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Abstract— From the beginning of ferro-hydrodynamics, several authors have proposed analytical models to describe the movement of 

ferrofluids in the presence of rotating external magnetic fields. To this effect they have made valid simplifications in certain and very restricted 

physical situations. In this work we analyze the effects of these approaches against numerical solutions that do not make use of them. A sample 

of ferrofluid immersed in containers with three types of geometries was considered: one of flat and parallel plates, one cylindrical and another 

coaxial cylindrical. Velocity profiles were obtained by these two strategies. The analytical solution leads to a linear model with several 

simplifications, while the second, numerical in nature, generates a non-linear model, but without approximations. The simulation results showed 

that the simplifications made in the analytical strategy generate profiles that are valid only for magnetic field intensities lower than the respective 

ferrofluid saturation values. Additionally, and given the level of development of analytical modeling, it was found that the numerical solution 

is currently the most appropriate to evaluate the ferro-hydrodynamic model, since it does not have restrictions related to the intensity of the 

magnetic field. In the same way, it allows to evidence the phenomenon of saturation in the velocity profiles by increasing the intensity of the 

magnetic field, a situation observed experimentally, and unpredictable by means of these currently available pseudo-analytical solutions. 

Keywords: Ferrofluid, Pseudo-analytical solution, Rotating magnetic fields, Velocity profile. 
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I. INTRODUCTION 
 

The phenomenon of a ferrofluid flow contained in a square, 

cylindrical and annular geometry has been studied in recent years [1-

5], in order to explain the causes of velocity profiles resulting from the 

presence of an External Rotating Magnetic Field (ERMF). However, 

no consensus has been reached at the time of determining the 

generators of the movement, and various theories have been postulated 

[4,6-13] without having been able to describe or predict the 

experimentally measured profiles so far. One of the theories that was 

discarded years ago, but that has recently gained relevance due to flow 

measurements in the internal parts of the ferrofluid [14], has been the 

Internal Angular Momentum Diffusion Theory (IAMDT) which, as its 

name implies, attributes the flow to the diffusion of internal angular 

momentum from the magnetic nanoparticles to the carrier fluid, 

[3,4,6,11-13]. In this hypothesis, the vorticity between the fluid layers 

differs from the spin velocity of nanoparticles, which are rotating by 

the action of a magnetic torque generated by the difference in the 

direction of the ERMF and the magnetization of the ferrofluid [3]. 

Although IAMDT qualitatively corresponds to the measured profiles, 

there are obvious quantitative differences between theoretical and 

experimental profiles that continue to disqualify it as a tool capable of 

describing flow profiles, [15]. One cause of this situation is the 

limitation of the pseudo-analytical solution of the model. This restricts 

the validity of the velocity profiles obtained using ERMFs of very low 

amplitude and frequency [11-13, 16], which differs from the 

experimental conditions in which measurements have been made [15]. 

Therefore, a model solution strategy is required in which such 

simplifications are not demanded [5]. With this, it would be possible 

to eliminate the restrictions that prevent an adequate evaluation of the 

IAMDT's performance in the prediction of ferrofluids velocity profiles 

under the effect of ERMFs of various amplitudes and frequencies. In 

this vein, this article compares the profiles obtained through an 

approximate model (pseudo-analytical solution) and another without 

approximations (numerical solution algorithm), to evaluate the effect 

of these restrictions, observing the differences and limitations of the 

resulting profiles. 

 

 

II. THEORETICAL FRAMEWORK 

 
This model compiles the IAMD theory, which in turn includes the 

hydrodynamic equations for the generation of velocity profiles, and 

the magnetic equations, which describe the applied rotating magnetic 

field, as well as the magnetization of the ferrofluid. We disaggregate 

each one of them below. 

 

a. Hydrodynamic equations 
 

The hydrodynamic system is composed of the continuity equation 

for incompressible fluids (Eq.(1)), the linear momentum balance 

equation (Eq.(2)), and the internal angular momentum balance 

equation (Eq.(3)). This set of equations expressed in a dimensionless 

form is [4,11-13,17]: 

  

 𝛁̃  ⋅  𝐯̃ = 0, (1) 
  

𝑅𝑒𝑣

𝐷𝐯̃

𝐷𝑡
=

𝜁

𝜂Ω̃
𝐌̃  ⋅  ∇̃𝐇̃ 

 
−∇̃𝑝̃ +

2𝜁

𝜂
∇̃ × 𝝎̃ +

𝜂𝑒

𝜂
∇̃2𝐯̃, 

(2) 

  

𝑅𝑒𝜔

𝐷𝝎̃

𝐷𝑡
=

1

Ω̃
(𝐌̃ × 𝐇̃) + 2∇̃ × 𝐯̃ − 4𝝎̃ +

4𝜂

𝜂𝑒
 

 
(

1

𝑣𝑒2 +
1

𝜅2) ∇̃(∇̃  ⋅  𝝎̃) +
4𝜂

𝜂𝑒𝜅2 ∇̃2𝝎̃, (3) 

where v ̃  is the average linear velocity vector of the ferrofluid, 

D/Dt  the material derivative, ζ the parameter of the vortex viscosity, 

η the shear viscosity, Ω ̃=Ω τ the parameter that relates the rotational 

velocity of the ERMF and the magnetization relaxation constant, M ̃  

ferrofluid magnetization, H ̃  ERMF intensity, p ̃ the absolute pressure 

of the system, ω ̃ the average angular velocity of the magnetic 

nanoparticles, η_e=η+ζ without any physical significance, 

κ=((4ηζR_0^2)/(η'η_e ))^(1/2)   parameter related to the coefficient of 

"spin viscosity" η^', responsible for the diffusion of Internal Angular 

Momentum in the fluid layers. On the other hand, 

ve=((4ηζR_0^2)/(λ'η_e ))^(1/2) is related to the volumetric coefficient 

of the “spin viscosity” λ^'. Finally, Re_v=(ρR_0^2)/η ((μ_0 χ_i K^2 

Ω_f)/ζ)  and Re_ω=ρI/ζ ((μ_0 χ_i K^2 Ω_f)/ζ) represent the 

translational and rotational Reynolds number respectively. The 

variables without dimensions of the system of ferrohydrodynamic 

equations of order one, and represented with the symbol ∼ at the top 

of these, are defined in Eq. (4) and (5) [4, 5, 11-13, 18]. 

 

𝐌̃ =
𝐌

𝜒𝑖𝐾
,    𝐇̃ =

𝐇

𝐾
,    𝐁̃ =

𝐁

𝜇0𝐾
, 

     ∇̃= 𝑅0∇,    𝑟̃ =
𝑟

𝑅0
,    𝑡̃ = Ω  𝑡𝑓 , (4) 

  

𝑝 =
𝜁𝑝

𝜇0𝜂𝜒𝑖𝐾
2Ω̃

,    𝝎̃ =
𝜁𝝎

𝜇0𝜒𝑖𝐾2Ω̃
, 

 
   𝐯̃ =

𝜁𝐯

𝜇0𝜒𝑖𝐾2Ω̃𝑅0

. 
(5) 

 

Likewise, χ_i   represents the initial magnetic susceptibility of the 

ferrofluid, μ_0  the magnetic permeability of the air or vacuum, R_0   

the radius of the container, t_f  the analysis time of the flow 

phenomenon and K the peak value of the magnetic field strength. Now, 

analyzing the dynamics of the steady state system, an approximation 

is made based on the Reynolds number [19]. It assumes that diffusive 

effects predominate over inertial effects, so that in the phenomenon of 

flow generation it must be fulfilled that. 

 

𝑅𝑒𝑣

𝐷𝐯̃

𝐷𝑡
= 𝟎, 

 
𝑅𝑒𝜔

𝐷𝝎̃

𝐷𝑡
= 𝟎. 

(6) 

 

 The boundary conditions used for the solution of the equations 

that describe the hydrodynamic problem are the non-slip and non-

penetration conditions, for the linear velocity of the ferrofluid and the 

rotational velocity of the nanoparticles, as shown in Eq. (7) and (8) [3]. 

 

 
𝐯 − 𝐯𝐬 =

1

𝛽
[𝐧 × (𝐧 ⋅  𝐓 × 𝐧)], 

(7) 

  
𝝎 − 𝝎𝒔 =

𝛽

2
(∇ × 𝐯). 

(8) 

 

In Eq. (7) n is the normal unit vector, from the ferrofluid volume 

to the air phase of the interface, β is the friction coefficient dependent 

on the sliding velocity, v_s  is the velocity at the walls and T  is the 

Cauchy stress tensor in the fluid. ω_s is the angular velocity at the 

walls. Similarly, for the local average angular velocity of the particles, 

a boundary condition is proposed in which the possibility arises that 

the particle, near a solid surface, rotates at the same surface velocity, 

that is, β=0. On the other hand, in the literature they propose that 

through an interfacial momentum balance in a control volume, the 

boundary condition that must be met at the ferrofluid-air interface can 

be obtained, as in Eq. (9). 

 

 𝐧 ⋅  (𝐂|𝑏 − 𝐂|𝑎) = 𝟎. (9) 
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 In this equation, C  is the stress tensor, which is a measure of the 

transport of Internal Angular Momentum (IAM) by direct contact. 

Condiff and Dahler [20] proposed a constitutive equation for the 

torque stressor C, who assumed it as symmetrical and dependent only 

on the gradient of the rotation velocity ω. 

  

𝐂 = 𝜂′[∇𝝎 + (∇𝝎)𝑡] + 𝜆′(∇  ⋅  𝝎)𝐈. (10) 
 

 In addition, Eq. (9) shows that the pair of efforts is continuous 

throughout the interface, considering that a and b represent the two 

phases that are part of the interface of the system under study. 

Therefore, the normal and tangential boundary conditions, for the 

internal angular momentum, are obtained through the internal product 

of Eq. (9) with the normal and tangential unit vectors, n and t. In this 

way, the following valid relationships are available for any point of 

the ferrofluid-air interface [13]. 

  

 𝐶𝑛𝑛|𝑏 = 𝐶𝑛𝑛|𝑎, (11) 
  

 𝐶𝑛𝑡|𝑏 = 𝐶𝑛𝑡|𝑎. (12) 
 

Likewise, the literature reports that with Eq. (13) and (14) the 

following relationships can be established for the solution of the 

system of hydrodynamic differential equations. 

 
(𝑇𝑛𝑛|𝑏 − 𝑇𝑛𝑛|𝑎) + 2ℏγ + 𝐵𝑛(𝐻𝑛|𝑏 − 𝐻𝑛|𝑎) 

 
+

1

2
μ0(𝐻2|𝑏 − 𝐻2|𝑎) = 0, 

(13) 

 

 𝑇𝑛𝑡|𝑏 − 𝑇𝑛𝑡|a + 𝐭 ⋅  ∇sγ + 𝐵𝑛𝐾𝑠,𝑡 = 0, (14) 
   

where T_nn and T_(nt   )are the normal and tangential component 

of the stress tensor, respectively, which appear below. 

 

  
𝑇nn = −𝑝 + 2η

𝜕𝑣𝑛

𝜕xn
+ λ(∇  ⋅  𝐯), (15) 

  
𝑇𝑛𝑡 = η (

𝜕𝑣n

𝜕𝑥t
+

𝜕𝑣t

𝜕𝑥n
) + ζ𝐭𝐧: 𝜺 ⋅  (∇ × 𝐯 − 𝟐𝝎). 

(16) 
 

In Eq. (13-16), ℏ represents the coefficient of curvature of the 

interface, ∇_s the surface gradient at the interface, γ the surface 

tension and K_s  the surface current density. Additionally, in Eq. (13) 

it is taken into account that. 

 

𝐻2|𝑎 = 𝐻𝑛
2|𝑎 + 𝐻𝑡

2|𝑎, 

    𝐻2|𝑏 = 𝐻𝑛
2|𝑏 + 𝐻𝑡

2|𝑏 . (17) 
 

b. Equations describing the magnetic process 
 

The system of magnetic equations has as one of its components 

the one related to the relaxation of magnetization. In the case where 

low amplitude rotary magnetic fields are applied, the magnetization 

equation of Shliomis [3,11,12,21] (Sh-72), Eq. (18) is used. Already 

for the case of flows in the presence of these fields but of high 

intensity, the magnetization equation of Martsenyuk, Raikher and 

Shliomis [22,23] (MRSh-74), Eq. (19) is used. It describes the 

behavior of the magnetization vector of the magnetic particle, in its 

attempt to align with the ERMF. In addition to these magnetic 

relaxation equations, the Maxwell equations, i.e., Ampère-Maxwell 

Law, Eq. (20), and Magnetic Field Gauss Law, Eq. (21), are used for 

the description of the rotating magnetic field present within the 

ferrofluid sample container. 

Ω̃
𝜕𝐌̃

𝜕𝑡
+ Ω̃𝜀𝐯̃  ⋅  ∇̃𝐌̃ = Ω̃𝜀𝝎̃ × 𝐌̃ 

 
−𝐌̃ +

𝐌𝐞𝐪

𝜒𝐾
, 

(18) 
   

Ω̃
𝐷𝐌̃

𝐷𝑡
= Ω̃𝜀𝝎̃ × 𝐌̃ +

𝐇̃(𝐇̃  ⋅  𝐌̃)

|𝐇̃|2
 

 
(

1

𝐵⊥
−

1

𝐵∥
) +

3𝐇̃  𝜑(𝐻̃1, 𝐻̃2)

𝐵∥
−

𝐌̃

𝐵⊥
, 

(19) 

   

 ∇̃ × 𝐇̃ = 𝟎, (20) 
  

 ∇̃  ⋅  (𝛘𝐌̃ + 𝐇̃) = 0, (21) 

  

where ε=(μ_0 χK^2 τ)/ζ=2/3 α^2   is called the perturbation 

parameter, [11]. The constants of the parallel and perpendicular 

relaxation times B_∥and B_⊥, respectively, appear below. 

  

𝐵∥ =
τ∥

τB
=

dln𝐿(α)

dln(α)
, 

 
     𝐵⊥ =

τ⊥

τB
=

2𝐿(α)

α − 𝐿(α)
. 

(22) 
Similarly, to model the phenomenon of magnetic saturation of the 

ferrofluid, the Langevin equation, Eq. (23) will be used. 

 

 𝜑(𝐻̃1, 𝐻̃2) =
𝑐𝑜𝑡ℎ(𝛼)

𝛼
−

1

𝛼2  . (23) 

  

In this equation, subscripts 1 and 2 correspond to the components 

of the magnetic field intensity vector. The Langevin parameter, α, that 

appears in it is defined as, 

  

𝛼 = √
3

2
ε|𝐇̃|

2
. (24) 

 

That being said, to determine if a ferrofluid is subjected to a high 

or low amplitude magnetic field, the value of the said Langevin α 

parameter is taken as a reference. If α≪1  implies a low intensity 

magnetic field. On the contrary, a value of α≫1  implies one of high 

magnitude. In the first case (α≪1), there is a linear relationship 

between the equilibrium magnetization M_eq   and the intensity of the 

magnetic field H. In the second case M_eq  is approximately equal to 

the saturation magnetization of the ferrofluid. Similarly, to define the 

frequency of the external magnetic field, the dimensionless parameter 

Ω ̃ is examined. Thus, a value of Ω ̃≪1 describes a low frequency 

magnetic field and vice versa, values of Ω ̃≫1 correspond to high 

frequencies. In relation to the boundary conditions for the magnetic 

problem, these are condensed into two equations, the continuity of the 

normal component of the magnetic field density B, and that 

corresponding to the jump of the tangential component of the magnetic 

field intensity H, expressed as follows. 

 

𝐧 ⋅  [𝐁̃𝐚 − 𝐁̃𝐛] = 

 𝐧 ⋅  [(𝐇̃ + 𝛘𝐌̃)
𝑎

− (𝐇̃ + 𝛘𝐌̃)
𝑏

]

= 0, 
(25) 

  

 𝐧 × [𝐇̃𝑎 − 𝐇̃𝑏] = 𝐊̃𝐬, (26) 

 

 where K ̃_s   is the current distribution on the surface of the walls 

of the ferrofluid container. The scalar components of the interfacial 

magnetic boundary equations are. 

  

 𝐵̃𝑛|𝑎 − 𝐵̃𝑛|𝑏 = 0, (27) 
 

 𝐻̃𝑡|𝑎 − 𝐻̃𝑡|𝑏 = 𝐾𝑠. (28) 
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 c. Geometry of flat and parallel plates 
 

 The physical system consists of a rectangular container of width 

and height δ, with walls on the lower surface and two sides (x ̃=0, y ̃=0 

y y ̃=1) and infinite length (z direction), as can be seen in figure 1. It 

also contains a ferrofluid, which in its free surface comes into contact 

with the surrounding air (ferrofluid-air interface at x ̃=1). The rotating 

magnetic field is generated by two alternating current transport coils, 

out of phase 90^( ^∘ )  electric and 90^( ^∘ )  in space. The present 

fields are generated in the axial direction of the channel (magnetic field 

generated by the current in the xy plane and counterclockwise, (see 

figure 1). They also appear in the direction of the yz plane (magnetic 

field generated by the flow symbolized through circumferences, where 

the x inside the circumference constitutes the flow that enters the xy 

plane, and the filled circumferences, represent the flow that leaves the 

xy plane. (See figure 1). The origin of the coordinate axis it is located 

in the lower left corner of the front view of the channel. It is assumed 

that the resulting magnetic field rotates on the xz  plane, because of 

the electric current flowing through each coil and its physical 

arrangement. Consequently, it is intended to predict profiles of: 1) the 

average linear velocity of the fluid in the axial direction v ̃=v ̃_z (x ,̃y ̃ 

)  i_z  and 2) the angular velocity of the nanoparticles at the points of 

the xy plane of the channel, that is to say, ω ̃=ω ̃_x (x ̃,y ̃ ) i_x+ω ̃_y 

(x ̃,y ̃ ) i_y, considering that M ̃  ⋅ ∇ ̃H ̃=0, due to the assumption of 

uniformity of the rotating field. Finally, it is assumed that the physical 

arrangement of the external current sources makes it possible to define 

the intensity and the magnetic field density such as H ̃_z (t  ̃)=sin(t ̃ ) 

y B ̃_x (t ̃ )=cos(t ̃ ), respectively. 

 

Figure 1: Diagram of the cross section of the rectangular channel and its 

associated variables for the application of IAMDT. 
Source: Own elaboration. 

 

III. METHODOLOGY OR PROCEDURES 

 

The methodology for the solution of the models for α≪1 

(analytical solution) and α≫1 (numerical solution) is described below. 

 

a. Ferro-hydrodynamic equations, case α≪1 

 

In order to obtain the solution to the system of differential 

equations of the hydrodynamic problem, a uniform ERMF was 

assumed, so that, M ̃  ⋅ ∇ ̃H ̃=0. Likewise, nullity was added in the 

divergence of the angular velocity of the nanoparticles, that is, ∇  ̃  ⋅ 
ω ̃=0. Also, considering that there are no pressure differentials in the 

direction of the ferrofluid movement, you have to ∇ p̃ ̃=0. Finally, for 

the analytical solution the parameter η^'=0  was assumed, and 

therefore, κ→∞. Thus, the equations of hydrodynamic balance remain 

as: 

  2𝜁

𝜂
∇̃ × 𝝎̃ +

𝜂𝑒

𝜂
∇̃2𝐯̃ = 𝟎  , 

(29) 

  

 
𝝎̃ =

𝐌̃ + 𝐇̃

4Ω̃
+

1

2
∇̃ × 𝐯̃  . 

(30) 

 

By replacing Eq. (30) in Eq. (29), the nullity of the Laplacian of 

the linear velocity vector is obtained. 

 

 ∇ ̃^2 v ̃=0. (31) 

  

From Eq. (30) - (31) the linear velocity profiles are obtained, 

implementing the Fourier series (SF) method, for a channel of width 

W and height H. Resulting in Eq. (32) [5, 24]. 

 

𝑣̃𝑧(𝑥̃, 𝑦̃) = ∑

∞

𝑛=1

−√2𝐴 𝑊𝑒
𝑛𝜋𝐻

𝑊 [(−1)𝑛 − 1]

𝐻(𝑛𝜋)2 (𝑒
2𝑛𝜋𝐻

𝑊 + 1)
 

 
⋅ (𝑒

𝑛𝜋𝐻𝑥
𝑊 − 𝑒−

𝑛𝜋𝐻𝑥
𝑊 ) sin(𝑛𝜋𝑦̃). (31) 

  

b. Ferro-hydrodynamic equations, case α≫1 
 

For magnetic fields of intermediate or high intensity, the linear 

momentum balance equation remains the same, while the amount of 

IAM, bearing in mind Eq. (6), becomes. 

 
1

Ω̃
(𝐌̃ × 𝐇̃) + 2∇̃ × 𝐯̃ − 4𝝎̃ +

4𝜂

𝜂𝑒
 

 
(

1

𝑣𝑒2 +
1

𝜅2) ∇̃(∇̃  ⋅  𝝎̃) +
4𝜂

𝜂𝑒𝜅2 ∇̃2𝝎̃ = 𝟎. 
(32) 

  

Considering the coordinates in which IAM is presented (x and y 

coordinates), the respective component equations are (η^'≠0) [5]. 

 

⟨𝑙𝑥⟩
𝑡

Ω̃
+ 2

𝜕𝑣̃𝑧

𝜕𝑦̃
− 4𝜔̃𝑥 

+
4𝜂

𝜂𝑒
(

1

𝑣𝑒2 +
1

𝜅2) (
𝜕2𝜔̃𝑥

𝜕𝑥̃2 +
𝜕2𝜔̃𝑦

𝜕𝑦̃𝜕𝑥̃
) 

 
+

4𝜂

𝜂𝑒𝜅2 (
𝜕2𝜔̃𝑥

𝜕𝑥̃2 +
𝜕2𝜔̃𝑥

𝜕𝑦̃2 ) = 0, (33) 

 
⟨𝑙𝑦⟩

𝑡̃

Ω̃
− 2

𝜕𝑣̃𝑧

𝜕𝑥
− 4𝜔̃𝑦 

+
4𝜂

𝜂𝑒
(

1

𝑣𝑒2 +
1

𝜅2) (
𝜕2𝜔̃𝑥

𝜕𝑦̃𝜕𝑥̃
+

𝜕2𝜔̃𝑦

𝜕𝑦̃2 ) 

 
+

4𝜂

𝜂𝑒𝜅2 (
𝜕2𝜔̃𝑦

𝜕𝑥̃2 +
𝜕2𝜔̃𝑦

𝜕𝑦̃2 ) = 0. (34) 

 

 Figure 2: Flowchart of methodology implemented in the development of 

the numerical algorithm, for the solution of the IAMDT ferrohydrodynamic 

problem. 
Source: Own elaboration. 

  

For their solution, these equations are discretized taking into 

account the presence of high intensity magnetic fields (α≫1)  and the 

transmission of IAM (η^'≠0) [5]. In this order of ideas, the flow chart 
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corresponding to the methodology implemented for the numerical 

solution of the ferrohydrodynamic model is presented in Figure 2. 

First, the methodology initializes with the entry of the characteristic 

data of the ferrofluid sample. Next, the flow profiles are calculated, 

v ̃_z=f(x ̃,ω ̃_y ) y ω ̃_y=f(x ̃,v ̃_z,⟨l ̃_y ⟩_t ), based on an average 

torque value, ⟨l ̃_y ⟩_t, already determined. In the first iteration, the 

average torque values are initialized to zero. Subsequently, with these 

velocity values the magnetic problem is solved to calculate M ̃_x (x ̃,y ̃ 

), M ̃_z (x ̃,y ̃ ), H ̃_x (x ̃,y ̃ ) y H ̃_z (x ̃,y ̃ )  and determine once again 

the value of the average torque, ⟨l ̃_y ⟩_t^(k+1). This value is 

compared with that of the previous iteration, ⟨l ̃_y ⟩_t^k, in order to 

establish convergence criteria. Once these are met, the values of the 

profiles found in the current iteration are printed, and set as the results 

of the algorithm. 

 

c. Comparison of velocity profiles 
 

Then, in Figure 3 the effect of the approximations made in the 

analytical solution methodology is shown, in which ferrofluid 

saturation was not considered. It refers to the phenomenon in which 

the magnitude of the velocity is invariant as the intensity of the 

magnetic field increases, the magnetization vector of the ferrofluid 

nanoparticles remaining parallel to the direction of the external 

magnetic field. Similarly, the diffusion of IAM that occurs due to 

differences between the velocity of rotation of the nanoparticles and 

that of the carrier fluid was neglected. Although these approaches are 

necessary to solve the hydrodynamic equations in an analytical way, 

at the same time they restrict the validity of the model obtained for 

only ERMF values in which α≪1. In contrast, the velocity profiles 

obtained through the numerical solution algorithm are presented, in 

which such approaches are not required. In this figure, num and a 

represent the solutions obtained numerically and analytically using 

Fourier series, α= [0.08 0.24 0.96 1.3]. Now, to observe the differences 

in the flow predictions of each methodology, figure 4 shows the 

predicted maximum velocity values for each model, as a function of 

the value of α. The inability to predict the analytical solution is evident, 

due to the strong approximations that were made. Finally, figure 5 

shows the error progression between the predictions of both models as 

the intensity of the rotating magnetic field increases. 

  

 
Figure 3: Effect of parameter α on the analytical and numerical predictions 

of velocityv_z (x ̃; y ̃=0,5), for WBF-1 [15] in a container of flat and parallel 

plates with two-dimensional domain. f=150 Hz, κ=∞.  
Source: Own elaboration. 

 

 
 

 

 
 

 

 
 

 

 

Figure 4: Effect of parameter α on the analytical and numerical predictions 

of the maximum velocity in v_z (x ̃; y =̃0,5), for WBF-1 [15] in a container of 

flat and parallel plates with two-dimensional domain.  f=150 Hz, κ=∞. 

Source: Own elaboration. 

 

 

IV. RESULTS ANALYSIS 

 

Referring to figures 3 and 4, a permanent increase in the magnitude 

of the pseudo-analytical velocity profiles was observed. On the 

contrary, in numerical profiles, the magnitude of the velocity did not 

always increase as the intensity of the external magnetic field 

increased. In that sense, there were obvious differences between the 

results of each of the solution methodologies, as can also be seen in 

figure 5. Specifically, the container of figure 1 allowed to evaluate two 

aspects that had not been considered in previous studies [4]. First, the 

variation of the velocity in two dimensions was taken into account, 

that is, the height and width of the channel. Second, the joint effect of 

the tangential stresses at the ferrofluid-air interface, and the volumetric 

stresses within the same ferrofluid were evaluated. For this geometry, 

in figure 4 the saturation phenomenon of the profiles was again 

observed, for values of α≥1. 

Figure 5: Effect of the parameter α on the percentage difference of the 

analytical and numerical predictions of the maximum velocity in 𝑣𝑧(𝑥̃;  𝑦̃ =
0,5), for WBF-1 [15] in a flat and parallel plate container with two-dimensional 

domain; 𝑓 = 150 Hz, 𝜅 = ∞. 

Source: Own elaboration. 

 

 

V. PROPOSAL FOR IMPROVEMENT 

 

In order to improve the accuracy of the responses obtained with 

the used models is necessary to adjust the model or their parameters. 

Accurate variables measurements can help to improve and prove these 

models. 
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VI. CONCLUSIONS 

 

The model that describes the movement of ferrofluids by the action 

of an external rotating magnetic field, comprises a system of partial 

time-dependent differential equations describing the existing 

hydrodynamic, electrical and magnetic phenomena. This set of 

equations has a high complexity that currently prevents its analytical 

development. The literature reports some attempts to solve it but this 

has required the implementation of several approaches to obtain, thus, 

a pseudo-analytical solution, which in many cases departs from 

experimental reality. In this work the results obtained from this 

simplified analytical solution were compared with the numerical one. 

It was found that pseudo-analytical velocity profiles do not properly 

describe the phenomenon of saturation of ferrofluid. For this case, the 

magnitudes of the velocities were always increased, contrary to that 

obtained with the numerical profiles. Simulations were performed for 

parallel flat plate. In this way, we consider that the numerically 

generated velocity profiles, instead of the pseudo-analytical ones, are 

adequate to evaluate the performance of the ferro-hydrodynamic 

model.  
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