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1 Introduction 

As worldwide bitcoin transactions occur every day, bitcoin markets perform like a 

new form of “foreign exchange markets” in many ways.  

Two domestic bitcoin exchanges that trade bitcoins for different currencies could 

together play an implicit role as foreign exchange. Consider a simple case: After trading 

three U.S. dollars for a bitcoin in a U.S. bitcoin market, an American user can sell the bitcoin 

for two Euros in a European bitcoin market. These trades form a USD/EUR price of 3/2 = 

1.5, indicating the U.S. dollar price of a Euro in the bitcoin markets. Exchanging U.S. dollars 

into Euros is performed simply by trading with bitcoins twice.  

Some major bitcoin exchanges that have developed into multinationals also facilitate 

bitcoin-based currency trading. Coinbase, a San Francisco-based bitcoin exchange, has 

expanded to over 100 countries and regions. Transferring bitcoins from account to account 

within an international brokerage appears to be an efficient option and has lower costs than 

doing so across exchanges. Different currencies are hence exchangeable with the help of 

bitcoins. 

Some FX brokers, such as Ava Trade, eToro, and LiteForex, have begun to accept 

bitcoins for currency trading. Though they may aim to add a more dynamic dimension to 

forex trading, these brokers make bitcoins that can be traded for several different currencies 

using a single brokage account –further facilitating the proposed bitcoin-based forex trade. 
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The boundary that discriminates a bitcoin exchange from a foreign exchange thus becomes 

ambiguous.  

Bitcoin markets may well be an appealing alternative to foreign exchange markets. 

Here, the term “bitcoin markets” refers to a broad concept covering any marketplace that 

trades bitcoins. Under this assumption, learning the behavior of foreign exchange prices in 

the bitcoin markets becomes crucial to appropriate modeling and accurate forecasting. 

This chapter begins with my motivation for choosing bitcoin-based USD/EUR 

trading as my research topic, followed by my research objectives, methodology, and a guide 

to each chapter.   

1.1 Motivations 

Bitcoin trading has a number of fascinating features, including decentralized valuations, low 

costs of trading, no geographical boundaries, low deposits, and high leverage. These features 

could benefit the bitcoin-based forex trade. Even conventional currency trading may change, 

at least in some ways, after the forex brokers incorporate bitcoins into their business.  

The problem is how to identify the bitcoin-based foreign exchange trade from daily 

bitcoin trading and then how to measure it. Central to this problem is finding the exchange 

rate between two fiat currencies in bitcoin markets. 

Nan & Kaizoji (2017, 2019b) define the instantaneous price of Euros in U.S. 

dollars in a bitcoin market as 

𝑇𝑇ℎ𝑒𝑒 𝑈𝑈𝑈𝑈𝑈𝑈/𝐸𝐸𝑈𝑈𝐸𝐸 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑒𝑒𝑒𝑒𝑏𝑏ℎ𝑎𝑎𝑏𝑏𝑎𝑎𝑒𝑒 𝑟𝑟𝑎𝑎𝑏𝑏𝑒𝑒 =
𝑈𝑈𝑈𝑈𝑈𝑈/𝐵𝐵𝑇𝑇𝐵𝐵
𝐸𝐸𝑈𝑈𝐸𝐸/𝐵𝐵𝑇𝑇𝐵𝐵

= (𝑈𝑈𝑈𝑈𝑈𝑈/𝐸𝐸𝑈𝑈𝐸𝐸)𝐵𝐵𝐵𝐵    (1) 

where 𝑈𝑈𝑈𝑈𝑈𝑈/𝐵𝐵𝑇𝑇𝐵𝐵 and 𝐸𝐸𝑈𝑈𝐸𝐸/𝐵𝐵𝑇𝑇𝐵𝐵 are the prices of bitcoins in U.S. dollars and Euros, 

respectively.  
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The term bitcoin exchange rate (or the BX rate) is used to distinguish the bitcoin-

based exchange rate from the foreign exchange rate (or the FX rate). The BX superscript 

used here is intended to clearly indicate the distinction. Note that, while the bitcoin exchange 

rate may refer to bitcoin prices in the literature, in this thesis it is used only as the bitcoin-

based foreign exchange rate. 

The USD/EUR bitcoin exchange rate has captured my great interest and motivated 

my effort to uncover the mystery behind it and its implications for bitcoin-based currency 

trading. Specifically, this thesis focuses on the following research questions: 

(i) What are the characteristics of the bitcoin exchange rate? 

(ii) How can we model the behavior of the bitcoin exchange rate? 

(iii) How can we predict the future evolution of the bitcoin exchange rate? 

 

1.2 Research objectives 

The bitcoin-based foreign exchange rate, defined as the bitcoin exchange rate in Nan & 

Kaizoji (2017, 2019b), offers a pivotal clue to answering the research questions listed in 

Section 1.1. This thesis focuses on characterizing, modeling and forecasting the USD/EUR 

bitcoin exchange rate behavior. These three elements can be described as follows: 

(1) Characterizing – The aim is to give a thorough report of the BX rate series containing 

statistical descriptions and the stylized facts summarized from scientific approaches. 

The intent is to obtain a “global” view of the bitcoin exchange rate with little prior 

knowledge. 

(2) Modeling – The goal is to capture the temporal evolution of the BX rate series from 

different perspectives, precisely, from the long-run and short-run views. The long-

run equilibrium relationship between the BX rate and the FX spot rate is of interest 
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because the law of one price indicates the same exchange rate. It is also essential to 

examine whether the prevailing economic theories also apply to the bitcoin exchange 

rate. In the short run, the adjustment process to equilibrium is investigated.  

(3) Forecasting – Past observations of the BX rate series are used to predict the future 

state. Outperforming the forecasting baseline is the critical factor in measuring the 

accuracy of the state-of-the-art approaches. 

 

1.3 Methodology 

This thesis applies various quantitative approaches to time series data. A variety of methods 

involving statistical tests, econometrical models, and machine learning algorithms are used. 

Specifically, the contents of the sections and subsections of the thesis can be summarized as 

follows: 

• Section 3.2: Statistical descriptions of the level data series and the return series. 

• Section 3.3.1: Random walk hypothesis, weak-form efficient market hypothesis, the 

ADF test, KPSS test, ERS test, and Ljung-Box test. 

• Section 3.3.2: ARMA (p, q) model and the ARMA [ pi, qj] model. 

• Section 3.3.3: ARMA (p, q) plus GARCH (1, 1) model with the normal distribution, 

student’s t distribution, and the GED, respectively; volatility comparisons with the 

static standard deviation, 150-day moving average standard deviation, and the 

conditional standard deviation. 

• Section 3.3.4: Comparison of Value-at-Risk (VaR): the historical VaR, the mean-

modified VaR, the conditional VaR from the ARMA (p, q) plus GARCH (1, 1) model. 

• Section 3.3.5: Extended Chow test – three-step grid searching for two breaks; Bai-

Perron test using the threshold autoregressive (TAR) model for five breaks. 
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• Section 4.1.1: Engle and Granger methodology using the OLS method to capture the 

long-run equilibrium relationship. 

• Section 4.1.2: Application of unrestrictive VAR model to the Johansen tests to test 

for cointegration; long-run equilibrium relation using cointegrating vector 𝜷𝜷. 

• Section 4.2: Inference on 𝜷𝜷  using the maximum likelihood ratio test; unbiased 

estimator hypothesis, indicative of semi-strong form market efficiency. 

• Section 4.3: Covered interest parity on both the bitcoin exchange rate and the FX 

spot rate using the Johansen test. 

• Section 4.4: Proposal of the non-linear TAR model using the previous triangular 

arbitrage series as the threshold to find the attractor and to show the asymmetric 

adjustment process. 

• Section 5.1: VECM representations of the estimated Johansen models and inference 

on 𝜶𝜶 and 𝜷𝜷. 

• Section 5.2: Visualization of the impulse response function (IRF) to present the 

responses of the variables to shocks. 

• Section 5.3: Momentum-threshold autoregressive (M-TAR) model to look at the 

non-linear effect depending on whether the previous deviation increases or decreases. 

• Section 5.4: Comparison of the nonlinear ECM model with the linear VECM model. 

• Section 6.1: Linear specification of the bitcoin exchange rate and its FX futures 

hedge. 

• Section 6.2: Optimal ratio model that maximizes the user’s mean-variance utility. 

• Section 6.3: VECM plus DCC-GARCH (1, 1) model to capture the joint conditional 

distribution of the returns of the bitcoin exchange rate and the FX spot rate. 

• Section 6.5: Rebalancing strategy that incorporates transaction costs. 
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• Section 6.6: Triangular arbitrage strategy with the FX futures hedge, which can be 

modeled through the ARMA plus DCC-GARCH framework. 

• Section 7.1: Example of volatility forecasting using the resulting VECM plus DCC-

GARCH framework. 

• Section 7.2: Use of a densely connected neural network and gated recurrent units 

(GRU) neural network with 5-minute data to challenge the one-day-ahead bitcoin 

exchange rate forecast using the random walk model. 

 

1.4 Significance 

This thesis gives a global view of U.S. dollar and Euro trading in bitcoin markets using 

several statistical tests, econometric time-series models, and machine learning algorithms. It 

shows that the USD/EUR bitcoin exchange rate is the best estimator relative to the other 

USD/EUR prices in the bitcoin market that consider the confirmation time and the bid-ask 

spread. 

Critical economic hypotheses such as the random walk hypothesis, the efficient 

market hypothesis, the law of one price, and covered interest rate parity that may never have 

been be applied to the bitcoin market are investigated. The results show that they all 

reconcile with the bitcoin markets, with some conditions. 

The proposed separation of three different regimes regarding the bitcoin exchange 

rate provides a convenient way to consider the evolution of the bitcoin markets in terms of 

currency trading. 

This thesis proposes various approaches and methodologies that can be applied to 

the bitcoin exchange rate series and other series. In addition to linear specifications, 

nonlinear models are also examined. As an illustration, this thesis proposes two close real-



 

 12 

world trading strategies with FX futures as the hedge. The proposed GRU neural network is 

shown to significantly out-perform the random walk model in forecasting. 

1.5 Structure of the thesis 

The remainder of the thesis is organized as follows: Chapter 2 reviews the literature; Chapter 

3 characterizes the data series; Chapter 4 models the long-run equilibria; Chapter 5 presents 

the short-run dynamics; Chapter 6 illustrates two trading strategies; Chapter 7 focuses on 

forecasting.  
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2 Literature review 

Bitcoin is the first widely used cryptocurrency (Bloomberg). In its peer-to-peer 

network, bitcoin can be directly sent from one party to another without the need for a trusted, 

central intermediary (Commodity Futures Trading Commission, 2017).  

Decentralization is a striking feature that distinguishes cryptocurrencies such as 

bitcoin from E-commerce payments. Having a central authority that works as a trusted third 

party “increases the transaction cost, limiting the minimum practical transaction size and 

cutting off possible small casual transactions,” as Satoshi Nakamoto (2008), a pseudonym 

used by the individual or group claiming to have created bitcoin, wrote in a white paper. 

There are a number of strengths associated with bitcoin transactions: 

• “Merchants accepting bitcoins pay fees that range from zero to less than 1%,” much 

lower than the 2-3% typically imposed by credit card processors (Wewege & 

Thomsett, 2019, p. 43). 

• The degree of bitcoin’s divisibility is much greater than most fiat currencies; A 

Satoshi, the smallest unit, is equal to one hundred millionth of a bitcoin, while a 

dollar is divisible only into 100 cents (Kelleher, 2020).  

• Bitcoins can be simultaneously transferred to multiple targets, and the transaction 

size does not affect the transaction fee (Nakamoto, 2008). 
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Proponents believe that bitcoin represents both an innovation in the established 

money system, which is centrally coordinated and less transparent, and a new form of 

currency (Bjerg, 2016; Böhme et al., 2015; Gün, 2014).  

On the other hand, without the supervision of any central authority, bitcoin faces 

issues of money laundering and the trafficking of illegal substances of various kinds 

(Brezo & Bringas, 2012). Critics argue that it is nothing but a Ponzi scheme soon to 

collapse (as cited in Bjerg, 2016). 

2.1 Bitcoin transfer and its fees and confirmation time 

Bitcoins can be directly transferred from one bitcoin wallet to another. However, bitcoins do 

not physically exist in any bitcoin wallet. A bitcoin is an encrypted record that contains all 

the historical transfer information. As explained in Böhme et al. (2015), the record is stored 

in bitcoin’s peer-to-peer network, widely replicated and publicly verifiable; any user in the 

network can verify the ownership of the bitcoin by checking the last transfer (specifically, 

the sender and the receiver) in the record, and, recursively, the history of the transfers can 

be traced back. A wallet is simply a node in the network that provides access to the transfer 

recode. By design, a bitcoin transfer is free to the users, as the transfer of a bitcoin is done 

by adding a piece of information to the record. A more detailed explanation of the underlying 

technology of bitcoin transfer is given in Böhme et al. (2015). 

In practice, there are some fees and costs associated with bitcoin transfers. Firstly, 

new bitcoins become a reward for the effort of verifying the blockchain. In bitcoin’s peer-

to-peer network, there is a need for some users to voluntarily process and verify bitcoin 

transfers. These users—called “miners”—play a critical role in the bitcoin realm. When a 

transfer is listed on the bitcoin network awaiting confirmation, miners are working on 

solving a mathematical puzzle based on the pre-existing transfer records to verify the new 
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transfer. They then pack the recent transfers into a group, called a block, and after six 

confirmations from other miners, the confirmed block is added to the sequence of blocks, 

namely, the blockchain (Böhme et al., 2015). The miner who adds the newly confirmed 

block to the blockchain is rewarded with bitcoins that are newly issued. In a sense, the new 

bitcoins are viewed as a cost for miners to provide their service.  

Secondly, the miners’ efforts to update the blockchain carry high costs. Böhme et al. 

(2015) point out that the computer calculations “consume more than 173 megawatts of 

electricity continuously,” approximately equal to 20 percent of an average nuclear power 

plant.  

Thirdly, some users pay additional fees to prioritize the transfer queue, reducing the 

wait times. The fees are expressed in Satoshis per byte, where a Satoshi is one hundred 

millionth of a bitcoin, and a transfer is usually above 200 bytes (Buchko, 2017). 

The confirmation time also varies from transfer to transfer. It usually takes 10 

minutes for a miner to verify a block, and a block needs six confirmations before it is finally 

linked to the consensus blockchain, so an average transfer could be expected to take 

approximately one hour. Buchko (2017) found that when the network was crowded at the 

end of 2017, the average confirmation time actually exceeded 16 hours. The data provided 

by blockchain.com show that the average time for a transfer with miner fees ranged from 

about 6 minutes to over 339 minutes (roughly 5.6 hours) over the last year, while the median 

time for a transfer with miner fees varied from roughly 3 minutes to 19 minutes (see Figure 

1). 
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Figure 1. The average conformation time and the median confirmation time for a transfer 

with miner fees over one year (blockchain.com). 

 

Bitcoin transfer speed depends on many factors. Two factors are especially critical: 

congestion in the bitcoin network and bitcoin transfer fees (Buchko, 2017). Easley et al. 

(2019) found that equilibrium transfer fees evolve in the bitcoin ecology. In the low-transfer 

regime, transfers without fees are posted to the blockchain, while in the high-transfer regime, 

only transfers with fees attached are written to the ledger. This study also found that before 

the issuing of new bitcoin reaches its limit, bitcoin transfer fees play only a secondary role 

in evoking the miners’ willingness to participate and are less significant than the mining 

reward. 
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2.2 Bitcoin as money 

Bjerg (2016) posits that bitcoin is commodity money without gold, fiat money without a 

state, and credit money without debt. In contrast, Yermack (2013) and Ali et al. (2014) argue 

that if a cryptocurrency is considered money, it needs to serve the three functions of money, 

acting as 

• a store of value, 

• a medium of exchange, and 

• a unit of account. 

Additionally, Kelleher (2020) considers the other six factors that bitcoin needs to 

qualify as money: scarcity, divisibility, utility, transportability, durability, and difficulty 

counterfeiting. 

Yermack (2013) argues that bitcoin performs poorly with regard to the three criteria, 

in that widely swinging bitcoin prices undermine its role as a store of value, the extremely 

limited acceptance of bitcoins in daily commerce erodes its function as a medium, and the 

price of goods quoted to several decimal places discourages use of the bitcoin as a unit of 

account. The fact that bitcoin is still not broadly used in the conduct of retail business calls 

into question bitcoin’s role as money (Hong, 2017). 

On the other hand, Kelleher (2020) argues that bitcoin outperforms the fiat currencies 

in meeting the six qualifications noted above. Bitcoin is said to be a stable unit of account 

due to the predetermined total number of bitcoins (21 million), which helps reduce the user’s 

menu costs (Dong & Dong, 2015). 
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2.3 Bitcoin as an investment tool 

Individuals dealing in digital currencies are primarily interested in an alternative investment 

rather than an alternative transaction system (Glaser et al., 2014). As a unique investment 

asset, bitcoin has occupied the first market place among all cryptocurrencies, partially due 

to its first-mover advantage (Luther, 2016). Before 2014, bitcoin investors preferred to adopt 

the buy-and-hold strategy, regardless of the arbitrage opportunity (Dong & Dong, 2015). 

Bitcoin was soon seen by many as a unique investment asset, with very high volatility and 

potentially high returns, and a low correlation with other assets (Briere et al., 2013). Bouri 

et al. (2017) found that bitcoin could generally serve as a useful diversifier because of its 

weak positive correlations with other assets.  

Hong (2017) suggests that if the bitcoin returns’ time-series momentum is significant 

to make profits, momentum trading on bitcoin will bring higher and non-correlated returns 

to the portfolio. Hong’s study suggests high diversification effects-high bitcoin momentum 

returns, but the momentum cycle presents a faster pattern than other assets.  

The risk of bitcoin investment appears to be challenging to handle. Firstly, bitcoin 

prices often vary widely with large swings, which makes the buy-and-hold strategy very 

risky and frustrates risk-averse investors. Secondly, because of the low correlation with other 

assets, hedging exposure to wide price variations tends to be ineffective (Yermack, 2013). 

Similarly, Bouri et al. (2017) found that bitcoin performs as a strong hedge and safe 

(hedging) heaven only in very few cases. Thirdly, the situation did not improve after the 

birth of bitcoin futures contracts introduced by the Chicago Mercantile Exchange (CME) 

and the Chicago Board Options Exchange (CBOE) in December 2017. Bitcoin futures 

cannot mitigate the pricing risk in the spot bitcoin market; conversely, hedging with them 

leads to increased volatility (Corbet et al., 2018). Fourthly, bitcoin risk management seems 
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to be complicated due to regime-switching. Li et al. (2018) found that several factors 

affecting bitcoin risk present an asymmetric pattern under different risk regimes.  

2.4 Bitcoin price 

The bitcoin price follows the law of supply and demand. Since bitcoin supply is growing at 

a predictable speed and the maximum number of bitcoins has been set at 21 million, bitcoin 

demand becomes the determining force in its price formation.  

Several factors, including attractiveness to investors and various macroeconomic and 

financial developments, have been identified as affecting the bitcoin price (Buchholz et al., 

2012; Kristoufek, 2013; van Wijk, 2013). However, Ciaian et al. (2016) found that the 

bitcoin price is not driven by macro-financial developments in the long run, when 

considering all factors. This result raises the point of bitcoin’s decentralized architecture, 

independent of macro decisions. Moreover, the arrival of new information positively impacts 

the bitcoin price, and the alternation of positive and negative news has generated highly 

volatile price cycles (Ciaian et al., 2016). 

The bitcoin price has a substantial speculative bubble component, and the intrinsic 

worth of a bitcoin is zero (Cheah & Fry, 2015). As shown in the literature, bitcoin’s value 

relies on its usefulness as a unit of account, its attractiveness as a medium of exchange, it 

role as a store of value and a useful investment tool, or even fondness for its niche.  

2.5 The Bitcoin exchange rate 

To date, the literature about the bitcoin exchange rate remains limited. The only relevant 

paper that I have found was written by Dong and Dong (2015). They use a linear regression 

model and a Granger-causality model to show that the bitcoin exchange rate –they call it the 
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bitcoin parity rate – deviates from the corresponding FX rate persistently. This persistent 

arbitrage stickiness is interpreted as people’s preference for a buy-and-hold strategy with 

bitcoins in their work.  

Bitcoin is viewed by many as either a currency or an investment asset. Both roles 

present some striking features, while criticisms also prevail. Bitcoin is now welcomed by 

market participants as a unique investment asset. However, widely swinging bitcoin prices 

raise problems for both of its functions.  

Nan and Kaizoji (2017, 2019b) propose to treat bitcoins as a medium of foreign 

exchange. In bitcoin markets, the U.S. dollar can be first changed into bitcoins, which can 

then be immediately traded for Euros. If performed very swiftly, this two-step switching 

approach reduces the risks of holding bitcoins to the minimum. The bitcoin exchange (BX) 

rate, more precisely the USD/EUR rate defined in equation (1), represents the U.S. dollar 

price of a Euro when the two switching steps take place simultaneously. (We will discuss 

later the reasons why the bitcoin exchange rate stands for a fair approximation of the market 

bitcoin-based foreign exchange rate.) They found that the USD/EUR BX rate and the 

USD/EUR FX rate were in long-run equilibrium over the period from 1 May 2014 to 21 

November 2017, and that the latter appears to be an unbiased estimator of the former. In the 

short run, however, divergence from equilibrium occurs frequently, indicating a possible 

arbitrage opportunity.  

Based on the USD/EUR BX, Nan and Kaizoji (2019a, 2020) proposed triangular 

arbitrage with the FX rate and showed that the risks of trading on the BX rate or the triangular 

arbitrage can be effectively managed using the FX futures contract as a hedge.  

In the Ethereum markets, similar results regarding the ether-based exchange rate, 

long-run market equilibrium with the corresponding FX rate, and the short-run adjustment 

dynamics have been found by Pichl, Nan, and Kaizoji (2020). 
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3 Characterization 

This chapter describes the data set and presents a statistical description and 

characterization of the time series.  

3.1 Data 

The data set, provided by Bloomberg, consists of two types of periods: the daily period and 

the 5-minute period. For most of the hypothesis tests, modeling, and forecasts, we use the 

daily data. The 5-minute data are used for forecasting with neural networks and discussing 

the time delay problem in bitcoin transactions. The daily data set covers the period from 10 

September 2013 to 06 March 2020. The range of the 5-minute data set is between 2014/05/01 

10:05 JST and 2020/03/08 9:55 JST. Bloomberg only provides 5-minute data beginning 1 

May 2014. 

For bitcoin prices, this thesis uses two bitcoin indices: the bitcoin index of USD 

(USD/BTC), a composite index of closing prices from four bitcoin markets (Bitstamp, 

Coinbase, itBit, and Kraken), and the bitcoin index of EUR (EUR/BTC) from the itBit and 

Kraken markets. 

The exchange rates from the FX market include the USD/EUR spot rate and the one-

month futures rate, quoted in closing prices. The one-month futures rate is the USD/EUR 
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futures contract in the monthly cycle listed on the Chicago Mercantile Exchange. The one-

month forward rate is calculated from the forward points by multiplying them by 0.0001 and 

adding the spot rate. 

The one-month deposit rates include the one-month USD ICE LIBOR interest rate 

and the one-month ERU ICE LIBOR interest rate. Both deposit rates are quoted bids to 

maintain the practical sequence of arbitrage, i.e., an arbitrager can lend either U.S. dollars 

or Euros at the bid sides of the markets. ICE LIBOR is a benchmark rate that represents the 

interest rate at which banks offer to lend funds to one another in the international interbank 

market for short-term loans; it is an average value of the interest rate calculated from 

estimates submitted by the leading global banks on a daily basis (Bloomberg).  

The USD/EUR bitcoin exchange rate is calculated using Equation (1), that is, 

(𝑈𝑈𝑈𝑈𝑈𝑈/𝐸𝐸𝑈𝑈𝐸𝐸)𝐵𝐵𝐵𝐵 = (𝑈𝑈𝑈𝑈𝑈𝑈/𝐵𝐵𝑇𝑇𝐵𝐵)/(𝐸𝐸𝑈𝑈𝐸𝐸/𝐵𝐵𝑇𝑇𝐵𝐵) , which describes the process in which a 

market participant trades a Euro for bitcoins, and then trades the bitcoins for U.S. dollars, 

denoted by 𝐸𝐸𝑈𝑈𝐸𝐸 → 𝐵𝐵𝑇𝑇𝐵𝐵 → 𝑈𝑈𝑈𝑈𝑈𝑈. 

The triangular arbitrage between the USD/EUR BX rate and the USD/EUR FX rate, 

defined in (Nan & Kaizoji, 2019a), is expressed by 

𝑇𝑇𝑟𝑟𝑏𝑏𝑎𝑎𝑏𝑏𝑎𝑎𝑇𝑇𝑇𝑇𝑎𝑎𝑟𝑟 𝑎𝑎𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑎𝑎𝑎𝑎𝑒𝑒 = (𝑈𝑈𝑈𝑈𝑈𝑈/𝐸𝐸𝑈𝑈𝐸𝐸)𝐵𝐵𝐵𝐵 × 𝐸𝐸𝑈𝑈𝐸𝐸/𝑈𝑈𝑈𝑈𝑈𝑈 (2) 

where EUR/USD=1/(USD/EUR) is the reciprocal of the USD/EUR spot rate. The triangular 

arbitrage process is denoted by 𝐸𝐸𝑈𝑈𝐸𝐸 → 𝐵𝐵𝑇𝑇𝐵𝐵 → 𝑈𝑈𝑈𝑈𝑈𝑈 → 𝐸𝐸𝑈𝑈𝐸𝐸.  

Pichl & Kaizoji (2017) define the profit rate relative to bitcoin price in Euros as 

(2) − 1. We modify their idea and define buying one dollar in euros in the bitcoin markets 

as −(𝐸𝐸𝑈𝑈𝐸𝐸/𝑈𝑈𝑈𝑈𝑈𝑈)𝐵𝐵𝐵𝐵 (the expense) and exchanging the received dollar for Euros in the FX 

market as 𝐸𝐸𝑈𝑈𝐸𝐸/𝑈𝑈𝑈𝑈𝑈𝑈 (the profit). The proposed profit rate is expressed as 

𝛿𝛿𝑒𝑒,𝑢𝑢 =
−(𝐸𝐸𝑈𝑈𝐸𝐸/𝑈𝑈𝑈𝑈𝑈𝑈)𝐵𝐵𝐵𝐵 + 𝐸𝐸𝑈𝑈𝐸𝐸/𝑈𝑈𝑈𝑈𝑈𝑈

(𝐸𝐸𝑈𝑈𝐸𝐸/𝑈𝑈𝑈𝑈𝑈𝑈)𝐵𝐵𝐵𝐵 = −1 + (2). 
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This profit can be approximated using the difference in logarithms, as log(𝑒𝑒2) −

log(𝑒𝑒1) ≈ (𝑒𝑒2 − 𝑒𝑒1)/𝑒𝑒1. So 𝛿𝛿𝑒𝑒,𝑢𝑢 ≈ log (𝐸𝐸𝑈𝑈𝐸𝐸/𝑈𝑈𝑈𝑈𝑈𝑈) − log ((𝐸𝐸𝑈𝑈𝐸𝐸/𝑈𝑈𝑈𝑈𝑈𝑈)𝐵𝐵𝐵𝐵) =

 log ((𝑈𝑈𝑈𝑈𝑈𝑈/𝐸𝐸𝑈𝑈𝐸𝐸)𝐵𝐵𝐵𝐵)− log (𝑈𝑈𝑈𝑈𝑈𝑈/𝐸𝐸𝑈𝑈𝐸𝐸), equal to the logarithm of equation (2). This result 

shows that the logarithm of equation (2) is the return on the triangular arbitrage.  

Table 1 gives the series names and their descriptions. 

Table 1. Series names and their descriptions 

Series names Descriptions Number of Obvs. Start End 

ub The daily bitcoin index of USD  1601 2013/09/10 2020/03/06 

eb The daily bitcoin index of EUR  1601 2013/09/10 2020/03/06 

ue The daily USD/EUR FX spot 
rate 

1601 2013/09/10 2020/03/06 

fo_ue The daily 1-month USD/EUR 
FX forward rate 

1601 2013/09/10 2020/03/06 

fu_ue The daily 1-month USD/EUR 
FX futures rate 

1601 2013/09/10 2020/03/06 

bx_ue The daily USD/EUR BX rate 1601 2013/09/10 2020/03/06 

li_u The daily 1-month USD LIBOR 
interest rate 

1601 2013/09/10 2020/03/06 

li_e The daily 1-month EUR LIBOR 
interest rate 

1601 2013/09/10 2020/03/06 

ub_5m The 5-minute bitcoin index of 
USD 

364937 2014/05/01 
10:05 JST 

2019/03/08 
9:55 JST 

eb_5m The 5-minute bitcoin index of 
EUR 

364937 2014/05/01 
10:05 JST 

2019/03/08 
9:55 JST 

ue_5m The 5-minute USD/EUR FX spot 
rate 

364937 2014/05/01 
10:05 JST 

2019/03/08 
9:55 JST 

bx_ue_5m The 5-minute USD/EUR BX rate 364937 2014/05/01 
10:05 JST 

2019/03/08 
9:55 JST 

Note: The 5-minute data cover a shorter period than the daily data due to data availability. 

 

Figure 2 gives the plots of the series: the bitcoin indices of USD and EUR, plotted 

respectively, and the bitcoin exchange rate of USD/EUR and the FX spot of USD/EUR, 

plotted jointly. As shown in panel (c) of Figure 2, the bitcoin exchange rate of USD/EUR 

(bx_ue) oscillated before May 2014, but gradually mimicked the FX spot, except for several 

spikes. Interestingly, though the behavior of the bitcoin price indices was very volatile at the 

end of 2018, the bitcoin exchange rate did not show a substantial divergence from the FX 

spot. 
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Figure 2. The bitcoin indices of USD and EUR, the bitcoin exchange rate of USD/EUR 

(bx_ue), and the FX spot of USD/EUR (ue) (10 September 2013 – 06 March 2020). 

 

3.2 Statistical descriptions 

This section investigates the statistical features of the time series in the data set. The 

summary statistics in Table 2 give a statistical description of the level of each time series 

over its sample period. Bitcoin prices varied within a wide range; for instance, USD/BTC 

(ub) fluctuated between $112.8 and $18,674.5. The highest USD/BTC price ($19,462.2) 

occurred in an intraday transaction, as shown in the 5-minute data. In contrast, the USD/EUR 

bitcoin exchange rate varied between 0.874 and 1.618, showing more volatility than the 

USD/EUR FX rate (1.039, 1.393). Second, the standard deviation of USD/BTC, indicating 

variation from the mean, reached 3,830.4, whereas, the S.D. of the USD/EUR BX rate is 

0.095, close to the 0.093 S.D. of the FX spot. The median value of USD/BTC indicates that 



 

 25 

half of the sample values are lower than $869.9. The significant difference between the mean 

and the median implies a strongly left-skewed distribution of the level bitcoin price of USD.  

 

Table 2. Summary statistics of the level data 
Series Obvs. Mean Median Min. Max. S.D. 
ub 1601 3389.9 869.9 112.8 18674.5 3830.4 
eb 1601 2944.5 752.0 84.0 15528.9 3323.0 
ue 1601 1.170 1.134 1.039 1.393 0.094 
fo_ue 1601 1.172 1.136 1.041 1.393 0.093 
fu_ue 1601 1.172 1.136 1.043 1.394 0.093 
bx_ue 1601 1.169 1.133 0.874 1.618 0.095 
li_u 1601 1.014 0.695 0.148 2.522 0.847 
li_e 1601 -0.250 -0.381 -0.573 0.249 0.225 
ub_5m 364937 2741.5 674.1 160.4 19462.2 3489.6 
eb_5m 364937 2333.8 610.3 148.7 15939.6 2910.7 
ue_5m 364937 1.155 1.136 1.034 1.395 0.075 
bx_ue_5m 364937 1.154 1.136 0.870 1.413 0.075 
Note: Obvs. refers to the number of observations; S.D. refers to the standard deviation. 

 

Note that the summary statistics of the level data are not very meaningful if the series 

is a random walk process, as these summary statistics are always changing as new samples 

arrive. However, the return of a random walk series has a mean-reverting tendency, meaning 

that the summary statistics on the return series will be more informative.  

Moreover, stock prices are said to follow the log-normal distribution, so the 

logarithmic returns of price have a hypothetical normal distribution, which is of interest. 

Based on this statistical feature, the logarithmic return can be a good approximation of the 

return.  

Table 3 gives the summary statistics of the logarithmic returns of the time series. 

Most of the mean returns are very close to zero, except for the returns of the two bitcoin 

indices and the triangular arbitrage. The returns of the bitcoin indices of USD and ERU both 

have a positive mean equal to 0.003, indicating a 0.3% risk premium for holding bitcoins.  

Based on the minimum and maximum values, we find that bitcoin trading tends to 

face a large degree of variability relative to both FX trading and bitcoin-based currency 
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trading – in the extreme case, the bitcoin value may lose or gain more than 50% against the 

USD in a day. In contrast, the maximum daily loss and gain for USD/EUR trading in the FX 

market are -2.4% and 3%, respectively. The situation seems not to be alleviated through the 

proposed bitcoin-based currency trading: The maximum loss and gain are -37.6% and 46.2% 

for the BX return, and -45% and 17.6% for the triangular arbitrage return. However, the FX 

return has the lowest S.D., followed by the return on the triangular arbitrage and the BX rate, 

while the returns of the bitcoin indices have the highest value. 

 

Table 3. Summary statistics of the logarithmic returns 
Returns Obvs. Mean Min. Max. S.D. Skewness Kurtosis 
r_ub 1600 0.003 -0.584 0.517 0.054 0.026 20.938 
r_eb 1600 0.003 -0.264 0.461 0.049 0.384 8.874 
r_ue 1600 -0.000 -0.024 0.030 0.005 0.123 2.637 
r_fo_ue 1600 -0.000 -0.024 0.030 0.005 0.120 2.630 
r_fu_ue 1600 -0.000 -0.021 0.033 0.005 0.158 2.508 
r_bx_ue 1600 -0.000 -0.376 0.462 0.027 2.873 123.810 
r_ta 1600 -0.001 -0.450 0.176 0.019 -10.159 219.880 
r_ub_5m 364936 0.000 -0.240 0.257 0.005 -0.397 313.683 
r_eb_5m 364936 0.000 -0.189 0.234 0.005 0.100 328.896 
r_ue_5m 364936 -0.000 -0.026 0.027 0.001 0.270 212.416 
r_bx_ue_5m 364936 -0.000 -0.161 0.094 0.003 -0.870 161.906 
r_ta_5m 364936 -0.000 -0.206 0.170 0.008 2.644 37.867 
Note: Kurtosis refers to the excess kurtosis.  
The value -0.000 indicates a negative value greater than -0.0005.  
All series were tested for normality using the Jarque-Bera test; the results are suggestive of rejecting the 
normality null hypothesis. 

 

All series show excess kurtosis and thus lead to rejecting the null hypothesis of 

normality. The results of the Jarque-Bera test also reject the null hypothesis of normality. 

Typically, non-normal return densities indicate weak dependence in the return series. The 

presence of the ARCH or GARCH in a return series may cause a leptokurtic density (Baillie 

& Myers, 1991). 
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Figure 3 plots the sample probability densities of the twelve logarithmic return series. 

It is apparent that the bitcoin returns show high excess kurtosis and fat tails in their 

probability density.   

 

Figure 3. The sample probability densities of twelve return-series. 

3.3 Time-series stylized facts 

Modern time-series econometrics aims to estimate and forecast the irregular component that 

exists in economic data. Some of the empirical findings that were extracted from the 

stochastic trend are consistent across assets, markets and time. Such findings are referred to 
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as stylized facts. Whether these well-accepted stylized facts also adapt to bitcoin-related 

assets or portfolios is a question to be investigated. This section conducts time-series 

analyses on daily basis. Note that all data series are in natural logarithms from this section 

forward, though the notation remains unchanged. 

3.3.1 Random walk process and the weak-form test for market efficiency. 

Randomness is a concept central to financial time series. A stochastic process is expressed 

as a collection of random variables. One task of modern time-series econometrics is to 

estimate and forecast stochastic trend (Enders, 2014, p. 2). For this reason, the random walk 

model is the basic building block for many econometric models. 

The importance of randomness also lies in its close connection with market 

efficiency theory. The efficient market hypothesis (EMH) posits that prices should always 

fully reflect all available information (Fama, 1970). Depending upon the level of available 

information, Fama groups market efficiency into three forms: weak, semi-strong, and strong. 

Weak form tests are concerned with a subset of information containing only 

historical prices. Specifically, if a market is efficient in the weak form, the implications of 

the historical prices have been agreed upon by the market participants, so that the current 

price should be independent of its history. As a result, the day-to-day change in the price of 

a stock is entirely random.  

In addition to stock prices, most macroeconomic data series are found to be a 

random walk process (Nelson & Plosser, 1982). The proposed bitcoin exchange rate, the 

bitcoin price and the triangular arbitrage call randomness into question.  

 

Hypothesis 3.1 The USD/EUR bitcoin exchange rate series is a random walk 

process. 
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3.3.1.1 Methodology. The simplest random walk model has the form  

𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 (3) 

where 𝑦𝑦𝑡𝑡 is the current logarithm of the price on day t and 𝜀𝜀𝑡𝑡 is a random residual term—

white noise. This model suggests that (i) the daily change in price is random, that is ∆𝑦𝑦𝑡𝑡 =

𝜀𝜀𝑡𝑡, and (ii) the random residual term has a mean value of zero, that is, 𝐸𝐸(𝜀𝜀𝑡𝑡) = 0.  

To make the random walk hypothesis testable, Dickey and Fuller (1979) consider 

the more general stochastic difference equation 

∆𝑦𝑦𝑡𝑡 = 𝛼𝛼0 + 𝑎𝑎1𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 (4) 

and specify the restriction 𝛼𝛼0 = 𝑎𝑎1 = 0 for the random walk hypothesis. The restriction 

𝛼𝛼0 = 0 assures that 𝜀𝜀𝑡𝑡 has a zero mean; 𝑎𝑎1 = 0 asserts that ∆𝑦𝑦𝑡𝑡 exhibits randomness, as 𝜀𝜀𝑡𝑡 

and ∆𝑦𝑦𝑡𝑡 has no correlation with the historical price 𝑦𝑦𝑡𝑡−1. Note that 𝛼𝛼0 = 0 is equivalent to 

the statement that the stochastic difference equation in (4) has a unit root. For this reason, 

this type of test is often called the unit root test.   

This thesis employs three types of unit-root tests—the Augmented Dickey-Fuller 

(ADF) test, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test and the Elliott-Rothenberg-

Stock (ERS) test—to make inferences regarding the random walk hypothesis and its 

implication of weak-form EMH. 

Note that evidence that the disturbance term 𝜀𝜀𝑡𝑡 in (4) is predictable invalidates the 

random walk hypothesis (Enders, 2014, p. 4). To resolve the problem that serial correlation 

may exist in 𝜀𝜀𝑡𝑡, the ADF test modifies the DF test by adding 𝑝𝑝 lags of ∆𝑦𝑦𝑡𝑡 and a time trend: 

∆𝑦𝑦𝑡𝑡 = 𝛼𝛼0 + 𝑎𝑎1𝑦𝑦𝑡𝑡−1 + 𝑎𝑎2𝑏𝑏 + �𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

∆𝑦𝑦𝑡𝑡−𝑖𝑖 + 𝜀𝜀𝑡𝑡. (5) 

where lag length 𝑝𝑝 is determined using the Akaike Information Criterion (AIC).  
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Because the ADF test works poorly in discriminating a near-unit-root process from 

a unit-root process, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and Elliott-

Rothenberg-Stock (ERS) tests are conducted as supplementary methods.  

Different from the ADF test, the KPSS test posits the null hypothesis of stationarity. 

It modifies the Lagrange Multiplier (LM) to first eliminate the deterministic level (de-

meaned model) and the deterministic trend (de-trended model), and then tests for stationarity 

as the null hypothesis. The null hypothesis proposes a model composed of a deterministic 

linear trend, a random walk, and a stationary error term and assumes that the random walk 

has zero variance (Kwiatkowski et al., 1992). The lag selection here uses a “short”-type lag, 

𝑇𝑇𝑎𝑎𝑎𝑎𝑙𝑙 = �4 × (𝑇𝑇/100)4 , except for the BX rate series that uses a “long-type lag, 𝑇𝑇𝑎𝑎𝑎𝑎𝑙𝑙 =

�12 × (𝑇𝑇/100)4 .  

Elliott et al. (1996) argue that the LM model in the first difference used by the KPSS 

test is misspecified and proposes a trend stationary (TS) model to de-mean and de-trend the 

series. The de-trended and de-meaned series is then used to approximate the ADF test. The 

ERS test is often called the Dickey-Fuller generalized least squares (DF-GLS) test. 

3.3.1.2 Results. The results of the random walk tests are presented in Table 4. The 

ADF tests use the trend model shown in equation (5). For the trend model, the �̂�𝜏𝜏𝜏 statistic is 

used to determine whether 𝑎𝑎1 = 0 . The results show no significance for any of the �̂�𝜏𝜏𝜏 

statistics, which means that we cannot reject 𝑎𝑎1 = 0, the presence of a unit root. The t-

statistics for the trend coefficient 𝑎𝑎0 = 0 present insignificance, except in the case of the BX 

rate, where its value is very close to zero. The changes in the BX rate and the three FX rates 

all present a zero mean as indicated by the value of 𝑎𝑎0. Note that the changes in bitcoin 

prices of USD and EUR show positive non-zero means, 𝑎𝑎0 = 2%. This result is similar to 

their mean logarithmic returns as shown in Table 3. Be cautious that the unconditional mean 
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of the changes in bitcoin price is not equal to 𝑎𝑎0. For example, ∆𝑦𝑦𝑡𝑡  of USD/BTC is an 

autoregressive process of order thirteen, denoted by AR (13), so its unconditional mean is 

given by 𝑎𝑎0
𝐵𝐵(𝐿𝐿), where 𝐿𝐿 is the lag operator and 𝐵𝐵(𝐿𝐿) is a polynomial of order p of 𝛽𝛽𝑖𝑖 in (5).  

The KPSS test results show that all the �̂�𝜂𝜏𝜏 statistics led to the rejection of the null 

hypothesis, indicating acceptance of the alternative unit root hypothesis. 

The ERS test applies the ADF test without an intercept to the de-meaned data. The 

statistics for the de-meaned model all suggest the existence of a unit root. The lag length 

follows the length used in the ADF test. 

 

Table 4. Results of random walk tests (unit root tests) 
Series ADF    KPSS  ERS  
 Lags 𝛼𝛼0  𝛼𝛼2  �̂�𝜏𝑡𝑡  Lags �̂�𝜂𝜇𝜇 Lags �̂�𝜏𝜇𝜇  

ub 13 0.02** 0.00 -1.97 24 5.56*** 13 0.72 
eb 5 0.02** 0.00 -1.94 8 15.71*** 5 0.93 
ue 1 0.00 -0.00 -1.59 8 6.32*** 1 -0.32 
fo_ue 1 0.00 -0.00 -1.59 8 6.19*** 1 -0.24 
fu_ue 1 0.00 -0.00 -1.61 8 6.11*** 1 -0.27 
bx_ue 17 0.00 -0.00* -1.71 24 2.29*** 17 -0.57 
Note: �̂�𝜏𝑡𝑡 statistic of the ADF test is used to determine whether 𝛼𝛼1 = 0 in equation (5) that includes a time 
trend term. Since most of the trend-term coefficients are not statistically significant, the KPSS and ERS tests 
use de-meaned models. The unit root null hypothesis is used in the ADF and ERS tests, while the stationarity 
null hypothesis is used in the KPSS test.  
*, **, and *** significant at 10%, 5%, and 1%, respectively. 

 

The Q-statistic of the Ljung-Box test is applied to the error term of each ADF model 

to diagnose the model’s adequacy. The null hypothesis asserts independence in the given 

time series. The notation Q (20) denotes a Q-statistic using a lag of 20. In the tests, all Q 

(20) statistics indicated no serial correlation in the error terms for the ADF models. 

In conclusion, the USD/EUR BX rate and the bitcoin price indices of USD and EUR 

behave like a random walk process, just as the FX rates do, which suggests the weak-form 

market efficiency. There are two features related to this: (i) the current changes in the price 

of a series are uncorrelated with its price history, so knowing about the history does not help 
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estimate the current price since prices evolve randomly; (ii) the changes in prices have a zero 

mean. Though for the two bitcoin price indices, the price changes present non-zero means, 

the results seem not to invalidate the random walk hypothesis and the implied market 

efficiency, as the constant in (5) can be thought of as the risk premium for holding bitcoins.  

3.3.2 Serial dependence. As suggested by market efficient theory, changes in the 

price of an asset (or the logarithmic returns) are expected to be random, with a zero mean. 

This randomness should result in serial independence; however, many of the return series 

show serial dependence. 

For a process with a unit root, its first difference is stationary. Such a sequence is 

integrated of order one, denoted by 𝐼𝐼(1). The merit of a stationary series is that after 

observing a set of its realizations, we can reasonably approximate the mean, variance, and 

autocorrelations using averages over a sufficiently long period of time (Enders, 2014, p. 52). 

 

Hypothesis 3.2 The logarithmic return series of the USD/EUR BX rate is stationary.  

 

3.3.2.1 Methodology. Similar to the random walk tests, ADF, KPSS, and ERS tests 

are conducted to check the logarithmic return series for stationarity. An autoregressive 

moving average (ARMA) model is then used for modeling each return series. The ARMA 

(p, q) model is specified as 

𝑦𝑦𝑡𝑡 = 𝛼𝛼0 + �𝑎𝑎𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ �𝛽𝛽𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖

𝑞𝑞

𝑖𝑖=0

 (6) 

where 𝑦𝑦𝑡𝑡 is a stationary process.  
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The logarithmic returns of the series are calculated by taking first-order differences 

of the level series; they are then checked for stationarity. For the ADF and ERS tests, 

rejecting the null hypothesis indicates stationarity, whereas the KPSS test uses stationarity 

as the null hypothesis. Note that the triangular arbitrage between the BX rate and the FX rate 

(the BX-FX triangular arbitrage) is viewed as a return series—specifically, the excess return. 

Different from the calculation in (2), the logarithmic excess return is given by 

log(𝑈𝑈𝑈𝑈𝑈𝑈/𝐸𝐸𝑈𝑈𝐸𝐸)𝐵𝐵𝐵𝐵 − log (𝑈𝑈𝑈𝑈𝑈𝑈/𝐸𝐸𝑈𝑈𝐸𝐸). 

3.3.2.2 Results. The results presented in Table 5 suggest that all return series are 

stationary. For the return of the bitcoin exchange rate, the ERS test does not agree with the 

ADF and KPSS tests, suggesting non-rejection of the null hypothesis of a unit root. This 

disagreement may be caused by significant autocorrelation that exists in longer lags of the 

BX rate return series. All bitcoin-related returns present a longer pattern of autocorrelation 

than the FX returns. 

Table 5. Results of stationarity (unit root tests) 
Series ADF   KPSS  ERS  
 Lags 𝛼𝛼0  �̂�𝜏𝜇𝜇  Lags �̂�𝜂𝜇𝜇 Lags �̂�𝜏𝜇𝜇  
r_ub 12 0.00 -9.77*** 24 0.09 12 -4.78*** 
r_eb 4 0.00 -15.26*** 8 0.10 4 -14.83*** 
r_ue 1 -0.00 -28.80*** 8 0.17 1 -18.99*** 
r_fo_ue 1 -0.00 -28.79*** 8 0.17 1 -19.00*** 
r_fu_ue 1 -0.00 -28.14*** 8 0.16 1 -18.83*** 
r_bx_ue 16 -0.00 -12.24*** 24 0.06 16 -0.64 
r_ta 11 -0.00* -8.12*** 24 0.30 11 -3.47*** 
Note: �̂�𝜏𝜇𝜇 statistic of the ADF test is used to determine whether 𝛼𝛼1 = 0 with a draft term in the model. The 
KPSS and ERS tests use de-meaned models.  The ADF test and the ERS test have the null hypothesis of a 
unit root while the KPSS test have the null hypothesis of stationarity.  
*, **, and *** significant at 10%, 5%, and 1%, respectively 

 

The order of ARMA (p, q) is first suggested by the AIC criterion, which chooses 

the model that has the smallest sum of squared residuals (SSR). The results are shown in 

Table 6.  
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For the return of the bitcoin price of USD, r_ub, the AIC suggests the ARMA (2, 2) 

model. Because 𝑎𝑎1 and 𝛽𝛽1 of the ARMA (2, 2) model appear to be statistically insignificant, 

we pare down the model by eliminating the first AR term and the first MA term. However, 

the log-likelihood (LL), AIC and BIC values reported in the third column of Table 6 do not 

show any improvement with this specification. The Q (20) statistics suggest that the ARMA 

models of r_ub are problematic, with significant residual autocorrelation left in 20 lags. For 

r_eb, ARMA (1, 2) appears to be adequate for capturing time dependence.  

 
Table 6. Estimates of the ARMA (p, q) model of the return series. 
 r_ub  r_eb r_ue r_bx_ue  r_ta  
 ARMA 

(2, 2) 
ARMA 
[2; 2] 

ARMA 
(1, 2) 

ARMA 
(0, 0) 

ARMA 
(2, 3) 

ARMA 
[2; 1,2,3] 

ARMA 
(5, 2) 

ARMA 
[2, 3, 5; 2] 

𝑎𝑎0  0.00** 
(0.00) 

0.00* 
(0.00) 

0.00* 
(0.00) 

   -0.00** 
(0.00) 

-0.00** 
(0.00) 

𝑎𝑎1  -0.10 
(0.07) 

 0.87*** 
(0.06) 

 -0.33 
(0.22) 

 0.04 
(0.11) 

 

𝑎𝑎2  -0.87*** 
(0.04) 

0.83*** 
(0.06) 

  0.31* 
(0.19) 

0.55*** 
(0.14) 

0.53*** 
(0.10) 

0.57*** 
(0.10) 

𝑎𝑎3        0.06** 
(0.03) 

0.09*** 
(0.02) 

𝑎𝑎4        0.04 
(0.03) 

 

𝑎𝑎5        0.06** 
(0.03) 

0.07** 
(0.03) 

𝛽𝛽1  0.04 
(0.08) 

 -0.89*** 
(0.06) 

 -0.44** 
(0.21) 

-0.74*** 
(0.02) 

0.01 
(0.11) 

 

𝛽𝛽2  0.85*** 
(0.05) 

-0.78*** 
(0.07) 

0.07*** 
(0.03) 

 -0.64*** 
(0.09) 

-0.64*** 
(0.14) 

-0.56*** 
(0.10) 

-0.57*** 
(0.10) 

𝛽𝛽3      0.33** 
(0.14) 

0.50*** 
(0.10) 

  

LL 2425 2417 2584 6195 3915 3913 4071 4067 
AIC -4838 -4827 -5158 -12388 -7818 -7817 -8123 -8122 
SBC -4806 -4806 -5131 -12383 -7786 -7790 -8047 -8090 
Q (20) 47*** 65*** 7.13 24 193*** 191*** 194*** 215*** 
Note: The order of the ARMA (p, q) model is suggested by the AIC criterion. Then, the ARMA model is 
pared down if there exist insignificant estimates. The notation [ ; ] is used for specifying the lags in the 
ARMA model; inside the brackets, the AR terms and the MA terms are separated by a semicolon.  
LL denotes the log-likelihood; SBC (or BIC) denotes the Schwarz's Bayesian criterion. Q (20) refers to the 
Q-statistic of the Ljung-Box test using a lag of 20. 
*, **, and *** significant at 10%, 5%, and 1%, respectively. Standard errors are given in parentheses. 

 

As presented in column 5 of Table 6, the FX spot return does not show significant 

autocorrelation in its residuals. The AIC suggests that there is no need to use an ARMA 
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model on the series. This result indicates an efficient FX spot market, meaning that its prices 

do not provide much useful forecasting information.  

The return series of the BX rate is modeled by the ARMA (2, 3) using the suggestion 

of the AIC. After removing the first AR term, the reduced model is selected by the BIC 

criterion, which prefers parsimony. For the return of the triangular arbitrage, the AIC selects 

the ARMA (5, 2) model. The modified model remaining lag 2, 3, 5 in the AR terms, and lag 

2 in the MA terms is preferred by the BIC. However, the Q (20) statistics indicate that the 

residuals from these models exhibit substantial serial autocorrelation.  

The values of 𝑎𝑎0 suggest that only the BX return and the FX return have a zero mean. 

The returns of two bitcoin prices have tiny positive means. The triangular arbitrage return 

shows a small negative mean.  

In short, the bitcoin-related asset returns all exhibit long memory, while the FX return 

does not. This long-range correlation results in the high order of the ARMA model. Even so, 

the resulting ARMA models appeared to be inadequate, as suggested by the Q (20) statistics 

of the Ljung-Box tests.  

3.3.3 Volatility. Many series of financial returns exhibit time-dependent variances 

(conditional heteroskedasticity), i.e. periods of volatility clustering followed by periods of 

relative calm. Just like modeling a conditional mean, an AR model is suggested to measure 

the time dependence of volatility. Engle (1982) proposes a model, called the autoregressive 

conditional heteroskedastic (ARCH) model, that can measure the time-varying mean and 

variance simultaneously. Bollerslev (1986) extends Engle’s work by incorporating moving 

average terms, calling it the Generalized ARCH (GARCH) model. 

The conditional heteroskedasticity will cause the probability density of the return to 

exhibit excess kurtosis and fat tails (Baillie & Myers, 1991). We have found that the bitcoin-
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related returns all present substantially high leptokurtosis. Baillie & Myers (1991) argue that 

the hypothetical Student’s t distribution works better than the normal distribution for 

GARCH models in the presence of excess kurtosis. Nelson (1991) proposed the generalized 

error distribution (GED) with parameter 𝜈𝜈 measuring tail-thickness. When 𝜈𝜈 = 2, the GED 

converges to the standard normal distribution; for 𝜈𝜈 < 2, the distribution has heavier tails 

than the normal, while for 𝜈𝜈 > 2, it has thinner tails, finally converging to the uniform 

distribution (Angelidis et al., 2004).  

Hypothesis 3.3 The return series of the BX rate is conditional heteroskedastic. 

 

3.3.3.1 Methodology. A GARCH (p, q) model is given by 

𝜀𝜀𝑡𝑡 = 𝑣𝑣𝑡𝑡�ℎ𝑡𝑡 

ℎ𝑡𝑡 = 𝜔𝜔0 + �𝜔𝜔𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖2

𝑞𝑞

𝑖𝑖=1

+ �𝜃𝜃𝑖𝑖ℎ𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

 
(7) 

where 𝜀𝜀𝑡𝑡 is the residual process from the ARMA model specified in (6), 𝑣𝑣𝑡𝑡 is a white-noise 

process with variance of 1.0, and ℎ𝑡𝑡 is the conditional variance of the return (Enders, 2014, 

p. 128).  

With the results from Section 3.3.2, an ARMA model and a GARCH (1, 1) model 

are jointly estimated using the maximum likelihood estimation (MLE). Before the estimation, 

it is recommended that the Lagrange multiplier (ML) test be used to diagnose ARCH or 

GARCH effects. The test statistic 𝑇𝑇𝐸𝐸2 converges to a 𝜒𝜒2 distribution with q degrees, where 

q is the number of lags in the regression (Enders, 2014, p. 130). Only the first 1000 

observations are used for the estimation; the remaining 600 values are retained for 

forecasting. 
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For comparison, the proposed models are estimated using three types of densities: 

the normal distribution, the Student’s t distribution and the GED. The ARMA (1, 1) plus 

GARCH (1, 1) model is also estimated as a trial.  

For comparison, the proposed models are estimated using three types of densities: 

the normal distribution, the Student’s t distribution and the GED. The ARMA (1, 1) plus 

GARCH (1, 1) model is also estimated as a trial.  

Table 7. The estimation of the ARMA (p, q) + GARCH (1, 1) model: the USD/EUR BX rate. 
 Model 1 Model 2 Model 3 Model 4 Model 5 

 ARMA 
(1, 1) 

ARMA 
(2, 3) 

ARMA 
(2, 3) 

ARMA 
[2; 1, 2, 3] 

ARMA 
[2; 1, 2, 3] 

 GARCH 
(1, 1) 

GARCH 
(1, 1) 

GARCH 
(1, 1) 

GARCH 
(1, 1) 

GARCH 
(1, 1) 

 Norm. Norm. Norm. Stud. t GED 

𝑎𝑎0  -0.00 
(0.00) 

-0.00 
(0.00)    

𝑎𝑎1  0.03 
(0.16) 

0.43*** 
(0.05) 

-0.84*** 
(0.05)   

𝑎𝑎2   0.53*** 
(0.04) 

-0.95*** 
(0.07) 

0.92*** 
(0.07) 

0.90*** 
(0.02) 

𝛽𝛽1  -0.195 
(0.138) 

-0.59*** 
(0.00) 

0.70*** 
(0.06) 

-0.22*** 
(0.04) 

-0.19*** 
(0.01) 

𝛽𝛽2   -0.51*** 
(0.01) 

0.82*** 
(0.15) 

-0.93*** 
(0.05) 

-0.92*** 
(0.01) 

𝛽𝛽3   0.13*** 
(0.03) 

-0.11*** 
(0.04) 

0.21*** 
(0.04) 

0.19*** 
(0.00) 

𝜔𝜔0  0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

𝜔𝜔1  0.196*** 
(0.07) 

0.199*** 
(0.07) 

0.232*** 
(0.08) 

0.446*** 
(0.12) 

0.380*** 
(0.16) 

𝜃𝜃1  0.803*** 
(0.07) 

0.080*** 
(0.07) 

0.767*** 
(0.16) 

0.551*** 
(0.12) 

0.615*** 
(0.12) 

𝜈𝜈𝑠𝑠𝑡𝑡𝑠𝑠     3.39*** 
(0.49)  

𝜈𝜈𝑔𝑔𝑒𝑒𝑠𝑠      0.97*** 
(0.07) 

LL 3120.62 3122.36 3127.89 3248.18 3234.14 
AIC -6.23 -6.23 -6.24 -6.48 -6.45 
BIC -6.20 -6.18 -6.20 -6.44 -6.41 
𝑄𝑄𝑠𝑠𝑠𝑠( )  (1) 7.78*** 

(5) 10.24*** 
(9) 12.20*** 

(1) 8.54*** 
(14) 13.11*** 
(24) 18.26*** 

(1) 9.30*** 
(14) 15.40*** 
(24) 20.95*** 

(1) 0.86 
(14) 6.75 
(24) 13.90 

(1) 2.28 
(14) 7.65 
(24) 14.09 

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠( )  (1) 8.41*** 
(5) 9.78*** 
(9) 10.82** 

(1) 8.53*** 
(14) 9.93*** 
(24) 11.00** 

(1) 7.46*** 
(14) 9.02** 
(24) 10.16** 

(1) 4.43 
(14) 5.28 
(24) 6.29 

(1) 2.99 
(14) 4.01 
(24) 4.73 

LM (3) 
LM (5) 
LM (7) 

0.80 
2.42 
2.83 

0.79 
2.48 
2.90 

0.88 
2.68 
3.11 

0.54 
1.39 
2.10 

0.61 
1.58 
1.90 

Note: The ARMA (p, q) and GARCH (1, 1) model are specified in (6) and (7), respectively; The [ ; ] notation 
specifies the lags in AR terms and MA terms, separated by the semicolon.  
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Norm. stands for the normal distribution and Stud. t stands for student’s t distribution. Parameter 𝜈𝜈𝑠𝑠𝑡𝑡𝑠𝑠 is the 
shape parameter of the Stud. t and 𝜈𝜈𝑔𝑔𝑒𝑒𝑠𝑠 is the shape parameter for the GED.  
LL denotes the log-likelihood; 𝑄𝑄𝑠𝑠𝑠𝑠( ) is the Q-statistic of the Ljung-Box test on standardized residuals; 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠( ) 
is the Q-statistic on square of standardized residuals; LM ( ) is the Lagrange multiplier test; inside the 
parentheses is the number of lags.  
*, **, and *** significant at 10%, 5%, and 1%, respectively. Robust standard errors are given in parentheses 
below the estimated values. 

 

3.3.3.2 Results. Table 7 shows the estimated ARMA (p, q) plus GARCH (1, 1) 

models on the USE/EUR bitcoin exchange rate. Model 4 in column 5 of Table 7 dominates 

the other models. Its ARMA part includes AR2 and MA1-3 terms, and it uses the Student’s 

t as the hypothetical distribution.  

The model selection process is illustrated as follows: Starting from the ARMA (1, 1) 

model under the normal distribution is to verify whether the MLE method will produce the 

same result as the OLS regression. As presented in column 2 of the table, none of the 

coefficients in the ARMA (1, 1) are significantly different from zero. The t-statistics of the 

GARCH (1, 1) part are all statistically significant at the 1% level and the sum 𝜔𝜔1 + 𝜃𝜃1 =

0.196 + 0.803 = 0.999 < 1 indicates that the conditional variance of 𝜀𝜀𝑡𝑡 is convergent but 

very persistent. From the values of 𝜔𝜔1 and 𝜃𝜃1 , we learn that a one-unit increment of 𝜀𝜀𝑡𝑡2 

increases the current conditional variance ℎ𝑡𝑡 by 0.196, while an increment of ℎ𝑡𝑡−1 raises ℎ𝑡𝑡 

by 0.803. The adequacy checks suggest that serial autocorrelation exists both in the level 

residuals and the squared residuals, since the 𝑄𝑄𝑠𝑠𝑠𝑠 and 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 statistics are all significant at the 

1% level. Note that the 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 statistic tests for quadratic serial autocorrelation in the residuals 

indicating nonlinearity. The 𝑇𝑇𝐸𝐸2 statistics of the LM tests imply that there are no ARCH 

effects left in the residuals.  

In comparison, Model 2, in the third column of the table, uses ARMA (2, 3) for 

capturing the conditional mean. The value of 𝛼𝛼0 appears to be insignificant. The 𝑄𝑄𝑠𝑠𝑠𝑠 and 

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 statistics suggest Model 2 is also not adequate; however, there are no ARCH effects as 
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indicated by the LM tests. Nevertheless, Model 2 seems not competitive with Model 1 

because only the log-likelihood agrees with Model 2; both the AIC and BIC suggest no 

improvement on Model 2. These results suggest that the augmented ARMA (2, 3) model 

increases the log-likelihood but does not improve the SSR of the model, while at the same 

time increasing some costs due to the addition of more parameters.  

Model 3 in column 4 of the table removes the intercept in its ARMA (2, 3) 

specification. The log-likelihood, AIC, and BIC all coincide in this modification, presenting 

an improvement. This result shows that both the MLE and OSL approaches converge to the 

same selection of the model. However, adequacy occurs in all three models with a normal 

distribution.  

Model 4 uses the ARMA [2; 1, 2, 3] terms; that is, it omits the intercept and the AR1 

term, and incorporates a Student’s t distribution to adapt to the heavy tails. This model tends 

to be superior to the other models, as the log-likelihood, AIC, BIC all present a significant 

improvement; serial autocorrelation disappears from both the standardized residuals and the 

squares of standardized residuals. The values of 𝜔𝜔1 and 𝜃𝜃1 indicate that a one-unit change 

in 𝜀𝜀𝑡𝑡2 contributes 0.446 to the change in ℎ𝑡𝑡 , while a change in ℎ𝑡𝑡−1 contributes 0.551. The 

sum  𝜔𝜔1 + 𝜃𝜃1 = 0.446 + 0.551 = 0.997 < 1  indicates convergence and less persistence 

than in Model 1.  

Model 5 in column 6 of Table 7 using GED as the hypothetical distribution appears 

to be a good approximation but is no better than Model 4, as suggested by the Log-likelihood, 

AIC, and BIC. 

Figure 4 plots the estimated conditional standard deviation series from Model 4 over 

the sample period, together with the unconditional standard deviations and the 150-day 

moving average. Since volatility is latent, the absolute returns of the BX rate are used as a 
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proxy, shown as the grey line in Figure 4. The BX return was extremely volatile before May 

2014, affecting the unconditional standard deviation and shifting it upward over the entire 

estimating period. This issue caused an overestimated risk level afterwards. As for the 

moving average of the standard deviation, it was sluggish and remained at a very low level 

for most of the time, seemingly unaffected by the frequent spikes. The conditional standard 

deviation appears to be most realistic, varying with the absolute returns. 

For the triangular arbitrage series, consider the ARMA [2; 1, 2] plus GARCH (1, 1) 

model with the Student’s t distribution. Though the ARMA specification is different from 

the ARMA (5, 2) model that we have estimated in Table 6, this model provides a better fit. 

The estimated model is given by 

𝑟𝑟_𝑏𝑏𝑎𝑎 = −0.001 + 0.657𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−2 + 𝜀𝜀𝑡𝑡 + 0.385𝜀𝜀𝑡𝑡−1 − 0.391𝜀𝜀𝑡𝑡−2 
      (0.00)     (0.05)                      (0.03)             (0.05) 

 
ℎ𝑡𝑡 = 0.000 +  0.350𝜀𝜀𝑡𝑡−12 + 0.649ℎ𝑡𝑡−1. 

      (0.00)     (0.12)            (0.06)     

(8) 

 

The shape parameter is equal to 2.91, significant at the 1% level, indicating heavier 

tails. The Ljung-Box tests show no presence of serial autocorrelation both in the standardized 

residuals and the squares of the standardized residuals. The LM tests indicate that no ARCH 

effects are left in the residuals. 
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Figure 4. The estimations of volatility on the USD/EUR BX rate: the absolute returns in 

the grey line, the conditional standard deviation (S.D.) of ARMA [2; 1, 2, 3] plus GARCH 

(1, 1) in the black line, the 150-day moving average of S.D. in the blue line, and the 

unconditional S.D. in the red line.  

 

The estimation on the FX spot suggests that the GARCH (1, 1) model with the 

Student’s t distribution is adequate. The model is specified as  

 
ℎ𝑡𝑡 = 0.000 +  0.042𝑟𝑟_𝑇𝑇𝑒𝑒𝑡𝑡−12 + 0.956ℎ𝑡𝑡−1. 

      (0.00)     (0.01)            (0.01)     

(9) 

 

 

The shape parameter is equal to 6.54, significant at the 1% level, indicating 

leptokurtosis but less than in the case of the triangular arbitrage series.  

For the returns of the bitcoin price index of USD/BTC, the GARCH (1, 1) with the 

GED provides the best fit according to the log-likelihood, AIC, and BIC. There are no 

GARCH effects left as indicated by the LM tests and the Ljung-Box test on the squared 

residuals, but serial correlation exists in the level residuals. The shape parameter of GED is 

equal to 0.80, which is significant at 1%, and indicates thicker tails. The model is given by  
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𝑟𝑟_𝑇𝑇𝑏𝑏 = 0.002 + 𝜀𝜀𝑡𝑡 
          (0.00)      

 
ℎ𝑡𝑡 = 0.000 +  0.202𝜀𝜀𝑡𝑡−12 + 0.797ℎ𝑡𝑡−1. 

      (0.00)      (0.05)           (0.06)     

(10) 

 

 

3.3.4 Value at Risk. Value-at-Risk (VaR) is a concept used by portfolio managers 

to measure the downside outcome of a portfolio at a given confidence level over a period. 

VaR estimates the tails of the empirical distribution. There are several different approaches 

to calculate VaR from the data. For example, if a daily return of a portfolio 𝑟𝑟𝑡𝑡 follows a 

normal distribution with mean 𝜇𝜇 and standard deviation 𝜎𝜎, denoted by 𝑟𝑟𝑡𝑡~𝑁𝑁(𝜇𝜇,𝜎𝜎), VaR for 

one day at the 𝛼𝛼% confidence level is defined as 

𝑉𝑉𝑎𝑎𝐸𝐸(𝛼𝛼) = 𝜇𝜇 + 𝜎𝜎𝑁𝑁−1(𝛼𝛼) 
 

(11) 

where 𝑁𝑁−1(∙) denotes the inverse of the cumulative normal density function. Note that the 

position of portfolio is assumed to be unity.  

 

Hypothesis 3.4 The bitcoin exchange rate presents lower risks than the bitcoin prices. 

 

3.3.4.1 Static VaR. We first consider two static approaches over the full sample 

period (1600 observations)—the historical VaR and the mean-modified VaR (Favre & 

Galeano, 2002), which takes skewness and kurtosis into account through the use of a Cornish 

Fisher expansion.  

Table 8. The static VaR values in the sample period. 
 S.D. Historical VaR 

(2.5%) 
Historical VaR 
(1%) 

Mean-modified 
VaR (2.5%) 

Mean-modified 
VaR (1%) 

r_ub 0.054 -0.105 -0.137 -0.179 -0.384 
r_eb 0.048 -0.101 -0.131 -0.112 -0.194 
r_ue 0.005 -0.010 -0.014 -0.011 -0.014 
r_fo_ue 0.005 -0.010 -0.014 -0.011 -0.014 
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r_fu_ue 0.005 -0.010 -0.014 -0.010 -0.014 
r_bx_ue 0.027 -0.027 -0.052 -0.211 -0.695 
r_ta 0.019 -0.020 -0.043 -0.133 -0.434 
Note: S.D. is the unconditional standard deviation. Mean-modified VaR takes skewness and kurtosis into 
account using a Cornish Fisher expansion. 

 

The results are reported in Table 8. The historical VaR at the 2.5% probability level 

is the 2.5%-quantile of the negative returns, which is listed in column 2 of Table 8. We can 

find that one bitcoin will fall either in USD value or EUR value by more than 10% over a 

one-day period, followed by the return of the BX rate with a -2.7% one-day loss, the return 

of the triangular arbitrage with a -1.9% loss, and the returns of the three FX rates with a -1% 

loss. The historical VaR at 1% presents similar results in that the returns of the BX rate and 

triangular arbitrage are lower than that of bitcoin prices but higher than that of the FX rates. 

In contrast, the mean-modified VaR increases the downside risks of the BX rate and the 

triangular arbitrage when a non-normal distribution of the returns is considered. As shown 

in column 6 of the table, with a 1% chance, the potential loss of the BX rate is 69.5% if the 

hypothetical non-normal distribution is correct.  

 

3.3.4.2 VaR with GARCH (1, 1). One problem with VaR calculated using static 

approaches is that it ignores volatility clustering, so that the VaR limits are breached across 

time. As a result, risk is underestimated during a crisis. A solution to this problem is to use 

the conditional standard deviation from the GARCH (1, 1) model. The VaR with GARCH 

(1, 1) model is given by 

𝑉𝑉𝑎𝑎𝐸𝐸(𝛼𝛼) = 𝜇𝜇 + ℎ1/2𝑈𝑈𝑇𝑇𝑈𝑈−1(𝛼𝛼;  𝜈𝜈) 

ℎ𝑡𝑡 = 𝜔𝜔0 +  𝜔𝜔1𝜀𝜀𝑡𝑡−12 + 𝜃𝜃ℎ𝑡𝑡−1 
(12) 

where 𝑈𝑈𝑇𝑇𝑈𝑈−1(∙) denotes the inverse of the Student’s t density function with shape parameter 

𝜈𝜈. 



 

 44 

Using the bitcoin exchange rage as an example, we illustrate the 2.5% VAR models 

based on three different standard deviations: the unconditional S.D., the 150-day moving 

average, and the conditional S.D. from the ARMA [2; 1, 2, 3] + GARCH [1, 1] model (see 

Figure 5). As can be seen from the plot, the VaR with GARCH (1, 1) (black line) is varying 

and lowers the VaR limit when volatility clustering occurs, whereas the limit of the static 

VaR (red line) and the moving average VaR (blue line) are breached.  

 

Figure 5. The return series of the USD/EUR BX rate and the three types of 2.5% VaR 

based on Student’s distribution over the first 1000-observation sample period: the VaR 

with GARCH (1, 1), the 150-day moving average VaR, and the VaR with the 

unconditional standard deviation. 

 

The return of the BX rate swung widely before April 2014 and then became less 

volatile. As a result, the static VaR becomes unrealistic when significant volatility clustering 

occurs, as it either overestimates or underestimates the risks. For example, the mean 

modified VaR suggests that by a 2.5% chance the daily loss for the BX rate is approximately 

21.1%. From Figure 5, we can see that, after April 2014, the probability of such a loss 
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occurring appears to be zero. It seems reasonable to consider that a structural change 

occurred and split the sample period into two or more regimes.  

3.3.5 Structural change and regime switching. The USD/EUR BX rate manifests a 

structural change. If we know the date when the break occurs, for example, on 1 April 2014, 

it is straightforward to conduct a Chow test. Once the date is confirmed by the test, the 

sample period can be split into two regimes: volatile and tranquil. 

It is more interesting to investigate breaks that exist in the triangular arbitrage series, 

i.e., the excess value, defined as the difference between the log of the BX rate and the log of 

the FX spot. The law of one price states that in frictionless markets, the price of an identical 

asset will be the same, regardless of location. The USD/EUR BX rate, though it is 

constructed using bitcoins as the numeraire, is expected to follow the law of one price, equal 

to the FX spot. Any persistent deviations from the FX spot will lead to a risk-free return. 

Since both the bitcoin and FX markets are thought of as frictionless, the arbitrage 

opportunity will eventually eliminate the discrepancy between the BX rate and the FX spot. 

The excess value series depicts this discrepancy (see Figure 6). The breaks existing in the 

excess return series help us split the BX rate series into different regimes. As we know that 

the FX spot series presents volatility clustering, the separation based on the excess value will 

remove this kind of influence of the FX market so that we can focus on the transformation 

of the bitcoin market.  
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Figure 6. The logarithmic excess return for the pair of the USD/EUR BX rate and the FX 

spot, with two potential endogenous breaks indicated by the red lines. 

 

 

Hypothesis 3.5 The returns of the triangular arbitrage (the excess values) have 

endogenous structural breaks.  

3.3.5.1 Methodology. An endogenous break refers to a break in the time series 

occurring at a date that is not predetermined by the researcher (Enders, 2014, p. 104). It is 

natural to extend the idea of the Chow test to calculate the F-statistic for every potential 

bread date. The series of the excess value, r_ta, has been estimated with the ARMA (5, 2) 

model with a sample size of 𝑇𝑇 = 1600 observations. If we suppose a potential break date 

𝑏𝑏𝑚𝑚, we can use 𝑏𝑏𝑚𝑚 to split the sample into two subsamples, with 𝑏𝑏𝑚𝑚 observations in the first 

and 𝑏𝑏𝑛𝑛 = 𝑇𝑇 − 𝑏𝑏𝑚𝑚 observations in the second. Enders suggests estimating the two models 

𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡 = 𝛼𝛼0(1) + 𝑎𝑎1(1)𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡−1 + ⋯+ 𝑎𝑎5(1)𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡−5 + 𝜀𝜀𝑡𝑡 + 𝛽𝛽1(1)𝜀𝜀𝑡𝑡−1 + 𝛽𝛽2(1)𝜀𝜀𝑡𝑡−2  

using 𝑏𝑏1, … , 𝑏𝑏𝑚𝑚 

𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡 = 𝛼𝛼0(2) + 𝑎𝑎1(2)𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡−1 + ⋯+ 𝑎𝑎5(2)𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡−5 + 𝜀𝜀𝑡𝑡 + 𝛽𝛽1(2)𝜀𝜀𝑡𝑡−1 + 𝛽𝛽2(2)𝜀𝜀𝑡𝑡−2 

using 𝑏𝑏𝑚𝑚+1, … , 𝑏𝑏𝑇𝑇 . 

(13) 
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Then, we can use the F-test to check the restriction that all coefficients in (13) are 

equal. If we denote the sum of the squared residuals as SSR, the F-statistic for the restriction 

is given by 

𝐹𝐹 =
(𝑈𝑈𝑈𝑈𝐸𝐸 − 𝑈𝑈𝑈𝑈𝐸𝐸1 − 𝑈𝑈𝑈𝑈𝐸𝐸2)/𝑏𝑏
(𝑈𝑈𝑈𝑈𝐸𝐸1 + 𝑈𝑈𝑈𝑈𝐸𝐸2)/(𝑇𝑇 − 2𝑏𝑏)

  (14) 

where 𝑏𝑏 = 𝑝𝑝 + 𝑞𝑞 + 1 if the intercept is incorporated and the number of degrees of freedom 

(df.) are (𝑏𝑏,𝑇𝑇 − 2𝑏𝑏). 

Alternatively, the structural-break model can be specified using the dummy variable 

𝑈𝑈𝑡𝑡: 

𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡 = 𝛼𝛼0 + �𝛼𝛼𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−𝑖𝑖 + �𝛾𝛾0 + �𝛾𝛾𝑖𝑖𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

�𝑈𝑈𝑡𝑡 + 𝜀𝜀𝑡𝑡 (15) 

where dummy variable 𝑈𝑈𝑡𝑡 is the indicator specifying the time period 𝑏𝑏∗ at which the break 

occurs. Equation (15) is a break model that allows the intercept and the autoregressive 

coefficients to change.  

The test devised by Andrews (1993) and Andrews & Ploberger (1994) uses a grid in 

searching for a single break occurring at the unknown date 𝑏𝑏∗ with the best fit. Their test is 

a threshold autoregressive (TAR) model using 𝑏𝑏∗ as the threshold variable. Note that the t- 

and F-statistics are biased because the searching algorithm uses the fixed time variable at 

each iteration, so that it is recommended that Hansen’s (1999) bootstrapping procedure be 

used to obtain the critical values for the threshold model. The threshold model for a single 

break is given by 

𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡 =

⎩
⎪
⎨

⎪
⎧𝛼𝛼0 + �𝛼𝛼𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−𝑖𝑖 + 𝜀𝜀1𝑡𝑡  𝑏𝑏𝑖𝑖 𝑏𝑏 > 𝑏𝑏∗

𝛾𝛾0 + �𝛾𝛾𝑖𝑖𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ 𝜀𝜀2𝑡𝑡  𝑏𝑏𝑖𝑖𝑏𝑏 ≤ 𝑏𝑏∗
 (16) 
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where 𝜀𝜀1𝑡𝑡 and 𝜀𝜀2𝑡𝑡 indicate the heterogeneous residuals considered.  

For estimating multiple breaks dates, Bai & Perron (2003) extend equation (16) to 

𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡 = 𝛼𝛼0 + �𝛼𝛼𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−𝑖𝑖 + �𝑈𝑈𝑗𝑗𝑡𝑡

𝑘𝑘

𝑗𝑗=1

�𝛾𝛾0 + �𝛾𝛾𝑖𝑖𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

� + 𝜀𝜀𝑡𝑡 (17) 

where 𝜀𝜀𝑡𝑡  is homogeneous across the 𝑘𝑘 + 1 regimes. They recommend using a trimming 

value of 15%, that is, keeping at least 15% of the sample in a subsample, and setting the 

maximum number of breaks 𝑘𝑘 = 5. 

3.3.5.2 Results. Figure 7 plots the F-statistics calculated using equation (14). For 

simplicity, the AR (5) model is used instead of the ARMA (5, 2). The trimming value is set 

at 8% because of the relatively large sample size. A three-step procedure is recommended 

for two breaks: 

Step 1 Search for the first breakpoint over the sample of 1-1600. As depicted in panel 

(a) of Figure 7, the F-statistic reaches its max at observation 143. The red line 

is the boundary at which the probability that the F-statistic exceeds the 

boundary value is 𝛼𝛼 = 5% under the null hypothesis of no structural change.  

Step 2 Search for the second breakpoint over the sample of 144-1600. The F-statistic 

suggests that the break occurs at observation 1065 (see panel (b) of Figure 7). 

Step 3 Use the determined second breakpoint as the end point of the sample and 

repeat Step 1, searching for the first break point. As presented in panel (c) of 

Figure 7, the break occurs at observation 138.  

As suggested by the F-tests, the excess value series appear to have two structural 

breaks at 2 May 2014 and 9 January 2018.  
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Figure 7. Plots of the F-statistics for the 3-step procedures: (a) on the sample of 1-1600, 

(b) on the sample of 144-1065, and (c) on the sample of 1-1065. 

 

We now remove the MA terms and select a pure AR model. The best fit model is the 

AR (1) model given by 

𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡 = −0.002 + 0.063𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 + 𝜀𝜀𝑡𝑡. 
         (0.001)    (0.025)           

(18) 

This model has a tiny negative intercept and a small autoregressive coefficient, both 

statistically significant. The BIC is equal to -8069.  

We then employ the Bai-Perron test on the AR (1) model using a 0.08 trimming and 

5 breaks (𝑘𝑘 = 5). The model is specified in (17). The results are reported in Table 9. 

Table 9. The results of the Bai-Perron test on the excess value series using 5 breaks. 
Number of breaks Break points at observation number 
𝑘𝑘 = 1  143     
𝑘𝑘 = 2  137    1065 
𝑘𝑘 = 3  143   937 1065 
𝑘𝑘 = 4  137  526 860 1065 
𝑘𝑘 = 5  143 399 526 860 1065 
Note: the test is based on the AR (1) model specified in equation (17). 

 

The number of breaks is determined using the BIC criterion and the RSS. As depicted 

in Figure 8, the value of RSS decreases as the number of breaks is increasing, indicating the 
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more breaks the better fit for the model. However, the BIC starts to decrease after the first 

break, as adding one break will bring two parameters (one intercept and one slope 

coefficient) into the model, leading to a higher penalty of BIC scores. Though the BIC 

selected the model with one break, two breaks seems more realistic: the value of the BIC for 

two breaks is still lower than the value without a break and it has a lower RSS. Moreover, 

as shown in Figure 6, after January 2018, the series of the excess return behaves as a straight 

line except for occasional spikes. For 0, 1, and 2 break(s), the values of the BIC are -8064, -

8097, and -8083, respectively. 

 

 

Figure 8. Plots of BIC (using the y-axis on the left) and residual sum of squares (RSS) 

(using the y-axis on the right). 

 

In the case of two breaks, observation number 137 and 1965 indicate 1 April 2014 

and 9 January 2018, respectively. The estimated model is given by 

𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡 = −0.010 − 0.006𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡−1 + 𝑈𝑈1𝑡𝑡�0.010 + 0.496𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡−1� 
           (0.001)    (0.027)                   (0.002)     (0.081)       

 
+𝑈𝑈2𝑡𝑡(0.009 + 0.011𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡−1) + 𝜀𝜀𝑡𝑡 

(0.002)    (0.146)           

(19) 
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where 𝑈𝑈1𝑡𝑡 = 1 for 137 < 𝑏𝑏 ≤ 1065, otherwise 𝑈𝑈1𝑡𝑡 = 0; 𝑈𝑈2𝑡𝑡 = 1 for 𝑏𝑏 > 1065, otherwise 

𝑈𝑈2𝑡𝑡 = 0.  

We can write equation (19) in the form: 

𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡 = �
−0.010 − 0.006𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡−1 + 𝜀𝜀𝑡𝑡     𝑤𝑤ℎ𝑒𝑒𝑏𝑏 𝑏𝑏 ≤ 137                  
0.49𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡−1 + 𝜀𝜀𝑡𝑡                          𝑤𝑤ℎ𝑒𝑒𝑏𝑏  137 < 𝑏𝑏 ≤ 1065
−0.001 + 0.005𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡−1 + 𝜀𝜀𝑡𝑡    𝑤𝑤ℎ𝑒𝑒𝑏𝑏 𝑏𝑏 > 1065             

 

 

(20) 

Hence, by equation (20), the series of the excess value is split into three regimes: 

Regime 1: From 11 September 2013 to 1 April 2014. The excess value series was 

extremely volatile, with very weak negative serial dependence. These 

results may indicate that the bitcoin exchange rate was not well-formed 

and thus oscillated widely about the FX spot. 

Regime 2: From 2 April 2014 to 9 January 2018. The excess value series was less 

volatile, with relatively persistent positive serial dependence. The results 

may indicate that the bitcoin exchange rate was constructed with some 

bias against the FX spot, but the arbitrage chance gradually eliminated 

the discrepancy and even influenced market sentiment to the reverse side.  

Regime 3: From 10 January 2018 to 6 March 2020. The excess value series had the 

smallest variations, with some spikes and very weak positive serial 

dependence. These results may indicate that the bitcoin exchange rate is 

locking the FX spot except for occasional malfunctions. 

This chapter has described the statistical features and econometric time-series 

features of each individual time series. The level series of the bitcoin exchange rate, the 

bitcoin prices, the FX rates appear to follow a random walk process, while the return series, 

including the triangular arbitrage series, present a mean-reverting characteristic, suggesting 

a martingale. From this, we might infer a weak-form market efficiency regarding these prices 

or rates, although, strictly speaking, only the three FX rates coincide with this. Serial 
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autocorrelation over relatively long lags is observed with the bitcoin-related return series, 

and some of them present a nonzero mean. An ARMA (p, q) plus GARCH (1, 1) model 

using a student’s t distribution is suggested for capturing the serial dependence. The 

estimated models appear to be adequate according to testing. The VaR statistics calculated 

from the empirical distributions suggest that the returns of the bitcoin exchange rate and the 

returns from the BX-FX triangular arbitrage have lower downward losses than the returns of 

the bitcoin prices at 1% and 2.5% probability levels but are higher than the returns of the FX 

rates. The tests for endogenous structural breaks detect two endogenous structural breaks 

existing in the triangular arbitrage series and, therefore, divide its sample period into three 

regimes, which raises the implication for the transformation of the bitcoin market in terms 

of currency trading.  
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4 Modeling I: In the long run  

This chapter models the bitcoin exchange rate with other time series, focusing on the 

long-run relationship between them.  

4.1 Long-run equilibrium 

The law of one price reveals that identical goods sold in different locations should have the 

same price under the conditions of free competition, price flexibility, and no trade frictions. 

Both bitcoin markets and foreign exchange markets are thought of as decentralized markets, 

and they appear to stratify these conditions. There must be an equivalence of the USD/EUR 

bitcoin exchange rate that approximates the U.S. dollar price of a Euro in the bitcoin markets 

to the corresponding FX spot. As plotted in panel (c) of Figure 2, the series of the BX rate 

is intertwining with the series of the FX spot for the most time. The triangular arbitrage 

returns as the excess values between the BX rate and the FX spot present a mean-reverting 

feature. These facts all suggest that the BX rate and the FX spot are in equilibrium. 

 

Hypothesis 4.1 There exists a long-run equilibrium between the USD/EUR bitcoin 

exchange rate and the corresponding FX spot rate.  
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4.1.1 OLS approach. The common approach to verify the long run correlationship 

between the BX rate and the FX spot is to use an OLS regression on the two series: 

𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑒𝑒𝑡𝑡 + 𝜀𝜀𝑡𝑡. (21) 

The law of one price requires the coefficients 𝛽𝛽0 = 0 and 𝛽𝛽1 = 1. Coefficient 𝛽𝛽0 is 

interpreted as a risk premium. A constant risk premium does not violate the one price 

assumption. There is a problem with this method: if regressors are unit-root processes, this 

regression is dismissed as ‘spurious regression’, leading to ineffective t- and F-statistics and 

biasedly estimated coefficients (Granger & Newbold, 1974). On the other hand, if the two 

unit-root processes are cointegrated of order (1, 1), an OLS regression yields a ‘super-

consistent’ estimator of the co-integrating parameters 𝛽𝛽0 and 𝛽𝛽1 (Enders, 2014, p. 361). 

The bitcoin exchange rate and the FX spot correspond to the case. Both series possess 

a unit-root. Nan & Kaizoji (2019b) find that the USD/EUR bitcoin exchange rate is 

cointegrated with the FX spot, futures, and short-period forwards rates over the period that 

falls into the second regime. Nevertheless, the OLS regression provides a fast and easy way 

to see the estimated coefficients.  

4.1.1.1 Results. The estimated coefficients using OLS regression are reported in 

Table 10. The restrictions 𝛽𝛽0 = 0 and 𝛽𝛽1 = 1 appear to hold in Regime 2 and 3, but do not 

hold in Regime 1, which indicates the law of one price started to apply to the bitcoin markets 

only after Regime 1. No inference to the estimates can be conducted due to spurious 

regression. If the two series are cointegrated, these estimated values should be consistent and 

give the value of the cointegrating vector that makes the BX rate and the FX spot in the long-

run equilibrium. A two-step methodology for testing cointegration is illustrated in the next 

section. 
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Table 10. The estimation of the long run equilibrium between the bitcoin exchange rate 

and the spot exchange rate using OLS regression.  

Estimates Regime 1 (137 obvs.) Regime 2 (928 obvs.) Regime 3 (535 obvs.) 

�̂�𝛽0  0.23 
(0.16) 

-0.00 
(0.00) 

-0.00 
(0.00) 

�̂�𝛽1  0.21 
(0.52) 

1.00 
(0.00) 

1.00 
(0.01) 

Note: the standard errors are given in the parentheses.  

4.1.2 Cointegration approach. Cointegration theory (Granger, 1986) says that for 

two series both integrated of order one, denoted 𝐼𝐼(1), if there exists a linear combination of 

them to become an 𝐼𝐼(0) process, the two series are said to be cointegrated of order (1, 1), 

denoted 𝐵𝐵𝐼𝐼(1, 1) (Enders, 2014). 

Generally, let 𝒚𝒚𝑡𝑡 be a 𝑏𝑏 × 1 vector of time series that are all 𝐼𝐼(1) and 𝜷𝜷 be an 𝑏𝑏 × 1 

vector. If 𝜷𝜷 imposes the linear restriction  

𝜷𝜷′𝒚𝒚𝑡𝑡 = 0 (22) 

then 𝒚𝒚𝑡𝑡 is said to be in equilibrium; a condition for this is defined as co-integration. Vector 

𝜷𝜷 is then called the co-integrating vector. Most of the time, 𝒚𝒚𝑡𝑡 is not in equilibrium. Let 

𝑧𝑧𝑡𝑡 = 𝜷𝜷′𝒚𝒚𝑡𝑡 (23) 

which is a stationary process, and call quantity 𝑧𝑧𝑡𝑡 the equilibrium error (Granger, 1986). 

Let 𝒚𝒚𝑡𝑡 = (1,𝑇𝑇𝑒𝑒𝑡𝑡, 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡)′ and 𝜷𝜷 = (𝛽𝛽0,𝛽𝛽1,𝛽𝛽2)′ . The presence of co-integration 

indicates that there exists a vector 𝜷𝜷 in which 𝛽𝛽2 is normalized to minus unity produces 

𝜷𝜷′𝒚𝒚𝑡𝑡 = (𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑒𝑒𝑡𝑡 − 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡) = 0 (24) 

Rewriting (23), we have 

𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑒𝑒𝑡𝑡 (25) 

which is equivalent to (21). 

Engle & Granger (1987) propose a two-step methodology to perform co-integration 

analysis: First, OLS regression is used to produce the “super consistent” coefficients of the 
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co-integrating vector like what we have done in section 4.1.1, then the equilibrium error 

formed by (23) for stationarity is tested. However, the methodology is posited on a lack of 

accuracy, as errors will be accumulated through the two-step procedure and there are no 

statistics for directly testing for co-integration. 

Johansen (1988) proposes a statistical approach to test the hypothesis of co-

integration among nonstationary variables, and appropriate statistics are derived from the 

maximum likelihood estimation involved.  

We follow the notation that Johansen and Juselius use to illustrate the procedure. 

Consider a vector autoregressive model (VAR) that treats all variables as endogenous: 

𝐻𝐻0:𝒚𝒚𝑡𝑡 = 𝝁𝝁 + 𝚷𝚷1𝒚𝒚𝑡𝑡−1 + ⋯+ 𝚷𝚷𝑘𝑘𝒚𝒚𝑡𝑡−𝑘𝑘 + 𝜺𝜺𝑡𝑡 (26) 

where 𝒚𝒚𝑡𝑡 denotes a p-dimensional vector of economic variables, 𝝁𝝁 denotes a constant term 

and 𝜺𝜺𝑡𝑡 denotes a p-dimensional vector of error terms with an i.i.d. Gaussian distribution. The 

𝑝𝑝 × 𝑝𝑝 matrices 𝚷𝚷1, …𝚷𝚷𝑘𝑘 are coefficients for k-lags of 𝒚𝒚𝑡𝑡 and 𝑏𝑏 = 1, … ,𝑇𝑇. The unrestricted 

VAR model has 𝑇𝑇𝑝𝑝 observations and 𝑝𝑝 + 𝑘𝑘𝑝𝑝2 + 𝑝𝑝(𝑝𝑝 + 1)/2 parameters (here, 𝑝𝑝(𝑝𝑝 + 1)/2 

comes from the symmetric variance-covariance matrix). The null hypothesis, denoted 𝐻𝐻0, 

assumes absence of co-integration among the variables in vector 𝒚𝒚𝑡𝑡. 

Add and subtract 𝚷𝚷𝑘𝑘𝒚𝒚𝑡𝑡−𝑘𝑘+1 to the right-hand side of (25) to obtain 

𝒚𝒚𝑡𝑡 = 𝝁𝝁 + 𝚷𝚷1𝒚𝒚𝑡𝑡−1 + ⋯+ (𝚷𝚷𝑘𝑘−1 + 𝚷𝚷𝑘𝑘)𝒚𝒚𝑡𝑡−𝑘𝑘+1 − 𝚷𝚷𝑘𝑘∆𝒚𝒚𝑡𝑡−𝑘𝑘+1 + 𝜺𝜺𝑡𝑡 (27) 

Then, add and subtract (𝚷𝚷𝑘𝑘−1 + 𝚷𝚷𝑘𝑘)𝒚𝒚𝑡𝑡−𝑘𝑘+2 and continue in this fashion to obtain 

𝒚𝒚𝑡𝑡 = 𝝁𝝁 + (𝚷𝚷1 + ⋯+ 𝚷𝚷k)𝒚𝒚𝑡𝑡−1 − (𝚷𝚷2 + ⋯+ 𝚷𝚷k)∆𝒚𝒚𝑡𝑡−1 −⋯− 𝚷𝚷𝑘𝑘∆𝒚𝒚𝑡𝑡−𝑘𝑘+1 + 𝜺𝜺𝑡𝑡 (28) 

Next, subtract 𝒚𝒚𝑡𝑡−1 from both sides of the equation above and rewrite it as 

∆𝒚𝒚𝑡𝑡 = 𝝁𝝁 + 𝚷𝚷𝒚𝒚𝑡𝑡−1 + 𝚪𝚪1∆𝒚𝒚𝑡𝑡−1 … + 𝚪𝚪k−1∆𝒚𝒚𝑡𝑡−𝑘𝑘+1 + 𝜺𝜺𝑡𝑡 (29) 

where 

∆𝒚𝒚𝑡𝑡 = 𝒚𝒚𝑡𝑡 − 𝒚𝒚𝑡𝑡−1 
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𝚪𝚪k−1 = −𝚷𝚷𝑘𝑘 

𝚪𝚪i = −(𝚷𝚷𝑖𝑖+1 + ⋯+ 𝚷𝚷𝑘𝑘), (𝑏𝑏 = 1, … ,𝑘𝑘 − 2) 

and 

𝚷𝚷 = (𝚷𝚷1 + ⋯+ 𝚷𝚷k − 𝐈𝐈) 

At first glance, equation (29) appears to be a first-order differenced VAR model 

except for the term 𝚷𝚷𝒚𝒚𝑡𝑡−1, or it might possibly be thought to be a vector version of the ADF 

test. However, neither of these impressions is actually true. The key point is that the 

coefficient matrix 𝚷𝚷 is of special interest—the information about co-integration.  

The key feature to note is the rank of the p-dimensional coefficient matrix 𝚷𝚷, which is also 

called the transitory impact matrix. 

There are three cases related to the rank of this matrix:  

• Case (I): 𝑟𝑟𝑎𝑎𝑏𝑏𝑘𝑘(𝚷𝚷) = 𝑝𝑝 , or matrix 𝚷𝚷 has full rank, indicating that all variables in 

vector 𝒚𝒚𝑡𝑡 are stationary; since there are 𝑝𝑝 linear restrictions on 𝑝𝑝 variables, 𝚷𝚷𝒚𝒚𝑡𝑡−1 

can only be stationary so that (29) holds. The model in (26) is appropriate, as all 

variables are stationary. 

• Case (II): 𝑟𝑟𝑎𝑎𝑏𝑏𝑘𝑘(𝚷𝚷) = 0 or matrix 𝚷𝚷 is null, suggesting that all 𝑝𝑝 variables are non-

stationary and there is no linear restriction on 𝒚𝒚𝑡𝑡−1 to make it stationary, i.e. there is 

no co-integration among the variables in vector 𝒚𝒚𝑡𝑡. Equation (29) becomes a first-

order differenced VAR with nonstationary variables that are all 𝐼𝐼(1). 

• Case (III): rank(𝚷𝚷) = 𝑟𝑟  , where 𝑟𝑟 < 𝑝𝑝 , indicates that 𝑟𝑟  restrictions could make 

𝚷𝚷𝒚𝒚𝑡𝑡−1 stationary; hence, the rank of matrix 𝚷𝚷 is equal to the number of distinct co-

integrating vectors. The term 𝚷𝚷𝒚𝒚𝑡𝑡−1 becomes the error-correcting term and (29) is a 

vector error correcting model (VECM). 

In linear algebra, the rank of a matrix is equal to the number of nonzero characteristic 

roots; Eigenvalues are used solving this problem. Johansen, however, designs the specific 
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eigenvalues to be non-negative and real and to represent linear combinations of the data that 

have maximum canonical correlations. Based on maximum likelihood estimation, his two 

likelihood ratio test statistics—Q-statistics—are: 

(i) The trace statistic (denoted 𝑄𝑄𝑡𝑡𝑠𝑠𝑎𝑎𝑡𝑡𝑒𝑒): 

−2 ln(𝑄𝑄;𝐻𝐻1|𝐻𝐻0) = −𝑇𝑇 � ln (1 − �̂�𝜆𝑖𝑖)
𝑝𝑝

𝑖𝑖=𝑠𝑠+1

 (30) 

which tests for whether the rank of matrix 𝚷𝚷 is equal to 𝑟𝑟 , where 𝑟𝑟 < 𝑝𝑝 . The quantity 

−2 ln(∙)  is the logarithmic likelihood ratio and 𝐻𝐻1|𝐻𝐻0  denotes that the statistic is for 

hypothesis 𝐻𝐻1 in 𝐻𝐻0, as 𝐻𝐻0 is a special case of 𝐻𝐻1 when 𝑟𝑟 = 𝑝𝑝 as described in Case (I). �̂�𝜆𝑖𝑖 

(𝑏𝑏 = 1, … ,𝑝𝑝 ) is the set of estimated eigenvalues, where �̂�𝜆𝑖𝑖 ∈ ℝ and �̂�𝜆1 > ⋯ > �̂�𝜆𝑝𝑝 ≥ 0. The 

condition that 𝑟𝑟𝑎𝑎𝑏𝑏𝑘𝑘(𝚷𝚷) = 𝑟𝑟 is equivalent to the number of non-zero �̂�𝜆𝑖𝑖 being 𝑟𝑟; hence, the 

statistic tests whether the summation of the remaining (𝑝𝑝 − 𝑟𝑟) engenvalues, �̂�𝜆𝑠𝑠+1, … , �̂�𝜆𝑝𝑝, is 

equal to zero. When the value of �̂�𝜆𝑠𝑠+1 is very close to zero, ln (1 − �̂�𝜆𝑠𝑠+1) is also close to 

zero, so that −𝑇𝑇∑ ln (1 − �̂�𝜆𝑖𝑖)
𝑝𝑝
𝑖𝑖=𝑠𝑠+1  is close to zero; otherwise, the value of  

−𝑇𝑇∑ ln (1 − �̂�𝜆𝑖𝑖)
𝑝𝑝
𝑖𝑖=𝑠𝑠+1  will be negative. 

(ii) The maximum eigenvalue statistic (denoted 𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚): 

−2 ln(𝑄𝑄; 𝑟𝑟|𝑟𝑟 + 1) = −𝑇𝑇ln (1 − �̂�𝜆𝑠𝑠+1) (31) 

which examines whether the 𝑟𝑟-th eigenvalue is nonzero relative to the alternative that the 

(𝑟𝑟 + 1)-th eigenvalue is nonzero. For instance, we test the absence of co-integration, or 𝑟𝑟 =

0, null hypothesis against the alternative hypothesis positing the presence of an independent 

nonzero eigenvalue, i.e. �̂�𝜆1, the largest eigenvalue is not equal to zero, or 𝑟𝑟 = 1. If the value 

of �̂�𝜆1 is significantly different from zero, the value of −𝑇𝑇ln (1 − �̂�𝜆𝑠𝑠+1) is negative and its 

absolute value should be greater than a given critical value, suggesting rejection of the null 
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hypothesis. Hence, we can say that we reject the null of 𝑟𝑟 = 0 and tend toward accepting the 

alternative of 𝑟𝑟 = 1 at some significance level, for instance 5%. 

4.1.2.1 Results. Table 11 reports the results of lag selection, the Johansen tests, and 

the model adequacy tests. For lag selections, the procedure begins by testing an unrestricted 

VAR model using data in level. The lag length is first suggested by the AIC and the final 

prediction error (FPE) criteria as they prefer to incorporate more lags so that more 

information is included in the autoregressive terms. The portmanteau statistic is used for 

testing the absence of up to the order 16 serially correlated disturbance of (26). The time-

series vector includes three entries: 𝒚𝒚𝑡𝑡 = (1,𝑇𝑇𝑒𝑒𝑡𝑡, 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡)′. The AIC and FPE criteria have 

identical results: suggesting that 1, 3, and 1 lag(s) should be incorporated in the unrestricted 

VAR models of Regime 1-3, respectively. The Portmanteau-test is suggestive of the 

adequacy of the three VAR models.  

Table 11. The results of lag selection, the Johansen tests, and the model adequacy 
diagnostics  
 𝒚𝒚𝑡𝑡 = (1,𝑇𝑇𝑒𝑒𝑡𝑡 ,𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡)′  
 Regime 1 (137 obvs.) Regime 2 (928 obvs.) Regime 3 (535 obvs.) 
𝐿𝐿𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑎𝑎𝑠𝑠   1 3 1 
𝑃𝑃𝑣𝑣𝑎𝑎𝑠𝑠(16)  64.86 57.61 55.21 
𝐿𝐿𝑎𝑎𝑎𝑎𝑙𝑙𝑗𝑗𝑗𝑗ℎ  2 3 2 
𝑄𝑄𝑡𝑡𝑠𝑠𝑎𝑎𝑡𝑡𝑒𝑒(𝐻𝐻0: 𝑟𝑟 = 0)  72.94*** 120.91*** 225.66*** 
𝑄𝑄𝑡𝑡𝑠𝑠𝑎𝑎𝑡𝑡𝑒𝑒(𝐻𝐻0: 𝑟𝑟 ≤ 1)  9.22* 6.10 3.24 
𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚(𝐻𝐻0: 𝑟𝑟 = 0)  63.72*** 114.81*** 222.42*** 
𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚(𝐻𝐻0: 𝑟𝑟 = 1)  9.22* 6.10 3.24 
�̂�𝛽0  0.221 -0.000 -0.001 
�̂�𝛽1  0.258 1.000 1.002 
𝑃𝑃𝑗𝑗𝑗𝑗ℎ(16)  62.85 57.09 52.61 
Note: 𝐿𝐿𝑎𝑎𝑎𝑎𝑙𝑙𝑣𝑣𝑎𝑎𝑠𝑠  denotes the lag length suggested by the AIC and FPE criteria using the unrestricted VAR 

model with the level series. 𝑃𝑃𝑣𝑣𝑎𝑎𝑠𝑠(16) denotes the Portmanteau-statistic testing on 16 lags of the disturbances 

the VAR model for serial autocorrelation. 𝑄𝑄𝑡𝑡𝑠𝑠𝑎𝑎𝑡𝑡𝑒𝑒  and 𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚 statistics are Johansen’s statistics testing for the 

number of nonzero eigenvalues and the marginal nonzero eigenvalue, respectively; the null hypothesis is 

listed in the parentheses. 𝛽𝛽0 and 𝛽𝛽1 are the entries in the cointegrating vector in (24). 𝑃𝑃𝑗𝑗𝑗𝑗ℎ(16) denotes the 

Portmanteau-statistic for the serially correlated disturbances of the Johansen test.  

*, **, and *** significant at 10%, 5%, and 1%, respectively. 
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The results of the Johansen tests for Regime 1 suggest the existence of one 

cointegrating vector for 𝒚𝒚𝑡𝑡 . Both 𝑄𝑄𝑡𝑡𝑠𝑠𝑎𝑎𝑡𝑡𝑒𝑒  and 𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚  statistics reject the null hypothesis of 

𝑟𝑟𝑎𝑎𝑏𝑏𝑘𝑘(𝚷𝚷) = 𝑟𝑟 = 0, i.e., the absence of the cointegrating vector at the 1% significance level. 

The inferences on 𝑟𝑟 ≤ 1 are significant at 10%, indicating, by 10% chances, 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 and  𝑇𝑇𝑒𝑒𝑡𝑡 

are both stationary in Regime 1. 𝑃𝑃𝑗𝑗𝑗𝑗ℎ(16) is suggestive of adequacy of the model.  

The estimated �̂�𝛽0 and �̂�𝛽1 give the specification of 

0.221 + 0.258𝑇𝑇𝑒𝑒𝑡𝑡 − 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 = 0 

or 

 

Equation (32) suggests the linear specification of the long-run equilibrium between 

𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 and  𝑇𝑇𝑒𝑒𝑡𝑡 in Regime 1. The result raises the implication of ‘different prices’ between 

bitcoin markets and the FX market. As shown in panel (a) of Figure 9, the equivalence of 

the two logarithmic prices occurs at 0.2978, indicating the two prices are equivalent at  

𝑒𝑒0.2978 = 1.347. When the USD/EUR rate is greater than 1.347, 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 < 𝑇𝑇𝑒𝑒𝑡𝑡, indicating 

depreciated Euros in bitcoin markets, whereas when the USD/EUR rate is less than 1.347, 

𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 > 𝑇𝑇𝑒𝑒𝑡𝑡, indicating appreciated Euros in bitcoin markets. 

This may be because that the value of a Euro kept appreciating over the period of 

Regime 1 (see panel (b) of Figure 9) so that European investors have more propensity to buy 

bitcoins than the Americans. Also, the bitcoin markets were not mature to response the 

information from the FX markets, so the violation of the law of one price did not be corrected 

by arbitrage. The result is coincide with Dong & Dong’s (2015) findings that the persistent 

discrepancies may result from the buy-and-hold strategy that performed by the investors 

during the period of Regime 1.  

𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 = 0.221 + 0.258𝑇𝑇𝑒𝑒𝑡𝑡. (32) 
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Figure 9. The plots of (a) the linear specification of the equilibrium between the USD/EUR 

bitcoin exchange rate and the FX spot and (b) the USD/EUR FX spot series in Regime 1.  

Note: All rates are in natural logarithm.  

 

For Regime 2, one cointegrating vector is found. The estimated �̂�𝛽0 and �̂�𝛽1 give the 

specification of 

0 + 𝑇𝑇𝑒𝑒𝑡𝑡 − 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 = 0 

or 

𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 = 𝑇𝑇𝑒𝑒𝑡𝑡 

indicating that the law of one price, the USD/EUR rate, is held in both the bitcoin markets 

and the FX spot markets. The 𝑃𝑃𝑗𝑗𝑗𝑗ℎ(16) statistic is suggestive of adequacy.  

For Regime 3, the Johansen test suggests one significant cointegrating vector. The 

estimated �̂�𝛽0 and �̂�𝛽1 give the specification of 

−0.001 + 1.002𝑇𝑇𝑒𝑒𝑡𝑡 − 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 = 0 

or 

𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 = 1.002𝑇𝑇𝑒𝑒𝑡𝑡 − 0.001. 
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The 𝑃𝑃𝑗𝑗𝑗𝑗ℎ(16) statistic is suggestive of adequacy. 

 

4.2 Market efficiency in the semi-strong form and the unbiased estimator  

The primary role of a bitcoin market is to provide an online “gathering” of participants for 

the purchase and sale of provisions of bitcoin. Because of the ease of bitcoin transferring 

and low costs, bitcoins can move from market to market, so different currencies are 

connected by bitcoins. For bitcoin markets, foreign exchange rates serve as a piece of 

publicly available information. However, if bitcoin markets are not so efficient such that the 

information of the foreign exchange rate is not reflected by the prices of bitcoin, a well-

informed speculator will arbitrage on the price discrepancy.  

For example, a bitcoin is traded for $10,000 in an American bitcoin market, and the 

USD/EUR rate is quoted at 1.18. Assume bitcoin’s attractiveness is the most significant 

factor to its price formation, and European investors are less interested in buying bitcoins, 

so they would only like to spend €8,000 for a bitcoin. As such, our proposed bitcoin 

exchange rate is at 10000/8000=1.25, indicating appreciated Euros in the bitcoin market. A 

shrewd speculator will use, say, €80,000 to buy 10 bitcoins in the European bitcoin market, 

and trade the 10 bitcoins in the American market for $100,000, and then exchange $100,000 

into about €84746 at 1.18 USD/EUR in the FX market. The return is about (84746-

80000)/80000=5.9%. Before long, the arbitrage will result in the appreciation of bitcoin in 

the European market. This example illustrates that an efficient market should also include 

publicly available information into prices. 

The semi-strong form of market efficiency emphasizes that prices reflect publicly 

available information, so the fundamental analysis is useless for the current price (Fama, 

1970). Our semi-strong form test is presented by  
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𝐸𝐸(𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡|Φ𝑡𝑡−1) = 𝑇𝑇𝑒𝑒𝑡𝑡 (33) 

where Φ𝑡𝑡−1  is one-period-ahead publicly available information from both the FX and 

bitcoin markets. It says that the current expected bitcoin exchange rate conditioned to the 

historical information set, Φ𝑡𝑡−1, is equal to the current FX spot rate. 

The excess market value between the bitcoin and FX exchange rates, denoted 𝑒𝑒𝑡𝑡, is 

expressed by 

𝑒𝑒𝑡𝑡 = 𝐸𝐸(𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡|Φ𝑡𝑡−1) − 𝑇𝑇𝑒𝑒𝑡𝑡. (34) 

Then, the conditional expectation of the excess market value has a zero mean: 

𝐸𝐸(𝑒𝑒𝑡𝑡|Φ𝑡𝑡−1) = 𝐸𝐸[𝐸𝐸(𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡|Φ𝑡𝑡−1)|Φ𝑡𝑡−1] − 𝐸𝐸(𝑇𝑇𝑒𝑒𝑡𝑡|Φ𝑡𝑡−1)

= 𝐸𝐸(𝑇𝑇𝑒𝑒𝑡𝑡|Φ𝑡𝑡−1) − 𝐸𝐸(𝑇𝑇𝑒𝑒𝑡𝑡|Φ𝑡𝑡−1) = 0 
(35) 

which says that the sequence {𝑒𝑒𝑡𝑡} is a ‘fair game’ with respect to information sequence 

{Φ𝑡𝑡−1}, or, equivalently, {𝑒𝑒𝑡𝑡} is a martingale.  

Hakkio & Rush (1989) propose the joint equilibrium conditions: (i) no risk premium 

and (ii) the rational use of available information , the equivalence to the constraints 𝛽𝛽0 = 0 

and 𝛽𝛽1 = 1 in (21). 

In presence of cointegration, these restrictions ( 𝛽𝛽0 = 0  and 𝛽𝛽1 = 1 ) on the 

cointegrating vector give 

𝑧𝑧𝑡𝑡 = 𝜷𝜷′𝒚𝒚𝑡𝑡 = (𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑒𝑒𝑡𝑡 − 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡) = 𝑇𝑇𝑒𝑒𝑡𝑡 − 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡  (36) 

where 𝑧𝑧𝑡𝑡 denotes the equilibrium error in (23). 

Then 

𝐸𝐸(𝑧𝑧𝑡𝑡|Φ𝑡𝑡−1) = 0 (37) 

so that the equilibrium error sequence {𝑧𝑧𝑡𝑡} is a fair game as well. Note that 𝐸𝐸(𝑧𝑧𝑡𝑡|Φ𝑡𝑡−1) =

𝐸𝐸(−𝑒𝑒𝑡𝑡|Φ𝑡𝑡−1).  
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In this way, the semi-strong test for market efficiency is connected with the 

cointegration test; the restrictions 𝛽𝛽0 = 0 and 𝛽𝛽1 = 1 are saying that the current FX spot is 

an unbiased estimator to the current bitcoin exchange rate, conditioned to the historical and 

publicly available information set Φ𝑡𝑡−1. 

 

Hypothesis 4.2 the current FX spot is an unbiased estimator to the current bitcoin 

exchange rate, conditioned to the historical and publicly available information set Φ𝑡𝑡−1. 

4.2.1 Methodology. In the Johansen test, matrix 𝚷𝚷 can be decomposed into vectors 

𝒂𝒂 and 𝜷𝜷. During the process of identifying the rank of matrix 𝚷𝚷, the eigenvalues �̂�𝜆1 > ⋯ >

�̂�𝜆𝑝𝑝 and the relative normalized eigenvectors 𝒗𝒗�1, … ,𝒗𝒗�𝑝𝑝 are estimated to represent the linear 

combinations of the data that have maximum canonical correlations. That 𝑟𝑟𝑎𝑎𝑏𝑏𝑘𝑘(𝚷𝚷) = 𝑟𝑟, 

where 0 < 𝑟𝑟 < 𝑝𝑝, indicates that co-integration is present and that the number of independent 

co-integrating vectors is equal to 𝑟𝑟. If we choose matrix 𝜷𝜷� as 

𝜷𝜷� = (𝒗𝒗�1, … ,𝒗𝒗�𝑠𝑠)′ (38) 

and let 𝚷𝚷 = 𝛂𝛂𝛃𝛃′, then the estimated matrix 𝛂𝛂� is calculated by 𝚷𝚷�  and 𝜷𝜷�. Matrix 𝜷𝜷� gives the 

co-integrating vectors, since 𝜷𝜷� is chosen from the effective linear combinations of data that 

have maximum canonical correlations, indicative of long-run equilibrium; matrix 𝛂𝛂� gives 

the speed-of-adjustment coefficient, which we will discuss it in the next chapter.  

Thus, the hypothesis of cointegration is equivalent to 𝚷𝚷 having a reduced rank form and 

being able to be decomposed into 𝛂𝛂𝛃𝛃′. This situation is represented as 

𝐻𝐻1: 𝚷𝚷 = 𝛂𝛂𝛃𝛃′ (39) 
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where 𝛂𝛂 and 𝜷𝜷 have dimension of 𝑝𝑝 × 𝑟𝑟. The hypothesis 𝐻𝐻1, asserting the presence of co-

integration, can be tested towards 𝐻𝐻0 as shown in (30). The marginal eigenvalue test for �̂�𝜆𝑠𝑠 

against �̂�𝜆𝑠𝑠+1 is represented in (31). 

Similarly, with respect to the presence of co-integration expressed in 𝐻𝐻1 , linear 

restrictions can be placed on either 𝛂𝛂 or 𝜷𝜷 in the inference process. Following the fashion of 

𝚷𝚷 = 𝛂𝛂𝛃𝛃′, further decompositions can be performed as 𝜶𝜶 = 𝑨𝑨𝑨𝑨 and 𝜷𝜷 = 𝑯𝑯𝑯𝑯, with matrix 

dimensions 𝑨𝑨 (𝑝𝑝 × 𝑚𝑚) , 𝑨𝑨 (𝑚𝑚 × 𝑟𝑟) , 𝑯𝑯 (𝑝𝑝 × 𝑙𝑙)  and 𝑯𝑯 (𝑙𝑙 × 𝑟𝑟) , where 𝑟𝑟 ≤ 𝑙𝑙 ≤ 𝑝𝑝  and 𝑟𝑟 ≤

𝑚𝑚 ≤ 𝑝𝑝. Linear restrictions can be placed on parameters 𝜶𝜶 and 𝜷𝜷 by constraining matrices 𝑨𝑨 

and 𝑯𝑯. The restrictions reduce the parameters from 𝜶𝜶 (𝑝𝑝 × 𝑟𝑟) and 𝜷𝜷 (𝑝𝑝 × 𝑟𝑟) to 𝑨𝑨 (𝑚𝑚 × 𝑟𝑟) 

and 𝑯𝑯 (𝑙𝑙 × 𝑟𝑟). By constraining metrics 𝑯𝑯, we can place linear restrictions on 𝜷𝜷.  

Here, we describe the inference process:  

𝐻𝐻2: 𝜷𝜷 = 𝑯𝑯𝑯𝑯 (40) 

Note that 𝐻𝐻2 ⊂ 𝐻𝐻1  meaning the 𝐻𝐻2  hypothesis is a special case of 𝐻𝐻1 . The  𝐻𝐻0 

hypothesis, where matrix 𝚷𝚷 is unrestricted, is also a special case of 𝐻𝐻1 when 𝑟𝑟 = 𝑝𝑝.  

For 𝐻𝐻2, we solve the specific formula for eigenvalues �̂�𝜆2.1 > ⋯ > �̂�𝜆2.𝑠𝑠 and the normalized 

eigenvectors 𝒗𝒗�2.1, … ,𝒗𝒗�2.𝑠𝑠, where 𝑟𝑟 ≤ 𝑙𝑙 ≤ 𝑝𝑝. Choose 𝑯𝑯� = (𝒗𝒗�2.1, … ,𝒗𝒗�2.𝑠𝑠)′ and 𝜷𝜷� = 𝑯𝑯𝑯𝑯�  and 

find 𝛂𝛂� by solving 𝚷𝚷 = 𝛂𝛂𝛃𝛃′. The approximate likelihood ratio test of hypothesis 𝐻𝐻2 in 𝐻𝐻1 is 

given by 

−2 ln(𝑄𝑄;𝐻𝐻2|𝐻𝐻1) = 𝑇𝑇� ln {(1− �̂�𝜆2.𝑖𝑖)/(1 − �̂�𝜆𝑖𝑖)}
𝑠𝑠

𝑖𝑖=1

 (41) 

where �̂�𝜆𝑖𝑖, 𝑏𝑏 = 1, … , 𝑟𝑟 are eigenvalues under 𝐻𝐻1. The asymptotic distribution of this statistic 

is given by 𝜒𝜒2 with 𝑟𝑟(𝑝𝑝 − 𝑙𝑙) degrees of freedom (Johansen, 1991). 



 

 66 

In this thesis, the cointegrating vector is specified as 𝜷𝜷 = (𝛽𝛽0,𝛽𝛽1,𝛽𝛽2)′ where 𝛽𝛽2 is 

normalized to −1. The restriction 𝛽𝛽1 = 1 is equivalent to 𝛽𝛽1 = − 𝛽𝛽2. Hypothesis 𝐻𝐻2.1: �̂�𝛽1 =

−�̂�𝛽2 is realized by constraining 𝑯𝑯 as 

𝑯𝑯 = �
0 1
1 0
−1 0

�. (42) 

Hypothesis 𝐻𝐻2.2: �̂�𝛽0 = 0 is realized by constraining 𝑯𝑯 as 

𝑯𝑯 = �
0 0
1 0
0 1

�. (43) 

4.2.2 Results. The law of one price appear not to hold for Regime 1. The inferences 

on estimated 𝜷𝜷� are conducted for Regime 2 and 3. Table 12 reports the results. For 𝐻𝐻2.1 and 

𝐻𝐻2.2, the Q-statistics follow the 𝜒𝜒2 distribution with degrees of freedom of one. For 𝐻𝐻2.3, the 

asymptotic distribution of this statistic is given by 𝜒𝜒2 with 2 degrees of freedom. In Regime 

2, all three hypotheses 𝐻𝐻2.𝑖𝑖,  for 𝑏𝑏 = 1,2,3, are not rejected. These results indicate that the 

restrictions 𝛽𝛽0 = 0 and 𝛽𝛽1 = 1 hold for the period of Regime 2. For Regime 3, 𝛽𝛽0 = 0 or 

𝛽𝛽1 = 1 appear to hold individually, but the Q-statistic rejects 𝐻𝐻2.3 at 1%, indicating the two 

restrictions do not jointly hold. This may result from that when we restrict 𝛽𝛽1 = 1, �̂�𝛽0 =

0.0011 and when we restrict 𝛽𝛽0 = 0, �̂�𝛽1 = 0.9923.  

 

Table 12. Inferences on 𝜷𝜷� that is estimated from the Johansen tests over Regime 2 and 
Regime 3.   
 𝑯𝑯𝟏𝟏  𝑯𝑯𝟐𝟐.𝟏𝟏  𝑯𝑯𝟐𝟐.𝟐𝟐  𝑯𝑯𝟐𝟐.𝟑𝟑  
 𝚷𝚷 = 𝛂𝛂𝛃𝛃′  �̂�𝛽1 = −�̂�𝛽2  �̂�𝛽0  = 0  �̂�𝛽1 = −�̂�𝛽2 and �̂�𝛽0  = 0 
 Regime 2 

𝑄𝑄(𝐻𝐻2.𝑖𝑖|𝐻𝐻1)   0.01 0.22 1.48 

�̂�𝛽0  -0.000 0.000 0.000 0.000 

�̂�𝛽1  1.000 1.000 1.000 1.000 

�̂�𝛽2  -1.000 -1.000 -1.000 -1.000 
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 Regime 3 

𝑄𝑄(𝐻𝐻2.𝑖𝑖|𝐻𝐻1)   0.07 2.03 19.34*** 

�̂�𝛽0  -0.001 -0.001 0.000 0.00 

�̂�𝛽1  1.002 1.000 0.992 1.00 

�̂�𝛽2  -1.000 -1.000 -1.000 -1.00 

Note: 𝑄𝑄(𝐻𝐻2.𝑖𝑖|𝐻𝐻1) denotes the Q statistic for the likelihood ratio test of (41). The null hypotheses 𝐻𝐻2.𝑖𝑖, for 
𝑏𝑏 = 1, 2, 3, specified in row 2 of this table, is tested against the alternative hypothesis 𝐻𝐻1, the presence of 
one cointegrating vector. 𝜷𝜷� is normalized so that �̂�𝛽2 = −1.  
*** significant at 1%.  

 

In conclusion, the FX spot is an unbiased estimator to the BX rate over Regime 2 

and 3, but there exists a slight negative risk premium over Regime 3. Because of this 

unbiasedness, the bitcoin markets are considered to follow the semi-strong form efficient 

market hypothesis with respect to the FX spot market in the long run. 

4.3 Testing for covered interest parity 

Covered interest parity (CIP) is commonly used for testing market efficiency. The CIP posits 

that the covered (or the hedged) return from investment in a foreign currency should be equal 

to the return from investment in the domestic currency, regardless of the level of the two 

interest rates (Crowder, 1995): 

1 + 𝑏𝑏𝑠𝑠,𝑡𝑡

1 + 𝑏𝑏𝑓𝑓,𝑡𝑡
=
𝑖𝑖𝑡𝑡𝑚𝑚

𝑙𝑙𝑡𝑡
 (44) 

where 𝑏𝑏𝑠𝑠,𝑡𝑡 denotes the interest rate in the domestic currency, 𝑏𝑏𝑓𝑓,𝑡𝑡 denotes the interest rate in 

the foreign currency, 𝑙𝑙𝑡𝑡 denotes the current spot exchange rate, and 𝑖𝑖𝑡𝑡𝑚𝑚 denotes the forward 

foreign exchange rate with maturity horizon m. The CIP relation contains two conditions 

associated with market efficiency: (i) risk neutrality, and (ii) rational expectations, so that 

the FX forward rate is an unbiased predictor of the future FX spot rate (Kang, 2019), as 

given by 

𝐸𝐸𝑡𝑡(𝑙𝑙𝑡𝑡+𝑚𝑚) = 𝑖𝑖𝑡𝑡𝑚𝑚. (45) 
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Under these two assumptions, the CIP suggests a certain level of market efficiency, 

as violations of the CIP result in risk-free arbitrage opportunities to speculators. If these 

opportunities are outside the transaction-cost band, an efficient market will eliminate the 

deviations. 

Many studies have found evidence of CIP violations. However, the existence of 

profitable CIP deviations “shed no light on the empirical validity of the efficiency hypothesis” 

(Clinton, 1988), and only persistent profitable deviations violate the EMH. The arbitrage 

paradox states that the market is efficient, yet a short-run arbitrage opportunity is 

simultaneously created when investors may not have sufficient incentives to observe the 

market (Grossman & Stiglitz, 1980; Akram et al., 2008). Kang (2019) proposes that when 

the two assumptions do not hold, testing for the EMH may not be valid, i.e., rejection does 

not guarantee the violation of the EMH. Crowder (1995) argues that persistent riskless 

profits can be reconciled with market efficiency. 

 

Hypothesis 4.3 The bitcoin exchange rate of USD/EUR coincides with the covered 

interest rate parity. 

4.3.1 Methodology. The test for the CIP relation is based on daily data. The data 

consist of the USD/EUR bitcoin exchange rate, the one-month forward foreign exchange 

rate, and the one-month LIBOR ICE deposit rates for the U.S. dollar and Euro. To maintain 

the correct sequence of transactions, we use the bid prices of the deposit rates. Specifically, 

a speculator can either lend dollars at the domestic market or buy Euros at the FX market, 

and then lend Euros in the European market, simultaneously hedging its Euro position on 

the forward market (selling Euros forward).  

We take logarithm of equation (44) to obtain 
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log �1 +
𝑏𝑏𝑠𝑠,𝑡𝑡

12
� − log �1 +

𝑏𝑏𝑓𝑓,𝑡𝑡

12
� = log(𝑖𝑖𝑡𝑡𝑚𝑚) − log (𝑙𝑙𝑡𝑡). (46) 

where 𝑏𝑏𝑠𝑠,𝑡𝑡/12  denotes the one-month LIBOR ICE deposit rate for the U.S. dollar (the 

domestic) and 𝑏𝑏𝑓𝑓,𝑡𝑡/12 denotes the one-month LIBOR ICE deposit rate for the Euro (the 

foreign)1. 

1I thank professor Kaneko for helping me point out the mistake that I didn’t divide the annualized one-

month deposit rate by 12, which approximates the deposit rate for one month.  

The left-hand side of (46) refers to the interest differential, denoted 𝑏𝑏𝑑𝑑𝑡𝑡; the right-

hand side of (46) refers to the forward premium, denoted 𝑖𝑖𝑝𝑝𝑡𝑡. The forward-BX differential, 

denoted 𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒𝑡𝑡, is constructed using 𝑖𝑖𝑏𝑏_𝑇𝑇et − 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 (the series are in logarithm form). 

The CIP relation is then investigated as a cointegration relation using the Johansen test.  

4.3.2 Results. Figure 10 plots the three time-series of the interest differential, the FX 

forward premium, and the forward premium on the BX rate. The series of the interest 

differential and the forward premium present a similar pattern but are different in scales. The 

series forward rate on the BX rate behaves more like the triangular arbitrage series. The 

statistics of the ADF and KPSS tests suggest that the interest differential and forward 

premium contain unit roots, while the forward premium on the BX rate appears to be 

stationary.  

We first investigate the CIP relation in the FX market. The Johansen test rejects 

𝐻𝐻0: 𝑟𝑟 = 0 at the 1% significance level but does not reject 𝐻𝐻0: 𝑟𝑟 ≤ 1. Based on the estimated 

coefficients, the error-correction model (ECM) representation is given by 

∆𝑖𝑖𝑝𝑝𝑡𝑡 = −0.081(𝑖𝑖𝑝𝑝𝑡𝑡−1 − 1.057𝑏𝑏𝑑𝑑𝑡𝑡−1) + �𝛾𝛾1𝑖𝑖Δ𝑖𝑖𝑝𝑝𝑡𝑡−𝑖𝑖

7

𝑖𝑖=1

+ 𝜀𝜀1𝑡𝑡 

∆𝑏𝑏𝑑𝑑𝑡𝑡 = 0.001(𝑖𝑖𝑝𝑝𝑡𝑡−1 − 1.057𝑏𝑏𝑑𝑑𝑡𝑡−1) + �𝛾𝛾2𝑖𝑖Δ𝑏𝑏𝑑𝑑𝑡𝑡−𝑖𝑖

7

𝑖𝑖=1

+ 𝜀𝜀2𝑡𝑡 

(47) 

 

(48) 
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This model suggests that the long-run equilibrium relation is 𝑖𝑖𝑝𝑝𝑡𝑡−1 = 1.0057𝑏𝑏𝑑𝑑𝑡𝑡−1, 

so the CIP holds in the long run. In the short run, when a deviation from the equilibrium 

relation suggested by 𝑖𝑖𝑝𝑝𝑡𝑡−1 − 1.057𝑏𝑏𝑑𝑑𝑡𝑡−1 occurs one day before, the current change in the 

premium forward will decrease by 8.1% of the deviation and the current change in the 

interest differential will increases by 0.1% of the deviation, moving together to eliminate the 

discrepancy.  

 

 

Figure 10. Series plots: (a) interest differential between the one-month LIBOR deposit 

rates of US dollars and Euros, (b) forward premium, and (c) forward premium on the 

bitcoin exchange rate. 

 

We next investigate whether the CIP relation holds regarding the bitcoin exchange 

rate. The results suggest that the forward-BX differential is cointegrated with the interest 

differential over the Regime period. Over the Regime 2 period, two cointegrating vectors 

are found, indicating the two series are stationary.  

For Regime 3, the Johansen test gives 

∆𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒𝑡𝑡 = −0.995(𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒𝑡𝑡−1 − 2.096𝑏𝑏𝑑𝑑𝑡𝑡−1 + 0.001) + �𝛾𝛾1𝑖𝑖Δ𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒𝑡𝑡−𝑖𝑖

4

𝑖𝑖=1

+ 𝜀𝜀1𝑡𝑡 (49) 
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∆𝑏𝑏𝑑𝑑𝑡𝑡 = −0.000(𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒𝑡𝑡−1 − 2.096𝑏𝑏𝑑𝑑𝑡𝑡−1 + 0.001) + �𝛾𝛾2𝑖𝑖Δ𝑏𝑏𝑑𝑑𝑡𝑡−𝑖𝑖

4

𝑖𝑖=1

+ 𝜀𝜀2𝑡𝑡. 

The long-run equilibrium is represented by 𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒𝑡𝑡−1 = 2.096𝑏𝑏𝑑𝑑𝑡𝑡−1 − 0.001 . 

Deviations from the CIP relation are adjusted singly by the changes in forward premium on 

the BX rate: ∆𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒𝑡𝑡 decreases it by 99.5% of the discrepancy. The series of 𝑏𝑏𝑑𝑑𝑡𝑡 and 𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒𝑡𝑡 

are plotted in panels (a) and (b) of Figure 11, respectively. There are several spikes in the 

series of 𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒𝑡𝑡 during the Regime 3 period.  

 

 

Figure 11. The plots of the series over Regime 3: (a) the interest differential, (b) the 

forward premium on the BX rate, and (c) the forward premium on the BX rate omitting 5 

outliers whose absolute values are greater than 0.015.  

 

Consider removing the absolute values of 𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒𝑡𝑡  greater than 0.015 so that five 

outliers are omitted. The omitted 𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒𝑡𝑡 series, denoted 𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒_𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑡𝑡 , is plotted in panel 

(c) of Figure 11. Though the behavior of 𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒_𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑡𝑡 is still volatile, it presents a concave 

pattern, as does 𝑏𝑏𝑑𝑑𝑡𝑡. For 𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒_𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑡𝑡, the unit-root tests provide controversial results: The 

models with a trend term suggest stationarity, while the model with a constant suggests unit 

roots. This ambiguity indicates that 𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒_𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑡𝑡 may be either a difference-stationary (DS) 

series or a trend-stationary (TS) series. The estimated Johansen test gives 
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∆𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒𝑡𝑡 = −0.536(𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒𝑡𝑡−1 − 1.706𝑏𝑏𝑑𝑑𝑡𝑡−1) + �𝛾𝛾1𝑖𝑖Δ𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒𝑡𝑡−𝑖𝑖

6

𝑖𝑖=1

+ 𝜀𝜀1𝑡𝑡 

∆𝑏𝑏𝑑𝑑𝑡𝑡 = −0.000(𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒𝑡𝑡−1 − 1.706𝑏𝑏𝑑𝑑𝑡𝑡−1) + �𝛾𝛾2𝑖𝑖Δ𝑏𝑏𝑑𝑑𝑡𝑡−𝑖𝑖

6

𝑖𝑖=1

+ 𝜀𝜀2𝑡𝑡. 

(50) 

The model suggests a different long-run equilibrium relation 𝑖𝑖𝑝𝑝_𝑏𝑏𝑒𝑒𝑡𝑡−1 =

1.706𝑏𝑏𝑑𝑑𝑡𝑡−1 and a relatively slow adjustment process, as indicated by −0.536. 

 

4.4 An attractor  

In economic theories, an attractor is the long-run equilibrium value to which a stationary 

time series reverts. For a stationary series of {𝑦𝑦𝑡𝑡}, the Dickey & Fuller (DF) (1979) test gives 

the specification as 

𝑦𝑦𝑡𝑡 = 𝑎𝑎1𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡    [𝑏𝑏𝑟𝑟 ∆𝑦𝑦𝑡𝑡 = 𝛾𝛾𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡]  (51) 

where 𝑎𝑎1 = 1 + 𝛾𝛾. The conditions for stationarity require that the null hypothesis of 𝑎𝑎1 = 1 

is rejected in favor of the alternative hypothesis of −1 < 𝑎𝑎1 < 1. As such, series {𝑦𝑦𝑡𝑡} decays 

to the attractor 𝑦𝑦∗ = 0.  

The problem regarding this test is that the DF test, and even its augmented version, 

the ADF test, may give a biased estimate in the presence of nonlinearity. Pippenger & 

Goering (1993) and Balke & Fomby (1997) find that “tests for unit root have low power in 

the presence of asymmetric adjustment,” as cited in Enders (2014, p. 461). As we know, the 

series of the triangular arbitrage appears to be stationary; the Johansen tests suggest that the 

spot exchange rate is an unbiased estimator to the BX rate across the period of Regime 2 and 

Regime 3. The triangular arbitrage series, as the excess values between the log of the BX 

rate and the log of the FX spot, is expected to have an attractor of zero. However, if the 
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mean-reverting process is asymmetric, linear models like the ADF test and the Johansen test 

could fail to detect the attractor due to misspecification.  

 

Hypothesis 4.4 The adjustment of the triangular arbitrage series to the attractor is 

asymmetric. 

4.4.1 Methodology. First, the ADF test is conducted for unit roots; the model with 

proper length of lags is then selected, removing autocorrelation in disturbances. Rejecting 

the null indicates series stationarity. The residuals should pass the Ljung-Box test 

establishing no significant autocorrelation.  

For testing nonlinearity, the autocorrelation function (ACF) as used in linear models 

may be misleading.  

The regression error specification test (RESET) posits the null hypothesis of linearity 

against the general alternative of nonlinearity. From the best-fitting linear model (the ADF 

model), we extract the residual sequence, denoted {𝜀𝜀𝑡𝑡}, and the fitted values, denoted {𝑦𝑦�}. 

We then use 𝐻𝐻 = 4 to estimate the regression equation 

𝜀𝜀𝑡𝑡 = 𝛿𝛿𝑧𝑧𝑡𝑡 + �𝛼𝛼ℎ𝑦𝑦�𝑡𝑡ℎ
𝐻𝐻

ℎ=2

 (52) 

where 𝑧𝑧𝑡𝑡 is a vector contains the constant and the regressors used in the linear regression 

model. If the F-statistic for 𝛼𝛼2 = ⋯ = 𝛼𝛼𝐻𝐻 = 0 exceeds the critical value from the standard 

F-table, the null hypothesis of linearity is rejected in favor of the nonlinearity alternative 

(Enders, 2014, p. 415) 

The McLeod & Li (1983) test examines the autocorrelation existing in the squared 

disturbances from a linear regression. Here, the Ljung-Box statistic is used: 
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𝑄𝑄 = 𝑇𝑇(𝑇𝑇 + 2)�𝜌𝜌𝑖𝑖2/(𝑇𝑇 − 𝑏𝑏)
𝑛𝑛

𝑖𝑖=1

 (53) 

where 𝜌𝜌𝑖𝑖 denotes the coefficient of correlation between the squares of the estimated 

disturbances, �̂�𝑒𝑡𝑡2 and �̂�𝑒𝑡𝑡−𝑖𝑖2 .  

Enders & Granger (1998) generalized the DF test to a threshold autoregressive 

(TAR) model given by 

∆𝑦𝑦𝑡𝑡 = 𝐼𝐼𝑡𝑡𝛾𝛾1(𝑦𝑦𝑡𝑡−1 − 𝜏𝜏) + (1 − 𝐼𝐼𝑡𝑡)𝛾𝛾2(𝑦𝑦𝑡𝑡−1 − 𝜏𝜏) + 𝜀𝜀𝑡𝑡 

𝐼𝐼𝑡𝑡 = �1    𝑏𝑏𝑖𝑖  𝑦𝑦𝑡𝑡−1 ≥ 𝜏𝜏
0    𝑏𝑏𝑖𝑖  𝑦𝑦𝑡𝑡−1 < 𝜏𝜏 

(54) 

where 𝐼𝐼𝑡𝑡 is the indicator function.  

When 𝑦𝑦𝑡𝑡−1 = 𝜏𝜏 , ∆𝑦𝑦𝑡𝑡 = 0 ; if 𝑦𝑦𝑡𝑡−1 ≥ 𝜏𝜏 , ∆𝑦𝑦𝑡𝑡 = 𝛾𝛾1(𝑦𝑦𝑡𝑡−1 − 𝜏𝜏) ; if 𝑦𝑦𝑡𝑡−1 < 𝜏𝜏 , ∆𝑦𝑦𝑡𝑡 =

𝛾𝛾2(𝑦𝑦𝑡𝑡−1 − 𝜏𝜏). Parameter 𝜏𝜏 is the attractor since when 𝑦𝑦𝑡𝑡−1 = 𝜏𝜏, ∆𝑦𝑦𝑡𝑡 = 0. If 𝛾𝛾1 = 𝛾𝛾2 = 0, 

the model reduces to a random walk model. If −2 < 𝛾𝛾1 + 𝛾𝛾2 < 0, the process is stationary. 

Note the DF test is nested in this test when 𝛾𝛾1 = 𝛾𝛾2. Rejecting the null 𝛾𝛾1 = 𝛾𝛾2 = 0 indicates 

that there is an attractor. Enders (2014) provides the critical values for the F-statistics on 

𝛾𝛾1 = 𝛾𝛾2 = 0.  

 

4.4.2 Results. For the series of triangular arbitrage in the Regime 2 period, the best 

fitting ADF model is represented as 

∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡 = −0.383𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 − 0.232∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 − 0.106∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−2 + 𝜀𝜀𝑡𝑡 
  (0.04)                   (0.04)                   (0.03)       

AIC = −6601.81    BIC = −6582.49  

(55) 

The coefficient of 𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 has a t-statistic of -10.78, exceeding the 1% critical value 

provided by the ADF test; hence, the null hypothesis of a unit-root is rejected. The Q (20) 
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statistic of the Ljung-Box test is suggestive of no autocorrelation found in 20 lags of the 

residuals.  

The RESET test with 𝐻𝐻 = 4 has a p-value of 0.003, rejecting the null hypothesis of 

linearity at the 1% significance level. The Mcleod-Li test is supportive of nonlinearity: The 

Q (4) statistic has a value of 28.88, rejecting the null hypothesis of the absence of 

autocorrelation in the squared residuals.  

Chan (1993) proposes an approach to finding a consistent estimate of the threshold 

called grid searching. The general point is to consider the residual sum of squares (SSR) of 

a TAR model as a function of the threshold. For any possible values of 𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1, we estimate 

the TAR model in (54) until we find the one that has the smallest SSR value. To maintain 

sufficient samples in each subset, we set the trimming value equal to 15%. After trimming, 

there are 648 potential values of 𝜏𝜏 to estimate. As shown in Figure 12, when 𝜏𝜏∗ = 0.0001, 

the estimated TAR model has the minimum RSS (0.04).  

 

 
Figure 12. Plot of the RSS of the estimated TAR model on the potential values of 𝜏𝜏. The 

RSS has a minimum value of 0.04 at the 406th point, where 𝜏𝜏 = 0.0001, as indicated by 

the grey dashed line. 
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As  𝜏𝜏∗ = 0.0001, the estimated TAR model is represented as 

∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡 = −0.420𝐼𝐼𝑡𝑡(𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 − 0.0001) − 0.338(1 − 𝐼𝐼𝑡𝑡)(𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 − 0.0001)

− 0.232∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 − 0.107∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−2 + 𝜀𝜀𝑡𝑡 

AIC = −6601.51    BIC = −6577.36  

(56) 

Equation (56) shows that the long-run equilibrium value of 0.0001 is an attractor. 

When 𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 = 0.0001 , ∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡  decays to zero. The adjustment process appears to be 

asymmetric. If 𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 ≥ 0.0001 , ∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡  is equal to −0.420�𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡−1 − 0.0001� −

0.232∆𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡−1 − 0.107∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−2, indicating a faster adjustment process. When 𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 <

0.0001 , ∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡  is equal to −0.338(𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 − 0.0001) − 0.232∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 −

0.107∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−2, indicating a relatively slow adjustment process.  

The value of the F-statistic for 𝛾𝛾1 = 𝛾𝛾2 = 0 is 59.03; the 1% critical values for T=250 

reported by Enders are 8.14 for the TAR model with one lagged change and 8.35 for the 

model with four lagged changes, respectively. Since the null hypothesis of 𝛾𝛾1 = 𝛾𝛾2 = 0 is 

rejected at the 1% level, it can be concluded that there is an attractor equal to 0.0001. 

However, the AIC and BIC information criteria prefer the linear ADF model to the nonlinear 

TAR model. We then employ the test for the asymmetric adjustment, i.e., 𝛾𝛾1 = 𝛾𝛾2 using the 

F-statistic. The Dickey-Fuller test is nested in the TAR model; when 𝛾𝛾1 = 𝛾𝛾2 , it emerges. 

The F-statistic for the null hypothesis 𝛾𝛾1 = 𝛾𝛾2  is 1.70, with a p-value of 0.19. We next 

conduct the F-test for 𝛾𝛾1 = 𝛾𝛾2 on the ADF model with the attractor. The result suggests that 

the null hypothesis 𝛾𝛾1 = 𝛾𝛾2 cannot be rejected; the F-statistic is 2.13, with a p-value of 0.14. 

Hence, we can conclude the triangular arbitrage series (or the excess value between the BX 

and FX spot series) has an attractor equal to 0.0001; the adjustment around it is symmetric.  

The TAR model for Regime 3 is estimated as 
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∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡 = 0.0003 − 0.422𝐼𝐼𝑡𝑡�𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡−1 + 0.0017�

− 0.593(1 − 𝐼𝐼𝑡𝑡)�𝑟𝑟𝑡𝑡𝑎𝑎𝑡𝑡−1 + 0.0017� + �𝛼𝛼𝑖𝑖

4

𝑖𝑖=1

∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−𝑖𝑖 + 𝜀𝜀𝑡𝑡 

AIC = −5516.37    BIC = −5482.26  

(57) 

For Regime 3, we have 525 observations after omitting 5 outliners. The attractor is 

equal to −0.0017. The value of the F-statistic for 𝛾𝛾1 = 𝛾𝛾2 = 0 is 42.23, which is significant 

at the 1% level. 
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5 Modelling II: In the short run 

This chapter investigates the short-run dynamics of the bitcoin exchange rate, the 

foreign exchange rate, and the triangular arbitrage. 

5.1 Vector error correction model 

The Johansen test has an equivalent vector error correction model (VECM) representation. 

Specifically, in presence of co-integration, matrix 𝚷𝚷 can be decomposed into 𝜶𝜶𝜷𝜷′, where 𝜷𝜷 

is the cointegrating vector and 𝜶𝜶 is the speed-of-adjustment vector.  

Like the inference on 𝜷𝜷 which is introduced in section 4.2, we can conduct inference 

on 𝜶𝜶, or on both 𝜶𝜶 and 𝜷𝜷: 

𝐻𝐻3:𝜶𝜶 = 𝑨𝑨𝑨𝑨 

𝐻𝐻4: 𝜷𝜷 = 𝑯𝑯𝑯𝑯  𝑎𝑎𝑏𝑏𝑑𝑑 𝜶𝜶 = 𝑨𝑨𝑨𝑨 

(58) 

(59) 

The restrictions can be made by constraining on 𝑯𝑯 and 𝑨𝑨. 

5.1.1 Results. The VECM representations from the estimated Johansen tests are 

given by: 

(i) Regime 1 
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∆𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 = −1.106(𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−1 − 0.258𝑇𝑇𝑒𝑒𝑡𝑡−1 − 0.221) + �𝛾𝛾1𝑖𝑖Δ𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−𝑖𝑖

2

𝑖𝑖=1

+ 𝜀𝜀1𝑡𝑡 

∆𝑇𝑇𝑒𝑒𝑡𝑡 = 0.001(𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−1 − 0.258𝑇𝑇𝑒𝑒𝑡𝑡−1 − 0.221) + �𝛾𝛾2𝑖𝑖Δ𝑇𝑇𝑒𝑒𝑡𝑡−𝑖𝑖

2

𝑖𝑖=1

+ 𝜀𝜀2𝑡𝑡 

(60) 

 

(ii) Regime 2 

∆𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 = −0.380(𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−1 − 𝑇𝑇𝑒𝑒𝑡𝑡−1 + 0.001) + �𝛾𝛾1𝑖𝑖Δ𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−𝑖𝑖

3

𝑖𝑖=1

+ 𝜀𝜀1𝑡𝑡 

∆𝑇𝑇𝑒𝑒𝑡𝑡 = 0.005(𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−1 − 𝑇𝑇𝑒𝑒𝑡𝑡−1 + 0.001) + �𝛾𝛾2𝑖𝑖Δ𝑇𝑇𝑒𝑒𝑡𝑡−𝑖𝑖

3

𝑖𝑖=1

+ 𝜀𝜀2𝑡𝑡 

(61) 

 

(iii) Regime 3 

∆𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 = −1.070(𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−1 − 1.002𝑇𝑇𝑒𝑒𝑡𝑡−1 + 0.001) + �𝛾𝛾1𝑖𝑖Δ𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−𝑖𝑖

3

𝑖𝑖=1

+ 𝜀𝜀1𝑡𝑡 

∆𝑇𝑇𝑒𝑒𝑡𝑡 = −0.084(𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−1 − 1.002𝑇𝑇𝑒𝑒𝑡𝑡−1 + 0.001) + �𝛾𝛾2𝑖𝑖Δ𝑇𝑇𝑒𝑒𝑡𝑡−𝑖𝑖

3

𝑖𝑖=1

+ 𝜀𝜀2𝑡𝑡 

(62) 

Note that 𝜷𝜷′𝒚𝒚𝑡𝑡−1 = 0 is the long-run equilibrium relation and  𝜷𝜷′𝒚𝒚𝑡𝑡−1 represents the 

one-period-ahead deviation from the equilibrium value. Each entry of vector 𝜶𝜶 = (𝛼𝛼1,𝛼𝛼2)′ 

becomes the speed-of-adjustment parameter multiplying with the historical deviation 

𝜷𝜷′𝒚𝒚𝑡𝑡−1. 

As suggested by the estimated parameters in (60), for one-unit deviation from the 

equilibrium relation, the current change of 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡  appears to decrease 110.6% of the 

deviation, while the current change of 𝑇𝑇𝑒𝑒𝑡𝑡 appears to increase 0.1% of the deviation. The 

speed of adjustment for the BX rate is fairly rapid, even over responding by 10%. This result 

indicates that the bitcoin exchange rate tends to oscillate widely around the equilibrium value 

in Regime 1.  
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The equations in (61) report that the current change 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 appears to decrease by 

38% of the one-period-before deviation, while the current change of 𝑇𝑇𝑒𝑒𝑡𝑡 appears to increase 

by 0.5%. Together, the two current changes eliminate about 38.5% deviation within one day.  

Table 13. Inferences on 𝜶𝜶� and 𝜷𝜷� that is estimated from the Johansen tests over Regime 2 
and Regime 3.   
 𝑯𝑯𝟏𝟏  𝑯𝑯𝟑𝟑.𝟏𝟏  𝑯𝑯𝟑𝟑.𝟐𝟐  𝑯𝑯𝟒𝟒  
 𝚷𝚷 = 𝛂𝛂𝛃𝛃′  𝛼𝛼�1 = 0  𝛼𝛼�2  = 0  �̂�𝛽1 = −�̂�𝛽2 , �̂�𝛽0  = 0 , and 𝛼𝛼�2  =

0 
 Regime 2 

𝑄𝑄(𝐻𝐻𝑖𝑖|𝐻𝐻1)   79.44*** 0.03 1.56 

�̂�𝛽0  -0.000 -0.004 -0.000 0.000 

�̂�𝛽1  1.000 1.028 0.999 1.000 

�̂�𝛽2  -1.000 -1.000 -1.000 -1.000 
𝛼𝛼�1  -0.380 0.000 -0.384 -0.379 
𝛼𝛼�2  0.001 0.151 0.000 0.000 
 Regime 3 

𝑄𝑄(𝐻𝐻𝑖𝑖|𝐻𝐻1)   184.04*** 3.97** 22.47*** 

�̂�𝛽0  0.001 -0.004 0.002 0.000 

�̂�𝛽1  1.002 1.025 1.003 1.000 

�̂�𝛽2  -1.000 -1.000 -1.000 -1.000 
𝛼𝛼�1  -1.070 0.000 -0.992 -0.922 
𝛼𝛼�2  -0.084 0.253 0.000 0.000 

Note: 𝑄𝑄(𝐻𝐻𝑖𝑖|𝐻𝐻1) denotes the Q statistic for the likelihood ratio test in (41). The null hypotheses 𝐻𝐻𝑖𝑖 , for 𝑏𝑏 =
3.1, 3.2, 𝑏𝑏𝑟𝑟 4 specified in row 2 of this table, is tested against the alternative hypothesis 𝐻𝐻1, the presence of 
one cointegrating vector. 𝜷𝜷� is normalized so that �̂�𝛽2 = −1.  
** and *** significant at 5% and 1%, respectively.  

 

In the period of Regime 3, the speed-of-adjustment parameter for the BX rate is about 

-1.070, indicating the rate of decrease of 107% for one day; the change of 𝑇𝑇𝑒𝑒𝑡𝑡 also decreases 

by 8.4%. Totally, two changes response for 98.5% of the deviations.  

Table 13 reports the results of inference regarding 𝜶𝜶  and 𝜷𝜷 . For Regime 2, 

𝐻𝐻3.1: 𝛼𝛼�1 = 0  is rejected, whereas 𝐻𝐻3.2: 𝛼𝛼�2 = 0  and 𝐻𝐻4:𝛼𝛼�2  = 0, �̂�𝛽0  = 0 𝑎𝑎𝑏𝑏𝑑𝑑 �̂�𝛽1 = −�̂�𝛽2 

cannot be rejected, so that the FX spot rate is an unbiased estimator to the BX rate; only the 

BX series responds to the discrepancy, giving a -37.9% response to the one-period-before 
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equilibrium error. For regime 3, all hypotheses are rejected significantly, hence both 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 

and 𝑇𝑇𝑒𝑒𝑡𝑡 respond to the previous deviation, giving a -107% and -8.4% responses, respectively.  

Moreover, for Regime 2, only the BX series responds to the discrepancy from the 

long-run equilibrium relationship, while the FX spot series does not, a situation called weak 

exogeneity. As such, the spot series is weakly exogenous. Since the FX spot series is a 

random walk and weakly exogenous, 𝐸𝐸(𝑇𝑇𝑒𝑒𝑡𝑡|Φ𝑡𝑡−1
′ ) = 𝑇𝑇𝑒𝑒𝑡𝑡 . Hence, the conditional 

expectation of the excess value between 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡  and 𝑇𝑇𝑒𝑒𝑡𝑡  equal to zero: 

𝐸𝐸(𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 − 𝑇𝑇𝑒𝑒𝑡𝑡|Φ𝑡𝑡−1
′ ) = 𝑇𝑇𝑒𝑒𝑡𝑡 − 𝑇𝑇𝑒𝑒𝑡𝑡 = 0. This suggests that the short-run deviation can be 

considered a “fair game” regarding the historical and publicly available information set Φ𝑡𝑡−1
′ . 

 

5.2 Impulse response function 

The impulse response function (IRF) provides a way to trace the time path of the various 

shocks on the variables contained in a VAR system. The theory is based on the idea that a 

vector autoregression can be transformed to a vector moving average (VMA) and that the 

accumulated effects of two serially uncorrelated error terms can be calculated by this moving 

average representation. By plotting the IRF, the behavior of the BX and spot series in 

response to orthogonal shocks is depicted visually. When there is cointegration, the VAR 

model is misspecified due to not extracting the co-integrating terms from the one-period-

lagged autoregressive term. Hence, the appropriate approach is to augment the VAR model 

with a VECM term. 

The estimated Johansen model can be transformed into an VECM model, then 

represented in a VMA.  
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5.2.1 Results. The rows in Figure 13 show the IRF of each BX series and the FX 

spot series plotted with a 10-period horizon. The two shocks, 𝜀𝜀1𝑡𝑡 and 𝜀𝜀2𝑡𝑡, relate to the two 

equations in which 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 and 𝑇𝑇𝑒𝑒𝑡𝑡 as dependent variables regress on their previous lags, 

respectively. Note that the VAR model is transformed from the Johansen’s model so that the 

error-correction terms are also included, which means that it is not a pure unrestricted VAR 

model. In the left two graphs, the shocks come from 𝜀𝜀1𝑡𝑡, while in the right two graphs, the 

shocks come from 𝜀𝜀2𝑡𝑡. Either 𝜀𝜀1𝑡𝑡 and 𝜀𝜀2𝑡𝑡 is serially uncorrelated; however, the two may be 

serially correlated, so that their economic meanings are difficult to identify.  

 

 

 

Figure 13. Impulse responses of 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 and 𝑇𝑇𝑒𝑒𝑡𝑡 based on the Johansen tests (Row 1-3 

correspond to Regime 1-3, respectively). 
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In the period of Regime 1, given a one-standard-deviation bitcoin exchange rate 

shock to 𝜀𝜀1𝑡𝑡, the BX series increased immediately to above 0.06 at time zero, while the spot 

series had no response. This result suggests that 𝜀𝜀1𝑡𝑡 and 𝜀𝜀2𝑡𝑡 were not serially correlated at 

the time, and the sudden appreciation of Euros in bitcoin markets did not exert any influence 

on the FX market. 

Since regardless of whether the BX or spot series in level are unit root processes, all 

shocks should be permanently cumulated. The FX spot series reflected this feature. However, 

the BX series did not follow this rule; rather, it adjusted swiftly to eliminate the discrepancy 

from the long-run equilibrium relationship given by 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 = 0.221 + 0.258𝑇𝑇𝑒𝑒𝑡𝑡 . As 

indicated by the value of the speed-of-adjustment coefficient 𝛼𝛼�1 = −1.070, the BX series 

fell more than the quantity of the shock over two periods, causing overreaction. After three 

periods, it reverted to its before-shock position.  

When a one-standard-deviation FX spot shock was given to 𝜀𝜀2𝑡𝑡 , the FX series 

increased by approximately 0.004 at time zero; it then maintained its position at the new 

level. The reaction of 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 lags one period, and nothing happens initially, indicating the 

lack of correlation of the errors. After fluctuating for three periods, 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡  gradually 

returned to a new level. Note that the two levels of the BX and FX spot series did not 

converge, suggesting the change of the FX spot caused the two series were in new 

equilibrium given by 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 = 0.221 + 0.258𝑇𝑇𝑒𝑒𝑡𝑡. 

For Regime 2 and 3, the BX series and the FX spot are in a long-run equilibrium 

relationship of 1:1, so that the two series always came to the same level at the end. The two 

shocks, 𝜀𝜀1𝑡𝑡 and 𝜀𝜀2𝑡𝑡 , appear to be unidirectionally serially correlated, i.e., given a BX shock, 

both series increased at time zero, while only the FX spot series responded to the FX shock 

at time zero. The bitcoin markets seem to be less volatile during the Regime 2 and 3 period, 

because the one-standard-deviation BX shock caused 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 to increase by approximately 
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0.008 and 0.007, respectively. The BX series of Regime 2 presented a fairly slow adjustment 

process, taking more than eight periods for full convergence. In contrast, the BX series of 

Regime 3 completed its adjustment in one or two periods.  

By observing the behavior of the variables, we are able to establish the following:  

(i) The presence of cointegration makes the randomly-walked BX and FX spot series no 

longer walk randomly; instead, they always approach the level given by their long-term 

equilibrium relationship.  

(ii) In its short-run adjustment, the FX spot series always dominates the level or the 

equilibrium. Hence, the BX series has to change to compensate for the deviation caused by 

the shock.  

(iii) The absolute value of the speed-of-adjustment coefficient determines the periods 

required for finishing the error-correcting process. The BX series of the Regime that has the 

largest speed-of-adjustment coefficient (greater than one in quantity) overreacts to the shock, 

causing oscillation. The slowest reaction is from the BX series in the period of Regime 2, 

needing about seven periods. In the period of Regime 3, the BX series completes its error 

correction process within one period.  

5.3 Asymmetric adjustment 

The short-run adjustment process described by the VECM and the IRF gives a clear picture 

of how the BX and FX spot series behave in the presence of deviations. For instance, in 

Regime 2, the BX series responds by roughly 38% of the one-period-before discrepancy. 

This assumes that the adjustment is linear or is has the same speed over the period. This is 

not always the case. From the long view, the speed-of-adjustment at least depends on the 
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which regime; this result is suggestive of nonlinearity, as the speed-of-adjustment coefficient 

appears to be “time-varying.” 

The attractor model introduced in Section 4.4 also provides evidence of a nonlinear 

adjustment process: The change in the triangular arbitrage series presented different speeds 

when the one-period-before level series was lower or greater than the threshold value. The 

presence of asymmetric adjustment makes some linear models, such as the ADF and ARMA 

models, misspecified.  

Next, it is possible to let the adjustment depend on the change in the triangular 

arbitrage series. As we know, the BX series and the FX spot series are in a 1:1 relationship 

over the period from Regime 2 to Regime 3; the triangular arbitrage series becomes the 

equilibrium error. A previous positive change in the error series may exert a different 

influence on the current change, compared with a negative one. Specifically, a positive 

equilibrium error stands for the appreciation of Euros in the bitcoin market with respect to 

the FX market, beneficial to European investors; a negative equilibrium error is suggestive 

of an appreciation of dollars, beneficial to U.S. investors.   

 

Hypothesis 5.1 The triangular arbitrage series adjusts differently depending on 

whether it is increasing or decreasing. 

 

5.3.1 Methodology. Caner & Hansen (2001) extend Enders and Granger’s (1998) 

TAR model into the momentum-threshold autoregressive model (M-TAR): 

∆𝑦𝑦𝑡𝑡 = 𝐼𝐼𝑡𝑡𝛾𝛾1(𝑦𝑦𝑡𝑡−1 − 𝜏𝜏) + (1 − 𝐼𝐼𝑡𝑡)𝛾𝛾2(𝑦𝑦𝑡𝑡−1 − 𝜏𝜏) + �𝛽𝛽𝑖𝑖

𝑝𝑝

𝑖𝑖=1

∆𝑦𝑦𝑡𝑡−𝑖𝑖 + 𝜀𝜀𝑡𝑡 (63) 
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𝐼𝐼𝑡𝑡 = �1    𝑏𝑏𝑖𝑖  ∆𝑦𝑦𝑡𝑡−1 > 0
0    𝑏𝑏𝑖𝑖  ∆𝑦𝑦𝑡𝑡−1 ≤ 0. 

This specification posits that the series may exhibit more momentum in one direction 

than the other. The F-statistic for the null hypothesis 𝛾𝛾1 = 𝛾𝛾2 = 0 is called Φ𝑀𝑀. 

5.3.2 Results. Under the specification of the M-TAR model in (63), the grid 

searching approach finds the best fitting 𝜏𝜏 = −0.0005 where the RSS, AIC and BIC are at 

their minimum (see Figure 14).  

 
Figure 14. Plot of the RSS for the estimated M-TAR model in (59) on the potential 

values of 𝜏𝜏. The minimum RSS of 0.04 occurred at  𝜏𝜏 = −0.0005 , as indicated by the 

grey dashed line. 

 

The estimated M-TAR model is represented as 

∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡 = −0.389𝐼𝐼𝑡𝑡(𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 + 0.0005) − 0.383(1 − 𝐼𝐼𝑡𝑡)(𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 + 0.0005)

− 0.229𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 − 0.105∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−2 + 𝜀𝜀𝑡𝑡 

AIC = −6600.79    BIC = −6576.64.  

(64) 

The previously estimate TAR model for the attractor is given by 
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∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡 = −0.420𝐼𝐼𝑡𝑡(𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 − 0.0001) − 0.338(1 − 𝐼𝐼𝑡𝑡)(𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 − 0.0001)

− 0.232∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 − 0.107∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−2 + 𝜀𝜀𝑡𝑡 

AIC = −6601.51    BIC = −6577.36  

 

Comparing the two results, we find that the M-TAR model does not improve on the 

TAR model based on the AIC and BIC information criteria. For the M-TAR model, 𝛾𝛾1 and 

𝛾𝛾2  have very similar values, -0.389 and -0.383, indicating ∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡  responds equivalently 

whether the momentum is positive or negative. The F-statistic for the null hypothesis 𝛾𝛾1 =

𝛾𝛾2 = 0 is 58.63, leading to the rejection of the null hypothesis of no attractor. The F-statistic 

for 𝛾𝛾1 = 𝛾𝛾2  is 0.98, with a p-value of 0.32, indicating that the null hypothesis of an 

asymmetric adjustment cannot be rejected. 

 

5.4 Nonlinear error correction model 

The Granger (1986) representation theory proposes that  the Johansen test has the VECM 

form 

∆𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 = −0.396(𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−1 − 𝑇𝑇𝑒𝑒𝑡𝑡−1 + 0.002) + �𝛾𝛾1𝑖𝑖Δ𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−𝑖𝑖

3

𝑖𝑖=1

+ 𝜀𝜀1𝑡𝑡 

∆𝑇𝑇𝑒𝑒𝑡𝑡 = 0.013(𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−1 − 𝑇𝑇𝑒𝑒𝑡𝑡−1 + 0.002) + �𝛾𝛾2𝑖𝑖Δ𝑇𝑇𝑒𝑒𝑡𝑡−𝑖𝑖

3

𝑖𝑖=1

+ 𝜀𝜀2𝑡𝑡. 

After restricting 𝛽𝛽0 = 0 and 𝛽𝛽1 = −𝛽𝛽2, we have 

∆𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 = −0.391(𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−1 − 𝑇𝑇𝑒𝑒𝑡𝑡−1) + �𝛾𝛾1𝑖𝑖Δ𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−𝑖𝑖

3

𝑖𝑖=1

+ 𝜀𝜀1𝑡𝑡 

∆𝑇𝑇𝑒𝑒𝑡𝑡 = 0.014(𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−1 − 𝑇𝑇𝑒𝑒𝑡𝑡−1) + �𝛾𝛾2𝑖𝑖Δ𝑇𝑇𝑒𝑒𝑡𝑡−𝑖𝑖

3

𝑖𝑖=1

+ 𝜀𝜀2𝑡𝑡 

(65) 

 

(66) 

where 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−1 − 𝑇𝑇𝑒𝑒𝑡𝑡−1 = 𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1. 
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Both 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡  and 𝑇𝑇𝑒𝑒𝑡𝑡  are 𝐼𝐼(1) processes, but their linear combination 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−1 −

𝑇𝑇𝑒𝑒𝑡𝑡−1 becomes stationary. 

 

Hypothesis 5.2 For any previous deviation from the equilibrium relation presented 

as the equilibrium errors, the dynamic adjustment could be nonlinear. 

5.4.1 Methodology. We can extend the VECM into the M-TAR form: 

∆𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 = 𝐼𝐼𝑡𝑡𝛾𝛾11(𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 − 𝜏𝜏) + (1 − 𝐼𝐼𝑡𝑡)𝛾𝛾12(𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 − 𝜏𝜏) 

+�𝛽𝛽1𝑖𝑖

𝑝𝑝

𝑖𝑖=1

∆𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−𝑖𝑖 + 𝜀𝜀1𝑡𝑡 

∆𝑇𝑇𝑒𝑒𝑡𝑡 = 𝐼𝐼𝑡𝑡𝛾𝛾21(𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 − 𝜏𝜏) + (1 − 𝐼𝐼𝑡𝑡)𝛾𝛾22(𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 − 𝜏𝜏) 

+�𝛽𝛽2𝑖𝑖

𝑝𝑝

𝑖𝑖=1

∆𝑇𝑇𝑒𝑒𝑡𝑡−𝑖𝑖 + 𝜀𝜀2𝑡𝑡 

𝐼𝐼𝑡𝑡 = �1    𝑏𝑏𝑖𝑖  ∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 > 0
0    𝑏𝑏𝑖𝑖  ∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 ≤ 0. 

(67) 

 

 

(68) 

 

 

(69) 

Equations (65) assumes that ∆𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 depends on whether ∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 > 0 or ∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 ≤ 0; 

Equations (66) assumes that ∆𝑇𝑇𝑒𝑒𝑡𝑡 depends on whether ∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 > 0 or ∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 ≤ 0. 

Threshold 𝜏𝜏 indicates the attractor.  

5.4.2 Results. The indicator is given by the TAR model (𝜏𝜏 = 0.0001). The resulting 

nonlinear error-correction model for Regime 2 is represented as 

∆𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 = −0.383𝐼𝐼𝑡𝑡(𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 + 0.0001) − 0.355(1 − 𝐼𝐼𝑡𝑡)(𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 + 0.0001) 
(0.05)                                            (0.05)                      

−0.201∆𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−1 + 0.149∆𝑇𝑇𝑒𝑒𝑡𝑡−1 − 0.090∆𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−2 + 0.124∆𝑇𝑇𝑒𝑒𝑡𝑡−2 + 𝜀𝜀1𝑡𝑡 
(0.04)                    (0.05)                     (0.04)                      (0.05)                     

 

∆𝑇𝑇𝑒𝑒𝑡𝑡 = 0.008𝐼𝐼𝑡𝑡(𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 + 0.0001) + 0.011(1 − 𝐼𝐼𝑡𝑡)(𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 + 0.0001) 
(0.04)                                            (0.04)                                   
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+0.039∆𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−1 − 0.072∆𝑇𝑇𝑒𝑒𝑡𝑡−1 + 0.015∆𝑏𝑏𝑒𝑒𝑢𝑢𝑒𝑒𝑡𝑡−2 − 0.015∆𝑇𝑇𝑒𝑒𝑡𝑡−2 + 𝜀𝜀2𝑡𝑡 
(0.03)                    (0.04)                     (0.03)                      (0.04)                  

 

where the standard errors are in parentheses and two lags of each variable are used in each 

equation.  

Note that all t-statistics in the first equation are significant while no t-statistic is 

significant in the second equation. These results imply that only the change of the BX series 

responds to the discrepancy. When the one-period-before excess value between the BX and 

FX spot series is increasing (i.e. if  ∆𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 > 0), the BX rate will decrease by 38.3% of 

the discrepancy between 𝑟𝑟_𝑏𝑏𝑎𝑎𝑡𝑡−1 and the attractor of -0.0001. When the excess value is 

decreasing, the BX rate will increase by 35.5% of the discrepancy. The adjustment process 

appears to be asymmetric with respect to whether the excess value is increasing or decreasing.  

The linear error-correction model in (65) and (66) suggests that the BX rate always 

responds to the discrepancy from the long-run equilibrium by 39.1% of the discrepancy. 
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6 Trading strategies 

This chapter introduces two trading strategies based the USD/EUR bitcoin exchange 

rate and the triangular arbitrage return.  

6.1 Trading the bitcoin exchange rate 

Nan & Kaizoji (2020) propose an effective arbitrage strategy in bitcoin markets where 

participants engage in currency trading using the bitcoin exchange rate and hedging the 

trading risk with the FX futures contract. Their trading strategy is illustrated as follows. 

Suppose that an American speculator thinks the Euro has deprecated against the U.S. 

dollar in the bitcoin market and is betting on the reversion of the situation that may occur in 

a month. This indicates that the USD/EUR bitcoin exchange rate, denoted (𝑈𝑈𝑈𝑈𝑈𝑈/𝐸𝐸𝑈𝑈𝐸𝐸)𝑡𝑡
𝐵𝐵𝐵𝐵, 

is expected to increase in a near future. As a result, the trader places a long position of some 

Euros at time t, and she may wish to hedge 𝑏𝑏𝑡𝑡 proportion of this fixed cash position in the 

FX future market, so she goes short 𝑏𝑏𝑡𝑡 on Euros.  

The (logarithmic) return on portfolio X comprising of cash and futures at the next 

period can be represented by: 

𝑒𝑒𝑡𝑡+1 = 𝑟𝑟_𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡+1 − 𝑏𝑏𝑡𝑡 𝑟𝑟_𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡+1 (70) 

where 𝑟𝑟_𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡+1 denotes the return on holding a Euro between 𝑏𝑏 and 𝑏𝑏 + 1; 𝑟𝑟_𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡+1 

denotes the return on holding the futures position; 𝑒𝑒𝑡𝑡+1 denotes the return on holding 
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portfolio X; 𝑏𝑏𝑡𝑡 is the hedge ratio, defined as the value of futures sales at time t divided by 

the value of the cash position at time t (Baillie & Myers, 1991). 

The naïve hedge ratio is chosen by setting 𝑏𝑏𝑡𝑡 = 1. However, this predetermined, 

fully hedged position is criticized on a problem called over hedging (Cecchetti et al., 1988). 

The OLS-based hedge ratio is selected by regressing the historical series of return from the 

asset being hedged on these for the futures to be used. This method minimizes the 

unconditional variance over the sample period. However, it suffers from three major 

shortcomings: (i) its objective is to minimize risk, not maximizing the expected utility 

(Cecchetti et al., 1988); (ii) the joint distribution of prices and futures changes as new data 

come in (R. F. Engle & Sheppard, 2001); and (iii) the linear regression model faces 

misspecification when the two regressors are 𝐼𝐼(1) and cointegrated (Kroner & Sultan, 1993).  

6.2 The optimal hedge ratio 

The optimal hedge ratio is the slope coefficient, 𝑏𝑏𝑡𝑡 , in (70) that maximizes a speculator’s 

utility. The mean-variance expected utility function, denoted 𝐸𝐸𝑈𝑈(∙), is given by 

𝐸𝐸𝑈𝑈(𝑒𝑒) = 𝐸𝐸(𝑒𝑒) − 𝛾𝛾𝑉𝑉𝑎𝑎𝑟𝑟(𝑒𝑒) (71) 

where 𝛾𝛾 > 0 denotes the user’s degree of risk aversion and 𝑉𝑉𝑎𝑎𝑟𝑟(∙) denotes the variance 

operator (Kroner & Sultan, 1993). 

Maximize (71), so we have 

max
𝑏𝑏

𝐸𝐸𝑈𝑈(𝑒𝑒) = max
𝑏𝑏

{𝐸𝐸(𝑟𝑟_𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡) − 𝑏𝑏E(𝑟𝑟_𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡) − 𝛾𝛾[𝑉𝑉𝑎𝑎𝑟𝑟(𝑟𝑟_𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡)

+ 𝑏𝑏2𝑉𝑉𝑎𝑎𝑟𝑟(𝑟𝑟_𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡) − 2𝑏𝑏 𝐵𝐵𝑏𝑏𝑣𝑣(𝑟𝑟_𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡, 𝑟𝑟_𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡)]} 
(72) 

where 𝐵𝐵𝑏𝑏𝑣𝑣(∙) denotes the covariance operator. 

Mathematically, the maximum occurs at the point where the first-order derivative of 

(71) with respect 𝑏𝑏 is equal zero. After solving this difference equation, we have the utility-

maximizing hedge ratio given by 
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𝑏𝑏′ =
2𝛾𝛾𝐵𝐵𝑏𝑏𝑣𝑣(𝑟𝑟_𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡, 𝑟𝑟_𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡) − 𝐸𝐸(𝑟𝑟_𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡)

2𝛾𝛾𝑉𝑉𝑎𝑎𝑟𝑟(𝑟𝑟_𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡)
. (73) 

 

The variance of portfolio 𝑋𝑋 returns is expressed as 

𝑉𝑉𝑎𝑎𝑟𝑟(𝑒𝑒) = 𝑉𝑉𝑎𝑎𝑟𝑟(𝑟𝑟_𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡) + 𝑏𝑏2𝑉𝑉𝑎𝑎𝑟𝑟(𝑟𝑟_𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡) − 2𝑏𝑏𝐵𝐵𝑏𝑏𝑣𝑣(𝑟𝑟_𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡, 𝑟𝑟_𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡). (74) 

Maximize (74) with respect 𝑏𝑏, so we have the risk-minimizing hedge ratio expressed 

as 

𝑏𝑏′′ =
𝐵𝐵𝑏𝑏𝑣𝑣(𝑟𝑟_𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡, 𝑟𝑟_𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡)

𝑉𝑉𝑎𝑎𝑟𝑟(𝑟𝑟_𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡)
. (75) 

Note that if the futures rate follows a martingale where 𝐸𝐸( 𝑟𝑟_𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡) = 0, (73) is 

equal to (75), we get 

𝑏𝑏∗ = 𝑏𝑏′ = 𝑏𝑏′′ =
𝐵𝐵𝑏𝑏𝑣𝑣(𝑟𝑟_𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡, 𝑟𝑟_𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡)

𝑉𝑉𝑎𝑎𝑟𝑟(𝑟𝑟_𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡)
 (76) 

where 𝑏𝑏∗ denotes the optimal hedge ratio, featuring both minimum risk and maximum mean-

variance expected utility (Kroner & Sultan, 1993). 

6.3 Measuring the time-dependent variance-covariance matrix 

The critical step to calculate the optimal hedge ratio in (76) is to estimate the variance-

covariance matrix of the BX rate and the FX futures rate. Using the unconditional variances 

and covariance implies that the speculator holds the portfolio over the entire sample period 

and the risks and the correlation coefficient between cash and futures are expected to be all 

time invariant. Specifically, rewrite (76), we obtain 

𝑏𝑏∗ =
𝐵𝐵𝑏𝑏𝑣𝑣(𝑟𝑟_𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡, 𝑟𝑟_𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡)

𝑉𝑉𝑎𝑎𝑟𝑟(𝑟𝑟_𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡)
=
𝐵𝐵𝑏𝑏𝑣𝑣(𝑟𝑟_𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒 𝑡𝑡, 𝑟𝑟_𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒 𝑡𝑡)

𝜎𝜎𝑠𝑠_𝑏𝑏𝑚𝑚𝜎𝜎𝑠𝑠_𝑓𝑓𝑢𝑢
 
𝜎𝜎𝑠𝑠𝑏𝑏𝑚𝑚
𝜎𝜎𝑠𝑠𝑓𝑓𝑢𝑢

= 𝜌𝜌𝑠𝑠𝑏𝑏𝑚𝑚,𝑠𝑠𝑓𝑓𝑢𝑢
𝜎𝜎𝑠𝑠𝑏𝑏𝑚𝑚
𝜎𝜎𝑠𝑠𝑓𝑓𝑢𝑢

  

(77) 
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where 𝜎𝜎𝑠𝑠𝑏𝑏𝑚𝑚 denotes the unconditional standard deviation of the BX return; 𝜎𝜎𝑠𝑠𝑓𝑓𝑢𝑢 denotes the 

unconditional standard deviation of the FX futures return; and 𝜌𝜌𝑠𝑠𝑏𝑏𝑚𝑚,𝑠𝑠𝑓𝑓𝑢𝑢 denotes the Pearson 

correlation coefficient between the BX return and the FX futures return.  

The time-dependent variances and covariance are more attractive to practitioners 

than static ones because they can rebalance the portfolio over time rather than holding a 

fixed position throughout the period (Nan & Kaizoji, 2020). In this case, a bivariate GARCH 

model serves the purpose of modeling the joint conditional distribution of the returns of the 

BX and FX futures rates. 

There is a variate of multivariate GARCH models. The BEKK model (Engle & 

Kroner, 1995) is simple to apply but its coefficient matrices are difficult to interpret 

financially. The GJR model (Glosten et al., 1993) is devised for an asymmetric joint 

distribution, but because trading on the bitcoin exchange rate can start from any currency 

and the adjustment of its returns towards the long-run equilibrium appears to be symmetric, 

asymmetry is not a substantial problem.  

The dynamic conditional correlation (DCC-) GARCH model (Engle & Sheppard, 

2001; Engle, 2002) contains two components: one for one for the GARCH effect on the 

conditional covariance matrix and the other for the time-dependent correlations. The DCC-

GARCH model is plausible for a large portfolio because the relatively computational ease 

of the two-step estimation: starting from the univariate GARCH model for each return, then 

estimating them based on likelihood functions. Although the method is nonlinear, the 

meaning of the estimated coefficients is straightforward: one set of estimates is for the 

univariate GARCH environment and the other is for the time-dependent correlations (Engle, 

2002).  
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6.4 VECM plus DCC- GARCH model 

Nan and Kaizoji (2019a, 2020) propose to apply the VECM plus DCC-GARCH model to 

capture the time-dependent covariance matrix regarding the returns of the BX and FX futures 

rate.  

The two variables that we aim to model are return series. As we have known, both 

the BX rate and the FX futures rate are 𝐼𝐼(1) and their return series are 𝐼𝐼(0). It is plausible 

that first use a VAR model to capture the conditional mean jointly and then pass the residuals 

from the VAR model to the DCC-GARCH model.  

Because the BX rate is found to cointegrated with the FX futures rate (Nan & Kaizoji, 

2019b), the unstructured VAR model with the series in first-order differences is misspecified 

(Engle & Granger, 1987). Therefore, the VAR model needs to incorporate an error correcting 

term (ECT) to ensure that the long-run equilibrium is maintained in the bivariate system 

(Kroner and Sultan, 1993), which becomes the bivariate vector error correction model 

(VECM) (Engle & Granger, 1987). 

Usually, the GARCH family works with a hypothetic normal distribution (Bollerslev, 

1986; R. F. Engle, 1982). Since the return of the BX rate represent heavy tails, as shown in 

chapter 3, a Student’s t distribution is recommended to incorporate into the DCC-model in 

order to have better fitting (Nan & Kaizoji, 2020).  

Their framework is as follows: 

(i) VECM 

𝒓𝒓𝑡𝑡 = 𝒂𝒂𝟎𝟎 + 𝒂𝒂 𝒃𝒃′ 𝒚𝒚𝑡𝑡−1 + � 𝒄𝒄𝑖𝑖𝒓𝒓𝑡𝑡−𝑖𝑖
𝑝𝑝

𝑖𝑖=1
+ 𝒆𝒆𝑡𝑡 (78) 
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where 𝒓𝒓𝑡𝑡 denotes the 2 × 1 vector of the returns of the BX and the FX futures rates; 𝒚𝒚𝑡𝑡−1 

denotes the 3× 1 vector comprising of a constant, the level BX rate and the level futures 

rate, one period before; and 𝒂𝒂 𝒃𝒃′ 𝒚𝒚𝑡𝑡−1 represents the error correction term.  

(ii) Probability density assumptions 

𝒆𝒆𝑡𝑡|Ω𝑡𝑡−1 ~ 𝑈𝑈𝑏𝑏𝑑𝑑(0,𝑯𝑯𝑡𝑡,𝒗𝒗) (79) 

where Ω𝑡𝑡−1 denotes the one-period-before information set; 𝑈𝑈𝑏𝑏𝑑𝑑(∙) denotes the standardized 

student’s t density with zero mean, covariance matrix 𝑯𝑯𝑡𝑡 and shape parameter vector 𝒗𝒗. 

(iii) DCC-GARCH (Engle, 2002; Engle & Sheppard, 2001) 

𝑯𝑯𝑡𝑡 ≡ 𝑫𝑫𝑡𝑡𝚸𝚸𝑡𝑡𝑫𝑫𝑡𝑡 

𝑫𝑫𝑡𝑡
2 = 𝑑𝑑𝑏𝑏𝑎𝑎𝑎𝑎(𝝎𝝎) + 𝑑𝑑𝑏𝑏𝑎𝑎𝑎𝑎(𝜶𝜶) 𝒆𝒆𝑡𝑡 𝒆𝒆𝑡𝑡′ + 𝑑𝑑𝑏𝑏𝑎𝑎𝑎𝑎(𝜷𝜷)𝑫𝑫𝑡𝑡−1

2  

𝜺𝜺𝑡𝑡 = 𝑫𝑫𝑡𝑡
−1𝒆𝒆𝑡𝑡 

𝑸𝑸𝑡𝑡 = 𝑸𝑸�(𝒖𝒖′ − 𝚽𝚽 −𝚿𝚿) +  𝚽𝚽𝜺𝜺𝑡𝑡−1 𝜺𝜺𝑡𝑡−1′ + 𝚿𝚿 𝑸𝑸𝑡𝑡−1 

𝚸𝚸𝑡𝑡 = 𝑑𝑑𝑏𝑏𝑎𝑎𝑎𝑎�𝑸𝑸𝑡𝑡
1/2�

−1
 𝑸𝑸𝑡𝑡 𝑑𝑑𝑏𝑏𝑎𝑎𝑎𝑎�𝑸𝑸𝑡𝑡

1/2�
−1

 

(80) 

(81) 

(82) 

(83) 

(84) 

Conditional covariance matrix 𝑯𝑯𝑡𝑡 in (79) is composed into 𝑫𝑫𝑡𝑡𝚸𝚸𝑡𝑡𝑫𝑫𝑡𝑡 where 𝑫𝑫𝑡𝑡 is the 

diagonal matrix of time-varying standard deviations from the univariate GARCH models, 

and 𝚸𝚸𝑡𝑡 is the conditional correlation matrix. The operator 𝑑𝑑𝑏𝑏𝑎𝑎𝑎𝑎(∙) creates a diagonal matrix 

from a vector. Equation (81) describes the conditional nature of the volatility. Vector 𝜺𝜺𝑡𝑡 in 

(82) is the standardized innovations. Equation (83) gives the dynamic structure of the 

conditional correlation matrix using a proxy process 𝑸𝑸𝑡𝑡 , where 𝒖𝒖 is a vector of unities and 

𝑸𝑸�  is the unconditional correlation matrix of the standardized innovations in (82); this 

specification assumes that 𝑸𝑸𝑡𝑡 is integrated and has an exponential smoothing structure (Nan 

& Kaizoji, 2020). Ding and Engle (2001) shows that restrictions on (𝒖𝒖′ − 𝚽𝚽 −𝚿𝚿), 𝚽𝚽 and 

𝚿𝚿 can make 𝑸𝑸𝑡𝑡 positive semi-definite or positive definite so that the conditional correlation 

matrix 𝚸𝚸𝑡𝑡 can be exacted by rescaling 𝑸𝑸𝑡𝑡 as shown in (84).  
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The log-likelihood function of a DCC-GARCH model, denoted 𝐿𝐿𝐿𝐿(𝜃𝜃,𝜑𝜑), can be 

maximized using two steps: first find the estimates of 𝜃𝜃 in the volatility part of the log-

likelihood function, denoted 𝐿𝐿𝐿𝐿𝑉𝑉(𝜃𝜃), where 𝜃𝜃 is the parameters in associated with 𝑫𝑫𝑡𝑡  in 

(81); then, passing 𝜃𝜃� to 𝐿𝐿𝐿𝐿𝐶𝐶(𝜃𝜃,𝜑𝜑) , the correlation part of the log-likelihood function, and 

maximizing the function with respect to 𝜑𝜑, where 𝜑𝜑 denotes the parameters in (83). The log-

likelihood function 𝐿𝐿𝐿𝐿(𝜃𝜃,𝜑𝜑) = 𝐿𝐿𝐿𝐿𝑉𝑉(𝜃𝜃) + 𝐿𝐿𝐿𝐿𝐶𝐶(𝜃𝜃,𝜑𝜑)  can also be estimated using the 

generalized method of moments (GMM) method (Newey & McFadden, 1994; Engle, 2002). 

 

6.5 Empirical results 

The dataset contains the BX rate and the FX futures rate in the Regime 2 period from 2 April 

2014 to 9 January 2018 (928 observations). The lag selection is based on the AIC 

information criterion through the unrestricted VAR model.  

Table 14 reports the results. The statistics from the Johansen model with 3 lags show 

that there exists one cointegrating vector. The long-run equilibrium relationship is given by 

𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 − 1.004𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡 + 0.0067; the equilibrium error is retained as the error-correction 

term for the VECM model in (78).  

In the VECM model, 𝑎𝑎0𝐵𝐵  and 𝑎𝑎0𝐹𝐹  are constants; 𝑎𝑎1𝐵𝐵  and 𝑎𝑎1𝐹𝐹  are the speed-of-

adjustment coefficients for the changes of 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 and 𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡, respectively, and their values 

imply that the change of 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 responds to the discrepancy by -28.63% while the change 

of 𝑖𝑖𝑇𝑇_𝑇𝑇𝑒𝑒𝑡𝑡 responds by 0.34%. 
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Table 14. Estimation of the bivariate VECM plus DCC-GARCH model 
VECM Bivariate GARCH (1, 1) Conditional correlation and 

Information criteria 
𝑏𝑏0  0.0067 𝜔𝜔𝐵𝐵  0.0000*** 

(0.00) 
𝜑𝜑  0.0971*** 

(0.03) 
𝑏𝑏1  -1.0040 𝜔𝜔𝐹𝐹  0.0000 

(0.00) 
𝜓𝜓  0.8881*** 

(0.05) 
lags 3 𝛼𝛼𝐵𝐵  0.1318*** 

(0.02) 
  

𝑎𝑎0𝐵𝐵  -0.0001 𝛼𝛼𝐹𝐹  0.0494*** 
(0.01) 

𝐿𝐿𝐿𝐿  6974.73 

𝑎𝑎0𝐹𝐹  -0.0001 𝛽𝛽𝐵𝐵  0.7397*** 
(0.03) 

𝐴𝐴𝐼𝐼𝐵𝐵  -14.99 

𝑎𝑎1𝐵𝐵  -0.2863 𝛽𝛽𝐹𝐹  0.9492*** 
(0.01) 

𝐵𝐵𝐼𝐼𝐵𝐵  -14.85 

𝑎𝑎1𝐹𝐹  0.0034 𝑣𝑣𝐵𝐵  4.4930*** 
(0.55) 

  

  𝑣𝑣𝐹𝐹  6.0724*** 
(1.12) 

  

Note: In the VECM model, coefficients 𝑏𝑏0  and 𝑏𝑏1  specify the long-run equilibrium relation 
obtained from the Johansen test, specifically, 𝐵𝐵𝑋𝑋𝑡𝑡 + 𝑏𝑏0 + 𝑏𝑏1𝐹𝐹𝑈𝑈𝑡𝑡 = 𝑒𝑒𝑡𝑡 , where 𝑒𝑒𝑡𝑡  denotes the 
equilibrium error. 
The lag length is determined by the Akaike Information Criterion (AIC) through the unrestricted 
VAR model of the BX and FX futures series in level. 
𝐿𝐿𝐿𝐿 denotes Log-Likelihood, and 𝐴𝐴𝐼𝐼𝐵𝐵 denotes the Akaike Information Criterion for the framework. 
*** significant at 1%. 
 

 

After the VECM filtration of the unconditional mean, autoregression in the first 

moment, and the error correcting term, the volatility part of the DCC-GARCH model shows 

the mean-reverting pattern of the volatility of the BX rate returns, with 𝛼𝛼𝐵𝐵 + 𝛽𝛽𝐵𝐵 = 0.8715,  

and the integrated pattern of the volatility of the FX futures returns, with 𝛼𝛼𝐹𝐹 + 𝛽𝛽𝐹𝐹 = 0.9986. 

For the BX return, 𝛼𝛼𝐵𝐵 = 0.1318  and 𝛽𝛽𝐵𝐵 = 0.7397 suggest that the current conditional 

variance is highly correlated with the previous conditional variance but is less correlated 

with the previous filtered squares of the error. For the FX futures return, the conditional 

variance process presents a fairly persistent pattern. The estimated shape coefficients of 

Student’s t density suggest that 𝑣𝑣𝐵𝐵 = 4.49 and 𝑣𝑣𝐹𝐹 =6.07, so the BX returns present heavier 

tails than the FX futures returns. 
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The conditional proxy process 𝑸𝑸𝑡𝑡 appears to be persistent, as well, according to the 

magnitudes of 𝜑𝜑 and 𝜓𝜓, with 𝜑𝜑 +  𝜓𝜓 = 0.9852. 

As plotted in Figure 15, the graph of the conditional variance of the BX rate return, 

ℎ𝐵𝐵,𝑡𝑡 , shows mean-reverting and volatility clustering features, while the graph of the 

conditional variance of the futures return, ℎ𝐹𝐹,𝑡𝑡, appears to show a random walk process. The 

conditional covariance remains generally positive (above the red dashed line) with some 

dramatic negative spike.  

 

 

 

Figure 15. The conditional variance of the return of the bitcoin exchange rate (ℎ𝐵𝐵,𝑡𝑡), the 

conditional variance of the return of the FX futures (ℎ𝐹𝐹,𝑡𝑡) and the conditional covariance 

(ℎ𝐵𝐵𝐹𝐹,𝑡𝑡). 

 

The plot of 𝑏𝑏𝑡𝑡∗ (see Figure 16) shows a time-varying pattern, moving up and down 

around the red dashed line, which represents the conventional variance-minimized hedge 

ratio calculated by the OLS method ( 𝑏𝑏𝑡𝑡 = 0.637).  
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Figure 16. The conditional optimal hedge ratio (𝑏𝑏𝑡𝑡∗) in the black line and the 

conventional hedge ratio given by the OLS method in the red dashed line. 

 

The static hedge ratio given by the OLS method suggests that about 63.7% cash 

position should be sheltered from currency risk. The optimal number of futures contracts 

needed to hedge the cash position is calculated as 

𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑙𝑙 𝑏𝑏𝑖𝑖 𝑏𝑏ℎ𝑒𝑒 𝑏𝑏𝑎𝑎𝑙𝑙ℎ 𝑝𝑝𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 × 𝑇𝑇ℎ𝑒𝑒 𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏𝑚𝑚𝑎𝑎𝑇𝑇 ℎ𝑒𝑒𝑑𝑑𝑎𝑎𝑒𝑒 𝑟𝑟𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏
𝑇𝑇ℎ𝑒𝑒 𝑙𝑙𝑏𝑏𝑧𝑧𝑒𝑒 𝑏𝑏𝑖𝑖 𝑏𝑏𝑏𝑏𝑒𝑒 𝑖𝑖𝑇𝑇𝑏𝑏𝑇𝑇𝑟𝑟𝑒𝑒𝑙𝑙 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑎𝑎𝑏𝑏𝑏𝑏 

. (85) 

Usually, the value of optimal hedge ratio is between zero and one. However, the 

resulting optimal hedge ratio ranges from -1.83 to 1.63; a value greater than one implies an 

extreme volatility; a negative hedge ratio suggests the speculator would instead hedge by 

shorting futures contracts. Hence, the results show that the FX futures can normally hedge 

the risk from bitcoin-based currency trading, but in some extreme cases, this strategy is not 

enough.  
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6.6 User utility considering the transaction costs 

Following the method proposed by Kroner and Sultan (1993), Nan & Kaizoji (2020) 

construct a conditional user utility using the conditional variances obtained from the VECM 

+ DCC GARCH model and take account of transaction costs. The scenario is that when the 

utility gained from changes in the variances is enough to offset the transaction cost, the user 

rebalances; when the gain is less than the cost the user remains in the previous position.  

The condition for rebalancing is given by 

−𝐵𝐵 − 𝛾𝛾�ℎ𝐵𝐵,𝑡𝑡+1 − 2𝑏𝑏𝑡𝑡+1∗  ℎ𝐵𝐵𝐹𝐹,𝑡𝑡+1 + 𝑏𝑏𝑡𝑡+1∗2  ℎ𝑓𝑓𝑓𝑓,𝑡𝑡+1�

> −𝛾𝛾�ℎ𝐵𝐵,𝑡𝑡+1 − 2𝑏𝑏𝑡𝑡∗ ℎ𝐵𝐵𝐹𝐹,𝑡𝑡+1 + 𝑏𝑏𝑡𝑡∗2 ℎ𝐹𝐹,𝑡𝑡+1� 
(86) 

where ℎ𝐵𝐵,𝑡𝑡+1 − 2𝑏𝑏𝑡𝑡+1∗  ℎ𝐵𝐵𝐹𝐹,𝑡𝑡+1 + 𝑏𝑏𝑡𝑡+1∗2  ℎ𝑓𝑓𝑓𝑓,𝑡𝑡+1 is portfolio’s conditional variance at time t+1 

and 𝐵𝐵 denotes the percentage return that the user pays as a cost of the transaction. 

Using the data in the Regime 2 period, we calculate the mean-variance utility by 

summing each individual utility (927 observations). The results are reported as follows. 

When costs 𝐵𝐵 = 0.0005 (or 0.5%), a speculator needs to rebalance her position 3 times 

according the conditional optimal hedge ratio in order to attain her maximum utility that is 

equal to -0. 1516 over the sample period.  

When costs 𝐵𝐵 = 0.0001  (or 0.1%), the algorithm suggests that the number of 

rebalances is 9 and the utility is equal to -0.1544. When costs 𝐵𝐵 = 0.00001 (or 0.05%), the 

number of rebalances becomes 79 and the utility is -0.1577.  

Nan & Kaizoji (2020) made a comparison of the portfolios based on the naïve, 

conventional and conditional optimal hedge ratios. Their results showed that the conditional 

optimal hedging portfolio is superior to the other two portfolios in a few aspects: maximum 

log- likelihood for model estimation, minimum unconditional variance of the portfolio, 

minimum Value-at-Risk of the portfolio, and maximum mean-variance utility.  
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6.7 Triangular arbitrage 

Nan & Kaizoji (2019a) argue that ‘an arbitrage strategy that relies on the bitcoin exchange 

rate appears rather primitive due to the one-at-a-time nature of the unidirectional exchanges.’ 

For example, after finding that the Euro has depreciated against the U.S. dollar in the bitcoin 

market, a speculator traded U.S. dollars for Euros using the bitcoin exchange rate. Then, she 

had to wait for the appreciation of Euros to change her Euros back to dollars in the bitcoin 

market. As suggested by the speed-of-adjustment coefficient and the IRF, the adjustment 

process in the Regime 2 period may take 8 or 9 days. During that period, the speculator 

would face the problem of a limited budget and the risk of holding Euros. 

A triangular arbitrage means that instead of waiting for anther arbitrage opportunity, 

the speculator trades Euros back for U.S. dollars in the FX spot market. This process can be 

repeated over and over until the discrepancy between the BX rate and the FX spot has been 

eliminated or the range of deviations falls into the transaction cost band (meaning that the 

profits from the triangular arbitrage are less than the transaction costs).  

Nan & Kaizoji (2019a) propose an ARMA (1, 1) plus DCC-GARCH (1, 1) model to 

measure the joint conditional distribution of the triangular arbitrage and the return of the FX 

futures; the empirical and forecast results suggest that the portfolio containing the bitcoin-

based triangular arbitrage and its FX futures hedge is superior to the USD/BTC and 

EUR/BTC assets in terms of risk management.  
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7 Forecasting 

One of the central goals of modeling financial data is forecasting. This chapter 

illustrates two examples: volatility forecasting with the VECM + DCC-GARCH model and 

bitcoin exchange rate forecasting using artificial neural networks.  

 

7.1 Volatility forecasting using the VECM + DCC-GARCH model 

If there exists time dependency in a time series, that information could be utilized for 

forecasting. The bitcoin- related series, such as the bitcoin prices, the bitcoin exchange rate, 

and the bitcoin-based triangular arbitrage, all present long-range serial dependency in terms 

of autocorrelation. However, as we have observed, either an ARMA model or a GARCH 

model is not adequate for modeling the bitcoin-related series. Due to the presence of heavy 

tails in the distributions of the bitcoin-related returns, the Student’s t density is needed to 

address the problem. The results show that the ARMA (p, q) plus GARCH (1, 1) model with 

a Student’s t density appears to be adequate. Hence, we select to forecast volatility in the 

bitcoin exchange rate.  
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7.1.1 Methodology. In chapter 6, the bitcoin exchange rate and the FX futures rate 

are jointly estimated using the VECM plus DCC-GARCH (1, 1) with a student’s t density 

over the Regime 2 period. Based on the estimated model, the one-step-ahead forecast is 

simply  

𝐸𝐸𝑡𝑡𝑫𝑫𝑡𝑡+1
2 = 𝑑𝑑𝑏𝑏𝑎𝑎𝑎𝑎(𝝎𝝎) + [𝑑𝑑𝑏𝑏𝑎𝑎𝑎𝑎(𝜶𝜶) + +𝑑𝑑𝑏𝑏𝑎𝑎𝑎𝑎(𝜷𝜷)]𝑫𝑫𝑡𝑡

2 (87) 

where 𝐸𝐸𝑡𝑡 denotes the conditional expectation operator.  

Then, using the forward iteration, we get the j-step-ahead forecast function as 

𝐸𝐸𝑡𝑡𝑫𝑫𝑡𝑡+𝑗𝑗
2 = �𝑑𝑑𝑏𝑏𝑎𝑎𝑎𝑎(𝝎𝝎) [𝑑𝑑𝑏𝑏𝑎𝑎𝑎𝑎(𝜶𝜶) + 𝑑𝑑𝑏𝑏𝑎𝑎𝑎𝑎(𝜷𝜷)]𝑖𝑖

𝑗𝑗−2

𝑖𝑖=1

+ [𝑑𝑑𝑏𝑏𝑎𝑎𝑎𝑎(𝜶𝜶) + 𝑑𝑑𝑏𝑏𝑎𝑎𝑎𝑎(𝜷𝜷)]𝑗𝑗−1𝑫𝑫𝑡𝑡+1
2  (88) 

where 𝑗𝑗 ≥ 2.  

Note that the quality of the forecast declines as j increases. It is common to use rolling 

one-step-ahead approach to make a forecast, i.e., the length of the sample window is fixed, 

and as a new data point come into the window, we throw the oldest data point and estimate 

the model again. 

7.1.2 Forecast evaluation. Volatility is latent so that we need find an ex-post proxy 

for volatility in order to evaluate the forecast (Brownlees et al., 2011). Two classes of the 

proxies commonly used are the squared returns and the realized returns. Then, volatility 

forecast comparison can be conducted through loss functions. The mean squared error 

(MSE) loss is specified as 

𝑀𝑀𝑈𝑈𝐸𝐸:    𝐿𝐿�𝜎𝜎�𝑡𝑡2, ℎ𝑡𝑡|𝑡𝑡−1� = �𝜎𝜎�𝑡𝑡2 − ℎ𝑡𝑡|𝑡𝑡−1�
2
 (89) 

where ℎ𝑡𝑡|𝑡𝑡−1 denotes the one-step-ahead conditional variance and 𝜎𝜎�𝑡𝑡2 denotes the ex-post 

proxy.  
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Patton (2011) proposes the quasi-likelihood (QL) loss which is said to be robust in 

generating the same ranking of models as long as the proxy is unbiased. The QL loss is 

specified as 

𝑄𝑄𝐿𝐿  ∶    𝐿𝐿�𝜎𝜎�𝑡𝑡2,ℎ𝑡𝑡|𝑡𝑡−1� =
𝜎𝜎�𝑡𝑡2

ℎ𝑡𝑡|𝑡𝑡−1
− 𝑇𝑇𝑏𝑏𝑎𝑎

𝜎𝜎�𝑡𝑡2

ℎ𝑡𝑡|𝑡𝑡−1
− 1. (90) 

 

7.1.3. Results. Figure 17 plots the forecasted conditional variance of the returns of 

the BX rate (ℎ𝐵𝐵,𝑡𝑡), the forecasted conditional variance of the returns of the FX futures (ℎ𝐹𝐹,𝑡𝑡), 

the forecasted conditional covariance (ℎ𝐵𝐵𝐹𝐹,𝑡𝑡), and the forecasted conditional correlation (𝑄𝑄𝑡𝑡) 

over the Regime 3 period (535 observations). 
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Figure 17. The forecasted conditional variance of the returns of the BX rate (ℎ𝐵𝐵,𝑡𝑡), the 

forecasted conditional variance of the returns of the FX futures (ℎ𝐹𝐹,𝑡𝑡), the forecasted 

conditional covariance (ℎ𝐵𝐵𝐹𝐹,𝑡𝑡), and the forecasted conditional correlation (𝑄𝑄𝑡𝑡) over the 

Regime 3 period.  

As what we reported in Chapter 6, volatility in the bitcoin exchange rate presents 

clustering while volatility in the FX futures rate behaves like a random walk process. The 

mean of the MSE losses and the mean of the QL losses for the forecasted BX rate variance 

are 7.21 × 10−7 and 2.38, respectively. For forecasted the FX future rate variance, there is 

only the mean of MSE losses equal to 76.87 × 10−10, but the mean of QL losses does not 

exist because some values of the logs become infinity.  

The conditional standard deviation series is plotted with the series of the absolute 

return, the 150-day moving average standard deviation, and the unconditional standard 

deviation of Regime 2 (see Figure 18).   

 

Figure 18. The absolute returns, the forecasted conditional standard deviation, the 150-

day moving average and the unconditional standard deviation of Regime 2.  
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7.2 Forecasting the bitcoin exchange rate using neural networks 

Forecasts are typically made on a covariance stationary series such as a return series. The 

reason for this is that a stationary series presents an equilibrium-reverting feature—given a 

shock, the effect of the shock is always decaying to zero as time goes on, unless there is a 

new shock. A linear model assumes that the speed of the decay is constant; a nonlinear model 

posits that the speed is in a known function form. Hence, forecasting is about finding an 

optimal decay function that gives minimum errors between the forecasted and the observed 

values.  

There is a trick that makes the price “predictable.” For example, assume we have 

observed a logarithmic price sequence, 𝑦𝑦0,𝑦𝑦1, … ,𝑦𝑦𝑡𝑡, denoted {𝑦𝑦𝑡𝑡}, in which the return series 

is a pure AR (1) process with a zero mean; that is, there are no MA terms and there is no 

volatility clustering. If we let 𝑎𝑎1 = 0.7, the AR (1) process is expressed as 

∆𝑦𝑦𝑡𝑡 = 0.7∆𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 

where 𝜀𝜀𝑡𝑡 is a white-noise process. The one-period-ahead conditional forecast is simply 

𝐸𝐸𝑡𝑡∆𝑦𝑦𝑡𝑡+1 = 0.7∆𝑦𝑦𝑡𝑡 (91) 

Rewrite equation (91), and we get 

𝐸𝐸𝑡𝑡𝑦𝑦𝑡𝑡+1 = 𝑦𝑦𝑡𝑡 + 0.7𝑦𝑦𝑡𝑡 − 0.7𝑦𝑦𝑡𝑡−1 = 1.7𝑦𝑦𝑡𝑡 − 0.7𝑦𝑦𝑡𝑡−1. 

This strategy works since we know that ∆𝑦𝑦𝑡𝑡 is decaying at a constant speed of 0.7 

and our knowledge of the standard deviation of 𝜀𝜀𝑡𝑡 assures us that the estimate is within a 

certain confidence interval, say, 95%. This is the fundamental of forecasting in econometric 

time-series analysis.  
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The price itself, however, is difficult to forecast. We use the description of a random 

process offered by Endres (2014, p. 184) to illustrate why this is the case. The efficient 

market hypothesis posits that the daily changes in the price are completely random. As such, 

the current price is expressed as 

𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡. (92) 

Given an initial condition 𝑦𝑦0, the general solution to equation (92) is  

𝑦𝑦𝑡𝑡 = 𝑦𝑦0 + �𝜀𝜀𝑖𝑖

𝑡𝑡

𝑖𝑖=1

, (93) 

which means that the current price is the initial price plus the sum of all random errors from 

time 1 to time t; the effects of stochastic shocks never decay but are accumulated 

permanently. Taking the expectation of (93), we obtain 𝐸𝐸𝑦𝑦𝑡𝑡 = 𝑦𝑦0 , so that the value of 𝑦𝑦0 is 

an unbiased estimator of all future values of 𝑦𝑦1 through 𝑦𝑦𝑡𝑡. The variance of 𝑦𝑦𝑡𝑡 is such that 

 𝑉𝑉𝑎𝑎𝑟𝑟(𝑦𝑦𝑡𝑡) = 𝑉𝑉𝑎𝑎𝑟𝑟(𝜀𝜀1 + 𝜀𝜀2 + ⋯+ 𝜀𝜀𝑡𝑡) = 𝑏𝑏𝜎𝜎2 ; thus, the value of the variance is a function of 

time t. As time t goes to infinity, the variance of 𝑦𝑦𝑡𝑡 approaches infinity. Thus, 𝐸𝐸𝑦𝑦𝑡𝑡+1 = 𝑦𝑦𝑡𝑡 

is the best forecast strategy for a random process, i.e., 𝑦𝑦𝑡𝑡 is an unbiased estimator of the 

expected value of 𝑦𝑦𝑡𝑡+1  and the variance of 𝑦𝑦𝑡𝑡+1  is 𝜎𝜎2 . This should be the unbeatable 

common-sense baseline to econometric forecast. 

With the help of new technology such as machine learning and the development of 

computational power, the common-sense baseline can be substantially improved upon. We 

illustrate how neuron networks can achieve this. There are several categories of machine 

learning algorithms such as the artificial neural network (ANN), the support vector machine 

(SVM), decision trees, random forests, gradient boosting machines, etc. In this thesis, we 

use a “deep” neural network, as it is “feature-engineering”-free and is the approach least 

dependent on human help to learn features from the data.  
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A neural network is like a black box with several layers inside (the input layer, the 

hidden layer(s) and the output layer); given an input, it will produce an output. In each hidden 

layer, there are several units, called neurons. Each neuron computes  𝒘𝒘 ∙ 𝒚𝒚 + 𝒃𝒃 , where 𝒘𝒘 

denotes the weight vector, 𝒚𝒚 is the input vector, and 𝒃𝒃 denotes the bias vector. Vector 𝒘𝒘 and 

𝒃𝒃  are called hyperparameters. Several such jointing layers constitute a neural network. 

Neural networks use these hyperparameters to memorize the representation mapping the 

input and output values.   

A neural network can learn from the difference between its output value and the 

target to find an optimal representation of the input value in terms of the output value, a 

process called supervised learning. Given a loss function, a neural network tries to minimize 

the losses between its output and the target during each iteration and adjusts its 

hyperparameter to achieve the minimization through the back-propagation method. Through 

successive iterations, the network finally learns how to mathematically represent the target 

in terms of its hyperparameter. In theory, a neural network with one hidden layer can learn 

any forms of functions, including probability distributions; a two-hidden-layer neural 

network can learn conditional probability densities (Husmeier, 1998). If there are many 

layers, the network is called a deep learning neural network. The reason for incorporating 

many layers in a neural network is to “achieve great power and flexibility by representing 

the world as a nested hierarchy of concepts, with each concept defined in relation to simpler 

concepts, and more abstract representations computed in terms of less abstract ones” 

(Goodfellow et al., 2016). 

The goal of a learning algorithm is to minimize the loss function. A promising way 

for achieving this is to follow a direction opposite to the gradient of the loss function. To 

find the optimal solution, we can compute the gradient of the loss for all data regarding all 

the parameters of the network; however, this approach is computationally expensive, as, for 
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some networks, there are millions of parameters (Hegde & Usmani, 2016). Instead, we 

usually compute the gradient of the loss functions of a subset of the dataset and repeat the 

procedure over and over until all data have been used up. This iterative process is called an 

epoch; the subset of the data is called a mini-batch (Hegde & Usmani, 2016). To make the 

subset more representative of the entire dataset, we sample each subset with shuffling.  

After training the network, we face a critical barrier in the neural network field, called 

overfitting. This problem concerns trading off between the representation of the network and 

the generalization of the network. The network is well-fitted to the training dataset, learning 

some patterns as well as noise, but what is the performance of the network when we apply 

it to a new dataset—the validating dataset—in the process of generalization? Validation is 

used to address the problem of overfitting. Finally, the neural network is applied to the 

testing dataset to evaluate its accuracy for forecasting.  

This section describes how a neural network trained by a 5-minute dataset can 

outperform the common-sense baseline formed from the random walk model in one-day-

ahead bitcoin exchange rate forecasts.  

7.2.1 Methodology. The dataset consists of five time series with a 5-minute basis: 

the bitcoin exchange rate, the FX spot rate, the return of the bitcoin price of USD, the return 

of the bitcoin price of EUR, and triangular arbitrage. There are 364,936 observations for 

each series. The first 200,000 observations of the five series are used for training the network, 

the next 100,000 observations are retained for validation, and the last 64,936 observations 

are used for testing. The experiments contain two classes of neural networks: a densely 

connected network (a feedforward network) and a gated recurrent unit (GRU) network (a 

recurrent network).  



 

 110 

We let the network look back at the data points for five days, meaning 1,440 

observations, set the value of the step equal to twelve so that the network samples 120 points 

out of the 1,440 observations, and let the network forecast the one-day-after bitcoin 

exchange rate (the next 288th data point). Before feeding the dataset into the network, we 

rescale each series according its mean and standard deviation.  

The size of the mini-batch is 128. For training, we use 20 epochs and 500 steps per 

epoch; for validation, we set 770 steps. The rmsprop optimizer is used for the stochastic 

gradient descent algorithm. The loss function is the mean absolute error (MAE) metric. 

The neural networks are built using the R version Keras, an open-source neural 

network library written in Python. The code is modified according to the book by Chollet 

and Allaire (2018). 

The common-sense baseline is constructed by calculating the errors between the 

current bitcoin exchange rate and the next day bitcoin exchange rate (the next 288th data 

point) on the validation dataset (the middle 200,000 observations); as noted, the loss function 

is the MAE metric. 

7.2.2 Results. The common-sense baseline method yields an MAE of 0.0925, which 

means that if we use the one-day-before bitcoin exchange rate to forecast the current rate, 

we produce a mean absolute error of 0.0925. Since the input bitcoin exchange rate is 

normalized using the series mean of 1.1545 and standard deviation of 0.0916, the MAE value 

without normalization is equal to 0.0925×0.0916 = 0.0085, meaning an MAE of 85 basis 

points.  

Model 1is a densely connected model with three layers, as shown in Table 15. The 

first layer takes in the input data on shape (120, 5) and flattens them into an array of shape 
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600. The second layer takes in the array and represents it in a 32-dimensional hypothetical 

space. The third layer gives the forecasted bitcoin exchange rate. The network has 19,265 

trainable parameters.   

 

Table 15. Model 1: the densely connected neural network 
Layer type Output shape Number of parameters 
Flatten 600 0 
Dense 32 19,232 
Dense 1 33 
Note: The total number of the parameters is 19,265.  

 

 

 

Figure 19. Training and validation losses on the bitcoin exchange rate with the densely 

connected neural network. 

 

Figure 19 shows the results after training the network for 20 epochs. The red points 

in the figure are the training losses; the green points are the validation losses. The smoothed 

points in each series are shown in the colored lines. The training process yields an MAE of 

0.5162 at the first epoch, far above the baseline of 0.0925; however, after three epochs, the 
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loss decreases to 0.0892. The losses continue to decrease as more training epochs are 

conducted. The validation losses initially decrease, but after five epochs, the losses maintain 

at a level of approximately 1.0. These results show that it is difficult for a densely connected 

network to out-perform the common-sense baseline even though the network itself is 

powerful. 

Using a neural network for forecasting involves a trade-off between representation 

and generalization. This two-layer network (not including the flatten layer) is sufficiently 

complicated to represent 600 values in a 32-dimensional hypothetical space, but the features 

that the network learns cannot be generalized to the new data. A possible explanation for 

this is that the historical “prices” did not provide any useful information for forecasting the 

future event, as the efficient market hypothesis conjectures. Note that the information (or the 

features) refers to the values of price and its geometric distribution because no sequential 

features can be learned by this type of network. 

Model 2 is a gated recurrent unit (GRU) network with two layers, as shown in Table 

16. The GRU network uses the same sample principle as the long short-term memory 

(LSTM) network, which recurs the output of the network into its input so that it can learn 

sequential features, and introduces modules so that the network can have a long memory. 

However, the GRU network is cheaper to run and has acceptable representational power 

(Chung et al., 2014).  

 

Table 16. Model 2: the gated recurrent unit neural network 
Layer type Output shape Number of parameters 
GUR 32 3,648 
Dense 1 33 
Note: The total number of the parameters is 3,681.  
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The losses are plotted in Figure 20 and show that the GRU network is fairly powerful 

for sequence modeling, i.e., the first epoch yields a training MAE of 0.0771 and a validation 

MAE of 0.0845, out-performing the common-sense baseline. Note that the two plotted lines 

do not intersect and that after the second epoch, the validation losses start to increase, 

indicating that the model is overfitting. The minimum validation loss (0.0819) occurs at the 

second epoch.   

 

Figure 20. Training and validation losses on the bitcoin exchange rate with the GRU 

neural network. 

 

Model 3 is a GRU network with two dropout masks. The first dropout mask is set 

before the recurrent layer with the dropout rate equal to 3%. For the recurrent dropout mask, 

we use a constant mask, as suggested by Gal (2016), with the dropout rate equal to 7%. As 

plotted in Figure 21, the line of the training losses intersects the validation loss line at the 

third epoch; the minimum loss (0.0811) occurs at the sixth epoch. The translated MAE score 

is equal to 0.0811×0.0916 = 0.0074, or 74 basis points. This is a significant improvement in 

forecasting accuracy, decreasing the MAE score by (0.0925-0.0811)/0.0925 = 12.32%. 
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Figure 21. Training and validation losses on the bitcoin exchange rate with the GRU 

neural network using dropout.  

 

Finally, we apply Model 3, trained for 7 epochs, to the test dataset. Model 3 yields 

an MAE score of 0.0436, compared to the common-sense baseline MAE of 0.0446. 
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8 Discussions and Conclusion 

This thesis investigates currency trading in bitcoin markets. Specifically, the 

USD/EUR pair is chosen because of its popularity with traders. The USD/EUR price in 

bitcoin markets, which is of central interest for both academic researchers and practitioners, 

is expressed as the USD/EUR bitcoin exchange rate. Based on the observable USD/EUR 

bitcoin exchange rate series, a variety of quantitative approaches to characterizing, modeling, 

and forecasting are applied; the bitcoin exchange rate is modeled or compared with other 

assets such as the bitcoin prices of USD and EUR, the FX spot, futures, forward rates, and 

the one-month interest rate. The goal of this extensive effort is to gain a global view of 

bitcoin-based currency trading though a number of different models.  

Before concluding, two issues related to the bitcoin exchange rate warrant 

discussion: the bid-ask spread and the confirmation time.  

8.1 The bid-ask spread 

The USD/EUR bitcoin exchange rate is constructed using the bitcoin price indices, which 

represent the mid-point price. Wide bid-ask spreads in bitcoin prices may mean that no 

trading can occur at the suggested bitcoin exchange rate. The data provided from 

data.bitcoinity.org suggest that the daily spreads are quite different across markets.  
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Figure 22. The USD/BTC bid-ask spread, the EUR/BTC bid-ask spread, and bid-ask 

spread of the USD/EUR bitcoin exchange rate (Coinbase). 

 

Coinbase, which ranks first in terms of market share, has the smallest spread in these markets. 

Panels (a) and (b) in Figure 22 plot the series of the daily bid-ask spreads of the USD/BTC 

and the EUR/BTC over the period from 2 May 2015 to 6 March 2020. Though volatile, the 

spreads are mostly less than 1%. The bid-ask spread of the USD/EUR bitcoin exchange is 

estimated using (1/2 USD/BTC spread) + (1/2 EUR/BTC spread) (see panel (c) of Figure 

22). This time-varying spread appears not to affect the bitcoin exchange rate, which uses the 

mid-price as an unbiased estimator of the USD/EUR price in the bitcoin market. The reason 

for this is that if the distribution of the spread is symmetric, the median is equal to the mean, 

so that the bitcoin exchange rate is unbiased to the mean. As such, the spread can be viewed 

as a random cost factor added in the bitcoin exchange rate. If the distribution of the spread 

is asymmetric but not persistent, the spread is still treated as the transaction cost. Only if the 

distribution is persistently asymmetric towards one side is the bitcoin exchange rate biased. 

However, such persistence may be thought of as a risk premium, e.g., a liquidity discount 

for accepting bitcoins (Dong & Dong, 2015).  
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8.2 The confirmation time of bitcoin transferring 

The confirmation time of bitcoin transfer causes problems for the bitcoin exchange rate, as 

delay will introduce into bitcoin-based currency trading the risk of holding bitcoins. As 

depicted in Figure 1 in Section 2.1, the maximum average confirmation time exceeded 300 

minutes and the median confirmation time varied over a range of approximately 10 minutes. 

Such long delays in bitcoin transfer may make currency trading using the bitcoin exchange 

rate catastrophic.  

Consider a case in which the deviations between the bitcoin exchange rate and the 

FX spot rate occurred but no traders are willing to arbitrage because of the risk associated 

with transfer delay. Then, the deviations suggested by triangular arbitrage should meander 

anywhere and should not show a reversion to equilibrium in a wide cost-band. The 

adjustment process can only happen when the profit of arbitrage exceeds the risk of holding 

the bitcoin during the delay. However, this situation did not occur in our analysis; instead, 

triangular arbitrage presented mean-reversion over the Regime 2-3 period. This is quite like 

statistical inference: We have a null hypothesis positing the absence of convergence between 

the bitcoin exchange rate and the FX spot rate, but convergence that has very little chance 

of occurring randomly if the null hypothesis is true is shown to occur, leading to a rejection 

of the “no convergence” null hypothesis. Hence, we conjecture that a long confirmation time 

for bitcoin transfer does not discourage arbitrage by speculators. One explanation for this is 

that there is no need for real bitcoin transfers when bitcoins are traded; rather, the transaction 

occurs in the brokerage account.  

Next, we investigate the effect of a time delay using 30-minute data constructed from 

the 5-minute dataset. Assume that a trader changes one Euro into bitcoins at time 1, denoted 

−𝑒𝑒𝑏𝑏1 and then trades the bitcoins for U.S. dollars at time 2 (a half-hour later), denoted 𝑇𝑇𝑏𝑏2. 
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Hence, the 30-minute-delayed bitcoin-based USD/EUR price quoted at time 2 is expressed 

as 𝑇𝑇𝑏𝑏2 − 𝑒𝑒𝑏𝑏1. Generally, the 30-minute-delayed, bitcoin-based USD/EUR price series is 

given by 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒_𝑑𝑑30𝑡𝑡 = 𝑇𝑇𝑏𝑏𝑡𝑡 − 𝑒𝑒𝑏𝑏𝑡𝑡−1. This series can be compared to the BX series and the 

other series. Let us define 

 

 

𝐸𝐸𝑒𝑒𝑏𝑏𝑇𝑇𝑟𝑟𝑏𝑏 1:     𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 − 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−1  

𝐸𝐸𝑒𝑒𝑏𝑏𝑇𝑇𝑟𝑟𝑏𝑏 2:     𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒_𝑑𝑑30𝑡𝑡 − 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡−1 

𝐸𝐸𝑒𝑒𝑏𝑏𝑇𝑇𝑟𝑟𝑏𝑏 3:     𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒_𝑑𝑑30𝑡𝑡 − 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡  

𝐸𝐸𝑒𝑒𝑏𝑏𝑇𝑇𝑟𝑟𝑏𝑏 4:     𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒_𝑑𝑑30𝑡𝑡 − 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒_𝑑𝑑30𝑡𝑡−1  

𝐸𝐸𝑒𝑒𝑏𝑏𝑇𝑇𝑟𝑟𝑏𝑏 5:     𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒_𝑑𝑑30𝑡𝑡 − 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒_𝑑𝑑30𝑡𝑡−2  

𝐸𝐸𝑒𝑒𝑏𝑏𝑇𝑇𝑟𝑟𝑏𝑏 6:     𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒_𝑑𝑑30𝑡𝑡 − 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒_𝑑𝑑30𝑡𝑡−3  

(94) 

(95) 

(96) 

(97) 

(98) 

(99) 

 

 

Figure 23. Plots of the series of six returns as defined in equations (94) through (99).   

Figure 23 plots the series of the six defined returns. Panel (a) shows the density of 

the BX rate returns. Return 2 is the logarithmic excess value between the 30-minute-delayed 
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return and the BX rate quoted before the delay (panel (b)). Return 3 is the logarithmic excess 

value between the 30-minute-delayed return and the BX rate quoted after the delay (panel 

(c)). Both logarithmic excess values present a zero mean, indicating that the delay does not 

affect the mean but does affect the variance. As a result, the BX rate is an unbiased estimator 

to the delayed prices in the bitcoin markets.  

The second row of Figure 23 shows the delayed return density with increasing delay 

times—30 minutes, 60 minutes, and 90 minutes. Here again, the delays have no effect on 

the mean.  

 

8.3 Conclusion 

Currency trading in bitcoin markets can be performed through two bitcoin transactions. The 

USD/EUR bitcoin exchange rate defined in Nan and Kaizoji (2017, 2019b) appears to be the 

best estimator of all possible bitcoin-based USD/EUR rates that considers time delay. 

Confirmation time does not affect the mean USD/EUR rate but will incorporate more risks. 

The bid-ask spread issue rate becomes trivial if we think of the spread as a transaction cost. 

From their plots, we find that the USD/EUR bitcoin exchange series intertwines with 

the FX spot series over time, regardless of the wide variations in the two bitcoin price indices. 

The sample summary statistics are very similar between the bitcoin exchange rate and the 

FX spot, especially the standard deviations. In the linear specification, 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 = 𝛽𝛽0 +

𝛽𝛽1𝑇𝑇𝑒𝑒𝑡𝑡 + 𝜀𝜀𝑡𝑡, the OLS estimator 𝛽𝛽1 and the correlation coefficient 𝜌𝜌𝑏𝑏𝑚𝑚,𝑢𝑢𝑒𝑒 for 𝑏𝑏𝑒𝑒_𝑇𝑇𝑒𝑒𝑡𝑡 and 𝑇𝑇𝑒𝑒𝑡𝑡 

are represented as 𝛽𝛽1 = 𝜌𝜌𝑏𝑏𝑚𝑚,𝑢𝑢𝑒𝑒(𝜎𝜎𝑢𝑢𝑒𝑒/𝜎𝜎𝑏𝑏𝑚𝑚) ; given 𝛽𝛽1 = 1  and 𝜎𝜎𝑢𝑢𝑒𝑒 = 𝜎𝜎𝑏𝑏𝑚𝑚 , 𝜌𝜌𝑏𝑏𝑚𝑚,𝑢𝑢𝑒𝑒  must be 

equal to 1, indicating a perfect linear relationship in the samples of the bitcoin exchange rate 

and the FX spot rate.  
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The return of the bitcoin exchange rate has a zero mean, a moderate standard 

deviation equal to 0.027, a positive skewness of 2.873, and substantial excess kurtosis. The 

zero mean indicates no risk premium, which distinguishes a martingale from a submartingale. 

The moderate standard deviation indicates a middle-level risk, coinciding with the results 

from the 2.5% and 1% VaR. That is, the risk exposure of the bitcoin exchange rate to losses 

is between that of the bitcoin investment and forex trading. The positive skewness implies 

heavy asymmetric tails. The leptokurtosis is suggestive of thick tails and a non-normal 

distribution. 

Impressively, both bitcoin price returns have a positive mean of 0.003, indicating a 

submartingale. Across the entire sample period, this positive mean brings bitcoin traders an 

average profit of 0.003 × 1600 = 480%. The triangular arbitrage series is the return on the 

investment of 𝐸𝐸𝑈𝑈𝐸𝐸 → 𝐵𝐵𝑇𝑇𝐵𝐵 → 𝑈𝑈𝑈𝑈𝑈𝑈 → 𝐸𝐸𝑈𝑈𝐸𝐸. The negative mean of -0.001 indicates that the 

average loss is equal to 0.001 × 1600 = 160%. More generally, we treat the non-zero means 

as risk premiums—holding bitcoins results in a positive premium, while holding Euros in 

the triangular arbitrage results in a negative premium.     

Our time series analysis gives the stylized features as follows: The bitcoin exchange 

rate appears to be a random walk process similar to other financial assets, indicating weak 

form market efficiency. However, the bitcoin-based series returns all represent long memory 

autocorrelation. This long-range dependence means an ARMA model needing longer AR 

and MA terms but the result is still model inadequacy, even considering the GARCH effects. 

Unless the student’s t distribution is considered in the framework, the serial correlation 

problem becomes acceptable to a certain level. The triangular arbitrage series, which 

assumes the unbiasedness of the FX spot towards the bitcoin exchange rate and the absence 

of the risk premium, measures how far the bitcoin exchange rate deviates from the FX spot 

rate. This series does not have a meaningful AR (1) interpretation over the full sample period. 
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The TAR model using time as the threshold suggests that it is plausible to split the triangular 

arbitrage into three regimes: 

Regime 1: from 11 September 2013 to 1 April 2014, when the bitcoin exchange 

rate was widely oscillating.  

Regime 2: from 2 April 2014 to 9 January 2018, when the bitcoin exchange rate 

presented a gradually reverting pattern.  

Regime 3: from 10 January to 6 March 2020, when the bitcoin exchange rate 

tended to stay close to the FX spot rate.  

This separation suggests structural changes that occurred in the bitcoin markets 

where the bitcoin price formation gradually took more account of the information from the 

FX market. It also brings simplicity to the modeling; for example, the triangular arbitrage 

series is adequately modeled by an AR (3) model.  

In the long run, the bitcoin exchange rate was found to cointegrate with the FX spot 

and futures, respectively. Significantly, the long-run equilibrium relationship between the 

bitcoin exchange rate and the FX spot rate is suggestive of semi-strong market efficiency 

over the Regime 2-3 period, and the law of one price appeared to hold during the same period. 

For Regime 1, the equilibrium relation explains why the two “prices” diverged 

simultaneously in the bitcoin and FX markets. The CIP relation appeared to hold in a 

particular context. The nonlinear ADF model succeeds in identifying the attractor existing 

in the triangular arbitrage series for Regime 2 and Regime 3. The asymmetric adjustment 

coefficients were estimated based on the attractor, though the statistics appeared not to be 

statistically significant.  

The VECM models depict different short-run dynamics across the regimes. For 

Regime 1, the bitcoin exchange rate presented independence from the FX spot rate, and over-

adjusting occurred from time to time. Over the Regime 2 period, since the FX rate appeared 
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to be exogenous, the bitcoin exchange rate tended to adjust to the FX spot rate by 40% of 

the discrepancy in one day. In the period of Regime 3, both rates responded to the 

discrepancy, and the adjustment was expected to finish within a day. The momentum TAR 

model and the nonlinear ECM model gave a detailed description of the asymmetric 

adjustment process. In the case of the bitcoin exchange rate, the adjustment appeared to be 

symmetric. 

 It is plausible to use the FX futures to hedge currency risks when traders arbitrage 

on the bitcoin exchange rate or conduct triangular arbitrage. The proposed bivariate DCC-

GARCH models facilitate these trading strategies by providing a time-varying conditional 

covariance matrix to serve as the basis for the conditional optimal hedge ratio computation. 

The time-varying conditional correlation coefficient is obtained as a byproduct of the model. 

When transaction costs are considered, the proposed algorithm that maximizes the user’s 

mean-variance utility gives the optimal number needed to rebalance the portfolio.  

Finally, it is essential to investigate the forecast issue. The DCC-GARCH model was 

used for conditional volatility forecasting using the rolling one-step-ahead approach. In this 

case, forecasting the bitcoin exchange rate is worth challenging. Impressively, the resulting 

GRU neural network outperformed the common-sense baseline, the random walk model, on 

one-day-ahead forecasting using the 5-minute dataset.   

Although this thesis employed a variety of models and techniques to characterize, 

model, and forecast USD/EUR trading in bitcoin markets, it falls short of providing the 

complete picture. To fully understand the roles that the bitcoin markets play for currency 

trading, investigations into other currencies are needed (Nan, 2020). 
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