analysis and a series of systems biology investigations on a RNASeq data set of multidrug 
resistant Pseudomonas aeruginosa isolates obtained from the patients’ airways and wild-type, drug-sensitive 
strains. Respectively 67 and 178 up- and down-regulated genes were detected, including several genes of un-
known functions that their functional characterization will help to elucidate the hidden mechanisms for multi-
drug resistance development in Pseudomonas aeruginosa. By inspecting the constructed gene regulatory network, 
two cases of feed forward loops were identified which in the case of establishing the type of regulatory in-
teractions between transcription factors and their target genes, as activatory or inhibitory, their true contribution 
to multidrug resistance will be better understood. Inspecting the constructed gene co-expression network 
revealed co-expression between four deregulated genes including PA14_32830, PA14_03380, fpvA and 
PA14_15610 and four already known drug resistance biomarkers. Functional characterization of these four co- 
expressed genes, will elucidate their possible roles in the process of multidrug resistance development in Pseu-
domonas aeruginosa. These findings will suggest new potential multidrug resistance biomarkers that following 
confirmation by larger number of samples, can be considered as new promising drug targets.   

1. Introduction 

Multidrug resistant (MDR) and extensively resistant (XDR) Pseudo-
monas aeruginosa strains have recently become one of the major con-
cerns of public health. This is of great importance because Pseudomonas 
aeruginosa, is an opportunistic pathogen able to cause underlying severe 
infections in immunocompromised patients, and also in the lung of pa-
tients with genetic disease cystic fibrosis (CF) [1]. The worldwide spread 
of resistant Pseudomonas aeruginosa clones poses a threat to public health 
and therefore new treatment alternatives are urgently required [2]. 
Several studies have also underscored the link between multidrug 
resistance and increased morbidity and mortality [3–5]. 

Pseudomonas aeruginosa is equipped with several mechanisms of 
antibiotic resistance including inducible AmpC cephalosporinase 
expression, MexAB-OprM and inducible MexXY efflux pumps, and low 
outer membrane permeability that helps to have lower intrinsic anti-
biotic susceptibilities compared to other gram-negative organisms [6]. 

Drug exposure can also promote acquisition of resistance in Pseudo-
monas aeruginosa through different mutational events that activate 
resistance genes, modify antimicrobial targets and up-regulate several 
multidrug efflux pumps. Horizontally acquired resistance is another 
mechanism of resistance acquisition in Pseudomonas aeruginosa [7]. For 
instance, there is a growing spread of B-lactamases, the 
extended-spectrum B-lactamases (ESBLs) and carbapenemases [8]. 

Most Pseudomonas aeruginosa treatment protocols lead to the insuf-
ficient immunity and therefore P. aeruginosa infections are commonly 
treated with a combination of antibiotics to overcome multidrug resis-
tance [9]. However, resistance development has also been frequently 
reported following combination therapy in Pseudomonas aeruginosa 
infections. 

Identification of deregulated genes and pathways associated with 
drug-resistance can help to understand underlying molecular mecha-
nisms of resistance development. Construction of gene co-expression 
network for resistant samples, on the other hand, would help to 
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Fig. 1. Heatmap diagram of down- (a) and up-regulated (b) genes for 50 resistant and 4 wild-type(sensitive) samples.  
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identify functional groups of co-expressed genes known as modules. 
Inspection of highly intra-connected modules within co-expression 
networks is an efficient way to identify new drug-resistance biomarkers. 

In this study, our major goal was to identify novel biomarkers 
associated with multidrug resistance in Pseudomonas aeruginosa. Using a 
combination of differential gene expression and gene co-expression 
network analyses on a gene expression data set of multidrug resistant 
Pseudomonas aeruginosa PA14 strains isolated from patients’ respiratory 
tracts and wild-type (drug-sensitive) strains (SRP034661), we suggested 
new potential drug resistance-associated biomarkers which after further 
investigations could be considered as new drug targets. 

2. Methods 

2.1. Gene expression data set 

A gene expression data set (SRP034661) including 50 RNA-seq 

samples of multidrug resistant Pseudomonas aeruginosa PA14 isolated 
from human respiratory tract and 4 wild-type P. aeruginosa strains were 
retrieved from SRA-NCBI [10] (Table S1). Pseudomonas aeruginosa 
strains had previously been isolated and categorized as multidrug 
resistant (resistant to 2 or more drugs) by several research institutes in 
Germany that collaborated in this project. The antibiotic susceptibility 
tests had been performed by using the Vitek2 system (bioMérieux) or 
Etest strips (bioMérieux). 

2.2. Differential gene expression analysis 

108 fastq files (54 paired end samples, including resistant and wild- 
types), were subjected to trimming using “Trimmomatic” [11] pipeline 
applying “the average quality” threshold of 20 and the “sliding window” 
size of 4. The trimmed fastq files were then introduced to “map with 
bowtie for illumina” [12] program using Pseudomonas aeruginosa UCBPP 
PA14 genome obtained from “Ensembl” database [13]. The counts 

Fig. 1. (continued). 
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(number of fragments) of the aligned (mapped) sequences on each gene 
were subsequently determined using “htseq-count” program [14] 
employing the P. aeruginosa PA14 GTF (Gene transfer format) file ob-
tained from "Ensembl". 50 multidrug resistant and 4 wild-type “htseq--
count” output files were then introduced to “DeSeq2” program as two 
separate groups (resistant vs sensitive). Applying adjusted p-value ≤0.05 
and |logFC|≥1 cutoffs, the list of statistically and biologically significant 
up- and down-regulated genes were identified respectively. 

2.3. Gene and pathway enrichment analysis 

The list of up- and down-regulated genes were separately introduced 
to "DAVID" [15] and "PANTHER" [16]programs and the molecular 
functions and associated pathways of deregulated genes were 
determined. 

2.4. Inferring transcription factors-target genes regulatory network of the 
identified deregulated genes 

The corresponding transcription factors of the identified deregulated 

genes were found from the Galan et al. study [17] -which is the only 
available source- and the TF-target regulatory relationships was visu-
alized in “Cytoscape” 3.4 [18]. 

2.5. Gene co-expression network reconstruction for 50 multidrug resistant 
samples 

The normalized expression values -in the form of FPKM-of 50 
multidrug resistant samples were used to reconstruct gene co-expression 
network using “Aracne” algorithm [19]. Aracne calculates the pairwise 
expression correlation among all genes (here, around 6500 genes), using 
a correlation measure known as “mutual information” (MI) [20]. The 
weak correlations are then removed to leave only biological meaningful 
correlations. There is an option to introduce a list of markers -tran-
scription factors or any gene set of interest-to “Aracne” that results in a 
co-expression network in which the expressional correlations between 
these markers and other genes are reported and so the resulted network 
is much smaller but more meaningful. We provided a list of 68 markers 
associated with antibiotic resistance in Pseudomonas aeruginosa UCBPP 
PA14 retrieved from PSEUDOMONAS genome database [21] and intro-
duced it to Aracne to get the drug resistance associated co-expression 
network. “Aracne” was run using the cutoff of 1e-7 for p-value. We 
removed pairwise correlations with MI ≤ 0.25 from the results and 
visualized drug resistance-associated co-expression network in 
“Cytoscape”. 

3. Results 

3.1. Differential gene expression results 

We identified 67 and 178 biologically significant up- and down- 
regulated genes respectively (with adjusted p-value ≤ 0.05 and |logFC| 
≥1) using “DeSeq2” program (Fig. 1a and b). Among identified 
deregulated genes, 13 and 57 up- and down-regulated genes respec-
tively, were of uncharacterized molecular functions (Bolds in Table S2). 

3.2. Gene enrichment analysis results 

We identified 10 up- and 16 down-regulated transporters in resistant 
samples (Table 1). PhoH is one of the up-regulated transporters that its 
up-regulation in the antimicrobial-resistant Dickeya dadantii (a plant 
pathogen) isolates has also been indicated [22]. We also identified the 
down-regulation of PA14_18090, PA14_23520 and PA14_20900, and the 
up-regulation of hitB and PA14_11600, all are the members of MFS 
transporters -that provide energy by proton motive force. 

3.3. Gene regulatory network 

Two cases of coherent feed forward loops (FFLs) including anr-dnr- 
narX and anr-dnr-hemN were identified in the constructed gene regula-
tory network of deregulated genes in the resistant state (Fig. 2). In 
coherent FFls, a global TF activates a local TF and both activates a 
shared target gene. 

3.4. Gene co-expression network inspection results 

Construction of co-expression networks can significantly help to 
predict functions of already uncharacterized genes. Here, by construct-
ing gene co-expression network among well-known antibiotic resistance 
biomarkers and other genes, we tried to introduce new potential anti-
biotic resistance biomarkers. Four highly connected resistance bio-
markers including PA14_48300, mexB, PA14_12820 and PA14_33770 
were detected in co-expression network which most of their co- 
expressed partners do not have known functions (Fig. 3).Three genes 
including PA14_32830, PA14_03380, and fpvA simultaneiusly showed 
co-expression with 4 highly connected resistance-associated biomarkers. 

Table 1 
Lists of up- and down-regulated transporters in resistant samples.  

Up-regulated 
genes 

Molecular Function Down- 
regulated 
genes 

Molecular function 

PA14_32330 Transmembrane 
transport 

PA14_09380 acetyl-CoA 
transmembrane 
transporter activity 

PA14_18090 Putative major facilitator 
subfamily transporter 
protein 

PA14_55020 transporter activity 

PA14_23520 Putative MFS transporter PA14_16410 transmembrane 
transporter activity 

PA14_12300 Putative Mg2+ and Co2+

transporter CorC 
PA14_57990 metal ion 

transmembrane 
transporter activity 

PA14_10340 Putative toxin 
transporter 

PA14_31010 cation 
transmembrane 
transporter activity 

PA14_20900 Putative MFS transporter PA14_31040 efflux 
transmembrane 
transporter activity 

PA14_57930 Transmembrane 
transport 

PA14_26360 transporter activity 

trkA Cell volume homeostasis 
-potassium ion transport 

PA14_11600 Possible ABC 
transporter 
component 

hsiC3 Metal ion binding 
-ubiquinol-cytochrome-c 
reductase activity 
-mitochondrial electron 
transport, ubiquinol to 
cytochrome c 

PA14_58500 amino acid 
transport 

PA14_12330 PhoH family protein PA14_46560 efflux 
transmembrane 
transporter activity   

pilB ATP binding - 
protein transporter 
activity   

hitB Putative iron ABC 
transporter, 
permease protein   

lldP lactate 
transmembrane 
transporter activity   

lapC protein transporter 
activity   

merT mercury ion 
transmembrane 
transporter activity   

pilQ protein transporter 
activity  
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4. Discussion 

Emergence of multidrug resistant gram negative bacteria including 
Pseudomonas aeruginosa, in lower respiratory tract infections, is one of 
the leading cause of global mortality [23]. Novel multidrug 
resistance-associated biomarkers can be used as predictive molecules 
that helps to select the most appropriate therapeutic strategies and in 

turn improves the survival rate [24]. In addition, these candidate bio-
markers can be considered as new drug targets that may lead to the 
development of new drugs to combat antibiotic resistance [25]. 

In this systems biology study, respectively 67 and 178 up- and down- 
regulated genes in multidrug resistance Pseudomonas aeruginosa strains, 
which were isolated from different regions of respiratory tracts, were 
detected. We could not find similar studies on the transcriptional profile 

Fig. 2. Regulatory relationships among transcription factors (violet) and up- (green) and down-regulated (magenta) genes. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Constructed co-expression network among known drug resistance genes (orange) and other genes (green) in 50 Pseudomonas aeruginosa resistant samples 
using "Aracne" algorithm. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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alterations in multidrug resistant Pseudomonas aeruginosa compared to 
wild-type strains for validation of identified deregulated genes. 

The functional characterization of the large number of deregulated 
genes with still uncharacterized functions in this study will, at least to 
some extent, elucidates the molecular mechanisms of multidrug resis-
tance in Pseudomonas. aeruginosa. 

Since proteome profiling can uncover the alterations in the abun-
dance of proteins between different physiological conditions, and 
therefore is a more real representative of cellular phenotypic alterations, 
we further searched for proteomics studies in which the proteome 
profiling of multidrug resistant Pseudomonas aeruginosa and wild-type 
strains, were compared. Although no proteomics study has previously 
been conducted to investigate proteome alterations of multidrug resis-
tant Pseudomonas aeruginosa, we found few studies in which the resis-
tance development against one single drug (Cirofloxacin, Tobramycin 
and silver compounds) had been the subject of study [26–30]. In addi-
tion, in all of these studies, the proteome alterations in Pseudomonas 
aeruginosa PAO1 strain, which is moderately virulent, has been investi-
gated and since SRP034661 data set consists of highly virulent Pseudo-
monas aeruginosa PA14 isolates -with multidrug resistance properties-, 
their results was not completely comparable with this study. Nonethe-
less, the decreased abundance of GroEL, PilQ and PhzM and increased 
abundance of PA14_04300, confirmed their respectively down- and 
up-regulations in our results. 

The presence of 10 membrane transporters in the list of up-regulated 
genes, confirms the role of transporters in antibiotic export. However, 
we also identified 16 down-regulated transporters in resistant samples. 
Decrease in the number of transporters is one the known resistance 
mechanisms that help to reduce antibiotic absorption. Delcour and 
colleagues demonstrated that down-regulation of outer membrane porin 
F (ompF) directly correlate with Betalactams and Quinolons absorption 
reduction in Escherichia coli that in turn leads to the multidrug resistance 
development [31]. Similarly, decreased ompF expression has been re-
ported in resistant Escherichia coli isolates to a wide range of antibiotic 
including Norfloxacin, Tetracyclin, Cephalothin, Cefoxitin and Carba-
penems [32,33]. 

We identified the expressional elevation of dinP, a member of SOS 
response which assists to tolerate against DNA damage. Cabot and col-
leagues showed that mutagenic effects of ciprofloxacin leads to the over- 
expression of DNA polymerase dinP [34]. Similarly, recent studies 
showed the up-regulation of dinP in Staphylococcus aureus, Escherichia 
coli, Salmonella enterica and Yersinia pestis strains in response to Quino-
lones [35,36]. Qin and colleagues also indicated that mutations in DNA 

polymerase enzyme is increased following exposure to Ciprofloxacin 
leading to SOS response initiation. In the presence of Fluroquinolons 
(such as Ciprofloxacin), lexA-the inhibitor of Fluroquinolon resistance 
genes, is degraded and as a consequence the expression of resistance 
genes is elevated [37]. 

By inspecting the constructed regulatory nework of deregulated 
genes, 2 cases of coherent feed forward loops (FFLs) including anr-dnr- 
narX and anr-dnr-hemN were identified(Fig. 2). This kind of FFLs works 
as a delay element and prevents from rapid cellular responses to the 
transient changes in the surrounding environment. Both identified FFLs 
associate with nitrate respiration in anareobic conditions in Pseudo-
monas aeruginosa. Anr is the transcription factor of anaerobic respiration 
genes. Due to the anaerobic conditions in biofilms, Pseudomonas aeru-
ginosa is able to use nitrate and nitrite as the final electron acceptor [38]. 
Thus, by increasing the expression of narX through anr and dnr, which 
the latter is up-regulated here, Pseudomonas aeruginosa scapes from the 
antibiotic pressure and survives within biofilms. HemN (down-regulated 
here) is a dehydrogenase enzyme responsible for coproporphyrinogen III 
to coproporphyrinogen IX conversion in anaerobic conditions. Mutant 
Escherichia coli (with deletion of hemN) are highly resistant to tellurite 
compounds [39]. Considering the down-regulation of hemN despite the 
activatory effect of anr and dnr, reveals the possible role of other regu-
latory mechanisms such as genomic alterations in the reduction of hemN 

Fig. 4. Co-expression between 5 down-regulated genes (magenta) and 4 known drug resistance biomarkers (violet). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. Simultaneous co-expression of PA14_32830, PA14_03380 and fpvA with 
four known drug resistance genes (Yellow). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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expression. 
As stated earlier, most of the co-expressed partners of 4 antibiotic 

resistance-associated biomarkers (PA14_48300, mexB, PA14_12820 and 
PA14_33770) are proteins of unknown functions (Fig. 4). Functional 
characterization of these genes would probably shed more lights on the 
molecular mechanisms of resistance in Pseudomonas aeruginosa. Simul-
taneous co-expression of PA14_32830, PA14_03380, and fpvA with 4 
highly connected resistance biomarkers (Fig. 5) can probably reveal 
their involvement in the process of resistance development. PA14_32830 
and PA14_03380 are proteins of unknown functions. fpvA, is a siderofore 
receptor, responsible for collecting Fe ions from surrounding environ-
ment. The role of Fe in Tobramycin and Tigecycline resistance devel-
opment in Pseudomonas aeruginosa has been verified [40]. 

In overall, in this study we introduced potential antibiotic resistance- 
associated biomarkers for Pseudomonas aeruginosa that after confirma-
tion by qRT-PCR in multidrug resistant samples, can be considered as 
new targets to combat multidrug resistance. One of the main limitations 
of the present study is the imbalance between the number of samples in 
resistant and wild-type (antibiotic sensitive) groups (50 vs. only 4), that 
could have a significant impact of the results. We suggest that to confirm 
the gene expression alterations of the identified biomarkers, larger 
number of resistant and wild-type Pseudomonas aeruginosa isolates will 
be used to get more reliable results. In addition, it is well known that 
multiple antibiotic resistance genes have higher expression in the in-
fections than in the laboratory conditions. Therefore, to get the true 
estimate of Pseudomonas aeruginosa transcriptional alterations in resis-
tant state, the samples must be immediately subjected to RNA extraction 
and subsequent sequencing. 
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