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ABSTRACT 

Detección in silico de productos naturales dirigidos a la 
corismato sintasa

1 Biology Department, College of  Education for Pure Sciences, University of  Mosul. mzsaeed19@hotmail.com.  

Introduction: Chorismate synthase catalyzes the final step in shikimate 
acid pathway involved in synthesis of  aromatic compounds in bacteria. 
This enzyme can be a possible molecular target for design of  antibiotics. 
Materials and Methods: Homology modeling and molecular docking 
were performed to screen about one hundred natural compounds in or-
der to find inhibitors of  enzymes as a possible new target. A model was 
built by SWISS-MODEL and its quality was assessed by ERRAT, ProSA, 
Rampage and MolProbity servers. Docking experiments were performed 
and pharmacokinetics and toxicities were studied by admetSAR. Results: 
The predicted model was reliable to be used in docking experiments. 
Amentoflavone had the highest binding affinity of  -10.0 Kcal/mol. Prob-
abilities indicated that rotenone may inhibit P-glycoprotein I, hinokifla-
vone and silybin may inhibit P-glycoprotein II, while taspine acts on both 
types of  P-glycoproteins. Amentofalavone, hinokiflavone, rotenone and 
silybin have a probability of  inhibiting cytochromes that are involved in 
oxidation stage of  metabolism. Conclusions: These compounds had 
binding affinities towards FMN binding site of  the enzyme model and 
may be considered in the research for new antibacterial agents but only 
when their drug interactions are fully investigated.
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INTRODUCCTION 

In 1961, S. aureus developed resistance to the anti-
biotic methicillin and later on, to other members of  
penicillin group, the β-lactams. This methicillin resis-
tant S. aureus (MRSA) strains acquired a mecA gene 
encoding to an altered penicillin binding protein, 
PBP2a which is less susceptible to β-lactams anti-
biotics including methicillin (4). In Iraq, a study car-
ried out by Al-Dahbi and Al-Mathkhury (5) on nasal 
isolates of  S. aureus in a hospital found that MRSA 
constitutes about 94.3%. All the one hundred and six 
isolates were resistant to penicillin G and 94.3% of  
them were resistant to cefoxitin. These isolates had 
also 29.2-50% of  resistance to ciprofloxacin, genta-
micin, tetracycline, erythromycin and co-trimoxaz-
ole.

Due to antibiotic resistance, alternative targets are 
being considered upon which new antibiotics could 
be designed. Dias et al., (6) suggested that chorismate 
synthase may be a target. This enzyme is a compo-
nent of  the shikimic acid pathway which is respon-
sible for the biosynthesis of  aromatic amino acids in 
bacteria but not in human. Chorismate synthase cat-
alyzes the formation of  chorismate from 5-enolpy-
ruvyl shikimate-3-phosphate using flavin mono-
nucleotide (FMN) as a cofactor (7, 8). In this study, 
homology modeling and molecular docking are car-
ried out on chorismate synthase of  S. aureus subsp. 
aureus MRSA252 (9) in order to identify ligands that 
are capable of  binding the active site of  the enzyme 
where FMN binds as a preliminary step in screening 
for enzyme inhibitors.

MATERIALS AND METHODS  

Sequence retrieval 
Amino acid sequence of  chorismate synthase of  S. 
aureus subsp. aureus MRSA252 (9) was obtained from 

GeneBank database having ID: CAG40475.1, which 
can be accessed at http://www.ncbi.nlm.nih.gov/
protein/cag40475.1. 

Binding site prediction
Binding site was predicted by (a) RaptorX (10) main-
tained by Xu Group at University of  Chicago avail-
able at: (raptorx.uchicago.edu). (b) GalaxyWEB web 
server for protein structure prediction, refinement 
and related methods at Computational Biology Lab., 
Department of  Chemistry, Seoul University. The 
server uses LIGPLOT (11). This binding prediction 
tool can be accessed at: (http://galaxy.seoklab.org/
cgi-bin/submit.cgi?type=SITE).

Homology modeling
The 3 dimensional structure of  the enzyme, chain A 
was built by SWISS-MODEL (12) maintained by Pro-
tein Structure Bioinformatics Group at Swiss Insti-
tute of  Bioinformatics and Biozentrum, University 
of  Basel, Basel, Switzerland. It is available at (http://
swissmodel.expasy.org).

Quality assessment of  the model
The accuracy of  the model was assessed by four 
online tools; (a) ERRAT (13), this tool analyzes inter-
action of  non-bound heavy atoms and comparing 
it with refined structures, available at (http://ser-
vicesn.mbi.ucla.edu/ERRAT/) at Molecular Biology 
Institute, University of  California, Los Angeles. (b) 
PROSA (14), to determine if  the protein fold lies with-
in the range of  experimentally determined protein 
structures accessed at (https://prosa.services.came.
sbg.ac.at/prosa.php)  The site is maintained by Cen
ter of  Applied Molecular Engineering, Department 
of  Biosciences, University of  Salzburg. (c) Ramach-
andran plot analysis by RAMPAGE (15). The site is 
maintained by Crystallography and Bioinformatics 
Group at Department of  Biochemistry, School of  
Biological Sciences, University of  Cambridge, avail-
able at:  (http://mordred.bioc.cam.ac.uk/~rapper/
rampage.php). (d) MolProbity structure validation (16) 
from Department of  Biochemistry, School of  Medi-
cine, Duke University. The software can be accessed 
at: (http://molprobity.biochem.duke.edu/).

Ligand selection 
The chemical structures of  the control, Flavin mono-
nucleotide (FMN) and one hundred natural products 
were obtained from ZINC database (17), at (http://

Staphylococcus aureus is a Gram positive bacterium ca-
pable of  causing infections in human ranging from 
superficial lesions such as cutaneous and subcuta-
neous abscesses to deep infections involving bones, 
lung as well as toxic shock syndrome (1, 2). This is due 
to its ability to invade and colonize tissues through 
expression of  numerous virulence factors like exo-
foliative toxins, haemolysins, leukocidins, protein A 
and clumping factor (1, 3).

http://mordred.bioc.cam.ac.uk
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zinc.docking.org/). This database also provides the 
molecular properties; mass, H-bond donors, H-bond 
acceptors and polar surface area. 

Molecular docking
Molecular docking was performed by AutoDock 
Vina (18) designed by Oleg Trott from Molecular 
graphics Laboratory at the Scripps Research Insti-
tute, La Jolla, California. The Autogrid tool was em-
ployed to pre-calculate a grid. This grid has a size 
of  66×66×66 and a box center of  -8.118, 1.819 and 
10.049 for x, y and z, respectively. Rigid protein-li-
gand docking was performed by Hex 8.0.0 using 
settings: grid dimension = 0.6, docking solutions = 
100, an initial steric scan at N = 16, a final search 
at N = 26, receptor and ligand range 180 degrees 
(Ritchie and Venkatraman, 2010). Interactions be-
tween ligand and the enzyme model were visualized 
by LIGPLOT+ (11).

Pharmacologic properties of  the compounds
The pharmacokinetics and toxicity profiles (AD-
MET) of  the compounds were predicted by admet-
SAR (19) at (http://lmmd.ecust.edu.cn/admetsar1). 
The computed parameters were: (1) human intestinal 
absorption (HIA), (2) blood-brain barrier (BBB) pen-
etration, (3) human colon adenocarcinoma (Caco-2) 
permeability, (4) plasma glycoprotein (P-gp) sub-
strate and inhibition probabilities, (5) renal organic 
cationic transporter protein (OCT2) inhibition, (6) 

Cytochromes (CYP P450), substrate and inhibition 
probabilities. Toxicities were predicted by (1) car-
cinogenic activity and (2) acute rat toxicity (ART).

RESULTS AND DISCUSSION 

The three dimensional structure of  chorismate syn-
thase, chain A was built by SWISS-MODEL based 
on the template of  Steptococcus pneumoniae serotype 
4, PDB ID: 1xqo.1.A which had a resolution of  
2.00 A° with a sequence similarity of  0.45. Figure 
1 shows the model. Maclean and Ali (20) solved the 
X-ray structure of  chorismate synthase of  S. pneumo-
niae and found that (a) it is a tetramer of  2 dimer sub-
units, (b) Thr315 or sometimes Ser is a conserved ami-
no acid in the enzyme structure, (c) The amino acid 
His110 forms Hydrogen bonding with O2 of  FMN, 
(d) the hydrophobic interactions of  Ala342, Ala345, 
Ala346, Ile313, Met310 mediates flexibility required to 
accommodate FMN molecule, and (e) O2 of  FMN 
also forms coordinate bonding with the side chain of  
Asn251. Binding site prediction by RaptorX server for 
FMN revealed the following amino acid residues of  
the model: Arg45, Gly111, His112, Ala135, Ile250, Asn251, 
Ala252, Met310, Lys311, Ile313, Pro314, Thr315, Ala342, Ala345 
and Ala346, while GalaxyWEB server predicted that 
FMN forms H bond with His122 and hydrophobic 
interactions with Arg39, Ala135, Ile250, Asn251, Met310, 
Ile313, Pro314, Ala342  and Ala345.

Figure 1. The Three dimensional structure of  Chorismate synthase as predicted by SWISS-MODEL. Fala-
vin mononucleotide is shown in its binding site. Visualized by Python Molecular Viewer, Sanner (21).
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The model was evaluated by four on line methods. 
It has an overall quality of  94.7% in ERRAT (Fig-
ure 2). In ProSA, the model has a Z-score of  -9.19; 
hence, it lies within the range of  X-ray experimen-
tally solved structures (Figure 3). In Ramachandran 
plot analysis (Figure 4), the number of  residues in 
favored region was 367 (95.1%) and the number of  
the residues in allowed region was 16 (4.1%), but 

3(0.8%) of  residues were in the outlier region. Nor-
mally, it is expected that 98% of  the residues should 
lie in the favored region and about 2.0% should be 
in the allowed region. However, MolProbity server 
indicates that 364 (94.3%) of  the residues are in fa-
vored regions and only 4 are outliers (Table 1). The 
model has good quality since more than 90% of  the 
residues lie in the favored region (22). 

Figure 2. ERRAT analysis of  the model. Black bars represent misfolded regions. On the error axis the two 
lines indicate the confidence in which it is possible to reject regions.

Figure 3. ProSA prediction of  the model (black dot) which lies within the normal range of  X-ray deter-
mined experimental structures.
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Figure 4. Ramachandran plot of  the model using Rampage. Amino acid residues of  the model that lie in the 
disallowed regions (outliers) are marked by red squares.

Table 1. Structure validation by Molprobity server

Protein 
Geometry 

Poor rotamers 9 2.76% Goal: <0.3%  
Favored rotamers 299 91.72% Goal: >98%  

Ramachandran outliers 4 1.04% Goal: <0.05%  
Ramachandran favored 364 94.30% Goal: >98%  
Cβ deviations >0.25Å 2 0.57% Goal: 0  

Bad bonds: 0 / 3061 0.00% Goal: 0%  
Bad angles: 27 / 4126 0.65% Goal: <0.1%  

Peptide Omegas 
Cis Prolines: 0 / 13 0.00% Expected: ≤1 per chain, or ≤5%

 Cis nonProlines: 1 / 374 0.27% Goal: <0.05%  

Molecular docking was performed using AutoDock 
Vina for one hundred natural products and the high-
est ten that had binding affinities more than FMN 
are presented in Table 2 with their interactions. Fig-
ure 5 shows the interactions with FMN, while Figure 
6 shows the Hydrogen bonding and hydrophobic in-
teractions between amentoflavone and residues of  
the predicted model. Amentoflavone forms interac-
tions with Arg39, Ala135, Asn251, Ile313, Thr315, Ala342 
and Ala345 that are also predicted as components of  
the binding residues by RaptorX and GalaxyWEB. 

However, when redocked by Hex 8.0.0 which uses 
another method of  estimating docking scores, only 
amentoflavone, hinokiflavone, apocynin A and vi-
cenin had docking scores higher than FMN, the con-
trol. 

Figure 7 illustrates the chemical structures of  the 
best ten ligands, while their physiochemical proper-
ties are presented in Table 3. Kelder et al., (23) con-
cluded that a drug should have a polar surface area 
(PSA) of  120 A°2 or less but require a PSA of  60-70 
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A°2 to cross the blood brain barrier and have an ac-
tion on the brain. Good oral absorption occurs when 
the molecular weight of  a drug candidate is in the 
range 150-550 and logP values between 0-3 (24). Rutin 
and vicenin have their molecular weights higher than 
550. Four compounds only had their logP values in 
the range of  0-3. These are scutellarin, apocynin A, 

silybin and taspine. Lipinski et al., (25) proposed that 
a drug will be poorly absorbed when its molecular 
weight > 500, logP > 5, H-bond donors > 5 and 
H-bond acceptors > 10; however, antifungals and 
antibacterial agents seem that do not obey this rule 
and also those classes of  drugs that are substrate for 
drug transporters inside human body.

Table 2. Molecular docking of  the model with natural products

Compound 
Binding affinity 
(Kcal/mol) by 
AutoDock Vina 

Residues of the model forming Total energy  
(Kcal/mol) 
by Hex 8.0.0 Hydrogen bonds (length in A°) 

Hydrophobic 
interactions  

FMN (control) -8.0 Ser9(2.84, 3.17), Arg45(2.90), 
Arg109(2.70), Ser134(3.06) 

Arg47, Arg48,His112, Ala135, 
Arg136, Ile313,Thr315, Asp339 -337.60 

Amentoflavone -10.0 Ser9(3.20), Arg39(2.82,3.05), 
Asn251(2.70), Thr315(2.70), Ser338(3.15) 

His10, Arg45,Arg48, Met49, 
Arg109,Leu130, Ser134, Ala135, 
Arg136, Ala252, Met310, Ile313, 

Asp339, Ala342, Ala345 

-351.04 

 

Scutellarin -9.4 Arg45(3.24), Ser9(2.76,2.95), 
Ser134(3.04), Asp339(2.84) 

Arg48, Met49, His112, Ser133, 
Ala135, Arg136, Asn251, 

Ala252, Ile313, Pro314, Ala342 
-303.62 

Rutin -9.3 
Ser9(2.79), Arg45(2.58,2.97), Arg48(3.30), 
Ser134(3.16), Thr138(3.17), Asn251(3.08), 

Thr315(2.52), Asp339(3.23) 

Arg47, Met49, Ala135, Arg136, 
Ile250, Phe253, Ile313, Arg337, 

Ser338, Ala342, Ala345, 
Ala346,Val349 

-326.52 

Hinokiflavone -9.1 Ala252(3.29,2.88) 

Arg45, His112, Ala113, Ser133, 
Ala135, Val248, Ser249, Ile250, 
Asn251,Ile313, Pro314, Asp339, 

Ala342 

-389.63 

Isoquercitrin -8.9 
Ser9(2.84),Arg45(3.15,2.42), 

Ser134(3.02,3.11),Thr138(2.82), 
Asn251(3.01),Thr315(2.77) 

Arg48, Met49, His112, Ala135, 
Arg136,Ile250, Phe253, Met310, 
Ile313, Asp339, Ala342, Ala346, 

Val349 

-333.32 

Apocynin A -8.8 Arg39(3.06,3.34) 

Arg45,Arg47,Met49,Arg109, 
His112, Leu130, Ala135, 

Arg136, Ile313,Thr315,Ile335, 
Asp339, Ala342 

-350.35 

Rotenone -8.7 Arg109(2.92), His112(3.01), Ser134 (2.80), 
Thr315(3.01) 

Ser9, His10, Arg45, 
Ala135,Met310, Ile313, Pro134, 

Asp334,Ala342, Ala346 
-305.07 

Silybin -8.6 Arg45(2.97), Gly111(2.86), Ser133(2.98), 
Ser134(2.98), Lys311(3.08), Asp339(2.73) 

His112,Ala113,Ala135,Val248,S
er249,Ile250,Asn251,Ala252,Ile3

13,Pro314,Ala342 
-381.76 

Taspine -8.6 Arg45(2.80,3.30), His112(2.85), 
Thr315(2.86) 

Arg48,Ala135,Thr138,Ile250,As
n251, Ala252, Met310, Ile313, 

Pro314, 

Asp339,Ala342,Ala346,Val349 

-297.38 

Vicenin -8.3 Ser9(2.71), Arg109(2.74,3.38), His112 
(3.22), Ser134(3.0), Thr315(3.14) 

Arg48,Met49,Leu130,Ala135, 
Arg136, Met310, Ile313, Ile335, 

Ala342, Ala345, Ala346 
-342.53 
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Figure 5. Docking of  FMN with the model, visualized by LIGPLOT (11).
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Figure 6. Docking of  amentoflavone with the model, visualized by LIGPLOT (11).

Table 3. Physiochemical parameters of  the ligands

Compound ZINC data base ID 
M. Wt1 

(g/mol) 
xlogP2 HBD3 HBA4 

PSA5 
(A°2) 

Amentoflavone ZINC03984030 538.464 5.61 6 10 182 
Scutellarin ZINC21902916 461.355 0.07 6 12 210 
Rutin ZINC59764511 610.521 -1.06 10 16 269 
Hinokiflavone ZINC04098521 538.464 5.18 5 10 170 

Isoquercitrin ZINC04096845 464.379 -0.36 8 12 211 
Apocynin A ZINC14926814 468.414 1.56 7 10 177 
Rotenone ZINC03860715 394.423 3.59 0 6 63 
Silybin ZINC02033589 482.441 1.47 5 10 155 
Taspine ZINC01702514 370.381 2.67 1 7 83 

Vicenin ZINC98369451 594.522 -2.10 11 15 271 

 
1Molecular weight, 2octanol/water partition coefficient, 3Hydrogen bond donors, 4 hydrogen bond acceptors, 
5polar surface area.



9

Flavonoids are secondary products of  plants present 
in vegetables and fruits with many medicinal proper-
ties (26). Hwang et al., (27) found that amentoflavone, a 
biflavonoid being extracted from Selaginella tamarisci-
na, had an antimicrobial action against Gram positive 
and Gram negative microorganisms. The compound 
was active against Enterococcus faecium, S. aureus, Strep-
tococcus mutans, Escherichia coli and Pseudomonas aeru-
ginosa in a range from 4-36 µg/ml. The study also 
suggested that amentoflavone also had a synergistic 
effect when combined with ampicillin, cefotaxime 
and chloramphenicol. 

Hossain et al., (28) used AutoDock 4.2 to screen ZINC 
database and obtained four compounds designated 
ZINC03803450, ZINC20149031, ZINC13387711 
and ZINC16052528 that had strong binding affin-
ities towards the active site of  the enzyme where 
5-enolpyruvyl shikimate-3-phosphate binds. In an-
other approach, molecular docking studies on cho-
rismate synthase of  S. pneumoniae resulted in identi-
fication of  four substrate analogs of  5-enoylpyruvyl 
shikimate-3-phosphate that had docking scores high-
er than the original compound (29). 

Figure 7. Chemical structure of  ligands. (A) Amentoflavone, (B) scutellarin, (C) rutin, (D) Hinokiflavone, (E) isoquer-
citrin, (F) Apocynin A.
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Figure 7. continued:  (G) rotenone, (H) silybin, (I) taspine, (J) vicenin

Pharmacokinetics and toxicity profiles are present-
ed in Table 4. Absorption through the digestive sys-
tem is predicted by HIA and Caco-2 (30). Except for 
scutellarin, all the ligands show high probability to be 
absorbed through intestine as predicted by HIA but 
only rotenone, silybin and taspine show a similar re-
sult in Caco-2. Predicting the permeability of  a drug 
to pass through the blood-brain barrier is of  impor-
tance in 2 aspects: (a) if  the drug is required to exert 
an action in the central nervous system and (b) if  the 
drug is acting on other organs and may have toxicity 
on the brain (31). Only amentoflavone, hinokiflavone, 
rotenone and taspine may across the blood-brain 
barrier based on their predicted probabilities.

All ligands are subjected to transport by P-gp since 
their probabilities indicate that are substrates. How-
ever, rotenone inhibits P-gp I, hinokiflavone and si-
lybin act as inhibitors to P-gp II and taspine may 
inhibit both P-gp I and II. These P-glycoproteins 

belong to ATP-binding cassette transporters found 
in cells of  liver, kidney, intestine and blood-brain 
barrier as well, and function to export substances 
out from the cells. Thus, decrease the absorption of  
drugs from intestine while increase the elimination 
by liver through bile (32, 33, 34).

Cytochromes P450 are responsible for the oxida-
tion step in metabolism of  xenobiotics inside body 
including drugs. Hence, inhibition of  these cyto-
chromes would interfere with metabolism of  other 
drugs (30). Amentofalavone, hinokiflavone, rotenone 
and silybin have a probability of  such inhibition. All 
the compounds were non carcinogens and were not 
inhibitory to OCT2 which is involved in damage of  
kidney tissue due to accumulation of  nephrotox-
ic substances (35). Acute rat toxicity profiles showed 
that rotenone had the highest level among the nat-
ural products of  3.787 Mol/Kg and amentoflavone 
was second to rotenone in this regard.
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Table 4 A. SARadmet predicted ADMET profile

Compound 
HIA 

(Probability)
 

BBB 
(Probability)

 

Caco-2 
(Probability)

 

P-gp 
Substrate 

(Probability)

P-gp I 
Inhibitor 

(Probability)
 

P-gp II 
Inhibitor 

(Probability)

OCT2 
Inhibitor 

(Probability)

Amentoflavone + (0.974) + (0.660) - (0.509) S1 (0.500) N2 (0.70) N (0.775) N (0.920) 
Scutellarin - (0.805) - (0.596) - (0.873) S (0.565) N (0.942) N (0.670) N (0.945) 

Rutin + (0.804) - (0.854) - (0.917) S (0.690) N (0.876) N (0.855) N (0.898) 
Hinokiflavone + (0.956) + (0.659) - (0.731) S (0.554) N (0.748) I3 (0.771) N (0.918) 
Isoquercitrin + (0.786) - (0.698) - (0.940) S (0.591) N (0.878) N (0.797) N (0.892) 
Apocynin A + (0.928) - (0.703) - (0.932) S (0.587) N (0.932) N (0.985) N (0.956) 
Rotenone + (0.994) + (0.596) +(0.735) S (0.658) I (0.958) N (0.506) N (0.736) 

Silybin + (0.970) -(0.768) + (0.581) S (0.614) N (0.579) I (0.841) N (0.855) 
Taspin + (0.731) + (0.634) + (0.600) S (0.806) I (0.626) I (0.680) N (0.687) 
Vicenin + (0.916) - (0.687) - (0.910) S (0.628) N (0.919) N (0.887) N (0.872) 

 1S: substrate, 2N: none, 3I: inhibitor

Table 4 B. SARadmet predicted ADMET profile 

Compound CYP 450  substrate 

(Probability) CYP 450  Inhibition (probability) Carcinogen 
(probability) 

ART  LD50 

(Mol/Kg) 

Amentoflavone
 

CYP  2C9 N1 (0.793) CYP  2C9 I2(0.892) CYP  1A2 I(0.684) 
N(0.931) 3.130 CYP  2D6 N(0.907) CYP  2D6 N(0.932) CYP  2C19 I(0.683) 

CYP  3A4 N(0.715) CYP  3A4 I(0.617)   

Scutellarin 
CYP  2C9 N (0.821) CYP  2C9 N(0.752) CYP  1A2 N(0.757) 

N(0.947) 2.722 CYP  2D6 N(0.908) CYP  2D6 N(0.953) CYP  2C19 N(0.822) 
CYP  3A4 N(0.684) CYP  3A4 N(0.684)   

Rutin 
CYP  2C9 N(0.764) CYP  2C9 N(0.907) CYP  1A2 N(0.867) 

N(0.961) 2.498 CYP  2D6 N(0.896) CYP  2D6 N(0.955) CYP  2C19 N(0.903) 
CYP  3A4 N(0.537) CYP  3A4 N(0.925)   

Hinokiflavone 
CYP  2C9 N(0.812) CYP  2C9 I(0.832) CYP  1A2 I(0.626) 

N(0.934) 2.955 CYP  2D6 N(0.911) CYP  2D6 N(0.900) CYP  2C19 I(0.631) 
CYP  3A4 N(0.682) CYP  3A4 I(0.500)   

Isoquercitrin 
CYP  2C9 N(0.812) CYP  2C9 N(0.930) CYP  1A2 N(0.908) 

N(0.960) 2.387 CYP  2D6 N(0.892) CYP  2D6 N(0.951) CYP  2C19 N(0.930) 
CYP  3A4 N(0.604) CYP  3A4 N(0.919)   

Apocynin A 
CYP  2C9 N(0.833) CYP  2C9 N(0.954) CYP  1A2 N(0.957) 

N(0.964) 2.325 CYP  2D6 N(0.900) CYP  2D6 N(0.957) CYP  2C19 N(0.961) 
CYP  3A4 N(0.653) CYP  3A4 N(0.828)   

Rotenone 
CYP  2C9 N(0.861) CYP  2C9 N(0.769) CYP  1A2 I(0.911) 

N(0.941) 3.787 CYP  2D6 N(0.853) CYP  2D6 N(0.923) CYP  2C19 I(0.899) 
CYP  3A4 S4(0.646) CYP  3A4 I(0.796)   

Silybin 
CYP  2C9 N(0.761) CYP  2C9 I(0.635) CYP  1A2 N(0.771) 

N(0.939) 2.221 CYP  2D6 N(0.874) CYP  2D6 N(0.923) CYP  2C19 N(0.599) 
CYP  3A4 N(0.550) CYP  3A4 N(0.550)   

Taspine 
CYP  2C9 N(0.809) CYP  2C9 N(0.806) CYP  1A2 N(0.565) 

N(0.821) 2.549 CYP  2D6 N(0.694) CYP  2D6 N(0.828) CYP  2C19 N(0.870) 
CYP  3A4 S(0.672) CYP  3A4 N(0.911)   

Vicenin 
CYP  2C9 N(0.812) CYP  2C9 N(0.918) CYP  1A2 N(0.880) 

N(0.948) 2.200 CYP  2D6 N(0.871) CYP  2D6 N(0.945) CYP  2C19 N(0.910) 
CYP  3A4 N(0.617) CYP  3A4 N(0.876)   

                                                

1N: none, 2I: inhibitor, 3W: weak inhibitor, 4S: substrate
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CONCLUSIONS  

Homology modeling and molecular docking reduces 
cost, time and effort as initial step in screening for 
new medicines. However, this step should be accom-
panied by studying pharmacodynamics and pharma-
cokinetics to provide information about interactions 
of  lead compounds inside the human body as well 
as co-administered drugs. Antibiotic research may 
exploit alternative targets in bacteria such as choris-
mate synthase and other enzymes of  the shikimate 
pathway on which compounds are screened from 
chemical libraries to identify inhibitors.
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