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Abstract: Novel measures of symbol dominance (dC1 and dC2), symbol diversity (DC1 = N (1 − dC1)
and DC2 = N (1 − dC2)), and information entropy (HC1 = log2 DC1 and HC2 = log2 DC2) are derived
from Lorenz-consistent statistics that I had previously proposed to quantify dominance and diversity
in ecology. Here, dC1 refers to the average absolute difference between the relative abundances of
dominant and subordinate symbols, with its value being equivalent to the maximum vertical distance
from the Lorenz curve to the 45-degree line of equiprobability; dC2 refers to the average absolute
difference between all pairs of relative symbol abundances, with its value being equivalent to twice
the area between the Lorenz curve and the 45-degree line of equiprobability; N is the number of
different symbols or maximum expected diversity. These Lorenz-consistent statistics are compared
with statistics based on Shannon’s entropy and Rényi’s second-order entropy to show that the former
have better mathematical behavior than the latter. The use of dC1, DC1, and HC1 is particularly
recommended, as only changes in the allocation of relative abundance between dominant (pd > 1/N)
and subordinate (ps < 1/N) symbols are of real relevance for probability distributions to achieve the
reference distribution (pi = 1/N) or to deviate from it.

Keywords: symbol dominance; symbol diversity; information entropy; Lorenz curve; Camargo
statistics; Shannon’s entropy; Rényi’s entropy

1. Introduction

Following the early use of Shannon’s [1] entropy (HS) by some theoretical ecologists during
the 1950s [2–4], HS has been extensively used in community ecology to quantify species diversity.
Ecologists have considered the relative abundance or probability of the ith symbol in a message or
sequence of N different symbols whose meaning is irrelevant [1,5,6] as the relative abundance or
probability of the ith species in a community or assemblage of S different species whose phylogeny is
irrelevant (i.e., all species are considered taxonomically equally distinct) [4,7,8]. This use of HS implies
that the concept of species diversity is directly related to the concept of information entropy, basically
representing the amount of information or uncertainty in a probability distribution defined for a set of
N possible symbols [1] or a set of S possible species [4]. HS takes values from 0 to log2 N or log2 S and
is properly expressed in bits, but it can also be expressed in nats or dits (also called bans, decits, or
Hartleys) if the natural logarithm or the decimal logarithm is calculated [1,4–8].

In recent decades, several ecologists have, however, claimed that HS is a unsatisfactory diversity
index because species diversity actually takes values from 1 to S and is ideally expressed in units of
species (i.e., in the same units as S). Keeping this perspective in mind, and only considering the number
of different symbols as the number of different species and the relative abundances of symbols as the
relative abundances of species, Hill [9] proposed the exponential form of Shannon’s [1] entropy (HS)
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and the exponential form of Rényi’s [10] second-order entropy (HR) = the reciprocal of Simpson’s [11]
concentration statistic (λ) as better alternatives to quantify species diversity, thereby assuming that the
amount of information or uncertainty in a probability distribution defined for a set of S possible species
was mathematically equivalent to the logarithm of its related species diversity. Similarly, we can
assume that the amount of information or uncertainty (expressed in bits) in a probability distribution
defined for a set of N possible symbols is mathematically equivalent to the binary logarithm of its
related symbol diversity. Additionally, we can assume that symbol dominance characterizes the
extent of relative abundance inequality among different symbols, particularly between dominant
and subordinate symbols, and that symbol diversity equals the number of different symbols (N) or
maximum expected diversity in any given message with equiprobability.

On the basis of these working assumptions, I first use the Lorenz curve [12] as the key framework
to assess symbol dominance, symbol diversity, and information entropy. The contrast between symbol
dominance and symbol redundancy is also highlighted. Subsequently, novel measures of symbol
dominance (dC1 and dC2), symbol diversity (DC1 and DC2), and information entropy (HC1 and HC2)
are derived from Lorenz-consistent statistics that I had previously proposed to quantify dominance
and diversity in community ecology [13–17] and landscape ecology [18]. Finally, Lorenz-consistent
statistics (dC1, dC2, DC1, DC2, HC1, and HC2) are compared with HS-based and HR-based statistics (dS,
dR, DS, DR, HS, and HR) to show that the former have better mathematical behavior than the latter when
measuring symbol dominance, symbol diversity, and information entropy in hypothetical messages. In
this regard, I recently found that the corresponding versions of dC1, dC2, DC1, and DC2 exhibited better
mathematical behavior than the corresponding versions of dS, dR, DS, and DR when measuring land
cover dominance and diversity in hypothetical landscapes [18]. This better mathematical behavior was
inherent to the compatibility of dC1 and dC2 with the Lorenz-curve-based graphical representation of
land cover dominance [18].

The Lorenz curve [12] was introduced in the early twentieth century as a graphical method to
assess the inequality in the distribution of income among the individuals of a population. Subsequently,
this graphical method and Lorenz-consistent indices of income inequality, such as Gini’s [19,20] index
and Schutz’s [21] index, have become popular in the field of econometrics (see reviews in [22,23]). More
recently, owing to the increasing economic inequality during the present market globalization [24],
some authors have supported the use of Bonferroni’s [25] curve and Zenga’s [26] curve and related
indices to better assess poverty, as these inequality measures are oversensitive to lower levels of the
income distribution [27–29]. To me, however, the Lorenz curve represents the best and most logical
framework to define satisfactory indices of inequality (dominance) and associated measures of diversity
or entropy.

2. Materials and Methods

2.1. Assessing Symbol Dominance, Symbol Diversity, and Information Entropy within the Framework of the
Lorenz Curve

In econometrics, the Lorenz curve [12] is ideally depicted within a unit (1 × 1) square, in which
the cumulative proportion of income (the vertical y-axis) is related to the cumulative proportion of
individuals (the horizontal x-axis), ranked from the person with the lowest income to the person
with the highest income. The 45-degree (diagonal) line represents equidistribution or perfect income
equality. Income inequality may be quantified as the maximum vertical distance from the Lorenz curve
to the 45-degree line of equidistribution if only differences in income between the rich and the poor are
of interest (this measure being equivalent to the value of Schutz’s inequality index), or as twice the area
between the Lorenz curve and the 45-degree line of equidistribution if differences in income among all
of the individuals are of interest (this measure being equivalent to the value of Gini’s inequality index),
with both measures exhibiting the same value whenever income inequality occurs only between the
rich and the poor (see reviews in [22,23]; also see [18]). Therefore, in any given population with M
individuals, income inequality takes a minimum possible value of 0 when every person has the same
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income (= total income/M, including M = 1) and a maximum possible value of 1 − 1/M when a single
person has all the income and the remaining M − 1 people have none, as persons with no income can
exist in a population.

If we assume that symbol dominance characterizes the extent of relative abundance inequality
among different symbols, particularly between dominant and subordinate symbols, then the
Lorenz-curve-based graphical representation of symbol dominance is given by the separation of
the Lorenz curve from the 45-degree line of equiprobability, in which every symbol i has the same
relative abundance (pi = 1/N, with N = the number of different symbols). This separation may be
quantified as the maximum vertical distance from the Lorenz curve to the 45-degree line if only
differences in relative abundance between dominant and subordinate symbols are of interest, or as
twice the area between the Lorenz curve and the 45-degree line if differences in relative abundance
among all symbols are of interest, with both measures giving the same value whenever relative
abundance inequality occurs only between dominant and subordinate symbols.

In any given message with equiprobability the relative abundance of each different symbol equals
1/N, meaning a symbol may be objectively regarded as dominant if its probability (pd) > 1/N and as
subordinate if its probability (ps) < 1/N. I had already used an equivalent method to discriminate
between dominant and subordinate species [13–17] and between dominant and subordinate land cover
types [18]. Thus, symbol dominance takes a minimum possible value of 0 when every different symbol
has the same relative abundance (= 1/N, including N = 1), and approaches a maximum possible value
of 1 – 1/N when a single symbol has a relative abundance very close to 1 and the remaining N −1
symbols have minimum relative abundances (>0), as symbols with no abundance or zero probability
do not exist in a message.

In addition, if we assume that symbol diversity equals the number of different symbols or
maximum expected diversity (N) in any given message with equiprobability (symbol dominance =

0 because pi = 1/N), then symbol diversity in any given message with symbol dominance > 0 must
equal the maximum expected diversity minus the impact of symbol dominance on it; that is, symbol
diversity = N – (N × symbol dominance) = N (1 – symbol dominance). This Lorenz-consistent measure
of symbol diversity is a function of both the number of different symbols and the equal distribution of
their relative abundances (i.e., symbol diversity is a probabilistic concept free of semantic attributes),
taking values from 1 to N (maximum diversity if pi = 1/N) and being properly expressed in units of
symbols. Therefore, symbol diversity/N = 1 – symbol dominance (i.e., symbol dominance triggers the
inequality between symbol diversity and its maximum expected value).

It should also be evident that the reciprocal of symbol diversity refers to the concentration of
relative abundance in the same symbol, and consequently may be regarded as a Lorenz-consistent
measure of symbol redundancy = 1/(N (1 − symbol dominance)). This redundancy measure is
a function of both the fewness of different symbols and the unequal distribution of their relative
abundances, taking values from 1/N to 1 (maximum redundancy if N = 1). Thus, symbol dominance
(relative abundance inequality among different symbols) and symbol redundancy are distinct concepts,
although the value of the former affects the value of the latter.

Lastly, if we assume that information entropy is mathematically equivalent to the binary logarithm
of its related symbol diversity, then the resulting Lorenz-consistent measure of information entropy
= log2 (N (1 − symbol dominance)). This entropy measure takes values from 0 to log2 N (maximum
entropy if pi = 1/N) and is properly expressed in bits, quantifying the amount of information or
uncertainty in a probability distribution defined for a set of N possible symbols. Obviously, the degree
of uncertainty attains a minimum value of 0 as symbol redundancy reaches a maximum value of 1.

2.2. Deriving Measures of Symbol Dominance, Symbol Diversity, and Information Entropy from
Lorenz-Consistent Statistics

Following the theoretical approach of assessing symbol dominance, symbol diversity, and
information entropy within the framework of the Lorenz curve, novel measures of symbol dominance



Entropy 2020, 22, 542 4 of 11

(dC1 and dC2), symbol diversity (DC1 and DC2), and information entropy (HC1 and HC2) are derived
from Lorenz-consistent statistics, which I had previously proposed to quantify species dominance
and diversity [13–17] and land cover dominance and diversity [18]. In this derivation the number
of different species or land cover types is considered as the number of different symbols, and the
probabilities of species or land cover types are considered as the probabilities of symbols:

dC1 =
L∑

d=1

(pd– 1/N) = (
G∑

d,s=1

(pd–ps))/N, (1)

DC1 = N − (N × dC1) = N(1− dC1) = N −
∑

(pd − ps), (2)

HC1 = log2 DC1 = log2 (N −
∑

(pd − ps)), (3)

dC2 = (
K∑

i, j=1

(|pi − p j|)/N, (4)

DC2 = N − (N × dC2) = N(1− dC2) = N −
∑
|pi − p j|, (5)

HC2 = log2 DC2 = log2 (N −
∑

|pi − pj|), (6)

where N is the number of different symbols or maximum expected diversity, pd > 1/N is the relative
abundance of each dominant symbol, ps < 1/N is the relative abundance of each subordinate symbol,
pi and pj are the relative abundances of two different symbols in the same message, L is the number of
dominant symbols, G is the number of subtractions between the relative abundances of dominant and
subordinate symbols, and K = N (N − 1)/2 is the number of subtractions between all pairs of relative
symbol abundances.

The dominance statistic dC1 refers to the average absolute difference between the relative
abundances of dominant and subordinate symbols (Equation (1)), with its value being equivalent to the
maximum vertical distance from the Lorenz curve to the 45-degree line of equiprobability (see also [18]).
Accordingly, the value of DC1 equals the number of different symbols minus the impact of symbol
dominance (dC1) on the maximum expected diversity (Equation (2)). The binary logarithm of this
subtraction is the associated measure of information entropy (Equation (3)).

Likewise, the dominance statistic dC2 refers to the average absolute difference between all pairs of
relative symbol abundances (Equation (4)), with its value being equivalent to twice the area between
the Lorenz curve and the 45-degree line of equiprobability (see also [18]). Accordingly, the value of DC2

equals the number of different symbols minus the impact of symbol dominance (dC2) on the maximum
expected diversity (Equation (5)). The binary logarithm of this subtraction is the associated measure of
information entropy (Equation (6)).

Despite the above dissimilarities between Lorenz-consistent statistics of symbol dominance,
symbol diversity, and information entropy, dC1 = dC2 = 0, DC1 = DC2 = N, and HC1 = HC2 = log2

N if there is equiprobability (pi = 1/N, including N = 1); and dC1 = dC2 > 0, DC1 = DC2 < N,
and HC1 = HC2 < log2 N whenever relative abundance inequality occurs only between dominant and
subordinate symbols. In this regard, it is worth noting that dC1 is comparable to Schutz’s [21] index
of income inequality (also known as the Pietra ratio or Robin Hood index) and dC2 is comparable
to Gini’s [19,20] index of income inequality. In fact, Gini’s index and Schutz’s index take the same
value whenever income inequality occurs only between the rich and the poor (see reviews in [22,23];
also see [18]). However, there is a particular difference between the measurement of symbol dominance
(dC1 and dC2) and the measurement of income inequality (Schutz’s index and Gini’s index): income
inequality can reach a maximum value of 1 − 1/M when a single person has all the income and the
remaining M – 1 people have none (as individuals with no income are considered to measure income
inequality), but symbol dominance can only approach a maximum value of 1 – 1/N when a single
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symbol has a relative abundance very close to 1 and the remaining N – 1 symbols have minimum
relative abundances (as symbols with no abundance or zero probability cannot be considered to
measure symbol dominance).

Additionally, because the reciprocal of symbol diversity refers to the concentration of relative
abundance in the same symbol (as already explained in Section 2.1), two Lorenz-consistent statistics
of symbol redundancy are RC1 = 1/DC1 and RC2 = 1/DC2. RC1 and RC2 take values from 1/N to 1
(maximum redundancy if N = 1), and therefore their mathematical behavior can considerably differ
from the mathematical behavior of Gatlin’s [30] classical redundancy index (RG = 1 – HS/log2 N).
Indeed, since RG takes a maximum value of 1 if N = 1 and a minimum value of 0 if pi = 1/N [30],
RG should be regarded as a combination of redundancy and dominance (see also [15]).

2.3. Comparing Lorenz-Consistent Statistics with HS-Based and HR-Based Statistics

Lorenz-consistent statistics of symbol dominance (dC1 and dC2), symbol diversity (DC1 and DC2),
and information entropy (HC1 and HC2) are compared with statistics based on Shannon’s [1] entropy
(HS) and Rényi’s [10] second-order entropy (HR). More specifically, on the basis of Hill’s [9] proposals
for measuring diversity and Camargo’s [17] proposals for measuring dominance, the HS-based and
HR-based statistics are:

HS = −
N∑

i=1

pi log2 pi, (7)

DS = 2HS, (8)

dS = 1−DS/N, (9)

HR = log21/
N∑

i=1

pi
2, (10)

DR = 2HR, (11)

dR = 1−DR/N, (12)

where pi is the relative abundance or probability of the ith symbol in a message or sequence of N
different symbols.

Although dC1 = dC2 = dS = dR = 0, DC1 = DC2 = DS = DR = N, and HC1 = HC2 = HS = HR = log2 N
whenever there is equiprobability, differences in mathematical behavior between Lorenz-consistent
statistics and HS-based and HR-based statistics were examined by computing all these statistics for
the ten probability distributions (I–X) described as hypothetical messages in Table 1. As we can see,
the hypothetical message V is the primary or starting distribution, having two different symbols
with probabilities of 0.6 and 0.4. From distribution V to I, the probabilities of all different symbols
are successively halved by doubling their number, with the whole relative abundance of dominant
symbols that must be transferred to subordinate symbols to achieve equiprobability remaining steady
(= 0.1). From distribution V to X, only the probabilities of subordinate symbols are successively halved
by doubling their number, with the whole relative abundance of dominant symbols that must be
transferred to subordinate symbols to achieve equiprobability approaching the probability of the single
dominant symbol (= 0.6). Accordingly, the degree of dominance in each dominant symbol is given by
the positive deviation of its probability (pd) from the expected equiprobable value of 1/N, while the
degree of subordination in each subordinate symbol is given by the positive deviation of its probability
(ps) from 1/N. Thus, in each probability distribution or hypothetical message, symbol dominance =

symbol subordination = the average absolute difference between the relative abundances of dominant
and subordinate symbols (Equation (1)) = the whole relative abundance of dominant symbols that
must be transferred to subordinate symbols to achieve equiprobability (Ptransfer values in Table 1).
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Table 1. Ten probability distributions (I–X) are described as hypothetical messages: N = the number of
different symbols; p1–p33 = the relative abundances of symbols (symbol probabilities); Ptransfer = the
whole relative abundance of dominant symbols (pd > 1/N) that must be transferred to subordinate
symbols (ps < 1/N) to achieve equiprobability (pi = 1/N, including N = 1).

I II III IV V VI VII VIII IX X

N 32 16 8 4 2 3 5 9 17 33
p1 0.0375 0.075 0.15 0.3 0.6 0.6 0.6 0.6 0.6 0.6
p2 0.0375 0.075 0.15 0.3 0.4 0.2 0.1 0.05 0.025 0.0125
p3 0.0375 0.075 0.15 0.2 0.2 0.1 0.05 0.025 0.0125
p4 0.0375 0.075 0.15 0.2 0.1 0.05 0.025 0.0125
p5 0.0375 0.075 0.1 0.1 0.05 0.025 0.0125
p6 0.0375 0.075 0.1 0.05 0.025 0.0125
p7 0.0375 0.075 0.1 0.05 0.025 0.0125
p8 0.0375 0.075 0.1 0.05 0.025 0.0125
p9 0.0375 0.05 0.05 0.025 0.0125
p10 0.0375 0.05 0.025 0.0125
p11 0.0375 0.05 0.025 0.0125
p12 0.0375 0.05 0.025 0.0125
p13 0.0375 0.05 0.025 0.0125
p14 0.0375 0.05 0.025 0.0125
p15 0.0375 0.05 0.025 0.0125
p16 0.0375 0.05 0.025 0.0125
p17 0.025 0.025 0.0125
p18 0.025 0.0125
p19 0.025 0.0125
p20 0.025 0.0125
p21 0.025 0.0125
p22 0.025 0.0125
p23 0.025 0.0125
p24 0.025 0.0125
p25 0.025 0.0125
p26 0.025 0.0125
p27 0.025 0.0125
p28 0.025 0.0125
p29 0.025 0.0125
p30 0.025 0.0125
p31 0.025 0.0125
p32 0.025 0.0125
p33 0.0125

Ptransfer 0.1 0.1 0.1 0.1 0.1 0.267 0.4 0.489 0.541 0.57

In addition, disparities in mathematical behavior between Lorenz-consistent statistics and HS-based
and HR-based statistics were examined by computing all these statistics for the ten probability
distributions (XI–XX) described as hypothetical messages in Table 2, where differences in relative
abundance or probability occur not only between dominant and subordinate symbols (as in Table 1),
but also among dominant symbols and among subordinate symbols. However, because the Ptransfer
value equals 0.25 in all hypothetical messages, only changes in the allocation of relative abundance
between dominant and subordinate symbols (but not among dominant symbols or among subordinate
symbols) seem to be of real significance for probability distributions to achieve the reference distribution
(involving equiprobability) or to deviate from it. The reasons for this are evident: in the case of a
dominant symbol increasing its relative abundance at the expense of other dominant symbols (Table 2,
relative abundances p1–p5 in probability distributions XVI–XIX), the resulting proportional abundance
of all the dominant symbols is the same as before the transfer, since the increase in the probability
of a dominant symbol (becoming more dominant) is compensated by an equivalent decrease in the
probability of other dominant symbols (becoming less dominant); similarly, in the case of a subordinate



Entropy 2020, 22, 542 7 of 11

symbol increasing its relative abundance at the expense of other subordinate symbols (Table 2, relative
abundances p6–p10 in probability distributions XII–XV), the resulting proportional abundance of all
the subordinate symbols is the same as before the transfer, since the increase in the probability of a
subordinate symbol (becoming less subordinate) is compensated by an equivalent decrease in the
probability of other subordinate symbols (becoming more subordinate or rare).

Table 2. Ten probability distributions (XI–XX) are described as hypothetical messages: N = the number
of different symbols; p1–p10 = the relative abundances of symbols (symbol probabilities); Ptransfer = the
whole relative abundance of dominant symbols (pd > 1/N) that must be transferred to subordinate
symbols (ps < 1/N) to achieve equiprobability (pi = 1/N, including N = 1).

XI XII XIII XIV XV XVI XVII XVIII XIX XX

N 10 10 10 10 10 10 10 10 10 10
p1 0.15 0.15 0.15 0.15 0.15 0.19 0.19 0.19 0.19 0.19
p2 0.15 0.15 0.15 0.15 0.15 0.14 0.17 0.17 0.17 0.17
p3 0.15 0.15 0.15 0.15 0.15 0.14 0.13 0.15 0.15 0.15
p4 0.15 0.15 0.15 0.15 0.15 0.14 0.13 0.12 0.13 0.13
p5 0.15 0.15 0.15 0.15 0.15 0.14 0.13 0.12 0.11 0.11
p6 0.05 0.09 0.09 0.09 0.09 0.05 0.05 0.05 0.05 0.09
p7 0.05 0.04 0.07 0.07 0.07 0.05 0.05 0.05 0.05 0.07
p8 0.05 0.04 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.05
p9 0.05 0.04 0.03 0.02 0.03 0.05 0.05 0.05 0.05 0.03
p10 0.05 0.04 0.03 0.02 0.01 0.05 0.05 0.05 0.05 0.01

Ptransfer 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Probability distributions in Tables 1 and 2 were selected to better assess differences in mathematical
behavior between Lorenz-consistent statistics (Camargo’s indices) and HS-based and HR-based statistics.
Otherwise, when using probability distributions that were chosen at random, we could obtain results
that do not allow us to appreciate significant differences between the respective mathematical behaviors.

3. Results and Discussion

The Lorenz-curve-based graphical representation of symbol dominance (relative abundance
inequality among different symbols) is shown in Figure 1. Estimated values of symbol dominance are
0.1 (I–V, with five Lorenz curves perfectly superimposed), 0.267 (VI), 0.4 (VII), 0.489 (VIII), 0.541 (IX),
and 0.57 (X), with all these dominance values being equivalent to the respective Ptransfer values in
Table 1. Additionally, estimated values of symbol diversity are 28.8 (I), 14.4 (II), 7.2 (III), 3.6 (IV), 1.8 (V),
2.199 (VI), 3.0 (VII), 4.599 (VIII), 7.803 (IX), and 14.19 (X) symbols, and estimated values of information
entropy are 4.848 (I), 3.848 (II), 2.848 (III), 1.848 (IV), 0.848 (V), 1.137 (VI), 1.585 (VII), 2.202 (VIII),
2.964 (IX), and 3.827 (X) bits.

Differences in mathematical behavior between Lorenz-consistent statistics (dC1, dC2, DC1, DC2,
HC1, and HC2) and HS-based and HR-based statistics (dS, dR, DS, DR, HS, and HR) are shown in Table 3.
Because dC1, dC2, DC1, DC2, HC1, and HC2 are Lorenz-consistent, their estimated values match estimated
values of symbol dominance, symbol diversity, and information entropy concerning Figure 1. In fact,
estimated values of dC1 and dC2 are equivalent to the respective Ptransfer values in Table 1. By contrast,
estimated values of dS, dR, DS, DR, HS, and HR do not match estimated values of symbol dominance,
symbol diversity, and information entropy concerning Figure 1, while dS and dR exhibit values even
greater than the upper limit for symbol dominance (= 0.6). Consequently, DS and DR can underestimate
symbol diversity when differences in relative abundance between dominant and subordinate symbols
are large or can overestimate it when such differences are relatively small.
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Figure 1. The cumulative proportion of abundance is related to the cumulative proportion of symbols,
ranked from the symbol with the lowest relative abundance to the symbol with the highest relative
abundance, for the ten probability distributions (I–X) described as hypothetical messages in Table 1.
The reference distribution is depicted by the 45-degree line of equiprobability, where every symbol
has the same relative abundance = 1/N, symbol dominance = 0, and symbol diversity = the number of
different symbols (N). Symbol dominance may be estimated as the maximum vertical distance from the
Lorenz curve to the 45-degree line, or as twice the area between the Lorenz curve and the 45-degree
line, with both measures giving the same value whenever relative abundance inequality occurs only
between dominant and subordinate symbols (as shown in this figure). In addition, symbol diversity =

N (1 – symbol dominance), symbol redundancy = 1/symbol diversity, and information entropy = log2

symbol diversity.

Table 3. Measures of symbol dominance (dC1, dC2, dR, and dS), symbol diversity (DC1, DC2, DR, and DS),
and information entropy (HC1, HC2, HR, and HS) are computed for the ten probability distributions
(I–X) described as hypothetical messages in Table 1. Hmax = log2 N = maximum expected entropy;
HC1/Hmax, HC2/Hmax, HR/Hmax, and HS/Hmax = normalized entropies. All statistics are explained in
the text.

I II III IV V VI VII VIII IX X

dC1 0.100 0.100 0.100 0.100 0.100 0.267 0.400 0.489 0.541 0.570
DC1 28.800 14.400 7.200 3.600 1.800 2.199 3.000 4.599 7.803 14.190
HC1 4.848 3.848 2.848 1.848 0.848 1.137 1.585 2.202 2.964 3.827

HC1/Hmax 0.970 0.962 0.949 0.924 0.848 0.717 0.683 0.695 0.725 0.759
dC2 0.100 0.100 0.100 0.100 0.100 0.267 0.400 0.489 0.541 0.570
DC2 28.800 14.400 7.200 3.600 1.800 2.199 3.000 4.599 7.803 14.190
HC2 4.848 3.848 2.848 1.848 0.848 1.137 1.585 2.202 2.964 3.827

HC2/Hmax 0.970 0.962 0.949 0.924 0.848 0.717 0.683 0.695 0.725 0.759
dR 0.038 0.038 0.038 0.038 0.038 0.242 0.500 0.708 0.841 0.917
DR 30.768 15.384 7.692 3.846 1.923 2.273 2.500 2.632 2.703 2.740
HR 4.943 3.943 2.943 1.943 0.943 1.184 1.322 1.396 1.434 1.454

HR/Hmax 0.989 0.986 0.981 0.972 0.943 0.747 0.569 0.440 0.351 0.288
dS 0.020 0.020 0.020 0.020 0.020 0.138 0.317 0.500 0.650 0.762
DS 31.360 15.680 7.840 3.920 1.960 2.586 3.413 4.503 5.942 7.841
HS 4.971 3.971 2.971 1.971 0.971 1.371 1.771 2.171 2.571 2.971

HS/Hmax 0.994 0.993 0.990 0.985 0.971 0.865 0.763 0.685 0.629 0.589
Hmax 5.000 4.000 3.000 2.000 1.000 1.585 2.322 3.170 4.087 5.044
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The observed shortcomings in the measurement of symbol dominance (using dS and dR) and
symbol diversity (using DS and DR) seem to be a consequence of the mathematical behavior of the
associated entropy measures (HS and HR). As we can see in Table 3, from distribution V to I, where the
Ptransfer value remains relatively small = 0.1 (Table 1), inequalities between entropy measures result in
HS values > HR values > HC1 and HC2 values. On the contrary, from distribution VII to X, where the
Ptransfer approaches a higher value of 0.6 (Table 1), inequalities between entropy measures result in HC1

and HC2 values > HS values > HR values. In fact, whereas the normalized entropies of HC1 and HC2

increase from distribution VII to X, the normalized entropies of HS and HR decrease markedly.
This remarkable finding would indicate that HC1 and HC2 can quantify the amount of information

or uncertainty in a probability distribution more efficiently than HS and HR, particularly when
differences between higher and lower probabilities are maximized by increasing the number of small
probabilities (as shown in Table 3 regarding data in Table 1). After all, within the context of classical
information theory, the information content of a symbol is an increasing function of the reciprocal of its
probability [1,5,6,10] (also see [31,32]).

Other relevant disparities in mathematical behavior regarding measures of symbol dominance,
symbol diversity, and information entropy are shown in Table 4. The respective values of dC1, DC1,
and HC1 remain identical from distribution XI to XX, since dC1 is sensitive only to differences in relative
abundance between dominant and subordinate symbols. On the other hand, because dC2 is sensitive
to differences in relative abundance among all different symbols, the respective values of dC2, DC2,
and HC2 do not remain identical from distribution XI to XX, even though they are equal in XII and XVI,
in XIII and XVII, in XIV and XVIII, and in XV and XIX, as in each of these distribution pairs changes in
the allocation of relative abundance among dominant symbols and among subordinate symbols are
equivalent. A similar pattern of values is observed concerning dR, DR, and HR, but not regarding dS,
DS, and HS, whose respective values remain distinct from distribution XI to XX.

Table 4. Measures of symbol dominance (dC1, dC2, dR, and dS), symbol diversity (DC1, DC2, DR, and DS),
and information entropy (HC1, HC2, HR, and HS) are computed for the ten probability distributions
(XI–XX) described as hypothetical messages in Table 2. Hmax = log2 N = maximum expected entropy;
HC1/Hmax, HC2/Hmax, HR/Hmax, and HS/Hmax = normalized entropies. All statistics are explained in
the text.

XI XII XIII XIV XV XVI XVII XVIII XIX XX

dC1 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250
DC1 7.500 7.500 7.500 7.500 7.500 7.500 7.500 7.500 7.500 7.500
HC1 2.907 2.907 2.907 2.907 2.907 2.907 2.907 2.907 2.907 2.907

HC1/Hmax 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875
dC2 0.250 0.270 0.282 0.288 0.290 0.270 0.282 0.288 0.290 0.330
DC2 7.500 7.300 7.180 7.120 7.100 7.300 7.180 7.120 7.100 6.700
HC2 2.907 2.868 2.844 2.832 2.828 2.868 2.844 2.832 2.828 2.744

HC2/Hmax 0.875 0.863 0.856 0.852 0.851 0.863 0.856 0.852 0.851 0.826
dR 0.200 0.213 0.220 0.224 0.225 0.213 0.220 0.224 0.225 0.248
DR 8.000 7.870 7.800 7.760 7.750 7.870 7.800 7.760 7.750 7.520
HR 3.000 2.976 2.963 2.956 2.954 2.976 2.963 2.956 2.954 2.911

HR/Hmax 0.903 0.896 0.892 0.890 0.889 0.896 0.892 0.890 0.889 0.876
dS 0.122 0.137 0.149 0.157 0.161 0.128 0.131 0.133 0.134 0.173
DS 8.779 8.628 8.512 8.431 8.387 8.724 8.691 8.675 8.662 8.269
HS 3.134 3.109 3.089 3.076 3.068 3.125 3.120 3.117 3.115 3.048

HS/Hmax 0.943 0.936 0.930 0.926 0.924 0.941 0.939 0.938 0.937 0.918
Hmax 3.322 3.322 3.322 3.322 3.322 3.322 3.322 3.322 3.322 3.322

4. Concluding Remarks

This theoretical analysis has shown that the Lorenz curve is a proper framework for defining
satisfactory measures of symbol dominance, symbol diversity, and information entropy (Figure 1 and
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Tables 3 and 4). The value of symbol dominance equals the maximum vertical distance from the
Lorenz curve to the 45-degree line of equiprobability when only differences in relative abundance
between dominant and subordinate symbols are quantified which is equivalent to the average absolute
difference between the relative abundances of dominant and subordinate symbols = dC1 (Equation
(1)) or equals twice the area between the Lorenz curve and the 45-degree line of equiprobability when
differences in relative abundance among all symbols are quantified, which is equivalent to the average
absolute difference between all pairs of relative symbol abundances = dC2 (Equation (4)). Symbol
diversity = N (1 – symbol dominance) (i.e., DC1 = N (1 – dC1) and DC2 = N (1 – dC2)) and information
entropy = log2 symbol diversity (i.e., HC1 = log2 DC1 and HC2 = log2 DC2). Additionally, the reciprocal
of symbol diversity may be regarded as a satisfactory measure of symbol redundancy (i.e., RC1 = 1/DC1

and RC2 = 1/DC2).
This study has also shown that Lorenz-consistent statistics (dC1, dC2, DC1, DC2, HC1, and HC2)

have better mathematical behavior than HS-based and HR-based statistics (dS, dR, DS, DR, HS,
and HR), exhibiting greater coherence and objectivity when measuring symbol dominance, symbol
diversity, and information entropy (Tables 3 and 4). However, considering that the 45-degree line of
equiprobability (Figure 1) represents the reference distribution (pi = 1/N), and that only changes in the
allocation of relative abundance between dominant and subordinate symbols (but not among dominant
symbols or among subordinate symbols) seem to have true relevance for probability distributions to
achieve the reference distribution or to deviate from it (Table 2), the use of dC1, DC1, and HC1 may
be more practical and preferable than the use of dC2, DC2, and HC2 in measuring symbol dominance,
symbol diversity, and information entropy. In this regard, it should be evident that if the number of
different symbols (N) is fixed in any given message, increasing differences in relative abundance between
dominant and subordinate symbols necessarily imply decreases in symbol diversity and information
entropy, whereas decreasing differences in relative abundance between dominant and subordinate
symbols necessarily imply increases in symbol diversity and information entropy, with these two
variables taking a maximum if pi = 1/N. By contrast, increasing or decreasing differences in relative
abundance among dominant symbols or among subordinate symbols will not affect symbol diversity
and information entropy, since the decrease or increase in the information content of a dominant or
subordinate symbol is compensated by an equivalent increase or decrease in the information content
of other dominant or subordinate symbols.
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