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Abstract

The strong matching preclusion is a measure for the robustness of interconnection
networks in the presence of node and/or link failures. However, in the case of random
link and/or node failures, it is unlikely to find all the faults incident and/or adjacent
to the same vertex. This motivates Park et al. to introduce the conditional strong
matching preclusion of a graph. In this paper we consider the conditional strong
matching preclusion problem of the augmented cube AQn, which is a variation of the
hypercube Qn that possesses favorable properties.

1 Introduction

A matching in a graph G = (V,E) is a set M of pairwise nonadjacent edges. A perfect
matching M in G is a matching such that every vertex in G is incident to exactly one edge
in M . An almost-perfect matching M in G is a set of edges such that every vertex in G,
except one, is incident with exactly one edge in M , and the exceptional vertex is incident
to none. If G has a perfect matching, then G has an even number of vertices; if G has an
almost-perfect matching, then G has an odd number of vertices. We say that the graph G is
matchable if it has a perfect matching or an almost-perfect matching. Otherwise, it is called
unmatchable.

Parallel processing uses computers made up of many separate processor to overcome
the limitation of computers with a single processor. When parallel processing is used, one
processor may need output generated by another processor. Therefore, these processors must
be interconnected. The interconnection network of these processors is usually modeled by
graphs. Brigham et al. [3] introduced the concept of matching preclusion as a measure of
robustness in the event of link failure in interconnection networks. A matching preclusion
set of G is a set of edges whose deletion results in an unmatchable graph [3]. The matching
preclusion number of G, denoted by mp(G), is the minimum size of all possible matching
preclusion sets of G. Any such set is called an optimal matching preclusion set. If mp(G)
is large, the network will robust in the event of link failures. If G is unmatchable, then
mp(G) = 0.

Throughout this paper our graphs will always have an even number of vertices. A trivial
case of matching preclusion occurs when all edges in G incident to a single vertex are deleted.
This case occurs when all faulty edges are incident to a single vertex. In case of random
link failure, it is unlikely to have such situation. For this reason, Cheng et al.[6] introduced
the conditional matching preclusion which removes from consideration the case when the
matching preclusion set produces a graph with an isolated vertex after the edge deletion.
The conditional matching preclusion number, denoted mp1(G), is the minimum size of all
conditional matching preclusion sets of G.

Park and Ihm [16] introduced the concept of strong matching preclusion where the match-
ing preclusion set contains vertices and/or edges. This concept corresponds to the situation
when the failure of network occurs through nodes and communication lines. The strong
matching preclusion set of G is a set of vertices and/or edges whose deletion leads to an
unmatchable graph. The strong matching preclusion number of G, denoted smp(G), is the
minimum size of strong matching preclusion sets in G. Motivated by the same reason Cheng
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et al. introduced the conditional matching preclusion, Park and Ihm [17] introduced the con-
cept of conditional strong matching preclusion where the matching preclusion set contains
vertices and/or edges and no isolated vertices are produced after the deletion of vertices
and/or edges. The conditional strong matching preclusion of several graphs and intercon-
nection networks has been studied in [17, 1].

The hypercube was first proposed as an interconnection network in 1977 [18]. It is a
powerful network for parallel computation that nearly contains all arrays, binary trees, and
meshes of trees as subgraphs [12]. The augmented cube, introduced by S. Choudum and V.
Sunitha [9], is a variation of the hypercube that maintains all the favorable properties of the
hypercube. In addition, the augmented cube has a smaller diameter than the hypercube and
possesses embedding properties that the hypercube does not carry. The augmented cube has
been studied widely by researchers [8, 14, 5, 4, 10, 11, 13, 19, 20]. The conditional matching
preclusion and the strong matching preclusion of the augmented cube has been studied by
Cheng et al. [5, 8].

In this paper, we consider the conditional strong matching preclusion problem of the
augmented cube. In Section 2, we list some necessary properties about the conditional
strong matching preclusion and we define the augmented cube and then present some of its
structural properties. In Section 3, we prove our main result. In Section 4, we conclude the
paper.

2 Preliminaries

A trivial case of matching preclusion occurs when all edges in G incident to a single vertex
are deleted. If a trivial case is an optimal solution, then we call it trivial optimal matching
preclusion set. Let F be an optimal strong matching preclusion set of a graph G = (V,E),
and let F = F V ∪FE where F V consists of vertices in F and FE consists of edges in F . We
may assume that no element in FE is incident to an element of F V since F is optimal. In
fact, if f ∈ FE is incident to u ∈ F V , then G − F = G − (F − {f}). If F is an optimal
strong matching preclusion set of G and G − F has an isolated vertex, then F is a basic
optimal strong matching preclusion set. Based on this definition, it is possible to have a basic
optimal matching preclusion set F with G − F odd and without almost-perfect matchings.
We can further restrict this class by requiring that, in addition, G− F must be even. Then
F is called trivial optimal strong matching preclusion set.

The following proposition considers the relationship between basic strong matching preclu-
sion sets and trivial strong matching preclusion sets.

Proposition 2.1. [2] Let G be a r-regular even graph with r ≥ 2. Suppose that smp(G) = r.
Then every basic optimal strong matching preclusion set is trivial.

A conditional fault set F ⊆ V (G)∪E(G) is called conditional strong matching preclusion
set of G if G − F has neither a perfect matching nor an almost-perfect matching and no
isolated vertices. The minimum cardinality of all such sets is denoted by smp1(G), and
called the conditional strong matching preclusion number of G. If G is unmatchable, then
smp1(G) = 0. The following propositions follow directly from the fact that a matching
preclusion set is a special case of a strong matching preclusion set consisting of edges only.
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Proposition 2.2. [2] Let G be a graph with an even number of vertices. Then smp(G) ≤
mp(G) ≤ δ(G), where δ(G) is the minimum degree of G.

Proposition 2.3. [17] For every graph G for which all the four numbers, mp(G), mp1(G),
smp(G), and smp1(G) are well defined, smp(G) ≤ smp1(G) ≤ mp1(G) and smp(G) ≤
mp(G) ≤ mp1(G).

Under the condition of no isolated vertices allowed after the deletion, an easy way to
build a conditional strong matching preclusion set in G is to try a fault set F that leaves
after deletion a path (u, z, v) made of the three vertices u, z and v, where degG−F (u) =
degG−F (v) = 1. If G−F is even, then the resulting graph becomes unmatchable. Therefore
we can build a candidate conditional strong matching preclusion set as follows. Let NG(·)
represents the set of neighboring vertices in G. Given a path (u, z, v) in a graph G = (V,E),
build a fault set, denoted Fuzv, in such a way that

1. Fuzv contains every vertex w ∈ (NG(u) ∩NG(v))− {z},

2. Fuzv contains the edge uv if uv ∈ E(G),

3. for every vertex w ∈ NG(u)−NG(v), Fuzv contains exactly one of w and uw,

4. for every vertex w ∈ NG(v)−NG(u), Fuzv contains exactly one of w and vw.

The next fundamental proposition provides sufficient conditions to make Fuzv a condi-
tional strong matching preclusion set.

Proposition 2.4. [17] For an arbitrary path (u, z, v) in a graph G, Fuzv is a conditional
strong matching preclusion set of G if

1. there is no isolated vertex in G− Fuzv, and

2. G− Fuzv has an even number of vertices.

The conditional strong matching preclusion set described in Proposition 2.4 is called
trivial as it is one of the simplest ways of building a conditional strong matching preclusion
set. The following proposition provides an upper bound for smp1(G).

Proposition 2.5. [17] If there exists a trivial conditional strong matching preclusion set
Fuzv for some path (u, z, v) in a graph G, then smp1(G) ≤ degG(u) + degG(v)− 2− gG(u, v),
where gG(u, v) is |N(u) ∩N(v)| if (u, v) ∈ E(G) or |N(u) ∩N(v)| − 1 otherwise.

The augmented cube AQn, introduced in [9], is a variation of the hypercube and possesses
many superior properties. The n-dimensional augmented cube AQn is defined recursively
as follows. Let n ≥ 1, the graph AQn has 2n vertices, each labeled by n-bit binary string
u1u2 . . . un such that ui ∈ {0, 1} for all i. AQ1 is isomorphic to the complete graph K2

where one vertex is labeled by the digit 0 and the other by 1. For n ≥ 2, AQn is ob-
tained by taking two copies of AQn−1, denoted by AQ0

n−1 and AQ1
n−1, where V (AQ0

n−1) =
{0u1u2 . . . un−1;ui = 0 or 1} and V (AQ1

n−1) = {1u1u2 . . . un−1;ui = 0 or 1}, and adding
2 × 2n−1 edges between the two as follows: u = 0u1u2 . . . un−1 and v = 1v1v2 . . . vn−1 are
adjacent if and only if one of the following conditions holds:
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1. ui = vi for all i ≥ 1. In this case we call the edge uv a cross edge and say u = vx and
v = ux.

2. ui 6= vi for all i ≥ 1. In this case we call the edge uv a complement edge and say u = vc

and v = uc.

See Figure 1 for examples of AQn when n = 2, 3 and 4.

00 01

10 11
AQ2

000 001

010 011

100 101

110 111
AQ3

0000 0001

0010 0011
0100 0101

0110 0111

1000 1001

1010 1011
1100 1101

1110 1111

AQ4

Figure 1: Augmented cube AQn for n = 2, 3 and 4

Throughout this paper, we denote the set of cross edges in AQn by Xn and the set of
complement edges in AQn by Cn. It is easy to see that |Xn| = |Cn| = 2n−1, and the edges
in each of Xn and Cn are independent.

The augmented cubes family can be identified as a family of Cayley graphs. Let Γ be
a finite group, and let ∆ be a set of elements of Γ such that the identity of the group does
not belong to ∆. The Cayley graph Γ(∆) is the directed graph with vertex set Γ with an
arc directed from u to v if and only if there is an s ∈ ∆ such that u = vs. If whenever
u ∈ ∆, we also have its inverse u−1 ∈ ∆, then for every arc, the reverse arc is also in the
graph. So we can treat this Cayley graph as an undirected graph by replacing each pair of
arcs by an edge. We denote this simple undirected graph by G(Γ,∆). Let Zn

2 denotes the
cartesian product of the group (Z2,+), where the “+” denotes the sum modulo 2. In [9],
the authors showed that AQn

∼= G(Z2
n, S), where S = {e1 = 10 . . . 0, e2 = 010 . . . 0, . . . , en =

0 . . . 01, en+1 = 1 . . . 1, en+2 = 011 . . . 1, . . . , e2n−2 = 0 . . . 0111, e2n−1 = 0 . . . 011}.

3 Main Result

Theorem 3.1. [8] Let n ≥ 4. Then smp(AQn) = 2n−1. Moreover, every optimal matching
preclusion set is trivial.
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Lemma 3.2. [14] Let n ≥ 3. Edges of the form uui, where u = unun−1 . . . u1 and ui =
un . . . ui . . . u1, have four common neighbors.

Lemma 3.3. [14] Let n ≥ 3. Any two vertices in AQn have at most four common neighbors.

Lemma 3.4. Let u and v be two vertices in AQn, for n ≥ 4. If N(u) ∩ N(v) 6= ∅, then
|N(u) +N(v)| ≥ 2.

Proof. Let z ∈ N(u)∩N(v). Since AQn
∼= G(Z2

n, S), then z = u+ei = v+ej, where ei, ej ∈ S
for some i, j ∈ {1, . . . , 2n−1} and i 6= j. u+ei = v+ej implies u+ei+ei+ej = v+ej+ei+ej.
Since ei + ei = ej + ej = 0, then u + ej = v + ei. Therefore, the vertex z′ = u + ej = v + ei
is in N(u) ∩N(v) and z′ 6= z.

Lemma 3.5. smp1(AQ4) = 8.

Proof. By Theorem 3.1, smp(AQ4) = 7, then by Proposition [17] smp1(AQ4) ≥ 7. Since
every optimal strong matching preclusion set is trivial, then if |F | = 7 and AQ4 − F has
no isolated vertex, the graph AQ4 − F possesses a perfect or an almost-perfect matching.
Therefore smp1(AQn) ≥ 8. By Proposition 2.5 and Lemma 3.2, we can build a trivial
conditional strong matching preclusion set of size less than or equal to 7 + 7 − 2 − 4 = 8.
Thus smp1(AQ4) = 8.

Proposition 3.1. [8] Let n ≥ 3. Let u be a vertex of AQn. Then ux is adjacent to uc.
Moreover, there is a unique vertex v such that u and v are adjacent, vc = ux and vx = uc.
In other words, u, v, ux, uc form a complete graph on four vertices.

Lemma 3.6. Let {x1, x2, . . . , xk} ⊆ V (AQ0
n−1) and suppose that there is at most one faulty

edge f ∈ Xn∪Cn. Then there exists {y1, y2, . . . , yk} ⊆ V (AQ1
n−1) such that xiyi ∈ E(AQn−f)

for i = 1, . . . , k.

Proof. The result is satisfied as the sets Xn and Cn are two independent perfect matchings
in AQn.

Lemma 3.7. Let n ≥ 4. Let F0 ⊆ V (AQ0
n−1) ∪ E(AQ0

n−1) such that |F0| < 4n − 9.
If u, v ∈ V (AQ0

n−1 − F0) and u and v share a common neighbor z ∈ V (AQ1
n−1), then

uv ∈ E(AQ0
n−1−F0) or there exists a vertex w ∈ V (AQ0

n−1−F0) such that uw or vw are in
AQ0

n−1 − F0.

Proof. By Proposition 3.1, z = ux = vc or z = uc = vx. Without loss of generality,
assume that z = ux = vc and let t = uc = vx, then u, v, z and t induce the subgraph
K4. By Lemma 3.3, u and v can have at most four common neighbors, then u and v have
at most two common neighbors in AQ0

n−1. If uv ∈ E(AQ0
n−1 − F0), then we are done.

Suppose that uv /∈ E(AQ0
n−1 − F0), then uv ∈ F0. we claim that there exists a vertex

w ∈ V (AQ0
n−1 − F0) such that at least one of uw or vw is an edge in the subgraph induced

by AQ0
n−1 − F0. If not, then u and v are isolated in the subgraph induced by AQ0

n−1 − F0,
hence |F0| ≥ (2n− 3) + (2n− 3)− 3 = 4n− 9, but |F0| < 4n− 9.
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Before we give the proof of our main result, we would like to point out that given the
recursive nature of this class of networks, induction is the natural method of proof. The proof
considers cases based on the distribution of faults. One may feel that taking cases is not an
elegant method. However, all the papers that we are familiar with in this area essentially
use this method. One may point out that in [7, 15], results were given to show networks
having certain matching preclusion properties by applying sufficient conditions. However,
showing the networks satisfying such sufficient conditions typically involve induction with
case analysis. We further note that organizing the cases is not an easy task as they have
to be organized in such a way that the induction hypothesis and other conditions can apply
appropriately (neither too strong or too weak).

Theorem 3.8. Let n be a positive integer with n ≥ 4. Then smp1(AQn) = 4n− 8.

Proof. We use proof by mathematical induction. The basis step is satisfied by Lemma 3.5.
We assume that smp1(AQn−1) = 4n− 12, and we want to show that smp1(AQn) = 4n− 8.
By Proposition 2.5 and Lemma 3.4, we can build a trivial conditional matching preclusion
set of size 4n − 8, thus smp1(AQn) ≤ 4n − 8. To show that smp1(AQn) ≥ 4n − 8, we
let F ⊆ V (AQn) ∪ E(AQn), such that |F | ≤ 4n − 9 and AQn − F contains no isolated
vertex, and we prove that AQn − F contains a perfect or an almost-perfect matching. Let
F = FX∪FC∪F0∪F1 where F0 and F1 denote the fault sets in AQ0

n−1 and AQ1
n−1 respectively,

FX is the set of faulty cross edges and FC is the set of faulty complement edges. We may
assume that |F0| ≥ |F1|. We now divide the proof into cases depending on the distribution
of faults.

Case 1 |F0| = 4n − 9. Then all the faults are inside AQ0
n−1. We can assume that F0 con-

tains vertices, since if not the problem becomes the same as the conditional matching
preclusion problem of AQn discussed in [5]. Let A ⊆ F0, such that |A| = 4 and the
subgraph induced by the vertices of AQ0

n−1− (F0−A) has no isolated vertex. Such set
can always be found because there are at most two isolated vertices in the subgraph
induced by AQ0

n−1−F0, but these two vertices must be adjacent and/or share common
neighbors in AQ0

n−1 because the degree of each vertex in AQ0
n−1 is 2n − 3, and by

Lemma 3.4 these two vertices must share at least two vertices in AQ0
n−1, so in this

case F0 contains at least two vertices adjacent to these vertices. Let F V
0 be the set of

vertices in F0 and FE
0 be the set of edges in F0. We consider two cases depending on

the parity of |F V
0 |.

Case 1.1 |F V
0 | is even. Then F0 contains at least two vertices. We choose the set A

such that the subgraph induced by AQ0
n−1 − (F0 − A) contains even number of

vertices. It is possible to choose the set A such that A consists of two vertices and
two edges or exactly four vertices. In fact, by Lemma 3.4, if we have two isolated
vertices then they must share two faulty neighbors, and if we have at most one
isolated vertex then we include one of its faulty adjacent vertices or faulty incident
edges, thereafter we should be able to choose the other elements of A as needed.
Let F ′0 = F0 − A.

Case 1.1.1 Assume that A = {u, v, u1v1, u2v2}. By the induction hypothesis,
there exists a perfect matching M0 in AQ0

n−1 − F ′0. Let ux and vy be edges
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in M0 saturating u and v, and assume that the edges u1v1, u2v2 are in M0

as well. Note that this is the worst case scenario. We want to construct
a perfect or an almost-perfect matching in AQn − F that does not contain
edges from A and does not saturate vertices in A. By Lemma 3.6, we can
find u′1, u

′
2, v
′
1, v
′
2, x
′, y′ ∈ V (AQ1

n−1) adjacent to u1, u2, v1, v2, x, y respectively.
Let A′ = {u′1, u′2, v′1, v′2, x′, y′}. AQ1

n−1 − A′ has no isolated vertex since the
degree of every vertex in AQ1

n−1 is greater than 6, and |A′| = 6 ≤ 4n−13, for
n ≥ 5. By the induction hypothesis, there exists a perfect matching M1 in the
subgraph induced by AQ1

n−1−A′. Then the set (M0−{u1v1, u2v2, ux, vy})∪
M1 ∪ {u1u′1, v1v′1, u2u′2, v2v′2, xx′, yy′} is a perfect matching in AQn − F .

Case 1.1.2 Assume that A = {u, v, w, z}. By the induction hypothesis, there
exists a perfect matching M0 in AQ0

n−1 − F ′0. It is possible to have some
vertices of A adjacent through edges of M0. However, we will consider
the worst case scenario where u, v, w and z are saturated by M0 through
the edges uu0, vv0, ww0, and zz0. Since there are no faults outside AQ0

n−1,
then by Lemma 3.6 can find neighbors for the vertices u0, v0, w0 and z0 in
AQ1

n−1. Let u1, v1, w1, z1 ∈ V (AQ1
n) be the neighbors of u0, v0, w0 and z0

respectively. Let A′ = {u1, v1, w1, z1}, then by the induction hypothesis,
the subgraph induced by AQ1

n − A′ possesses a perfect matching M1. Let
M = (M0 − {uu0, vv0, ww0, zz0}) ∪M1 ∪ {u0u1, v0v1, w0w1, z0z1}, then M is
a perfect matching in AQn − F .

Case 1.2 |F V
0 | is odd. We want to choose the set A such that the subgraph induced

by AQ0
n−1 − (F0 − A) contains even number of vertices. A can consist of one

vertex and three edges or three vertices and one edge. Let F ′ = F0 − A, then
|F ′V | is even, AQ0

n−1 − F ′ has no isolated vertices, and |F ′| = 2n − 13. By the
induction hypothesis, there exists a perfect matching M0 in the subgraph induced
by AQn − F ′0.
Case 1.2.1 Assume that A = {u, v, w, xy}, then u, v, w, x and y are saturated

by M0. Let uu0, vv0, ww0, xx0, yy0 ∈M0. By Lemma 3.6, there exist vertices
u1, v1, w1, x1, y1 in AQ1

n−1 that are outside neighbors of u0, v0, w0, x0 and y0 re-
spectively. Let A′ = {u1, v1, w1, x1, y1}, the subgraph induced by AQ1

n−1−A′
has no isolated vertices and contains an odd number of vertices, then by the in-
duction hypothesis, there exists an almost-perfect matchingM1 in AQ1

n−1−A′.
Let M = (M0−{uu0, vv0, ww0, xx0, yy0})∪M1∪{u0u1, v0v1, w0w1, x0x1, y0y1},
then M is an almost-perfect matching in AQn − F .

Case 1.2.2 Assume that A = {u, vw, xy, zt}. Again, we assume the worst case
scenario where the edges vw, xy, and zt are in M0. Let uu0 be the edge in M0

that saturates u. By Lemma 3.6, there exist vertices u1, v1, w1, x1, y1, z1, t1 ∈
V (AQ1

n−1), such that u0u1, vv1, ww1, xx1, yy1, zz1, and tt1 are edges in AQn.
Let A′ = {u1, v1, w1, x1, y1, z1, t1}. Note that |A′| = 7, which is equal to the
degree of the subgraph induced by the vertices of AQ1

n. However, following
the proof of Lemma 3.6, the bipartite graph G constructed will have partitions
A and N(A) where |A| = 7 and |N(A)| ≥ 8, so we can always choose the
vertices of A′ such that the subgraph induced by AQ1

n−1−A′ has no isolated
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vertices. By the induction hypothesis, there exists an almost-perfect matching
M1 in AQ1

n−1 − A′. Then the set M = (M0 − {uu0, vw, xy, zt}) ∪ M1 ∪
{u0u1, vv1, ww1, xx1, yy1, zz1, tt1} is an almost-perfect matching in AQn − F .

Case 2 |F0| = 4n− 10. Then |F1 ∪FC ∪FX | ≤ 1. If |F1 ∪FC ∪FX | = 0, then the argument
in Case 1 applies.

Case 2.1 F1∪FC∪FX consists of an edge. We consider cases depending on the parity
of |F V

0 |.

Case 2.1.1 |F V
0 | is even. Since we are assuming that F contains at least one

vertex and |F0| is even so F0 contains at least two vertices.
If F0 contains edges, then let A ⊆ F0 such that A consists of two vertices
and one edge and AQ0

n−1 − (F0 − A) has no isolated vertices. Let A =
{u, v, xy}, then by the induction hypothesis there exists a perfect matching
M0 in AQ0

n−1−(F0−A). Let uu0, vv0, and xy be edges of M0. Note that we are
considering the worst case scenario where the edge xy is in M0 and the vertices
u and v are saturated by M0 through the edges uu0 and vv0 respectively. By
Lemma 3.6, there exist outside vertices u1, v1, x1 and y1 in AQn−F of u0, v0, x
and y respectively, such that u0u1, v0v1, xx1, yy1 are edges in AQn − F . Let
A′ = {u1, v1, x1, y1, f} where f is the faulty edge in F1 ∪ FC ∪ FX . By the
induction hypothesis, there exists a perfect matching M1 in AQ1

n−1−A′. Then
the set M = (M0 − {uu0, vv0, xy}) ∪M1 ∪ {u0u1, v0v1, xx1, yy1} is a perfect
matching in AQn − F .
If F0 does not contain edges, then we let A = {u, v, w}. By the induction
hypothesis, there exists an almost-perfect matching M0 in the subgraph in-
duced by AQ0

n−1 − (F0 − A). We consider the worst case scenario where
the unsaturated vertex by M0 is x 6∈ A. Let uu0, vv0 and ww0 be the
edges of M0 saturating u, v, and w respectively. By Lemma 3.6 there ex-
ist u1, v1, w1, x1 ∈ V (AQ1

n−1) such that u0u1, v0v1, w0w1, and xx1 are edges
in AQn − F . Let A′ = {u1, v1, w1, x1}, then by the induction hypothesis
there exists a perfect matching M1 in AQ1

n−1 − A′. Then the set M =
(M0 − {uu0, vv0, ww0}) ∪M1 ∪ {u0u1, v0v1, w0w1, xx1} is a perfect matching
in AQn − F .

Case 2.1.2 |F V
0 | is odd. Then |FE

0 | ≥ 1 and |F V
0 | ≥ 1, so we can choose A to be

a set of two vertices and one edge or two edges and one vertex.
Assume that A = {u, v, xy}. By the induction hypothesis, there exists an
almost-perfect matching M0 in AQ0

n−1 − (F − A). Consider the worst case
scenario where xy, uu0, vv0 ∈ M0 and u0 and v0 are vertices in the subgraph
induced by AQ0

n−1 − (F − A). By Lemma 3.6, there exist vertices u1, v1, x1
and y1 in AQ1

n−1 such that u0u1, v0v1, xx1, yy1 are edges in AQn − F . Let
A′ = {u1, v1, x1, y1}, then by the induction hypothesis, there exists a per-
fect matching M1 in the subgraph induced by AQ1

n−1 − A′. Then the set
M = (M0 − {uu0, vv0, xy}) ∪M1 ∪ {u0u1, v0v1, xx1, yy1} is an almost-perfect
matching in AQn − F .
Assume that A = {u, vw, xy}. By the induction hypothesis, there exists a
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perfect matching M0 in AQ0
n−1 − (F − A). Consider the worst case sce-

nario where xy, vw, uu0 ∈ M0 and u0 is a vertex in the subgraph induced
by AQ0

n−1 − (F − A). By Lemma 3.6, there exist vertices u1, v1, w1, x1 and
y1 in AQ1

n−1 such that u0u1, vv1, ww1, xx1, yy1 are edges in AQn − F . Let
A′ = {u1, v1, w1, x1, y1}, then by the induction hypothesis, there exists an
almost-perfect matching M1 in the subgraph induced by AQ1

n−1 − A′. Then
the set M = (M0 − {uu0, vw, xy}) ∪ M1 ∪ {u0u1, vv1, ww1, xx1, yy1} is an
almost-perfect matching in AQn − F .

Case 2.2 F1 ∪ FC ∪ FX consists of a vertex. Let z be this vertex, then z is in AQ1
n−1.

We want to choose the set A so that |A| = 3, and the subgraph induced by
AQ0

n−1 − (F − A) has no isolated vertices.

Case 2.2.1 |F V
0 | is even. F0 contains no vertices or at least two vertices, then

we choose A such that A contains two vertices and one edge, three edges or
three vertices.
Assume that A = {u, v, xy}. By the induction hypothesis, there exists a
perfect matching M0 in AQ0

n−1− (F −A). Suppose that xy, uu0, vv0 ∈M0. If
we can find outside neighbors for x, y, u0 and v0 in AQ1

n−1−{z}, then we find
the desired matching M as we did in the previous cases. Suppose that we
can not find such neighbors. This means that two of the four vertices x, y, u0
and v0 are adjacent to z. Without loss of generality, assume that u0 and v0
are these two vertices. By Lemma 3.2, u0 and v0 must be adjacent in AQ0

n−1.
If u0v0 6∈ F0, then we can add u0v0 to the matching we are looking for, if not
then by Lemma 3.7 there exists a vertex a in AQ0

n−1 − F that is adjacent to
u0 or v0. Suppose that u0 is adjacent to a and a is saturated by the matching
M0. Let ab ∈ M0, then b has outside neighbor b1 ∈ AQ1

n−1 − {z}. Let
x1, y1, v1 be the outside neighbors of x, y, and v respectively in AQ1

n−1−{z, b1},
and let A′ = {x1, y1, v1, b1, z}. By the induction hypothesis, there exists an
almost-perfect matching M1 in the subgraph induced by AQ1

n−1 − A′. Let
M ′

0 = (M0 − {ab}) ∪ {u0a}, then M = M ′
0 ∪ M1 ∪ {v0v1, xx1, yy1} is an

almost-perfect matching in AQn − F .
Assume that A = {ab, cd, ef}. By the induction hypothesis, there exists a
perfect matching M0 in AQ0

n−1 − (F − A). Suppose that ab, cd, ef ∈ M0,
note that this is the worst case scenario. Suppose that we can find ver-
tices a1, b1, c1, d1, e1, f1 in AQ1

n−1 − {z} such that aa1, bb1, cc1, dd1, ee1, ff1 ∈
E(AQn − F ). Let A′ = {a1, b1, c1, d1, e1, f1, z}, then by the induction hy-
pothesis, there exists an almost-perfect matching M1 in the subgraph in-
duced by AQ1

n−1 − A′. Let M ′
0 = M0 − {ab, cd, ef}, then M = M ′

0 ∪M1 ∪
{aa1, bb1, cc1, dd1, ee1, ff1} is an almost perfect matching in AQn − F . If we
can not find the vertices a1, b1, c1, d1, e1, f1 as defined above, then two of these
vertices will be adjacent to z, but in this case these two vertices must be ad-
jacent and if the edge connecting them is not in AQn−F , then by Lemma 3.7
we can find a vertex adjacent to one of them and we repeat the construction
done above.
Assume that A = {u, v, w}. By the induction hypothesis, there exists an
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almost-perfect matching M0 in AQ0
n−1 − (F − A). We consider the worst

case scenario where the unsaturated vertex is a vertex different than u, v and
w. Let s ∈ V (AQ0

n−1 − F ) be the unsaturated vertex by M0 and suppose
that uu0, vv0, ww0 ∈ M0. If we can find outside neighbors u1, v1 and w1 for
u0, v0 and w0 in AQ1

n−1 − {z}, then we can find the desired matching M as
we did in the previous cases. Suppose that we can not find such neighbors.
This means that two of the three vertices u0, v0 and w0 are adjacent to z.
Without loss of generality, assume that u0 and v0 are these two vertices. In
addition u0 and v0 are adjacent to another vertex t ∈ V (AQ1

n−1 − {z}). By
Lemma 3.2, u0 and v0 must be adjacent in AQ0

n−1. If u0v0 6∈ F0, then we can
add u0v0 to the matching we are looking for. If not then by Lemma 3.7 there
exists a vertex a in AQ0

n−1 − F that is adjacent to u0 or v0. Without loss of
generality, suppose that u0a ∈ E(AQ0

n−1 − F ). Assume that a 6= s, then a
is saturated by M0. Let ab ∈ M0, so b has outside neighbor b1 in AQ1

n−1 −
{z}. Let A′ = {z, t, w1, b1}, then by the induction hypothesis, there exists
a perfect matching M1 in AQ1

n−1 − A′. Let M ′
0 = M0 − {uu0, vv0, ww0, ab},

then M = M ′
0 ∪M1 ∪ {u0a, v0t, bb1, w0w1} is an almost-perfect matching in

AQn − F . Assume that a = s. Let A′′ = {z, t, w1}, then by the induction
hypothesis, there exists an almost-perfect matching M1 in AQ1

n−1 − A′′. Let
M ′

0 = M0 − {uu0, vv0, ww0}, then M = M ′
0 ∪ M1 ∪ {u0s, v0t, w0w1} is an

almost-perfect matching in AQn − F .

Case 2.2.2 |F V
0 | is odd. Note that F0 can not contain 4n− 10 edges nor 4n− 10

vertices, then we can choose A such that A contains a vertex and two edges
or two vertices and an edge.
Assume that A = {u, v, xy}. By the induction hypothesis, there exists an
almost-perfect matching M0 in AQ0

n−1−(F −A). Suppose that xy, uu0, vv0 ∈
M0. Let a0a1 ∈ E(AQn−F ) such that a0 ∈ V (AQ0

n−1), a1 ∈ V (AQ1
n−1) and a1

is not adjacent to any of u0, v0, x and y. Suppose that we can find u1, v1, x1 and
y1 in AQ1

n−1−{z, a1}, such that u0u1, v0v1, xx1 and yy1 are edges in AQn−F .
Let A′ = {u1, v1, x1, y1, a1, z}, then by the induction hypothesis, there exists
a perfect matching M1 in the subgraph induced by AQ1

n−1 − A′. The set
M = (M0 − {xy, uu0, vv0}) ∪ M1 ∪ {u0u1, v0v1, xx1, yy1, a0a1} is a perfect
matching in AQn−F . If we can not find u1, v1, x1 and y1 in AQ1

n−1−{z, a1}
as above, and since we chose a1 such that it is not adjacent to any of these
four vertices, then two of the four vertices, u0, v0, x, y, must be adjacent to z.
Without loss of generality, assume that u0 and v0 are adjacent to z. Then by
Lemma 3.7, u0v0 is an edge in AQ0

n−1−F0 and we can add it to the matching
we are looking to construct, or at least one of u0 and v0 is adjacent to some
vertex w in AQ0

n−1 − F0. Without loss of generality, suppose that u0w is an
edge in AQ0

n−1 − F0. The vertex w is saturated by M0, let ww0 ∈ M0 where
w0 ∈ V (AQ0

n−1 − F0). w0 has two outside neighbors, and at least one of
them, say w1, is different that z and a1. Let A′ = {w1, v1, x1, y1, a1, z}, then
by the induction hypothesis, then there exists a perfect matching M1 in the
subgraph induced by AQ1

n−1 − A′. Let M ′
0 = (M0 − {ww0}) ∪ {u0w}. Then
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the set M = M ′
0 ∪M1 ∪ {w0w1, v0v1, xx1, yy1, a0a1} is a perfect matching in

AQn − F .
Assume that A = {u, vw, xy}. By the induction hypothesis, there exists a
perfect matching M0 in AQ0

n−1 − (F − A). Consider the worst case sce-
nario where xy, vw, uu0 ∈ M0 and u0 is a vertex in the subgraph induced
by AQ0

n−1 − (F − A). Suppose that we can find u1, v1, w1, x1 and y1 in
AQ1

n−1 − {z}, such that u0u1, v0v1, w0w1, xx1 and yy1 are edges in AQn − F .
Let A′ = {u1, v1, w1x1, y1, z}. Then by the induction hypothesis, there ex-
ists a perfect matching M1 in the subgraph induced by AQ1

n−1 − A′. The
set M = (M0 − {xy, vw, uu0}) ∪M1 ∪ {u0u1, vv1, ww1, xx1, yy1} is a perfect
matching in AQn − F . If we can not find the vertices u1, v1, w1, x1 and y1
in AQ1

n−1 − {z} as described above, then two of the five vertices u0, v, w, x
and y are adjacent to z. Without loss of generality, suppose that v and x
are adjacent to z, then by Lemma 3.1 vx ∈ E(AQ0

n−1). If vx /∈ F , then
we can add it to the matching. Assume that vx ∈ F , then by Lemma 3.7,
there exists a vertex a ∈ V (AQ0

n−1 − F ) such that at least one of the ver-
tices, v and x, is adjacent to a. Without loss of generality, assume that va
is an edge in the subgraph induced by AQ0

n−1 − F . The vertex a is sat-
urated by M0. Suppose that ab ∈ M0, then b has two outside neighbors in
AQ1

n−1−{z}. Hence, we can find vertices u1, w1, x1, y1 and b1 in AQ1
n−1−{z},

such that u0u1, ww1, xx1, yy1, bb1 are independent edges in AQn − F . Let
A1 = {u1, w1, x1, y1, b1, z}, then by the induction hypothesis, there exists a
perfect matching M1 in the subgraph induced by AQ1

n−1 − A1. Then the set
M = (M0−{xy, vw, uu0, ab})∪{va, bb1, u0u1, ww1, xx1, yy1}∪M1 is a perfect
matching in AQn − F .

Case 3 |F0| = 4n− 11. Then |F1 ∪ FC ∪ FX | ≤ 2.

Case 3.1 |F V
0 | is even. We want to choose a set A ⊆ F0 such that the subgraph

induced by AQ0
n−1−(F0−A) has no isolated vertices and even number of vertices.

The choice of such set A is always possible since we can choose A to be a set of
two vertices or a set of two edges.

Case 3.1.1 If A = {u, v}, then by the induction hypothesis, there exists a perfect
matching M0 in AQ0

n−1− (F0−A) saturating u and v. Let uu0 and vv0 be in
M0. If there exist two vertices u1 and v1 in AQ1

n−1−F such that u0u1 and v0v1
are edges in AQn − F , then we let A′ = {u1, v1, f1, f2} where f1 and f2 are
the two faults outside F0. By the induction hypothesis, there exists a perfect
or an almost-perfect matching M1 in the subgraph induced by AQ1

n−1 − A′.
Then the set M = (M0 − {uu0, vv0}) ∪M1 ∪ {u0u1, v0v1} is a perfect or an
almost-perfect matching in AQn − F .
Assume that one of u0 and v0 is adjacent (incident) to two faulty vertices
(edges) outside AQ0

n−1. Without loss of generality, suppose that u0 is such
vertex. Since u0 can not be isolated in AQn − F , then u0 must have a
neighbor w in AQ0

n−1 − F . w is saturated by M0. Let ww0 ∈ M0, where
w0 ∈ V (AQn − F ). If f1 and f2 are two edges incident to u0, then w0 has
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two neighbors in AQ1
n−1 − F . Then we can find two edges w0w1 and v0v1 in

AQn−F , such that w1 and v1 are in AQ1
n−1−F . Now we choose the set A′ to

be A′ = {w1, v1, f1, f2}, and by the induction hypothesis there exists a perfect
or an almost-perfect matching M1 in the subgraph induced by AQ1

n−1 − A′.
Then the set M = (M0−{ww0, uu0, vv0})∪M1∪{u0w,w0w1, v0v1} is a perfect
or an almost-perfect matching in AQn − F .
We consider the last possibility where f1 and f2 are two vertices, and u0 and
v0 are both adjacent to f1 and f2. By Lemma 3.1, u0 and v0 are adjacent.
If u0v0 ∈ E(AQn − F ), then we add this edge to the matching. By the
induction hypothesis, we can find a perfect or an almost-perfect matching M1

in AQ1
n−1−F . Therefore, M = (M0−{uu0, vv0})∪M1∪{u0v0} is a perfect or

an almost-perfect matching in AQn−F . If u0v0 ∈ F , then we can claim that
u0 is adjacent to t and v0 is adjacent to z where z, t ∈ V (AQ0

n−1−F ). In fact,
if this is not true, then u0 and v0 are adjacent to exactly one vertex, then F0

contains at least 4n − 9 faults and this is not possible. The vertices z and t
are saturated by M0. Let zz0 and tt0 be in M0. The vertices z0 and t0 have
their outside neighbors in AQ1

n−1 − F . Let z1 and t1 be outside neighbors of
z0 and t0 respectively. Let A′ = {z1, t1, f1, f2} By the induction hypothesis,
there exists a perfect matching in the subgraph induced by AQn −A′. Then
M = (M0 − {uu0, vv0, zz0, tt0}) ∪M1 ∪ {z0z1, t0t1} is a perfect matching in
AQn − F .

Case 3.1.2 If A = {uv, xy}. In this case all the faults inside AQ0
n−1 are edges,

then we can always choose the edges uv and xy such that at least one endpoint
of each edge has two outside neighbors in AQ1

n−1 − F . Suppose that v and y
are the endpoints adjacent to v′ and y′ in AQ1

n−1−F and that vv′ and yy′ are
edges in AQn−F , then we can include the edges vv′ and yy′ in the matching
M to saturate the vertices v and y. The only problem we may have is when
we fail to find independent cross/complement edges in AQn−F incident to u
and x respectively. This occurs when both or one of them is incident to two
faulty cross/complement edges or adjacent to two faulty vertices in AQ1

n−1.
This situation is similar to what we had in Case 3.1.1. We can proceed as in
Case 3.1.1, but the set A′ we choose here will be of size 6 instead of 4, and
the induction hypothesis will be applied as well.

Case 3.2 |F V
0 | is odd. We can always choose the set A so that AQ0

n−1− (F0−A) has
no isolated vertices and A contains two vertices or a vertex and an edge.

Case 3.2.1 If A = {u, v}, then by the induction hypothesis, there exists an
almost-perfect matching M0 in AQ0

n−1 − (F0 − A). We consider the worst
case scenario where u and v are saturated by M0. Let uu0 and vv0 be in
M0, and let z ∈ V (AQ0

n−1 − (F0 − A)) be the unsaturated vertex by M0.
Assume that we can find u1, v1, z1 ∈ V (AQ1

n−1−F ) such that u0u1, v0v1, zz1 ∈
E(AQn − F ), and let A′ = {f1, f2, u1, z1, v1} where f1 and f2 are the faults
outside AQ0

n−1. By the induction hypothesis, there exists a perfect or an
almost-perfect matching M1 in the subgraph induced by AQ1

n−1−A′. The set
M = (M0−{uu0, vv0})∪M1∪{u0u1, v0v1, zz1} is a perfect or an almost-perfect
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matching in AQn − F . Assume that we can not find the vertices u1, v1, z1
as described above, then either one or two of the vertices from {u0, v0, z} is
adjacent (or incident) to two faulty vertices (or faulty edges). This situation
is similar to the one we had in Case 3.1.1. Using a similar construction we
can find the perfect or the almost-perfect matching we are trying to find.

Case 3.2.2 If A = {u, xy}, then by the induction hypothesis, there exists a
perfect matching M0. We consider the worst case scenario where xy ∈ M0.
Let M ′

0 = {xy, uu0}, so M ′
0 is a matching in AQ0

n−1−F missing three vertices.
This situation is similar to the previous case when M0 was missing three
vertices, namely u0, v0, w. Hence we can proceed as in Case 3.1.1 to find a
perfect or an almost-perfect matching in AQn − F .

Case 4 |F0| = 4n− 12. Then |F1 ∪ FC ∪ FX | ≤ 3. We consider two cases depending on the
parity of |F V

0 |.

Case 4.1 Assume |F V
0 | is even. Let A ⊆ F such that |A| = 1. We can always choose

A so that AQ0
n−1− (F −A) has no isolated vertices. In fact, if we have an isolated

vertex, then we choose A to be a vertex (edge) adjacent (incident) to that vertex,
and if we have two isolated vertices, then they should share at least one vertex
and/or adjacent, so we can choose A to be the edge connecting them or a common
neighbor for both vertices. We consider two cases depending on whether A is a
set containing a vertex or an edge.

Case 4.1.1 If A = {u}, then by the induction hypothesis, there exists an almost-
perfect matching M0 in AQ0

n−1 − (F − A). Assume the worst case scenario,
which is the case when u is saturated by M0. Let uu0 ∈ M0 and let z be
the vertex in AQ0

n−1 − (F − A) missed by M0. Suppose that we can find
vertices u1 and z1, outside neighbors of u0 and z respectively, in AQ1

n−1 − F .
By The induction hypothesis, there exists a perfect or an almost perfect-
matching M1 in the subgraph induced by AQ1

n−1 − (F ∪ {u1, z1}). The set
M = (M0−{uu0})∪M1∪{u0u1, zz1} is a perfect or an almost-perfect matching
in AQn−F . If we can not find such u1 and z1, then either one of the vertices
u0 or z is adjacent to two faulty vertices in AQ1

n−1, or one of them is incident
to two faulty edges in FC ∪ FX , or both vertices are adjacent to two faulty
vertices in AQ1

n−1.

Case 4.1.1(a) Suppose that one of the vertices u0 and z, say u0, is adjacent
to two faulty vertices or incident to two faulty edges. Then u0 must be
adjacent to some vertex in AQ0

n−1−F . If z is such vertex then we include
the edge u0z in the matching we are looking to find. If z is not adjacent to
u0, then u0 is adjacent to some vertex u′0 that is saturated by M0. Let tu′0
be the edge of M0 saturating u′0. If we can find an outside neighbor for t
in AQ1

n−1− (F ∪{z1}) where z1 is an outside neighbor of z in AQ1
n−1−F ,

then we can proceed as above. If this is not the case, then t is either
adjacent to the two vertices in AQ1

n−1 that u0 is adjacent to, or t and z
share their two outside neighbors in AQ1

n−1 and one of them is a vertex
in F1.
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� If t and u0 are both adjacent to two faulty vertices in AQ1
n−1, then by

Lemma 3.1 u0 and t are adjacent in AQn. If the edge u0t is not in F ,
then we can add this edge to the matching and proceed as above. If not,
then we claim that the vertices u0 and t must be adjacent to at least
three vertices in AQ0

n−1−F . In fact, by Lemma 3.3 u0 and t can have at
most four common neighbors in AQn, two of them are in AQ1

n−1, then
they have at most two common neighbors in AQ0

n−1, and if u0 and t are
adjacent to less than three vertices in AQ0

n−1−F , then |F0|must contain
at least 2(2n−6)+1 = 4n−11 elements which is not possible. Therefore,
there are two vertices a and b adjacent to u0 and/or t other than u′0. Let
aa′ and bb′ be the edges of M0 saturating a and b. At least one of the
vertices a′ and b′ has two outside neighbors in AQ1

n−1 − F . Without
loss of generality, we can assume that a′ has two outside neighbors
in AQ1

n−1 − F . Let a1 be one of these neighbors. By the induction
hypothesis, there exists a perfect or an almost-perfect matching M1 in
the subgraph induced by AQ1

n−1− (F1∪{a1, z1}). If u0a ∈ E(AQ0
n−1−

F ), then the setM = (M0−{uu0, aa′})∪M1∪{u0a, a′a1, zz1} is a perfect
or an almost-perfect matching in AQn−F . If ta ∈ E(AQ0

n−1−F ), then
set M = (M0 − {uu0, aa′, tu′0}) ∪M1 ∪ {ta, u0u′0, a′a1, zz1} is a perfect
or an almost-perfect matching in AQn − F .

� If t and z are both adjacent to a faulty vertex in AQ1
n−1, then by

Lemma 3.1 z and t are adjacent in AQn. If zt 6∈ F0, then M ′
0 =

(M0 − {uu0}) ∪ {uu′0, zt} is a perfect matching in AQ0
n−1 − F . By the

induction hypotheses, there exists a perfect or an almost-perfect match-
ing M1 in AQ1

n−1 − F , then M ′
0 ∪M1 is a perfect or an almost perfect

matching in AQn − F . If tz ∈ F0. As we did above, we can find three
vertices in AQ0

n−1 − F that are adjacent to t or z. If not, then t and z
will be adjacent/incident to at least (2n− 6) + (2n− 7) + 3 = 4n− 10
faults in AQ0

n−1 and this is not possible because |F0| = 4n− 12. So we
can proceed as above to find the desired matching.

Case 4.1.1(b) Suppose that the two vertices u0 and z have two common
outside neighbors in F1. Since there is no isolated vertex in AQn − F ,
then z has neighbors in AQ0

n−1 − F . If u0z ∈ E(AQn − F ), then M ′
0 =

(M0−{uu0})∪ {u0z} is a perfect matching in AQ0
n−1. By The induction

there is a perfect or an almost-perfect matching in AQ1
n−1−F . Therefore

M ′
0 ∪ M1 is a perfect or an almost-perfect matching in AQn − F . If

zu0 ∈ F0, then we can claim, as we did previously, that z and/or u0 are
adjacent to at least three vertices in AQ0

n−1 − F . Note that since there
is no isolated vertex in AQn − F , then each u0 and z has a neighbor in
AQ0

n−1 − F , and in this case there must be an additional neighbor for
u0 and z, or else the size of F0 will be 4n − 11. In case u0 and z share
a common non-faulty neighbor, then we can find at least two additional
neighbors for u0 and z, or else the size of F0 will be 4n − 10. Then we
can proceed as in the previous case to find the desired matching.
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Case 4.1.2 If A = {xy}, then by the induction hypothesis, there exists a perfect
matching M0 in AQ0

n−1 − (F −A). Assume the worst case scenario, which is
the case where xy ∈M0. We should note that the only case we are forced to
choose A to be an edge is when all faults in AQ0

n−1 are edges or when there is
one vertex incident to (2n−3) faulty edges in AQ0

n−1. In either cases, we can
always find an edge xy such that at least one endpoint has no faulty outside
neighbors. Let y be this endpoint.
If x is incident to a cross or a complement edge in AQn − F , then there
is a vertex x1 ∈ AQ1

n−1 − F1 such that xx1 ∈ E(AQn − F ). Let y1 be an
outside neighbor of y such that x1 6= y1. By the induction hypothesis, there
exists a perfect or an almost-perfect matching M1 in the subgraph induced
by AQ1

n−1− (F1 ∪ {x1, y1}). Then the set (M0−{xy})∪M1 ∪ {xx1, yy1} is a
perfect or an almost-perfect matching in AQn − F .
If x is incident and/or adjacent to two faults outside AQ0

n−1, then x must
be adjacent to some vertex a ∈ AQ0

n−1 − F . The vertex a is saturated by
M0 through an edge ab. If b has an outside neighbor b1 in AQ1

n−1 − F ,
then by the induction hypothesis, there exists a perfect or an almost-perfect
matching M1 in the subgraph induced by AQ1

n−1 − (F1 ∪ {b1, y1}). The set
(M0 − {xy}) ∪M1 ∪ {xa, bb1, yy1} is a perfect or an almost-perfect matching
in AQn − F . If we can not find such vertex b1, then b and x are both
adjacent to two faulty vertices in F1. By Lemma 3.1, bx is an edge of AQ1

n−1.
Assume that bx 6∈ F , the vertex a has at least one outside neighbor a1 in
AQ1

n−1−F such that aa1 ∈ E(AQn−F ). By the induction hypothesis, there
exists a perfect or an almost-perfect matching M1 in the subgraph induced by
AQ1

n−1−(F1∪{a1, y1}). The set (M0−{xy})∪M1∪{xb, aa1, yy1} is a perfect
or an almost-perfect matching in AQn−F . Finally, assume that bx ∈ F , then
we claim that b and/or x have at least three neighbors (including a) in AQ0

n−1.
This is very similar to Case 4.1.1; we follow the same construction to find the
matching in AQn − F .

Case 4.2 Assume |F V
0 | is odd.

Case 4.2.1 If A = {u}, then by the induction hypothesis, there exists a perfect
matching M0 in AQ0

n−1− (F −A), then u is saturated by M0. Let uu0 ∈M0.
The vertex u0 has a neighbor a ∈ V (AQ0

n−1 − F ) which is also saturated by
M0 through the edge ab. From here, we can proceed with the construction
of the Matching as we did in Case 4.1, by considering cases depending on
whether b is incident to complement/cross edges in E(AQn − F ).

Case 4.2.2 If A = {xy}, then by the induction hypothesis, there exists an
almost-perfect matching M0 in AQ0

n−1 − (F − A). Assume the worst case
scenario, which is the case when xy is in M0. Let z ∈ V (AQ0

n−1 − F ) be
the missing vertex by M0. If we can find outside neighbors x1, y1 and z1 in
AQ1

n−1 − F for x, y and z, then by the induction hypothesis we can find a
perfect or almost-perfect matching M1 in AQ1

n−1− (F1 ∪{x1, y1, z1}). Hence,
M = (M0 − {uu0}) ∪ M1 ∪ {xx1, yy1, zz1}. If we can not find such ver-
tices, then two of the vertices x, y and z have two common neighbors in F1.
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Since we can always choose the edge xy such that one endpoint, say y, is
incident to two non-faulty cross and complement edges in AQn − F , then
we can assume that x and z are both adjacent to faulty vertices in AQ1

n−1.
By Lemma 3.1, xz ∈ E(AQn). If xz 6∈ F , then as we did in Case 4.1,
we can find at least three vertices a, b and c that are adjacent to x or z in
AQ0

n−1 − F . Note that at least one of them is adjacent to x and one is ad-
jacent to y. These vertices a, b, and c are saturated by M0. Let aa0, bb0, cc0,
be the edges saturating a, b and c respectively. It is possible that two of the
vertices a and b are adjacent and the edge ab ∈ M0, but this will not af-
fect the proof. We can choose two vertices from {a, b, c}, say a and b, such
that xa, zb ∈ E(AQ0

n−1 − F ) and a0 and b0 have outside neighbors a1 and
b1, respectively, in AQ1

n−1 − F . Let y1 be one of the outside neighbors of
y. By the induction hypothesis, there exists a perfect or an almost-perfect
matching M1 in the subgraph induced by AQ1

n−1 − (F1 ∪ {a1, b1, y1}). The
set M = (M0 − {xy, aa1, bb1}) ∪M1 ∪ {xa, zb, a0a1, b0b1, yy1} is a perfect or
an almost-perfect matching in AQn − F .

Case 5 2n− 2 ≤ |F0| ≤ 4n− 13. We consider two cases depending on whether AQ0
n−1 − F

contains an isolated vertex or not. Note that when |F0| ≤ 4n − 13 then AQ0
n−1 − F

can have at most one isolated vertex.

Case 5.1 Assume that AQ0
n−1 − F contains an isolated vertex u. Since AQn − F has

no isolated vertices, then u has an outside neighbor u1 in AQ1
n−1 − F .

Case 5.1.1 Suppose that u is adjacent to a faulty vertex v in F0. Let F ′0 =
F0 − {v}, then |F ′0| ≤ 4n− 14 and the subgraph induced by AQ0

n−1 − F ′0 has
no isolated vertices. By the induction hypothesis, there exists a perfect or an
almost-perfect matching M0 in AQ0

n−1 − F ′0.
If |F V

0 | is odd, thenM0 is a perfect matching and uv ∈M0. Let F ′1 = F1∪{u1},
then |F ′1| ≤ 2n − 7 ≤ 4n − 13 for n ≥ 4. In addition, AQ1

n−1 − F ′1 has no
isolated vertices, then by the induction hypothesis, there exists a perfect or
an almost-perfect matching M1 in the subgraph induced by AQ1

n−1−F ′1. Let
M = (M0 − {uv}) ∪M1 ∪ {uu1}, then M is a perfect or an almost-perfect
matching in AQn − F .
If |F V

0 | is even, let z0 be a vertex in AQ0
n−1 − F such that z0 has an outside

neighbor z1 6= u1 in AQ1
n−1−F and the subgraph induced by AQ0

n−1− (F ′0 ∪
{z0}) has no isolated vertices. Let F ′′0 = F ′0 ∪ {z0}, then |F ′′0 | ≤ 4n − 13.
Hence, by the induction hypothesis, there exists a perfect matching M ′

0 in
the subgraph induced by AQ0

n−1 − F ′0. Let F ′1 = F1 ∪ {u1, z1}, then |F ′1| ≤
2n − 6 ≤ 4n − 13 for n ≥ 4. In addition, AQ1

n−1 − F ′1 has no isolated
vertices, then by the induction hypothesis, there exists a perfect or an almost-
perfect matching M1 in the subgraph induced by AQ1

n−1 − F ′1. Let M =
(M ′

0 − {uv}) ∪ M1 ∪ {uu1, z0z1}, then M is a perfect or an almost-perfect
matching in AQn − F .

Case 5.1.2 Suppose that u is not adjacent to a faulty vertex, then u is incident
to 2n− 3 faulty edges in AQ0

n−1. Let f1, f2, . . . , f2n−3 be these edges, and let
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F ′0 = {u} ∪ (F0 − {f1, . . . , f2n−3}). |F ′0| ≤ 2n− 9.
Assume F ′0 has even number of vertices. By Theorem 3.1, AQ0

n−1 − F ′0 has a
perfect matching M ′

0. Let F ′1 = F1 ∪ {u1}, then |F ′1| ≤ 2n− 7 ≤ 4n− 13 for
n ≥ 4. In addition, AQ1

n−1−F ′1 has no isolated vertices, then by the induction
hypothesis, there exists a perfect or an almost-perfect matching M1 in the
subgraph induced by AQ1

n−1 − F ′1. Let M = M0 ∪M1 ∪ {uu1}, then M is a
perfect or an almost-perfect matching in AQn − F .
Assume that F ′0 has odd number of vertices. We can find a vertex z0 in
AQ0

n−1 − F ′0 such that z0 has an outside neighbor z1 6= u1 in AQ1
n−1 − F

and the subgraph induced by AQ0
n−1 − (F ′0 ∪ {z0}) has no isolated vertices.

Let F ′′0 = F0 ∪ {z0}, |F ′′0 | ≤ 2n − 8 and has an even number of vertices. By
Theorem 3.1, there exists a perfect matching M ′

0 in the subgraph induced
by AQ0

n−1 − F ′′0 . Let F ′1 = F1 ∪ {u1, z1}, then |F ′1| ≤ 2n − 6 ≤ 4n − 13 for
n ≥ 4. In addition, AQ1

n−1−F ′1 has no isolated vertices, then by the induction
hypothesis, there exists a perfect or an almost-perfect matching M1 in the
subgraph induced by AQ1

n−1 − F ′1. Let M = M ′
0 ∪M1 ∪ {uu1, z0z1}, then M

is a perfect or an almost-perfect matching in AQn − F .

Case 5.2 Assume that AQ0
n−1 − F has no isolated vertex. Then by the induction

hypothesis, there exists a perfect or an almost-perfect M0 in AQ0
n−1 − F and a

perfect or an almost-perfect matching M1 in AQ1
n−1 − F . If both M0 and M1

are perfect matchings, then M = M0 ∪M1 is a perfect matching in AQn − F . If
exactly one of them is a perfect matching, then M = M1∪M2 is an almost-perfect
matching in AQn − F . Suppose that M1 and M2 are almost-perfect matchings.
Let z be the vertex in AQ0

n−1 − F missed by M0. If z is adjacent to some vertex
z1 ∈ V (AQ1

n−1 − F ) in AQn − F then we can find a perfect matching M ′
1 in

AQ1
n−1−(F1∪{z1}) and the matching M = M0∪M ′

1∪{zz1} is a perfect matching
in AQn − F . Suppose that z is adjacent to two faulty outside edges or adjacent
to two faulty outside vertices. Then, z must be adjacent to some vertex u ∈
V (AQ0

n−1−F ) since AQn−F contains no isolated vertex. The vertex u is saturated
by M0, let uw ∈ M0. If w has an outside neighbor w1 in AQ1

n−1 − F such that
ww1 ∈ E(AQn−F ), then M ′

0 = (M0−{uw})∪{uz} is an almost-perfect matching
in AQ0

n−1 − F missing w. By the induction hypothesis, there exists a perfect or
almost-perfect matching M1 in the subgraph induced by AQ1

n−1 − (F1 ∪ {w1}).
Then M = M ′

0∪M1∪{ww1} is a perfect or an almost-perfect matching in AQn−F .

Suppose that z and w have no outside neighbors in AQ1
n−1−F . We want to show

that it is possible to have a vertex x in AQ0
n−1 − (F ∪ {u}) such that xy ∈ M0

and y has an outside neighbor in AQ1
n−1 − F .

If z and w share a common neighbor in AQ1
n−1, then by Lemma 3.1, z and w

share two common faulty neighbors in AQ1
n−1, and in this case the vertices z and

w can have at most one common neighbor in AQ0
n−1 − F other than u. So z and

w are adjacent to at least (2n − 4) + (2n − 4) − 1 − |F0| = 4n − 9 − |F0| ≥ |F1|
vertices in AQ0

n−1 − F other than u. This means that z and w are adjacent to at
least m vertices in AQ0

n−1 − F , where m ≥ |F1|. Let x1, . . . , xm be these vertices,
and since all of them are saturated by M0, we let x1y1, . . . , xmym ∈ M0. There
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are at least m neighbors for {y1, . . . , ym} in AQ1
n−1. If all those neighbors are

faulty, then m = |F1| and we know that there are already two faults in AQ1
n−1

other than these m faulty vertices, namely the faulty vertices adjacent to z and
w. Then |F1| > |F1| + 2, contradiction. Note that z and w can be incident to
faulty cross/complement edges, but we are considering the worst case scenario
where we get the most number of faults in AQ1

n−1. Therefore we can always
find a vertex from the set {y1, . . . , ym} having a neighbor in AQ1

n−1 − F . Let y1
be such vertex and let y1y

′
1 ∈ E(AQn − F ), where y′1 ∈ V (AQ1

n−1 − F ). By the
induction hypothesis, there exists a perfect matching M ′′

1 in the subgraph induced
by AQ1

n−1 − (F ∪ {y′1}). If zx1 ∈ E(AQ0
n−1 − F ), then M = (M0 − {x1y1}) ∪

M ′′
1 ∪{y1y′1, zx1} is a perfect matching in AQn−F . If wx1 ∈ E(AQ0

n−1−F ), then
M = (M0−{uw, x1y1})∪M ′′

1 ∪{y1y′1, zu, wx1} is a perfect matching in AQn−F .

If z and w do not share common neighbors in AQ1
n−1, then z and w are in-

cident/adjacent to four faults. In this case z and w are adjacent to at least
(2n−4)+(2n−4)−3−|F0| = 4n−11−|F0| ≥ |F1|−2 vertices in AQ0

n−1−F other
than u. Then z and w are adjacent to at least m−2 vertices in AQ0

n−1−F , where
m = |F1|. Let x1, . . . , xm−2 be these vertices, and since all of them are saturated
by M0, we let x1y1, . . . , xm−2ym−2 ∈ M0. Let N({y1, . . . , ym−2, w, z}) be the set
of the outside neighbors of {y1, . . . , ym−2, w, z}, then |N({y1, . . . , ym−2, w, z})| ≥
m. If |N({y1, . . . , ym−2, w, z})| > m, then we can find yi, such that yi has
an outside neighbor y′i in AQ1

n−1 − F , and we proceed as we did above. If
|N({y1, . . . , ym−2, w, z})| = m, then m is even, so |F1| = |F V

1 | is even and this
contradicts the assumption that M1 is an almost-perfect matching.

Case 6 |F0| = 2n − 3. This is can be treated the same as Case 5. The only difference is
when AQ0

n−1 − F0 has an isolated vertex, then by Proposition 2.1 |F V
0 | is even.

Case 7 |F0| < 2n − 3 and |F1| < 2n − 3. Then by the induction hypothesis (or by Theo-
rem 3.1), there exists a perfect or an almost-perfect M0 in AQ0

n−1 − F and a perfect
or an almost-perfect matching M1 in AQ1

n−1 − F . If both M0 and M1 are perfect
matchings, then M = M0 ∪ M1 is a perfect matching in AQn − F . If exactly one
of them is a perfect matching, then M = M1 ∪M2 is an almost perfect matching in
AQn−F . Suppose that M1 and M2 are almost-perfect matchings. Let x0x1 be an edge
in AQn − F , such that x0 ∈ V (AQ0

n−1 − F ), x1 ∈ V (AQ1
n−1 − F ) and the subgraphs

induced by AQ0
n−1− (F ∪{x0}) and by AQ1

n−1− (F ∪{x1}) has no isolated vertex. We
can always find such edge. In fact, there are 2n edges between AQ0

n−1 and AQ1
n−1, and

there is at most one vertex x0 ∈ V (AQ0
n−1 − F ) whose deletion results in having an

isolated vertex in AQ0
n−1−F , and at most one vertex x1 ∈ V (AQ1

n−1−F ) whose dele-
tion results in having an isolated vertex in AQ1

n−1−F . Moreover, each faulty-vertex is
incident to two cross/complement edges, so there are at most 2(4n− 9 + 2) = 8n− 14
edges that can not be chosen, and this number is less than 2n, for n ≥ 5. By the
induction hypothesis, there exist two perfect matchings M0 and M1 in the subgraphs
induced by AQ0

n−1 − (F ∪ {x0}) and by AQ1
n−1 − (F ∪ {x1}) respectively. Therefore,

M = M0 ∪M1 ∪ {x0x1} is a perfect matching in AQn − F .
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4 Conclusion

In this paper, we have studied the strong matching preclusion problem of augmented cubes
under the condition that no isolated vertex is created in the presence of faulty edges and/or
vertices. We proved that the conditional strong matching preclusion number of AQn is 4n−8.
We note that in the proof of our main theorem, we only make use of certain properties of
the augmented cubes. So one can consider generalizing the result to a class of networks
by starting with two copies of K4 and add two sets of perfect matchings between them so
that certain properties are satisfied, that is, we restrict the two sets of perfect matchings.
One may wonder why we did not present this paper under this more general class. This is
because we used Theorem 3.1, which was only proved for augmented cubes. We remark that
if one examines the proof of this theorem in [8], it only relies on specific properties of the
two added sets of perfect matchings. So one can generalize Theorem 3.1 to a larger class
of graphs by allowing any two sets of perfect matchings with these properties. While this
is interesting from a graph theory perspective, it is less important from an interconnection
networks perspective that these graphs were designed for, as while the two specific sets of
perfect matchings is less important regarding matching preclusion, they are very important
in terms of designing nice distributed routing algorithms.
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