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ABSTRACT

As social media (SM) brings opportunities to study societies across the world, it also brings

a variety of challenges to automate the processing of SM language. In particular, most of

the textual content in SM is considered noisy ; it does not always stick to the rules of the

written language, and it tends to have misspellings, arbitrary abbreviations, orthographic

inconsistencies, and flexible grammar. Additionally, SM platforms provide a unique space for

multilingual content. This polyglot environment requires modern systems to adapt to a di-

verse range of languages, imposing another linguistic barrier to processing and understanding

of text from SM domains.

This dissertation aims at providing novel sequence labeling approaches to handle noise

and linguistic code-switching (i.e., the alternation of languages in the same utterance) in SM

text. In particular, the first part of this dissertation focuses on named entity recognition

for English SM text, where I propose linguistically-inspired methods to address phonological

writing and flexible syntax. Besides, I investigate whether the performance of current state-

of-the-art models relies on memorization or contextual generalization of entities.

In the second part of this dissertation, I focus on three sequence labeling tasks for code-

switched SM text: language identification, part-of-speech tagging, and named entity recogni-

tion. Specifically, I propose transfer learning methods from state-of-the-art monolingual and

multilingual models, such as ELMo and BERT, to the code-switching setting for sequence

labeling. These methods reduce the demand for code-switching annotations and resources

while exploiting multilingual knowledge from large pre-trained unsupervised models.

The methods presented in this dissertation are meant to benefit higher-level NLP appli-

cations oriented to social media domains, including but not limited to question-answering,

conversational systems, and information extraction.

v



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . iii
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Overview of Proposed Research . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Named Entity Recognition . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Linguistic Code-Switching . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Literature Review 12
2.1 Named Entity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Hand-Crafted Features and Rule-based Systems . . . . . . . . . . . . 13
2.1.2 Adapting NER Systems to Social Media Text . . . . . . . . . . . . . 14
2.1.3 Neural Networks for NER . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Pre-trained Language Models for NER . . . . . . . . . . . . . . . . . 16

2.2 Linguistic Code-Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 The Research Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

I Named Entity Recognition on Social Media Text 19

3 Modeling Social Media Noise 20
3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Feature Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vi



3.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Adapting to Flexible Syntax 35
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Feature Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Are Models Relying on Memorization or Generalization? 52
5.1 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Model Analysis: Fine-tuned BERT . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Reducing the Memorization Bias . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 68

II Sequence Labeling on Linguistic Code-Switching 69

6 LinCE: A Centralized Linguistic Code-Switching Evaluation Benchmark 70
6.1 Linguistic Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.1 Language Identification (LID) . . . . . . . . . . . . . . . . . . . . . . 74
6.2.2 Parts-of-Speech (POS) Tagging . . . . . . . . . . . . . . . . . . . . . 76
6.2.3 Named Entity Recognition (NER) . . . . . . . . . . . . . . . . . . . . 78
6.2.4 Sentiment Analysis (SA) . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.5 Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 From English to Code-Switching 85
7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1.1 Position-aware Hierarchical Attention . . . . . . . . . . . . . . . . . . 86
7.1.2 Sequence Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 LID Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3 POS Tagging and NER Experiments . . . . . . . . . . . . . . . . . . . . . . 92

vii



7.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8 From Multilingualism to Code-Switching 97
8.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.1.1 Approximating the Subword Embedding Table . . . . . . . . . . . . . 100
8.1.2 Pre-training with the Char2subword Module . . . . . . . . . . . . . . 103
8.1.3 Fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2.1 Embedding Approximation . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2.2 Fine-tuning Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9 Conclusions 119
9.1 English-oriented Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.2 Code-switching-oriented Methods . . . . . . . . . . . . . . . . . . . . . . . . 121
9.3 Detailed Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
9.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

viii



LIST OF TABLES

2.1 Results of different NER competitions. The performance degrades as the
systems are moved to social media (SM) environments. The last row considers
multiple SM domains, such as Twitter, YouTube, Reddit, and StackExchange. 15

3.1 Noisy and normalized text with equal International Phonetic Alphabet map-
pings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 WNUT 2017 dataset with the class frequency distribution. . . . . . . . . . . 27
3.3 The class-level and overall results of the systems on the WNUT 2017 dataset.

Stacked means that the model was trained on a two-phase setting (i.e., first
the MTL network, then the CRF classifier). E2E means that the model
was trained in a single phase, back-propagating the gradients from the CRF
down to the feature extractor. WNUT represents the winning system of
the shared task by the UH-RiTUAL team in 2017. A t-test experiment shows
that the stacked model improvement over the end-to-end model is statistically
significant, with p-value < 0.0025 [38]. . . . . . . . . . . . . . . . . . . . . . 29

3.4 I performed an ablation experiment on the stacked model. The results in the
table are the average of the scores of three iterations. . . . . . . . . . . . . . 31

3.5 Model predictions of the Reddit text in WNUT 2017 dataset. The bold words
are the gold labels, and the underlined words are the predictions. . . . . . . 33

4.1 The data splits on each corpus along with the number of named entities. . . 42
4.2 The F1 scores on the validation sets. Blstm and Tlstm are bidirectional

and tree LSTMs. † denotes residual connections on every component. RA
and GA refer to relative and global attentions. All the experiments use ELMo
embeddings and CRF. Running t-test shows that the experiment numbers be-
tween methods (Blstm vs. Tlstm) are statistical significant with all p-value
< 0.01. The experiment 3.1 on the SemEval-2010 dataset is also statistically
significant against the previous best score given by experiment 2.6. . . . . . 43

4.3 The most attended words for nouns that are labeled as PERSON or LOCATION.
The table shows the attended POS tag per entity, its coverage, and the cor-
responding list of words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ix



5.1 Statistics of the entity overlap with respect to the test set. Overlap describes
the set operations: (Train ∪ Development) ∩ Test. Repeated means that
the frequency of every entity is considered in the calculation, while Unique
disregards the frequencies. Notably, the overlap percentages of the CoNLL-
2003 are substantially higher than the ones from WNUT-2016. Diversity
refers to the percentage of total unique entities out of the total repeated
entities (e.g., 100% means all entities instances appear once). I sorted rows
by overlap percentage from the repeated entities. . . . . . . . . . . . . . . . 55

5.2 Results on the full test set and its observed and unobserved entity subsets. For
the observed subsets, ≥ 1 means that the entities appear in training at least
once, whereas ≤ 5 refers to entities that appear in training at most five times.
Note that there is a decreasing tendency (↓) in the scores of the unobserved
entities with respect to the full dataset scores; the scores from the observed
entities tend to increase (↑). The “N/A” entries for movie and TV show mean
that the classes do not appear in such subsets. . . . . . . . . . . . . . . . . 58

5.3 Results of the proposed methods to reduce memorization. Obs. and Unobs.
refer to the observed and unobserved entity subsets, and All means the full
test set. I show the average of three runs with different random seeds and
their std. deviation as a subscript. . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Class-level F1 scores for the baseline and the frequency loss weight (FLW)
experiments on the unobserved test set. I also provide the number of instances
and the diversity percentage per class. The rows are sorted descendingly by
the number of instances. Note that the diversity rate is the lowest for the
company class, while the scores per model are almost the same. . . . . . . . 65

5.5 The table shows cases where the FLW model gets the predictions wrong.
The sentences are tagged with their corresponding ground-truth entities in
brackets (e.g., [Penders Field]facility). Also, I provide the results of the baseline
for comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1 Overview of the LinCE language pairs and tasks. . . . . . . . . . . . . . . . 71
6.2 The CMI scores and the number of tokens across corpora. All Posts de-

scribes the number of posts in the corpora and All CMI is the corresponding
CMI scores for such samples. Similarly, CS Posts denotes the number of
code-switched posts (excluding monolingual posts) and CS CMI is the cor-
responding CMI scores for such samples. I also show the number of tokens that
belong to the language pairs (Lang1, Lang2) as well as the overall number
of tokens (All Tokens), which includes other LID labels beyond the language
pairs. English is the Lang1 class for English-paired languages; for MSA-EA,
Modern Standard Arabic is the Lang1 class. I omit the CMI information for
the MSA-EA NER corpus because the corpus does not come with language
identification labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

x



6.3 Final data distribution of the LinCE benchmark. Note that the proposed
distribution follows the stratification process described in Section 6.2.5, which
generates partitions that differ from the original datasets. . . . . . . . . . . 81

6.4 The table shows the datasets for which I propose new splits. The column
Reason provides the reason number according to the aspects listed in Section
6.2.5. The lower the KL-divergence, the more similar the splits are to the full
corpus distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.5 The LinCE leaderboard as of October 19th, 2020. The top three entries in the
table are the baseline models using off-the-shelf models publicly available. The
char2subword mBERT model is a sequence labeling method that I proposed
in Chapter 8. The missing scores denote that the participants did not provide
results on those task. Hence, the average score is also skipped. . . . . . . . 83

7.1 The results of incremental experiments on each LID dataset. The scores are
calculated using the weighted F-1 metric across the eight LID labels from
CALCS. Within each column, the best score in each block is in bold, and the
best score for the whole column is underlined. Note that development scores
from subsequent experiments (e.g., experiments 2.2 and 2.3) are statistically
significant with p-value < 0.02. . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 The F1 scores on POS tagging for the Hindi-English dataset. CS knowledge
means that the CS-ELMo architecture has been adapted to code-switching by
using the LID task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3 The F1 scores on the Spanish-English NER dataset. CS knowledge means
that the CS-ELMo architecture has been adapted to code-switching by using
the LID task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.1 Single-character operations to incorporate noise in the approximation stage.
The operations are applied to every word in the vocabulary that exceeds the
four characters and that it is not a special token. . . . . . . . . . . . . . . . 104

8.2 The results of approximating the subword embedding table from mBERT
using different combinations of objective functions. Experiments 1.1 to 1.4
denote the performance of the char2subword module using individual objective
functions (e.g., experiment 1.2 only uses Lcos). Experiments 1.5 to 1.8 use the
cross-entropy objective Lce by default and combine it with other objectives
(e.g., experiment 1.8 uses Lce(·) + Lneigh(·)). Experiment 1.9 combines all
the objectives at the same time. The accuracy denotes the capability of the
model to predict a subword out of its characters. Precision @ k measures the
overlap between the k ground-truth neighbors for a vector ei (that represents
subword si) and the k neighbors of the predicted vector êi. . . . . . . . . . 108
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Chapter 1

Introduction

1.1 Motivation

Social media (SM) platforms have enabled people to communicate massively across the world.

With such ability, there is an ever-growing flow of information that virtually reflects society

every minute. Figure 1.1a shows a one-minute snapshot in 20201 of the most popular online

applications, including SM activities of 59 million messages sent on WhatsApp and Face-

book, 4.7 million videos viewed on YouTube, and 194 thousand people posting on Twitter.

Moreover, behind this extensive amount of information, there is a large number of active

users engaged in SM platforms. For instance, Facebook, the most popular platform, reached

2.8 billion monthly active users in 20182 (see Figure 1.1b). The vast number of users and

the constantly generated content indisputably make SM an essential component of today’s

communication in society.

1https://www.allaccess.com/merge/archive/31294/, retrieved April 12th 2020.
2https://ourworldindata.org/rise-of-social-media, retrieved April 4th 2020.
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(a) One minute in SM (2020). (b) Monthly active users in SM (2018).

Figure 1.1: Social media infographics.

Social media is beyond online chatting. Under the social science umbrella, SM cap-

tures many aspects of human society and social relationships, ranging from marketing, eco-

nomics, and politics to education, entertainment, and psychology. Consequently, SM plat-

forms have become a window to study our society, where the relentless traffic of information

has brought unprecedented opportunities to understand current worldwide events, human

behavior, trends, and more.

As social media brings opportunities to understand our society, it also brings a variety

of challenges to the automated processing of language. In particular, most of the textual

content in SM is considered noisy ; it does not always stick to the rules of the written language,

and it tends to have misspellings, arbitrary abbreviations, orthographic inconsistencies, and

flexible grammar. Although SM users easily adapt and conveniently use this behavior, the

SM noise challenges conventional systems explicitly designed to perform on well-formatted

and grammatically correct texts. Such systems need to normalize text to handle SM domains

as they greatly depend on a predefined vocabulary. This preprocessing step is expensive to
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maintain and requires many heuristics and hand-written rules to handle the diverse and

arbitrary ways of writing in SM.

Additionally, SM platforms provide a unique space for multilingual content,3 as they

bring people together from all over the world. While this scenario demands user needs

such as translating languages, it is often the case that the text contains more than one

language, and even the alternation of languages in the same utterance (i.e., linguistic code-

switching). This polyglot environment requires modern systems to adapt to a diverse range

of languages, imposing another linguistic barrier to processing and understanding of text

from SM domains.

Nevertheless, these linguistic challenges in SM are part of the continuous evolution of

language. The grammatical rules, word meanings, orthography, regionalisms, and dialects

have been changing across history and among communities from all over the world. In

a globalized world, the back and forth interaction among communities has facilitated the

evolution of language, eventually combining words and expressions from different cultures.

SM has just sped up this process by vanishing language borders and bringing an amalgam

of linguistic phenomena over the web.

This dissertation focuses on sequence labeling tasks in SM domains, covering challenges

from noisy user-generated text and the linguistic code-switching phenomenon. I propose

methods for three sequence labeling tasks: language identification (LID), named entity

recognition (NER), and part-of-speech (POS) tagging. I demonstrate the effectiveness of

adopting noise like phonological writing and flexible grammar as an informative feature for

NER on English text. Additionally, I show that it is possible to adapt monolingual models

to the code-switching setting using transfer learning, outperforming existing code-switching

methods for LID, POS tagging, and NER.

3For instance, Facebook is constantly increasing the number of supported languages, currently covering
more than 150 languages on the platform. Retrieved April 12th 2020 from facebook.com/translations.

3

facebook.com/translations


1.2 Research Objectives

This dissertation focuses on low-level natural language processing, namely sequence labeling,

for English and code-switched SM text. The general goal of this dissertation is the following:

General Goal: Improve the robustness of sequence labeling approaches for

user-generated language in social media platforms.

In particular, the first part of this dissertation concentrates on named entity recognition

(NER) for English SM text. The studies in this part are motivated by the challenges that

SM brings in terms of text deviating from standardized written language (e.g., slang, mis-

spellings, flexible grammar, arbitrary abbreviations, etc.). The overall objective in this part

is the following:

Objective 1: Model the user-generated noise as an intrinsic characteristic of

the language in social media, rather than an aspect that needs to be removed or

normalized.

To this end, I propose linguistically-inspired methods for NER that exploit phonological

writing and flexible syntax, two major aspects of the noise in SM text. Besides, given the

specific case of NER, I investigate whether the state-of-the-art performance comes from

memorization of entities or generalization of the entity contexts. This last study emphasizes

the importance of assessing generalization beyond solely driving research progress based on

an overall metric in a given dataset.

In the second part of this dissertation, I focus on three sequence labeling tasks for code-

switched SM text: language identification, part-of-speech tagging, and named entity recog-

nition. The studies in this part are motivated by the facts that i) collecting and labeling

data for code-switching tasks is expensive and time-consuming, and ii) large pretrained lan-

guage models capture multilingual knowledge from raw text using unsupervised learning.
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Considering these aspects, the objective is the following:

Objective 2: Model linguistic code-switching for sequence labeling tasks ef-

fectively by leveraging monolingual and multilingual pre-trained knowledge from

large language models.

Specifically, I propose novel transfer learning methods from state-of-the-art monolingual and

multilingual models, such as ELMo [87] and BERT [37], for the code-switching (CS) setting.

These methods reduce the demand for CS annotated data and language-specific resources

while exploiting already available monolingual and multilingual pre-trained knowledge.

The methods presented in this dissertation are meant to benefit higher-level NLP appli-

cations oriented to social media domains, including but not limited to question-answering,

conversational systems, and information extraction.

1.3 Overview of Proposed Research

The main goal of this dissertation is to provide methods that handle sequence labeling tasks

considering the social media challenges and the linguistic code-switching phenomenon. To

achieve that, this dissertation is comprised of two main research lines: named entity recog-

nition (Section 1.3.1), and sequence labeling tasks for code-switched data (Section 1.3.2).

1.3.1 Named Entity Recognition

In the first part of this dissertation, I study the named entity recognition (NER) task in

social media domains. Specifically, I cover the following ideas:

1. Modeling sound-driven writing (Chapter 3). SM noise in text refers to the

deviation of standard writing. While the SM language seemingly behaves chaotically
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and arbitrary, there is a clear pattern behind this writing. Users tend to type using

abbreviations that emulate the way their messages would sound in actual speech. This

sound-driven behavior allows them to type fast and conveniently without undermining

the communication to their audience. By modeling phonological writing, it is possible

to take advantage of a clean normalization effect on the data.

2. Adapting to flexible syntax (Chapter 4). Despite the deviation of standard gram-

matical rules, SM text still follows some sense of grammar. By modeling the flexible

syntax in SM text, it is possible to capture patterns behind the sentence formation,

and hence, the interaction of entities with key words in the text. For instance, a depen-

dency tree can connect a named entity syntactically with the main verb of the phrase.

This allows making inferences about the entity judging based on the verbs that they

are connected, which often reveals information about the entity types.

3. Evaluating memorization and generalization (Chapter 5). Large pre-trained

language models have driven recent advances in NLP, including NER. With such a

large number of parameters it is possible that these models are substantially relying

on memorization, rather than increasing their generalization capabilities. I investigate

whether this is the case by studying standard NER datasets from both news and SM

and the behavior of the models in these datasets.

1.3.2 Linguistic Code-Switching

In the second part of this dissertation, I focus on linguistic code-switching (CS), where I

consider language identification, part-of-speech tagging, and named entity recognition as the

sequence labeling tasks. Specifically, I cover the following aspects and ideas:

1. Providing a centralized CS evaluation benchmark (Chapter 6). Despite that
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many code-switching datasets have been released lately, there is no official way to

determine which models perform the best across them. Even if researchers provide

language-independent models, there is no standard centralized benchmark to compare

across the code-switching community. I dedicate part of this dissertation to provide

both a code-switching corpus for NER and a centralized benchmark across sequence

labeling tasks and multiple language pairs.

2. Transfer learning from English language models to CS (Chapter 7). CS is

a global phenomenon that involves many languages all over the world. However, it is

usually studied by language pairs, and depending on the languages, it tends to have dif-

ferent behaviors (e.g., Spanish-English behaves differently than Hindi-English), which

makes the data annotation process expensive and time-consuming. Given those con-

straints, I aim at adapting pre-trained English models to code-switched English-paired

text for sequence labeling by using the language identification task. This adaption

proves beneficial for downstream NLP tasks such as named entity recognition and

part-of-speech tagging.

3. Adapting multilingual pre-trained language models to CS (Chapter 8). CS

is inherently a multilingual phenomenon, which demands models that rely on multilin-

gual pre-trained knowledge. This study aims at adapting large multilingual language

models, such as BERT [37], to the code-switching setting. The adaptation consid-

ers SM challenges by replacing the word-piece tokenization and embedding process

for character-level word representations, similar to ELMo [87]. The adaptation is con-

ducted using a novel knowledge distillation method, which reduces the word embedding

parameters of the model while preserving its pre-trained knowledge.
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1.4 Contributions

I summarize below the contributions of this dissertation in two major categories.

Within the scope of named entity recognition:

• A new method that empirically shows the effectiveness of exploiting phonological rep-

resentations of text in social media. This method targets text that replaces standard

spelling with a more practical, phonologically inspired orthography, largely address-

ing misspellings, inconsistent orthography, and arbitrary abbreviations. This method

provides a new way to approach the noise in social media text.

• A new method that demonstrates the generalization capabilities of modeling depen-

dency grammar, even with permissive/incorrect syntax. The method recursively ex-

ploits the child-parent relationships of words according to the dependency tree of a

sentence. It shows that words such as verbs and prepositions can reveal the types of

the entities, emphasizing generalization. This method can potentially help to adapt to

new entities (e.g., new topics) based on its reliance on word interactions.

• The results of a study that investigates whether the performance improvements of cur-

rent state-of-the-art models come from entity memorization or context generalization.

The analysis will provide insights about the optimized models and the diversity of the

datasets (e.g., the overlap of entities appearing in both training and evaluation). This

study emphasizes the importance of generalization in SM domains.

Within the scope of sequence labeling for linguistic code-switching:

• A new benchmark for linguistic code-switching evaluation (LinCE) that centralizes re-

search progress on code-switching tasks. The benchmark covers ten publicly available
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datasets, four tasks, and four language pairs. LinCE provides new data splits using a

comprehensive stratification method that solves crucial problems in the original parti-

tions. LinCE will provide leaderboards in an online platform to facilitate comparison

of different methods across different datasets.

• A Spanish-English code-switching corpus annotated with named entity recognition

labels. This corpus has been incorporated into LinCE.

• A new method that adapts easily-accessible English knowledge to English-paired code-

switched languages. This method takes advantage of preliminary English knowledge

from large pre-trained language models to identify other languages whose morpho-

logical patterns are different from English. This adaptation also proves effective to

downstream NLP tasks while it reduces the dependency on code-switching resources

(e.g., language-specific embeddings).

• As an extension of the previous contribution, this dissertation also provides a practical

method that adapts multilingual language models to code-switching. This method

reduces the amount of annotated data for code-switching sequence labeling tasks, while

also keeping the multilingual diversity. This method benefits low-resource languages

for downstream NLP tasks beyond English-paired code-switched languages, such as

the language pair Modern Standard Arabic-Egyptian Arabic.

1.5 Publications

The work described in this dissertation relates to the following peer-reviewed conference

papers (in chronological order):

1. Aguilar, G., López-Monroy, A. P., González, F. A., and Solorio, T. (2018). Modeling
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Noisiness to Recognize Named Entities using Multitask Neural Networks on Social

Media. In Proceedings of NAACL-HLT 2018 [4].

2. Aguilar, G., Ling, Y., Zhang, Y., Yao, B., Fan, X., and Guo, C. (2020). Knowledge

Distillation from Internal Representations. In Proceedings of AAAI 2020 [3].

3. Aguilar, G., Kar, S., and Solorio, T. (2020). LinCE: A Centralized Benchmark for

Linguistic Code-switching Evaluation. In Proceedings of LREC 2020 [2].

4. Aguilar, G. and Solorio, T. (2020). From English to Code-Switching: Transfer Learn-

ing with Strong Morphological Clues. In Proceedings of ACL 2020 [9].

The following workshop and pre-print papers are also related to this dissertation:

1. Aguilar, G., Maharjan, S., López-Monroy, A. P., and Solorio, T. (2017). A Multi-task

Approach for Named Entity Recognition on Social Media Data. In Proceedings of The

3rd Workshop on Noisy User-generated Text, EMNLP 2017 [5].

2. Aguilar, G., AlGhamdi, F., Soto, V., Diab, M., Hirschberg, J., and Solorio, T. (2018).

NER on Code-switched Data: Overview of the CALCS 2018 Shared Task. The 3rd

Workshop on Computational Approaches to Linguistic Code-Switching, ACL 2018 [1].

3. Aguilar, G. and Solorio, T. (2019). Dependency-Aware Named Entity Recognition

with Global and Relative Attentions. arXiv preprint arXiv:1909.05166 [8].

4. Patwa, P.4, Aguilar, G.4, Kar, S., Pandey, S., Pykl, S., Garrette, D., Björn, G.,

Chakraborty, T., Solorio, T., Das, A. (2020). SemEval-2020 Task 9: Overview of

Sentiment Analysis of Code-Mixed Tweets. In Proceedings of the 14th International

Workshop on Semantic Evaluation (SemEval), COLING 2020 [83].

4Equal contribution.
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5. Aguilar, G., McCann, B., Niu, T., Rajani, N., Keskar, N., and Solorio, T. (2020).

Char2Subword: Extending the Subword Embedding Space from Pre-trained Models

Using Robust Character Compositionality. arXiv preprint arXiv:2010.12730 [6].

This last research paper is not related to this dissertation, but it has been part of my work

during the course of the PhD:

1. Aguilar, G., Rozgić, V., Wang, W., Wang, C. (2019). Multimodal and Multi-view

Models for Emotion Recognition. In Proceedings of ACL 2019 [7].

2. Kar, S., Aguilar, G., Lapata, M., Solorio, T. (2020). Multi-view Story Characteriza-

tion from Movie Plot Synopses and Reviews. In Proceedings of EMNLP 2020 [58].

3. Chen, S., Aguilar, G., Neves, L., Solorio, T. (2020). A Caption Is Worth A Thousand

Images: Investigating Image Captions for Multimodal Named Entity Recognition arXiv

preprint arXiv:2010.12712 [25].
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Chapter 2

Literature Review

Many natural language processing (NLP) applications rely on the ability to extract low-level

linguistic information from raw text. This information varies depending on the application

needs, but it usually considers linguistic properties such as part-of-speech tags, named en-

tities, and even language identification. The extraction of such information is conducted at

either the token or token-span level, known as sequence labeling.

Social media has brought new challenges to sequence labeling systems that have been

designed for standardized text. These systems sensibly drop in performance when they are

moved from news to social media domains. However, the gap in performance drastically

increases in the case of named entity recognition (NER), falling from around 90% to 40%

absolute points on the F1 score. Considering that NER receives the most significant impact

in performance among sequence labeling tasks, I dedicate the first part of this chapter —and

the first part of this dissertation– to the discussion NER. In the second part, I provide an

overview of sequence labeling tasks under the perspective of linguistic code-switching.
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2.1 Named Entity Recognition

2.1.1 Hand-Crafted Features and Rule-based Systems

In its early years, NER systems focused on newswire text, where the goal was to identify

three types of entities: person, corporation, and location. These entity types were proposed

in the MUC-61 [47] and MUC-7 [27] competitions. Most of the systems were based on heavily

hand-crafted features and manually elaborated rules [23]. Nonetheless, maximum entropy

for named entities was introduced by [76], and [23]. These approaches had many limitations

due to the lack of learning capabilities and the reliance on manual features and rules.

A few years later, many researchers incorporated machine learning algorithms into their

systems, but there was still a strong dependency on external resources and domain-specific

features. For instance, in the 2003 CoNLL2 shared task [113], the participants used gazetteers

and other resources besides the ones provided by the organizers. In addition, the majority of

the systems used maximum entropy [19, 26, 31, 42, 62] and hidden Markov models (HMMs)

[42, 62, 74, 120]. The results of the participants move around 90% of the F1 score. Similarly,

[75] used a conditional random field (CRF) combined with web-augmented lexicons. The

features were selected by hand-crafted rules and refined based on their relevance to the

domain of the entities. They reduced the feature dependencies while still reaching a decent

F1 score of 80%. Moreover, [80] exploited Wikipedia resources taking advantage of structured

data and reducing the human-annotated labels on the data. In general, the results of the

systems were reasonable, yet the scalability and the extensive and expensive detailed rules

were not; their methods were difficult to maintain and adapt to other domains where different

rules were needed.

1MUC: Message Understanding Conference.
2CoNLL: Conference on Computational Natural Language Learning.
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2.1.2 Adapting NER Systems to Social Media Text

While previous traditional ML approaches were considered feasible and effective for formal

text, NER started to change into a different and more challenging task (see timeline in Fig-

ure 2.1). First, the formal settings that made the task manageable significantly changed

to a noisy environment (i.e., social media), where the text hardly follows proper grammat-

ical structures and frequently presents spelling inconsistencies and arbitrary abbreviations

[94]. Second, the expansion to a bigger diversity of entity types established a harder task,

where entities such as movies, books, songs, products, etc. are more heterogeneous than the

conventional person, corporation, and location types [90, 66, 94, 35].

Figure 2.1: High-level NER timeline of data sources (upper half) and models (lower half).

The first approaches to these challenges were based on domain adaptation of the tools

available at the time. For instance, [35] evaluated multiple NER tools in noisy environments:

Stanford NER [41], ANNIE [22], among others. They reported that the majority of the tools

are not capable of adapting to the noisy conditions. Additionally, they showed a significant
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drop in performance when those tools are moved from formal text to noisy environments: a

loss of 40% absolute points on the F1 score.

2.1.3 Neural Networks for NER

Based on the success of word embeddings in 2013 [77], some researchers tried to learn such

representations from social media text. For instance, [17] organized a NER competition at

the 1st Workshop on Noisy User-generated Text (WNUT), where three of the participants

used word embedding as features to train their machine learning models. Although the

results were not as high as in formal text (see Table 2.1), pre-trained word embeddings

allowed the participants to rely less on hand-crafted features [46].

Table 2.1: Results of different NER competitions. The performance degrades as the systems
are moved to social media (SM) environments. The last row considers multiple SM domains,
such as Twitter, YouTube, Reddit, and StackExchange.

Organizers Year Competition Domain F1 Score Classes

[47] 1996 MUC-6 Newswire 96.49% 2
[113] 2003 CoNLL Newswire 88.76% 4
[110] 2016 WNUT Twitter 52.41% 10
[36] 2017 WNUT SM domains 41.86% 6

In 2016, different approaches emerged based on word embedding representations and

deep learning models. For instance, [63] proposed a novel neural architecture model: a

Bidirectional Long Short-Term Memory (BLSTM) with a CRF at the output layer. A

better version of this architecture was proposed by [28], who used a BLSTM in conjunction

with a Convolutional Neural Network (CNN). Likewise, [70] proposed a BLSTM and CNN

as an end-to-end model, including the CRF loss function in the training process of their

network. Importantly, however, these systems did not evaluate in the SM domain except

for [84]. Instead, they benchmarked their systems on the CoNLL 2003 data, which belongs

to the news domain. Following this line, the use of neural networks dominated subsequent
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versions of the WNUT shared task [110, 36]. For instance, the winners of the 2016 edition,

[64], have in common a CNN+BLSTM that passes the extracted features to a CRF classifier

on the output layer. This has remained as the standard approach for NER.

2.1.4 Pre-trained Language Models for NER

More recently, the entire NLP community has been revolutionized by deep contextualized

word embeddings based on language models, and the NER task is not the exception. For

instance, [87] introduced ELMo, which uses bidirectional language models to predict the

next token. The next token probability is modeled by multiple bidirectional LSTMs. After

training their model, they transferred the learning and fine-tuned their original model (i.e.,

they adapted the last layer) to outperform a wide variety of NLP tasks, including NER.

Similarly, [11] used a language model but only relying on characters: this accelerated the

training phase and also provided some improvements on the NER CoNLL 2003 dataset.

Finally, the NLP community has seen more approaches using language models that are

substantially larger neural networks than before [54, 37]. Research has shown that these

models capture many linguistic aspects, which make them very convenient for other tasks

[87, 88, 124].

2.2 Linguistic Code-Switching

Linguistic code-switching (CS) has been studied in the context of many NLP tasks [105],

including language identification [106, 18], part-of-speech tagging [109, 108, 78, 32, 107],

named entity recognition [1], parsing [82], sentiment analysis [117], and question answering

[92, 24]. Many code-switching datasets have been made available through the shared-task
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series FIRE3 [102, 29, 96] and CALCS4 [106, 78, 1], which have focused mostly on core

NLP tasks. Additionally, other researchers have provided datasets for dialect recognition

[49], humor detection [60], sub-word code-switching detection [71], among others. While it

is important to acknowledge the availability and recent growth of datasets, I narrow the

discussion to sequence labeling tasks.

In the case of language identification (LID) at the token level, researchers have evaluated

approaches such as conditional random fields (CRF) with hand-crafted features [12], LSTM

models with word and character embeddings [73, 98], code-mixed word embeddings [91], and

transfer learning [9]. While most of these approaches reach over 90% of accuracy regardless

of the language pairs, it is hard to determine which model is the best overall and what the

trade-offs are by using one instead of the others.

Likewise, for part-of-speech (POS) tagging, the community has explored tools that heav-

ily rely on monolingual hand-crafted linguistic information and morphological features [13],

traditional ML techniques (e.g., SVM) with heuristics that exploit monolingual resources

[107], combined monolingual taggers, including CRF and Random Forest [56], and jointly

modeling POS tagging with LID using recurrent neural networks [109]. Although such ap-

proaches are effective on their datasets at hand, they are language-specific and not easy to

compare across each other.

A slightly different trend has been marked in named entity recognition (NER). Although

the main problem in NER has been the lack of datasets, it is until recently that researchers

have provided a few corpora on Hindi-English [104], Spanish-English and Modern Standard

Arabic-Egyptian Arabic [1]. The participants of the 2018 CALCS competition proposed

models based on standard neural NER architectures (e.g., character CNN, followed by a

word-based LSTM, and CRF) [45], including variations with attention [119] and multi-task

3Forum for Information Retrieval Evaluation.
4Computational Approaches to Linguistic Code-Switching.
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learning [115]. Additionally, most of the participants exploited publicly available resources

such as gazetteers as well as monolingual and multilingual embeddings [122]. While the

CALCS competition provided datasets on Spanish-English and Modern Standard Arabic-

Egyptian Arabic simultaneously, the participants were allowed to provide predictions on one

or both competitions. This flexibility left the question open regarding which model was

overall the best across language pairs.

Although there has been significant progress in code-switching overall, CS still lacks

advancements in many NLP tasks. Additionally, CS tends to advance guided by language-

specific challenges, usually providing sparse technologies that may not necessarily be effective

for other language pairs. This dissertation takes this scenario as an opportunity to contribute

to a consolidated benchmark while also providing a unified framework for code-switching

settings.

2.3 The Research Direction

The recent advances in NLP have brought significant improvements for sequence labeling

tasks [87, 37] as well as higher NLP applications. However, these advances primarily rely

on word embeddings and language models that are pre-trained on a large amount of text,

excluding social media data. As a result, models tend to perform poorly on social media

data since there is a need for adapting models to the new domain. Although it is possible

to pre-train such models on social media text [11], the language in social media evolves fast,

demanding practical approaches that immediately adapt to new linguistic challenges. These

challenges include phonological text, new vocabulary, language transliteration, and linguistic

code-switching. This dissertation aims at providing methods that can satisfy the fast-paced

evolution of language in social media.
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Part I

Named Entity Recognition on Social

Media Text
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Chapter 3

Modeling Social Media Noise

One of the core tasks in natural language processing (NLP) is named entity recognition

(NER). NER is a sequence labeling task that consists of selecting the words that describe

entities and recognizing their types (e.g., a person, location, company, etc.). Recognizing

entities in the text is typically one of the first tasks in the pipeline of many NLP applications,

including machine translation, summarization, sentiment analysis, and question answering.

Traditional machine learning systems have proven to be effective in standard text, where

grammatical errors are minimal, and writers stick to the rules of the written language [42,

26]. However, those traditional systems dramatically fail on informal text, where improper

grammatical structures, spelling inconsistencies, and slang prevail [94]. For instance, Table

2.1 (Chapter 2) shows a snapshot of NER systems’ performances during the last years, where

the results drop from 96.49% to 41.86% on the F1 metric as the models move from formal

to informal text. Although the results are not directly comparable because they consider

different conditions and challenges, they serve as strong evidence that the NER task in social

media is far from being solved.

Researchers have previously approached NER using different neural network architec-

tures. For instance, [28] proposed a neural model using Convolutional Neural Networks
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(CNN) for characters and a bidirectional Long Short Term Memory (LSTM) for words. Their

model learned from word embeddings, capitalization, and lexicon features. On a slightly dif-

ferent approach, [63] used a BLSTM with conditional random fields (CRF) at the output

layer, removing the dependencies on external resources. Moreover, [70] proposed an end-to-

end BLSTM-CNN-CRF network, whose objective function is the negative log-likelihood loss

determined by the CRF. These architectures were benchmarked on the standard CoNLL 2003

dataset [113]. Although most of the work has focused on formal datasets, similar approaches

have been evaluated on SM domains [110, 36]. In the Workshop on Noisy User-generated

Text (WNUT) 2016, [64], the winners of the social media NER shared task used a BLSTM-

CRF model that induced features from an orthographic representation of the text. In the

WNUT 2017 shared task, I proposed a multi-task learning (MTL) network that transferred

the knowledge to a CRF classifier for the final prediction [5]. The method achieves first place

in the competition.

This chapter focuses on addressing specific social media challenges for the NER task.

I propose that, what is traditionally referred to as noise (i.e., misspellings, inconsistent

orthography, emerging abbreviations, and slang), should be modeled as is since it is an

inherent characteristic of SM text (see the examples in Figure 3.1).

CoNLL 2003 - News domain

[Spanish]MISC Farm Minister [Loyola de Palacio]PER had earlier

accused [Fischler]PER at an [EU]ORG farm ministers ’ meeting of

causing unjustified alarm through “ dangerous generalisation . ”

WNUT 2017 - Twitter domain

been listenin to [trey]PER alllll week ... can u luv someone u never

met ?? bcuz i think im in luv yeeuuuuppp !!!

Figure 3.1: Examples from the CoNLL 2003 and WNUT 2017 datasets.

Specifically, the proposed model attempts to address i) misspellings using word- and
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character-level representations, ii) grammatical mistakes with SM-oriented part-of-speech

tags [81], iii) sound-driven text with phonetic and phonological features [20], and iv) the

intrinsic skewness of NER datasets by applying class weights. It is worth noting that the

model does not rely on capitalization or any external resources such as gazetteers. The

reasons are that capitalization is arbitrarily used in SM environments, and gazetteers are

expensive resources to develop for a scenario where novel entities constantly and rapidly

emerge [36, 14].

3.1 Methodology

3.1.1 Feature Representation

Semantic features Semantic features are crucial for the model as they provide contextual

information about the entities. I use the pre-trained word embedding model provided by

[46]. This model has been trained on 1 million tweets (roughly 1% of the tweets in a year)

with the skip-gram algorithm. These embeddings are also effective in other SM domains

besides Twitter [5].

Syntactic features Syntactic features help the models deal with word disambiguation

based on the grammatical role that the words play on a sentence. I capture grammatical

patterns using the part-of-speech (POS) tagger provided by [81]. This POS tagger has

custom labels suitable for SM data (i.e., the tagger considers emojis, hashtags, URLs, and

others).

Phonetic and phonological features I also consider the phonetic and phonological as-

pects of the data at the character level. Table 3.1 shows an example of two phrases: the

first sentence is taken from SM, and the second one is its normalized representation. Even
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Table 3.1: Noisy and normalized text with equal International Phonetic Alphabet mappings.

Sentence IPA

u hav to b KIDDDDING me /ju hæv t@ bi kIdIN mi/

you have to be kidding me /ju hæv t@ bi kIdIN mi/

though both phrases’ spellings are significantly different, it is possible to map them to the

same representation using their phonetics and phonological (articulatory) aspects. In other

words, the assumption is that social media writers heavily rely on the way that words sound

while they write. I use the Epitran1 library [20], which transliterates graphemes to phonemes

with the International Phonetic Alphabet (IPA). In addition to the IPA phonemes, I also

use the phonological (articulatory) features generated by the PanPhon2 library [79]. These

features provide articulatory information such as how the mouth and nasal areas are involved

in elaborating sounds while people speak.

3.1.2 Model Architecture

I propose a stacked model based on two phases: the feature extraction and the sequence

labeling.3 For the first phase, I define a multi-task neural network that acts as a word-level

feature extractor. The idea is to leverage the context and linguistic properties in the input

to extract fine-grained word-level features. The multi-task network uses two tasks:

• Segmentation. This task focuses on the Begin-Inside-Outside (BIO) scheme of the

labels, also known as chunking. For a given NE, the model predicts whether a word

is B, I, or O regardless of the entity type (e.g., person, location, etc.). This allows the

model to learn how entities are treated in general, rather than associating the types to

specific contexts.

1https://github.com/dmort27/epitran
2https://github.com/dmort27/panphon
3This model improves upon the system I presented in the WNUT shared task in 2017.
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• Categorization. In this case, the model has to predict the types of entities along

with the BIO scheme (e.g., B-person, I-person, etc.), which represent the final labels.

Note that the model makes such predictions without taking into consideration the final

sequence of labels.

For the second phase, I use the features extracted by the model to train a conditional

random fields (CRF) classifier for the final sequence labeling. This phase aims to use hidden

representations from the multi-task network to refine the final sequence of labels. Unlike the

multi-task network, the CRF classifier looks at the full sequence to make its final prediction.

The overall model is shown in Figure 3.2.

Figure 3.2: This is a stacked model that uses a multi-task learning (MTL) network as
feature extractor. Once the MTL model is optimized, it transfers the learned features to a
conditional random fields (CRF) classifier.

Multi-Task Learning Model Consider the sentence X = [x1, x2, ..., xn] where xi is the

ith word in the sentence. I define the word embedding function α : Vx → Rdimx that

maps each word xi in the vocabulary Vx to the sequence of word embedding vectors x =
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[α(x1), . . . , α(xn)]. Similarly, let β : Vp → Rdimp be the POS tag embedding function that

projects the sequence of POS tags into the sequence of vectors p = [β(p1), . . . , β(pn)] For the

phonetic segments of a word, I define a character-level function γ : Vq → R|Vq |+dimPanPhon that

maps each phonetic character to a one-hot vector of the International Phonetic Alphabet

(i.e., Vq) concatenated with the 21 (i.e., dimPanPhon) phonological features of the PanPhon

library (e.g., tongue position, movement of lips, etc.) [20]. Then, the phonetic and phonology

embedding sequence for a given word is defined as q = [γ(q1), ..., γ(qm)]. Notice that the

embedding matrices p and q for the POS tags and phonetics are learned from scratch during

training. The word embedding matrix x is initialized from pre-trained static embeddings.

I apply a character-level LSTM [53] to the q matrix on forward and backward directions.

Then, I concatenate the output from both directions as follows:

−→
h = LSTM({q1,q2, ...,qm})
←−
h = LSTM({qm,qm−1, ...,q1})

h = [
−→
h ;
←−
h ]

This vector not only encodes the phonetic and phonological features, but it also captures

morphological patterns at the character level based on the IPA representations. I concate-

nate the vector h with the word and POS tag representations: a = [xt; pt; ht] by their

corresponding time step t in the sequence. I feed the a representation to a word-level bidi-

rectional LSTM network [39], similar to the BLSTM described for the character level. The

bidirectional LSTM generates a word-level representation that accounts for the sentence’s

context using semantics, syntax, phonetics, and phonological aspects. I linearly project the

resulting sequence of vectors a to a fully-connected layer. Then, the final internal feature
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representation z is obtained as follows:

r = BLSTM({a1, a2, ...an}) (3.1)

zi = ReLU(Wari + b) (3.2)

Each of the internal representations zi in the sequence is used as the input to the multi-

task learning layers of the model. In particular, I define two objective functions that account

for the segmentation and categorization tasks:

Lseg =− y log(softmax(Wseg z + b))

Lcat =− y log(softmax(Wcat z + b))

L = αLseg + Lcat

The overall objective is the sum of both Lseg and Lcat with a weighting factor α that reduces

the impact of the segmentation task (i.e., the categorization task is the ultimate goal, hence

it needs to be prioritized).

Conditional Random Fields Once the MTL model is optimized, I use the feature repre-

sentation zi for every word as input to a conditional random fields (CRF) classifier. The idea

of having these two phases separated is to let the MTL model focus on extracting dedicated

representations for each word. This means that the MTL model’s categorization predictions

are not ideal for the sequence as a whole, although it is optimal for every word separately.

Since the NER task is span-oriented (i.e., many words can form a single entity), the whole

sequence must show consistency with the BIO scheme when detecting entities. The CRF

classifier focuses on this task by choosing the optimal output sequence beyond only looking

individually at each word.
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3.2 Experimental Setting

3.2.1 Dataset

I focus this work on the WNUT 2017 dataset for NER [36]. This dataset covers multiple SM

platforms and perfectly suits the purpose of this work. Table 3.2 shows the distribution of the

dataset and its classes. The training set uses tweets, whereas the development set is based

on YouTube comments. The testing set combines content from Reddit and StackExchange.

The cross-domain nature of the dataset establishes an additional challenge to the task. For

instance, besides the particularities of the domains (e.g., length of the sentences, domain-

specific expressions such as hashtags, emojis, and others), the users tend to address different

topics on each of the SM domains with varying levels of relaxed language and style [94, 110,

36]. Moreover, the predominant factors in those SM environments are the emerging and rare

entities. As stated by [36], emerging describes the entity instances that started to appear

in context recently (e.g., a movie title released a year ago), whereas rare depicts the entities

that occur less than a certain number of times. It is worth noting that this dataset presents a

significant challenge to systems that rely on external resources due to the rare and emerging

properties.

Table 3.2: WNUT 2017 dataset with the class frequency distribution.

Classes Train Development Test

person 995 46 532
location 793 238 188
group 414 64 202
creative-work 346 107 331
product 345 586 250
corporation 267 209 86

Classes 3,160 1,250 1,589
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3.2.2 Implementation Details

I perform a straightforward pre-processing step on the data, which consists of replacing

URLs, emojis, tags, and numbers with predefined tokens. Additionally, the pre-trained word

embeddings’ vocabulary is not sufficient to cover all the words in the WNUT dataset (i.e.,

training, validation, and testing sets have out-of-vocabulary words). I handle this situation

using the Facebook library fastText [21]. This library can produce an embedding vector

from the subword level of the word (i.e., n-grams). The advantage of fastText over other

embedding learning algorithms is that it is possible to extract useful embeddings for OOV

words by relying on the subword embedding space. For instance, if there is a missing letter

in one word, the subword-level vector will be reasonably close to the correct spelling vector.

The model is trained using weighted classes, which forces the model to pay more attention

to the less frequent labels. This is an essential step since the NE datasets usually show a

skewed distribution, where the NE tokens represent approximately 10% of the entire corpus

or less. Although weighing the classes improves the model’s recall, the model is susceptible

to this measure because it can lead to predicting entities even in cases where there are none.

The weights were experimentally defined, keeping the same distribution but decreasing the

loss on non-entity tokens.

Additionally, I define the model using the following hyperparameters: the phonetic and

phonological BLSTM at the character level uses 64 units per direction, which adds up to

128 units. Similarly, the word level BLSTM uses 100 units per direction, which accounts

for 200 units. The fully-connected layer has 100 neurons, and it uses a Rectified Linear

Unit (ReLU) activation function. Also, I use a dropout operation before and after each

BLSTM component. This forces the networks to find different paths to predict the data,

which ultimately improves the generalization capabilities (i.e., they do not rely on a single

path for specific inputs). The dropout probability value is 0.5. I train the model using the
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Adam optimizer [61] with a learning rate of 0.001.

3.3 Results and Analysis

I provide the experimental results of the proposed model in Table 3.3. I experimented with

two versions of the model, and I added the winning system results from the WNUT shared

task for reference. The first version uses the two-phase training setting, which I refer to as the

stacked model. The second version uses a single-phase training of the same model in an end-

to-end (E2E) fashion (i.e., the CRF loss is back-propagated to the feature extractor). The

results show that both versions, the end-to-end and stacked models, significantly outperform

the state-of-the-art score by 2.28% and 3.69% F1 points, respectively.

Table 3.3: The class-level and overall results of the systems on the WNUT 2017 dataset.
Stacked means that the model was trained on a two-phase setting (i.e., first the MTL
network, then the CRF classifier). E2E means that the model was trained in a single phase,
back-propagating the gradients from the CRF down to the feature extractor. WNUT
represents the winning system of the shared task by the UH-RiTUAL team in 2017. A
t-test experiment shows that the stacked model improvement over the end-to-end model is
statistically significant, with p-value < 0.0025 [38].

Precision (%) Recall (%) F1 (%)

Classes Stacked E2E WNUT Stacked E2E WNUT Stacked E2E WNUT

corporation 33.33 30.77 31.91 19.70 12.12 22.73 24.76 17.39 26.55
creative-work 50.00 55.56 36.67 14.79 10.56 7.75 22.83 17.75 12.79
group 47.76 63.16 41.79 19.39 14.55 16.97 27.59 23.65 24.14
location 62.20 78.12 56.92 52.67 50.00 49.33 57.04 60.98 52.86
person 73.49 71.15 70.72 51.05 51.75 50.12 60.25 59.92 58.66
product 40.58 34.29 30.77 22.05 9.45 9.45 28.57 14.81 14.46

Overall 61.06 66.67 57.54 36.33 32.99 32.90 45.55 44.14 41.86

The stacked model results predominantly outperform the scores of the WNUT system.

The only class where the WNUT model performs better is corporation, even though it uses

gazetteers across all classes. The entity diversity of the dataset can explain these results,
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where the emerging and rare properties are difficult to capture with external resources. Nev-

ertheless, the proposed model does not rely on similar external resources and still performs

better.

Another important aspect is that the stacked system has lower precision than the end-

to-end model, but its recall is the highest. This means that the stacked model is slightly

better at generalizing than the other models since it can detect a more diverse set of entities.

The surface form F1 metric [36] supports that intuition as well. It assigns a better F1 score

to the stacked system (43.90%) than to the end-to-end model (42.79%) because the former

finds more rare and emerging entities than the latter. Moreover, Table 3.3 also shows that

the precision of the end-to-end model is higher than the rest of the systems. This tends

to capture the most frequent entities and leave behind the rare ones, which explains the

different behaviors between the precision and recall of both models.

MTL and CRF Comparison The feature extractor contains a category task that can

produce predictions of the test set. I explored predicting the final labels with the feature

extractor and compared the results against the CRF classifier’s predictions. The CRF always

outperformed the MTL network. For the best scores, the feature extractor achieved 40.64%,

whereas the CRF reached 45.55%. This is consistent with previous research [63, 5] in that

the label probabilities per individual word do not consider the whole sequence. Thus, a

sequential algorithm such as a CRF can improve the results by learning global constraints

of the BIO scheme (i.e., the B-person cannot be followed by I-corporation).

Ablation Experiment I explored the contribution of the features and different aspects

of the model. For instance, I tried a BLSTM network using pre-trained word embeddings

only. The results of this model set the baseline on 39.78% F1 (see Table 3.4). This score

is considerably close to the state-of-the-art performance, but improvements beyond that
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are small. Table 3.4 shows an ablation experiment using the stacked model. The ablation

reveals that weighting the classes is the most influential factor, which accounts for a 2.58%

of F1 score improvement. This aligns with the fact that the data is highly skewed, and

thus, the model should pay more attention to the less frequent classes. The second most

relevant aspect is the POS tags, which enhance the results by 1.10%. This improvement

suggests that POS tags are important whether the dataset is from a noisy environment or

not. Other researchers have found positive effects by using this feature on formal text [55].

Almost equally influential are the phonetic and phonological features that push the F1 score

by 0.93%. According to the ablation experiment, using phonetic and phonology along with

the pre-trained word embeddings and POS tags can reach an F1 measure of 41.81%, which

is a very similar result to the state-of-the-art score, but with a simpler and more suitable

model for SM environments (i.e., without gazetteers or capitalization).

Table 3.4: I performed an ablation experiment on the stacked model. The results in the
table are the average of the scores of three iterations.

Model F1 Delta

Stacked Model 45.55
- Multitask Learning 44.76 -0.79
- Character phonetics 43.83 -0.93
- Weighted classes 41.25 -2.58
- POS tag vectors 40.15 -1.10
- fastText OOV vectors 39.78 -0.37
- Pre-trained embeddings 12.72 -27.06

For the OOV problem, I used fastText to provide over 2,333 vectors for unknown words

(around 13% of the vocabulary). However, the ablation experiment shows a small improve-

ment when using fastText embeddings. This suggests that those word representations did

not substantially contribute to the meaning of the context. Another aspect that I explored

was adding all the letters of the dataset to the stacked model’s character level without mod-

ifying the casing. Surprisingly, the models produced a slightly worse result (around -0.5%).
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Intuitively, the character aspects are already captured by the model with the phonetic (IPA)

representation, and the arbitrary use of capitalization renders this information useless. It

is also worth noting that having phonetics instead of a language-dependent alphabet allows

this approach’s adaptability to other languages.

Multiple Tasks I explored the multi-task learning setting by empirically trying multiple

combinations of auxiliary tasks. The best combination is the standard NER categorization

along with the segmentation task. The segmentation slightly improves the binary task

proposed by [5] by around 0.3%. Additionally, trying the binarization, segmentation, and

categorization tasks together drops the results by about 0.2% for the categorization paired

with the binary task. Moreover, the ablation experiment shows that the multi-task layer

boosts the stacked model’s performance with 0.79% of F1 score.

Model Predictions Table 3.5 shows some predictions of the stacked model on the WNUT

2017 test set. In example number 1, the model can correctly label Srinagar as person, even

though the model does not rely on gazetteers or capitalization. It is also important to mention

that the word was not in the training or development set, which means that the network

had to infer the entity purely from the context. Moreover, the second example shows that

the model has problems to determine whether the article the belongs to an NE or not. This

is an ambiguous problem that even humans struggle with. This example also has a variation

on spelling for the words Defence and Organisation. I suspect that the mitigation of OOV

words using the fastText library helped in this case. Also, from the phonetic perspective,

the model treated the word Defence as if it was the word Defense because both words map

to the same IPA sequence, /dIfEns/. In the third case, the model cannot identify the NE

Scout, even though the context makes it reasonably easy.
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Table 3.5: Model predictions of the Reddit text in WNUT 2017 dataset. The bold words
are the gold labels, and the underlined words are the predictions.

No Predictions

1 Road and airport closure isolate Srinagar as avalanche risk remains high

2
The Defence Research Development Organisation ( DRDO ) is working on

four projects to develop new technologies for more accurate ...

3 Her name is Scout .

3.4 Limitations

Modeling noise is a challenging task due to its many forms in social media text (e.g., arbitrary

abbreviations, regionalisms, new expressions, misspellings, etc.). Sound-driven writing is

only one aspect, and even in the scope of this particular aspect, there are many more things

to consider that go beyond this chapter. For instance, one of the limitations of the proposed

method is that the model learns phonetic character-level features from scratch, restricting

the model generalization to the aspects learned during a specific dataset training. In contrast

with the pre-training and fine-tuning steps usually seen in current methods, the proposed

model does not have a general sense of phonology and phonetics. Hence, the sound-driven

writing abstraction of the model is limited to a shallow representation of the text.

Additionally, these representations are not learned from raw text. Instead, the model

requires character-level inputs in the form of IPAs. While these IPAs are extracted automat-

ically using external tools, they are not necessarily tailored to the social media domain. For

instance, the tools are language-specific, and social media often presents multiple languages

in the text. Nevertheless, showing the impact of modeling sound-driven writing motivates

more linguistic-aware models (e.g., pre-training a language model that is aware of sound and

then fine-tuning it on SM).

Another important aspect to note is the hard-to-tune multi-task setting. In this research,

I tested different multi-task settings (binary, segmentation or chunking, and the main task),
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and the results show that more tasks are not necessarily better. The complexity of choosing

tasks is also tied to balancing each task loss’s impact on the model. A model could generalize

well for all the objectives (all the tasks) up to a point during training. It could then start

optimizing more of the objectives that may not be the task of interest while having an overall

lower error across tasks. That can be balanced with static or dynamic (i.e., trainable) weight

factors per loss, but this experimentation goes beyond the point of modeling noise in social

media texts.

3.5 Conclusion

I designed representations that are robust to SM data’s inherent properties rather than focus-

ing efforts on normalization. The proposed methods embrace challenges such as inconsistent

spellings, diverse vocabulary, and sound-driven writing. Considering that SM is a prevalent

communication channel that continuously generates massive amounts of data, it is practical

to design NLP tools to process this domain as is. Additionally, I showed that the pho-

netic and phonological features are useful to capture sound-driven writing. This approach

avoids the standard normalization process and boosts prediction performance. Furthermore,

multi-task learning with segmentation and categorization is important to improve the mod-

els’ results. Finally, the weighted classes force the model to pay more attention to skewed

datasets. I showed that these components point to more suitable approaches for NER on

social media data.

34



Chapter 4

Adapting to Flexible Syntax

In the study of the named entity recognition (NER) task, neural sequence labeling models

have been vastly explored by the NLP community. Small variations aside, the majority of

these models use a combination of a bidirectional LSTM and conditional random fields (CRF)

to reach the state of the art performance [63, 70, 85, 57, 4]. Recently, transfer learning from

pre-trained language models has played an important role on improving the performance

even further [65, 87, 11, 37, 54]. However, these NER models mainly process the text as a

straight sequence of words without explicitly considering the recursive nature of language.

Consider the phrase in Figure 4.1, “Your friend Jason, who has been helping us, called

you using his new Samsung.” The main sentence is composed of a verb phrase whose head

is called, which includes another verb phrase headed by the word using. Additionally, such

recursive properties can produce more involved and longer sentences. This behavior can

obscure relationships among words when the text is treated as a linear chain of tokens. In

the same example, the words Jason, called, using, and Samsung easily describe the way in

which the entities Jason and Samsung interact1. Nevertheless, existing models struggle to

identify such relationships in long sentences, resulting in a drop in performance.

1Some verbs provide sufficient clues to determine the entity type of the subject that performs the action.
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Figure 4.1: A dependency tree that shows how words relate among each other.

I propose a new approach for NER, where the goal is to enhance the syntactic relationships

among words and combine such aspects with semantic representations commonly used in this

task. The model extracts features from text using a Tree-LSTM [112] guided by dependency

tree structures. As shown in Figure 4.1, the dependency trees connect the words based on the

role they play in the sentence and the way they interact with each other. The output features

are weighted with relative and global attention mechanisms. While the relative attention

focuses on the most relevant words for the word being evaluated, the global attention spots

the essential words over the whole sentence. After weighing the hidden vectors, I linearly

project them into the tagging space. I predict the entity labels using a conditional random

field classifier. The findings show that the model detects words that disclose the entity types

based on their syntactic roles in a sentence (e.g., verbs such as speak and write are attended

when the entity type is PERSON, whereas meet and travel strongly relate to LOCATION).

4.1 Methodology

4.1.1 Feature Representation

I represent the input data using words, part-of-speech tags, and dependency parses. For

words , I employ deep contextualized representations using ELMo2 [87]. ELMo provides

vector representations that are entirely built out of characters. This allows overcoming the

problem of out-of-vocabulary words by always having a vector based on morphological clues

2https://allennlp.org/elmo
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for any given token. For POS tags and dependency relations, I use trainable embedding

matrices that are optimized from scratch. POS tags have proven useful in previous research

[28, 4], and dependency relations help the model to infer the interaction between nodes in

the trees. Once I have a vector representation for every input feature, I concatenate them

to form a single vector for every token in the sentence.

4.1.2 Model Architecture

Tree-LSTM The Tree-LSTM component, introduced as Child-Sum Tree-LSTM by [112],

is a generalization of the standard LSTM cell [53] that can handle multiple inputs at every

time step. Both cells are equivalent when the input tree is comprised of a single child at every

level. The Child-Sum Tree-LSTM runs in a bottom-up fashion, which makes it equivalent

to a reversed LSTM when the root is the first word in a straight sequence of tokens.

Relative attention Similar to the self-attention mechanism introduced by [116], I define

an attention mechanism based on the scaled-dot product formulation. The relative attention

is a particular case of the self-attention mechanism, where the main diagonal of the attention

matrix is not taken into account to draw the probability distributions. More specifically,

there is a probability distribution over all words wj for every word wi where i 6= j. The idea

is to utilize the surrounding context for a word more than exploiting the word itself. The

attention matrix is computed as

A = softmax(d−0.5a QKT ) (4.1)

where A ∈ RN×N is a squared matrix that contains the attention weights for N words in a

sentence, i and j denote the row and column indexes, such that
∑N

i

∑N
j 6=iAij = N . Q and

K are linear transformations of the input using the query and key matrices WQ ∈ Rda×da
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and WK ∈ Rda×da where da is the dimension of the input and output matrices. The weighted

values are calculated as follows:

M = AV + V (4.2)

Similar to Q and K, V is a linear projection of the input using the value matrix WV ∈

Rda×da . Note that the matrix multiplication between A and V discards the words wii because

A contains zeros in its main diagonal. Hence, I include this information by adding the matrix

V to the product.3

Global attention In the case of the global attention, I use a fairly standard mechanism

introduced by [16]. The idea is to concentrate mass probability over the words that capture

the most relevant information across the sentence. Note that this mechanism conceptually

differs from relative attention. While relative attention draws dedicated probability distri-

butions conditioned on each word, the global attention is only conditioned by the context q,

thus generated only once for the whole sentence. The attention mechanism uses the following

equations:

ui = vᵀ tanh(Whhi + bh + Wqq + bq)

ai =
exp(ui)∑N
j=1 exp(uj)

, s.t.
N∑
i=1

ai = 1

zi = aihi

(4.3)

where Wh ∈ Rda×dh , Wq ∈ Rda×dq , bh ∈ Rda , and bq ∈ Rda are trainable parameters of the

model. Wh and Wq are used to linearly project the hidden word vectors hi and the query

vector q into the attention space. In the case of using a Tree-LSTM, q is the root hidden

vector hroot, whereas in a LSTM q is simply the last hidden state hn. Finally, I multiply the

3This is equivalent to M = (A + I)V where I ∈ RN×N is the identity matrix.
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scalars ai and their corresponding hidden vectors hi to obtain the weighted sequence z.

Residual connections I incorporate residual connections [50] at every component of our

module, followed by layer normalization as in [15]. The output of a given Sublayer is de-

scribed as follows:

z = LayerNorm(x+ Sublayer(x)) (4.4)

where LayerNorm is an affine function that contains trainable parameters. Additionally,

Sublayer can be any component of our model, such as a Tree-LSTM, relative attention, or

global attention. I keep the same dimensions for inputs and outputs to simplify adding the

vectors of any given module. This module only normalizes the output tensor in the last

dimension.

Conditional random field I use a conditional random field (CRF) classifier at the top

of our model to perform the sequential inference. The CRF takes vectors in the tagging

space as input and produces the best sequence of labels using the Viterbi algorithm. CRF is

well-known and widely used for sequence labeling because it learns the rules of transitioning

from one label to another based on the feature vectors of the sequence as a whole instead of

individually.

Consider the observation sequence of vectors x = [x1, . . . , xn] and its corresponding target

labels y = [y1, . . . , yn]. CRF computes the conditional probability of the target sequence y

given the inputs x by globally normalizing the target score:

pθ(y|x) =
1

Zθ(x)

N∏
t=1

ψ(yt−1, yt,x; θ) (4.5)

where Zθ(x) is a normalization term that adds up the products of ψ(·) for all the possible y

sequences. ψ(·) is the potential parametric function that sums the transition and emission
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features. I use the logistic expression of Equation 4.5 during training to optimize our model.

Overall architecture The overall model architecture is shown in Figure 4.2. I first em-

bed the input sentence into a vector space using the token embedder module. This module

concatenates the word, POS tag, and dependency relationship vectors into a single represen-

tation for every token. These vectors are fed into the semantic (on the left) and syntactic

(on the right) feature extractors, which are stacked layers of bidirectional LSTMs and Tree-

LSTMs, respectively. The model then concatenates the outputs of these components and

feeds them into the relative and global attention modules.4 The weighted vectors from the

attention mechanisms are linearly projected into the tagging space and fed into a conditional

random field classifier.

Figure 4.2: The overall model architecture.

I optimize the model by minimizing the negative log-likelihood loss produced by the

CRF’s forward algorithm. In addition to this loss, I include an `2 regularization term that

4The arrows that skip layers denote the residual connections.
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targets the parameters of the semantic and syntactic feature extractors and the attention

mechanisms. The idea is to reduce over-fitting when the model selects the features from the

syntactic and semantic blocks and forces the attention mechanisms to avoid bias towards

specific aspects of the sentences. Given the target sequence y and the predicted labels ŷ, I

define the objective function5 of the model as follows:

L = − 1

N

N∑
i

yilog(ŷi) + λ
∑
k

w2
k (4.6)

where N is the length of the sentence and wk denotes the parameters of the feature extractors

and the attention mechanisms. λ is the penalty that indicates how much of this regularization

term will be added to the overall loss, and log(ŷi) is determined by the logistic expression

from Equation 4.5.

I reduce the loss of our model using Stochastic Gradient Descent (SGD) with momentum

[111]. I train our models for 150 epochs and change the learning rate every epoch using

cosine annealing and warm restarts [68]. Besides adding `2 regularization, I also prevent

over-fitting by applying input variational dropout [43] to every component in our model.

4.2 Experiments and Results

Datasets I run experiments on CoNLL-2003 [113], SemEval-2010 Task 1 [93], WNUT-2016

[110], and WNUT-2017 [36]. Table 4.1 shows a summary of the data splits for each corpus

along with the number of entities. I use datasets from the news and social media domains to

compare the effectiveness of the method using dependency trees. The SemEval-2010 dataset

contains dependency trees manually annotated. For the CoNLL-2003 and WNUT datasets,

I auto-generated dependency parsing using off-the-shelf methods. Note that the social media

5This function expresses the loss for a single input sequence.
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Table 4.1: The data splits on each corpus along with the number of named entities.

Corpus Domain Train Development Test NEs

CoNLL 2003 News 14,041 3,250 3,453 4
SemEval 2010 News 3,648 741 1,141 22
WNUT 2016 Social Media 2,394 1,000 3,850 10
WNUT 2017 Social Media 3,394 1,009 1,287 6

dependency trees are noisier than the ones for the news datasets. Therefore, each dataset

provides a level of reliability for the dependency trees, being SemEval-2010 the most reliable

and WNUT-2016 and 2017 the least reliable.

Experiments The goal of the experimentation is to compare the performance between

sequential processing (i.e., Blstm) vs. hierarchical processing guided by dependency trees

(i.e., Tlstm). Hence, the experiments on Table 4.2 are layout in row pairs for each additional

component or input feature added to the processing methods.

For experiments 1.1 to 1.4, adding POS tags improves significantly the performance

compared to only using the words in either the Blstm or Tlstm models. The benefit of

adding POS tags as input is consistent with previous research (see Section 4.1.1).

In general, the results show that the Tlstm works better than the Blstm when the

dependency trees are reliable. The SemEval-2010 dataset provides manually-annotated trees,

while the other datasets use trees automatically generated. Common problems for auto-

generated trees are nodes mistakenly connected within the tree, as well as multi-rooted

sentences (i.e., multiple trees for a single sentence). The former issue can tangle the word

relationships while processing the word-to-word connections (i.e., parent and children) across

the sentence tree. The latter issue prevents the information to flow from one tree to another,

hence restricting the context of one tree to the rest of the text. This scenario is more prone

to happen on social media text, where multiple utterances are combined within a single post.
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Table 4.2: The F1 scores on the validation sets. Blstm and Tlstm are bidirectional and tree
LSTMs. † denotes residual connections on every component. RA and GA refer to relative
and global attentions. All the experiments use ELMo embeddings and CRF. Running t-test
shows that the experiment numbers between methods (Blstm vs. Tlstm) are statistical
significant with all p-value < 0.01. The experiment 3.1 on the SemEval-2010 dataset is also
statistically significant against the previous best score given by experiment 2.6.

Experiment CoNLL-03 SemEval-10 WNUT-16 WNUT-17

Baseline models
1.1. BlstmWord 89.06 80.81 46.89 58.63
1.2. TlstmWord 86.72 79.53 47.32 57.13

1.3. BlstmWord+POS 91.22 80.31 47.22 59.04
1.4. TlstmWord+POS 88.91 84.07 47.54 57.87

Attention modules
2.1. Blstm + RA† 91.65 84.19 47.52 57.46
2.2. Tlstm + RA† 91.13 84.94 47.78 58.31

2.4. Blstm + GA† 91.39 84.87 47.87 58.82
2.3. Tlstm + GA† 90.62 85.09 47.25 57.09

2.5. Blstm + RA + GA† 91.63 85.12 48.67 59.28
2.6. Tlstm + RA + GA† 90.60 86.24 47.96 57.42

Combining feature extractors
3.1. Tlstm + Blstm + RA + GA† 91.17 86.49 45.35 55.19

For the WNUT-2016 and -2017 datasets, I generate the trees with the TweeboParser tool

[81]. This tool is tailored to Twitter data, which is fully compatible with the WNUT-2016

dataset. However, the WNUT-2017 uses Twitter for the training set, YouTube comments

for the development set, and StackExchange posts for the test set. This domain shift is not

ideal for the automatically-generated trees, which explains the lower performance of experi-

ments 1.2 and 1.4 compared to the experiments 1.1 and 1.3 on WNUT-2017. Additionally,

the WNUT-2016 experiments favor less the Blstm scores; the Tlstm is more competi-

tive to Blstm than in WNUT-2017 dataset. Nevertheless, having multiple trees per tweet

negatively impacts the Tlstm model.

Importantly, the relative attention helps to reduce the problem of multiple trees and

ambiguous node connections in the dependency parse. For instance, experiments 2.2 improve
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their performance from experiment 1.2 across datasets. Intuitively, the relative attention

helps to reconnect the isolated trees by having a Cartesian product from the self-attention

mechanism (i.e., one word attending all other words in the sentence).

Finally, the experiment 3.1 shows that combining all the components as well as the *lstm

models can yield good results if the dependency trees are reliable (experiment 3.1 on the

SemEval-2010 dataset). Otherwise, the Tlstm can have no positive effect, or even harm the

results.

4.3 Analysis

Relative attention Figure 4.3b shows the relative attention matrix for the dependency

tree in Figure 4.3a. Each row of the matrix draws a probability distribution over the rest

of the words (columns). By inspecting the matrix, it is easy to note that the words at

and joined in the x-axis are the most relevant for Albania in the y-axis, whereas U.S.,

Canada, European, and Albania (x-axis) are the most important for joined (y-axis). This

supports the idea that prioritizing words based on their relationships can provide different

perspectives of the sentence at the word level. Additionally, when I inspect the models

Blstm and Tlstm separately, I find different patterns captured in their attention matrices;

for Blstm the relations are prioritized semantically (e.g., verbs are the most important parts

and prepositions are hardly highlighted), whereas for Tlstm it is more syntactically (e.g.,

prepositions, verbs, punctuation are all relevant). Merging both techniques improves the

results because they are complementary.

Global attention Figure 4.4 shows the attended words once the relative attention matrix

has extracted the prioritized relations. The figure shows a combination of both syntactic

and semantic patterns. That is, while words like joined and meeting would be semantically
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(a)

(b)

Figure 4.3: A dependency tree (a) with its relative attention matrix A (b).

expected, the model also focus on except, at, and the punctuation. Importantly, the model

does not act as an entity spotter at this level.6 Instead, it relies on the syntactic structure of

the sentence. Additionally, note that the word meeting was not too relevant in the relative

attention matrix, but at the global perspective, it becomes important. This suggests that

the attention mechanisms are complementary.

Figure 4.4: The global attention probabilities. The more highlighted the token is, the more
probability mass it has. The labels and predictions (italics) appear below each word.

Blstm vs. Tlstm Figure 4.5 shows the relative attention probabilities using the Blstm

(Figure 4.5a) and Tlstm (Figure 4.5b) models. For Figure 4.5a, the probability mass tends

to concentrate on the last words of the sentence (e.g., will cry for days), while Figure 4.5b

shows that the attention mass spreads across the sentence with clear emphasis on entity words

like justin bieber and ELLEN. Despite concentrating the probability mass over the entity

6e.g., BlstmWord with global attention tends to highlight entities suggesting memorization rather than
generalization
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words, it is worth noting that the relative attention ignores the i-th word when computing

the probabilities for the same word wi. This forces the model to look at the context rather

than just memorizing the entity every time.

(a) (b)

(c)

Figure 4.5: A comparison of the relative attention matrices between the Blstm (a) and
Tlstm (b) models for tweets from the WNUT-2016 dataset. The matrices contain row-wise
probability distributions that exclude the main diagonal (from bottom-left to top-right).
Both models correctly predict the entities justin bieber and ELLEN, but their patterns are
different. Note that the Tlstm attention (b) highlights the words justin bieber while the
Blstm attention barely captures those words (a). Importantly, the dependency tree (c) used
by the Tlstm model is a multi-rooted tree, which highly influences the short memory state
of the Tlstm (i.e., the top nodes are the last nodes to be processed).

Additionally, the dependency tree used by the Tlstm model contains multiple roots

(e.g., RT, <USER>, and punctuation). These roots are not connected by the Tlstm model
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because it requires a multi-root node as input in addition to the children states. This means

that the information never flows from one tree to another, completely isolating the context

from one or more fragments of the text.7 The attention matrix in Figure 4.5b shows that

the isolated roots attract mass probability from the attention.

Entity connections I investigate whether the attended words with respect to the entity

tokens follow any particular pattern. I conduct the study by controlling over the entity types

and their corresponding POS tags. Specifically, I only consider the entity tokens whose POS

tags are nouns (e.g., NN, NNS, NNP, or NNPS). Then, I extract the top three most attended

words along with their POS tags from the SemEval 2010 validation set. In Table 4.3, I show

the coverage of the most attended POS tags and their corresponding words for PERSON and

LOCATION. For the type PERSON, the nouns president, assistant, and officer are roles that

only people perform, which easily discriminate the type PERSON from any other entity type.

In the case of its attended verbs, speak, love, and die are actions also performed by people

(i.e., the entity is the subject of the sentence). For the type LOCATION, the verbs entitle,

travel, and meet appear in cases where the location is the object of the sentence, and as such,

these verbs disclose enough information to recognize that the entity is a place. Similarly,

the nouns pollution, earthquake, and temperatures are commonly used to describe the state

or events in a specific location. These findings are consistent with the initial intuition that

specific words, along with their syntactic roles, can disclose important clues to recognize a

given entity.

Attended word distances. I calculate the distance between the entities and its most

attended words (i.e., the words with the highest probabilities). I take the attention matrix

A and look for the rows whose tokens are labeled as entities. Then, I extract the most

7Although in the example this is not problematic because the isolated roots do not carry context (i.e., it
is mainly punctuation).
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Table 4.3: The most attended words for nouns that are labeled as PERSON or LOCATION.
The table shows the attended POS tag per entity, its coverage, and the corresponding list
of words.

Entity POS Coverage Most Attended Words

PERSON

NN 31.53%

mr., correspondent, events, assistant, suit, case, ms., poll,
a.m., consultant, president, express, officer, ignorance, cbs,
wife, member, years, diet, menswear, life, relations, sunday,
instance, season, network, school, woman, professor

VB 15.88%

say, speak, come, go, write, begin, produce, need, tie, star,
schedule, re-create, report, take, die, call, feature, love, con-
tinue, agree, know, pinch, consider, co-anchored, waive,
brush, happen, issue, thank, welcome, slat, age, loot, re-
sign, wrap, fall, chew, entomb, upset, allay, admire, place,
strengthen

LOCATION

VB 28.42%
show, mellow, hold, direct, entitle, possess, continue, allow,
travel, reach, begin, report, play, meet, carry, cause, miss,
reduce, happen, mean, threaten, decide

NN 23.50%

approaches, pollution, correspondent, temperatures, earth-
quake, u.s., meters, toepfer, run, re-enactment, behavior,
mechanisms, breach, secrets, francisco, suspect, verdict, role,
clue, analysis, thompson, space, story, zealand, violence,
freedom, europe, front, glacier, conference, way, russia,
death, cause, lake

attended words and calculate the number of hops between the entities and the extracted

words for both the sentence sequence and the dependency trees. Figure 4.6a clearly shows

that the most attended words by the model are closer when their layout is a tree instead

of a sequence. That partly explains a better performance of the TlstmWord+PoS over the

BlstmWord+PoS for the SemEval-2010 dataset. This also aligns with the claim that the

long-distance relations are potentially lost along the sentence when the words are treated as

a straight sequence of tokens. However, the distances between the entity tokens and the most

attended words is much less in the WNUT-2016 as shown in Figure 4.6b. This suggests that

the Blstm is hardly challenged for long-distant dependencies when processing the social

media sequences. Hence, the gap in performance for the social media datasets is mainly due
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to 1) the Blstm being effective on short sequences, and 2) the Tlstm processing ill-formed

dependency trees.

(a) SemEval-2010 dataset

(b) WNUT-2016 dataset

Figure 4.6: Average of hops to the most attended words in the validation set with respect
to the entity tokens. For sequences, the hops are the number of tokens in between the entity
and the most attended word. For trees, the hops are the number of nodes in the path that
connects the entity and the most attended word.

Reliable dependency parses The Tlstm model exploits syntactic patterns, but the

performance greatly relies on the quality of the dependency trees. I assess the impact of

the dependency trees by evaluating the model using automatically generated trees from the

Stanford CoreNLP tool [72]. I replace the trees in the validation set of the SemEval-2010

dataset, which originally has manually annotated dependency parses. Not surprisingly, the

F1 score drops by 3.31 absolute points from 86.49 to 83.18 F1 score. By further inspection of

the trees generated from scratch, I find that they contain multiple roots mainly because of

49



the multiple utterances that are transcribed from speech in the elaboration of these datasets.

Multi-rooted trees affect the performance of the Tlstm model because they prevent con-

necting information across the sentence.

4.4 Limitations

The main limitation of this study lies in the quality of the dependency trees. The Tree-

LSTM component works in a bottom-up fashion running from the leaves to the root of the

tree. If the tree is multi-rooted (i.e., a sentence mistakenly decomposed in multiple trees),

the sentence is segregated. That means that a tree’s context never reaches the other trees’

contexts, limiting the model’s information compared to a sequential LSTM. The relative

attention alleviates that, but the sequential LSTM performs better in such scenarios.

Another limitation of recursive modeling is parallelization. Parallelizing sequences in

a batch of samples is trivial compared to parallelizing trees. For the experiments in this

study, I parallelized trees by grouping samples based on the number of children at every

node, prioritizing the nodes with the largest number. That means that traversing the tree

in a bottom-up fashion becomes an iterative process. Nevertheless, the code adds a layer

of complexity while still performing about 1.4 times slower than the sequential LSTM. This

aspect can be a bottleneck in practice.

4.5 Conclusion

I proposed a novel approach that combines sequential and recursive linguistic properties for

NER. The model uses syntactic and semantic features extracted from Tlstm and Blstm,

respectively. Then, I fed this information into the relative and global attention mechanisms.

The relative attention allows the model to exploit linguistic properties over the sentence
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with respect to every word, while the global attention combines those properties to balance

semantic and syntactic patterns. By exploring the relationships among the entities and

the most attended words, I found that the model learned to detect words that disclose

information of the entity types based on their syntactic properties. Lastly, the performance

of the Tlstm greatly relies on the quality of the dependency parses, which makes it hard to

apply on social media data.
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Chapter 5

Are Models Relying on Memorization

or Generalization?

Named entity recognition (NER) has seen significant performance improvements with the

recent advances of pre-trained language models. Models such as ELMo [87], Flair [11, 10],

and BERT [37] have pushed further the state of the art on the CoNLL-2003 [113] and

WNUT-2016 [110] datasets. However, the large number of parameters of such models1

raises the question on whether the boost in performance comes from entity memorization

or contextual generalization. While both are important, the powerful memorization

capabilities, stemming from millions of parameters, can misrepresent the model’s genuine

generalization proficiency.

The improvements in the CoNLL-2003 test set are widely considered as an indicator

of progress in NER. Nevertheless, a further inspection of the test set using the subsets of

observed (i.e., entities appearing in the training set) and unobserved entity instances (i.e.,

only appearing in the test set) is never conducted. This aspect is particularly relevant due

1ELMo, Flair LM, and BERT (large cased) have around 93.6M, 36.5M, and 333M parameters, respectively.
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to the large overlap of entity instances among the partitions of the CoNLL-2003 dataset (see

Figure 5.1), favoring memorization rather than generalization.

(a) Location class in CoNLL-2003. (b) Geo-location class in WNUT-2016.

Figure 5.1: Top 30 most frequent entity instances in the (unobserved) test set and their
overlap with the train and development sets (observed). The subfigure (a) shows the most
common location entities from the CoNLL-2003 dataset, while the subfigure (b) describes de
geo-location class in WNUT-2016. The x-axis denotes the frequency of the entity instances.

In contrast, the WNUT-2016 dataset is used as a benchmark less often than the CoNLL-

2003 even though it poses more realistic challenges.2 For instance, the WNUT-2016 dataset

has a more diverse set of entity types (e.g., TV shows, movies, products, sports teams, etc.),

extending the basic entity types in CoNLL-2003 (e.g., person, location, and organization).

More importantly, the overlap of entity instances among partitions is extremely low compared

2One reason is that the CoNLL-2003 dataset focuses on the news domain, aiming at more general-purpose
methods than the social media domain. Besides, the WNUT-2016 is very recent compared to the CoNLL-
2003.
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to the CoNLL-2003 dataset (see Figure 5.1).

In this study, I concentrate on three aspects to analyze whether the BERT model is gen-

eralizing or memorizing entity instances using the CoNLL-2003 and WNUT-2016 datasets.

First, I analyze the datasets using statistics of the entity distributions (Section 5.1). The

analysis corroborates whether the datasets promote memorization or generalization by eval-

uating the entity diversity among classes and the overlapping entity instances across parti-

tions. Second, I fine-tune a pre-trained BERT model on each of the datasets. I investigate

the performance of the fine-tuned models on observed and unobserved entity instances (Sec-

tion 5.2). I derive insights from this exploration and propose methods to reduce the bias

towards frequently observed entity instances (Section 5.3). The proposed methods show

improvements for unobserved entity instances in the CoNLL-2003, but it is less effective in

WNUT-2016 due to the low overlap of entities across partitions.

5.1 Data Analysis

I analyze the CoNLL-2003 and WNUT-2016 datasets to determine whether its evaluation

favors memorization or generalization. I consider two sets within each dataset: train (train

∪ development) and test. I merge the train and development sets because they are usually

overfitted when models are trained. The train set is directly used to update the model

parameters (e.g., backpropagation [97]), while development is iteratively used to derive the

best model. Also, the results on the test sets are ultimately what drive progress in these

datasets.

Entity Overlap I define the entity instances appearing in the train set as the observed

entities. The unobserved entities are the ones that belong to the test set and do not overlap

with the observed set. Table 5.1 shows the overlap of repeated and unique entity instances
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at the class level. The most overlapping entity types are location (85.9%) and geo-location

(37.8%) for the CoNLL-2003 and the WNUT-2016 datasets. Note that the percentage for

location is substantially greater than the one for geo-location, making the CoNLL-2003 class

more prone to memorization. The CoNLL-2003 classes, except for the person class, exceed

50% of overlap between the observed and unobserved repeated entity instances. On the

contrary, most of the WNUT-2016 classes are below 10% of overlapping entity instances.

Table 5.1: Statistics of the entity overlap with respect to the test set. Overlap describes
the set operations: (Train ∪ Development) ∩ Test. Repeated means that the frequency
of every entity is considered in the calculation, while Unique disregards the frequencies.
Notably, the overlap percentages of the CoNLL-2003 are substantially higher than the ones
from WNUT-2016. Diversity refers to the percentage of total unique entities out of the
total repeated entities (e.g., 100% means all entities instances appear once). I sorted rows
by overlap percentage from the repeated entities.

Unique Entities Repeated Entities

Classes Total Overlap (%) Total Overlap (%) Diversity %

CoNLL-2003

Location 426 268 (62.9) 1,668 1,434 (85.9) 25.5
Other 274 116 (42.3) 702 483 (68.8) 39.0
Organization 759 409 (53.8) 1,617 971 (58.4) 46.9
Person 1,081 175 (16.1) 1,617 289 (17.8) 66.9

WNUT-2016

Geo-location 432 85 (19.7) 882 333 (37.8) 49.0
Organization 306 18 (5.9) 621 138 (22.2) 49.3
Other 404 26 (6.4) 584 101 (17.3) 69.2
Person 416 28 (6.7) 482 48 (10.0) 86.3
Music artist 143 8 (5.6) 191 18 (9.4) 74.9
Sports team 128 6 (4.7) 147 11 (7.5) 87.1
Product 214 8 (3.7) 246 15 (6.1) 87.0
Facility 165 3 (1.8) 253 3 (1.2) 65.2
Movie 28 0 (0.0) 34 0 (0.0) 82.4
TV show 32 0 (0.0) 33 0 (0.0) 97.0

Entity Diversity I define class diversity as the percentage of unique entity instances

among all (repeated) entities (see Table 5.1). The diversities for the most frequent classes
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on each dataset are 25.5% for location (CoNLL-2003) and 49% for geo-location (WNUT-

2016). Note that these classes are the least diverse in each dataset. Intuitively, suppose

the diversity of a class is high. In that case, the evaluation of such class emphasizes the

surrounding context more than the entity instance itself (i.e., less dependent on the actual

entity instance), thus promoting generalization.

Entity Frequency The frequency of the overlapping entity instances is another factor

that favors memorization. For instance, even if an observed entity happens in the test set,

appearing hundred times in training is more prone to be memorized than occurring once.

Considering that, Figure 5.2 shows the entity overlap between the train and test sets across

different frequency thresholds (τ). For CoNLL-2003 (Figure 5.2a), note that the class person

quickly decays by threshold τ = 5 (e.g., entity instances from the test set that appear at

least five times in the train set). On the other hand, the class location requires a higher

threshold to decrease significantly (e.g., it does not reach 20% even with τ = 100). For the

WNUT-2016, most of the classes have reached 5% of overlap by τ = 4.

5.2 Model Analysis: Fine-tuned BERT

In this section, I inspect the behavior of a fine-tuned BERT model on the CoNLL-2003 and

WNUT-2016 datasets. I use BERT because it is a large model (333M parameters) capable

of memorizing entity instances, and it generates contextualized word representations.

Evaluation by Subsets Table 5.2 shows the results of BERT on four evaluation sets. The

first column describes the full test set that contains both observed and unobserved entities.

For CoNLL-2003, the overall performance increases from 91.1% to 94.2% F1 when the model

is evaluated exclusively on observed entities (entity instances in the test set that appeared
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(a) Overlap by thresholds for CoNLL-2003. (b) Overlap by thresholds for WNUT-2016.

Figure 5.2: Overlap percentage of entity instances from the test set against the train and
development sets. The x-axis denotes the frequency of the entity instances in the test. For
instance, the frequency threshold τ = 1 accounts for all the test entities that appear at least
once in the train set.

at least once in the train set). However, the performance decays from 91.1% to 86.1% F1

when the frequency of observed entities is limited up to five times. The model reaches the

lowest performance when I evaluate it exclusively on unobserved entities, decaying from

91.1% to 84.5%. A similar pattern appears in the WNUT-2016, where the model reaches

the best performance on the observed entities subset (from 50.8% to 71.2% F1). However,

the tendency compared to CoNLL-2003 changes in the observed entities whose frequencies

are restricted to five times at most. The model performs better than in the full test set,

improving from 50.8% to 69% F1. Lastly, the unobserved entities show an overall decay from

50.8% to 44.8% F1, but the class-level performance shows both increasing and decreasing

scores. These results suggest that highly frequent entity instances are more impactful to the

model (i.e., prone to memorization) than entity instances that appear a few times in the

train set.

Although the observed and unobserved entity instances’ overall tendencies are consistent
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Table 5.2: Results on the full test set and its observed and unobserved entity subsets. For the
observed subsets, ≥ 1 means that the entities appear in training at least once, whereas ≤ 5
refers to entities that appear in training at most five times. Note that there is a decreasing
tendency (↓) in the scores of the unobserved entities with respect to the full dataset scores;
the scores from the observed entities tend to increase (↑). The “N/A” entries for movie and
TV show mean that the classes do not appear in such subsets.

Dataset Classes Test Set Overlap. (≥ 1) Overlap. (≤ 5) Nonoverlap. Diversity %

CoNLL-2003

Location 93.0 95.6 ↑ 85.8 ↓ 72.4 ↓ 25.5
Other 81.8 90.5 ↑ 69.1 ↓ 52.9 ↓ 39.0
Organization 88.4 93.9 ↑ 87.6 ↓ 84.3 ↓ 46.9
Person 95.9 96.5 ↑ 95.0 ↓ 95.2 ↓ 66.9

F1 micro 91.1 94.2 ↑ 86.1 ↓ 84.5 ↓
Support 5,648 1,685 524 973

WNUT-2016

Geo-location 69.1 87.7 ↑ 87.9 ↑ 59.2 ↓ 49.0
Organization 57.8 82.0 ↑ 72.1 ↑ 45.1 ↓ 49.3
Other 32.4 34.4 ↑ 38.6 ↑ 31.6 ↓ 69.2
Person 63.9 69.1 ↑ 66.7 ↑ 67.1 ↑ 86.3
Music artist 18.4 33.3 ↑ 25.0 ↑ 16.0 ↓ 74.9
Sports team 48.2 57.1 ↑ 66.7 ↑ 48.1 ↓ 87.1
Product 14.1 61.5 ↑ 54.5 ↑ 7.7 ↓ 87.0
Facility 35.7 28.6 ↓ 33.3 ↓ 38.2 ↑ 65.2
Movie 6.0 N/A N/A 3.4 ↓ 82.4
TV show 24.1 N/A N/A 25.5 ↑ 97.0

F1 micro 50.8 71.2 ↑ 69.0 ↑ 44.8 ↓
Support 3,473 304 264 2,347

with the entity frequencies, some classes are resilient to drop the performance. For instance,

the person class slightly drops the performance from 95.5% to 95.2% in CoNLL-2003, while

it increases the performance from 63.9% to 67.1% for WNUT-2016. Likewise, the sports

team, facility, and TV show classes show this pattern. Not surprisingly, these classes are

the ones with the highest rates of diversity, according to Table 5.1. This suggests that the

evaluation for these entity classes balances fairly well the trade-off between memorization

and generalization.

Evaluation by Frequency Thresholds Figure 5.3 shows the fine-tuned model over dif-

ferent subsets defined by a frequency threshold. For CoNLL-2003, the model stabilizes the

performance after around threshold τ = 5. Nevertheless, the model handles consistently well
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the person class, keeping a high F1 score from the beginning. These results reinforce the pre-

vious insights about the frequency impact in the model performance. For WNUT-2016, the

frequencies do not impact the performance as much due to the less repeated entity instances.

Figure 5.3: The BERT results on the observed subset for the CoNLL-2003 (left) and WNUT-
2016 (right) datasets. The data points start at frequency one since this is the observed entity
subset.

Context-dependent Entities Another interesting approach is to exchange entity in-

stances of the same type between sentences. The idea is to use the test sentences con-

taining observed entity instances (i.e., the controlled sample) to create a twin test set

containing the unobserved entity instances instead (i.e., the treatment sample). This ap-

proach could show whether entities are context-dependent (i.e., generalized from context) or

context-independent (i.e., memorized by the model) by performing similarly or differently

on the controlled and treatment samples. However, swapping entity instances is a sensitive

task because the text’s overall meaning can change easily (e.g., the name of a restaurant vs.

the name of a company when referred to its facilities). The scenario becomes more compli-

cated when there are multiple entities in the same text, even if only one is changed (i.e.,

entity relations can be jeopardized). In addition, exchanging entities introduces alternative

explanations (also known as covariates) to the treatment sample. I consider very simple
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covariates, such as the length of the sentences, the entities’ length, and the number of entity

tokens in the sentence.3

In this experiment, the null hypothesis states that using the unobserved entities in the

twin dataset does not explain the model’s memorization or generalization capabilities. I

create the twin dataset guiding the entity swaps by the cosine similarity between the observed

entity and the pool of unobserved entities.4 I consider very simple covariates that ended up

validating the null hypothesis: sentence length, entity length, and the number of entity

tokens within a sentence. To test whether these covariates are alternative explanations or

not, I run a t-test comparing these statistics between the controlled and treatment samples.

For both the CoNLL-2003 and the WNUT-2016 datasets, the covariates reached p-values

< 0.001. That means that the differences between the controlled and the treatment samples

are statistically significant between the covariates. Even though the F1 performance of the

model decayed when the entity instances were swapped (approximately 4% for CoNLL-2003,

and 2% on WNUT-2016), it is not possible to conclude that the model is relying more on

memorization than generalization.

5.3 Reducing the Memorization Bias

Considering the insights of the previous two sections, I explore five different approaches to

balance the generalization-memorization trade-off.

Masked Entities (ME) I randomly mask entity instances at the word level (using the

special token [MASK]) with probability 0.5 at every epoch during training. Even though the

3More covariates can be added, but these were sufficient to show that they can validate the null hypothesis.

4I tried multiple thresholds of cosine similarity where low scores allow for more candidates with less
quality, but high scores easily reduce the pool to a few entities. Also, the cosine similarity is computed over
the contextualized vector representations of the entities extracted from BERT.
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input contains masked tokens, I still force the model to predict all the entity instances in

the sentences, including the masked ones.

Frequency Loss Weights (FLW) I collect the frequency of every entity instance of the

train set. Then, when I calculate the loss of the model at the token level, I weigh infrequent

entity instances (≤ 3) with a penalty of λ = 1.5. Non-entities and frequent entity instances

are not weighted (λ = 1.0).

Causal LM (CLM) Considering that BERT is a pre-trained LM, I define a secondary

causal LM objective (i.e., the target is the input shifted one timestep) that preserves this

knowledge during fine-tuning. This secondary loss prevents catastrophic forgetting [54] while

also adapts to the data domain.5 I weigh this loss with λ = 1e-2 so that it does not interfere

with the NER loss.

Parent LM (PLM) Given that dependency grammar can help on generalization [8, 123],

I generate the dependency trees [34] of the train sentences and extract the parent connection

of every entity token. Then, I mask the parent tokens with probability 0.25 and add a

masked language model (MLM) objective [37] to predict such words.

Connection Distribution (CD) To explore further the previous idea, I consider the

immediate dependency grammar connections of the entity tokens. For each entity token

(query), the model generates a probability distribution over the sentence (context), similar

to the attention mechanism [16, 69]. Then, I generate a uniform probability distribution

over the immediate connections using the dependency grammar (with smoothing at 0.9). I

optimize the model to decrease the KL-divergence between the uniform and model-generated

5The vocabulary is not learned from scratch since I initialize this output layer with BERT’s word embed-
ding layer.
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distributions.

5.3.1 Results

Table 5.3 shows the results of the previous experimental settings. I highlight the best average

F1 score per column within the scope of each dataset. Also, note that I developed the

approaches iterating over the development set until reaching the best scores according to the

overall averaged F1 score (i.e., without explicitly tracking the observed or unobserved F1).
6

I also provide the results of the final models for each approach on the test set.

Table 5.3: Results of the proposed methods to reduce memorization. Obs. and Unobs.
refer to the observed and unobserved entity subsets, and All means the full test set. I show
the average of three runs with different random seeds and their std. deviation as a subscript.

Test F1

Dataset Method All Overlapping Nonoverlap.

CoNLL-2003

Baseline 91.4±0.39 94.2±0.05 84.9±0.96

Masked entities (ME) 89.8±0.35 92.9±0.08 82.8±1.95
Freq. loss weights (FLW)∗ 90.9±0.55 93.9±0.43 84.0±2.07
Parent LM (PLM) 91.4±0.35 94.6±0.3 83.1±0.66
Conn. Distrib. (CN) 90.8±0.13 93.8±0.25 83.3±0.55

WNUT-2016

Baseline 49.8±1.07 69.3±1.77 43.9±0.93

Masked entities (ME) 46.9±1.21 67.0±1.59 42.2±0.48
Freq. loss weights (FLW)∗ 50.5±1.04 67.0±0.61 45.4±2.71
Parent LM (PLM) 49.0±2.15 67.7±3.36 43.8±1.71
Conn. Distrib. (CN) 48.4±0.76 67.6±4.4 43.1±0.94

* Statistically significant with respect to the baseline with p-value < 0.01 in student’s t-test.

The results for CoNLL-2003 show that there is no substantial difference among the ap-

proaches; the scores are very close to each other, and the standard deviations make the score

ranges to overlap considerably. However, the WNUT-2016 results show different behavior.

6Also, note that the experimentation with the proposed methods uses the original splits in the datasets
(i.e., the training set is no longer combined with the development set).
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The baseline score from the development set (51.9%) is exceeded in many cases, being the

FLW experiment with the best F1 score (53.6%). One possible explanation for the disparate

results between the datasets is the impact of pre-trained knowledge. That is, the methods

have little or no effect on the CoNLL-2003 because BERT has been pre-trained extensively

on very similar data (i.e., the same domain of the CoNLL-2003 dataset).7 Thus, reducing

the bias towards highly-frequent entity instances require an approach that reaches beyond

the fine-tuning experiments I propose here. This explanation is far less applicable to the

WNUT-2016 dataset because the social media domain deviates significantly from the news

domain (e.g., misspellings and arbitrary abbreviations are present in named entities). Ad-

ditionally, novel entities keep appearing on social media platforms (e.g., movie titles, TV

shows, etc.).

The most effective methods for the unobserved entities are the FLW and CLM—they

exceed the baseline scores significantly on both the development and test sets of the WNUT-

2016 dataset. These methods, however, target fundamentally different aspects. The FLW

experiment effectively reduces a tendency towards frequent entities by increasing the penalty

of the token-level loss for the infrequent ones. On the other hand, the CLM experiment allows

the model to transition towards the social media domain by multi-tasking between causal

language modeling and the actual fine-tuning of the task.8 Nevertheless, combining both

experiments did not improve the performance for the WNUT-2016.

The ME and FLW methods target explicitly the problems I describe in Sections 5.1 and

5.2. However, the performance of the former shows less stable behavior than the latter; it

only improves the development baseline for WNUT-2016 with a considerably large standard

7Note that BERT was pre-trained in 2018 using Wikipedia data, which extensively covers topics and
entities included in the CoNLL dataset created in 2003.

8The causal language model objective ties the input subword embedding table in BERT with the pa-
rameters that project to the output vocabulary, so there is no need to learn those parameters from scratch.
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deviation. This suggests that masking entity instances is a slightly drastic measure. Reason-

ably, the FLW approach has a more effective and stable performance because it prioritizes

more frequent entity instances without totally ignoring highly frequent entities.

I believe that an extension of the test dataset that includes more unobserved entities

could help determine these methods’ effectiveness since the current subsets are small.

The least effective method is the PLM experiment. The PLM method is designed to

exploit the entity’s parent words as they appear in dependency trees. Intuitively, BERT

can predict such words because it was pre-trained with a masked language model objective.

However, the results do not support that intuition in either of the datasets. A masked LM

objective over contextual words (i.e., the parent words) is counterproductive in this case—

the model tries to predict contextual words that are masked while simultaneously exploiting

the remaining context to learn the named entity task.

The CN method aims at a similar approach but without masking the context. This

method is less drastic than the PLM experiment. It emphasizes the immediate connections

(i.e., the entity’s parent and children nodes) while still having the full context in the sentence

for the entity task. The CN result (52.2%) for WNUT-2016 is better than the PLM (50.4%)

and baseline (51.9%) results. This tendency is also consistent in the unobserved category

between the CN and PLM experiments (49.8% vs. 46.8%). Nevertheless, the test set does

not show the same behavior as the development set.

5.4 Analysis

Class-level insights The results of the WNUT-2016 unobserved test set showed a sensible

gap with respect to the FLW results (43.9% vs. 45.4%). Table 5.4 provides class-level details

of the F1 scores between the baseline and the FLW experiments.9 Notably, the gap between

9I take the best performer among the three runs per method.
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the two methods remains consistent among most of the classes. For example, the results for

sports team, person, facility, and product improve over the baseline while also among the

most diverse classes with many instances. The most challenging class is movie since it is the

most diverse type in the set. However, the number of movie instances is too low to draw a

conclusion.

Table 5.4: Class-level F1 scores for the baseline and the frequency loss weight (FLW)
experiments on the unobserved test set. I also provide the number of instances and the
diversity percentage per class. The rows are sorted descendingly by the number of instances.
Note that the diversity rate is the lowest for the company class, while the scores per model
are almost the same.

F1 Measure

Class Baseline FLW Difference Instances Diversity %

Geo-location 59.2 59.1 -0.1 439 49.0
Other 31.6 33.3 +1.7 381 69.2
Organization 45.1 50.1 +5.0 378 49.3
Person 67.1 69.7 +2.6 375 86.3
Facility 38.2 45.7 +7.5 218 65.2
Product 7.7 11.4 +3.7 216 87.0
Music artist 16.0 25.9 +9.9 148 74.9
Sports team 48.1 53.7 +5.6 129 87.1
TV show 25.5 12.2 -13.3 33 97.0
Movie 3.4 3.8 +0.4 30 82.4

Overall 44.8 47.4 +2.6 2,347 N/A

Error analysis Although the FLW experiment improves upon the baseline, there are many

mistakes made by the model. The FLW model makes more mistakes by confusing the entity

classes instead of inadvertently missing entities compared to the baseline (i.e., the FLW

model has better recall). A total of 1,276 tokens were incorrectly classified as non-entities

(i.e., false negative) by the FLW model. At the same time, the baseline predicted 1,470

false-negative samples. Additionally, the baseline model predicts correctly 21,101 non-entity

tokens while the FLW model gets right 21,042. While these numbers are ultimately about
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mistakes, the results show that the FLW model is trying to pick up more entity signals from

the text than the baseline.

The tendency of picking up more entity instances than the baseline is also captured in

the examples of Table 5.5. For example, even though the fourth sentence only has music

artists according to the ground-truth, the FLW model wrongly detects Bibby and Fab as the

person class. The baseline predictions, on the other hand, do not detect any of those two

entity instances. In any case, the FLW mistakes are understandable: the model does not

find enough information in the context to conclude that the person entities are music artists.

Conversely, the last entity, Drake, is even in the model’s vocabulary, meaning that the model

saw this entity during pre-training (i.e., this entity appeared in Wikipedia data used to pre-

trained BERT). This fact allows both models to predict the entity Drake as a music artist

correctly. Also, this explains why the model behaves differently from the previous entity

instances compared to the last one. Bibby and Fab are not in the vocabulary of the model,

and the model proceeds to split the words into subwords so that they are representable.

Table 5.5: The table shows cases where the FLW model gets the predictions wrong. The
sentences are tagged with their corresponding ground-truth entities in brackets (e.g., [Penders
Field]facility). Also, I provide the results of the baseline for comparison.

# Sentence FLW Entities Baseline Entities

1 Graduation has been set!! The [SHS]facility CLASS OF 2015 will
graduate on June 18th, 6:00 p.m. at [Penders Field]facility!

[SHS CLASS]other
[Penders Field]facility

[Penders Field]facility

2 Do you rmbr i spoke on [Maggi]company and suspicious emptying of
market fr a new player perhaps??!

[Maggi]person –

3 [Jean Geoffroy joue Bach]person (CD, May-2013, 2 Discs,
[Skarbo]organization)

[Jean Geoffroy]person
[Bach]product
[Skarbo]music-artist

[Jean Geoffroy]person
[Skarbo]organization

4 [Bibby]music-artist dropped, [Fab]music-artist dropped,
[Drakes]music-artist album coming soon but where [frank
ocean]music-artist at? We’re about 5 months into June

[Bibby]person
[Fab]person
[Drakes]music-artist

[Drakes]music-artist

5 On another hand, [Mayim]person will be guesting on [Access Hol-
lywood Live]tvshow tomorrow !

[Mayim]person
[Access Hollywood Live]tvshow

[Mayim]person
[Access Hollywood]other

Besides ambiguity among entity instances, the predictions also show errors related to

the BIO (Beginning, Inside, Outside) scheme (e.g., an inside label is not consistent with
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the previous entity class in the sequence). This is a persistent problem among the models,

regardless of the methods proposed in this study. In any case, this can be easily solved by

applying conditional random fields (CRF) on the output layer, as shown in previous chapters.

Nevertheless, I leave this component out to isolate BERT without any additional parameter

as well as to preserve the flexibility of studying different objective functions.10

Sentence length Long sentences are more likely to provide more context. This suggests

that models that discourage frequent entity instances and rely on context for their predictions

should reach better performance on longer sentences. To measure that, I split the unobserved

test set into quartiles according to the distribution of the sentence lengths (i.e., the first

quartile is up to 13 tokens; the rest are up to 18, 22, 35 tokens). Surprisingly, the performance

did not show a clear tendency concerning the length. That is, the baseline and the FLW

models show the same F1 score tendency across quartiles. The FLW F1 scores are 48%, 44%,

47% and 50% while the baseline shows 43%, 41%, 45%, and 47%.

After manually inspecting the predictions, I noticed that the length is not a good indicator

of context in this data in many cases. Many of the tokens are often noise or do not incorporate

context to the sentences (e.g., interjections, punctuation, emojis, etc.) while inflating the

sentences’ length. In any case, there are a few words that can still convey enough information

to infer entity classes (e.g., in Table 5.5, the model detects that the word Maggi is a person

using contextual words such as spoke).

10The CRF negative log-likelihood loss is computed using the Viterbi algorithm and dynamic programming.
This makes the alteration of the normalization factor impractical, so an approximation of this factor is
required [33].
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5.5 Limitations

One of the limitations of this study is that it only evaluates the memorization scenario in

the model’s fine-tuning stage. While there is evidence that highly frequent entity instances

of the CoNLL-2003 and WNUT-2016 appear in pre-training (e.g., entity instances are in the

vocabulary words), it is not clear how much they impact the memorization or generalization

capabilities of the model. Nevertheless, that requires more investigation, and it goes beyond

the scope of the study from this chapter.

Regarding unexplored hyper-parameters, it is important to note that the hyper-parameter

decisions were made based on the data’s insights and model behavior. The experimentation

took placed using a group of candidate hyper-parameters rather than single numbers. Nev-

ertheless, more aspects need to be explored, such as the frequency factor λ used in the FLW

experiments. For example, dynamic weights could have been applied when multiple losses

were involved. That said, the results shown in this study could have a scope for improvement

by just tuning hyper-parameters.

5.6 Conclusions and Future Work

I studied two of the primary named entity recognition datasets from the news and social

media domains: CoNLL-2003 and WNUT-2016. I exposed the memorization-generalization

trade-offs in the datasets, and I showed evidence that the CoNLL-2003 has a sensible bias

towards observed entity instances (i.e., entity instances that appear during training). In

addition to the datasets, I studied the behavior of a fine-tuned BERT model. Lastly, I

proposed simple methods to alleviate the bias towards memorization. The methods showed

more effective on the WNUT-2016 dataset and did not make significant changes in the

CoNLL-2003 dataset.
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Part II

Sequence Labeling on Linguistic

Code-Switching
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Chapter 6

LinCE: A Centralized Linguistic

Code-Switching Evaluation

Benchmark

Many researchers have proposed novel methods to handle code-switched data, showing im-

provements on core NLP tasks such as language identification (LID), named entity recog-

nition (NER), and part-of-speech (POS) tagging. However, many of these approaches are

usually evaluated on a few language pairs and a specific domain, and it is not clear whether

these models are exclusive to such scenarios or they can generalize to other tasks, domains,

and language pairs. Furthermore, choosing the best-published model for benchmarking pur-

poses is not an easy task either. These problems exist mainly because 1) there is no official

benchmark for general code-switching evaluation that allows direct comparisons across mul-

tiple tasks, and 2) methods are usually not comprehensively evaluated across datasets with

different language pairs.

I propose a centralized Linguistic Code-switching Evaluation (LinCE) benchmark to
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overcome these problems. I have consolidated a benchmark from preexisting corpora consid-

ering the following aspects: 1) multiple language pairs from high- and low-resource languages,

2) typologically-diverse languages,1 3) various NLP tasks, and 4) different social media do-

mains. LinCE is comprised of four LID datasets, two POS tagging datasets, three NER

datasets, and one sentiment analysis (SA) dataset, providing a total of ten datasets (see Ta-

ble 6.1). Furthermore, an important contribution of LinCE is the new stratification process

to provide fair and, in some cases, official splits for the tasks at hand. This required a careful

inspection of the original datasets from which I list five major issues (see Section 6.2.5) and

propose new splits for nine out of the ten datasets. Moreover, LinCE is publicly available

at ritual.uh.edu/lince as this benchmark continues to grow and include new tasks and

language pairs in the future.

Table 6.1: Overview of the LinCE language pairs and tasks.

Language Pair LID POS NER SA

Spanish-English X X X X
Hindi-English X X X -
Nepali-English X - - -
MS Arabic-Egyptian Arabic X - X -

6.1 Linguistic Challenges

Although code-switching can happen in more than two languages, this benchmark focuses

on language pairs only. The frequent alternations between two languages is precisely what

makes the automated processing of code-switching data difficult. I quantify such complexity

using the CMI index proposed by [44] as shown in Table 6.2. The higher the CMI index,

the more alternations the dataset contains, and hence, the more complex the code-switching

1I also consider the geolocation of such languages to account for places across the world.
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Table 6.2: The CMI scores and the number of tokens across corpora. All Posts describes
the number of posts in the corpora and All CMI is the corresponding CMI scores for
such samples. Similarly, CS Posts denotes the number of code-switched posts (excluding
monolingual posts) and CS CMI is the corresponding CMI scores for such samples. I
also show the number of tokens that belong to the language pairs (Lang1, Lang2) as well
as the overall number of tokens (All Tokens), which includes other LID labels beyond
the language pairs. English is the Lang1 class for English-paired languages; for MSA-EA,
Modern Standard Arabic is the Lang1 class. I omit the CMI information for the MSA-EA
NER corpus because the corpus does not come with language identification labels.

Task Corpus Languages All Posts All CMI CS Posts CS CMI Lang1 Lang2 All Tokens

LID

[78] SPA-ENG 32,651 8.29 12,380 21.86 129,065 170,793 390,953
[106] NEP-ENG 13,011 19.85 10,029 25.75 59,037 78,360 188,784
[73] HIN-ENG 7,421 10.14 3,317 22.68 84,752 29,958 146,722
[78] MSA-EA 11,243 2.82 1,326 23.89 140,057 40,759 227,354

POS
[104] HIN-ENG 1,489 20.28 1,077 28.04 12,589 9,882 33,010
[108] SPA-ENG 42,911 24.19 41,856 24.81 178,135 92,517 333,069

NER
[1] SPA-ENG 67,223 5.49 17,466 21.16 163,824 402,923 808,663
[103] HIN-ENG 2,079 19.99 1,644 25.28 13,860 11,391 35,374
[1] MSA-EA 12,335 – – – – – 248,478

SA [83] SPA-ENG 18,789 20.70 18,196 21.37 65,968 144,533 286,810

behavior is. In addition to the alternation of languages, I briefly describe other linguistic

challenges that each specific language pair poses to current NLP systems:

• Spanish-English (SPA-ENG). While English is a Germanic language, a significant

number of words from its current vocabulary have been borrowed from Latin and

French since the Middle Ages [114]. This particular set of words tends to overlap with

words from Spanish, a Latin-based language. This overlap increases ambiguity and

directly affects systems that rely on character-based approaches, for example, in the

case of language identification. Code-switching also appears within the words, often

inflecting words by conjugating English verbs using Spanish grammatical rules. This

behavior is known as Spanglish [95], and it particularly affects non-contextualized word

embeddings as it increases the out-of-vocabulary (OOV) rate.

• Hindi-English (HIN-ENG). One of the most challenging aspects of this language
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pair is the lack of a standardized transliteration system. Speakers transliterate Hindi

employing mostly ad-hoc phonological rules to use the English alphabet when writing.

Using the same Roman alphabet makes code-switching more convenient but the lack

of an official standard for transliteration makes it difficult to process with existing

resources exclusively available for Hindi with the Devanagari script. Furthermore,

although Hindi loosely follows the subject-object-verb (SOV) structure, its flexible

word order poses an additional challenge to NLP systems.

• Nepali-English (NEP-ENG). Similar to HIN-ENG, Nepali is transliterated using

the English alphabet when code-switched with English. This behavior makes Nepali

speakers to write driven by arbitrary phonological rules that allow the romanization

of Nepali using the English alphabet, which excludes the few monolingual resources

available for Nepali. Also, Nepali is a subject-object-verb (SOV) language while English

is subject-verb-object (SVO). This grammatical difference intuitively encourages more

code-switching points since it is proven that, when code-switching occurs, the languages

involved still preserve their grammatical structure [107], which forces more fine-grained

alternations to obey the SOV and SVO structures. In practice, I notice a large code-

switching rate for Nepali-English captured by the averaged CMI index in Table 6.2,

being one of the largest scores while having a corpus of middle size.

• Modern Standard Arabic-Egyptian Arabic (MSA-EA). Arabic is well known

for its diglossia [40], which combines a number of Arabic dialects with Modern Stan-

dard Arabic within the same community. This combination of dialects enables a large

occurrence of linguistic code-switching. One of the main challenges with this language

pair is that there is a significantly large word overlap while the word meanings can vary

depending on the language. Even more, Arabic is a morphologically rich language and
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it allows multiple word orders, which increases the semantic complexity for NLP sys-

tems. Additionally similar to Spanglish, code-switching can occur at the morpheme

level, where speakers often add morphological inflections to nouns.

6.2 Tasks

LinCE is built upon four tasks and four language pairs to provide a total of eleven datasets.

In Sections 6.2.1 to 6.2.4, I discuss the datasets used for every task. Then, in Section 6.2.5,

I describe and justify the modifications to nine out of the ten datasets in order to establish

official splits that can be adopted for this benchmark. Lastly, in Section 6.2.6, I explain the

evaluation criteria to rank the leaderboard in the LinCE platform.

6.2.1 Language Identification (LID)

Handling code-switched data requires to identify the languages involved. The task of lan-

guage identification (LID) is one of the first steps that validates whether a system can handle

code-switched data or not. Correctly classifying the language associated to text units (e.g.,

words or sub-word tokens) enables to process code-switched text in higher-level applica-

tions where general language understanding takes place. LinCE uses preexisting datasets for

the language identification task. Specifically, in this version of LinCE, I focus on the lan-

guage pairs Spanish-English, Hindi-English, Nepali-English, and Modern Standard Arabic-

Egyptian Arabic. I briefly explain each corpus below, and for some of them, I propose new

splits as explained in the stratification section (Section 6.2.5). Figure 6.1 shows the final

distribution of the labels across the LID corpora used in LinCE. Also, these datasets follow

the CALCS LID label scheme, which is lang1, lang2, mixed (partially in both languages),

ambiguous (either one or the other language), fw (a language different than lang1 and
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Figure 6.1: LID label distribution used in LinCE. While HIN-ENG and SPA-ENG have very
few tokens for unk and fw (<1%), MSA-EA and NEP-ENG do not have occurrences of such
labels. Also, with the exception of MSA-EA, all the partitions are proposed for LinCE as
described in Section 6.2.5.

lang2), ne (named entities), other, and unk (unrecognizable words).

• SPA-ENG. I use the Spanish-English corpus from the 2016 CALCS workshop [78].

This corpus uses Twitter data and it contains 32,651 posts that are comprised of

390,953 tokens. I provide new splits for this corpus because the original splits do not

have a similar label distribution and the label fw does not appear in the development

set.

• HIN-ENG. I use the Hindi-English corpus released by [73]. This corpus uses Twitter

and Facebook data, which have been partly collected and partly re-used from the ICON

2016 competition [101]. The corpus contains a total 7,421 posts comprised of 146,722

tokens. Also, I proceed with the stratification process on this corpus because the

length of the posts were not considered while doing the splits; Twitter has a character
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length limit in its post, whereas Facebook posts do not have such restriction resulting

in significantly longer text. Moreover, the labels ambiguous and unk do not appear in

the development set.

• NEP-ENG. The Nepali-English corpus comes from the 2014 CALCS workshop [106].

This corpus was collected from Twitter and it contains 13,011 posts and 188,784 tokens.

I perform a stratification process to provide standard splits for this corpus since the

organizers only provided train and test, and the test set does not include any occurrence

of the ambiguous class.

• MSA-EA. I use the Modern Standard Arabic-Egyptian Arabic corpus from the 2016

CALCS workshop [78]. This corpus contains Twitter data and it is comprised of 11,243

tweets with 227,354 tokens. Note that there is no occurrence of the labels fw and unk

in the entire corpus. I propose new partitions due to the variation across distributions

for both the LID labels as well as sentence lengths.

6.2.2 Parts-of-Speech (POS) Tagging

Part-of-speech (POS) tagging is an important linguistic component that enables more so-

phisticated syntactic analysis such as constituency and dependency parsing. Code-switched

data is not exempted of such analysis. In fact, previous studies have shown that syntax

is preserved and compliant with the syntactic rules of the individual languages when code-

switching occurs [107]. In this benchmark, I consider the language pairs Hindi-English and

Spanish-English (see proposed label distribution in Figure 6.2):

• HIN-ENG. [104] provides 1,489 tweets (33,010 tokens) annotated with POS tags and

three language IDs (hi for Hindi, en for English, and rest for any other token). The

POS tags are annotated using the universal POS tagset proposed by [89] with the
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Figure 6.2: POS label distribution used in LinCE. The partitions for both datasets are
proposed for LinCE as described in Section 6.2.5. Note that the labels UNK, SCONJ, AUX,
INTJ, and PUNCT only appear in the SPA-ENG corpus, whereas PRON WH is unique for HIN-
ENG.

addition of two labels: PART NEG and PRON WH. The corpus does not provide training,

development, and test splits due to the small number of samples. However, for the

purposes of the benchmark, I propose standard splits using the stratification criteria

discussed in Section 6.2.5.

• SPA-ENG. I use the Miami Bangor corpus with the annotations provided by [108].

The Bangor corpus is composed of bilingual conversations from four speakers with a

total of 42,911 utterances and 333,069 tokens. The corpus contains POS tags from

the universal POS tagset and LID labels. The LID labels are eng for English, spa

for Spanish, eng&spa for mixed or ambiguous words, and UNK for everything else.

Additionally, I proceed with the stratification process to provide the official training,

development, and testing sets for this benchmark since the original sets were split by

speakers.
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6.2.3 Named Entity Recognition (NER)

Named entity recognition (NER) is another important core NLP task that enables higher-

level applications such as question-answering, semantic role labeling, and information ex-

traction. LinCE covers NER for three languages pairs: Spanish-English, Modern Standard

Arabic-Egyptian Arabic, and Hindi-English (see proposed label distribution in Figure 6.3):

Figure 6.3: NER label distribution used in LinCE. All the datasets have the BIO scheme,
but I only show the entity types for simplicity. Note that HIN-ENG only contains PER,
LOC, and ORG. Also, with the exception of MSA-EA, all the other partitions are proposed for
LinCE as described in Section 6.2.5.

• SPA-ENG. This corpus was introduced in the 2018 CALCS competition for NER

[1], and it contains a total of 67,223 tweets with 808,663 tokens. The labels are

organization, person, location, group, product, title, event, time, and other.

Along with the NER labels, I have added the LID categories for every token, which

follows the CALCS LID scheme. Moreover, I propose new splits for this corpus since

the distribution of the NER labels across the splits is not consistent to the one from

the full corpus. Additionally, the original development set is significantly small com-

pared to the other splits, only accounting for 832 tweets, and the LID labels were not
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taken into consideration for the splitting process (e.g., the label fw does not appear in

the development set). I provide new splits following the stratified process described in

Section 6.2.5

• MSA-EA. This corpus was also introduced in the 2018 CALCS competition for NER,

following the same entity label scheme as in the SPA-ENG corpus. The corpus uses the

tweets from the 2016 CALCS LID dataset to form the training and development sets.

While the LID labels are available for the training and development splits, the test set

was annotated only using the NER labels. Thus, this is the only corpus for which I do

not consider the language identification analysis. The corpus contains 12,335 posts and

248,452 tokens. I adopt the splits provided by the organizers during the 2018 CALCS

competition.

• HIN-ENG. This corpus is proposed by [103], and it is composed of 2,079 tweets with

35,374 tokens. The dataset has been annotated with both NER and LID labels. The

entity labels are person, location, and organization, while the LID labels are eng

(English), hin (Hindi), and rest (any other token). This dataset is small, and for

that reason, the authors opted to do 5-fold cross validation instead of partitioning

the dataset. Nevertheless, for the sake of the benchmark, I split the data using the

stratification process that fairly splits the dataset accounting for LID and NER label

distributions, as well as the distribution of the tweet lengths.

6.2.4 Sentiment Analysis (SA)

I choose sentiment analysis as the fourth benchmark task to incorporate a high-level NLP

application in contrast to the previous core NLP tasks. I use the Spanish-English corpus

provided in the SentiMix competition [83]. The organizers reduce the monolingual posts,
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increasing the number code-switched instances. Table 6.2 shows that this language pair is

the second highest scores on the “All CMI” column for the sentiment analysis task. The

task requires to predict one of the sentiments positive, negative, or neutral for every

post. Additionally, this corpus is annotated with LID labels at the token level, following the

CALCS LID scheme, and it contains 18,789 tweets comprised of 286,810 tokens. I propose

new partitions for this dataset to correct the label distribution from the original splits (see

Figure 6.4).

Figure 6.4: Label distribution of the sentiment analysis corpus used in LinCE. Note that
this distribution differs from the origial dataset.

6.2.5 Stratification

For nine out of ten datasets,2 I propose new splits that lead to a more appropriate evaluation

(see Table 6.3 for a high-level distribution). I provide new splits for datasets where I found

at least one of the following issues:

1. At least one of the splits does not have one or more classes. That is, one or more

classes from are not evaluated at all in the development or test set.

2. The distribution of the label set for a given task is substantially different across splits

or against the full corpus distribution (i.e., when merging all the splits into a single

set).

2I did not partition the NER MSA-EA dataset because it does not have LID labels, which is essential to
keep the code-switching behavior balanced across splits in the stratification process.
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Table 6.3: Final data distribution of the LinCE benchmark. Note that the proposed distri-
bution follows the stratification process described in Section 6.2.5, which generates partitions
that differ from the original datasets.

Training Development Test

Tasks Corpus Languages CMI Posts Tokens CMI Posts Tokens CMI Posts Tokens

LID

[78] SPA-ENG 8.491 21,030 253,221 7.062 3,332 40,391 8.264 8,289 97,341
[106] NEP-ENG 20.322 8,451 122,952 17.079 1,332 19,273 19.754 3,228 46,559
[73] HIN-ENG 10.222 4,823 95,224 10.122 744 15,446 9.930 1,854 36,052
[78] MSA-EA 2.567 8,464 171,872 3.185 1,116 21,978 3.849 1,663 33,504

POS
[104] HIN-ENG 21.449 1,030 22,993 15.293 160 3,476 18.910 299 6,541
[108] SPA-ENG 24.191 27,893 217,068 24.040 4,298 33,345 24.282 10,720 82,656

NER
[1] SPA-ENG 5.567 33,611 404,428 4.398 10,085 122,656 5.867 23,527 281,579
[103] HIN-ENG 20.117 1,243 21,065 19.913 314 5,364 19.733 522 8,945
[1] MSA-EA – 10,103 204,296 – 1,122 22,742 – 1,110 21,414

3. The length of the sentences do not follow a similar distribution across splits or against

the full corpus. This is a relevant criteria to consider since length is positively correlated

with context, and less or more context can make a huge different for tasks such as NER.

4. The NER, POS, and SA datasets contain LID labels that were not considered during

the time of the stratification process, potentially affecting the balance of code-switching

occurrences across the splits.

5. There is no official split for the training, development and test sets to provide the scope

of fair comparison.

For the datasets where I find at least one of these issues (see Table 6.4), I proceed to

stratify based on the language identification labels, if available, the task-specific labels (i.e.,

for tasks other than LID), and the lengths of the sentences. Note that providing splits that

consider these three factors jointly in the stratification process is not trivial. In fact, in

the case of sequence labeling tasks, I may have multiple non-unique labels per sentence,

which constraints the ability to draw a distribution similar to the full corpora (e.g., adding

a sentence impacts the distribution of different labels occurring in the same sentence).
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Table 6.4: The table shows the datasets for which I propose new splits. The column Reason
provides the reason number according to the aspects listed in Section 6.2.5. The lower the
KL-divergence, the more similar the splits are to the full corpus distribution.

KL-divergence

Task Dataset Reason before after

LID
SPA-ENG 1, 2 0.10586 0.00528
HIN-ENG 1, 2, 3 4.64265 0.00064
NEP-ENG 1, 3, 5 0.00552 0.00059
MSA-EA 0.17737 0.00026

POS
SPA-ENG 4, 5 0.00140 0.00005
HIN-ENG 5 – 0.00133

NER
SPA-ENG 1, 2, 4 0.00239 0.00001
HIN-ENG 5 – 0.00007

SA SPA-ENG 2, 4 0.09579 0.00002

To provide splits considering these three criteria, I follow the iterative stratification pro-

cess proposed by [99]. This process targets multi-label data, which is a different scenario

for the document and sequence labeling classification datasets used in LinCE. To adapt the

sequence labels to the multi-label scenario, I treat a post as a single sample that is associated

to a group of labels. In the case of tasks other than LID, I gather the LID labels with the

task-specific labels (i.e., NER, POS, or SA labels) into a single group of unique labels. I

also incorporate sentence lengths to the label set of a sample by choosing one of three length

categories: small (≤ 10 tokens), medium (>10 and ≤ 20 tokens), or large (>20 tokens).

For instance, the SPA-ENG NER sample

“LRECevent
ne serálang2 hosted in Marseillelocationne ”

English: “LREC will be hosted in Marseille”

has the set of unique labels {lang1, lang2, ne, event, location, O, small}, where the first

three labels are for LID, the following three labels are for NER, and the last one represents

the sentence length (note that the order and the repetitions of the labels do not matter).
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Once I have the set of labels associated to a single sample (e.g., a set of LID, POS, and length

labels), I can follow the iterative stratification processed used for multi-label classification

on the corpus. I have found that this procedure works well in practice; I measure the KL-

divergence of the label distributions from each of the splits against the distribution of the

full corpus before and after the stratification, and I found that the proposed splits have

less divergence (see Table 6.4). While KL-divergence is not often employed to corroborate

the distributions of a stratified corpus, I use the divergence score to quantify whether the

distribution of the full corpus has been preserved in the proposed splits, and whether the

new splits are better distributions than the original splits. The final numbers of sentences

and tokens per partition are listed in Table 6.3.

6.2.6 Evaluation

LinCE adopts an evaluation model similar to SemEval, Kaggle, and GLUE [118]. The

LinCE platform is hosted at ritual.uh.edu/lince where participants are able to upload

their predictions for the test data on each task. The platform will score the submissions and

publish the results in a public leaderboard for each task. The leaderboard is ranked by the

average of the task scores. Table 6.5 shows the leaderboard as of October 22nd, 2020.

Table 6.5: The LinCE leaderboard as of October 19th, 2020. The top three entries in the
table are the baseline models using off-the-shelf models publicly available. The char2subword
mBERT model is a sequence labeling method that I proposed in Chapter 8. The missing
scores denote that the participants did not provide results on those task. Hence, the average
score is also skipped.

LID POS NER SA

Model Avg SPA HIN NEP MSA SPA HIN SPA HIN MSA SPA

mBERT 82.23 98.36 94.24 96.32 91.55 97.07 86.30 64.05 72.57 65.39 56.43
BERT 81.70 98.35 96.40 96.46 88.36 96.92 87.02 61.15 74.46 59.44 58.40
ELMo 78.98 97.93 95.43 95.90 86.53 96.34 86.71 52.58 68.79 56.68 52.88
Char2Subword mBERT - 98.33 96.23 96.19 91.19 96.88 88.23 64.65 73.38 66.13 -
Spanish BERT - - - - - - - - - - 56.47
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6.3 Limitations

The main limitation of this work is the empirical approach to determine a good data split. I

compare the KL-divergence between the resulting data splits before and after the proposed

stratification method, noting a large difference in the distribution in most of the datasets.

However, I do not specify a KL-divergence threshold to determine when a split is optimal.

This leaves room for improvements on new approaches that reach optimal splits.

6.4 Conclusion

I introduced the Linguistic Code-switching Evaluation (LinCE) benchmark using ten pub-

licly available datasets. In addition, I reviewed such datasets and found important issues

that undermined the evaluation process (e.g., labels not appearing in the test set, or substan-

tially different distributions among splits, etc.). Then, I proposed new splits using a novel

stratification technique with up to three criteria (e.g., LID labels, task-specific labels, and

sentence lengths). I showed the distribution of the full corpus is preserved in the proposed

splits used in LinCE, which is not the case in most of the original partitions. Finally, I

expect that LinCE will be well-received by the NLP community, and the platform will keep

evolving with the incorporation of more tasks and language pairs in the near future.

84



Chapter 7

From English to Code-Switching

I study the CS phenomenon using English as a starting language to adapt the models to mul-

tiple code-switched languages, such as Nepali-English, Hindi-English and Spanish-English.

In the first part of this chapter, I focus on the task of language identification (LID) using

ELMo [87] as the reference for English knowledge. The hypothesis is that English pre-

trained models should be able to recognize whether a word belongs to English or not when

such models are fine-tuned with code-switched text (see examples in Figure 7.1).

Spanish-English Tweet

@USERother @USERother go too cavendersne y tambien ve a @USERne other

English: @USER @USER go to cavenders and also go to @USER

Hindi-English Tweet

Keep calm and keep kaam se kaam !!!other #office #tgif #nametag #buddhane #SouvenirFromManali #keepcalm

English: Keep calm and mind your own business !!!

Nepali-English Tweet

Youtubene ma live re ,other chalcha ki vanni aash garam !other Optimistic .other

English: They said Youtube live, let’s hope it works! Optimistic.

Figure 7.1: Examples of code-switched tweets and their translations from the CS LID
corpora for Hindi-English, Nepali-English and Spanish-English. The subscript ne refers to
named entities and other is used for punctuation, emojis or usernames. English text appears
in italics and other languages are underlined.
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To accomplish that, I introduce CS-ELMo, an extended version of ELMo that contains a

position-aware hierarchical attention mechanism over ELMo’s character n-gram representa-

tions. These enhanced representations allow the model to see the location where particular

n-grams occur within a word (e.g., affixes or lemmas) and to associate such behaviors with

one language or another.

In the second part, I demonstrate the effectiveness of the CS-ELMo models by further

fine-tuning them on tasks such as NER and POS tagging. Specifically, I show that the

resulting models significantly outperform multilingual BERT and their homologous ELMo

models directly trained for NER and POS tagging.

7.1 Methodology

ELMo is a character-based language model trained on a large amount of English data that

provides deep contextualized word representations [87]. ELMo forms its word vectors by

extracting morphological information out of characters, which is essential for this study since

certain character n-grams can reveal whether a word belongs to one language or another.

In the following sections I discuss the position-aware hierarchical attention mechanism that

allows it to adapt to code-switching settings.

7.1.1 Position-aware Hierarchical Attention

ELMo convolves character embeddings in its first layers and uses the resulting convolutions

to represent words. While this process has proven effective in practice, it has the following

shortcomings:

1. Convolutional networks do not account for the positions of the character n-grams (i.e.,

they do not preserve the sequential order), losing linguistic properties such as affixes.
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2. ELMo down-samples the outputs of its convolutional layers by max-pooling over the

feature maps. However, this operation is not ideal to adapt to new morphological

patterns from other languages as the model tends to discard patterns from languages

other than English.

To address these aspects, I introduce CS-ELMo, an extension of ELMo that incorporates a

position-aware hierarchical attention mechanism that enhances ELMo’s character n-gram

representations. This mechanism is composed of three elements: position embeddings,

position-aware attention, and hierarchical attention.

Position embeddings. Consider the word x of character length l, whose character n-gram

vectors are (x1, x2, . . . , xl−j+1) for an n-gram order j ∈ {1, 2, . . . , n}.1 The n-gram vector

xi ∈ Rc is the output of a character convolutional layer, where c is the number of output

channels for that layer. Also, consider n position embedding matrices, one per n-gram order,

{E1,E2, . . . ,En} defined as Ej ∈ R(k−j+1)×e where k is the maximum length of characters in

a word (note that l ≤ k), e is the dimension of the embeddings and j is the specific n-gram

order. Then, the position vectors for the sequence x are defined by p = (p1, p2, . . . , pl−j+1)

where pi ∈ Re is the i-th vector from the position embedding matrix Ej. I use e = c to

facilitate the addition of the position embeddings and the n-gram vectors.2

Position-aware attention. Instead of down-sampling with the max-pooling operation, I

use an attention mechanism similar to the one introduced by [16]. The idea is to concentrate

mass probability over the feature maps that capture the most relevant n-gram information

along the word, while also considering positional information. At every individual n-gram

1ELMo has 7 character convolutional layers, each layer with a kernel size from 1 to 7 characters (n = 7).
2ELMo varies the output channels per convolutional layer, so the dimensionality of Ej varies as well.
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order, the attention mechanism uses the following equations:

ui = vᵀ tanh(Wxxi + pi + bx) (7.1)

αi =
exp(ui)∑N
j=1 exp(uj)

, s.t.
∑
i=1

αi = 1 (7.2)

z =
∑
i=1

αixi (7.3)

where Wx ∈ Ra×c is a projection matrix, a is the dimension of the attention space, c is the

number of channels for the specific n-gram order, and pi is the position embedding associated

to the n-gram xi. v ∈ Ra is the attention vector to be learned, and αi is a scalar that describes

the attention probability associated to the i-th n-gram. z is the weighted sum of the input

character n-gram vectors and the attention probabilities, which is the down-sampled word

representation for the n-gram order n. Note that this mechanism is used independently for

every order of n-grams resulting in a set of m vectors {z1, z2, . . . , zm} from Equation 7.3.

This allows the model to capture relevant information across individual n-grams before they

are combined (i.e., all bi-grams, all tri-grams, etc.).

Hierarchical attention. The previous mechanisms handle the problems aforementioned.

That is, I have considered positional information as well as the attention mechanism to

down-sample the dimensionality. These components retrieve one vector representation per

n-gram order per word. While ELMo simply concatenates the n-gram vectors of a word, I

experiment with another layer of attention that can prioritize n-gram vectors across all the

orders. I use Equation 7.1 without pi, and in Equation 7.3, instead of doing the weighted

sum, I concatenate the weighted inputs. This concatenation keeps the original dimensionality

expected in the upper layers of ELMo, while it also emphasizes which n-gram order should

receive more attention.
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7.1.2 Sequence Tagging

Following [87] on sequence labeling, I use the ELMo with a bidirectional LSTM layer and a

conditional random field (CRF) on top. This is the baseline architecture and I build upon

it. Figure 7.2 shows the overall CS-ELMo model architecture (Figure 7.2A) and the details

of the proposed component inside it (Figure 7.2B).

Figure 7.2: A) The left figure shows the overall model architecture, which contains ELMo
followed by BLSTM and CRF, and a secondary task with a softmax layer using a simpli-
fied LID label set. The largest box describes the components of ELMo, which include the
enhanced character n-gram module proposed in this paper. B) The right figure describes in
detail the enhanced character n-gram mechanism inside ELMo. The figure shows the ELMo
convolutions of a word as input and a single vector representation as output.

The first modification is the concatenation of static English word embeddings to ELMo’s

word representation, such as Twitter [86] and fastText [21] embeddings similar to [54] and

[73]. The second modification is the concatenation of the enhanced character n-gram rep-

resentation with the input to the CRF layer. This emphasizes even further the extracted

morphological patterns, so that they are present during inference time for the task at hand

(i.e., not only LID, but also NER and POS tagging). The last modification is the addition of

a secondary task on a simplified3 language identification label scheme, which only uses the

3The full LID label set uses eight labels (lang1, lang2, mixed, ambiguous, fw, ne, other, and unk), but
I only consider three labels (lang1, lang2 and other) to predict LID based on characters.
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output of the enhanced character n-gram mechanism. Intuitively, this explicitly forces the

model to associate morphological patterns (e.g., affixes, lemmas, etc.) to one or the other

language.

Multi-task learning. I train the model by minimizing the negative log-likelihood loss

of the CRF classifier. Additionally, I force the model to minimize a secondary loss over

the simplified LID label set by only using the morphological features from the enhanced

character n-gram mechanism (see the softmax layer in Figure 7.2A). The overall loss L of

the model is defined as follows:

Ltaskt = − 1

N

N∑
i

yilog(ŷi) (7.4)

L = Ltask1 + βLtask2 + λ
∑
k

w2
k (7.5)

where Ltask1 and Ltask2 are the negative log-likelihood losses defined by Equation 7.4. Ltask1

is the loss of the primary task (i.e., LID, NER, or POS tagging), whereas Ltask2 is the loss

for the simplified LID task weighted by β to smooth its impact on the model performance.

The third term accounts for `2 regularization, and λ is the penalty weight.

7.2 LID Experiments

Approach 1. I establish three strong baselines using a vanilla ELMo (experiment 1.1),

ELMo combined with BLSTM and CRF (experiment 1.2), and multilingual BERT (experi-

ment 1.3) [37].
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Approach 2. In the second set of experiments, I add the components of the mechanism

upon ELMo combined with BLSTM and CRF (experiment 1.2). I start by replacing the max-

pooling operation with the attention layer at every individual n-gram order in experiment

2.1. In experiment 2.2, I incorporate the position information. Experiment 2.3 adds the

hierarchical attention across all n-gram order vectors. I apply the mechanism for n-gram

orders in the set {1, 2, 3}, which I report in Table 7.1.

Table 7.1: The results of incremental experiments on each LID dataset. The scores are
calculated using the weighted F-1 metric across the eight LID labels from CALCS. Within
each column, the best score in each block is in bold, and the best score for the whole column
is underlined. Note that development scores from subsequent experiments (e.g., experiments
2.2 and 2.3) are statistically significant with p-value < 0.02.

Exp. ID Experiment
Nepali-English Spanish-English Hindi-English

Dev Test Dev Test Dev Test

Approach 1 (Baseline models)

1.1 ELMo 96.192 95.700 95.508 96.363 95.997 96.420
1.2 ELMo + BLSTM + CRF 96.320 95.882 95.615 96.748 96.545 96.717
1.3 ML-BERT 95.436 96.571 96.212 96.212 95.924 96.440

Approach 2 (Upon experiment 1.2)

2.1 Attention on each n-gram 96.413 96.771 95.952 96.519 96.579 96.069
2.2 Position-aware attention on each n-gram 96.540 96.640 95.994 96.791 96.629 96.141
2.3 Position-aware hierarchical attention 96.582 96.798 96.072 96.692 96.705 96.186

Approach 3 (Upon experiment 2.3)

3.1 Concatenating character n-grams at the top 96.485 96.761 96.033 96.775 96.665 96.188
3.2 Adding simplified LID (secondary) task 96.612 96.734 96.051 96.932 96.565 96.215
3.3 Adding static word embeddings 96.879 97.026 96.757 97.532 96.776 97.001

Comparison: Previous best published results

Conditional random fields [73] - - 96.510 97.060 96.6045 96.840

Approach 3. The third set of experiments emphasizes the morphological clues extracted

by the previous mechanism (experiment 2.3). First, in experiment 3.1, I concatenate the

enhanced character n-grams with their corresponding word representation before feeding the

input to the CRF layer. In experiment 3.2, I add the secondary task over the previous exper-

iment to force the model to predict the simplified LID labels by only using the morphological

clues (i.e., no context is provided). Finally, in experiment 3.3, I add static word embeddings
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that help the model to handle social media style and domain-specific words.

The best results are delivered by experiment 3.3, which outperforms both the baselines

and the previous state of the art on the full LID label scheme (see Table 7.1).

7.3 POS Tagging and NER Experiments

I use LID to adapt the English pre-trained knowledge of ELMo to the code-switching setting.

Once this is achieved, I fine-tune the model on downstream NLP tasks such as POS tagging

and NER. In this section, the goal is to validate whether the CS-aware ELMo model can

improve over vanilla ELMo, multilingual BERT, and the previous state of the art for both

tasks. More specifically, I use the best architecture (experiment 3.3) from the LID experi-

ments 1) without the code-switching adaptation, 2) with the code-switching adaptation and

only retraining the inference layer, and 3) with the code-switching adaptation and retraining

the entire model.

POS tagging experiments. Table 7.2 shows the experiments on POS tagging using the

Hindi-English dataset. When I compare the CS-ELMO + BLSTM + CRF model with-

out CS adaptation (experiment 4.1) against the baseline (ELMo + BLSTM + CRF), the

performance remains similar. This suggests that the enhanced n-gram mechanism can be

added to ELMo without impacting the performance even if the model has not been adapted

to CS. Slightly better performance is achieved when the CS-ELMo has been adapted to

code-switching, and only the BLSTM and CRF layers are retrained (experiment 4.2). This

result shows the convenience of the model since small improvements can be achieved faster

by leveraging the already-learned CS knowledge while avoiding to retrain the entire model.

Nevertheless, the best performance is achieved by the adapted CS-ELMO + BLSTM + CRF

when retraining the entire model (experiment 4.3). The results are better than the baselines
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Table 7.2: The F1 scores on POS tagging for the Hindi-English dataset. CS knowledge
means that the CS-ELMo architecture has been adapted to code-switching by using the LID
task.

POS System Development F1 Test F1

ML-BERT 86.84 84.70
ELMo + BLSTM + CRF 87.42 88.12
Prev. SOTA [104] - 90.20

Architecture: CS-ELMo + BLSTM + CRF

Experiment 4.1: No CS knowledge 87.02 87.96
Experiment 4.2: CS knowledge frozen 89.55 89.92
Experiment 4.3: CS knowledge trainable 90.37∗ 91.03∗

* Statistically significant with respect to the ELMo + BLSTM + CRF baseline,

with p-value < 0.01 [38]

and the previous state of the art.

Interestingly, the model improves over multilingual BERT, which is a powerful and sig-

nificantly bigger model in terms of parameters. The intuition is that this is partly due to the

word-piece tokenization process combined with the transliteration of Hindi. The fact that

I use the multilingual version of BERT does not necessarily help to handle transliterated

Hindi, since Hindi is only present in BERT’s vocabulary with the Devanagari script. In con-

trast, ELMo generates contextualized word representations out of characters, which makes

the model more suitable to adapt to the transliteration of Hindi.

NER experiments Table 7.3 shows the experiments on NER using the 2018 CALCS

Spanish-English dataset. Similar to experiment 4.1, experiment 5.1 shows a performance

close to the ELMo baseline without the CS adaptation. In contrast to experiment 4.2,

experiment 5.2, which uses CS knowledge and only retrains the inference layer, slightly

drops the performance of the model. The intuition is that, unlike POS tagging, the LID

task is not inherently tied to the NER task. Despite of that, when I use CS knowledge and

retrain the full model (experiment 5.3), I see a significant improvement of about 5% absolute
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Table 7.3: The F1 scores on the Spanish-English NER dataset. CS knowledge means that
the CS-ELMo architecture has been adapted to code-switching by using the LID task.

NER System Development F1 Test F1

ML-BERT 61.11 64.56
ELMo + BLSTM + CRF 59.91 63.53
Best at CALCS [115] - 63.76
Prev. SOTA [121] - 66.63

Architecture: CS-ELMo + BLSTM + CRF

Experiment 5.1: No CS knowledge 62.59 66.30
Experiment 5.2: CS knowledge frozen 64.39∗ 67.96∗

Experiment 5.3: CS knowledge trainable 64.28 66.84

* Statistically significant with respect to the ELMo + BLSTM + CRF baseline,

with p-value < 0.0025 [38]

points on the F1 metric over the model without CS adaptation (experiment 5.1). The only

difference between experiment 5.1 and 5.3 is the presence of CS knowledge (i.e., ELMo is

fine-tuned on LID), which emphasizes the importance of the transfer learning step to the CS

setting.

7.4 Analysis

Position embeddings Localizing n-grams within a word is an important contribution of

the method. I explore this mechanism by using the CS fine-tuned ELMo to predict the simpli-

fied LID labels on the validation set from the secondary task (i.e., the predictions solely rely

on morphology) in two scenarios. The first one uses the position embeddings corresponding

to the actual place of the character n-gram, whereas the second one chooses position em-

beddings randomly. I notice a consistent decay in performance across the language pairs,

and a variation in the confidence of the predicted classes. The most affected language pair

is Spanish-English, with an average difference of 0.18 based on the class probability gaps be-

tween both scenarios. In contrast, the probability gaps in Hindi-English and Nepali-English
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are substantially smaller; their average differences are 0.11 and 0.09, respectively.

Attention analysis Figure 7.3 shows the tri-gram attention weights in the Spanish-

English LID dataset. The model is able to pick up affixes that belong to one or the other

language. For instance, the tri-gram -ing is commonly found in English at the end of verbs in

present progressive, like in the word coming from the figure, but it also appears in Spanish

at different places (e.g., ingeniero) making the position information relevant. On the con-

trary, the tri-grams aha and hah from the figure do not seem to rely on position information

because the attention distribution varies along the words.

Figure 7.3: Visualization of the tri-gram attention weights for the 2016 Spanish-English LID
dataset. The boxes contain the tri-grams of the word below them along with the right (3)
or wrong (7) predictions by the model.

Error analysis Morphology is very useful for LID, but it is not enough when words have

similar spellings between the languages. I inspect the predictions of the model, and find cases

where, for example, miserable is labeled as ambiguous but the model predicts a language

(see the top-right tweet in Figure 7.3). Although I find similar cases for Nepali-English and

Hindi-English, it mostly happens for words with few characters (e.g., me, to, use). The

model often gets such cases mislabeled due to the common spellings in both languages.

Although this should be handled by context, the contribution relies more on morphology

than contextualization, which I leave for future work.
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7.5 Limitations

The main limitation of this study is that the model is only applicable to English-paired

code-switched languages. That is because the pre-trained knowledge of the model only relies

on English text. In the proposed method, English is an essential part of performing code-

switching adaptation. Nevertheless, code-switching happens in many more language pairs

that exclude English, limiting the proposed approach’s scope.

Additionally, the adaptation of the model relies on labeled data. This means that the

method not only requires English-paired code-switched text, but it also requires annotated

data for language identification. If the ultimate goal is to target downstream NLP tasks such

as NER or POS tagging, then it would be costly to annotate language identification and the

task of interest. Despite that, the proposed method serves as evidence that it is possible to

leverage pre-trained knowledge and adapt it to code-switching settings effectively.

7.6 Conclusion

I presented a transfer learning method from English to code-switched languages using the LID

task. The method enables large pre-trained models, such as ELMo, to be adapted to code-

switching settings while taking advantage of the pre-trained knowledge. I established new

state of the art on LID for Nepali-English, Spanish-English, and Hindi-English. Additionally,

I showed the effectiveness of the CS-ELMo model by further fine-tuning it for NER and POS

tagging. The model outperforms multilingual BERT and homologous ELMo models on

Spanish-English NER and Hindi-Enlgish POS tagging.
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Chapter 8

From Multilingualism to

Code-Switching

Considering that linguistic code-switching is inherently multilingual, it is natural to think

of multilingual models as strong approaches to this phenomenon. While this is a valid

assumption, there are a few caveats to consider. For instance, code-switching frequently

appears as transliterated text when the scripts of the code-switched languages differ. That

is, code-switchers conveniently rely on practical linguistic aspects to import a language into

a non-native script (see Figure 8.1).1 Such transliterated text prevents multilingual models

from leveraging their knowledge initially captured in the native scripts.

Figure 8.1: A Hindi-English code-switched tweet. Hindi is transliterated to the Roman script
(highlighted) instead of using Devanagari. Trans.: Keep calm and mind your own business!!!

1E.g., Hindi can be transliterated from Devanagari to the Roman script using phonological writing.
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Another important aspect is the input representation of multilingual models. Recent

methods, such as multilingual BERT (mBERT) [37] and XLM-RoBERTa [67], rely on the

byte-pair encoding (BPE) algorithm [100] and a vocabulary of subword pieces to represent

the input text. Although these methods alleviate the out-of-vocabulary (OOV) problem,

they are susceptible to character-level modifications. If the model’s vocabulary does not

contain a given word, it gets split into pieces until the BPE algorithm finds matches of sub-

words within the vocabulary.2 This process can break down words into sub-pieces that do

not necessarily resemble morphological inflections (see Figure 8.2). Such a problem is signifi-

cantly aggravated in the social media domain since the noise from user-generated texts (e.g.,

arbitrary spellings, abbreviations, and slang) can drastically affect the resulting sequence of

subwords.

Figure 8.2: A tokenization example that compares BPE and character tokenization given
an input sentence. For BPE, only the word nanotechnology is split because it does not
appear in the vocabulary. This word is broken down into pieces that only resemble the
morpheme -ology (i.e., nano-tech-nology). Also, note that the resulting subwords do not use
the word technology as a piece despite being present in the vocabulary. For characters, the
tokenization process does not segment words into subword pieces; instead, it provides a list
of character sequences where each sequence represents a word.

Motivated by those challenges, I proposed a character-to-subword (char2subword) module

that extends the embedding space of the subword lookup table in mBERT. Although the

mBERT subword embedding space is continuous, the vector representations used by the

model are restricted only to the entries in its vocabulary. This restriction no longer applies

2BPE greedily looks for matches of subword pieces bottoming down to characters.
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when using the char2subword module; the char2subword module allows mBERT to extend its

original vocabulary to flexible word representations never projected in the input embedding

space before. The module takes the sequence of characters from a subword and produces

its corresponding embedding vector, effectively resembling the original subword embedding

table in mBERT (Section 8.1.1). This module becomes robust to spelling alterations by

introducing character-level noise during training in the embedding approximation phase.

Additionally, I integrate this module with the transformer layers of mBERT even further

by resuming pre-training (Section 8.1.2). Once the char2subword module is adapted to the

pre-trained language model, I evaluate the overall model performance by fine-tuning it on

downstream tasks (Section 8.1.3). I show the method’s effectiveness by outperforming the

original mBERT model in the linguistic code-switching evaluation (LinCE) benchmark.

8.1 Method

Given the word w, a subword model produces a sequence of word pieces s = (s0, s1, . . . , sn),

such that the concatenation of all the segments from s fully reconstructs the word w. Note

that the length of a subword piece si can go from one character to all the characters of

the word w. However, regardless of whether a subword piece represents a character in a

word or not, all the pieces are treated as semantic units within a sentence.3 This happens

in current transformer-based models, where their strict tokenization into subword pieces

has a significant impact on the semantic abstraction of upper layers of the model. A rule-

based system generates the tokenization without taking any semantics into account [51].

This makes it hard to guarantee that the resulting tokenization is optimal for the model to

3[30] shows that BERT abstracts linguistic properties within its self-attention probabilities, evidencing
that subwords need to preserve meaning when fed into such layers. This suggests that subwords broken down
to individual characters can prevent the model from exploiting such linguistic properties at the sentence level.
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interpret the underlying semantics of the sentence.

To mitigate such problems, I build word representations out of characters. The character-

to-subword (char2subword) module allows flexible tokenization patterns, where the model

can split by spaces, use the original tokenization method, or employ a different tokenization

process as defined by the user. There are two main phases in the proposed method: approx-

imating subword embeddings with the char2subword module (i.e., ideally replicating the

embedding space E) (Section 8.1.1), and contextually integrating the char2subword module

into the pre-trained model (Section 8.1.2).

8.1.1 Approximating the Subword Embedding Table

Consider a subword si from the vocabulary V and a subword embedding matrix E ∈ R|V|×d.4

I learn a parameterized function fθ : R|c|×1 → Rd that maps the sequence of characters

ci = (ci1, ci2, . . . , ci|si|) from the subword si to its corresponding embedding vector ei ∈ E:

êi = fθ(ci) s.t. êi ≈ ei

To accomplish that, I optimize fθ by minimizing the overall objective function L(·) using

the entries from the BERT’s vocabulary V :

L(ci, si, ei, fθ) = Lcos(ei, fθ(ci)) + Lce(si, fθ(ci)) + L2(ei, fθ(ci)) + Lnbr(ei, fθ(ci))

The first objective, Lcos(·), is the cosine distance between the target and the predicted

embedding vectors ei and êi. By using an angular distance function, I force the model to

4The subword embedding matrix E is part of the BERT model; it contains one-to-one mappings between
the model’s subword vocabulary V and the input subword embedding space.
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replicate the semantic relationships and the vector arrangement in the embedding space E:

Lcos(ei, êi) = 1− cos(ei, êi)

The second objective, Lce(·), is the cross-entropy loss function. In this case, I use E as

fixed parameters (i.e., not trainable) to project linearly from the embedding to the vocabulary

space. This loss term forces the model to learn accurate embedding representations such that

they map to the original subwords from the vocabulary V :

Lce(si, êi) = −si log p(êi ·E>)

The third objective is the L2 norm or euclidean distance between the vectors ei and êi.

The previous objectives do not regulate the magnitude of the predicted vector êi, allowing

that to be a degree of freedom for fθ. By using the L2 norm, I penalize the model for gen-

erating a vector êi with a different magnitude than ei. Note that preserving the magnitude

is as important as preserving the vector arrangements in the embedding space. Intuitively,

slightly different properties than the embedding space E can magnify differences at the upper

layers of mBERT.

The last objective, Lnbr(·), is the mean squared error (MSE) of cosine distances5 generated

between the k-th closest neighbors to ei vs. the distances of the same neighbors for êi:

(n1, . . .nk) = topk(ei,E)

L(ei, êi) =
1

k

k∑
j=1

(dis(ei,nj)− dis(êi,nj))
2

where topk(·) retrieves the k-th closest neighbors according to the cosine distances among all

5The cosine distance is defined as dis(a, b) = 1− cos(a, b) where a, b ∈ Rd.
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the subword vectors in E. The main idea of this objective is to force distances between êi

and the neighbors n∗ to be as similar as possible to the distances between the same neighbors

and ei.

Char2subword module I model the char2subword module using the Transformer [116].

The module processes a sample as a sequence of characters ci = (ci1, ci2, . . . , ciM) of a subword

si of length M .6 I represent the sequence ci as the sum between the character embeddings

and sinusoidal positional encodings. I pass the resulting sequence of character vectors X0 to

a stack of l attention layers, each with k attention heads. The j-th attention layer receives

the input Xj, and it outputs Xj+1 by applying two subsequent components: multi-head

attention and feed-forward layers. The multi-head attention is defined as follows:

Attention(Q,K,V ) = softmax(
QK>
√
d′

)V

MultiHead(X) = [head1; . . . ; headk]W
O

where headi = Attention(XWQi

j ,XWKi
j ,XW Vi

j )

X ′
j = MultiHead(Xj)

The feed-forward component linearly projects X ′
j using Wj1 ∈ Rd′×4d′ followed by a

GELU activation function [52]. The projection is passed to another linear transformation

such that the result X ′
j is mapped back to Rd′ :

FFN(X ′
j) = GELU(X ′

jWj1 + bj1)Wj2 + bj2

Each component normalizes its input X̄j = LayerNorm(Xj) using layer normalization [15].

6To distinguish between words and subwords, I prepend ‘##’ to the sequence ci in the case of full words.
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I add the normalized input to the output of the component as in a residual connection [50]:

X ′
j = MultiHead(X̄j) + X̄j

Xj+1 = FFN(X̄ ′
j) + X̄ ′

j

Following [116], I preserve the dimension d′ of the character embedding throughout the

attention layers. On top of the l attention layers, I add a linear layer We ∈ Rd′×d followed

by max-pooling and a layer normalization for the final output êi:

êi = LayerNorm(maxpool(XlWe + be))

Character-level robustness The flexibility of the char2subword module makes it easier

to teach the model text invariance because the inputs are now processed at the character-

level. I augment the subword vocabulary V by introducing natural single-character mis-

spellings during training. I apply one operation at a time and only to subwords that exceed

four characters to reduce the chance of ambiguity between valid subwords. The operations

are described in Table 8.1 and the high-level view of the approximation appears in Figure

8.3.7

8.1.2 Pre-training with the Char2subword Module

The previous techniques leverage the pre-trained knowledge in the embedding matrix E.

However, the char2subword module may not be appropriately integrated with the pre-trained

mBERT’s upper layers since it has only seen individual subwords without context. To

alleviate that, I resume pre-training using the char2subword module along with the original

parameters of mBERT [48]. Importantly, I do not update parameters in upper layers of

7For the mistype operation, I use over 100 keyboard layouts to cope with the languages in mBERT.
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Table 8.1: Single-character operations to incorporate noise in the approximation stage. The
operations are applied to every word in the vocabulary that exceeds the four characters and
that it is not a special token.

Operation Description

mistype replace a random character of a given subword by randomly choosing
from its nearby keys according to a keyboard layout

repeat repeat a random character of a given subword

swap randomly choose a character and swap it with the next character in the
subword

drop randomly drop one character of a given subword

toggle toggle the case of a randomly chosen character from a given subword

punctuation randomly insert a punctuation mark commonly used within text (e.g.,
parenthesis, dashes, periods, etc.)

Figure 8.3: The char2subword module is trained using the subword embedding lookup table
from a pre-trained language model (e.g., mBERT). I incorporate noise in every word at the
character level with single-character operations.

mBERT since the goal is to provide the char2subword module as a drop-in alternative for

E on the publicly available pre-trained checkpoint.8

Following practices from [67], I use a dynamic masked language modeling (MLM) objec-

tive and do not include the next sentence prediction objective (see Figure 8.4). I randomly

choose 15% of the subword tokens and mask them at the character level. The masking

8While the study focuses on mBERT, this method can be applied to other multilingual (e.g., XLM-
RoBERTa) or monolingual (e.g., CTRL [59]) models.
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process replaces 80% of the characters with [MASK], 10% with randomly chosen characters

and the remaining 10% is left unchanged. I feed characters to the char2subword module and

make predictions from the subword vocabulary V .9

Figure 8.4: An example of an input and output of the pre-training setting with a masked
language modeling (MLM) objective at the character level.

I pre-train the char2subword model with 1M sequences of 512 subword tokens from

Wikipedia (200K sequences for each English, Spanish, Hindi, Nepali, and Arabic text).

Using gradient accumulation, I update parameters with an effective batch size of 2,000

samples. Note that the model does not require extensive pre-training since 1) the upper-layer

parameters are initialized from the pre-trained mBERT checkpoint and kept fixed during

training, and 2) the char2subword module is initialized from the embedding approximation

phase. Thus, pre-training the model for a few epochs is sufficient.

8.1.3 Fine-tuning

Once the char2subword module has been optimized, I evaluate the pre-trained model with

the char2subword module on downstream NLP tasks. Specifically, I experiment with two

scenarios: the full and the hybrid modes.

9Using the pre-trained embedding table E, I project the internal representations per word onto the
vocabulary space without updating the parameters of E.
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Full mode This mode completely replaces the subword embedding table in mBERT (i.e.,

the set of parameters and vectors) with the char2subword module (see Figure 8.5 (center)).

This setting’s idea is to evaluate how well approximated was the embedding space originally

in E. Intuitively, if the char2subword replicates the embedding space in E perfectly, then the

overall model should behave about the same as the original mBERT model. Nevertheless,

this setting does not tokenize a word further; hence, the input sequence tends to be shorter

and more meaning-preserving (i.e., too many subword pieces for a single word can degrade

its meaning). This setting should overcome misspellings while also preserving the original

knowledge in the embedding table without splitting subwords dramatically into multiple

pieces.

Figure 8.5: The fine-tuning scenarios with the char2subword module. The mBERT model
structure (left) is added for reference. The full mode (center) shows the char2subword
module instead of the subword embedding table. The hybrid mode (right) represents both
the subword embedding table and the char2subword module. The char2subword module is
only used when the input word does not appear in the vocabulary as a whole.

Hybrid mode Unlike the full mode, this mode does not replace the subword embedding

table (see Figure 8.5 (right)). Instead, it uses the subword embedding vectors by default for

full words (i.e., not subword pieces). The model backs off to character-based embeddings from

the char2subword module when a word as a whole does not appear in the vocabulary. This

method prevents words from being broken down into pieces by building word representations

out of its characters.
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8.2 Experiments

8.2.1 Embedding Approximation

The approximation experiments’ goal is to replicate the original subword embedding table

while ensuring robustness at the character-level modifications. I experiment with the objec-

tive functions described in Section 8.1.1. I use the average precision to determine the best

method. Nevertheless, I also provide the accuracy for reference.10

The experiments 1.1 to 1.4 show the results of each objective function individually (see

Table 8.2). Notably, the cross-entropy objective is the most relevant to ensure high preci-

sion (58.1% vs. 28.5% of the cosine objective from experiments 1.1 and 1.2, respectively).

Combining all the objective functions as in experiment 1.9 gives an average precision of

60.0%. Although experiment 1.6 performs very close to experiment 1.9 (59.9% vs. 60.0%),

experiment 1.9 still preserves more neighbors along the top k expected neighbors (see Figure

8.6a).

After optimizing a char2subword module in experiment 1.9, I contextualize it according

to the pre-training phase (Section 8.1.2). The results show that the precision at k drops

substantially (see “Approx. → Pre-training” in Figure 8.6b). However, when restoring

approximation from the pre-training phase, the model performs far better than the approx-

imated version reaching an average precision of 82.4% (see “Approx. → Pre-training →

Approx.” in Figure 8.6b). This bounce in performance shows the need for contextualization

for the original char2subword module. The contextualization by itself does not guarantee

that the module will resemble the same embedding space as in E (i.e., there is nothing that

forces the module to optimize for that). However, it provides a better arrangement of the

10Using accuracy to determine the best method can mislead the interpretation of the model’s capabilities.
Accuracy is not ideal in this scenario since the goal is to approximate an embedding space rather than merely
predicting vocabulary subwords given their characters. To better assess the embedding space approximation,
I use average precision up to the top k neighbors of ei.
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Table 8.2: The results of approximating the subword embedding table from mBERT using
different combinations of objective functions. Experiments 1.1 to 1.4 denote the performance
of the char2subword module using individual objective functions (e.g., experiment 1.2 only
uses Lcos). Experiments 1.5 to 1.8 use the cross-entropy objective Lce by default and combine
it with other objectives (e.g., experiment 1.8 uses Lce(·)+Lneigh(·)). Experiment 1.9 combines
all the objectives at the same time. The accuracy denotes the capability of the model to
predict a subword out of its characters. Precision @ k measures the overlap between the k
ground-truth neighbors for a vector ei (that represents subword si) and the k neighbors of
the predicted vector êi.

Exp. ID Lce Lcos L2 Lnbr Accuracy Prec@1 Prec@15 Avg Prec

1.1 3 99 99.6 43.9 58.1
1.2 3 62 41.8 24.2 28.5
1.3 3 45 18.2 12.2 13.5
1.4 3 43 25.5 17.1 19.6

1.5 3 3 96 96.1 41.2 55.1
1.6 3 3 95 99.1 46.6 59.9
1.7 3 3 3 95 98.6 46.7 59.8
1.8 3 3 98 97.4 42.6 56.5

1.9 3 3 3 3 95 98.3 47.1 60.0

(a)
(b)

Figure 8.6: Precision up to the 15-th top elements. (a) A comparison of the most important
objective functions for the approximation phase. (b) A comparison of the best approximation
model before and after the pre-training stage.

embedding space, which results in better average precision in the approximation.

Character-level robustness is another essential aspect when optimizing the char2subword

module. I add single-character perturbations to the training phase as mentioned in Section
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8.1.1. Table 8.3 shows the neighbors of the word business and its variations. Note that

when the input is business without perturbations (first column), the char2subword modules

(with and without noise) retrieve semantically-related neighbors. However, when the word

is capitalized, the neighbors are not related to the word business for the char2subword

without noise. Also, the subword tokenization for BUSINESS becomes B-US-INE-SS, which

undermines the meaning of the original word. Regardless of that, the char2subword noise is

resilient to the capitalization pattern and capable of maintaining the meaning.11

Table 8.3: The results of approximating the subword embedding table from BERT. The
first row describes the neighbors of the query vectors coming from the same embedding
table E. Note that for words that do not exist in the table, I only show how the word
would be tokenized. The other rows contain neighbors in every cell since they always have
representations for the sequence of characters.

Model
Input Tokens

business BUSINESS busINess bsusinessses

mBERT
Subword Table

business (1.00)
Business (0.61)
businesses (0.47)
businesses (0.47)
bisnis (0.46)

B-US-INE-SS bus-IN-ess b-sus-iness-ses

Char2subword

business (0.82)
Business (0.50)
businesses (0.43)
bisnis (0.38)

ASEAN (0.2565)
RSS (0.2456)
FCC (0.2416)
WEB (0.2403)
Austrália (0.2360)

pisos (0.22)
islas (0.21)
tienda (0.20)
Conservatory (0.20)
Filipinas (0.20)

businesses (0.42)
companies (0.33)
opportunities (0.32)
industries (0.31)

Char2subword
+ Noise

business (0.80)
Business (0.61)
businesses (0.53)
negocios (0.39)

Business (0.53)
business (0.32)
Marketing (0.31)
Corporate (0.31)
Communications (0.30)

business (0.79)
Business (0.61)
businesses (0.53)
companies (0.38)

businesses (0.79)
companies (0.53)
shops (0.52)
corporations (0.50)
employees (0.49)

11Interestingly, the char2subword module never sees a subword from the vocabulary with more than a single
character edit (i.e., I defined the robustness procedure this way). That means that the word BUSINESS
never appeared in training for the model.
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8.2.2 Fine-tuning Experiments

Once the char2subword module is adapted to mBERT, I benchmark the model in the full

and hybrid modes (see Section 8.1.3) using the linguistic code-switching evaluation (LinCE)

benchmark [2]. In particular, I focus on the sequence labeling tasks from LinCE: language

identification (LID), part-of-speech (POS) tagging, and named entity recognition (NER).

Table 8.4 shows the results of the experiments using the full and hybrid modes. For each

model, I use the approximated and pre-trained (i.e., “Approx. → Pre-training→ Approx.”)

versions of the char2subword module. The language identification results are not a strong

indicator of improvement since the scores are all very close.12 Nevertheless, it is important to

note that the model can perform on par with the mBERT baseline regardless of the version.

This suggests that the char2subword module is learning good representations compatible

with the rest of the mBERT model (i.e., mBERT transformer layers).

For the POS and NER tasks, the tendency is different. The hybrid pre-trained experiment

for Hindi-English is significantly better than the baseline for both POS (89.64% vs. 87.86%)

and NER (74.91% vs. 72.94%). One of the reasons for this performance boost is due to the

noise that splitting transliterated Hindi (i.e., Hindi wrote with the Roman script) generates

for the baseline. On the contrary, the char2subword compresses the transliterated words into

a single vector, reducing the model’s noise.

The NER results for Spanish-English (es-en) and Modern Standard Arabic-Egyptian

Arabic (msa-arz) also exceed the baseline (64.26% vs. 62.66%). Although there is no

transliteration in these language pairs, there is still much noise coming from social me-

dia user-generated language. Also, pre-training the char2subword on Spanish and Arabic

data improves the model’s representations and robustness for such languages.

Table 8.5 shows consistent results with the development set. The LID results are not

12The average score for LID across language pairs is 95.71% for mBERT (baseline) and 95.80% for
char2subword module (hybrid, pre-trained).
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Table 8.4: Results on the development set of the LinCE benchmark (average over three
runs with different seeds). Full refers to the full mode where the model only uses the
char2subword to embed the input. Hybrid means that the model uses the subword embedding
table by default and backs off to the char2subword module for unseen words (i.e., out-of-
vocabulary words) instead of splitting it. For this table, pre-trained means that the model
was approximated after the pre-training phase (i.e., “Approx. → Pre-training→ Approx.”),
while approx. means that the model is only trained in the approximation phase. The
languages involved are English (en), Spanish (es), Hindi (hi), Nepali (ne), Modern Standard
Arabic (msa), and Egyptian Arabic (arz). The scores for LID, NER, and POS are weighted
F1, micro F1 with spans, and accuracy, respectively. The best results on each language pair
are in bold.

LID (W. F1) POS (Acc.) NER (F1)

Method Adaptation Avg es-en hi-en ne-en msa-arz es-en hi-en es-en hi-en msa-arz

mBERT N/A 86.95 98.23 96.37 96.67 91.55 97.29 87.86 62.66 72.94 78.93

Full Approx. 86.66 98.16 95.79 96.45 91.63 96.93 89.04 62.02 70.79 79.13
Full Pre-trained 86.89 98.20 96.97 96.47 91.48 96.91 89.38 61.23 71.98 79.42
Hybrid Approx.∗ 87.37 98.24 96.98 96.50 91.48 97.16 88.95 64.26 72.68 80.10
Hybrid Pre-trained∗ 87.59 98.18 96.75 96.37 91.64 97.03 89.64 63.32 74.91 80.45

* Statistically significant with respect to the mBERT baseline, with p-value < 0.01 in student’s t-test.

significantly different, but the results on the POS and NER tasks are.

Table 8.5: Results on the test set of the LinCE benchmark using the hybrid char2subword
mBERT model (best proposed model). The languages involved are English (en), Span-
ish (es), Hindi (hi), Nepali (ne), Modern Standard Arabic (msa), and Egyptian Arabic
(arz). The scores for LID, NER, and POS are weighted F1, micro F1 with spans, and
accuracy, respectively. State-of-the-art performance reached as of October 19th, 2020:
https://ritual.uh.edu/lince/leaderboard.

LID POS NER

Method Avg es-en hi-en ne-en msa-ea es-en hi-en es-en hi-en msa-ea

mBERT 85.09 98.36 94.24 96.32 91.55 97.07 86.30 64.05 72.57 65.39
Best proposed model 85.69 98.33 96.23 96.19 91.19 96.88 88.23 64.65 73.38 66.13

8.3 Analysis

Attention for LID Figure 8.7 shows the visualization for the Spanish-English LID task

with an intra-sentential code-switching example (i.e., code-switching at the clause level of
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a sentence utterance). The example shows that the strongest connections at the word level

(Figure 8.7 (left)) happen for words in the same language. Particularly, the word consequen-

cias is slightly ambiguous since its morphology overlaps substantially with both the English

and Spanish versions. With the context from the surrounding Spanish words, the model can

determine that the word is Spanish. Although there are more patterns captured among all

the heads in mBERT, this pattern suggests that words of the same language can provide

contextual support along with the sentence.

Figure 8.7: Character-level attention for a Spanish-English tweet. The connections between
words read from left to right, and they represent the probability mass distributed across
the sentence for one word (i.e., a self-attention head). The right figure shows the attention
distribution across the eight heads (i.e., from H0 to H7). Translation: “Alright, otherwise
you know the consequences!! Eh, haha.”

In addition to the contextual support, character-level attention (i.e., char2subword trans-

former layers) also plays an important role when building the word representation. Par-

ticularly for this word, the ambiguity is introduced due to the letter q. Note that the

char2subword module creates strong connections with this letter and parts where more am-

biguity could happen. For example, the letter i in the word consequencias happens where

the suffixes -cias (Spanish) and -ces English could complete the word).
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Error analysis Table 8.6 captures the mistakes of the model in a confusion matrix for

the Spanish-English LID development set. Note that there are many mistakes between the

English and Spanish words (112 English words predicted as Spanish, and 101 Spanish words

predicted as English). Out of the 101 English words, 63 were processed by the char2subword

module (i.e., via back-off). Most of these errors come from words that heavily overlap in

morphology between the two languages. For example, the words imagine, rodeos, superego,

tacos are exact spellings between the languages, while the words apetite and pajamas change

one letter between the languages (e.g., apetito, pijamas in Spanish). These errors suggest

that the robustness may create some ambiguity when detecting the text’s language. That

is, single-character differences can denote one or another language, but the robustness oper-

ations (Table 8.1) can blur such distinction during the approximation phase. Other words

are interjections that are spelled the same way (e.g., oh, eh, Muahahahahaha). Also, there

are cases where the ground-truth labels are wrong. For example, the word larges in the the

sentence “La puerta está abierta para que te larges, ¿por qué no te has ido?”13 was cor-

rectly predicted as Spanish based on the context (i.e., the correct spelling is largues, which

translates to get out).

Lastly, the mixed LID class shows that words code-switched at the surface level are

difficult to detect (the model obtains zero predictions out of six tokens in the validation set).

Although this is a deficient number of instances, the model shows a particular aspect across

classes. The model tends to rely more on the semantic meaning of the word rather than on

its spelling. For example, the word “taggea” is an English word conjugated with the Spanish

grammatical rules, and the model predicts it as a Spanish word. The word “estop” can be

stop or estop but either way, they have the same meaning, and the model relies more on

the context than on the ambiguous spelling, predicting it as an English word. This could

13Translation: “The door is open for you to get out, why haven’t you left?”

113



be explained by the robustness emphasis (e.g., character edits from the multilingual space)

while approximating the embedding space.

Table 8.6: The confusion matrix on the development set of the LID task for Spanish-
English. The labels are lang1 (English), lang2 (Spanish), mixed (partially in both languages),
ambiguous (either one or the other language), fw (a language different than lang1 and lang2),
ne (named entities), other, and unk (unrecognizable words).

Ground-truth

Predictions ambiguous fw lang1 lang2 mixed ne other unk

ambiguous 0 0 21 16 0 0 1 1
fw 0 1 0 1 0 0 0 0
lang1 14 0 16,492 101 0 74 14 17
lang2 13 0 112 14,771 0 51 5 3
mixed 0 0 1 4 0 1 0 0
ne 3 0 110 96 1 597 7 1
other 1 0 13 6 1 3 7,802 4
unk 0 0 8 10 0 3 3 8

The errors in transliterated language have different patterns. The char2subword module

attempts to generate embeddings that resemble the morphological form of the input words.

Hence, the module works as an extension of the morphological patterns in the original vo-

cabulary (in addition to variations with noise described in Section 8.1.1). In Hindi-English

language identification, the char2subword module has a more substantial bias towards En-

glish (i.e., lang1) than transliterated Hindi (i.e., lang2), particularly for words whose spellings

overlap between the two languages—the module is not pre-trained on transliterated Hindi.

For example, the tweet “I do not see the left and right. Dazzled my eyes becch mein baithe,”14

the word becch is misspelled and could be either beach or beech (beech translates to mid-

dle). Since the char2subword module has no access to the context at the point of building

the initial word embedding vector, it cannot disambiguate the spelling and retrieve a more

informed representation. This causes the word to be wrongly labeled as English instead of

14Translation: “I do not see the left and right. Dazzled my eyes sitting in the middle.”
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Hindi. A similar scenario happens with Hindi words like yug (meaning era) and par (mean-

ing on), which show neighbor embeddings like young and pair, respectively. Unlike many

cases in Spanish-English, similar spellings between Hindi and English do not usually have

similar meanings.15 Therefore, spelling ambiguity is more harmful in such scenarios because

the meaning can entirely change.

Another interesting behavior in the Hindi-English language identification predictions is

the tendency of detecting single-letter words as Hindi. Since there is no official agreement for

Hindi transliteration with the Roman script, code-switchers employ the Roman script relying

on the sounds as per its English pronunciation. For convenience, they also use the shortest

possible ways to write such sounds on social media. For example, frequent single-letter words

like g, m, h, and k can be spelled more adequately as ji, hum, he, and ke to align better with

their pronunciation. Nevertheless, these aspects make the model pick up single-letter words

more often as Hindi than English without the model knowing the underlying reason (i.e.,

pronunciation), often resulting in wrong predictions where there is a lack of English context.

Subword sequence lengths Naturally, sequences coming from the subword tokenization

are at least the same length or longer than the original sequence of tokens. Quantifying that

aspect shows the opportunity that the char2subword mBERT model has in practice. Table

8.7 shows the statistics of the original sequence lengths (Tokens) and the sequence lengths

after the subword tokenization (Subword). Note that the average sequence lengths tend to

duplicate across datasets. This can potentially explain a larger gap in performance for NER

and POS tagging tasks than in LID. The former tasks require more semantics, which aligns

with the fact that subwords degrade meaning by splitting into many pieces.

15Unless words are adopted from one language to the other, like rupees or lakhs (i.e., hundred).
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Table 8.7: Statistics across the development sets that compare sequence lengths before and
after subword tokenization. Tokens refers to the original length of the sequences as provided
in the benchmark, while Subwords means the same sequence further tokenized with the
BPE algorithm employed in multilingual BERT.

Tokens Subwords

Task Lang. Samples Mean ± Std Min Max Mean ± Std Min Max

LID

es-en 3,332 12.1 ± 7.7 1 39 21.1 ± 12.0 1 69
hi-en 744 20.8 ± 24.1 1 225 31.4 ± 32.9 4 278
ne-en 1,332 14.5 ± 6.3 3 34 28.5 ± 10.8 3 63
msa-arz 1,116 19.7 ± 6.5 2 36 43.5 ± 14.4 2 93

NER
es-en 10,085 12.1 ± 7.6 1 45 25.7 ± 14.2 1 120
hi-en 314 17.0 ± 6.3 4 34 40.5 ± 13.6 7 74
msa-arz 1,122 20.2 ± 6.7 2 38 44.5 ± 14.8 3 112

POS
es-en 4,298 7.7 ± 6.0 2 90 9.9 ± 7.8 2 127
hi-en 160 21.7 ± 5.2 5 37 41.3 ± 12.2 7 93

Parameters vs. efficiency The subword lookup table in mBERT provides immediate

access for the tokenized text to the embedding space, making such a table very convenient.

However, this access is highly restricted to a predefined vocabulary, and, in the case of

multilingual models, such vocabulary has to have adequate coverage for all the languages

involved. Models like mBERT or XLM-RoBERTa use more than 100 languages, which

translates into a large number of parameters just to enable the text to be vectorized. More

specifically, mBERT has 177M parameters in total while only its subword embedding table

(|V| = 119K) occupies 91M parameters—more than 50% of all the parameters of the model.16

The char2subword module, on the other hand, reduces the number of parameters to 50M,

about 45% less than the subword embedding table, while also capable of handling misspellings

and inflections robustly. Nevertheless, this module requires more computation time to come

up with subword-level embedding representations.

16For XLM-RoBERTa base (278M) and large (559M), the percentages are 65% and 49%, respectively.
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8.4 Limitations

The main limitations of this work are related to measuring the quality of the approximated

embeddings. Extending the multilingual embedding space is a sensitive task, and producing

those embeddings are crucial for the model to have good performance. However, I only

measure the quality by checking neighbors in cosine-distance space. Although useful and

reliable for the neighbors, this metric does not necessarily capture all the properties of the

embedding space. The metric focuses on each embedding vector subspace’s localities, but

not necessarily on the global aspects.

Another limitation is the cost of the pre-training phase to contextualize the char2subword

module. Even though this phase only updates parameters on the char2subword module (not

the overall multilingual BERT model), it still requires extensive computational resources17

The computing demand reduces the scope for exploring multiple hyper-parameters, limiting

this part of the work to follow suggested practices.

The last major limitation is related to pre-training with the subword tokenization as part

of the process. The overall model (e.g., mBERT) uses a masked language model objective

over its original vocabulary. Since the char2subword module takes advantage of the pre-

training, the same subword parameters are used to predict the output (e.g., the embedding

matrix E, meaning that a vocabulary does not have to be learned). That induces subword

units into the char2subword module even though the model could entirely use a different

tokenization process (e.g., as simple as splitting the text by spaces). This is not an ideal

outcome because subword units degrade meaning, and using poor-meaning pieces as input

can deteriorate the overall model performance. Ideally, to drop subword tokenization entirely,

the model should be pre-trained from scratch using inputs as characters for every word (i.e.,

17I conducted the pre-training phase using 32 GPUs Tesla V100, with 1M training examples. I trained
the model for four days on four epochs.
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character-level feature extraction), reducing them into a single vector per word (e.g., through

max-pooling operations). Then, the masked language modeling objective could be applied at

the character level in a one-to-many mapping (i.e., from a word to its characters). This would

be ideal because the loss would penalize the model by both word meaning and morphological

inflection (e.g., the model does not have to learn a plural word different independently from

its singular version).

8.5 Conclusion

This chapter provides a novel and flexible method to expand the subword embedding ta-

ble from a model (e.g., mBERT). I conducted the study in this chapter with the case of

linguistic code-switching and sequence labeling tasks. However, this method is not limited

to code-switching or sequence labeling. The char2subword module provides more control at

the tokenization level, and it can generate word embeddings without being restricted by a

fixed vocabulary. Additionally, the module opens up the possibility to refine a language of

interest, as shown in the approximation phase (e.g., by pre-training just the char2subword

module). Finally, I showed the effectiveness of this method by reaching a new state of the

art performance on the LinCE benchmark.
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Chapter 9

Conclusions

This dissertation focused on the challenges that social media (SM) text poses to natural

language processing (NLP) systems. In general, I proposed approaches that deviate from

traditional text normalization methods that mitigate noise. I argued that the text’s noise

is part of what SM users want to convey through non-standardized language, and text

normalization can inadvertently remove language-evolving properties. Besides, since SM

platforms are intrinsically multilingual, noise can also be present in multilingual forms, such

as linguistic code-switching, where text normalization techniques do not scale. Therefore, it

is crucial to embrace user-generated noise as an inherent characteristic of SM language.

This dissertation covered sound-driven writing, flexible grammar, and arbitrary spellings

for English and code-switched text on sequence labeling tasks. I describe the English and

code-switching methods with their contributions in separate sections and conclude with notes

on future work.
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9.1 English-oriented Methods

In Chapters 3, and 4, I proposed methods motivated by phonological writing and dependency

parsing for named entity recognition (NER). In the case of phonological writing, I showed

that a model relying on sound-driven properties of SM text could more concisely capture

the underneath semantics. Notably, the proposed system builds word representations out of

the international phonetic alphabet (IPA). Based on the word’s sound, a word is fed into the

model as a sequence of IPA characters instead of using the English alphabet. This model

outperformed previous systems that rely on gazetteers and normalization or use the English

alphabet instead of IPA, proving the effectiveness of this model.

For dependency parsing, I used dependency trees to capture the semantic relationships

among words. The motivation was that word relationships can disclose information about

entities (e.g., the person class highly relates to verbs like speak, run, live, etc., while the entity

class location relates less to these verbs). In addition to recurrently processing language

from a straight sequence of words (i.e., LSTM), I proposed to model text in a hierarchical

structure, guiding the processing by dependency trees (i.e., TreeLSTM). I experimented with

these methods on newswire text (i.e., SemEval-2010 and CoNLL-2003) and social media text

(i.e., WNUT-2016 and WNUT-2017). Importantly, the TreeLSTM model outperforms the

LSTM counterpart when the trees’ quality is guaranteed (i.e., no mistakenly connected

nodes or an incorrectly segmented tree into many isolated trees). While this is the case for

manually-annotated trees as in SemEval-2010, the TreeLSTM is not more effective than the

LSTM in SM text. SM dependency parses are automatically generated, making them very

error-prone due to the seemingly disconnected utterances. The resulting multi-rooted trees

reduce the context to each subtree’s words, isolating different parts of the text.

In Chapter 5, I investigated the effect of highly-frequent entities on English text. I exper-

imented with state-of-the-art models like BERT and showed that the model could memorize
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entities that appear during fine-tuning or leverage pre-training knowledge to determine an

entity. This behavior was more prominent on newswire data because it highly resembled

the pre-training data domain, considerably overlapping entity instances. Unlike newswire

text, SM was less prone to leverage entities since they hardly match the spellings or context

and are likely to be emerging and novel entities. I proposed methods that can alleviate the

tendency to memorize frequent entities during fine-tuning as it was usually the case for the

SM data. The procedures improve the model’s generalization capabilities beating the vanilla

version of BERT while keeping the techniques convenient and practical.

9.2 Code-switching-oriented Methods

In Chapter 6, I proposed the Linguistic Code-switching Evaluation (LinCE) benchmark.

LinCE contains ten code-switching datasets, four tasks, and four language pairs. I examined

each dataset and fixed significant issues on the partitions with a comprehensive stratification

method. I also conducted the annotation of the Spanish-English text for named entity

recognition (NER) and sentiment analysis. As of November 2nd, 2020, the LinCE platform

has registered more than 50 users, 68 data downloads from personal accounts, 490 data

downloads from the HuggingFace datasets library1, 33 submissions to the leaderboard from

which 9 are publicly ranked. LinCE aims at providing a centralized and unified benchmark

for code-switching evaluation. This benchmark will serve as a transparent and efficient way

of comparison on code-switching methods.

Besides, I proposed methods for linguistic code-switching applicable to text with the

original scripts of the language pairs and transliterated text from one language script to the

other. More specifically, I focused on character-level approaches that leverage pre-training

1https://github.com/huggingface/datasets
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from large language models (e.g., ELMo and BERT). I experimented using pre-trained mono-

lingual knowledge (e.g., ELMo) and, based on the effectiveness of this method, I extended

the pre-trained multilingual knowledge of BERT to the code-switching scenario.

In Chapter 7, I introduced a code-switching-adapted ELMo (CS-ELMo). The motiva-

tion was that a monolingual model could tell apart its primary language (i.e., English) from

an unknown language by exploiting morphology. Hence, I proposed a hierarchical atten-

tion component at the convolutional characters within ELMo. This method exploited the

language pairs’ morphological aspects fed to ELMo while adapting to the code-switching

scenario. The model learned to detect morphological patterns that are uncommon in its

primary language (e.g., Spanish infinite verb endings like -ar are not as common in English,

while the gerund ending -ing hardly appears in Spanish). This adaptation step also shows

its benefits on code-switching downstream tasks like NER and part-of-speech (POS) tagging

for Spanish-English and Hindi-English data.

In Chapter 8, I introduced the character-to-subword (char2subword) module as an alter-

native for the subword embedding table in multilingual BERT (mBERT). While exploring

mBERT in code-switching data, particularly transliterated text, the byte-pair encoding algo-

rithm tended to break words into too many subword pieces. This behavior sensibly degraded

the sentences’ semantics because the input could come down to characters while mBERT

expected word-level representations. Having seen the effectiveness of leveraging morphology

in CS-ELMo with character-level components, the char2subword module aims at replicating

the original subword embedding space while being more flexible to the spellings. The module

showed that it was possible to extend the original vocabulary while generating high-quality

word representations compatible with the subword embedding space. I showed the effective-

ness of this module empirically using downstream tasks from the LinCE benchmark. As of

November 2nd, 2020, the method is currently state of the art for sequence labeling tasks.
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9.3 Detailed Contributions

Below, I consolidate the specific contributions mentioned across the chapters of this disser-

tation.

• Chapter 3 - Sound-driven writing:

1. Removing dependencies on feature engineering that require constant updates for

social media NER (e.g., gazetteers) by proposing a method that relies on auto-

matic feature extraction from sound-driven writing. This method was the state-

of-the-art by the time of publishing.

2. Modeling sound-driven writing through articulatory (e.g., tongue postures, mouth

movement, and face gestures) and phonetic (e.g., International Phonetic Alpha-

bet) features that resemble social media patterns rather than task-specific aspects.

The articulatory and phonetic features align with the flexible spelling that con-

sistently preserves the sound-driven writing from social media users.

3. Exploring a two-stage modeling method where the first model extracts features at

the token level in a multi-task learning setting, while the second model optimizes

the global sequence labels from the features of the first model. This method shows

slight improvements over an end-to-end method, but more exploration is required.

• Chapter 4 - Flexible syntax:

1. Showing empirically that recursively modeling language according to linguistic

structures, such as dependency trees (i.e., Tree-LSTM), is more effective than

sequential processing for NER. This finding is subject to good quality dependency

trees (e.g., no multi-rooted trees or mistakenly connected nodes). The recursive

123



modeling results are better on long sequences since the hierarchical structure

makes the model more resilient to long dependencies across the text.

2. Providing evidence that word connections yield substantial clues about the entity

classes. Dependency trees connect words semantically, allowing the models to

have immediate access to words that disclose explicit information about entities

(e.g., the verbs speak or think are strongly associated to the entity class person).

3. Exploring different levels of attention mechanisms to leverage semantic connec-

tions across words. The proposed relative attention allows information to flow

across the text while preserving the linguistic structure from the Tree-LSTM

model. This attention mechanism captures more patterns from a Tree-LSTM

than an LSTM, suggesting that hierarchical modeling projects more linguistic

features than sequential processing.

• Chapter 5 - Entity memorization vs. generalization:

1. Providing insights from data analysis regarding entity frequency and its influence

across partitions on the CoNLL-2003 and WNUT-2016 datasets. I showed that

relying on the test set score to drive progress on NER is not ideal. The per-

formance can be largely inflated by frequently seen entities in the training and

development sets.

2. Inspecting a state-of-the-art model behavior on the CoNLL-2003 and WNUT-

2016 NER datasets for unseen and seen entity instances, as well as the impact

of entity frequency at different frequency thresholds. I showed that the models’

performance tends to correspond directly to the number of seen entity instances.

Nevertheless, the high frequency of entity instances has little impact on the per-

formance as long as the entity class of such entity instances is diverse.
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3. Proposing methods motivated from the insights and take-aways on the data anal-

ysis and model inspection. I proposed different methods to alleviate the bias

towards memorization. The most effective method was a higher penalty loss on

infrequent entities.

• Chapter 6 - LinCE benchmark:

1. Releasing a centralized and publicly available benchmark for the code-switching

community to drive progress on ten datasets, four language pairs, and four tasks.

The languages are Spanish-English, Hindi-English, Modern Standard Arabic-

Egyptian Arabic, and Nepali-English. The tasks are language identification (LID),

named entity recognition (NER), part-of-speech (POS) tagging, and sentiment

analysis (SA). This benchmark alleviates the difficulty of comparing systems

known effective for a particular language pair or task, but their effectiveness does

not necessarily translate to other languages or tasks.

2. Conducting the annotation of the Spanish-English data for the named entity

recognition and sentiment analysis (SA) tasks. These datasets are part of the

LinCE benchmark.

3. Providing more reliable splits with a novel stratification technique. Even though

providing new splits prevents comparison with work before LinCE, the original

splits had acute problems (e.g., different label distributions and no label instances

in a split). The proposed stratification considers sequence length, label distribu-

tion, and the language identification labels for tasks like NER, POS, or SA. The

method provides consistent code-switching splits, reducing the KL-divergence

among the training, validation, and test sets. This is important to allow re-

searchers to project their performance from the validation set to the test set more
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reliably due to the distribution consistency across partitions.

• Chapter 7 - From English to code-switching:

1. Exploiting morphological patterns to detect between English and non-English

languages by relying on pre-trained English knowledge. A pre-trained model like

ELMo can detect English morphology due to its character convolutions. However,

adapting itself to a code-switching setting is hard because the model has not seen

other languages. I proposed CS-ELMo, which can detect what is and what is not

English based on morphological abstraction.

2. Introducing the enhanced character n-gram module within ELMo’s character con-

volutions. This novel component allows ELMo to adapt to code-switching sce-

narios better than the vanilla ELMo architecture. That is due to the specific

emphasis on morphology using hierarchical attention mechanisms. The attention

is applied at every n-gram order separately and then across n-gram orders while

considering the n-gram positions (e.g., the tri-gram -ing is a very common ending

in English, but rare in Spanish).

3. Proving downstream benefits on tasks like Spanish-English NER and Hindi-English

POS tagging once the model has been adapted to the code-switching setting using

language identification. The experiments showed that the adaptation of CS-ELMo

to the code-switching setting improves performance off-the-shelf.

• Chapter 8 - From multilingualism to code-switching:

1. Extending the multilingual subword embedding space using robust character com-

positionality. Based on insights from the previous chapter description, I designed

the char2subword module to extend the initially restricted vocabulary space from
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multilingual BERT using character-based representations. The module is com-

patible with the subword embedding space and allows out-of-vocabulary words to

be handled without splitting words into pieces.

2. Improving multilingual sentence representations by reducing word splitting and

meaning degradation. I adapted the char2subword module to multilingual BERT

using pre-training from English, Spanish, Hindi, Arabic, and Nepali text. This

step allows the module to be contextualized with the masked language modeling

objective while preserving parameters for multilingual BERT fixed. Additionally,

this strategy allows the model to be adapted to different domains and languages,

not only social media and code-switching.

3. Releasing a self-contained char2subword module that can be used as a drop-in

alternative for researchers and NLP practitioners to explore the adaptability of

the model to other settings.

9.4 Future Work

While the proposed methods proved useful, modeling noise from social media text is a

challenging task that still requires more work.

The module leveraging phonological spelling captures well part of the noise in SM text.

However, this method requires to convert the text from the original alphabet to the interna-

tional phonetic alphabet (IPA). One problem with this approach is that the input language

may not be known during down-stream inference. Therefore, applying an IPA converter can

become a source of errors. One potential solution is to learn a phonological space during

pre-training with multilingual BERT. Like the position and type embeddings, the model can

have an additional embedding table that supports phonetics. This strategy still depends on
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IPA mappings from the original scripts, but the advantage is that all the languages are known

during pre-training. Other problems would remain, such as IPA conversion for transliterated

code-switching text or languages not supported by the IPA converters.

In the case of dependency trees (Chapter 4), the performance of the model is highly depen-

dent on the quality of the trees. As shown by the relative self-attention, having a Cartesian

product, the relationships can improve the model’s judgment by connecting isolated trees.

A more flexible method is graph convolutional networks (GCN) where the adjacency ma-

trix uses smoothing to mitigate the entirely isolated segments of the text. With the same

goal, it is possible to explore further the Transformer architecture (either from a pre-trained

model like BERT or not), where the multi-head self-attention also conceives a graph from

its self-attention interactions.

The char2subword module is a robust method that can adapt to code-switching and

handle spelling issues. Nevertheless, some drawbacks can be improved in this method. For

instance, the robustness incorporated during the approximation phase can also introduce

ambiguity. I showed an example of this scenario, where a transliterated Hindi word was

predicted as English because of the ambiguity raised by a single letter (e.g., beech in Hindi

vs. beach in English). More importantly, a substantial improvement in this work would be

to fully pre-train a language model with character-level inputs. While character inputs can

become unreasonably long sequences during pre-training (e.g., a sequence of characters that

accounts for 512 words), I propose to keep characters in the scope of a word. This keeps

representations at the word level across the Transformer layers, preserving semantics. Then,

the masked language model (MLM) objective can be computed for characters after one-to-

many decoding (alternatively, having both character and word level MLM objectives). The

decoding takes the word representation and generates the original sequence of characters.

This method’s benefit is that the semantics are not lost because the model is not entirely
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character level. Simultaneously, the loss is computed to penalize inflections and morphology

instead of fully learning different word vectors that share many linguistic properties.
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eling noisiness to recognize named entities using multitask neural networks on social
media. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers) (New Orleans, Louisiana, June 2018), Association for Computational
Linguistics, pp. 1401–1412.
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