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Abstract

A stochastic PDE, describing mesoscopic fluctuations in systems of weakly interacting inertial particles 
of finite volume, is proposed and analysed in any finite dimension d ∈ N. It is a regularised and inertial 
version of the Dean–Kawasaki model. A high-probability well-posedness theory for this model is devel-
oped. This theory improves significantly on the spatial scaling restrictions imposed in an earlier work of 
the same authors, which applied only to significantly larger particles in one dimension. The well-posedness 
theory now applies in d-dimensions when the particle-width ε is proportional to N−1/θ for θ > 2d and 
N is the number of particles. This scaling is optimal in a certain Sobolev norm. Key tools of the analysis 
are fractional Sobolev spaces, sharp bounds on Bessel functions, separability of the regularisation in the 
d-spatial dimensions, and use of the Faà di Bruno’s formula.
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1. Introduction

Fluctuating hydrodynamics is a class of models describing fluctuations around the hy-
drodynamic limit of a many-particle system; a particular example is the Dean–Kawasaki 
model [10,17], which describes the evolution of finitely many particles governed by over-damped 
Langevin dynamics. At its core, this model is a stochastic PDE for the empirical density, com-
prising a diffusion equation that is stochastically perturbed by a mass-preserving multiplicative 
space-time white noise; see (6) below. Equations of fluctuating hydrodynamics are widely used in 
physics and other sciences (e.g., in the description of active matter [24,5], thermal advection [19], 
neural networks [22], and agent based models [11]), and are currently being investigated numeri-
cally [16]. Still, the mathematical analysis of these equations is in its infancy. A truly remarkable 
recent result [18] shows that a solution for the original Dean–Kawasaki model (as derived in [10]
and given in (6) below) only exists when the initial datum is a superposition of a finite-number 
N of Dirac delta functions and the diffusion coefficient is 1

2N ; if such an initial datum is ever 
so slightly mollified, then no solution exists. Given the numerous applications of equations of 
fluctuating hydrodynamics, this apparent mathematical instability is particularly puzzling.

In light of this, several regularised Dean–Kawasaki models (featuring smooth noise coef-
ficient and coloured driving noise) have been proposed and studied [13,11,14,7,8]. In recent 
work [7,8], the authors have derived and analysed stochastic PDE models for the empirical 
density of N -particles following second-order Langevin dynamics and interacting weakly. The 
models are derived from particles as entities of finite size rather than Dirac delta functions and 
this regularisation is crucial for the mathematical theory. We refer to this PDE as the Regularised 
Inertial Dean–Kawasaki (RIDK) model. In particular, we have established that RIDK has a well-
defined mild solution in one-dimension with probability converging to one in the limit as N → ∞
and the particle width ε → 0, subject to particles being wide enough (as given by the scaling con-
dition N εθ = 1 for a given θ ). In this paper, we establish well-posedness for RIDK in any finite 
spatial dimension and significantly improve the scaling condition (relax conditions on θ ) in the 
one-dimensional case. To the best of our knowledge, this is the first proof of well-posedness for 
RIDK or any Dean–Kawasaki model in several space dimensions.

1.1. Setting and main result

We consider N -weakly interacting particles on the d-dimensional torus T d := [0, 2π)d . 
The particles are identified by position and momentum (qi , pi )

N
i=1 ∈ T d × Rd , and satisfy the 

stochastic differential equation

q̇i = pi , ṗi = −γ pi − N−1
N∑

j=1

∇U(qi − qj ) + σ ḃi , i = 1, . . . ,N, (1)

where γ, σ are positive constants, U : T d → R is a smooth pairwise interaction potential, and 
{bi}Ni=1 is a family of independent standard d-dimensional Brownian motions. We work under the 
key modelling assumption that the particles have a finite size. Specifically, we describe their spa-
tial occupancy by means of a kernel wε : T d → [0, ∞) indexed by ε > 0, which may be thought 
of as the particle width. We propose RIDK as a model for the particle density and momentum 
density
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(ρε(x, t),j ε(x, t)) :=
(

N−1
N∑

i=1

wε(x − qi (t)),N
−1

N∑
i=1

pi (t)wε(x − qi (t))

)
,

where (x, t) ∈ T d × [0, T ].
In particular, RIDK defines an approximate particle and momentum density (ρ̃ε, j̃ ε) : T d ×

[0, T ] → R ×Rd by the stochastic PDE⎧⎨⎩
∂t ρ̃ε = −∇ · j̃ ε,

∂t j̃ ε = −γ j̃ ε − σ 2

2γ
∇ρ̃ε − ρ̃ε (∇U ∗ ρ̃ε) + σ N−1/2

(√
ρ̃ε P

1/2√
2ε

ξ1, . . . ,
√

ρ̃ε P
1/2√

2ε
ξd

)
,

(2)

subject to (ρ̃ε(·, 0), j̃ ε(·, 0)) = (ρ̃0, j̃0) for initial densities ρ̃0 and j̃0, where {ξ
}d
=1 are indepen-
dent space-time white noises, and Pε is the convolution operator Pε : L2(T d) → L2(T d) : f �→
Pε f (·) = ∫

T d wε(· − y) f (y)dy. The operator Pε describes the spatial correlation of the 
stochastic noise and is intrinsically linked to the spatial occupancy of the particles through the 
regularising kernel wε . This model is of inertial type (meaning that it keeps track of both den-
sity and momentum density), and is a generalisation of the models studied in [7,8] to higher 
dimensions. For wε , we choose the von Mises kernel

wε(x) := Z−d
ε exp

{
−
∑d


=1 sin2(x
/2)

ε2/2

}
, Zε :=

∫
T

exp

(
− sin2(y/2)

ε2/2

)
dy. (3)

Any non-negative function w : [−π, π) → R can be written w(x) = exp(−V (sin(x/2))) for a 
function V : [−1, 1] →R. For x ≈ 0, V (sin(x/2)) ≈ V (0) +V ′(0) sin(x/2) + 1

2V ′′(0) sin2(x/2). 
Assuming V is symmetric for extending periodically, we find that

w(x) ≈ exp(−V (0)) exp

(
−1

2
V ′′(0) sin2(x/2)

)
.

The values of exp(−V (0)) = 1/Zε and V ′′(0) = 4/ε2 are chosen so that the moments agree 
with N(0, ε2) and there is convergence to the Dirac delta function. The periodic extension to T d

defines the von Mises kernel wε .
For regularity purposes which will become clear later, it is convenient to replace the square-

root in (2) with a smooth function hδ : R → R such that hδ(z) = √|z| for |z| ≥ δ/2, for some 
small and fixed δ > 0. Following this change, the RIDK equation (2) is rewritten in the abstract 
stochastic PDE notation{

dXε,δ(t) = AXε,δ(t)dt + αU(Xε,δ(t))dt + BN,δ(Xε,δ(t))dWper,ε,

Xε,δ(0) = X0,
(4)

where Xε,δ = (ρ̃ε,δ, j̃ ε,δ), X0 = (ρ̃0, j̃0), A is a linear operator describing the deterministic 
drift excluding the interaction-potential term αU(Xε,δ), BN,δ is the stochastic integrand as-
sociated with the introduction of hδ , and Wper,ε is a Q-Wiener representation of the noise (
P

1/2√
2ε

ξ1, . . . ,P
1/2√

2ε
ξd

)
. More details concerning (4), as well as a sketch of its derivation from 

the Langevin particle dynamics (1), are given in Section 2.
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Throughout the paper, we work under the general scaling

N εθ = 1, θ > θ0 := 2d. (5)

From a modelling point of view, (5) imposes the particle size (comparatively to N ), where 
increasing θ implies increasing particle size. If θ is close to the limiting case θ0 = 2d , the scal-
ing (5) is approximately only dependent on the volume v of each particle: specifically, since each 
particle is roughly of size ε in each direction, then (5) corresponds to Nv2 ≈ 1. The purpose 
of the scaling is regularisation and smoothing of the densities, and it is necessary that particles 
overlap in the limit so that conservation of volume is not possible. The condition (5) provides 
sufficient regularity for the Sobolev space analysis in Theorem 1.1 and is optimal in that sense as 
we show in Remark 1.2.

From an analytical perspective, (5) affects the spectral properties of the noise Wper,ε in (4)
through the operator Pε .

We state the main result of this paper.

Theorem 1.1 (Well-posedness of RIDK on T d ). Let δ > 0, hδ ∈ C�d/2+2(R), ν ∈ (0, 1), and 
U ∈ C1. Fix θ > θ0 = 2d such that (θ − θ0)/2 < �(d + 1)/2 − d/2. Pick η ∈ (0, min{(θ −
θ0)/2, C(d)}) for some small enough C(d) ∈ (0, 1/2) (see Lemma B.4). Set s := d/2 + η. Let 
(ρ̃0, j̃0) be a deterministic initial condition belonging to the fractional Sobolev space Ws :=
Hs(T d) × [Hs(T d)]d such that minx∈T d ρ̃0(x) > δ.

There exists T = T (ρ̃0), a large enough N , a unique Ws-valued process Xε,δ = (ρ̃ε,δ, j̃ ε,δ), 
and a set Fν of probability at least 1 − ν such that minx∈T d ,s∈[0,T ] ρ̃ε,δ(x, s) ≥ δ on Fν , and 
Xε,δ solves (4) pathwise on Fν in the sense of mild solutions [9, Chapter 7]. As a consequence, 
Xε,δ also solves the RIDK equations (2) pathwise on Fν in the sense of mild solutions.

The proof exploits a small-noise analysis, by obtaining the solution to (4) as a small perturba-
tion of the strictly positive solution of the noise-free dynamics (i.e., the damped wave equation). 
When the perturbations are small and the initial data is everywhere larger than δ, the solu-
tion to (4) remains outside the regularisation regime (−∞, δ/2) for hδ and the regularisation 
is bypassed, resulting in a well-defined solution of (2). The C0-norm is used to measure the per-
turbations and keep track of whether the solution falls into the regularisation region. To do this, 
the parameter s is chosen so the mild solutions take values in the Sobolev space Ws , which is 
embedded continuously in C0 × [C0]d .

With this in mind, the proof of Theorem 1.1 (see Section 4) is built upon three conceptual 
blocks, developed in Section 3. Firstly, A is proven to generate a C0-semigroup with respect 
to the Ws -norm (see Subsection 3.1, Lemma 3.1). Secondly, the stochastic integrand BN,δ is 
shown to be locally Lipschitz and sublinear (d = 1) or locally Lipschitz and locally bounded 
(d > 1) with respect to the Hilbert–Schmidt L0

2(Ws)-norm (Subsection 3.3, Lemma 3.4). These 
two blocks give rigour to the application of the mild solution theory. Thirdly, sharp bounds for 
the trace of Wper,ε with respect to the Ws-norm are provided via spectral analysis of P√

2ε
(see 

Subsection 3.2, Lemma 3.2). In combination with Lemma 3.4, this guarantees the vanishing-
noise regime for (4) in the Ws -norm as N → ∞.

Theorem 1.1 carries two significant contributions. Firstly, it provides a well-posedness theory 
for the multi-dimensional RIDK model; to the best of our knowledge, this is the first paper to 
give an existence and uniqueness theory for such a model. Secondly, it improves an analogous 
one-dimensional result [7,8] by significantly relaxing the scaling threshold in (5) from θ0 = 7 to 
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θ0 = 2. The more restrictive threshold for θ resulted from a suboptimal analysis with respect to 
the W1 norm. The θ0 = 7 scaling is inconveniently restrictive, as it only allows for rather large 
particles (comparatively to N ). Specifically, θ is significantly away from the null value, which 
formally corresponds to representing particles by Dirac delta functions.

The main technical novelties that we introduce in the proof of Theorem 1.1 are the following. 
First, we deploy improved estimates for the spectral properties of P√

2ε
, which rely on refined 

bounds for modified Bessel functions of the first kind. Secondly, we set the analysis in the ‘least 
restrictive’ Sobolev space Ws that embeds continuously in the space of continuous functions, and 
this corresponds to considering s = d/2 +η for arbitrarily small positive η. Thirdly, we extend the 
analysis to higher dimensions by relying on the separability of the kernel wε in its d variables, 
the boundedness and periodicity of the spatial domain, and the considerations from the one-
dimensional case. The boundedness of the spatial domain is crucially used also in the derivation 
of technical tools related to fractional Sobolev spaces and Faà di Bruno’s formula, which are 
deferred to Appendix B. Relevant elementary algebraic tools are summarised in Appendix A. 
Additionally, the proof of Theorem 1.1 in Section 4 is finalised with a localisation procedure 
argument. Crucially, the same techniques adopted to deal with the superlinear interaction αU

(analogous to those developed in [8, Section 4]) also allow to deal with the locally bounded 
noise in d > 1.

Remark 1.2. The justification of the scaling assumptions of Theorem 1.1 is found in Lemma 3.2. 
There, each index s is associated to a relevant value θc(s) := 2s + d , and the trace of Wper,ε with 
respect to the Ws -norm is bounded by ε−θc(s). In combination with Lemma 3.4, this implies 
that the Ws -norm of the stochastic noise of (4) vanishes as N → ∞ for any θ > θc(s). As 
our well-posedness theory relies on the embedding Ws ⊂ C0 × [C0]d , we require the equality 
s = d/2 + η = (θc(s) − d)/2 to hold, giving θ > 2d + 2η. As η may be chosen arbitrarily small, 
we obtain the threshold θ0 = 2d .

Furthermore, for each s, the value θc(s) is optimal, in the sense that θc(s) is also the min-
imum value for which E[‖ρε(·, t)‖2

Hs ] (where, we recall, ρε denotes the true particle density) 
is uniformly bounded in N and ε, at least in the case of independent particles given by U ≡ 0. 
Namely, it is easy to proceed as in [7] and argue that, under reasonable assumptions on the law 
of the particle dynamics,

0 < C1 < lim
N→∞, ε→0

{
N ε2s+d E

[‖ρε(·, t)‖2
Hs

]}
< C2,

for some constants C1, C2 independent of N and ε. Crucially, we obtain scaling agreement for 
fluctuations on microscopic and mesoscopic scale; here microscopic means particle-level dynam-
ics, see (1) above, while mesoscopic means the Dean–Kawasaki dynamics (2). As a result, the 
value θ0 is also optimal, as lims→d/2 θc(s) = θ0. We stress that this notion of scaling optimality 
is only understood with respect to the evaluation of Sobolev norms for the densities ρε and ρ̃ε .

Remark 1.3. The RIDK model (2) may be regarded as the regularised inertial analogue of the 
original over-damped Dean–Kawasaki model [10,17]

∂tρN = N

2
�ρN + ∇ · (√ρN ξ

)
in Rd × (0,∞), (6)
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where ξ is a space-time white noise. As stated before, (6) admits nothing but an atomic 
solution, and only in the integer regime N ∈ N . In this case, the solution is ρN(x, t) =
N−1 ∑N

i=1 δ(x − Bi (t)), where (Bi )
N
i=1 are independent Brownian walkers.

We consider the RIDK model (2) instead of (6) for a number of reasons. Firstly, while both 
models describe mesoscopic fluctuations in particle systems of physical relevance (such as those 
treated, e.g., in the description of active matter [24,5] and thermal advection [19]), the RIDK 
model does so while also capturing core inertial effects (i.e., Newton’s law of motion). Sec-
ondly, it bypasses any problematic interpretations arising from taking a formal divergence of the 
stochastic noise. Finally, it allows to work with smooth rather than atomic solutions.

1.2. Comparison with classical over-damped Dean–Kawasaki model and open problems

A rigorous connection between (2) and (6) is, to the present day, still lacking. Firstly, it is not 
at all clear if (6) can be recovered via an over-damped limit (i.e., by taking γ → ∞) in (2): to 
the best of our knowledge, there are no known mathematical results in this context, and, addi-
tionally, (2) admits smooth solutions while (6) only admits atomic solutions. Secondly, we have 
no clear indication as to how to recover the square root singularity in (2) (i.e., how to perform 
the limit δ → 0), even in the context of strictly positive solution to the noise-free dynamics of (2)
considered in the paper. The closest result on the subject is given in [13]. The macroscopic limit 
N → ∞ (which, in the case of (2), also forces the removal of the regularisation ε → 0 due to the 
scaling (5)) is, on the contrary, better understood. The solution to (2) converges to the solution 
of a noiseless wave equation as a consequence of Theorem 1.1; on the other hand, the solution 
to (6) converges to the solution of a deterministic parabolic equation, at least for reasonable initial 
configurations (this follows from the definition of ρN and the law of large numbers).

In the case θ ≤ 2d (currently out of the scope of our well-posedness theory), or indeed for any 
other scaling of N and ε, the over-damped limit in (2) is just as open a question as for the case 
θ > 2d , while the macroscopic limit N → ∞ is unknown.

We now briefly turn to possible future improvements of our RIDK model. The derivation of 
the RIDK model (2) heavily relies on boundedness and periodicity of the spatial domain T d . In 
this case, the spectrum of the convolution operator Pε is known: as explained in Section 2, this is 
a consequence of the one-dimensional analysis treated in [8], of suitable multiplication rules for 
the kernel wε , and of its separability in the d variables on T d .

The analysis of the RIDK model takes the spectral properties of Pε merely as starting points, 
and, therefore, is a relatively independent and self-contained argument. It is reasonable to expect 
that it could be extended to general bounded domains (and, if applicable, to different boundary 
conditions) by adapting the analysis of the spectrum of Pε . Improvements on the scaling require-
ment (5) will likely come from using less restrictive notions of solutions. Questions such as the 
long time behaviour of solutions and the invariant measures for (2) are hard to answer, and will 
likely require a radically different approach.

1.3. Basic notation

We work with periodic functions on the d-dimensional torus T d = [0, 2π)d for d ∈ N . We 
never specify the dependence of any function space on d , as this is always clear from the context. 
Bold face characters always denote vectors. For m ∈N0 and p ∈ [1, ∞], we denote by Wm,p the 
standard Sobolev space of periodic functions on T d with derivatives up to order m belonging to 
Lp . For 0 < s /∈N and p ∈ [1, ∞), we define the fractional spaces Ws,p via the norm
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‖u‖Ws,p := ‖u‖W �s�,p + max|z|=�s�

∫
T d

∫
T d

|∂zu(x) − ∂zu(y)|p
|x − y|d+(s−�s�)p dx dy, (7)

where �s� := max{n ∈ N0 : n ≤ s}. We also set �y := min{n ∈ N : y ≤ n}. We consider the 
fractional Hilbert spaces Hs and H s := [

Hs
]d identified by the Fourier-type inner products

〈u,v〉Hs :=
∑

j∈Zd

ûj v̂j (1 + |j |2)s, ûj := (2π)−d

∫
T d

e−ij ·x u(x)dx, u, v ∈ Hs,

〈u,v〉H s :=
d∑


=1

〈u
, v
〉Hs , u,v ∈ H s , (8)

and we define the norm on Ws := Hs × H s as ‖(u, v)‖Ws := (‖u‖2
Hs + ‖v‖2

H s )
1/2, for (u, v) ∈

Ws . The norms ‖ · ‖Hs and ‖ · ‖Ws,2 are equivalent; see [3, Proposition 1.3]. We define the space 
V s+1 := {v ∈ H s : ∇ · v ∈ Hs} ⊃ H s+1, and recall the integration-by-parts formula

〈−∇ · v, u〉Hs = 〈v,∇u〉H s , ∀u ∈ Hs+1,∀v ∈ V s+1. (9)

In dimension d = 1, we trivially have V s+1 ≡ Hs+1. We denote by L(Ws) (respectively, 
L0

2(Ws)) the set of continuous linear functionals mapping Ws into itself (respectively, the set of 

Hilbert–Schmidt operators from P 1/2√
2ε
Ws ⊂ Ws into Ws ), with the convolution operator P√

2ε

as defined after (2).
For each α ∈ N , we define

�α := {set of partitions of {1, . . . , α}} ,

B(π) := {set of blocks forming partition π} , π ∈ �α,

|π | := #B(π) = number of blocks forming partition π,

where # denotes the number of elements in a set. Furthermore, for every partition π ∈ �α , we 
set

βj (π) := #{b ∈ B(π) : |b| = j}, j ∈ {1, . . . , α},
J (π) := {j ∈ {1, . . . , α} : βj (π) > 0}.

As an immediate consequence of the definitions, we have 
∑

j∈J (π) j βj (π) = α.
We use C as a generic constant whose value may change from line to line (with dependence on 

relevant parameters highlighted whenever necessary, for example C(s)). In addition, we denote 
the embedding constant of Hs ⊂ C0 by KHs→C0 . Finally, we use the subscript notation to link 
specific constants with the lemmas where they are defined; for example, KB.1 is the constant 
introduced in Lemma B.1.
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2. Derivation of RIDK

We now derive the RIDK model (4) by following the methodology outlined in [8]. Con-
sider the second-order Langevin system (1), as well as the quantities (ρε(x, t), j ε(x, t)) =
(N−1 ∑N

i=1 wε(x − qi (t)), N
−1 ∑N

i=1 pi (t)wε(x − qi (t))) defined via the kernel (3). Simple Itô 
computations imply that ρε and j ε satisfy the system

{
∂tρε(x, t) = −∇ · j ε(x, t),

∂tj ε(x, t) = −γ j ε(x, t) − j2,ε(x, t) + IU(x, t) + ŻN(x, t),
(10)

where the 
th component of terms on the right are defined by

[j2,ε(x, t)]
 := N−1
N∑

i=1

p2

,i (t) ∂x


wε(x − qi (t))

+ N−1
N∑

i=1

∑
k �=


p
,i(t)pk,i(t) ∂x

wε(x − qi (t)),

[IU(x, t)]
 := −N−1
N∑

i=1

N−1
N∑

j=1

∂x

U(qi (t) − qj (t))wε(x − qi (t)),

[
ŻN(x, t)

]


:= σN−1

N∑
i=1

wε(x − qi (t)) ḃ
,i .

The terms j2,ε, IU , and ŻN are not closed in the leading quantities (ρε, j ε), and approximations 
are used to close the system of equations. We now sketch how the approximations in [7,8] extend 
to the multi-dimensional case.

The term j2,ε is dealt with under a local-equilibrium assumption [12, Corollary 3.2]. In this 
situation, the probability density function of (qi (t), pi (t)) is approximately separable in the posi-
tion variable qi (t) and momentum variable pi (t) due to the structure of the Gibbs invariant mea-
sure. In addition, the momentum variable is distributed according to a Gaussian of mean zero and 
diagonal covariance matrix (σ 2/2γ ) Id . Furthermore, under the additional assumption σ 2 � 2γ , 
the approximation σ 2/(2γ ) = E[p2


,i (t)] ≈ p2

,i (t) is legitimate. All these considerations imply 

that E[j2,ε] ≈ σ 2/(2γ ) E[∇ρε] and this motivates the replacement j2,ε ≈ (σ 2/2γ ) ∇ρε .
The interaction term IU may be approximated as IU ≈ −ρε (∇U ∗ ρε), following the lines 

of [8, Proposition 3.5].
Finally, one may substitute the noise ŻN(x, t) with ẎN(x, t), where[

ẎN(x, t)
]


:= σ N−1/2

√
ρε(x, t)P

1/2√
2ε

ξ
(x, t), (11)

where Pε is the convolution operator Pε : L2(T d) → L2(T d) : f �→ Pεf (·) = ∫
T d wε(· − y)×

f (y) dy introduced above, and where {ξ
}d
=1 are independent space-time white noises. The 
substitution of ŻN(x, t) with ẎN(x, t) relies on the two noises being approximately equivalent 
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in distribution. This is a consequence of the following approximate multiplication rule for von 
Mises kernels

wε(x1 − qi (t))wε(x2 − qi (t)) ≈ w√
2ε

(x1 − x2)wε/
√

2

(
x1 + x2

2
− qi (t)

)
, (12)

where x1, x2 ∈ T d , which can be deduced from its one-dimensional analogue [8] thanks to the 
crucial fact that the kernel wε is separable in its d variables on T d .

In addition, the stochastic independence of the d components of each member of the family 
{bi}Ni=1 is reflected in the stochastic independence of the {ξ
}d
=1. Taking all into account, we 
obtain our multi-dimensional RIDK system (2).

The noise ẎN(x, t) can be explicitly expanded using the spectral properties of the operator Pε , 
which, due to the separability of the kernel wε , are readily available from the one-dimensional 
case [7, Section 4.2]. More specifically, with {ej }j∈Z being the trigonometric system

ej (x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
1
π

cos(jx), if j > 0,√
1
π

sin(jx), if j < 0,√
1

2π
, if j = 0,

it is not difficult to see that the family {fj,s}j∈Zd defined as

fj ,s(x) := C(d)

{
d∏


=1

ej

(x
)

}(
1 + |j |2

)−s/2
, j ∈Zd , (13)

is, for some choice of normalisation constant C(d), an Hs-orthonormal basis of eigenfunctions 
for P√

2ε
for any ε > 0. Furthermore, the eigenvalue of P√

2ε
corresponding to the eigenfunction 

fj ,s is

λj ,ε =
d∏


=1

λj
,ε, (14)

where the eigenvalues from the one-dimensional case are given by

λj,ε =

⎧⎪⎪⎨⎪⎪⎩
Z−1√

2ε

∫
T

e
− sin2(x/2)

ε2 cos(jx)dx = Ij

({2ε2}−1 )
/I0

({2ε2}−1), if j �= 0,

1, if j = 0,

(15)

with Ij denoting the modified Bessel function of first kind and order j [1, Eq. (9.6.19)]. As a 
result, the stochastic process
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Wper,ε :=
∑

j∈Zd

√
αj ,s,ε (0, fj ,s ,0, . . . ,0)β1,j + · · ·

+
∑

j∈Zd

√
αj ,s,ε (0, . . . ,0, fj ,s) βd,j , αj ,s,ε := (1 + |j |2)sλj ,ε, (16)

with iid families {β
,j }d
=1 of independent Brownian motions, is a Ws-valued Q-Wiener pro-
cess representation of the R × Rd -valued stochastic noise (0, ẎN(x, t)). It follows that, upon 
swapping ŻN(x, t) with ẎN(x, t), we can write (10) in the abstract stochastic PDE form{

dXε(t) = AXε(t)dt + αU(Xε,δ(t))dt + BN(Xε(t))dWper,ε,

Xε(0) = X0,
(17)

where Xε = (ρ̃ε, j̃ ε), A is the wave-type differential operator given by

AX :=
(
−∇ · j , −γ j − (σ 2/2γ )∇ρ

)
, X = (ρ,j),

the interaction potential is αU(Xε,δ) := −ρ̃ε (∇U ∗ ρ̃ε), and the stochastic integrand BN is given 
by

BN(ρ,j)(a,b) := σ N−1/2 (0,
√

ρ b1, . . . ,
√

ρ bd

)
.

For some hδ ∈ C�d/2+2(R) regularising the square function in [0, δ], we substitute BN with the 
smoothed stochastic integrand

BN,δ((ρ,j))(a,b) := σ N−1/2 (0, hδ(ρ) b1, . . . , hδ(ρ) bd) (18)

in (17), and we finally obtain the following equation in Xε,δ = (ρ̃ε,δ, j̃ ε,δ){
dXε,δ(t) = AXε,δ(t)dt + αU(Xε,δ(t))dt + BN,δ(Xε,δ(t))dWper,ε,

Xε,δ(0) = X0,

which is exactly (4).

3. Main technical results for the proof of Theorem 1.1

We develop the three main technical tools upon which we base the main proof in Section 4. 
We investigate the cases d = 1 and d > 1 separately.

3.1. Semigroup analysis of operator A in Ws

Lemma 3.1. Let D(A) := Hs+1 × V s+1. The operator A : D(A) ⊂ Ws → Ws defines a C0-
semigroup of contractions.
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Proof of Lemma 3.1 in dimension d = 1. The proof is identical to the one provided in [7, 
Lemma 4.2], simply with all relevant spaces Hα being replaced by Hα−1+s . We assume 
σ 2/(2γ ) := 1 for simplicity, even though the proof is analogous for the general case σ 2/(2γ ) >
0.

We verify the assumptions of the Hille–Yosida Theorem, as stated in [21, Theorem 3.1].
Step 1: A is a closed operator, and D(A) is dense in Ws . This is easily checked.
Step 2: The resolvent set of A contains the positive half line. Let λ > 0. We show that the 

operator Aλ := A −λI is injective. Assume that Aλ(ρ, j) = (0, 0). We take the Hs -inner product 
of the first component of Aλ(ρ, j) with ρ and of the second component of Aλ(ρ, j) with j , and 
we obtain

0 = 〈−j ′ − λρ,ρ〉Hs + 〈−(λ + γ ) j − ρ′, j 〉Hs = −λ‖ρ‖2
Hs − (λ + γ )‖j‖2

Hs ,

where we have used (9). Since λ, γ > 0, we deduce that (ρ, j) = (0, 0). We now show that A−1
λ

is a bounded operator. Consider A−1
λ (a, b) = (ρ, j). This implies

λρ = −a − j ′, (19)

(λ + γ ) j = −b − ρ′. (20)

Taking the Hs -inner product of (19) (respectively, of (20)) with ρ (respectively, with j ), we get

λ‖(ρ, j)‖2
Ws ≤ λ‖ρ‖2

Hs + (λ + γ )‖j‖2
Hs = 〈−a,ρ 〉Hs + 〈−b, j 〉Hs . (21)

We use the Cauchy–Schwartz and Young inequalities to deduce ‖A−1
λ ‖L(Ws ,Ws ) ≤ λ−1, hence 

the boundedness of A−1
λ . We now show that Dom(A−1

λ ) is dense in Ws . Let us fix (a, b) ∈
Hs × Hs+1. The system of equations Aλ(ρ, j) = (a, b) reads

−j ′ − λρ = a, −(λ + γ ) j − ρ′ = b,

which promptly gives

ρ′′

λ + γ
− λρ = a − b′

λ + γ
∈ Hs. (22)

A Fourier series expansion argument provides existence of a unique solution ρ ∈ Hs+2 for (22). 
From −(λ + γ ) j = ρ′ + b, we immediately deduce that j ∈ Hs+1. We have shown that, for 
every (a, b) in the dense subset Hs × Hs+1 ⊂ Ws , the operator A−1

λ is well-defined.
Step 3: Inequality [21, (3.1)] is satisfied: This is precisely ‖A−1

λ ‖L(Ws ,Ws ) ≤ λ−1, which we 
already proved. �
Proof of Lemma 3.1 in dimension d > 1. Steps 2 and 3 are readily adapted, as the Fourier anal-
ysis is unchanged. We only need to justify the validity of Step 1. As for the density of D(A) in 
Ws , this is implied by the density of Hs+1 into Hs and H s+1 into H s , as well as by the inclu-
sion H s+1 ⊂ V s+1. As for the closedness of the operator A, this follows from the consistency of 
the first component of A and of the definition of V s+1. More specifically, consider a sequence 
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D(A) � (ρn, jn) → (ρ, j) in Ws , such that A (ρn, jn) → (x, y) in Ws . This immediately im-
plies that ∇ · jn converges in Hs−1 to both −x and ∇ · j , forcing them to agree. In particular, 
j ∈ V s+1. Similarly, ∇ρn converges in H s−1 to both ∇ρ and −γ j − y, forcing them to agree. 
In particular, ρ ∈ Hs+1. Therefore, (ρ, j) ∈ D(A) and A (ρ, j) = (x, y). �
3.2. Improved bounds on trace of Wper,ε in Ws -norm

Lemma 3.2. Let {λε,j }j∈Zd be the eigenvalues of P√
2ε

, see (14) and (15). Let α ∈ (0, 1) and 
β ∈ (0, 1) such that α + β ≥ 1, and let s ≥ 0.

(i) The following bound holds∑
j∈Zd

{λj ,ε}(1 + |j |2)s ≤ C(s, d)
{
ε−2β(2s+1) + ε−2α(2s+1) + ε−2α−4βs

}
ε−(d−1).

(23)
(ii) The right-hand side of (23) is minimised, among all admissible pairs (α, β), by choosing 

(α, β) = (1/2, 1/2). In this case, the right-hand side of (23) is proportional to ε−θc(s), where 
θc(s) = 2s + d was introduced in Remark 1.2.

Proof of Lemma 3.2 in dimension d = 1. We denote by Ij (x) the j -th modified Bessel func-
tion of the first kind evaluated at x.

Step 1. There exists K > 0 such that, for any j and any ε, it holds λε,j < K . This follows 
from (15) together with the monotonicity of {λε,j }j (see [20, Introduction]).

Step 2. Let x ≥ 1. Picking k = 2 and m = 0 in [20, Theorem 2, bound (a)], we have

Ij+1(x)

Ij (x)
<

x

j + 1/2 + x
. (24)

We show that the inequality

x

j + 1/2 + x
≤ 1 − 1

xα
(25)

holds when

j ≥ Cxβ, (26)

x ≥ x = x(α,β) > 0, (27)

for suitable x(α, β) > 0 and C > 0 to be discussed below. Simple algebraic rearrangements imply 
that (25) is equivalent to

0 ≤ j (xα − 1) + 1

2
xα − x − 1

2
, (28)

which is in turn satisfied (taking (26) into account), at least under the sufficient condition
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0 ≤ Cxα+β − Cxβ + 1

2
xα − x − 1

2
. (29)

Take C > 0 in (26) if α + β > 1, otherwise take C > 1 if α + β = 1. Then, for x large enough 
(i.e., for x large enough in (27)), inequality (29) is satisfied, and therefore so is inequality (25).

Step 3. By symmetry of λε,j with respect to j , seen in (15), we only need consider non-
negative indexes j . We define A1 := {0, 1, 2, . . . , �Cxβ} and A2 := N0 \ A1. We split the sum 
in the left-hand side of (23) over these two sets. We use Step 1 to deduce

�Cxβ∑
j=0

{λε,j }(1 + j2)s ≤ K

�Cxβ∑
j=0

(1 + j2)s ≤ K

�Cxβ∑
j=0

(1 + �Cxβ2)s ≤ K

�Cxβ∑
j=0

(1 + �Cxβ)2s

= K(1 + �Cxβ)2s+1 ≤ C(s)K(�Cxβ)2s+1. (30)

For the sum over A2, we use the geometric decay λε,j+1 ≤ (1 − 1/xα)λε,j , which is implied 
by (24) and (25) combined with (15). We use Step 1 to obtain

∞∑
j=�Cxβ+1

{λε,j }(1 + j2)s

≤ C(s)K

∞∑
j=�Cxβ+1

(
1 − 1

xα

)j−(�Cxβ+1)

j2s

= C(s)K

∞∑
j=0

(
1 − 1

xα

)j (
j + �Cxβ + 1

)2s

≤ C(s)K

∞∑
j=0

(
1 − 1

xα

)j

j2s + C(s)K

∞∑
j=0

(
1 − 1

xα

)j (�Cxβ + 1
)2s

≤ C(s)K

(
1

xα

)−(2s+1)

+ C(s)Kxα
(�Cxβ + 1

)2s
, (31)

where we have also used estimates on the polylogarithmic function Liγ (z) := ∑∞
j=1 zj j−γ for 

the first term in the last line, namely

Liγ (z) ≤ C(s)

(1 − z)−γ+1 . (32)

In our case, γ = −2s. Inequality (32) applies for negative integers γ as a simple consequence 
of differentiation of the geometric power series. Furthermore, (32) also applies for negative non-
integers γ , provided that z ∈ (1 − ν, 1) for some small ν = ν(s). This is a consequence of the 
trivial bound Liγ (z) ≤ ∑∞

j=0 zj (1 + j)−γ , and of [15, (9.550) and (9.557)].

As in the case of [7, Lemma 4.3], we pick x := (2ε2)−1, with ε small enough so that (27)
holds (and that z = 1 −1/xα ∈ (1 −ν, 1), with this requirement only demanded if γ = −2s /∈Z). 
Combining (30) and (31) gives (23).
265



F. Cornalba, T. Shardlow and J. Zimmer Journal of Differential Equations 284 (2021) 253–283
Finally, it is easy to see that the choice (α, β) = (1/2, 1/2), which makes the right-hand 
side of (23) proportional to ε−θc(s) = ε−(2s+d), also minimises it among all admissible pairs 
(α, β). �
Proof of Lemma 3.2 in dimension d > 1. The result promptly follows from the bound

∑
j∈Zd

{λj ,ε}(1 + |j |2)s =
∑

j∈Zd

d∏

=1

λj
,ε

(
1 +

d∑
k=1

j2
k

)s

≤ C(s)

d∑
k=1

∑
j∈Zd

d∏

=1

λj
,ε(1 + j2
k )s ≤ C(s)

d∑
k=1

∑
jk∈Z

λjk,ε(1 + j2
k )s

∑
j
∈Z, 
�=k

d∏

=1,
 �=k

λj
,ε

= C(s, d)

(∑
j∈Z

λj,ε(1 + j2)s

)(∑
j∈Z

λj,ε

)d−1

and the validity of (23) for d = 1. The optimality of the scaling under (α, β) = (1/2, 1/2) has 
already been dealt with in the one-dimensional case. �
Remark 3.3. For d = 1, we have improved the scaling of [7, Lemma 4.3] in two points. Firstly, 
the bound on {λj,ε}j is now uniform in ε and j (i.e., we no longer bound λj,ε using ε−1). 
Secondly, the exponential decay of the eigenvalues ‘kicks in’ earlier, namely around Cε−2β

rather than around ε−2. This leads to a sharper estimate concerning the sum on the region A1.
These improvements bring the threshold θ0 down from 7 to 3 for the suboptimal choice s = 1

(see [7, Lemma 4.3]). In addition, the switch to fractional Sobolev spaces, i.e., the choice s =
1/2 + η instead of s = 1 as in [7], where η can be chosen arbitrarily small, grants a further 
decrease of θ0 from 3 to 2.

3.3. Regularity of the stochastic integrand BN,δ

Lemma 3.4. With the same notation as in Theorem 1.1, let s = d/2 + η, where η > 0 is such that 
η < C(d) < 1/2, where C(d) is small enough (see Lemma B.4). Then

(i) BN,δ is a map from Ws to L(Ws).
(ii) BN,δ is locally Lipschitz with respect to the L0

2(Ws)-norm.
(iii) BN,δ is sublinear with respect to the L0

2(Ws)-norm if d = 1, and locally bounded with 
respect to the same norm if d > 1.

Proof of Lemma 3.4 for d = 1. We limit ourselves to proving Statements (ii) and (iii).
Statement (ii). Take (u1, v1), (u2, v2) ∈ Ws , such that ‖(u1, v1)‖Ws ≤ k, ‖(u2, v2)‖Ws ≤ k. 

From (16) and (18) we have that∥∥BN,δ((u1, v1)) − BN,δ((u2, v2))
∥∥2

L0
2(Ws )

=
∑∥∥√αj,s,ε

{
BN,δ((u1, v1)) − BN,δ((u2, v2))

}
(0, fj,s)

∥∥2
Ws
j∈Z
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= σ 2

N

∑
j∈Z

αj,s,ε

∥∥(0, {hδ(u1) − hδ(u2)}fj,s

)∥∥2
Ws . (33)

We use the fact that {fj,s}j are orthonormal in Hs , the equivalence of the norms ‖ · ‖Hs and 
‖ · ‖Ws,2 (see Subsection 1.3), the boundedness of h′

δ , and Lemma B.1 to write∥∥(0, {hδ(u1) − hδ(u2)}fj,s

)∥∥2
Ws

≤ C‖ {hδ(u1) − hδ(u2)}fj,s‖2
Ws,2 ≤ CK2

B.1‖hδ(u1) − hδ(u2)‖2
Ws,2

= CK2
B.1

⎧⎨⎩
∫
T

|hδ(u1(x)) − hδ(u2(x))|2dx

+
∫
T

∫
T

|hδ(u1(x)) − hδ(u2(x)) − {hδ(u1(y)) − hδ(u2(y))} |2
|x − y|1+2s

dxdy

⎫⎬⎭
≤ C(δ)K2

B.1

⎧⎨⎩
∫
T

|u1(x) − u2(x)|2dx

+
∫
T

∫
T

|hδ(u1(x)) − hδ(u2(x)) − {hδ(u1(y)) − hδ(u2(y))} |2
|x − y|1+2s

dxdy

⎫⎬⎭ . (34)

We bound the numerator of (34). If either u1(x) = u2(x) or u1(y) = u2(y), then simply

|hδ(u1(x)) − hδ(u2(x)) − {hδ(u1(y)) − hδ(u2(y))} |2
≤ C(δ)|u1(x) − u2(x) − {u1(y) − u2(y)} |2. (35)

Otherwise, we use the embedding Hs ⊂ C0 and write

|hδ(u1(x)) − hδ(u2(x)) − {hδ(u1(y)) − hδ(u2(y))} |2

≤ 2

∣∣∣∣hδ(u1(x)) − hδ(u2(x))

u1(x) − u2(x)

∣∣∣∣2 |u1(x) − u2(x) − {u1(y) − u2(y)} |2

+ 2

∣∣∣∣hδ(u1(x)) − hδ(u2(x))

u1(x) − u2(x)
− hδ(u1(y)) − hδ(u2(y))

u1(y) − u2(y)

∣∣∣∣2 |u1(y) − u2(y)|2

≤ 2C(δ)|u1(x) − u2(x) − {u1(y) − u2(y)} |2

+ 2K2
Hs→C0

∣∣∣∣hδ(u1(x)) − hδ(u2(x))

u1(x) − u2(x)
− hδ(u1(y)) − hδ(u2(y))

u1(y) − u2(y)

∣∣∣∣2 ‖u1 − u2‖2
Hs

=: T1 + T2. (36)

We now focus on T2. We define the auxiliary function
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r(α,β) =
{

{hδ(α) − hδ(β)}/(α − β), if α �= β,

h′
δ(α), if α = β.

We write ∣∣∣∣hδ(u1(x)) − hδ(u2(x))

u1(x) − u2(x)
− hδ(u1(y)) − hδ(u2(y))

u1(y) − u2(y)

∣∣∣∣2
≤ 2 |r(u1(x), u2(x)) − r(u1(y), u2(x))|2

+ 2 |r(u1(y), u2(x)) − r(u1(y), u2(y))|2 := T3 + T4.

In the above, we perform a first-order Taylor expansion (with respect to the first variable of r
only for T3, and with respect to the second variable of r only for T4). This is possible because 
r has partial derivatives defined everywhere (as a consequence of hδ being C2(R)). In addition, 
the partial derivatives of r are uniformly bounded by supz∈R |h′′

δ (z)| ≤ C(δ). This implies

T3 + T4 ≤ C(δ)|u1(x) − u1(y)|2 + C(δ)|u2(x) − u2(y)|2. (37)

We plug (35), (36) and (37) into (34) and take into account the assumption ‖(u1, v1)‖Ws ≤
k, ‖(u2, v2)‖Ws ≤ k to obtain

∥∥(0, {hδ(u1) − hδ(u2)}fj,s

)∥∥2
Ws

≤ C(δ)K2
B.1

⎧⎨⎩
∫
T

|u1(x) − u2(x)|2dx

+
∫
T

∫
T

|hδ(u1(x)) − hδ(u2(x)) − {hδ(u1(y)) − hδ(u2(y))} |2
|x − y|1+2s

dxdy

⎫⎬⎭
≤ C(δ)K2

B.1

⎧⎨⎩
∫
T

|u1(x) − u2(x)|2dx

+C(δ)

∫
T

∫
T

|u1(x) − u2(x) − {u1(y) − u2(y)} |2
|x − y|1+2s

dxdy

+C(δ)K2
Hs→C0‖u1 − u2‖2

Hs

∫
T

∫
T

|u1(x) − u1(y)|2 + |u2(x) − u2(y)|2
|x − y|1+2s

dxdy

⎫⎬⎭
≤ C(δ, k,KB.1,KHs→C0)‖u1 − u2‖2

Hs

≤ C(δ, k,KB.1,KHs→C0)‖(u1, v1) − (u2, v2)‖2
Ws .

We can go back to (33) and deduce the local Lipschitz property
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∥∥BN,δ((u1, v1)) − BN,δ((u2, v2))
∥∥2

L0
2(Ws )

≤ σ 2

N

⎛⎝∑
j

αj,s,ε

⎞⎠C(δ, k,KB.1,KHs→C0)‖(u1, v1) − (u2, v2)‖2
Ws .

Statement (iii). We write

∥∥BN,δ((u, v))
∥∥2

L0
2(Ws )

=
∑
j∈Z

∥∥√αj,s,εBN,δ((u, v))(0, fj,s)
∥∥2
Ws = σ 2

N

∑
j∈Z

αj,s,ε

∥∥(0, hδ(u)fj,s

)∥∥2
Ws

= σ 2

N

⎡⎣∑
j∈Z

αj,s,ε

∥∥hδ(u)fj,s

∥∥2
Hs

⎤⎦ ≤ K2
B.1

σ 2

N

⎡⎣∑
j∈Z

αj,s,ε ‖hδ(u)‖2
Hs

⎤⎦
≤ C(δ)K2

B.1
σ 2

N
ε−(2s+1)

(
1 + ‖(u, v)‖2

Ws

)
, (38)

where we have used Lemma B.1, the sublinearity of hδ at infinity, the boundedness of h′
δ , and 

Lemma 3.2. This completes the proof. �
Proof of Lemma 3.4 for d > 1. In this proof, we need to analyse quantities associated with 
derivatives of the distinctive nonlinearity hδ(u), u ∈ Hd/2+η. For this purpose, we make heavy 
use of the contents of Appendix B (integrability properties of the Faà di Bruno representation of 
derivatives of hδ(u)) and Appendix A (factorisation of differences of two distinct instances of 
the same derivative).

We again focus on points (ii) and (iii) only.
Statement (ii). Take (u1, v1), (u2, v2) ∈ Ws , such that ‖(u1, v1)‖Ws ≤ k, ‖(u2, v2)‖Ws ≤ k. 

In order to bound

∥∥BN,δ((u1,v1)) − BN,δ((u2,v2))
∥∥2

L0
2(Ws )

we only need to bound

σ 2

N

∑
j∈Z

αj ,s,ε

∥∥(0, {hδ(u1) − hδ(u2)}fj ,s

)∥∥2
Hs×Hs .

Moreover, Lemma B.1 allows us to only focus on estimating ‖hδ(u1) −hδ(u2)‖2
Hs . We introduce 

the shorthand notations

Pπ,αu(x) :=
∏

j∈J (π)

∏
b∈B(π) : |b|=j

∂(j)u(x)∏
z∈b ∂x
z

, Pπu := Pπ,�d/2�u
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for every N � α ≤ �d/2� and π ∈ �α , and Pπ,0u(x) := 1. Due to the Faà di Bruno formula 
recalled in Lemma B.2 and the equivalence of the norms ‖ · ‖Hs and ‖ · ‖Ws,2 , the term ‖hδ(u1) −
hδ(u2)‖2

Hs can be controlled by providing a bound for

⎡⎣�d/2�∑
α=0

∥∥∥h(|πα |)
δ (u1)Pπα,αu1 − h

(|πα |)
δ (u2)Pπα,αu2

∥∥∥2

L2

⎤⎦
+

∫
T d

∫
T d

1

|x − y|d+(s−�s�)2
∣∣∣h(|π |)

δ (u1(x))Pπu1(x) − h
(|π |)
δ (u2(x))Pπu2(x)+

−
{
h

(|π |)
δ (u1(y))Pπu1(y) − h

(|π |)
δ (u2(y))Pπu2(y)

}∣∣∣2 dxdy := A1 + A2 (39)

for any choice πα ∈ �α , α ∈ {0, . . . , �d/2�}, and π ∈ ��d/2�.

Upon adding and subtracting terms of the type h(|πα|)
δ (u2)Pπα,αu1, for α ∈ {0, . . . , �d/2�}, the 

term A1 is bounded (up to a constant) by

�d/2�∑
α=0

∥∥∥{h
(|πα |)
δ (u1) − h

(|πα |)
δ (u2)

}
Pπα,αu2

∥∥∥2

L2
+

�d/2�∑
α=0

∥∥∥h(|πα |)
δ (u2)

{
Pπα,αu1 −Pπα,αu2

}∥∥∥2

L2

≤ C(d, δ)

⎡⎣K2
Hs→C0‖u1 − u2‖2

Hs

�d/2�∑
α=0

∥∥Pπα,αu2
∥∥2

L2 +
�d/2�∑
α=0

∥∥Pπα,αu1 −Pπα,αu2
∥∥2

L2

⎤⎦
(40)

≤ C(d, δ, k)K2
Hs→C0KB.3‖u1 − u2‖2

Hs + C(d, δ)

�d/2�∑
α=0

∥∥Pπα,αu1 −Pπα,αu2
∥∥2

L2, (41)

where we have used a Taylor expansion for (and boundedness of) derivatives of hδ and 
the Sobolev embedding Hs ⊂ C0 in (40), and Lemma B.3 in (41). We may now apply 
Lemma A.1–(i) to factorise Pπα,αu1 − Pπα,αu2 into a sum of terms, each of which can then 
be dealt with using Lemma B.3. We obtain

A1 ≤ (41) ≤ C(d, δ, k)K2
Hs→C0KB.3‖u1 − u2‖2

Hs . (42)

More generally, each application of Lemma A.1 below is, at least conceptually, identical to the 
one illustrated above. Namely, it is used to factorise a difference of objects into a sum of terms 
which in turn can be estimated using either Lemma B.3 or Lemma B.4.

Following simple algebraic rewritings, the term A2 can be bounded (up to a constant) by

∫
d

∫
d

∣∣∣h(|π |)
δ (u1(x)) − h

(|π |)
δ (u2(x)) − {h(|π |)

δ (u1(y)) − h
(|π |)
δ (u2(y))}

∣∣∣2 |Pπu1(x)|2
|x − y|d+(s−�s�)2 dxdy
T T

270



F. Cornalba, T. Shardlow and J. Zimmer Journal of Differential Equations 284 (2021) 253–283
+
∫
T d

∫
T d

∣∣∣h(|π |)
δ (u1(y)) − h

(|π |)
δ (u2(y))

∣∣∣2 |Pπu1(x) −Pπu1(y)|2
|x − y|d+(s−�s�)2 dxdy

+
∫
T d

∫
T d

∣∣∣h(|π |)
δ (u2(x))

∣∣∣2 |Pπu1(x) −Pπu2(x) − {Pπu1(y) −Pπu2(y)}|2
|x − y|d+(s−�s�)2 dxdy

+
∫
T d

∫
T d

∣∣∣h(|π |)
δ (u2(x)) − h

(|π |)
δ (u2(y))

∣∣∣2 |Pπu1(y) −Pπu2(y)|2
|x − y|d+(s−�s�)2 dxdy

=: T1 + · · · + T4. (43)

Term T1 is dealt with using (36) and (37) (with h(|π |)
δ replacing hδ), the embedding Hs ⊂ C0, 

and Lemma B.4–(i). Its bound reads

T1 ≤ C(δ)

∫
T d

∫
T d

|u1(x) − u2(x) − {u1(y) − u2(y)}|2 |Pπu1(x)|2
|x − y|d+(s−�s�)2 dxdy

+ C(δ)K2
Hs→C0‖u1 − u2‖2

Hs

∫
T d

∫
T d

|u1(x) − u1(y)|2 |Pπu1(x)|2
|x − y|d+(s−�s�)2 dxdy

+ C(δ)K2
Hs→C0‖u1 − u2‖2

Hs

∫
T d

∫
T d

|u2(x) − u2(y)|2 |Pπu1(x)|2
|x − y|d+(s−�s�)2 dxdy

≤ C(δ, k)K2
Hs→C0KB.4‖u1 − u2‖2

Hs .

The embedding Hs ⊂ C0 and Lemmas A.1–(i) and B.4–(ii) allow to bound T2 as

T2 ≤ C(δ)K2
Hs→C0‖u1 − u2‖2

Hs

∫
T d

∫
T d

|Pπu1(x) −Pπu1(y)|2
|x − y|d+(s−�s�)2 dxdy

≤ C(δ, k)K2
Hs→C0KB.4‖u1 − u2‖2

Hs .

Term T3 is dealt with by relying on the boundedness of h(|π |)
δ and using Lemmas A.1–(ii) 

and B.4–(ii), thus giving

T3 ≤ C(δ)

∫
T d

∫
T d

|Pπu1(x) −Pπu2(x) − {Pπu1(y) −Pπu2(y)}|2
|x − y|d+(s−�s�)2 dxdy

≤ C(δ, k)KB.4‖u1 − u2‖2
Hs .

Finally, term T4 is dealt with using a Taylor expansion on h(|π |)
δ , and Lemmas A.1–(i) and B.4–(i). 

Its bounds reads
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T4 ≤ C(δ)

∫
T d

∫
T d

|u2(x) − u2(y)|2 |Pπu1(y) −Pπu2(y)|2
|x − y|d+(s−�s�)2 dxdy

≤ C(δ, k)KB.4‖u1 − u2‖2
Hs .

Putting together the bounds obtained for (43) and (42) into (39), and using Lemma B.1 and 
Lemma 3.2–(ii), we deduce

∥∥BN,δ((u1,v1)) − BN,δ((u2,v2))
∥∥2

L0
2(Ws )

≤ K2
B.1C(δ, k, d,KHs→C0 ,KB.3,KB.4)σ

2N−1ε−(2s+d) ‖(u1,v1) − (u2,v2)‖2
Ws . (44)

Statement (iii). The proof is similar to that of Statement (ii). Take (u, v) ∈ Ws , such that 
‖(u, v)‖Ws ≤ k. We only need to bound⎡⎣�d/2�∑

α=0

∥∥∥h(|πα |)
δ (u)Pπα,αu

∥∥∥2

L2

⎤⎦

+
∫
T d

∫
T d

∣∣∣h(|π |)
δ (u(x))Pπu(x) − h

(|π |)
δ (u(y))Pπu(y)

∣∣∣2
|x − y|d+(s−�s�)2 dxdy := A3 + A4 (45)

for any choice πα ∈ �α , α ∈ {0, . . . , �d/2�}, and π ∈ ��d/2�. The term A3 is easily settled using 
the boundedness of derivatives of hδ and Lemma B.3. Furthermore, A4 is bounded (up to a 
constant) by

∫
T d

∫
T d

∣∣∣h(|π |)
δ (u(x)) − h

(|π |)
δ (u(y))

∣∣∣2 |Pπu(y)|2
|x − y|d+(s−�s�)2 dxdy

+
∫
T d

∫
T d

∣∣∣h(|π |)
δ (u(x))

∣∣∣2 |Pπu(x) −Pπu(y)|2
|x − y|d+(s−�s�)2 dxdy := T5 + T6. (46)

Term T5 is bounded using a Taylor expansion of h(π)
δ , and Lemma B.4–(i). Term T6 is bounded 

relying on the boundedness of h(|π |)
δ and using Lemmas A.1–(i) and B.4–(ii).

Putting the bounds obtained for (46) into (45) and using Lemmas B.1 and 3.2–(ii), we deduce

∥∥BN,δ((u,v))
∥∥2

L0
2(Ws )

= σ 2

N

∑
j∈Zd

αj ,s,ε

∥∥(0, hδ(u)fj ,s

)∥∥2
Ws

≤ C(d)K2
B.1

σ 2

N

∑
d

αj ,s,ε ‖hδ(u)‖2
Hs
j∈Z
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≤ K2
B.1C(δ, d,KB.3,KB.4)

σ 2

N

∑
j∈Zd

αj ,s,ε

(
1 + ‖(u,v)‖2(�d/2�+1)

Ws

)

≤ K2
B.1C(δ, s, d,KB.3,KB.4)

σ 2

N
ε−(2s+d)

(
1 + ‖(u,v)‖2(�d/2�+1)

Ws

)
.

(47)

The assumption ‖(u, v)‖Ws ≤ k gives the desired local boundedness property. The proof is com-
plete. �
4. Proof of Theorem 1.1

This is an adaptation of [8, Theorem 4.4], and we heavily rely on the tools developed in 
Section 3. The functional αU is locally Lipschitz and locally bounded in the Ws-norm. This is a 
consequence of the following simple bound for u ∈ Hs and 
 ∈ {1, . . . , d}

‖∂x

U ∗ u‖2

Hs =
∑

j∈Zd

̂(∂x

U ∗ u)j

̂(∂x

U ∗ u)j (1 + |j |2)s =

∑
j∈Zd

∣∣∣̂(∂x

U)j

∣∣∣2 ∣∣̂uj

∣∣2 (1 + |j |2)s

≤ C(‖U‖C1, d)
∑

j∈Zd

∣∣̂uj

∣∣2 (1 + |j |2)s = C(‖U‖C1 , d)‖u‖2
Hs .

These properties of αU , together with Lemmas 3.1 and 3.4, allow us to use [23, Theorem 4.5]
and deduce the existence and uniqueness of a local Ws-valued mild solution to (4) in the sense 
of [9, Chapter 7]. Specifically, there is a stopping time τ > 0 and a unique Ws -valued predictable 
process Xε,δ = (ρ̃ε,δ, j̃ ε,δ) defined on [0, τ ] such that P (

∫ τ

0 ‖Xε,δ(z)‖2
Ws dz < ∞) = 1, and sat-

isfying, for each t > 0

Xε,δ(t ∧ τ) = S(t ∧ τ)X0 +
t∧τ∫
0

S(t ∧ τ − s)αU (Xε,δ(s))ds

+
t∧τ∫
0

S(t ∧ τ − s)BN,δ(Xε,δ(s))dWε, P -a.s., (48)

where {S(t)}t≥0 is the C0-semigroup generated by A. Using [23, Theorem 4.5 and Remark 4.6], 
the continuous embedding Hs ⊂ C0, and the assumption minx∈T d ρ̃0(x) > δ, we deduce that 
there exists T = T (ρ̃0) and a unique deterministic Ws-valued mild solution Zδ = (ρZ, jZ) to 
the noise-free equivalent of (4) up to T , such that minx∈T d ,s∈[0,T ] ρZ(x, s) > δ. It is also obvious 
that there is k > 0 such that maxs∈[0,T ] ‖ρZ(·, s)‖Ws < k.

We compare Xε,δ and Zδ . As Xε,δ is a local mild solution, it is well-defined up to the first exit 
time from the Ws -ball of radius k. In particular, Xε,δ and Zδ are well-defined up to the stopping 
time

τδ,k := inf
{
t > 0 : ‖Xε,δ(t)‖Ws ≥ k

}
∧ inf

{
t > 0 : min

x∈T d
ρ̃ε,δ(x, t) ≤ δ

}
∧ T . (49)
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We consider the difference

Xε,δ(t ∧ τδ,k) − Z(t ∧ τδ,k) =
t∧τδ,k∫
0

S(t ∧ τδ,k − s)
[
αU(Xε,δ(s)) − αU(Z(s))

]
ds

+
t∧τδ,k∫
0

S(t ∧ τδ,k − s)BN,δ(Xε,δ(s))dWε. (50)

Let q > 2. For some C1 = C1 (U, k,T , q, η, d,KB.1), we have

E

[
sup

s∈[0,t]
∥∥Xε,δ(s ∧ τδ,k) − Z(s ∧ τδ,k)

∥∥q

Ws

]

≤ C1 E

⎡⎣ t∫
0

∥∥Xε,δ(u) − Z(u)
∥∥q

Ws 1[0,τδ,k](u)du

⎤⎦
+E

⎡⎣ sup
s∈[0,T ]

∥∥∥∥∥∥
s∫

0

S(s ∧ τδ,k − u)BN,δ(Xε,δ(u))1[0,τδ,k](u)dWε

∥∥∥∥∥∥
q

Ws

⎤⎦ . (51)

We use [9, Proposition 7.3] and Lemma 3.4-(iii), inequality (47), to provide the bound

(51) ≤ C1

t∫
0

E

[
sup

s∈[0,u]
∥∥Xε,δ(s ∧ τδ,k) − Z(s ∧ τδ,k)

∥∥q

Ws

]
du

+ C(σ, δ, T , q, η, d,KB.1,KB.3,KB.4)

×
(
N−1ε−(2s+d)

)q/2
E

⎡⎣ T∫
0

(
1 + ‖Xε,δ(u)‖(�d/2�+1)q

Ws

)
1[0,τδ,k](u)du

⎤⎦
≤ C1

t∫
0

E

[
sup

s∈[0,u]
∥∥Xε,δ(s ∧ τδ,k) − Z(s ∧ τδ,k)

∥∥q

Ws

]
du

+ C2

(
N−1ε−(2s+d)

)q/2
, (52)

for some C2 = C2(σ, δ, T , q, k, η, d, KB.1, KB.3, KB.4). Crucially, the last inequality is not af-
fected by the superlinear nature of the noise for d > 1, as Xε,δ lives on a bounded set of Ws up 
to τδ,k . Applying the Gronwall Lemma to (51)–(52) gives

E

[
sup

s∈[0,T ]
∥∥Xε,δ(s ∧ τδ,k) − Z(s ∧ τδ,k)

∥∥q

Ws

]
≤ C2

(
N−1ε−(2s+d)

)q/2
eT C1 . (53)
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The choice of θ for (5) given in the assumption and a Chebyshev-type argument imply that

lim
N→∞P

(
sup

s∈[0,T ]
∥∥Xε,δ(s ∧ τδ,k) − Z(s ∧ τδ,k)

∥∥
Ws ≥ β

)
= 1

for any β ∈ (0, 1). It is now a standard routine (see [8, Theorem 4.4]) to pick β small enough, N
big enough, and deduce the existence of a set Fν such that P (Fν) > 1 − ν, on which τδ,k ≡ T , 
on which ρ̃ε ≥ δ, and on which (4) is satisfied by Xε,δ the sense of mild solutions. Going back 
to (48), this implies

Xε,δ(t) = S(t)X0 +
t∫

0

S(t − s)αU (Xε,δ(s))ds +
t∫

0

S(t − s)BN,δ(Xε,δ(s))dWε

= S(t)X0 +
t∫

0

S(t − s)αU (Xε,δ(s))ds +
t∫

0

S(t − s)BN(Xε,δ(s))dWε on Fν,

and this concludes the proof.
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Appendix A. Factorisation of products

We recall the following simple factorisation for differences of products.

Lemma A.1. Let a, b, c, d ∈RN .

(i) We have

N∏
i=1

ai −
N∏

i=1

bi =
N∑

k=1

b<k(ak − bk)a>k, (54)

where we have used the shorthand notations b<k := ∏k−1
j=1 bj and a>k := ∏N

j=k+1 aj (with 
the usual convention of the product over an empty set being unitary).

(ii) For each k = 1, . . . , N , consider the families

{αk
j }N−1

j=1 := (b1, . . . , bk−1, ak+1, · · · , aN), {βk
j }N−1

j=1 := (d1, . . . , dk−1, ck+1, · · · , cN).
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We have

N∏
i=1

ai −
N∏

i=1

bi −
(

N∏
i=1

ci −
N∏

i=1

di

)
=

N∑
k=1

b<k(ak − bk − (ck − dk))a>k

+
N∑

k=1

N−1∑
j=1

(ck − dk)(β
k
<j (α

k
j − βk

j )αk
>j ). (55)

Proof. Point (i) is easily proven by induction. As for Point (ii), we use Point (i) twice and obtain

N∏
i=1

ai −
N∏

i=1

bi −
(

N∏
i=1

ci −
N∏

i=1

di

)

=
N∑

k=1

{b<k(ak − bk)a>k − d<k(ck − dk)c>k}

=
N∑

k=1

{b<k(ak − bk − (ck − dk))a>k + (ck − dk)(b<ka>k − d<kc>k)}

=
N∑

k=1

b<k(ak − bk − (ck − dk))a>k +
N∑

k=1

N−1∑
j=1

(ck − dk)(β
k
<j (α

k
j − βk

j )αk
>j ),

and the proof is complete. �
Appendix B. Technical lemmas on fractional Sobolev spaces

We recall a useful lemma about the multiplication of functions in fractional Sobolev spaces, 
which is a direct consequence of the Sobolev embedding [3, Section 2.1] and of [4, Lemma 5, 
inequality (25)].

Lemma B.1. Let u, v ∈ Hs , where s = d/2 + η, for some η > 0. Then uv ∈ Hs and there exists 
KB.1 = KB.1(d, η) such that

‖uv‖Hs ≤ KB.1‖u‖Hs ‖v‖Hs .

The following lemma is an adaptation of the classical multivariate Faà Di Bruno’s formula [6]
in the context of weak rather than classical derivatives. We derive it under some restrictive as-
sumptions, which are however satisfied by the nonlinearity hδ in our regularised Dean–Kawasaki 
noise (4).

Lemma B.2. Let α ∈ {1, . . . , �d/2�} and u ∈ Hd/2+η for sufficiently small η > 0. Pick hδ ∈
C�d/2�+1(R) with all derivatives up to order �d/2� being bounded, and let (x
1, . . . , x
α ) be an 
arbitrary element of {x1, . . . , xd}α . Then
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∂(α)

∂x
1 · · · ∂x
α

hδ(u(x)) =
∑

π∈�α

h
(|π |)
δ (u(x))

∏
j∈J (π)

∏
b∈B(π) : |b|=j

∂(|b|)u(x)∏
z∈b ∂x
z

, (56)

where we recall the notations J (π) := {j ∈ {1, . . . , α} : βj (π) > 0} and βj (π) := #{b ∈
B(π) : |b| = j}. In particular, 

∑
b∈B(π) |b| = α for every π ∈ �α .

Proof. We only need to show that (56) holds in the sense of weak derivatives. Fix a test function 
ϕ ∈ C∞(T d). Consider a standard sequence of mollifiers �n : T d → ∞, and set un := �n ∗ u. 
As un ∈ C∞(T d), we can apply the classical multivariate Faà Di Bruno’s formula [6] to hδ(un)

and perform integration by parts to obtain

∫
T d

∑
π∈�α

h
(|π |)
δ (un(x))

∏
j∈J (π)

∏
b∈B(π) : |b|=j

∂(|b|)un(x)∏
z∈b ∂x
z

ϕ(x)dx

= (−1)α
∫
T d

hδ(un(x))
∂(α)

∂x
1 · · · ∂x
α

ϕ(x)dx. (57)

All we need to do is pass to the limit in (57) to replace un with u. Since u is continuous on T d , 
we have un → u uniformly as n → ∞. Using the boundedness of h′

δ , it is immediate to pass in 
the limit in the right-hand side of (57). Now fix π ∈ �α . The embedding Hd/2+η−j ⊂ Ld/(j−η)

(see [3, Corollary 1.2]) implies that, for all blocks b ∈ B(π) with length j ,

∂(|b|)u∏
z∈b ∂x
z

∈ Ld/(j−η),

and, as a result,

∂(|b|)un∏
z∈b ∂x
z

= �n ∗ ∂(|b|)u∏
z∈b ∂x
z

−→ ∂(|b|)u∏
z∈b ∂x
z

in Ld/(j−η) as n → ∞.

We can then settle the convergence of the left-hand side of (57) using the boundedness of deriva-
tives of hδ and a multi-factor Hölder inequality (for any fixed π ∈ �α) on the |π | + 2 terms 
making up the product. Specifically, the exponents we use are qhδ = qϕ = ∞ (for the first and 
last term), qj := d/(j − η) for the each of the βj terms associated with the product over the set 
{b ∈ B(π) : |b| = j}, and q := d/(d − α + η

∑
j∈J βj ) for the remaining (identically unitary) 

term. �
The following two lemmas are concerned with integrability properties closed related to the 

product term appearing in the right-hand side of (56).

Lemma B.3. Fix 1 ≤ α ≤ �d/2�. Fix some partition π ∈ �α , and abbreviate βj (π) = βj and 
J (π) = J . Let {ub}b∈B(π) ∈ [Hd/2+η]|π | for some 0 < η < 1/2. Let (x
1, . . . , x
α ) be an arbitrary 
element of {x1, . . . , xd}α . Then
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∫
T d

⎧⎨⎩∏
j∈J

∏
b∈B(π) : |b|=j

∣∣∣∣∣ ∂(j)ub(x)∏
z∈b ∂x
z

∣∣∣∣∣
2
⎫⎬⎭dx ≤ KB.3

∏
j∈J

∏
b∈B(π) : |b|=j

‖ub‖2
Hd/2+η (58)

holds for some KB.3 = KB.3(π, d, η) > 0.

Proof. We use a multi-factor Hölder inequality on the |π | terms making up the product in the 
left-hand side of (58). The exponents we use are qj := d/(2(j − η)) for the each of the βj terms 
associated with the product over the set {b ∈ B(π) : |b| = j}, and q := d/(d −2α +2η

∑
j∈J βj )

for the remaining (identically unitary) term. We obtain

(58) ≤ C(α,π,d, η)
∏
j∈J

∏
b∈B(π) : |b|=j

⎧⎪⎨⎪⎩
∫
T d

∣∣∣∣∣∂(j)ub(x)/
∏
z∈b

∂x
z

∣∣∣∣∣
2qj

dx

⎫⎪⎬⎪⎭
1/qj

≤ KB.3

∏
j∈J

∏
b∈B(π) : |b|=j

‖ub‖2
Hd/2+η ,

where we have used the Sobolev embeddings Hd/2+η−j ⊂ L2qj (see [3, Corollary 1.2]) in the 
final inequality. �
Lemma B.4. Fix some π ∈ ��d/2�, and abbreviate βj (π) = βj and J (π) = J . Let {ub}b∈B(π) ∈
[Hd/2+η]|π |, v ∈ Hd/2+η where 0 < η < C(d) < 1/2 for some small enough C(d). Let 
(x
1, . . . , x
�d/2�) be an arbitrary element of {x1, . . . , xd}�d/2�, and let z be an arbitrary element 
of {x, y}|π |.

(i) The inequality

∫
T d

∫
T d

⎧⎨⎩∏
j∈J

∏
b∈B(π) : |b|=j

∣∣∣∣∣∂(j)ub(zb)∏
z∈b ∂x
z

∣∣∣∣∣
2
⎫⎬⎭ |v(x) − v(y)|2

|x − y|d+(d/2−�d/2�+η)2
dxdy

≤ KB.4

⎛⎝∏
j∈J

∏
b∈B(π) : |b|=j

‖ub‖2
Hd/2+η

⎞⎠‖v‖2
Hd/2+η (59)

holds for some positive KB.4 = KB.4(d, η).
(ii) Pick j̃ ∈ J and b̃ ∈ {b ∈ B(π) : |b| = j̃}. Then we have the inequality

∫
T d

∫
T d

⎧⎨⎩ ∏
j∈J\j̃

∏
b∈B(π) : |b|=j

∣∣∣∣∣∂(j)ub(zb)∏
z∈b ∂x
z

∣∣∣∣∣
2
⎫⎬⎭
⎧⎨⎩ ∏

b∈B(π) : |b|=j̃ ,b �=b̃

∣∣∣∣∣∂(j̃ )ub(zb)∏
z∈b ∂x
z

∣∣∣∣∣
2
⎫⎬⎭

×
∣∣∂(j̃ )u

b̃
(x)/

∏
z∈b̃

∂x
z − ∂(j̃ )u
b̃
(y)/

∏
z∈b̃

∂x
z

∣∣2
d+(d/2−�d/2�+η)2

dxdy
|x − y|
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≤ KB.4

⎛⎝∏
j∈J

∏
b∈B(π) : |b|=j

‖ub‖2
Hd/2+η

⎞⎠ . (60)

Proof. It is useful to remember 
∑

j∈J jβj = �d/2�.
Point (i). We rewrite (59) as

∫
T d

∫
T d

⎧⎨⎩∏
j∈J

∏
b∈B(π) : |b|=j

∣∣∂(j)ub(zb)/
∏

z∈b ∂x
z

∣∣2
|x − y|γαj β−1

j

⎫⎬⎭ |v(x) − v(y)|2
|x − y|d+2(d/2−�d/2�+η)−γ

dxdy, (61)

for some appropriate γ > 0 and {αj }j∈J such that

αj ∈ [0,1] ∀j ∈ J,
∑
j∈J

αj = 1 (62)

to be chosen later. We use a multi-factor Hölder inequality on the |π | + 1 terms making up (61). 
The exponents we use are qj := d/(2(j − η)) for the each of the βj terms associated with 
the product over the set {b ∈ B(π) : |b| = j}, and q := d/(d − 2�d/2� + 2η

∑
j∈J βj ) for the 

remaining term. We obtain

(61) ≤
∏
j∈J

∏
b∈B(π) : |b|=j

⎧⎪⎨⎪⎩
∫
T d

∫
T d

∣∣∂(j)ub(zb)/
∏

z∈b ∂x
z

∣∣2qj

|x − y|γαj β−1
j qj

dxdy

⎫⎪⎬⎪⎭
1/qj

×

⎧⎪⎨⎪⎩
∫
T d

∫
T d

|v(x) − v(y)|2q

|x − y|{d+2(d/2−�d/2�+η)−γ }q dxdy

⎫⎪⎬⎪⎭
1/q

=
∏
j∈J

∏
b∈B(π) : |b|=j

⎧⎪⎨⎪⎩
∫
T d

1

|y|γαj β−1
j qj

dy

⎫⎪⎬⎪⎭
1/qj

⎧⎪⎨⎪⎩
∫
T d

∣∣∣∣∣∂(j)ub(x)/
∏
z∈b

∂x
z

∣∣∣∣∣
2qj

dx

⎫⎪⎬⎪⎭
1/qj

×

⎧⎪⎨⎪⎩
∫
T d

∫
T d

|v(x) − v(y)|2q

|x − y|{d+2(d/2−�d/2�+η)−γ }q dxdy

⎫⎪⎬⎪⎭
1/q

:=
⎡⎣∏

j∈J

∏
b∈B(π) : |b|=j

C
1/qj

j D
1/qj

j,b

⎤⎦× E
1/q

.

We now impose conditions on η and γ so that Cj , Dj , and E are suitably bounded. The integrals 
Cj may be dealt with using a standard change of variables in spherical coordinates, and they are 
bounded if and only if −γ αjβ

−1qj + (d − 1) > −1, or equivalently if
j
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αj <
2βj (j − η)

γ
, ∀j ∈ J. (63)

The terms D
1/qj

j,b are bounded, as in the case of Lemma B.3, by using the Sobolev embedding 

Hd/2+η−j ⊂ L2qj [3, Corollary 1.2]. We now turn to E. We rewrite the exponent of |x − y|
according to the notation of the space Wr,2q , for some r to be determined. More precisely, the 
rewriting

{d + 2(d/2 − �d/2� + η) − γ }q = d + r(2q)

is solved in r , giving r = (d − γ )/2 + η(1 − ∑
j∈J βj ). The restriction r ∈ (0, 1) gives the 

condition

d − 2 + 2η(1 −
∑
j∈J

βj ) < γ < d + 2η(1 −
∑
j∈J

βj ). (64)

The term E may be bounded using the Sobolev embedding Wd/2+η,2 ⊂ Wr,2q , and this embed-
ding is true under the condition [2, Theorem 5.1]

d/2 + η − d/2 > r − d/(2q),

which is equivalent to

γ > 2�d/2� − 4η
∑
j∈J

βj . (65)

If we pick γ := 2�d/2� − 3η
∑

j∈J βj and η small enough, then (65) and (64) are satisfied. 
Furthermore, summing the right-hand side of (63) over j , we obtain

∑
j∈J

2βj (j − η)

2�d/2� − 3η
∑

j∈J βj

= 2�d/2� − 2η
∑

j∈J βj

2�d/2� − 3η
∑

j∈J βj

> 1. (66)

The above inequality implies that the αj ’s can be chosen so that (62) and (63) are satisfied. As a 
result of the bounds for Cj, Dj,b, E, the inequality (59) follows and Point (i) is settled.

Point (ii). The case 
∑

j∈J βj = 1 uniquely corresponds to having j̃ = �d/2� and βj̃ = 1. 
Therefore, the only term surviving in the product of integrands in the left-hand side of (60) is the 
last term, and the result is trivial.

We consider all the other cases, where necessarily 
∑

j∈J βj > 1. We rewrite (60) as

∫
T d

∫
T d

⎧⎨⎩ ∏
j∈J\j̃

∏
b∈B(π) : |b|=j

∣∣∂(j)ub(zb)/
∏

z∈b ∂x
z

∣∣2
|x − y|γαj β−1

j

⎫⎬⎭
×

⎧⎨⎩ ∏
˜

∣∣∂(j̃ )ub(zb)/
∏

z∈b ∂x
z

∣∣2
|x − y|γαj̃ (βj̃ −1)−1

⎫⎬⎭

b∈B(π) : |b|=j̃ ,b �=b
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×
∣∣∂(j̃ )u

b̃
(x)/

∏
z∈b̃

∂x
z − ∂(j̃ )u
b̃
(y)/

∏
z∈b̃

∂x
z

∣∣2
|x − y|d+(d/2−�d/2�+η)2−γ

dxdy, (67)

where the second curly brackets is understood to be equal to 1 should βj̃ = 1, for some appro-
priate γ > 0 and {αj }j∈J � such that

αj ∈ [0,1] ∀j ∈ J �,
∑
j∈J �

αj = 1 (68)

to be chosen later, where J � = J if βj̃ > 1, and J � = J \ j̃ otherwise. We use a multi-factor 
Hölder inequality on the |π | terms making up (67). The exponents we use are qj := d/(2(j −η))

for the each of the βj terms associated with the product over the set {b ∈ B(π) : |b| = j} for j ∈
J \ j̃ , then qj̃ := d/(2(j̃ − η)) for the each of the βj̃ − 1 terms associated with the product over 
the set {b ∈ B(π) : |b| = j̃ , b �= b̃}, and finally q := d/(d − 2�d/2� + 2η

∑
j∈J βj + 2(j̃ − η))

for the remaining term. We obtain

(67) ≤
∏

j∈J\j̃

∏
b∈B(π) : |b|=j

⎧⎪⎨⎪⎩
∫
T d

1

|y|γαj β−1
j qj

dy

⎫⎪⎬⎪⎭
1/qj

⎧⎪⎨⎪⎩
∫
T d

∣∣∣∣∣∂(j)ub(x)/
∏
z∈b

∂x
z

∣∣∣∣∣
2qj

dx

⎫⎪⎬⎪⎭
1/qj

×
∏

b∈B(π) : |b|=j̃ ,b �=b̃

⎧⎪⎨⎪⎩
∫
T d

1

|y|γαj̃ (βj̃ −1)−1qj̃

dy

⎫⎪⎬⎪⎭
1/qj̃

⎧⎪⎨⎪⎩
∫
T d

∣∣∣∣∣∂(j)ub(x)/
∏
z∈b

∂x
z

∣∣∣∣∣
2qj̃

dx

⎫⎪⎬⎪⎭
1/qj̃

×

⎧⎪⎨⎪⎩
∫
T d

∫
T d

∣∣∂(j̃ )u
b̃
(x)/

∏
z∈b̃

∂x
z − ∂(j̃ )u
b̃
(y)/

∏
z∈b̃

∂x
z

∣∣2q

|x − y|{d+2(d/2−�d/2�+η)−γ }q dxdy

⎫⎪⎬⎪⎭
1/q

:=
⎡⎣ ∏

j∈J\j̃

∏
b∈B(π) : |b|=j

C
1/qj

j D
1/qj

j,b

⎤⎦×
⎡⎣ ∏

b∈B(π) : |b|=j,b �=b̃

C
1/qj̃

j̃
D

1/qj̃

j̃ ,b

⎤⎦× E
1/q

.

Bounding the above involves similar discussions as per Point (i). More specifically, the bound-
edness of the spherical integrals (the Cj ’s above) is granted under the conditions

αj <
2βj (j − η)

γ
, ∀j ∈ J � \ j̃ , αj̃ <

2(βj̃ − 1)(j̃ − η)

γ
, (69)

with the last condition only imposed if j̃ ∈ J �. The bound for the terms D
1/qj

j,b is settled exactly 
as in Point (i). As for E, we solve the equation

{d + 2(d/2 − �d/2� + η) − γ }q = d + r(2q)

in the variable r , thus getting r := (d − γ )/2 + η(1 − ∑
j∈J βj ) − (j̃ − η). The constraint r ∈

(0, 1) results in the requirement
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d − 2 + 2η(1 −
∑
j∈J

βj ) − 2(j̃ − η) < γ < d + 2η(1 −
∑
j∈J

βj ) − 2(j̃ − η). (70)

We control E using the embedding Hd/2+η ⊂ Wj̃+r,2q , which is valid under the constraint

d/2 + η − d/2 > j̃ + r − d/(2q),

which is equivalent to

γ > 2�d/2� + 4η(1 −
∑
j∈J

βj ) − 2j̃ . (71)

If we take γ := 2�d/2� + 3η(1 − ∑
j∈J βj ) − 2j̃ and η small enough, then (70) and (71) are 

satisfied. Furthermore, summing all the right-hand sides in (69) gives

1βj̃ >1
2(βj̃ − 1)(j̃ − η)

2�d/2� + 3η(1 −∑
j∈J βj ) − 2j̃

+
∑

j∈J\j̃

2βj (j − η)

2�d/2� + 3η(1 −∑
j∈J βj ) − 2j̃

=
∑
j∈J

2βj (j − η)

2�d/2� + 3η(1 −∑
j∈J βj ) − 2j̃

− 2(j̃ − η)

2�d/2� + 3η(1 −∑
j∈J βj ) − 2j̃

= 2�d/2� + 2η(1 −∑
j∈J βj ) − 2j̃

2�d/2� + 3η(1 −∑
j∈J βj ) − 2j̃

> 1,

where the last inequality is valid because 
∑

j∈J βj > 1. Therefore the αj ’s can be chosen so 
that (68) and (69) are satisfied. As a result of the bounds for Cj , Dj,b, E, the inequality (60)
follows and Point (ii) is settled. �
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