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ABSTRACT 

Network Intrusion Detection System (IDS) devices play a crucial role in the realm of 

network security. These systems generate alerts for security analysts by performing signature-

based and anomaly-based detection on malicious network traffic. However, there are several 

challenges when configuring and fine-tuning these IDS devices for high accuracy and 

precision. Machine learning utilizes a variety of algorithms and unique dataset input to 

generate models for effective classification. These machine learning techniques can be 

applied to IDS devices to classify and filter anomalous network traffic. This combination of 

machine learning and network security provides improved automated network defense by 

developing highly-optimized IDS models that utilize unique algorithms for enhanced 

intrusion detection. Machine learning models can be trained using a combination of machine 

learning algorithms, network intrusion datasets, and optimization techniques. This study 

sought to identify which variation of these parameters yielded the best-performing network 

intrusion detection models, measured by their accuracy, precision, recall, and F1 score 

metrics. Additionally, this research aimed to validate theoretical models’ metrics by applying 

them in a real-world environment to see if they perform as expected. This research utilized a 

quantitative experimental study design to organize a two-phase approach to train and test a 

series of machine learning models for network intrusion detection by utilizing Python 

scripting, the scikit-learn library, and Zeek IDS software. The first phase involved optimizing 

and training 105 machine learning models by testing a combination of seven machine learning 

algorithms, five network intrusion datasets, and three optimization methods. These 105 

models were then fed into the second phase, where the models were applied in a machine 

learning IDS pipeline to observe how the models performed in an implemented environment. 

The results of this study identify which algorithms, datasets, and optimization methods 

generate the best-performing models for network intrusion detection. This research also 

showcases the need to utilize various algorithms and datasets since no individual algorithm or 

dataset consistently achieved high metric scores independent of other training variables. 

Additionally, this research also indicates that optimization during model development is 

highly recommended; however, there may not be a need to test for multiple optimization 

methods since they did not typically impact the yielded models’ overall categorization of 



 v 

success or failure. Lastly, this study’s results strongly indicate that theoretical machine 

learning models will most likely perform significantly worse when applied in an implemented 

IDS ML pipeline environment. This study can be utilized by other industry professionals and 

research academics in the fields of information security and machine learning to generate 

better highly-optimized models for their work environments or experimental research. 
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CHAPTER 1 

INTRODUCTION 

This section introduces the topic of this dissertation on machine learning and network 

intrusion detection. This study evaluates a series of machine learning models for network 

intrusion detection to identify how the combination of machine learning algorithms, network 

intrusion detection datasets, and optimization parameters impacts the final models’ outcome 

and performance. Additionally, this research created an intrusion detection system (IDS) with 

a machine learning (ML) capabilities pipeline such that trained ML models can be applied and 

evaluated in a real-world environment. A quantitative experimental study design effectively 

organizes the tests for this research and analyzes their results. This section discusses the 

background, goals, and significance of this research and briefly introduces how this study was 

designed and conducted. 

 

Background of the Problem 

Detecting network anomalies and malicious traffic is a significant concern and 

challenge for organizations today. Organizations must adequately protect private data from 

external threats; however, attackers continue to develop new techniques to bypass standard 

security practices and protocols. Organizations may employ security operation center (SOC) 

analysts to review network traffic and alerts to track any potential compromise within the 

network to address this ongoing threat (Schinagl, Schoon, & Paans, 2015). Typically, SOC 

analysts will review network traffic and system logs whenever they identify an anomaly 

within the network (Aijaz, Aslam, & Khalid, 2015). Many of these analysts rely on alerts 

from different systems to warn them about potential threats or anomalies found on particular 

devices. If a SOC analyst believes a system has been legitimately compromised, they will 

likely try to correlate events to establish a complete timeline of how a threat actor obtained 

initial access, established persistence, and exfiltrated data (Deyang & Dedong, 2011). This 

extensive adversary tracking may require the analyst to verify and correlate logs from 
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numerous systems tediously. These analysts may easily miss malicious traffic or related 

events while combing through the logs and security alerts between devices, as this process can 

be extremely challenging. Experienced threat actors will utilize different tools, techniques, 

and procedures (TTPs) to effectively bypass security systems and protection mechanisms. 

Several different methods and tools provide obfuscation and evasion capabilities that prevent 

detection within networks and devices. Advanced Persistent Threat (APT) groups are highly 

technical adversaries that will almost certainly utilize these evasion techniques to effectively 

blend into a victim organization’s network traffic to avoid detection over an extended period. 

Intrusion Detection System (IDS) devices are security systems that monitor the 

network for malicious or anomalous activity and generates alerts based on their configuration. 

There are two primary detection techniques utilized by IDS devices, misuse detection and 

anomaly detection (Nassar, El-Bahnasawy, Ahmed, Saleeb, & El-Samie, 2019). Misuse 

detection, also known as signature-based detection, will flag malicious traffic based on a 

vendor’s unique signatures. The biggest problem for misuse detection is maintaining an up-to-

date signature ruleset or database to flag known bad traffic. This type of detection method 

struggles to identify unknown, or zero-day, network attacks that have not had signatures 

developed. The benefit of misuse detection is that it has a low false alarm rate, meaning that 

the alerts are typically very accurate. Anomaly detection will establish a baseline of normal 

traffic behavior to identify abnormal traffic behavior based on the normal profile deviation. 

Anomaly detection, or behavior-based detection, can strongly generalize traffic, thereby 

enabling the capability to flag unknown zero-day attacks. The major challenges for anomaly 

detection are the high false alarm rate and inaccuracies. Regardless of either misuse detection 

or anomaly detection mode, a fine-tuned IDS should effectively flag malicious and anomalous 

traffic while also allowing innocuous traffic to pass through to enable normal business 

operations. It should also be noted that open-source IDS software operates by utilizing a 

primary detection engine made up of various processes that apply filters to the ingested 

network traffic. 

An IDS configured for misuse detection will observe traffic and send alerts when 

specific network traffic criteria match individual signatures configured on the device. The 

rules or signatures on an IDS must be manually set up and regularly maintained by a user who 

knows what is considered “bad” traffic and “good” traffic on their network. The challenge for 
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these IDS misuse detection configurations is properly defining and maintaining the rules to 

alert on network traffic that may be malicious. Over time, threat actors and their attacks 

change as more vulnerabilities and exploits for systems become published; thus, many 

signature-based IDS devices will not utilize a relevant or up-to-date ruleset to alert against 

new attacks unless analysts regularly review and update the IDS alert ruleset (Sopan, 

Berninger, Mulakaluri, & Katakam, 2018). 

An IDS configured for anomaly detection will require both setup and tuning. In a two-

phase process, the IDS must be trained to build a normal behavior profile of the network and 

then tested to compare the current traffic to the previously generated normal behavior profile 

(Anson, 2020). Historically, many IDS devices and software used strict statistical models to 

analyze deviations from the normal traffic profile to determine if a piece of traffic is 

anomalous. Newer techniques for anomaly detection incorporate artificial intelligence and 

machine learning techniques, which will be further discussed later in this paper. An anomaly-

based IDS device aims to flag anomalous traffic while maintaining a low degree of false 

positives false negatives. This type of configuration’s primary benefit is the potential to detect 

unknown, or zero-day, network attacks before vendors even have published signatures. The 

issue is that current anomaly detection techniques employed by most IDS devices do not 

utilize ML classification algorithms to categorize pieces of traffic. A poorly tuned anomaly-

based IDS will generate numerous false alarms until a network security analyst decides to 

ignore specific alerts due to the low confidence levels in the mismanaged IDS device or 

software. 

There are numerous ways to set up and configure an IDS on a network. One of the 

first decisions that must be made when installing an IDS is where to set up the device on the 

network (Bhuyan, Bhattacharyya, & Kalita, 2014). IDS devices can be installed inline on the 

network, where live network traffic must pass through the system to reach the next device. 

The benefit of an inline setup is live traffic monitoring analysis; a potential challenge with this 

setup is traffic disruption due to excessive analysis on the device, thereby resulting in traffic 

queues. Alternatively, IDS devices can be setup on a mirror or span port, a dedicated port on a 

networking device configured to forward network traffic or logs. The benefit of this 

configuration is the lack of potential traffic flow disruption; however, since the network 

analysis is not live, threats may reach vulnerable devices on the network by the time the IDS 
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alert goes off. There are also hardware-based and software-based IDS setups. Hardware-based 

IDS devices are physical systems that provide dedicated machines and processing power for 

traffic analysis. Software-based IDS devices can be installed on a system that enables the 

device to perform IDS capabilities in addition to its original function; administrators may 

install IDS plugins onto existing networking systems or may stand up dedicated virtualized 

devices with IDS software to act as a dedicated virtual IDS device. Lastly, it should be 

mentioned that an Intrusion Detection System is closely related and commonly installed 

alongside an Intrusion Prevention System (IPS). IDS devices are dedicated systems intended 

to alert if specific network traffic patterns are detected on the network; IPS devices can be 

used to drop malicious packets or alter security configurations or rules on systems (such as 

routers or switches) if a threat is detected on the network. IPS devices can be set up just like 

IDS devices but are meant to react to malicious threats on the network rather than just alert 

(Johansen, 2020). IPS devices can be potent systems; however, these devices’ primary 

concern is the potential disruption of innocuous traffic. IPS devices may identify a “threat” 

and close critical ports or restrict communication between segmented networks, thereby 

disrupting standard business operations. This automatic network reconfiguration could cost 

the organization with the IPS a significant amount of money and reputation due to downtime 

of communications between critical systems. It is even more challenging to properly 

configure an IPS to identify and react based on a static ruleset due to the potential risk of 

business downtime. Many organizations use a well-configured IDS to send alerts to security 

analysts, who then manually investigate the alerts to determine if the threat was legitimate. 

While there are several different IDS hardware and software solutions, they all contain 

a similar syntax for IDS rules. Each IDS rule will have a set of fields configured to perform a 

particular action when identifying specific network criteria (Collins, 2014). For example, an 

IDS rule will contain specific fields to filter network packets such as a source IP, destination 

IP, direction of traffic, source port, destination port, and protocol. These rules can become 

even more granular by filtering packets based on fields unique to the protocol of the traffic or 

even other layers in the Open Systems Interconnection (OSI) model. In addition to these filter 

criteria, IDS rules will also be configured with specific rule actions (such as an alert or log if 

the criteria are identified in a packet), rule numbers, rule priority, rule revision, and rule 

classification. IDS rules can be highly specialized or extremely broad; it is up to the analyst to 
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finetune the IDS to properly configure these rules to alert on legitimate threats to the network 

correctly, or else the IDS will alert on innocuous traffic. 

IDS devices can be highly effective security systems that alert on threats within a 

network. However, it can be an arduous and tedious process to keep the IDS ruleset updated 

regularly. When initially setting up an IDS, it may take weeks or sometimes months to train 

an IDS to create a proper baseline for the system to identify “normal” traffic (Bejtlich, 2013). 

However, even after the initial baseline training, security analysts will need to continuously 

review the network to identify typical traffic and then manually update the IDS rules to match 

what they find. A misconfigured IDS ruleset can result in an overly sensitive IDS that 

generates excessive alerts (incorporating both true positives and false positives); similarly, a 

misconfigured IDS can also be configured with a loose ruleset that will not alert on legitimate 

malicious traffic (involving false negatives and true negatives). It can take several months for 

a security analyst to set up and adequately fine-tune an IDS, and even after it has been 

configured, someone will still need to monitor the network traffic to generate up-to-date IDS 

configurations continuously. In an ideal world, there would be a way to automate this process 

of analyzing the network traffic to determine what is considered “normal” traffic and then 

generate an effective IDS ruleset that alerts anomalous and malicious traffic while 

maintaining a high level of true positive and true negative alerting. 

Machine learning (ML) may provide a solution to this ongoing effort to detect new 

malicious traffic. Machine learning uses algorithms and statistical models to analyze or learn 

from training data to make decisions or predictions observed in other ingested datasets. There 

are several different ML algorithm types along with numerous optimization techniques to best 

train the ML model. ML algorithms can be categorized in different ways. There are 

unsupervised learning, supervised learning, and semi-supervised learning techniques (Maseer, 

Yusof, Bahaman, Mostafa, & Foozy, 2021). Unsupervised learning occurs when an algorithm 

is given an unlabeled dataset and will attempt to identify patterns or structures within the data. 

Human experts will label a portion of the semi-supervised learning dataset to assist the 

algorithm in identifying patterns better. If a dataset is completely labeled, then this can be 

used for supervised learning algorithms to identify a function or model that explains the data. 

Additionally, ML algorithms can be grouped between shallow learning methods and deep 

learning methods, which will be discussed later. These numerous ML learning techniques and 
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classification models will be further discussed in the Literature Review section. With the 

adequately selected ML algorithm and training dataset, a machine learning IDS device can be 

configured to automate the process of detecting anomalous network traffic through the use of 

misuse or anomaly detection. This type of IDS with ML capabilities will potentially automate 

detecting emerging threats and zero-day attacks utilized by attackers before the signatures are 

published by vendors. However, there are several challenges with the proposed IDS devices 

with ML capabilities due to the wide variety of possible ML algorithms and network intrusion 

detection datasets’ quality. These variables will need to be tested and evaluated to identify the 

best and most effective IDS ML configuration that produces the highest true positive 

detection rate while keeping false positive alerts at a minimum. 

Datasets are required to train and test ML algorithms. In the network intrusion 

detection realm, the datasets can consist of three primary types of data that make up the 

network traffic dataset (Ring, Wunderlich, Scheuring, Landes, & Hotho, 2019). First is 

packet-based data; this is commonly obtained in a standard packet capture format and 

contains full packet headers, fields, payloads, and associated metadata. The second is flow-

based data; this is a more condensed format which stripes out unique packet properties and 

primarily maintains packet metadata. This type of data aggregates packets that share specific 

properties within a given time window into a single flow and does not contain payload 

information. Lastly, there is a hybrid category of network data; this data contains a mixture of 

both packet-based and flow-based data. An example of this hybrid traffic would be flow-

based data that has been enriched to contain specific packet-based fields such as payloads and 

unique header information. Additional details and examples of these types of datasets will 

appear in the literature review of this paper.  

Several evaluation metrics can be applied to machine learning algorithm results that 

enable researchers to compare and contrast the models’ results. Before getting into these 

unique metrics, the four base metrics used to classify sets of labeled data are true positive 

(TP), true negative (TN), false positive (FP) or a statistical type I error, and false negative 

(FN) or a statistical type II error (Vinayakumar et al., 2019). True positive data are correctly 

labeled positive results; true negative data are correctly labeled false results; false-positive 

data are incorrectly labeled positive results; false-negative data are incorrectly labeled 

negative results. Machine learning researchers commonly utilize the following evaluation 
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metrics to compare the effectiveness of ML classification models: accuracy or proportion 

correct [(TP + TN) / (TP + TN + FP + FN)], positive predictive value [TP / (TP + FP)], 

sensitivity or recall or true positive rate or probability of detection or detection rate [TP / (TP 

+ FN)], negative predictive value [TN / (TN + FN)], specificity or TN rate [TN / (TN + FP)], 

and false alarm rate or false positive rate or fall-out [FP / (TN + FP)] (Chiba, 2019). These 

terms and metrics will appear across several papers in the Literature Review section and will 

be utilized to analyze this study’s results. 

Deep learning (DL) is a subset of machine learning that analyses successive and 

meaningful layers of representations from the original data input. The “deep” in deep learning 

refers to the layers, or depth, of the modeled data. Modern deep learning models may 

incorporate hundreds or even thousands of layers, whereas other learning models (such as 

typical machine learning models) may only utilize one or two layers, which is sometimes 

called shallow learning (Thapa, Liu, Kc, Gokaraju, & Roy, 2020). These layered 

representations of data are typically referred to as a neural network (NN). Each layer in the 

NN represents the original input data in an increasingly altered and informative perspective. 

Applied weights, also referred to as parameters, modify the data representations at each NN 

layer to slightly transform the data (Akashdeep, Manzoor, & Kumar, 2017). There can be 

millions of parameters at each layer, and learning, in this context, actually means finding the 

desired values for the weights applied in the NN. Next, after all the layers have transformed 

the original data and produced a final result, a loss function, or objective function, is used to 

take the output of the NN along with the true target value (the desired outcome) to calculate 

the distance score, or loss score, to see how far off the NN was from the true target value. 

Once this distance score has been calculated, a feedback signal, called an optimizer, is used to 

implement a backpropagation algorithm to adjust the NN weights and hopefully lower the loss 

score. This process will repeat several times; the weights are initially random values, but each 

iteration of the NN will modify the parameter values and minimize the loss value. This 

training loop process repeats a sufficient number of times until NN yields a minimal loss 

value. 

Data processing and optimization are additional significant factors when training 

machine learning models. There are numerous data transformation steps required to properly 

format the data such that it can be appropriately ingested while training an ML model (Buczak 



8 

& Guven, 2016). Additionally, each machine learning algorithm contains a series of highly 

configurable parameters that can be fine-tuned to optimize the trained model to yield the 

highest performance within a particular scoring method. As a result, models can be better 

optimized for particular scoring methods, such as accuracy over precision or vice versa. The 

optimization of ML models can dramatically change and affect the outcome of trained 

models. Optimizing a model for a particular scoring method may yield higher results in that 

specific metric; however, it may also severely impact the other evaluation metrics, both 

positively and negatively. It is crucial to consider the impact of optimizing a particular scoring 

method as it may dramatically affect the performance and other metrics of the model. 

Artificial intelligence and machine learning are the future for several professional 

fields. The research and integration of these automation techniques into different professions 

are occurring now and are only bound to increase as time progresses. Properly trained ML 

models will identify anomalies, outliers, patterns, and trends much better than humans. This 

type of analysis will save organizations time, human resources, and money. The integration of 

ML into IDS network environments is only a small subset and implementation of the whole 

topic of ML. However, this research seeks to assist organizations that utilize IDS devices on 

their network. This research reviews different ML classification models using a series of 

network intrusion datasets to identify which ML algorithms most effectively identify network 

traffic anomalous activity. Additionally, this research develops a proof of concept of an IDS 

and Python scripting pipeline that applies the previously trained ML models to unseen 

network traffic for evaluation. The machine learning models selected for this research will 

include Naïve Bayes (NB), Decision Tree (DT), Random Forest (RT), Ada Boost (AB), 

Bagging Classifier (BC), Logistic Regression (LR), and Stochastic Gradient Descent (SGD). 

The datasets used to train and test each of these ML algorithms will include the KDD 99, 

NSL-KDD, UNSW-NB 15, CICIDS 2017, and CIDDS-001 network traffic datasets. 

Additionally, each model will be optimized for the following scoring methods: accuracy, 

precision, and F1 score. These ML algorithms, network datasets, and scoring methods will be 

further discussed later. Organizations can use this study’s results to implement highly 

effective IDS pipelines by utilizing basic scripting with ML capabilities along with standard 

IDS logging to enable strong automated network defenses against various threat actors and 

attacks. 
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Statement of the Problem 

The problems addressed by this study are the inefficiencies of current IDS 

configurations (Sopan et al., 2018). One of the biggest challenges for managing an IDS is 

investigating false positive alerts. With a properly configured IDS, every alert from the 

system should be thoroughly investigated by an analyst. When there is a false positive alert, 

this causes an organization to waste valuable time and money on analysts investigating an 

innocuous event; additionally, there is also a huge opportunity cost to this alert because it also 

delays time-sensitive investigations on true positive alerts. IDS devices can be extremely 

challenging to set up and maintain. When an IDS is configured for misuse detection, it can be 

difficult for analysts to maintain an up-to-date database of signatures. Security analysts will 

still need to monitor the network and manually enter IDS rules to refine further the 

configurations to match any network changes. Additionally, when an IDS is configured for 

anomaly detection, creating a baseline profile of regular traffic can take an excessive amount 

of time. The typical anomaly detection engine only applies fundamental statistical analysis to 

the data to identify deviations from the normal traffic profile. Even after tuning the IDS for 

misuse detection or anomaly detection, security analysts will need to ensure that the IDS 

ruleset is not too strict or too loose as either option will result in over-alerting or under-

alerting. Machine learning provides a solution to these IDS challenges as it can automate the 

process of training, configuring, and maintaining an IDS device with a high level of 

confidence for identifying anomalous traffic (Dangi et al., 2020).  

An organization should better identify malicious network attacks by utilizing an 

intelligent IDS with ML capabilities. An IDS with ML capabilities will still generate alerts for 

security analysts to review. However, this system will correlate and identify minute anomalies 

found in the network traffic at a much more in-depth level than any individual. This 

implementation of ML techniques for IDS devices should maintain a high degree of 

confidence for detecting legitimate threats or anomalies within the network. Additionally, 

machine learning models for network intrusion detection observed in the literature have not 

been adequately trained and tested against multiple datasets in a standardized and repeatable 

test environment. Evaluating the machine learning models and datasets in these controlled 
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experimental settings is extremely important to determine the most effective way to detect 

malicious traffic. This research has the potential to impact any organization that utilizes IDS 

devices to secure its networks. This study’s results can be used by organizations to identify 

which ML classification models are the most effective at intrusion detection and then 

implement an IDS device with ML capabilities to create a highly efficient detection engine. 

This implementation within organizations will enable higher levels of anomaly and malware 

detection across the network while requiring significantly less workforce to maintain the IDS 

and investigate alerts. Additionally, this study’s results could affect the future development 

and implementation of IDS devices or software worldwide. Developing a machine learning, 

or intelligent, IDS that applies ML classification techniques for network intrusions will 

significantly improve IDS alerts’ reliability and reduce the human resources necessary to 

maintain proper IDS devices and rulesets within organizations. Over time and with proper 

refinement, these types of intelligent IDS ML pipelines could potentially flag zero-day attacks 

before vendors even publish signatures. 

 

Objectives of the Project 

This research compares multiple machine learning algorithms against a series of 

datasets associated with network intrusion detection and different optimization methods to 

determine which classification models are the most effective for detecting network attacks. In 

addition to this goal, this research also created an IDS pipeline to apply the machine learning 

techniques for intrusion detection on unseen network traffic. The first phase of this research 

involved training multiple ML models by utilizing a series of machine learning algorithms, 

multiple training datasets, and different optimization methods to evaluate each models’ 

different properties. The datasets used in this research are taken from multiple organizations 

that have produced popular datasets and are used for academic papers and research within the 

machine learning and network security communities. A common trend later seen in the 

literature review of ML intrusion detection techniques is a lack of consistent experimentation 

and critical analysis due to the researchers’ selection of ML models and the datasets. It is later 

observed in the literature review that several researchers implement their custom ML 

algorithm and training dataset to highlight their own techniques’ effectiveness. Using multiple 
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datasets across a series of controlled and repeatable experiments that evaluate ML algorithms 

and intrusion detection datasets provides a fair comparison to determine which IDS ML 

implementation is the most effective. 

This study includes each experiments’ results and analysis, which evaluate each ML 

model’s selected metrics. Each experiment for the first phase involved developing a series of 

ML models that combine different ML classification algorithms, networking datasets, and 

scoring techniques. The results of these tests were collected and analyzed to identify the 

strengths and weaknesses of each ML model. Additionally, this research investigated the 

feasibility of applying trained ML models on unseen network traffic and flagging malicious 

traffic. The research deliverables include an in-depth analysis comparing and contrasting the 

ML models and results and applying them to new traffic. Several evaluation metrics are 

discussed in the literature review. However, this research primarily focuses on accuracy, 

precision, recall, and F1 score as evaluation metrics. This research aims to create a better 

anomaly detection IDS that utilizes machine learning over statistical analysis. Additionally, 

this study identifies which combination of ML classification algorithms, IDS training datasets, 

and different optimization methods generate the highest performing ML models based on the 

selected evaluation metrics. This research also showcases the need to utilize various 

algorithms, datasets, and optimization methods during ML model development. Another goal 

of this study was to validate the ML models from other researchers, as seen throughout the 

literature review. Lastly, a major goal of this study was to test the theoretical ML models in an 

applied environment to validate their theoretical accuracy for identifying malicious content on 

previously unseen network traffic.  

 

Nature of the Study 

This research study compared multiple ML models to determine which combination 

most effectively identifies anomalous or malicious network behavior to be implemented into 

an applied IDS environment with ML augmentation. The ML algorithm experiments consist 

of training an ML classification algorithm against a series of network intrusion detection 

datasets and scoring methods. The ML classification algorithms selected for this research 

include Naïve Bayes (NB), Decision Tree (DT), Random Forest (RF), Ada Boost (AB), 



12 

Bagging Classifier (BC), Logistic Regression (LR), and Stochastic Gradient Descent (SGD). 

Additionally, the datasets selected to train and test each of these ML models include the KDD 

99, NSL-KDD, UNSW-NB 15, CICIDS 2017, and CIDDS-001 datasets. Lastly, the 

optimization methods used for each of these models include accuracy, precision, and F1 

score. These ML models, IDS datasets, and scoring techniques were selected based on the 

research experiments, field surveys, and authors’ recommendations found in the Literature 

Review section. These ML experiments were conducted through Python’s scikit-learn library 

and utilized the same system resources within a virtual environment ("scikit-learn," 2020). A 

significant priority for this research was to maintain consistent testing and resource utilization 

between each experiment. This research seeks to achieve reliable and repeatable results where 

others can utilize the same ML algorithms, datasets, and scoring techniques to generate the 

same models. Once the ML models were generated and analyzed with a set of evaluation 

metrics, the next step in this research was to apply the trained models in an IDS pipeline 

environment to see if the models’ metrics hold up in an applied network environment filtering 

previously unseen traffic. The IDS software selected for this research was Zeek, a popular 

open-source IDS software ("zeek," 2020). 

This study sought to achieve repeatability and consistency between each ML model 

experiment. Additionally, this study strived to identify the most practical and efficient IDS 

implementation that utilizes ML techniques for anomaly detection on network traffic. Several 

researchers have conducted ML experiments to showcase the efficiency of their proposed 

algorithm. Many of these research papers, seen later in the literature review, select a single 

dataset, typically the KDD 99 or NSL-KDD dataset, and between one to five popular ML 

algorithms to compare their results and highlight their newly proposed ML algorithm. There 

have been several issues identified with the KDD 99 and NSL-KDD datasets despite being the 

most popular datasets in this field of ML and network intrusion detection (Creech & Jiankun, 

2013). The KDD 99 dataset was initially produced in 1999 as part of a data mining 

competition and provided the community with an acceptable IDS training dataset. This dataset 

is still used today as it provides several essential proofs of concept found in various 

networking techniques and applications. However, despite its popularity, researchers have 

found that the KDD 99 dataset contains several issues (Haider, 2017). Some of these issues 

include redundant records that skew ML algorithms’ training, imbalanced attack categories 



13 

and distribution, poorly defined attack categories and techniques, old and impractical network 

traffic, and nonstandard or hybrid data that consists of flow-based network traffic that has 

been manually enriched with payloads. The NSL-KDD dataset was built on the KDD 99 

dataset. This updated dataset addressed some of these issues, but some of the core problems 

persisted. Certain researchers have strongly encouraged others in this field to utilize multiple 

network intrusion datasets, especially ones that have been recently produced, to evaluate ML 

classification algorithms effectively (Ring et al., 2019). Over the past few years, numerous 

organizations have produced robust datasets intended to be used for ML training and IDS 

evaluation. The Canadian Institute for Cybersecurity (CIC), based out of the University of 

New Brunswick (UNB) in Fredericton, has produced multiple IDS evaluation datasets 

intended to be reliable ML test and validation datasets for academic research. CIC also 

created the NSL-KDD dataset, which patched some of the significant issues with the dataset. 

Additionally, in Germany, Coburg University has been producing and updating the Coburg 

Intrusion Detection Data Sets (CIDDS) repository, which contains multiple ML datasets 

designed for network intrusion detection research. The University of South Wales in Australia 

produced an intrusion detection dataset in 2015 that was also well accepted by the ML and 

network security communities. These datasets are all public and provide a highly needed 

update for network intrusion datasets. The KDD 99 and NSL-KDD datasets are still 

considered the most popular. However, the datasets produced by these schools and 

organizations provide the academic community stronger datasets that contain well-balanced 

and adequately distributed network attacks, modern network traffic and attacks, and properly 

labeled data. Again, this research utilizes the KDD 99, NSL-KDD, UNSW-NB 15, CICIDS 

2017, and CIDDS-001 datasets for consistent analysis between ML models. These datasets 

provide an extensive and unique comparison between each tested ML model experiment since 

each dataset consists of different data types (packet-based, flow-based, hybrid), network 

traffic, and attack techniques. Ideally, this study’s results show other professionals in the ML 

and network security communities the need to utilize multiple datasets as a standard best 

practice for future ML IDS research and evaluations. There will never be a “perfect” intrusion 

detection dataset that will always be the best dataset to train a particular model. Multiple 

datasets should be used to compare and identify the ideal dataset for an ML algorithm. This 

research finds multiple options to implement an IDS with ML capabilities. This study applies 
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the trained ML models from the previous experiments to see if the same results are observed 

in the detection models’ applied implementations. The following section’s Literature Review 

reveals that many academic researchers only evaluate ML algorithms using a single dataset, 

yielding purely proof of concept or theoretical detection results. Most researchers fail to apply 

their ML models in a real-world scenario to validate the results they obtained. This research 

sought to validate the theoretical results by implementing an ML IDS and comparing those 

results with the previous ML experimental results. 

While this research can benefit numerous industry organizations and academia’s 

security development, this study also has several significant limitations. The largest limitation 

of this research is that, while a primary goal is to maintain consistency between ML datasets, 

each organizations’ network will consist of highly unique traffic. These variations of networks 

mean that even though the testing and validation phases in this research may yield effective 

detection results, that does not necessarily mean this type of IDS with ML capabilities can be 

easily implemented into another network with different network traffic and maintain its 

results without finetuning and training multiple ML models. Additionally, even if an 

organization successfully implements an IDS with ML augmentation like this research, 

security analysts will still be required. This type of ML IDS environment benefits from the 

high confidence of automated IDS alerts and anomaly detection. This high confidence IDS 

configuration means that organizations will not need to hire and maintain as many SOC 

analysts. However, some analysts will still be required to investigate the alerts further, update 

or modify the ML models, and check the IDS ruleset regularly. In theory, this should require 

significantly fewer analysts, thereby saving organizations a substantial amount of manpower 

and money on an automated IDS with ML capabilities. It should also be noted that this 

research focuses on utilizing only supervised machine learning techniques that require labeled 

datasets. That means that all other machine learning methods, including deep learning 

techniques, a major field of research, are not incorporated into this particular research. There 

are extensive research and funding in the subset field of deep learning; however, this is 

excluded from this research due to the intense resource and time requirements to develop and 

configure deep learning models properly.  

This concludes the Introduction section of this paper, which reviewed the background, 

goals, significance, and study implementation. This study evaluates the effectiveness of 
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multiple ML models when trained using various ML algorithms, IDS datasets, and 

optimization techniques. Additionally, this study identifies multiple ways to apply trained IDS 

ML models. This research performs an in-depth quantitative analysis of ML models’ 

outcomes and performance across two primary research phases. This study highlights the need 

for researchers to utilize multiple algorithms, datasets, and optimization methods during ML 

model development. Additionally, this study’s results identify which combination of ML 

algorithms, datasets, and scoring methods yields the best evaluation metrics in terms of 

accuracy, precision, recall, and F1 score. Academic researchers and industry professionals can 

use this research to implement highly effective and autonomous ML IDS environments that 

utilize the most effective ML classification models to identify anomalies and threats on their 

unique networks. The next section of this paper will provide a literature review for the 

existing research conducted in network security and machine learning. 

 

Terms and Definitions 

• Intrusion Detection System (IDS) – Device or software that monitors systems for 

malicious activities and generates alerts if anomalous traffic is detected 

• Intrusion Prevention System (IPS) – Device or software that changes network or host 

behavior or security rules if anomalous traffic is identified 

• IDS Ruleset – A series of IDS rules that are used for signature detection; each rule 

contains a set of filter criteria to alert on certain observed traffic or behaviors 

• Misuse detection / Signature-based detection – IDS detection technique that requires 

the utilization of an IDS ruleset database to alert based on strict rule criteria; usually 

highly accurate, but suffers from successful zero-day attack detection 

• Anomaly detection / Behavior-based detection – IDS detection technique that requires 

proper baselining of normal network traffic to identify anomalies, typical IDS engines 

will utilize statistical standard deviation detection to identify anomalous behavior; 

more capable of detecting zero-day attacks but suffers from inaccurate or low 

detection 
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• Hybrid detection – utilizes both signature-based and behavior-based detection methods 

to provide enhanced detection; both of these methods can be implemented at the same 

time on the same IDS 

• Flow-based datasets – condensed packets that are grouped based on different header 

field information or network protocols; no payloads are included in network flows 

• Packet-based datasets – entire IP packets that include full header information and 

payloads 

• Hybrid/Other NID datasets – enriched network packet capture that contain both flow-

based and packet-based data, typically requires manual alteration of the data 

• Machine learning (ML) – algorithms that can perform a task by producing a model 

and inferring future data without the need for explicit instructions 

• Dataset features – unique properties or attributes belonging to a dataset; these unique 

features can be identified and labeled for ML algorithms 

• Supervised learning – a type of ML algorithm that ingests fully labeled datasets 

• Unsupervised learning – a type of ML algorithm that can ingest unlabeled datasets 

• Semi-supervised learning – a type of ML algorithm that ingests partially labeled 

datasets 

• Shallow learning – typical machine learning algorithms that only utilize a single layer 

or round of analysis on ingested data; typically considered supervised learning that 

utilizes labeled datasets 

• Deep learning – machine learning algorithms that perform a series of transformations 

or analysis on ingested data across multiple layers or rounds; typically considered 

unsupervised or semi-supervised learning that utilizes unlabeled or partially labeled 

datasets 

• Training set – a subset of a full dataset used for training the ML models 

• Testing set – a subset of a full dataset dedicated for testing and validating the 

previously produced ML models 

• Type I error = FP 

• Type II error = FN 

• Accuracy / Portion correct = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
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• Precision / Positive predictive value = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

• Recall / Sensitivity / True positive rate / Probability of detection / Detection rate = 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

• Negative predictive value = 
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

• Specificity / TN rate = 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

• False alarm rate / False positive rate / Fall-out = 
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

• F1 Score = 2 (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
) 
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CHAPTER 2 

LITERATURE REVIEW 

There have been significant developments in machine learning techniques for network 

intrusion detection in recent years. Several researchers worldwide have conducted valuable 

experiments and produced exciting papers that perform a critical analysis of their results. 

There are several essential literature pieces to review in this research field to understand 

modern machine learning capabilities and limitations. This section will review impactful 

conference proceedings and articles in the fields of machine learning and network intrusion 

detection. 

 

Network Intrusion Detection Datasets 

A dataset is required before the selection of any machine learning model. A machine 

learning algorithm cannot do anything unless it has multiple datasets to train, validate, and 

test the models. Every research paper covered in the upcoming subsection will utilize a 

dataset to input into a particular machine learning algorithm. This subsection will cover the 

most popular datasets used for training machine learning algorithms focused on network 

intrusion detection. Over the years, there have been individual datasets have become more 

prominent than others. 

The paper titled “A survey of network-based intrusion detection data sets” provides an 

extremely comprehensive literature review of 34 datasets used for ML algorithms and 

network intrusion detection (Ring et al., 2019). The authors of this paper begin by introducing 

network attacks and network intrusion detection systems. They then review a series of other 

papers that have analyzed network intrusion detection datasets and highlight the need for a 

more thorough review of available datasets. The authors then discuss the type of data that 

makes up certain NID datasets. Packet-based data is commonly obtained in a packet capture 

format and contains payloads and associated metadata depending on the protocols utilized. 

Next, flow-based data is a more condensed format and primarily contains meta-information 



19 

about network connections. Flow-based data aggregates packets that share certain properties 

within a time window into an individual flow and does not contain payload information. The 

authors categorize the last set of data as “other data,” which incorporates all datasets that are 

neither purely packet-based nor flow-based. An example of these datasets may include flow-

based data enriched with additional information from packet-based data or host-based log 

files. The authors state that the well-known KDD CUP 1999 dataset falls under this “other” 

data category because each data point contains both network-based attributes as well as 

enriched host-based attributes. Next, the authors identify a set of properties to compare and 

contrast datasets. Each of the 15 properties can be grouped into one of five categories. The 

authors identified the following properties in datasets: general information (year of creation, 

public availability, normal user behavior, and attack traffic), nature of data (metadata, format, 

and anonymity), data volume (count and duration), recording environment (kind of traffic, 

type of network, and complete network), and evaluation (predefined splits, balanced, and 

labeled). The researchers describe each of the properties and then display a three-page long 

table that displays 34 datasets associated with network intrusion detection and their 15 

properties. They also have another large table in the paper that lists the 34 datasets and 

information about whether they are labeled and the data format (packet, flow, or other). There 

is another table that also lists all the datasets and describes the attacks contained within each. 

Lastly, the authors list another figure that shows certain relationships between associated 

datasets. After reviewing each dataset’s properties, the authors then move into the bulk of 

their paper, which briefly describes each dataset. Next, they review each of the data sources 

that may have generated certain datasets and different traffic generator programs that could 

have also been used to generate synthetic traffic data in certain datasets. The researchers then 

provide a series of observations and recommendations based on their comprehensive 

comparative analysis of collected datasets. They state that the perfect dataset does not exist 

and probably never will be created. Rather, they suggest researchers utilize multiple datasets 

to prevent overfitting with a single particular dataset, reduce the influence of artificial artifacts 

within a certain dataset, and evaluate the ML algorithm methods in a more general context. 

They also recommend using CICIDS 2017, CIDDS-001, UGR’16, and UNSWNB15 datasets 

as they may be suitable for evaluation settings due to their wide variety of attacks and data 

formats. They also recommend for researchers to make use of predefined subsets. Many ML 
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and data mining methods often use 10-fold cross-validation, which divides the dataset into ten 

equal subsets. One subset is used for testing, and the other nine are used for training; this 

procedure is repeated ten times such that every subset has been used once for testing. In an 

IDS evaluation dataset, this splitting technique would cause each attack to appear in the 

training data set, resulting in an improper generalization of attacks since they should detect 

previously unseen threats. This paper’s researchers recommend creating meaningful training 

and test splits to facilitate comparisons of different approaches evaluated on the same data set. 

The authors also call for a closer collaboration of the security community to create and better 

new intrusion detection datasets. The community could benefit from a single generally 

accepted platform for sharing intrusion detection datasets without access restrictions. The 

authors also state that all the mentioned datasets and repositories mentioned in this paper can 

be found on the researchers’ websites and future datasets. Next, the researchers found that 

most NIDS require standard input data formats and cannot handle preprocessed (enriched) 

data, and it is unclear if datasets from the “other” datatype category can be calculated in real-

time. They recommend the community generating network-based datasets in standard packet-

based or flow-based formats as they can be captured in real network environments. However, 

if researchers still produce “other” datatypes, the authors of this paper recommend publishing 

both the network-based data in a standard format as well as the scripts for transforming the 

dataset to another format. Lastly, the authors call for further anonymization of data within 

datasets and the publication of all future datasets so that other parties can utilize and validate 

them. This paper was one of the best sources for reviewing datasets associated with network 

intrusion detection. The authors conducted an extensive and comprehensive survey of public 

and private datasets and presented all 34 datasets in apparent formats for researchers to easily 

pick and choose the datasets that will work best for their research. 

In his 2000 publication, researcher and author McHugh conducts an extremely in-

depth analysis of the popular 1998 and 1999 DARPA datasets used for network intrusion 

detection and identifies a series of flaws associated with them (McHugh, 2000). This 

particular publication is the most referenced document by other authors and researchers in this 

literature review. At the time, the most comprehensive evaluation of research on intrusion 

detection systems was performed by MIT’s Lincoln Laboratory and sponsored by DARPA. 

The author claims that while the research conducted contains many flaws, it was only a large-
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scale attempt at evaluating IDS devices at that time, and it provides a basis for comparing 

other systems and datasets. This paper also primarily focuses on the 1998 evaluation and only 

briefly discusses the 1999 evaluation. The author then reviews other similar evaluation and 

dataset generation attempts conducted by other organizations and researchers. Next, he then 

moves into the actual evaluation of the dataset. The background and the attack data within the 

dataset were heavily synthesized. This generated data was intended to simulate data for 

present and future traffic, and as a result, this may have caused a bias towards unrealistic 

expectations for IDS devices. The data generated for the 1998 evaluation consists of two 

parts, background data that is supposed to be regular noise traffic and attack data that is 

intended to consist purely of attack scenarios. These two individual subsets of data were then 

further discussed, and the author reviewed the impracticality of each of these sets of traffic 

due to a large amount of synthesized data generation. He also mentions a severe lack of 

validation of the experiments and observed traffic for both the background and attack 

datasets. Much of the background and attack data were generated from scripts and programs 

collected from several sources, and there was no attempt to distribute the synthetic attacks in 

the background noise realistically. The simulated background data was supposed to represent 

the network traffic found in a typical Air Force Base. However, Lincoln Labs’ information 

seems to differ based on the observed hosts within the traffic. The author states that it is 

unclear if the actual complexity of the network devices matters. He explains that the burden is 

typically on the researchers conducting the experiments to prove that the artificial 

environment did not affect the outcome by typically performing a controlled pilot study. The 

Lincoln Lab evaluators never conducted this type of controlled validation study. The 

experiment evaluators prepared datasets for training and testing. The training set consisted of 

seven weeks of data covering 22 hours per day, five days per week. The author then reviews 

the taxonomy of the attacks performed in this dataset, including denial of service, remote to 

user, user to superuser, and surveillance/probing attacks. Additionally, these attacks were 

further characterized by certain mechanisms used, including masquerading, abuse of a feature, 

implementation bug, system misconfiguration, and social engineering. The author then 

explains that this taxonomy describes the kinds of attacks that can be conducted on systems or 

networks, but it is not useful in describing what an IDS might see. This attacker-centric 

taxonomy creates a highly unrealistic evaluation bias. The author proposes alternative 
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taxonomies for future researchers where attacks could be classified at the protocol layer. This 

type of approach will lead to a better understanding of what one must do to detect attacks on a 

network. He also proposes another approach to classify attacks based on whether a completed 

protocol handshake is necessary out the attack. This classification technique will separate 

attacks into two distinct classes, one that may reveal a spoofed address or something that 

requires the attacker to reveal an actual location on the internal network. The author discusses 

how the Lincoln Lab evaluators’ attacker-centric taxonomy results in unclear attack scenarios 

within the network. For example, a packet that causes a buffer overflow may not necessarily 

be an intentional attack. Next, the author discusses the evaluation of the 1998 dataset. He 

explains that the dataset consists of raw TCPdump data collected from a sniffer device within 

the network. He also explains that this tool’s usage could also be problematic because it can 

become overloaded and drop packets; however, this is not a major concern for this evaluation 

because of the low data rates within this experiment. The Lincoln Lab team used a scoring 

metric referred to as the Receiver Operating Curve or Relative Operating Characteristic 

(ROC) method to present their results. The author explains this metric and states that it is 

commonly used for measuring signal-to-noise and alarm detection. He also reviews and 

critiques a series of other metrics used by the Lincoln Labs team to evaluate their 

experiments. The author then briefly reviewed the 1999 evaluation dataset; however, he did 

not go into much detail because the preliminary results were just released, and he did not have 

time to review the data before this publication. He states that the scoring method for 

constructing ROC curves, used for the 1998 and 1999 datasets, is inappropriate due to the 

detection process used by many IDS devices. He also states that the scanning/probing 

scenarios should not always be associated with attacks nor always labeled as intrusions. The 

author concludes this paper by restating that the Lincoln Lab IDS evaluation program was a 

major and impressive undertaking, but it still contained several experimental flaws, and the 

results remain unclear. He states that several other researchers attribute their success to this 

IDS evaluation publication, whereas other researchers believe this evaluation harmed their 

research efforts. The 1999 and 1998 evaluations demonstrate that IDS devices, at the time, are 

inferior at detecting new attacks. The author and an anonymous review state that DARPA 

could have obtained the same results with much less effort and resources than what was 

dedicated to this research. DARPA failed to obtain significant IDS results and breakthroughs 
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with this research. However, the author hopes that this critique will lead to a rethinking of the 

evaluation process and a recreation of its form to help DARPA reach its future IDS 

development goals. 

In the year 2000, researchers McHugh, Christie, and Allen publish a paper that 

reviews IDS devices in-depth and includes an extensive discussion of why, how, and where 

they are utilized in an enterprise organization (McHugh, Christie, & Allen, 2000). 

Additionally, the authors discuss the two primary intrusion detection methods consisting of 

signature-based and anomaly-based detection techniques. They review each technique’s pros 

and cons and discuss how IDS tools can be configured to operate at the network-level or host-

level. After this in-depth discussion of IDS devices, they then discuss organizations’ resources 

to set up and configure these systems correctly and their role as part of an overarching 

defense-in-depth strategy. The IDS lifecycle includes evaluation and selection, deployment, 

operation and use, and maintenance. The authors then review popular IDS tools and review 

intrusion detection experiments conducted by different organizations. The authors state that, 

at the time, the most comprehensive evaluations of IDS devices were conducted in 1998 and 

1999 and performed by MIT’s Lincoln Laboratory. These IDS evaluation experiments were 

funded by DARPA and had researchers utilize a packet capture of sniffed network traffic 

containing simulated (virtualized) and physical machines that were launching attacks. The 

attacks were divided into four categories: denial of service, remote to local, user to root, and 

probing/surveillance. In the 1998 evaluation of select IDS devices, the best IDS could only 

detect 75% of the attacks and generated multiple false alarms. The 1999 IDS evaluation 

produced slightly better results for detection and false alarm rates for the tested devices. The 

1998 and 1999 evaluations indicated that IDS devices, at the time, were only moderately 

successful at identifying known intrusions or attack patterns and were much less successful at 

identifying previously unseen attacks. The authors conclude this paper by stating that new 

intrusion detection techniques and systems are being heavily researched, and they anticipate 

positive improvements for IDS devices in terms of enhanced detection and false alarm 

performance in the future. 

In the paper titled “A Detailed Analysis of the KDD CUP 99 Data Set,” the authors 

review one of the most popular datasets used for evaluating ML intrusion detection methods 

(Tavallaee, Bagheri, Wei, & Ghorbani, 2009). This dataset is the most commonly selected 
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dataset for testing, as seen throughout this literature review. The paper introduces the 

KDDCUP’99 dataset and how other researchers have used it to develop and evaluate machine 

learning methods to obtain a high detection rate while maintaining a low false alarm rate. The 

authors of this paper identify two primary issues with this KDDCUP’99 dataset. The first 

problem they identify is that the KDD dataset has many redundant records, which causes 

learning algorithms to become biased towards more frequent records during the training 

phase. Additionally, the authors identify another issue with the dataset: labeling the KDD 

dataset records. They found that even when using straightforward machine learning methods, 

there will be a minimum classification rate of 86% for properly labeling records meaning that 

the comparison of IDS devices will always be between 86% and 100% when using this 

dataset. The authors then propose a solution to the two identified problems. Developing a new 

dataset made up of selected records from the KDDCUP’99 dataset; they call this new dataset 

NSL-KDD. The authors then review the KDD dataset and discuss the type of content within 

the dataset. The KDDCUP’99 dataset contains attacks that fall into the following categories: 

Denial of Service (DoS) Attacks, User to Root (U2R) Attacks, Remote to Local (R2L) 

Attacks, and Probing Attacks. DoS attacks are when an attacker disrupts or denies system 

resources to legitimate users. U2R attacks are a form of privilege escalation where the 

attacker starts as a regular user with standard permissions and can exploit a vulnerability to 

gain root access on a device. R2L attacks occur when the attacker can send packets to a target 

device and exploits the system to gain access. Lastly, probing attacks are a way to gather 

information about a network or system. Additionally, the KDD dataset contains three primary 

features: basic, traffic, and content features. Basic features incorporate all attributes that can 

be extracted from a TCP/IP connection. Traffic features are time-based and are generated 

within a certain window timeframe from a specific host or service, and content features are 

individual events or unique fields that occur across the network or individual connection. The 

authors explain some of the existing issues that remain in both the KDDCUP’99 and 

DARPA’98 datasets, both of which are popular datasets for evaluating intrusion detection 

techniques. The first issue they identify in the datasets is the amount of synthesized data, 

which does not correctly reflect traffic observed in the real networks. The second issue is the 

traffic collection tools used to collect these datasets can be overloaded and dropping packets, 

and there was no work done to check the possibility of dropped packets. The third issue is the 
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lack of exact definitions for the attacks performed in the network traffic. The authors then 

review the two primary issues they want to address with their new dataset: redundant records 

and the level of difficulty for classification. The authors provided a solution to these problems 

by removing all the redundant records to remove the bias towards frequent records. They also 

randomly sample records from each difficulty-level group, such as the selected records are 

inversely proportional to the percentage of records in the original KDD dataset. This sampled 

selection of records enables the classification rates of machine learning methods to vary in a 

broader range and have a more accurate evaluation of learning techniques. This paper 

provided the most comprehensive analysis and valuable commentary on the KDDCUP’99 

dataset. The KDD’99 and NSL-KDD datasets proposed by these authors will be observed in 

several upcoming experiments and research papers. 

 

Machine Learning Research Surveys 

The following publications consist of surveys or reviews that compare machine 

learning techniques used for network intrusion detection. The authors of these surveys do not 

conduct any experiments that produce results, but rather, they extract the results from several 

other publications and analyze that data. Some of these surveys are more comprehensive than 

others, but they do a great job showcasing the most popular machine learning techniques and 

network intrusion detection datasets. 

The research paper titled “A Survey of Data Mining and Machine Learning Methods 

for Cyber Security Intrusion Detection” provides an extremely in-depth analysis of the 

available machine learning models and datasets used for network intrusion detection (Buczak 

& Guven, 2016). This comprehensive paper first reviews three main types of detection 

analytics used by IDS devices: misuse-based (or signature-based), anomaly-based, and hybrid. 

The researchers then introduce machine learning and data mining (DM) and how they relate 

to the field of cybersecurity. They also discuss several processes for implementing machine 

learning and data mining techniques. They identify certain metrics used to evaluate binary 

classification models: accuracy or proportion correct [(TP + TN) / (TP + TN + FP + FN)], 

positive predictive value [TP / (TP + FP)], sensitivity or recall or true positive rate or 

probability of detection or detection rate [TP / (TP + FN)], negative predictive value [TN / 
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(TN + FN)], specificity or TN rate [TN / (TN + FP)], and FAR or FP rate or fall-out [FP / (TN 

+ FP)]. The researchers also identify certain metrics used for multi-classification models: 

overall accuracy (exemplars classified correctly, all exemplars), class detection rate 

(exemplars from a given class classified correctly, all exemplars from a given class), and class 

FAR or class FP rate (exemplars from a given class classified incorrectly, all exemplars not 

from a given class). Next, the researchers briefly review the available cybersecurity datasets 

used for ML; this includes packet-level data, NetFlow data, and public datasets. Packet-level 

data includes the 144 Internet Protocols listed by the Internet Engineering Task Force (IETF) 

and incorporates all data across all OSI model layers stored within an individual packet. 

NetFlow data was introduced by Cisco and contained compressed and preprocessed data of 

actual network packets. The public dataset section mentions the DARPA 1998 and 1999 

datasets, KDD 1999 dataset, and NSL-KDD dataset. MIT’s Lincoln Laboratory created the 

DARPA 1998 and 1999 sets and contained a mixture of simulated and real network traffic, 

systems, and attacks. The DARPA 1998 data were collected for nine weeks, the first seven 

weeks assigned as the training set and the last two assigned as the testing set. The DARPA 

1999 dataset was collected for five weeks, with the first three weeks assigned as the training 

set and the last two assigned as the testing set. The KDD 1999 dataset was created for the 

KDD Cup challenge in 1999 and is based on the DARPA 1998 dataset. The KDD 1999 

dataset was found to have limitations, including synthesized network and attack data (due to 

actual traffic sampling), an unknown number of dropped packets, vague attack definitions, 

and a huge amount of redundant records. The NSL-KDD dataset builds off the KDD 1999 

dataset and consists of selected records to address some of the issues identified. All three of 

these datasets contain four types of attacks as defined by DARPA, denial of service (DoS), 

user to root (U2R), remote to local (R2L), and probe or scan attacks. DoS attacks attempt to 

deny or disrupt systems or resources, U2R attacks grant privileged access to an attacker, R2L 

attacks grant local network access to an attacker, and scan attacks collect information about 

the network resources. The next section of the paper reviews ML and DM methods used for 

cybersecurity. The authors provide an extensive explanation of how the following methods 

operate: artificial neural networks, association rules and fuzzy association rules, Bayesian 

network, clustering, decision trees, ensemble learning, evolutionary computation, hidden 

Markov models, inductive learning, Naïve Bayes, sequential pattern mining, and support 
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vector machine. Within each of the descriptions for these ML methods, the authors also cite 

two to three sources that utilize the technique for misuse, anomaly, and hybrid detection. 

Artificial neural networks are composed of interconnected artificial neurons that are capable 

of certain computations on their inputs. Each layer passes its output to the next layer. 

Additionally, each layer performs a series of intrusions or computations on the input data such 

that it is slightly transformed layer to layer. Association rules describe a relationship among 

different attributes found among the data. Association rule mining attempts to discover 

previously unknown associate rules from the input data. A Bayesian network is a 

probabilistic, acyclic graphical model representing the variables and associated relationships 

from input data. Clustering is a set of techniques for finding patterns in unlabeled data. This 

method is considered unsupervised pattern discovery, where the input data are group together 

based on a similarity measure. There are several different approaches and algorithms for 

clustering input data, including connectivity models, distribution models, density models, and 

graph models. A decision tree is a tree-like structure that has leaves and branches. The leaves 

represent classifications, and the branches represent the conjunctions of features that lead to 

those classifications. Data input is labeled (classified) by testing its feature (attribute) values 

against the decision tree’s nodes. According to this author, the best-known methods for 

automatically building decision trees are the ID3 and C4.5 algorithms. Ensemble learning 

methods combine the output of multiple weak learner models to form a stronger learner. 

There are several ensemble methods to develop and pick a strong learning output. Adaptive 

boosting (AdaBoost), bagging (or bootstrap aggregating), and random forests are all ensemble 

techniques that choose the best output developed from a series of weaker models. 

Evolutionary computation encompasses genetic algorithms, genetic programming, evaluation 

strategy, particle swarm optimization, ant colony optimization, and artificial immune systems. 

Evolution computation builds models based on systems observed in nature. Genetic 

algorithms and genetic programming algorithms are the two most widely used evolutionary 

computation methods. These algorithms are based on the principle of survival of the fittest. 

They operate on a population of individuals or chromosomes, which are evolved using certain 

operators. Markov chains and hidden Markov models are within the same category. A Markov 

chain is a set of states interconnected through transition probabilities that determine the 

model’s topology. A hidden Markov model is a statistical model where the system is assumed 
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to be a Markov process with unknown parameters, and the goal is to identify the hidden 

parameters derived from the observable parameters. Inductive learning starts with specific 

observations and measurements, begins detecting patterns and regularities, formulates a 

tentative hypothesis to explore, and develops some general conclusions, theories, or models. 

Several ML algorithms are inductive, but researchers typically refer to Repeated Incremental 

Pruning to Product Error Reduction (RIPPER) and quasi-optimal (AQ) when discussing 

inductive learning. Naïve Bayes classifiers are probabilistic classifiers where input features 

are assumed to be independent, and the conditional probabilities form the classifier model. 

This model assigns classification labels to the input data features. Sequential pattern mining is 

a data mining method associated with transactional databases where each transaction has a 

temporal ID, a user ID, and an itemset. An itemset is a set of distinct items purchased in a 

transaction, and a sequence is an ordered list of itemset values. The length of a sequence is 

defined as the number of itemset values within the sequence. Additionally, the time ID 

determines the order. A sequence is considered maximal in sequences if it is not contained in 

any other sequence. A support vector machine is a classifier based on separating a hyperplane 

in the feature space between two classes so that the distance between the hyperplane and the 

closest data points of each class is maximized. This technique is based on a minimized 

classification risk rather than an optimal classification. After this discussion of ML 

techniques, the author then analyzes and charts the collected sources to generate figures that 

depict the ML method, listed paper/author, intrusion detection technique (misuse, anomaly, or 

hybrid), and the dataset utilized by the researchers. The researchers for this research survey 

did a wonderful job identifying the datasets and ML techniques available for network 

intrusion detection. This published research is one of the most comprehensive papers that 

categorizes and explains ML methods in addition to collecting, categorizing, and charting 

numerous other research papers related to ML network intrusion detection. 

In their 2018 paper, researchers Shashank and Balachandra collect and analyze various 

research publications based on ML intrusion detection techniques (Shashank & Balachandra, 

2018). They begin their paper by discussing types of machine learning algorithms and divide 

them into supervised learning, unsupervised learning, and semi-supervised learning 

techniques. They then discuss the exact ML algorithms selected for the research: Bayesian 

network, SVM classifier, K nearest neighbor, Naïve Bayes, fuzzy logic, genetic algorithm, 
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decision tree, random forest, and artificial neural network. They also briefly discuss a set of 

optimization techniques used within neural networks, including particle swarm optimization, 

backpropagation, and adaptive moment optimizer. The researchers then discuss three primary 

intrusion detection datasets: KDD DataCup 1999, GureKDDcup, and NSL-KDD. They also 

discuss the metrics they use to measure and evaluate ML techniques, including accuracy, 

detection rate, and false alarms. The authors then present a table containing the ML methods, 

authors who utilized the specified method in a published paper, the dataset selected, and the 

ML method results. This paper’s authors could have conducted an additional analysis 

comparing and contrasting the experiments and results between each of the ML methods 

taken from author researchers’ published work. 

Researchers Liu and Lang conduct a thorough review of modern machine learning and 

deep learning models for intrusion detection while discussing their strengths and weaknesses 

in their 2019 publication (Liu & Lang, 2019). The authors begin the paper by discussing IDS 

devices and their limitations, such as high false alarm rates and inability to detect unknown 

attacks. They then explain how machine and deep learning can provide a solution to these 

problems. The researchers then develop a clear graphic that displays the components that 

make up an IDS. This figure included different detection methods like anomaly detection and 

misuse detection and also sources of data such as log-based detection for host-based IDS 

devices and packet-based, flow-based, and session-based detection for network-based IDS 

devices. The authors discuss the differences between misuse detection and anomaly detection. 

They compared the detection performance, detection efficiency, dependence on domain 

knowledge, interpretation, and unknown attack detection factors in their comparison. 

Additionally, they review the differences between host-based IDS and network-based IDS by 

discussing the source of data, deployment, detection efficiency, intrusion traceability, and 

limitations. The authors then move on to the bulk of their survey, the machine learning 

algorithms used for network intrusion detection. The researchers developed a well-made 

graphic that reviews several models they discuss in the paper; this figure divided machine 

learning models into two groups, shallow models and deep learning models, and then further 

divided that by discussing supervised and unsupervised learning models. The authors create 

another chart that reviews the pros and cons of several shallow models used for intrusion 

detection; their table compared the algorithm, advantages, disadvantages, and improvement 
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measures. They discussed shallow models, including artificial neural networks, support vector 

machine, K nearest neighbor, Naïve Bayes, logistic regression, decision tree, and K-means. 

The authors then further discuss each of these algorithms and how they operate. Next, they 

compare various deep learning models, also presented in a chart. This figure included the 

algorithm, suitable data types, supervised or unsupervised, and functions. The deep learning 

models discussed in this section include autoencoder, restricted Boltzmann machine, deep 

brief network, deep neural network, convolution neural network, recurrent neural network, 

and generative adversarial network. The researchers also identify five major differences 

between shallow and deep models; this includes the running time, number of parameters, 

feature representation, learning capacity, and interpretability. Next, they identify a series of 

metrics used to evaluate machine learning models; this includes accuracy, precision, recall, F-

measure, false negative rate, and false positive rate. They then move on to briefly discuss the 

datasets they found in their literature review for their survey. They review the DARPA 1998, 

KDD99, NSL-KDD, and UNSW-NB15 datasets. Additionally, they discuss the traffic and 

attacks within these datasets and how IDS devices can detect them, another major focus of 

this survey paper. They start by discussing packet-based attack detection (consisting of packet 

parsing-based detection and payload analysis-based detection), flow-based attack detection 

(consisting of feature engineering-based detection, deep learning-based detection, and traffic 

grouping-based detection), session-based attack detection (consisting of statistic-based feature 

detection methods and sequence feature-based detection), and log-based attack detection 

(consisting of rule and machine learning-based hybrid methods, log feature extraction-based 

detection, and text analysis-based detection). They then display a large table that compares the 

methods and papers on machine learning IDS devices; the categories in this table included the 

methods, papers, data sources, machine learning algorithms, and datasets. The authors then 

move on to discuss the challenges and future direction of machine learning-based IDS 

devices. They state that there is a lack of available datasets (and there are several problems 

with the KDD99 dataset, which is the most widespread), there is inferior detection accuracy in 

actual environments, and there is low efficiency for implemented machine learning-based IDS 

devices to detect attacks in real-time. Their reviewed papers identify three major IDS research 

trends: utilizing domain knowledge, improving machine learning algorithms, and developing 

practical models. This paper concludes by stating that deep learning models are becoming 
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more popular in IDS research. Deep learning models can improve IDS devices’ performance 

and, compared to shallow learning models, deep learning models generate stronger fitting and 

generalization abilities. Additionally, deep learning algorithms do not require manual feature 

engineering or domain knowledge, giving deep learning a huge advantage over shallow 

learning methods. However, the authors also state that the biggest downside for deep learning 

models is the required running time, which is often too long to meet the real-time requirement 

of implemented IDS devices. This survey paper also did a fantastic job extensively reviewing 

and charting several machine learning and deep learning techniques. The authors also did a 

wonderful job reviewing the defensive detection methods employed by IDS devices to 

identify attacks, which many other researchers do not discuss. 

Researchers discuss popular machine learning techniques and available datasets for 

network intrusion detection in the paper “A Review of Machine Learning Methodologies for 

Network Intrusion Detection” (Phadke, Kulkarni, Bhawalkar, & Bhattad, 2019). The 

researchers begin the paper by introducing the rise of cyberattacks and explain how network-

based and host-based IDS devices can be used to assist this problem. They then introduce ML 

and then explain that algorithms can be classified into supervised learning, unsupervised 

learning, or semi-supervised learning models. They then introduce several ML methodologies 

that can be used for network intrusion detection. This section is the bulk of the paper where 

the authors list out and explain the following algorithms: support vector machine, an unnamed 

algorithm (proposed by another author that seems to build upon SVM), min-max k-means 

clustering, intelligent intrusion detection system (also proposed by another author and makes 

use of random forest and clustering techniques), artificial neural networks, and back 

propagation neural network. They then briefly discuss the three datasets used by other 

researchers, including the KDD Cup 1999 dataset, the UNSW-NB15 dataset, and the custom-

made dataset to showcase their ANN. This paper’s authors then compare each algorithm’s 

accuracy and false positive rate and their selected dataset. The authors could have done a 

much more thorough analysis of the extracted results and incorporated several other papers 

and ML methodologies. It seems like the authors of this paper handpicked particular research 

publications and did not cover a wide range of available ML algorithms or datasets used for 

network intrusion detection. 
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Machine Learning Research Experiments 

This section reviews paper publications that focused on developing ML models 

utilizing datasets for network intrusion detection. These papers’ researchers had designed 

custom experiments, evaluation metrics, test results, and analysis. The experiments and results 

from these publications should be repeatable and consistent. While each paper is unique, 

specific ML algorithms, metrics, terms, and trends that appear across each of these 

experiments were incorporated into this dissertation research. 

 In a 2013 paper, authors Thaseen and Kumar evaluate several different tree-based 

classification algorithms using the NSL-KDD 99 dataset (Thaseen & Kumar, 2013). The 

algorithms selected for the experiments include ADTree, C4.5, LADTree, NBTree, 

RandomTree, RandomForest, and REPTree. The researchers also utilize a series of classifier 

performance metrics, which include the following: true positives, false positives, true 

negatives, false negatives, accuracy, precision, recall, and F-measures. Error metrics, such as 

Mean Absolute Error, Root Mean Squared Error, and Kappa Statistics. The experiments’ 

results indicate that the RandomTree, RandomForest, and REPTree models achieved the most 

effective accuracy scores. 

 Researchers for another publication, titled “Performance Comparison of Support 

Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection,” 

perform a comparative analysis between three types of machine learning methods using the 

NSL-KDD dataset (Ahmad, Basheri, Iqbal, & Rahim, 2018). The researchers first discuss the 

type of dataset that fits the needs of this research. They choose to use the NSL-KDD dataset, 

perform data pre-processing, select a set of ML classifiers (SVM, RF, and ELM) for testing, 

and then evaluate the results using specific metrics (accuracy, precision, and recall) and 

dataset sample size (full NSL-KDD dataset, half dataset, or one-fourth dataset). The results 

show that ELM (or hidden layer feedforward neural networks) outperform the other machine 

learning techniques in every measured metric category (accuracy, precision, and recall) when 

using the entire dataset. 

 Researchers Choudhury and Bhowal published a paper in 2015 where they conduct 

several experiments by selecting various ML classification algorithms trained using the NSL-

KDD dataset (Choudhury & Bhowal, 2015). The paper begins by mentioning network-based 

and host-based IDS devices along with their associated anomaly-based and signature-based 
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detection classifiers. The authors then transition into data mining and machine learning by 

discussing the WEKA tool and several ML classifiers (Bayes, function, lazy, meta, mi, misc, 

rules, and trees classifier), classification algorithms (BayesNet, logistic, IBK, JRip, PART, 

J48, random forest, random tree, and REPTree), and ensemble algorithms (AdaBoost, 

bagging, and stacking). The authors conduct experiments on all the mentioned classification 

algorithms and the ensemble algorithms using the NSL-KDD dataset and WEKA tool. They 

also mention their performance metrics for this research, which includes true positive, false 

negative, false positive, true negative, receiver operating characteristics (ROC), sensitivity, 

specificity, precision, accuracy, kappa, mean absolute error, F1 score, false positive rate, false 

discovery rate, negative predictive rate, and training time. The researchers then review their 

classification tests and ensemble tests, which indicate that random forest, BayesNet, and 

boosting algorithms are the most efficient for intrusion detection. 

 The researchers who published “Machine-Learning-Based Feature Selection 

Techniques for Large-Scale Network Intrusion Detection” propose novel feature selection 

techniques and compare their results against three other well-known ML feature sets using the 

NSL-KDD dataset (Al-Jarrah et al., 2014). The authors start the paper by discussing ML 

methods and the challenges of feature selection; they propose two custom ensemble methods 

using the Random Forest algorithm and compare their technique with other well-known ML 

techniques. They also introduce the idea of big data IDS environments and their associated 

challenges: large volumes of IDS data require efficient data storage methods, big data flows at 

high velocity, which requires expensive storage and processing systems, and big data has 

various types of structures and different sources. The researchers then explain their ensemble 

algorithm using Random Forest and discuss the experiments conducted for this research. They 

start by discussing the KDD 99 dataset explain why they chose the NSL-KDD dataset. The 

authors pre-process the dataset by removing redundant records and then enumerating, 

normalizing, discretizing, and balancing them. They then discuss feature selection and state its 

significant impact on intrusion detection system performance since it reduces computation 

costs, removed data redundancy, increases the detection algorithm’s accuracy, facilitates data 

understanding, and improves generalization. The standard feature selection process includes 

subset generation, evaluation, and validation. Different feature selection models are also 

categorized into three groups based on the evaluation criteria: filter model, wrapper model, 
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and hybrid model. The authors then discuss their ML model selection and explain that 

ensemble classifiers combine multiple models to generate a single model with better 

prediction accuracy. They state that several popular ML classifier algorithms can be used for 

an ensemble classifier, but they selected Random Forest (RF) for their research. They also 

discuss their evaluation metrics for their experiments, including detection rate or sensitivity, 

accuracy, training time, Mathew’s correction coefficient, and false alarm rate. The researchers 

then review their conducted experiments using their Random Forest – Forward Selection 

Ranking and Random Forest – Backward Elimination Ranking ensemble models and compare 

their results to other researchers’ ensemble classifier results. 

 Researchers conduct a comparative analysis of five ML algorithms while using the 

KDD Cup 99 dataset in the paper “Intrusion Detection in Computer Networks via Machine 

Learning Algorithms” (Ertam, Kilinçer, & Yaman, 2017). The authors briefly introduce IDS 

devices and five ML algorithms selected for this research, including Naïve Bayes, Bayes 

NET, random forest, multilayer perception, and sequential minimal optimization. The authors 

never explain how each of their selected ML classifiers operates. They then introduce the 

KDD Cup 99 dataset and state how other researchers have used it in their experiments. They 

also discuss the four attack categories and distribution within the dataset. Next, the authors 

discuss their evaluation metrics for this study: true positive, false positive, false negative, true 

negative, false positive rate, precision, recall, f-measure, and accuracy. They also state the 

physical machine resources used to perform their experiments and their usage of the WEKA 

data mining tool to classify the data. The authors then display and discuss their results. Each 

experiment was broken up by the attack class category and the ML classifier algorithm based 

on the tables. The results were highly distributed across each selected ML algorithm and 

attack category. 

In 2018, researchers Maniriho and Ahmad published a paper where they compared the 

results of four ML classification algorithms used in conjunction with two different feature 

selection techniques while utilizing the NSL-KDD dataset (Maniriho & Ahmad, 2018). The 

paper begins by introducing the topics of network IDS devices and machine learning 

techniques. The authors also briefly discuss the NSL-KDD dataset and why it was used for 

these experiments. They also state that they selected four ML algorithms that were a part of 

the WEKA data mining tool. The four ML algorithms selected for this research are random 
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forest, decision stump, Naïve Bayes, and stochastic gradient descent combined with two 

different feature selection techniques (correlation ranking filter and gain ratio feature 

evaluator). This research’s performance evaluation metrics include accuracy, detection error, 

true positive rate, true negative rate, precision, recall, and f-measure. The experiments 

showcase the dramatically varying results between each ML algorithm and feature selection 

test.  

 In the 2011 paper, researcher Yu-Xin conducts tests on three ML algorithms utilizing 

the KDD Cup 1999 dataset and WEKA data mining tool (Yu-Xin, 2011). The author 

introduces NIDS and their two primary classification categories of misuse detection and 

anomaly detection. The author then discusses how ML can assist network intrusion detection 

categorization and introduces the three ML techniques selected for their research experiments, 

including neural networks, support vector machines, and decision trees. The KDD 1999 

dataset is selected for this research because it showcases the purpose of this research on 

network intrusion detection and machine learning. This research also introduces feature 

selection and reviews three attribute evaluation methods and four search methods 

implemented in the experiments. The evaluation methods are: CfsSubsetEval, 

InfoGainAttributeEval, and GainRatioAttributeEval; the search methods include: BestFirst, 

GreedyStepwise, Ranker, and GeneticSearch. Next, the author reviews the exact setup for 

each experiment and explains that the RBF network is used as the neural network algorithm, 

SMO is used as the SVM algorithm, and J48 is used as the decision tree algorithm. Each of 

these selected algorithms is used in conjunction with selected feature selection evaluation 

methods and search methods. The author then reviews these tests’ results and explains how 

these ML classifiers and feature selection techniques showcase ML schemes’ challenges in 

intrusion detection. The key challenges identified are fluctuant capability, false alarm rate, 

and difficulties in training. The results between each experiment vary or fluctuate 

dramatically based on the selected ML algorithm and feature selection technique and, because 

of these variations, the false alarm rate results are also affected. Training ML models is also a 

challenge because more precise detection results require larger training datasets. However, 

proper ML training becomes hard to achieve because the required training datasets will need 

to be so enormous that they require too many system resources to store and process. The 

author admits that their tests only include a small amount of ML algorithms and feature 
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selection techniques, but they wanted to showcase certain key challenges found in other ML 

intrusion detection environments and research. 

 The research paper “Machine Learning Algorithms In Context of Intrusion Detection” 

selects four supervised ML algorithms to detect anomalies found in the KDD99 dataset 

(Mehmood & Rais, 2016). The authors begin the paper by introducing host-based and 

network-based intrusion detection along with the two primary intrusion detection 

classifications of signature-based detection and anomaly-based detection. They then introduce 

ML and explain how it can assist the classification process of network intrusion detection. 

This research’s four ML algorithms are support vector machine, Naïve Bayes, J.48 (decision 

tree), and decision table. The researchers select the KDD99 dataset to compare their four ML 

classification algorithms. They briefly mention the KDD99 attack classes: root to local, denial 

of service, probe, user to root, and normal. They also explain that they utilize the WEKA data 

mining tool to implement their selected ML algorithms and compare the true positive and 

false positive rate values as evaluation metrics between tests. The results indicate that each 

ML algorithm had varying results for each KDD 99 dataset’s attack classes. The researchers 

state that feature selection algorithms will help generate better results for future work. 

 Researchers Rahat and Ahsan conduct a comparative study of five ML classifier 

algorithms using the KDDCUP ‘99 dataset to analyze classification metrics in their 2015 

paper (Rahat & Ahsan, 2015). The paper starts by introducing the topic of network intrusion 

detection and how machine learning techniques can assist with this challenge. The authors 

review a series of publications that discuss different ML classification techniques used for 

network intrusion detection. They also mention class imbalance and feature selection as 

challenging issues found within ML algorithms. Class imbalance is caused when there is an 

unequal sample distribution within datasets. The authors review other researchers’ work and 

how they went about trying to resolve the challenges of class imbalance and feature selection. 

After this literature review, the authors discuss their performance metrics for this research, 

including true positive, true negative, false positive, false negative, accuracy, precision, and 

recall. They also briefly discuss the KDD’99 dataset, which contains 23 labels for different 

attack types and 41 labeled features to detect network intrusions. Next, the researchers discuss 

the methodology for their experiments. They first discuss two data sample methods that are 

used to remove the class imbalance in the dataset. The researchers then perform feature set 
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reduction to find the minimum number of features that can effectively represent the data in a 

classification problem. They utilize five ranking methods in conjunction with ranker search to 

reduce the feature set. The ranking methods they use are PCA, information gain, gain ratio, 

chi square, and filtered attribute. Lastly, they discuss the five ML classifiers used for their 

experiments, including J48 (decision tree), Naïve Bayes, AdaBoost, bagging, and nearest 

neighbor. Lastly, they note the four different experiment scenarios where they mix and match 

the process of data sampling, feature selection, and ML classifiers. Scenario 1 only uses the 

classifiers that are applied, scenario 2 performs feature reduction followed by applied 

classifiers, scenario 3 performs feature reduction followed by data sampling and then 

classifiers, and scenario 4 performs data sampling followed by applied classifiers. The 

researchers then display and discuss their experiments, which were highly variable based on 

each selected scenario, ML classifier, and evaluation metric. 

 In the paper titled “Class Imbalance Problem in the Network Intrusion Detection 

Systems,” researchers compare four ML classification algorithms and use the NSL-KDD 

dataset to showcase the class imbalance problem found within the popular dataset (Rodda & 

Erothi, 2016). The authors briefly introduce IDS devices and explain that ML techniques can 

assist with classification. Several research publications and ML techniques have been 

developed to create an effective intrusion detection system; however, there is a class 

imbalance problem found in the most popular datasets. The class imbalance problem occurs 

when the size of a specific class or category within a particular dataset is too small or too 

large and thereby not adequately represented. They conduct a very brief literature review that 

discusses ML research and experiments conducted on the NSL-KDD or KDD 99 datasets 

performed by other researchers. The researchers explain why they selected the NSL-KDD 

dataset and discuss the attack categories and their distribution. The authors then immediately 

discuss their results without explaining how they set up each experiment or their evaluation 

metrics. The ML algorithms evaluated for this research included Naïve Bayes, Bayes Net, 

J48, and Random Forest. The results and analysis section indicate that the authors only really 

compared the accuracy metric between each experiment. These results still showcase their 

primary argument that the class imbalance problem because all of the ML classification 

algorithms seemed to fail on the user to root attacks due to the minimal amount of U2R traffic 

found within the NSL-KDD dataset. 
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CHAPTER 3 

QUANTITATIVE RESEARCH METHODOLOGY 

This section reviews the selected research methodology and design for this study. This 

research performed a quantitative research study, which consisted of two primary phases. The 

first phase involved developing machine learning models based on machine learning 

classification algorithms and intrusion detection datasets. The second phase then attempted to 

implement an ML IDS pipeline environment by applying the ML detection models from the 

first phase to unseen network traffic fed through Zeek IDS software. The results gathered 

from the second phase tests were then compared against the first phase results to determine if 

the ML models operated differently between the theoretical and applied environments. Both 

phases incorporated quantitative research methodologies, results, and analysis. 

 

Purpose Statement 

One purpose of this research was to showcase the need to utilize multiple intrusion 

detection datasets. The large majority of researchers only selected a single dataset for 

developing their ML models, typically incorporating the KDD 99 or NSL-KDD datasets. 

Additionally, this research sought to help identify which ML classification algorithms are the 

most effective at network intrusion detection in applied environments. This research study 

implements an IDS ML pipeline that augments IDS logs with trained ML models to validate 

the theoretical best ML algorithms, datasets, and optimization methods. This research benefits 

both academic researchers as well as industry security professionals. As seen in the previous 

Literature Review section, many academic researchers fail to train their ML algorithms using 

multiple datasets. Numerous public datasets are associated with network intrusion detection, 

each of which is unique and comes with associated pros and cons. Due to the wide variety of 

intrusion detection datasets, it is best practice to train and evaluate ML algorithms using 

multiple datasets (Ring et al., 2019). This research achieves and verifies this best practice by 
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conducting numerous research experiments that train multiple ML algorithms using multiple 

datasets. 

Additionally, as seen in the previous Literature Review section, most ML researchers 

never design or explain practical implementations to validate their models in a real-world 

environment. This research implements a live IDS ML pipeline and then compares each ML 

model’s evaluation metric results in both the theoretical and implemented environments. 

Additionally, this research documents the creation of an IDS with ML classification 

capabilities. This research could greatly benefit security professionals because they can use 

this as a guide to set up a highly effective IDS ML environment. There are very few guides or 

papers online that document the process of configuring the IDS anomaly detection engine 

utilizing ML techniques. An IDS with ML capabilities should incorporate anomaly detection 

and standard signature detection using a single application for enhanced detection. 

 

Research Questions and Hypotheses 

Research Question 1 

How does the selection of a single network intrusion dataset impact machine learning models’ 

outcomes and performance when trained using multiple machine learning algorithms and 

optimization methods? 

 

Hypothesis 1 

Not all machine learning models will achieve high accuracy when trained using any network 

intrusion dataset. 

 

Research Question 2 

How does the selection of a single machine learning algorithm impact machine learning 

models’ outcomes and performance when trained using multiple network intrusion datasets 

and optimization methods? 
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Hypothesis 2 

Not all machine learning models will achieve high accuracy when trained using any machine 

learning algorithm. 

 

Research Question 3 

How does the selection of a single optimization method impact machine learning models’ 

outcomes and performance when trained using multiple network intrusion datasets and 

machine learning algorithms? 

 

Hypothesis 3 

Not all machine learning models will achieve high respective performance metrics when 

trained using any optimization method. 

 

Research Question 4 

How does the performance of theoretical machine learning models change when tested in an 

applied environment? 

 

Hypothesis 4 

The accuracy of theoretical machine learning models will perform significantly worse in an 

applied environment. 

 

Quantitative Method – Experimental Study Design 

Design 

This study was divided into two quantitative research phases. The first phase focused 

on testing and quantitatively evaluating each of the selected ML algorithms, network intrusion 

datasets, and optimization methods by producing a series of models. The machine learning 

algorithms selected for this research include Naïve Bayes (NB), Decision Tree (DT), Random 

Forest (RF), Ada Boost (AB), Bagging Classifier (BC), Logistic Regression (LR), and 
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Stochastic Gradient Descent (SGD). All of these algorithms are considered supervised 

learning algorithms, which means they require fully labeled datasets. 

These ML algorithms were identified and selected due to a few reasons. One part of 

their selection was due to their popularity throughout the literature review. Individual 

algorithms and entire algorithm categories were tallied during the literature review, and these 

particular algorithms were selected due to their regular appearances throughout the research. 

Additionally, these algorithms were selected based on their availability within the Python 

scikit-learn library. The scikit-learn library is a publicly available Python module that contains 

a wide variety of machine learning models and functions (Garreta, Moncecchi, Hauck, & 

Hackeling, 2017). Lastly, the resource requirements and speed at which the algorithms 

generate their models were considered factors. These algorithms’ speed and resource 

requirements were major considerations due to the number of tests conducted for this study. 

Certain algorithms were removed from this research if they took longer than three days to 

produce a single model. 

The Naïve Bayes (NB) algorithm belongs to its own Naïve Bayes category and is a 

probabilistic classifier that applies Bayes’ theorem between features (Tsai, Hsu, Lin, & Lin, 

2009). This classifier assumes strong or naïve independence between data features and 

calculates conditional probabilities for different classes, then used to label the data. 

 

 

Figure 1: Naïve Bayes Algorithm Example 

The Classification and Regression Trees (CART) algorithm falls under the decision tree 

category and develops tree-like structures where the leaves represent classifications and 
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branches represent conjunctions of features that lead to classifications (Tsai et al., 2009). This 

algorithm is unique to scikit-learn as it is a type of decision tree algorithm based on the popular 

C4.5 decision tree algorithm with very slight alterations. 

 

 

Figure 2: Classification and Regression Trees Algorithm Example 

The Random Forest (RF) algorithm belongs to the ensemble learning category 

(Aburomman & Reaz, 2017). Ensemble learning constructs several models and then selects the 

best model based on majority or weighted voting. This algorithm combines decision trees and 

ensemble learning to produce several decision trees that use randomly selected data features or 

attributes as their input, such that a forest is generated with trees with controlled variance. 

 

Figure 3: Random Forest Algorithm Example 

Adaptive Boosting, or AdaBoost (AB), is another type of machine learning algorithm 

that falls under ensemble learning (Aburomman & Reaz, 2017). Boosting is a form of 

machine learning ensemble algorithm where models are sequentially added, and later models 
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in this sequence can correct the predictions made by earlier models. The AdaBoost algorithm 

is considered adaptive because it combines, or adapts, multiple weak classifiers into a single 

strong classifier while boosting the sequence of models. As a result, this algorithm is 

considered quite sensitive to noisy data and outliers. Additionally, this ensemble learning 

technique makes the algorithm less susceptible to overfitting algorithms since it reduces 

variance. 

 

Figure 4: Adaptive Boosting Algorithm Example 

Bagging Classifier (BC) is another machine learning algorithm that belongs to the 

ensemble learning category (Aburomman & Reaz, 2017). Bagging, also known as bootstrap 

aggregating, is another type of machine learning ensemble algorithm that generates subsets of 

the original dataset through sampling. Bagging Classifier fits base classifiers (such as 

Decision Tree) on random subsets of the original dataset and then aggregates their 

predictions, by voting or averaging, to create a final model and prediction. Similar to the other 

ensemble learning methods, this ensemble technique reduces variance and thereby helps avoid 

overfitting. 
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Figure 5: Bagging Classifier Algorithm Example 

The Logistic Regression (LR) algorithm is a well-known algorithm in machine 

learning and falls under the linear regression category (Yihunie, Abdelfattah, & Regmi, 

2019). Logistic regression applies a statistical model that uses the logistic function to model 

binary dependent variables. After ingesting data, this algorithm calculates a particular 

threshold coefficient to make classifications and predictions thereby. 

 

Figure 6: Logistic Regression Algorithm Example 

Stochastic Gradient Descent (SGD) is another form of linear regression. This 

algorithm may also be known as a stochastic approximation of gradient descent optimization 
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(Yihunie et al., 2019). Gradient descent optimization is an iterative optimization algorithm 

used for identifying the local minimum, or lowest point, on a function by taking repeated 

steps in the opposite direction of the gradient. The term “stochastic” is another word for 

“random.” As a result, SGD applies randomness in the gradient descent algorithm by selecting 

a single random data point out of the whole dataset for each iteration of gradient descent 

optimization. This random selection of data points dramatically reduces the necessary 

computation. 

  

Figure 7: Stochastic Gradient Descent Algorithm Example 

Numerous machine learning algorithms were tested and discarded while investigating 

a variety of algorithms for this research. In addition to the algorithms officially selected, the 

following algorithms were tested and removed from this study: Bayesian Network, K-Nearest 

Neighbor, Support Vector Machine (Linear, Radial Basis Function, and Sigmoid), Ridge 

Classifier, One-Class SVM, Isolation Forest, and Local Outlier Factor. These algorithms were 

considered and tested due to their popularity and success seen throughout the literature 

review. The Bayesian Network algorithm was removed due to its absence within the scikit-

learn library, whereas all the other listed algorithms were discarded due to their intense 

resource and time requirements. Many of these algorithms are extremely sensitive to feature 

input, and each new feature exponentially increases the amount of time to develop a model 

(Lee, 2019). These algorithms may have had difficulties ingesting the datasets due to their 

immense size, especially when considering the high number of labeled features and the total 

number of packets. If any of these algorithms took longer than three days to generate a single 

model in the online virtual environment, they were discarded. Many of these algorithms may 

have produced a highly successful machine learning model after several days of development. 
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However, it was decided to remove these intense algorithms due to the high number of 

models required for this research. Using a single selected algorithm, 15 models (one 

algorithm, five datasets, and three optimization methods) would need to be developed to be 

adequately analyzed for this study. This considerable time and resource requirement for 

developing these particular models did not fit this study’s proposed timeline. 

Towards the end of investigating machine learning algorithms to include in this 

research, a focus on the inclusion of novelty and outlier detection algorithm categories was 

heavily considered. These two machine learning categories were considered due to their 

extreme outlier sensitivity and success with anomaly detection ("scikit-learn," 2020). The 

outlier detection category operates by identifying regions within the dataset observed as far or 

different from other regions. The algorithms that fall under this outlier detection category 

include Isolation Forest, Local Outlier Factor, and One-Class SVM. All of these algorithms 

were tested for this study. However, they were all dropped due to their high resource and time 

requirements. The outlier detection estimators fit the regions where the data is most 

concentrated, thereby ignoring deviant observations. The category of novelty detection 

operates by treating none of the training data as outliers and determining if new observations 

are considered an outlier, or rather, a novelty. The One-Class SVM and Local Outlier Factor 

algorithms could be configured to operate under this category of novelty detection but still 

belong under the outlier detection category. Again, both these algorithms were tested and 

dropped due to their requirements; they took longer than three days to develop a single model. 

With more time and more robust computational resources, these algorithms may have 

generated the most effective anomaly detection models for this study. 

The datasets used to train and test each of these ML algorithms include the KDD 99, 

NSL-KDD, UNSW-NB 15, CICIDS 2017, and CIDDS-001 datasets. The KDD 99 and NSL-

KDD datasets were selected because of their popularity in the literature review. Nearly all of 

the literature utilized at least one of these datasets. The UNSW-NB 15, CICIDS 2017, and 

CIDDS-001 datasets were selected at the recommendation of a comprehensive intrusion 

detection datasets survey paper where the authors suggested these particular datasets due to 

their wide variety of attack categories and network traffic composition (Ring et al., 2019). 

Each experiment in this first phase of research applied a combination of machine learning 

models, network intrusion datasets, and optimization methods. 
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The KDD 99 dataset was created as part of the International Knowledge Discovery 

and Data Mining Competition (KDD) Cup in 1999. This dataset was based on the DARPA 

1998 dataset, produced by MIT’s Lincoln Labs. This dataset is the most popular dataset for 

network intrusion detection despite its several flaws previously discussed in the literature 

review (Creech & Jiankun, 2013). The NSL-KDD dataset was created at the University of 

New Brunswick in Fredericton, Canada, in 2009. This dataset essentially updated the KDD 99 

dataset by purging many redundant records and improperly distributed attacks (Tavallaee et 

al., 2009). The UNSW-NB15 dataset was produced at the University of New South Wales in 

Sydney, Australia, in 2015. The CICIDS2017 dataset was also produced at the University of 

New Brunswick, Fredericton, Canada, in 2017. This university is partnered with the Canada 

Institute for Cybersecurity. The CIDDS-001 dataset was developed at the Coburg University 

of Applied Sciences in Coburg, Germany, in 2017. Each of these datasets is fully labeled, 

meaning that they can operate with supervised learning algorithms properly. These datasets 

provide various data format types (packet-based, flow-based, hybrid/other), metadata, size, 

attack scenarios, and features. A comparison of these selected datasets can be found in Tables 

1 and 2. These tables were taken and modified from the previously referenced academic 

research survey of available network intrusion datasets (Ring et al., 2019).  

The second phase of research focused on modifying the Zeek anomaly detection 

engine to enable ML classifications of network traffic ("zeek," 2020). This second phase 

aimed to apply the ML models initially trained and tested in the first phase to a real-world 

application of an IDS with ML capabilities. The implemented IDS ML pipeline results were 

quantitatively analyzed and compared to the previous phase results to determine if there was a 

difference in evaluation metrics between conceptual and applied environments. 
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  General Information Nature of the Data 

Dataset Year Created 
Public 
Availability 

Normal 
Traffic 

Attack 
Traffic Metadata Format Anonymity 

KDD 99 1998 Yes Yes Yes No Hybrid/other None 

NSL-KDD 1998 (2009) Yes Yes Yes No Hybrid/other None 

UNSW-NB15 2015 Yes Yes Yes Yes Packet, Hybrid/other None 

CICIDS2017 2017 Yes Yes Yes Yes Packet, Flow (bi) Yes (IPs) 

CIDDS-001 2017 Yes Yes Yes Yes Flow (uni.) None 

Table 1: Dataset Comparison – General Information and Nature of the Data 

 

 

  Data Volume Recording Environment Evaluation 

Dataset Count Duration Kind of Traffic Type of Network 
Complete 
Network 

Predefined 
Splits Balanced Labeled 

KDD 99 5M points Not specified Emulated Small enterprise Yes Yes No Yes 

NSL-KDD 150K points Not specified Emulated Small enterprise Yes Yes No Yes 

UNSW-NB15 2M points 31 hours Emulated Small enterprise Yes Yes No Yes 

CICIDS2017 3.1M flows 5 days Emulated Small enterprise Yes No No Yes 

CIDDS-001 32M flows 28 days Emulated and real Small enterprise Yes No No Yes 

Table 2: Dataset Comparison – Data Volume, Recording Environment, and Evaluation 
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Instruments and Tools 

  The first phase of this study was conducted using five cloned Ubuntu 20.04 virtual 

machines (VMs) in the DSU Information Assurance (IA) Lab, an online virtual environment. 

Each VM utilized 24 cores with a 2.30 GHz processing speed, 100 GB of RAM, and 500 GB 

of hard disk space. These five VMs were labeled after the five datasets selected for this 

research. This study utilized several free and open-source tools. Ubuntu was selected as the 

underlying operating system on each VM due to its lightweight and open-source availability 

("Ubuntu," 2021). Additionally, Ubuntu comes with a series of preinstalled tools that were 

used for this research. One primary tool requirement necessary for this study was Python 

version 3. Python is a very well documented and popular high-level scripting language with a 

large community of supporters ("Python," 2021). This study also used the Anaconda suite, a 

free platform-agnostic package, and environment manager ("Anaconda," 2021). The 

Anaconda suite provided access to the Scientific Python Development Environment, or 

Spyder Integrated Development Environment (IDE). Spyder is a free and open-source IDE 

specializing in advanced data analytics and debugging ("Spyder," 2020). Anaconda was 

utilized as a simple package manager for updating tools and libraries, including Python, 

Spyder, and scikit-learn. The scikit-learn module can be imported into Python and contains 

various machine learning capabilities and analytics ("scikit-learn," 2020). Scikit-learn 

successfully trained, tested, and evaluated each of the ML models in this research. Each of the 

previously mentioned datasets was downloaded from the developer organizations’ website for 

free and were successfully ingested within the Python environment and scikit-learn functions. 

Additionally, scikit-learn provides standardized measuring techniques for evaluating the 

results of each ML experiment. The evaluation metrics analyzed between each ML 

experiment included accuracy, precision, recall, and F1 score. Additionally, it should be noted 

that during the development of the Python scripts for this research, several different online 

resources were utilized. Numerous technical books were referenced during code development 

through the use of the O’Reilly Online Learning library, which was previously known as 

Safari Books Online ("O’Reilly," 2021). The second phase of this study was conducted using 

the same set of online VMs. One of the five online VMs had Zeek installed, which acted as 

the open-source IDS for this research. The prediction dataset and associated raw PCAPs 
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selected for the second phase of research were fed into this Zeek IDS to produce standardized 

Zeek connection logs of the ingested traffic ("zeek," 2020). The Wireshark tool called 

mergecap was also utilized in the second phase of research and combined multiple raw 

PCAPs into a single PCAP format for Zeek ingestion ("mergecap," 2021). 

 Some alternative tools were considered to be used in conjunction with or possibly 

replace previously mentioned tools. Some other online virtual environments that were 

considered include Amazon Web Services (AWS), Google Cloud Platform (GCP), or Digital 

Ocean (DO). It should also be noted that VMware Workstation was a considered tool for this 

research as it would allow for virtualization on a host desktop; however, it was not utilized 

due to the intense resource requirements and the high number of experiments for this research 

study. Additionally, the previously mentioned open-source IDS software, Zeek (previously 

known as Bro), was just one open-source IDS option; Suricata or Snort was also considered. 

A handful of other ML algorithms, intrusion detection datasets, or evaluation metrics were 

removed or replaced while conducting this research.  

 

Procedures 

The first phase of this study involved developing a Python script that imports the 

scikit-learn module and associated datasets to produce a series of ML models. The Python 

script was configured to optimize and create a series of models based on the combination of 

ML models, network datasets, and scoring methods. Additionally, this Phase One script 

would first optimize each model to tune each of them to the highest associated metric score 

based on the selected optimization method. This Phase One script was distributed to each of 

the five VMs in the DSU Information Assurance (IA) Lab virtual environment. This first 

phase trained 105 models based on seven ML algorithms, five datasets, and three scoring 

methods. Each of these models, or experiments, utilized parameter optimization for each 

algorithm to then develop fully trained and optimized models. The selected evaluation metrics 

were used to compare each model effectively and consistently. A series of data 

transformations are applied to each of the imported datasets. The steps involved in conducting 

these transformations include label extraction and grouping, feature mapping and dropping, 

feature encoding and standardization, feature scaling and normalization, subset creation, and 

feature reduction. Additionally, a complete walkthrough of the Phase One Python script is 
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included in a later subsection. Essentially though, this phase’s goal was to develop a series of 

highly optimized models that yield high evaluation metrics. 

The second phase of this research involved applying the previously trained models to 

filter through unseen network traffic and identify malicious behavior. This process involved 

taking the raw PCAPs of the CICIDS 2017 dataset and feeding them through the Zeek IDS to 

produce connection logs. This PCAP merging and Zeek ingestion were performed using just 

one of the five available online VMs. These Zeek connection logs and the previously trained 

models were then fed into a new Python script that applied the models and yielded each 

model’s detection output. The Phase Two Python script was downloaded and executed on 

each online VM, and the Zeek connection log output was generated from the raw PCAPs of 

CICIDS 2017. This entire process could be considered an IDS ML pipeline environment with 

additional scripts that push the necessary data between each script continuously. Below is a 

diagram that shows the overall procedures and flow of data between each phase of this 

research. 
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Figure 8: Phase One and Phase Two Python Scripts – Flowchart 

 

Data Analysis and Interpretation of Results 

The first phase of quantitative research produced a series of trained ML models with 

associated evaluation metrics. The evaluation metrics included in Phase One include 

accuracy, precision, recall, F1 score, and training time. These metrics were included due to 

their appearance throughout the literature review and their availability within the scikit-learn 
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library. Accuracy measures the fraction of correct predictions (true positives and false 

positives) out of the total results (true positives, true negatives, false positives, and false 

negatives). Precision measures the amount of true positive results over the actual results (true 

positives and false negatives), whereas recall measures the amount of true positive results 

over the model’s predicted results (true positive and false negative). Perfect precision 

corresponds to no false positives (Type I errors); meanwhile, perfect recall corresponds to no 

false negatives (Type II errors). Additionally, precision and recall considered inverses of each 

other; if precision increases, recall decreases and vice-versa. The F1 score metric is 

considered to be the harmonic mean between these precision and recall metrics. 

This research primarily focuses on the accuracy metric due to this study’s research 

questions and hypotheses. Ideally, each trained model’s goal was to achieve 95% or higher in 

each of these metric categories. This 95% threshold was selected because, while the realm of 

network security seeks to achieve 100% detection of attacks, the realm of machine learning 

must tolerate lower metrics to create an acceptable model depending on the problem at hand. 

The 95% threshold of success for evaluation metrics provides a robust network intrusion 

detection model. The second phase of this study involved applying the models and only 

reviewing each model’s accuracy metric. The true values of the CICIDS 2017 detection rate 

(normal or malicious) were extracted from the CICIDS 2017 CSV data. The goal of each 

trained model in Phase Two was to match, as closely as possible, the same detection rate as 

dictated by the true values observed in the CICIDS 2017 CSV dataset. This study aimed to 

showcase the need for utilizing multiple datasets and testing models in an applied 

environment. The focus of this research will be the comparison of ML models’ results 

between each of the phases to determine how the models operate between theoretical 

environments and implemented environments. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
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𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝑇𝑁 +  𝐹𝑃
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 =
𝑇𝑁

𝑇𝑁 +  𝐹𝑁
 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

Limitations and Challenges 

A primary goal for this research was actually to create and implement a real-world 

IDS with ML capabilities. There are very few guides and papers that review this process, so a 

significant hurdle for this study was investigating this task’s feasibility. There were only three 

identified options for feasibly creating an IDS with ML capabilities. The first option was to 

create a pipeline that takes the IDS output and feeds it into an ML processing script. A second 

option was to modify the preprocessors of the IDS detection engine. However, after 

investigating this option, it was determined that this route might take too long for this 

proposed research timeline. Lastly, a third option was to create an IDS plugin using the 

appropriate programming language. However, the biggest reason why the IDS preprocessor 

modification and IDS plugin creation options were not utilized in this research is that both of 

these methods required writing in the native language of the IDS. Some IDS software is 

written in programming languages with very limited support for machine learning libraries, 

meaning that machine learning algorithms would have to be manually coded, which was 

outside the scope of this research. Several other significant challenges and limitations for this 

research are further discussed in-depth in Chapter 5. 

 

Python Scripts – Commentary Walkthrough 

Two Pythons scripts were created for each phase of research. This subsection will 

include a walkthrough of the scripts and review the significant coding choices. While extremely 

enlightening, there were several challenges encountered while developing these scripts. Below 
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are pseudocode walkthroughs of the two primary Python scripts developed for each phase of 

research. The entirety of each of these two scripts is included in the Appendices. The Phase 

One Python Script is found in Appendix A, and the Phase Two Python Script is included in 

Appendix B. Additionally, the following subsection will review certain significant decisions 

made while developing and testing these Python scripts. 

 

Phase One – Python Script 

Python Script 1 Walkthrough 

1. Import libraries 

2. Loop through datasets 

a. Import dataset (CSV format with labels) 

b. Apply label extraction and grouping 

c. Rename and drop features 

d. Apply appropriate data transformations 

i. Convert dataset to str/object 

ii. Identify and save unique values via fullset.values.ravel() - saved as *_unique.joblib 

iii. Encode dataset via LabelEncoder() - saved as *_encoder.joblib 

iv. Scale dataset via StandardScaler() - saved as *_scaler.joblib 

v. Create subsets via train_test_split() - returns X_train, X_test, Y_train, and Y_test 

1. The CICIDS-001 dataset is unique in that train_test_splt() is performed twice to 

only utilize only 10% of the total dataset 

vi. Perform feature reduction via PCA() - saved as *_pca.joblib 

e. Return transformed X_train, X_test, Y_train, and Y_test subsets 

f. Optimize models - First run-through 

i. Configure optimizations settings 

1. Set scoring methods- accuracy, precision_macro, and f1_macro 

2. Set classifiers/algorithms to optimize - Decision Tree, Random Forest, Ada 

Boost, Bagging Classifier, Logistic Regression, Stochastic Gradient Descent 

3. Set parameter grid for each algorithm (unique parameters for each classifier) 

ii. Loop through scoring methods and classifiers 

1. Optimize models via GridSearchCV, which will perform an exhaustive search 

based on the provided classifiers and parameter grids, which will be optimized 

for maximum scores based on the selected scoring methods 

2. Save output with best scores and parameters to CSV (this was just for recording 

purposes - these optimized parameters were manually inputted back into the 

Python script) 
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g. Model production - Second run-through 

i. Set scoring parameters again - accuracy, precision_macro, f1_macro 

ii. Loop through scoring methods 

1. Obtain the optimized parameters for each algorithm 

2. Loop through each algorithm 

a. Produce official models via clf.predict() while utilizing the optimized 

parameters for different ML algorithms, different scoring methods, and 

selected dataset 

3. Save output with produced models and evaluation metrics (accuracy, precision, 

recall, and F1 score) to CSV 

 

Phase Two – Python Script 

Python Script 2 Walkthrough 

1. Import libraries 

2. Loop through datasets 

a. Import the prediction dataset (merged raw PCAPs of CICIDS 2017) 

b. Store the dataset in a CSV format with the same matching columns/features as the other 

trained models and their corresponding datasets 

c. Based on the selected dataset, transform the prediction set in the same exact procedure the 

previous model was trained 

i. Load the *_unique.joblib, *_encoder.joblib, *_scaler.joblib, and *_pca.joblib to the 

prediction set 

ii. Add “-” to the encoder schema (a default value in case an unseen value is in the 

prediction set) 

iii. Convert dataset to str/object 

iv. Identify and save unique values via predictionset.values.ravel() - loaded and applied 

via *_unique.joblib 

v. Iterate through the encoder schema and replace any unseen values with “-” (all the 

values in the new unseen data must exist in the previously trained encoder schema) 

vi. Encode dataset via LabelEncoder() - loaded and applied via *_encoder.joblib 

vii. Scale dataset via StandardScaler() - loaded and applied via *_scaler.joblib 

viii. Create subsets via train_test_split() - returns X_train, X_test, Y_train, and Y_test 

ix. Perform feature reduction via PCA() - loaded and applied via *_pca.joblib 

d. Set the scoring methods (accuracy, prevision_macro, and f1_macro) and classifiers/algorithms 

(NB, DT, RF, AB, BC, LR, and SGD) 

e. Iterate through the scoring methods and classifiers 

i. Utilize the clf.prediction() function to predict malicious traffic in the unseen data 
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ii. Perform computations to determine the accuracy of the predicted value 

iii. Store and save the output of the prediction values in a CSV 

 

Major Development Decisions 

Consistent Experimentation 

A major goal of this research was to maintain consistency and repeatability. In Phase 

One, a combination of machine learning classification algorithm, network dataset, and 

optimization went through the same exact data transformation process except for a few items 

taken from the datasets. The major difference between each dataset was the inclusion of 

certain features. Features are unique labeled properties belonging to each dataset; the list of 

features included for each of the datasets used in this study were various packet or NetFlow 

fields. This study attempted to map as many Zeek IDS Connection Log fields to features 

identified within each dataset. This mapping meant that specific datasets had as little as six 

features mapped to the Zeek log fields when performing feature reduction, whereas other 

datasets had as many as twelve features mapped. The complete list of features from each 

dataset and Zeek connection log fields can be seen in Appendix C. There is a table below 

containing each of the fully mapped features. The only mapped feature dropped was the 

connection state (conn_state) field because each dataset had its own nonstandard format for 

that particular attribute. In addition to this initial feature reduction, some more features may 

have been dropped when conducting automated dimensionality reduction via the PCA 

function. The only other distinction between the data transformations was reducing the size of 

the CIDDS-001 dataset. Only 10% of the total CIDDS-001 was ingested due to its immense 

size. When reading in the entire CIDDS-001 dataset, the Python script would crash due to 

limited memory capacity despite the 100 GB of dedicated RAM for the VM. Aside from these 

two unique data transformations of selective feature mapping and CIDDS-001 size reduction, 

all the ML models went through the exact data ingestion and transformation process. 

 

Zeek Conn Log KDD 99 NSL-KDD UNSW-NB15 CICIDS 2017 CIDDS-001 

id.orig_h     srcip   Src IP Addr 

id.orig_p     sport   Src Pt 

id.resp_h     dstip   Dst IP Addr 
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id.resp_p     dsport DestinationPort Dst Pt 

proto protocol_type protocol_type proto   Proto 

conn_state* flag flag state   Flags 

duration duration duration dur FlowDuration Duration 

orig_ip_bytes src_bytes src_bytes sbytes TotalLengthofFwdPackets Bytes 

resp_ip_bytes dst_bytes dst_bytes dbytes TotalLengthofBwdPackets   

service service service service     

orig_pkts     Spkts TotalFwdPackets Packets 

resp_pkts     Dpkts TotalBackwardPackets   

Table 3: Mapped Features – Dataset Features to Zeek Connection Log Fields 

 

Data Transformation Process 

Several significant decisions were made while determining the transformations of data 

imported into the Python scripts for this research. There are numerous steps involved in 

machine learning to transform data into a proper ingestible format (Gron, 2017). A series of 

steps are taken whenever a dataset is read into the scripts to perform a consistent data 

transformation. 

 

Data Preprocessing 

1. Label extraction and grouping 

2. Feature mapping and dropping 

3. Feature encoding 

4. Feature scaling 

5. Subset creation and cross-validation 

6. Automated feature reduction 

 

The transformation process’s first steps involve the labels that classify the associated 

packet as either malicious or innocuous. Many datasets have numerous subsets of malicious 

traffic and classify packets as a particular type of attack. A decision was made to group all 

these types of network attacks as only “malicious” since they are all unwanted network traffic 

forms. This decision dramatically increased metric evaluation results during testing. 
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The next step in the transformation process involves dataset features. With the labels 

in the previous step successfully extracted and grouped, the rest of each dataset’s unique 

features are transformed. First, the applicable features’ names are mapped and modified to 

match those belonging to the corresponding Zeek connection log fields. With the names of the 

features changed to match the Zeek logs, the rest of the features are then dropped since they 

will not be used. A significant decision here was to map as many features as possible between 

each unique dataset and the Zeek logs. Specific datasets only mapped six features, whereas 

others mapped as many as ten features. 

Next, the feature data is then encoded. Feature encoding is vital to machine learning as 

it is used to create a simple dictionary of sorts. This encoding schema is used to standardize 

and parse through the feature data (Chio & Freeman, 2018). There are numerous encoding 

methods available within the scikit-learn module; however, the well-known and standard 

LabelEncoder function was selected for this step. 

Feature scaling and regularization of the data is the next major data transformation. 

This transformation step takes the encoded data and scales it in a particular way such that the 

feature data is normalized (Albon, 2018). Regularization will scale the data such that each 

feature and individual value is scaled and thereby have a fixed and proportional weight. 

Similar to encoding, there are also several scaling methods available within the scikit-learn 

library. The StandardScaler function is a popular option and was selected for this step. 

Another scaler that was heavily considered was the MinMaxScaler. Both the StandardScaler 

and MinMaxScaler functions are relatively sensitive to outlier data, which is essential since 

many network attacks and anomalous traffic are typically considered infrequent, thereby 

considered outlier packets. 

The next transformation of data involved splitting the dataset into subsets for cross-

validation. Cross-validation takes the original full dataset and divides it into a series of 

multiple subsets to be used for training and testing, or validation (Sarkar & Natarajan, 2019). 

One type of cross-validation technique is called Leave-One-Out-Cross-Validation (LOOCV). 

One widespread implementation of the LOOCV scheme is k-fold cross-validation, where the 

original data is split into k equal-sized folds and, over a series of rounds, each fold becomes 

the testing set and the rest act as the training set. This k-fold cross-validation process is 

repeated k times, with each fold acting as the designated testing set once. This study utilized 
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the train_test_split function, which performed 10-fold cross-validation and outputs the 

dedicated training and testing subsets. This function has several configurable parameters, and 

one of the major decisions was to perform a 90/10 split, where 90% of the original data was 

used for training, and 10% of the original data was split off as a dedicated test set. 

Additionally, the parameters were also configured to incorporate the same proportion of 

unique feature data between the training and testing datasets. 

Feature reduction is the final data transformation step in this process. Feature 

reduction is also crucial in machine learning as it removes the features deemed unhelpful for 

categorization (Chollet, 2017). There are several different feature reduction methods; 

however, the Principal Component Analysis (PCA) function was selected for this 

transformation step. The utilization of PCA for feature reduction was a significant step 

because it allowed for automated feature reduction, which was decided by the function. The 

selection of PCA and automated feature reduction allowed for consistency between each 

unique dataset, rather than applying highly unique and configured reduction methods. 

 

Model Optimization 

The optimization process was a significant step during the development of models for Phase 

One. This stage involved the usage of scikit-learn’s GridSearchCV function, which performs 

an exhaustive search for the best scoring models developed by a cross-validated grid-search 

over a submitted parameter grid (Gron, 2017). This function will develop numerous models 

based on each combination of parameters to identify which parameters yield the best models 

with the highest scoring metrics. This optimization process is applied while developing 

machine learning models to create models with ideal parameters and yield the highest possible 

performance. Each of the algorithms selected for this study had a series of configurable 

parameters that could drastically alter the models’ outcome. This optimization process was 

identified which set of parameters were best suited for each combination of datasets and 

algorithms. It should be noted that different models using different optimization methods may 

select the same algorithm parameters, thereby leading to the same models with identical 

metric scores; this is later seen in the results of this study. It should also be noted again that 

the Naïve Bayes algorithm is the only algorithm in this study that cannot be optimized since it 
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does not have any optimizable parameters. Each algorithm and its corresponding parameter 

grid can be seen below or in the Phase One Python Script in Appendix A. 

 

• Decision Tree - criterion: [gini, entropy], max_features: [auto, sqrt, log2] 

• Random Forest - n_estimators: [100, 1000, 3000, 5000], criterion: [gini, entropy], 

max_features: [auto, sqrt, log2] 

• Ada Boost - n_estimators: [100, 1000, 3000, 5000], learning_rate: [0.5, 1, 1.5] 

• Bagging Classifier - n_estimators: [100, 1000, 3000, 5000], max_features: [0.5, 1, 5], 

max_samples: [0.1, 0.5, 1] 

• Logistic Regression - penalty: [l2, l1, elasticnet], C: [0.1, 1, 10], max_iter: [2500, 

5000, 7500, 10000] 

• Stochastic Gradient Descent - alpha: [5, 10, 15], penalty: [l2, l1, elasticnet], max_iter: 

[100, 1000, 3000, 5000] 

 

Overfitting and Underfitting Avoidance 

When training ML models, two major concerns are to avoid overfitting and 

underfitting the models (Kumar, 2019). Overfitting means that that produced model is over-

tailored for the particular training data. Overfit models perform well during the training and 

testing phase; however, they severely underperform when ingesting new data. Underfitting is 

the exact opposite problem of overfitting, meaning that models have not been trained enough. 

Underfit models poorly perform during the testing phase as well as when ingesting new data. 

It is typically much easier to detect underfitting because the ML models will yield poor metric 

results during the testing phase. 

Numerous experiments were conducted with various selected and discarded 

algorithms, datasets, and optimization parameters. It can be seen later in the Results and 

Discussion section that underfitting was never really a problem since the large majority of 

trained ML models from Phase One were highly optimized with very positive metric results. 

However, as a result, one primary concern for this study was overfitting due to the genuine 

possibility of excessive model optimization. 

When reviewing Phase One results, it could be argued that the models were overfit 

based on how they performed when predicting malicious traffic in Phase Two. However, there 
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are some techniques to avoid or reduce the potential for overfitting. These overfitting 

reduction techniques were considered and applied when initially training the ML models. 

The first method to reduce overfitting is to apply more training data (Ameisen, 2020). 

The more training data utilized, the harder it is for a model to learn too much from a single 

small dataset. The size of all five of the datasets for this study was quite large and diverse. 

Only 10% of the total CIDDS-001 dataset was utilized because the total dataset size was 

causing the VM to exceed its 100 GB of RAM and crash the Python script for excessive 

memory allocation. 

The second technique to reduce overfitting is to apply regularization, also known as 

normalization or scaling (Patterson & Gibson, 2017). Regularizing the ingested data while 

training a model will scale the data such that each feature and individual value is scaled and 

thereby have a fixed and proportional weight. Many different regularization methods can 

cause the resulting ML models to be more sensitive or resistant to outlier data. This study 

utilized the StandardScaler regularization method, which is considered reasonably sensitive to 

outlier data input. 

The third method for overfitting reduction is applying cross-validation when training 

models (Bonaccorso, 2020). Cross-validation splits the original full dataset and divides it into 

dedicated subsets for training, testing, or validation. Cross-validation helps reduce variability, 

thereby limiting overfitting. This study applied 10-fold cross-validation techniques when 

initially training the ML models by utilizing the train_test_split function in scikit-learn and 

splitting each dataset into ten equal-sized folds, with nine folds used for training and one fold 

used for validation. 

The fourth method for overfitting avoidance is feature selection and dimensionality 

reduction (Halder & Ozdemir, 2018). High-dimensional data, or data with several features, is 

computationally expensive and prone to overfitting due to higher complexity. Feature 

selection picks a particular subset of features as the most influential properties of the dataset 

that more accurately correlates to the best classification of new data, reducing the total 

number of features, overall complexity, and potential for overfitting. This research performed 

dimensionality reduction two times when training ML models. First, a set of attributes found 

in Zeek IDS logs were used to filter the available features found in each dataset; this initial 

manual feature reduction removed the greatest number of features from each dataset. Second, 
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the Principal Component Analysis function was also applied to each dataset, which 

automatically dropped features that did not directly correlate to the network traffic’s overall 

categorization. Overall, the combination of these four overfitting avoidance techniques was 

applied to reduce the potential for overfitting. The results of Phase Two may still indicate that 

the ML models from Phase One were still overfitted. However, the overfitting avoidance 

precautions were still taken nonetheless. 

 

Prediction Dataset Selection and Development 

The second phase of this research involved applying the trained models to predict 

malicious traffic on unseen datasets. However, to verify the predicted values’ effectiveness 

and accuracy, the research required labeled information about the prediction dataset to know 

what portion of the traffic was considered malicious versus innocuous. Due to this verification 

requirement, the second phase of research utilized one of the previously selected datasets for 

training and applied it as a labeled prediction and verification dataset. This prediction dataset 

utilized the raw PCAP files fed into the Zeek IDS to produce connection logs. These IDS logs 

were then merged into a single PCAP and fed into the Phase Two Python script with the 

trained models to make predictions of malicious traffic based on the parsed logs. It should be 

noted that this Phase Two Python script utilized a custom Python package called 

parsezeeklogs which was installed from the Python Package Index (PyPI) repository 

("parsezeeklogs 2.0.1," 2019). This package is just a lightweight utility for reading Zeek IDS 

log files and outputting them into CSV format. Everything else in the Phase One and Phase 

Two scripts utilizes public Python libraries and includes custom-written code for this 

research. The Phase Two script’s prediction values were compared to the CSV files’ labels 

from the same prediction dataset. 

The initial dataset selected as the prediction and verification dataset was the UNSW-

NB15 dataset. This dataset was selected because it includes publicly available labeled CSV 

data as well as raw PCAPs. The UNSW-NB15 dataset contains roughly 100 GB of PCAP 

files. However, there were numerous errors while merging the PCAP files to then feed into 

the Zeek IDS. These errors may be due to synthetic packets produced by particular tools for 

the UNSW-NB15 dataset during its development. Initially, the mergecap tool was utilized to 

combine the PCAPs ("mergecap," 2021). However, while this tool is preinstalled on Ubuntu 
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and several other Linux systems, it has very poor error handling. While using mergecap, the 

tool would crash due to malformed packets and would not produce any single PCAP output if 

encountering an error. As a result, another public tool was identified called joincap, available 

on GitHub (assafmo, 2020). This tool is very similar to mergecap; however, it focuses on 

graceful error handling and will skip over malformed packets when combining PCAP files. 

Through joincap, the 100 GB of PCAPs were joined together into a single 60 GB PCAP. Due 

to the extreme loss of raw PCAP files when merging the files, the UNSW-NB15 dataset was 

not selected for prediction and verification. 

The final and officially selected dataset utilized for prediction comparison was the 

CICIDS 2017 dataset. This dataset is publicly available online and includes both labeled CSV 

files as well as raw PCAP files. The PCAPs were fed through the mergecap tool and 

successfully produced a single PCAP file with no errors ("mergecap," 2021). Additionally, the 

combined PCAP was the same size as the total split individual PCAP files, indicating an 

entirely successful merge. As a result, the CICIDS 2017 was selected as the prediction and 

verification dataset for Phase Two of this research. This dataset acted as a form of control 

group since it was used in both research phases. The CICIDS 2017 dataset was utilized in the 

first phase of research in the form of labeled CSV data as one of the five datasets to train the 

105 ML models. Additionally, the raw PCAP files of the CICIDS 2017 dataset were utilized 

for the second phase of research to be ingested into Zeek IDS to produce Zeek connection 

logs and be ingested into the Phase Two Python script. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

This section will review each phase of the research results and explain the different 

experiments’ outcomes. As a quick review, this dissertation’s research utilized the 

quantitative experimental study design, which was divided into two primary phases. The first 

phase of this research involved generating ML models based on a series of datasets, ML 

algorithms, and scoring methods. The first ML models are trained and evaluated on labeled 

data and then fed into the second research phase. This second phase of research applies the 

previously trained models on unseen network traffic to observe if the theoretical detection 

rates still apply when scanning for malicious traffic in new network data. 

 

Phase One – Results 

For the first phase of research, a Python script was utilized to read in datasets and then 

trained a series of ML models based on a combination of ML algorithms, datasets, and 

scoring methods. The first time the script was executed, the algorithms were initially 

optimized for specific scoring methods – accuracy, precision, and F1 score. The Grid Search 

Cross-Validation function (GridSearchCV) operates by testing a series of parameters and 

values to identify which parameters yield the best score based on the selected scoring method. 

Note that the Naïve Bayes algorithm cannot be optimized due to its nature and the lack of 

parameter options. After optimizing the parameters, the script was rerun and produced a total 

of 105 models. The script output contained a series of CSV files, which contained the 

evaluation metrics of each model. 

 

5 datasets * 7 ML algorithms * 3 scoring optimization methods = 105 total trained models 

 

Datasets – KDD 99, NSL-KDD, UNSW-NB15, CICIDS 2017, and CICIDS-001 

 



67 

ML algorithms – Naïve Bayes, Decision Tree, Random Forest, Ada Boost, Bagging 

Classifier, Logistic Regression, and Stochastic Gradient Descent 

 

Scoring (optimization) methods – accuracy, precision_macro (precision), and f1_macro (F1 

score) 

 

Evaluation metrics – accuracy, precision, recall, and F1 score 
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Phase One – Parameter Optimization 

 

Score Method Algorithm Best Parameters Best Score Train Time 

accuracy Decision Tree criterion='entropy', max_features='log2' 0.99796 0.48292 

accuracy Random Forest criterion='gini', max_features='log2', n_estimators=100 0.99806 210.16277 

accuracy Ada Boost learning_rate=1.5, n_estimators=5000 0.99793 814.39637 

accuracy Bagging Classifier max_features=0.5, max_samples=0.5, n_estimators=5000 0.99801 243.03303 

accuracy Logistic Regression C=10, max_iter=2500, penalty='l2' 0.96866 0.95317 

accuracy Stochastic Gradient Descent alpha=15, max_iter=1000, penalty='l2' 0.83157 1.83523 

precision_macro Decision Tree criterion='entropy', max_features='auto' 0.99572 0.49719 

precision_macro Random Forest criterion='gini', max_features='log2', n_estimators=100 0.99577 213.23284 

precision_macro Ada Boost learning_rate=1.5, n_estimators=5000 0.99557 790.43513 

precision_macro Bagging Classifier max_features=5, max_samples=0.5, n_estimators=5000 0.99566 256.45741 

precision_macro Logistic Regression C=10, max_iter=2500, penalty='l2' 0.96980 1.27933 

precision_macro Stochastic Gradient Descent alpha=15, max_iter=1000, penalty='l2' 0.59331 2.53445 

f1_macro Decision Tree criterion='entropy', max_features='auto' 0.99682 0.48747 

f1_macro Random Forest criterion='gini', max_features='sqrt', n_estimators=100 0.99695 214.75251 

f1_macro Ada Boost learning_rate=1.5, n_estimators=5000 0.99676 796.15304 

f1_macro Bagging Classifier max_features=0.5, max_samples=0.5, n_estimators=100 0.99689 246.88263 

f1_macro Logistic Regression C=10, max_iter=2500, penalty='l2' 0.94873 1.28646 

f1_macro Stochastic Gradient Descent alpha=15, max_iter=1000, penalty='l2' 0.53052 2.66449 

Table 4: Phase One – KDD 99 Models – Parameter Optimization 
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Score Method Algorithm Best Parameters Best Score Train Time 

accuracy Decision Tree criterion='entropy', max_features='auto' 0.98169 0.02364 

accuracy Random Forest criterion='gini', max_features='log2', n_estimators=5000 0.98371 33.80612 

accuracy Ada Boost learning_rate=1.5, n_estimators=3000 0.97926 21.86760 

accuracy Bagging Classifier max_features=0.5, max_samples=0.5, n_estimators=1000 0.98243 40.31787 

accuracy Logistic Regression C=0.1, max_iter=2500, penalty='l2' 0.90567 0.05589 

accuracy Stochastic Gradient Descent alpha=5, max_iter=1000, penalty='l2' 0.56294 0.06785 

precision_macro Decision Tree criterion='gini', max_features='auto' 0.98071 0.02837 

precision_macro Random Forest criterion='entropy', max_features='sqrt', n_estimators=100 0.98384 32.76877 

precision_macro Ada Boost learning_rate=1.5, n_estimators=3000 0.97929 21.31620 

precision_macro Bagging Classifier max_features=0.5, max_samples=0.5, n_estimators=3000 0.98285 40.37516 

precision_macro Logistic Regression C=0.1, max_iter=2500, penalty='l2' 0.90559 0.06648 

precision_macro Stochastic Gradient Descent alpha=5, max_iter=3000, penalty='l2' 0.73119 0.08599 

f1_macro Decision Tree criterion='entropy', max_features='log2' 0.98161 0.03075 

f1_macro Random Forest criterion='gini', max_features='log2', n_estimators=1000 0.98376 33.18701 

f1_macro Ada Boost learning_rate=1.5, n_estimators=3000 0.97924 21.55623 

f1_macro Bagging Classifier max_features=0.5, max_samples=0.5, n_estimators=1000 0.98261 40.31422 

f1_macro Logistic Regression C=0.1, max_iter=2500, penalty='l2' 0.90562 0.06172 

f1_macro Stochastic Gradient Descent alpha=5, max_iter=5000, penalty='l2' 0.44130 0.08950 

Table 5: Phase One – NSL-KDD Models – Parameter Optimization 
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Score Method Algorithm Best Parameters Best Score Train Time 

accuracy Decision Tree criterion='gini', max_features='sqrt' 0.98941 0.43377 

accuracy Random Forest criterion='entropy', max_features='log2', n_estimators=100 0.99123 247.63014 

accuracy Ada Boost learning_rate=1, n_estimators=3000 0.98921 605.48672 

accuracy Bagging Classifier max_features=0.5, max_samples=0.5, n_estimators=1000 0.99115 189.27455 

accuracy Logistic Regression C=0.1, max_iter=2500, penalty='l2' 0.97423 0.66619 

accuracy Stochastic Gradient Descent alpha=15, max_iter=100, penalty='l2' 0.87683 0.98321 

precision_macro Decision Tree criterion='entropy', max_features='sqrt' 0.97708 0.35475 

precision_macro Random Forest criterion='entropy', max_features='sqrt', n_estimators=1000 0.98003 253.54329 

precision_macro Ada Boost learning_rate=1, n_estimators=5000 0.97499 631.19595 

precision_macro Bagging Classifier max_features=1, max_samples=0.5, n_estimators=100 0.98453 185.29858 

precision_macro Logistic Regression C=0.1, max_iter=2500, penalty='l2' 0.94536 0.82141 

precision_macro Stochastic Gradient Descent alpha=10, max_iter=100, penalty='l2' 0.53703 1.35347 

f1_macro Decision Tree criterion='gini', max_features='log2' 0.97607 0.40691 

f1_macro Random Forest criterion='entropy', max_features='auto', n_estimators=100 0.98013 251.29138 

f1_macro Ada Boost learning_rate=1, n_estimators=3000 0.97550 613.18410 

f1_macro Bagging Classifier max_features=0.5, max_samples=0.5, n_estimators=3000 0.97984 188.67667 

f1_macro Logistic Regression C=0.1, max_iter=2500, penalty='l2' 0.94090 0.79907 

f1_macro Stochastic Gradient Descent alpha=15, max_iter=1000, penalty='l2' 0.48656 1.22815 

Table 6: Phase One – UNSW-NB15 Models – Parameter Optimization 
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Score Method Algorithm Best Parameters Best Score Train Time 

accuracy Decision Tree criterion='entropy', max_features='sqrt' 0.98867 0.51552 

accuracy Random Forest criterion='gini', max_features='sqrt', n_estimators=1000 0.99160 364.72154 

accuracy Ada Boost learning_rate=1.5, n_estimators=5000 0.92834 552.42350 

accuracy Bagging Classifier max_features=5, max_samples=0.5, n_estimators=5000 0.99115 257.60872 

accuracy Logistic Regression C=1, max_iter=2500, penalty='l2' 0.84413 0.48867 

accuracy Stochastic Gradient Descent alpha=15, max_iter=3000, penalty='l2' 0.80258 0.94233 

precision_macro Decision Tree criterion='entropy', max_features='auto' 0.98147 0.45460 

precision_macro Random Forest criterion='gini', max_features='sqrt', n_estimators=1000 0.98662 366.67431 

precision_macro Ada Boost learning_rate=1.5, n_estimators=5000 0.89797 558.84882 

precision_macro Bagging Classifier max_features=5, max_samples=0.5, n_estimators=5000 0.98653 260.66536 

precision_macro Logistic Regression C=0.1, max_iter=2500, penalty='l2' 0.77686 0.65171 

precision_macro Stochastic Gradient Descent alpha=15, max_iter=1000, penalty='l2' 0.47620 1.42750 

f1_macro Decision Tree criterion='entropy', max_features='log2' 0.98226 0.46069 

f1_macro Random Forest criterion='entropy', max_features='auto', n_estimators=1000 0.98678 371.29855 

f1_macro Ada Boost learning_rate=1.5, n_estimators=5000 0.88283 560.62389 

f1_macro Bagging Classifier max_features=5, max_samples=0.5, n_estimators=3000 0.98603 256.17446 

f1_macro Logistic Regression C=10, max_iter=2500, penalty='l2' 0.69967 0.64171 

f1_macro Stochastic Gradient Descent alpha=15, max_iter=1000, penalty='l2' 0.46995 1.31777 

Table 7: Phase One – CICIDS 2017 Models – Parameter Optimization 
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Score Method Algorithm Best Parameters Best Score Train Time 

accuracy Decision Tree criterion='entropy', max_features='sqrt' 0.99882 0.49638 

accuracy Random Forest criterion='entropy', max_features='sqrt', n_estimators=1000 0.99927 259.87577 

accuracy Ada Boost learning_rate=1.5, n_estimators=5000 0.99836 779.99958 

accuracy Bagging Classifier max_features=5, max_samples=0.5, n_estimators=1000 0.99910 223.35500 

accuracy Logistic Regression C=10, max_iter=2500, penalty='l2' 0.94686 0.74863 

accuracy Stochastic Gradient Descent alpha=5, max_iter=100, penalty='l2' 0.89727 1.12009 

precision_macro Decision Tree criterion='entropy', max_features='auto' 0.99703 0.46554 

precision_macro Random Forest criterion='entropy', max_features='log2', n_estimators=3000 0.99817 264.88818 

precision_macro Ada Boost learning_rate=1.5, n_estimators=5000 0.99516 769.69732 

precision_macro Bagging Classifier max_features=0.5, max_samples=0.5, n_estimators=1000 0.99821 228.25839 

precision_macro Logistic Regression C=10, max_iter=2500, penalty='l2' 0.89943 0.95949 

precision_macro Stochastic Gradient Descent alpha=5, max_iter=100, penalty='l2' 0.44863 1.55976 

f1_macro Decision Tree criterion='entropy', max_features='log2' 0.99690 0.47622 

f1_macro Random Forest criterion='entropy', max_features='auto', n_estimators=3000 0.99801 265.96089 

f1_macro Ada Boost learning_rate=1.5, n_estimators=5000 0.99549 785.13437 

f1_macro Bagging Classifier max_features=5, max_samples=0.5, n_estimators=1000 0.99756 225.29216 

f1_macro Logistic Regression C=10, max_iter=2500, penalty='l2' 0.83344 0.95891 

f1_macro Stochastic Gradient Descent alpha=5, max_iter=100, penalty='l2' 0.47293 1.63497 

Table 8: Phase One – CIDDS-001 Models – Parameter Optimization 
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Phase One – KDD 99 Dataset Results 

 

Model Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes 0.97303 0.96586 0.94853 0.95689 0.19895 

Decision Tree 0.99816 0.99600 0.99824 0.99712 0.36601 

Random Forest 0.99819 0.99603 0.99831 0.99716 2.47200 

Ada Boost 0.99794 0.99554 0.99804 0.99678 949.45873 

Bagging Classifier 0.99816 0.99592 0.99831 0.99711 33.93054 

Logistic Regression 0.96855 0.96973 0.93048 0.94854 0.43249 

Stochastic Gradient Descent 0.80108 0.64298 0.50011 0.44508 0.67686 

Table 9: Phase One – KDD 99 Models – Accuracy Optimization 

 

Model Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes 0.97303 0.96586 0.94853 0.95689 0.19037 

Decision Tree 0.99812 0.99598 0.99814 0.99706 0.32635 

Random Forest 0.99818 0.99602 0.99830 0.99715 2.49991 

Ada Boost 0.99794 0.99554 0.99804 0.99678 966.79733 

Bagging Classifier 0.99816 0.99598 0.99829 0.99713 70.83681 

Logistic Regression 0.96855 0.96973 0.93048 0.94854 0.35421 

Stochastic Gradient Descent 0.80108 0.80108 1 0.88956 0.19012 

Table 10: Phase One – KDD 99 Models – Precision Optimization 

 

Model Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes 0.97303 0.96586 0.94853 0.95689 0.15929 

Decision Tree 0.99816 0.99602 0.99822 0.99712 0.20516 

Random Forest 0.99818 0.99602 0.99830 0.99715 1.78166 

Ada Boost 0.99794 0.99554 0.99804 0.99678 943.96914 

Bagging Classifier 0.99814 0.99589 0.99830 0.99709 1.05218 

Logistic Regression 0.96855 0.96973 0.93048 0.94854 0.42434 

Stochastic Gradient Descent 0.80108 0.80108 1 0.88956 0.18991 

Table 11: Phase One – KDD 99 Models – F1 Score Optimization 
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Phase One – NSL-KDD Dataset Results 

 

Model Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes 0.89173 0.89252 0.89246 0.89173 0.00726 

Decision Tree 0.98613 0.98608 0.98616 0.98612 0.01268 

Random Forest 0.98828 0.98831 0.98824 0.98827 3.80120 

Ada Boost 0.98155 0.98154 0.98153 0.98154 15.72710 

Bagging Classifier 0.98734 0.98742 0.98725 0.98733 0.58591 

Logistic Regression 0.90648 0.90636 0.90653 0.90643 0.01096 

Stochastic Gradient Descent 0.51387 0.51387 1 0.67888 0.00446 

Table 12: Phase One – NSL-KDD Models – Accuracy Optimization 

 

Model Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes 0.89173 0.89252 0.89246 0.89173 0.00478 

Decision Tree 0.98741 0.98739 0.98741 0.98740 0.00858 

Random Forest 0.98815 0.98817 0.98811 0.98814 0.05314 

Ada Boost 0.98155 0.98154 0.98153 0.98154 15.61126 

Bagging Classifier 0.98734 0.98742 0.98725 0.98733 0.87895 

Logistic Regression 0.90648 0.90636 0.90653 0.90643 0.00951 

Stochastic Gradient Descent 0.51387 0.51387 1 0.67888 0.00392 

Table 13: Phase One – NSL-KDD Models – Precision Optimization 

 

Model Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes 0.89173 0.89252 0.89246 0.89173 0.00491 

Decision Tree 0.98647 0.98643 0.98649 0.98646 0.01002 

Random Forest 0.98822 0.98825 0.98817 0.98821 0.81297 

Ada Boost 0.98155 0.98154 0.98153 0.98154 15.61979 

Bagging Classifier 0.98734 0.98742 0.98725 0.98733 0.63036 

Logistic Regression 0.90648 0.90636 0.90653 0.90643 0.00933 

Stochastic Gradient Descent 0.54612 0.71213 0.55799 0.45311 0.00573 

Table 14: Phase One – NSL-KDD Models – F1 Score Optimization 
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Phase One – UNSW-NB15 Dataset Results 

 

Model Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes 0.89293 0.78412 0.64256 0.68054 0.08435 

Decision Tree 0.99170 0.98080 0.98154 0.98117 0.37921 

Random Forest 0.99306 0.98372 0.98481 0.98426 1.49134 

Ada Boost 0.98971 0.97442 0.97912 0.97675 466.55119 

Bagging Classifier 0.99317 0.98403 0.98496 0.98449 19.65784 

Logistic Regression 0.97419 0.94521 0.93655 0.94082 0.35886 

Stochastic Gradient Descent 0.87405 0.87405 1 0.93279 0.08537 

Table 15: Phase One – UNSW-NB15 Models – Accuracy Optimization 

 

Model Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes 0.89293 0.78412 0.64256 0.68054 0.08946 

Decision Tree 0.99187 0.98118 0.98195 0.98156 0.29828 

Random Forest 0.99303 0.98386 0.98449 0.98418 12.24554 

Ada Boost 0.98989 0.97491 0.97942 0.97715 778.32787 

Bagging Classifier 0.97446 0.98575 0.89864 0.93638 1.08145 

Logistic Regression 0.97419 0.94521 0.93655 0.94082 0.35494 

Stochastic Gradient Descent 0.87405 0.87405 1 0.93279 0.08048 

Table 16: Phase One – UNSW-NB15 Models – Precision Optimization 

 

Model Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes 0.89293 0.78412 0.64256 0.68054 0.08273 

Decision Tree 0.99126 0.97967 0.98066 0.98016 0.25876 

Random Forest 0.99305 0.98386 0.98459 0.98422 1.38001 

Ada Boost 0.98971 0.97442 0.97912 0.97675 480.33834 

Bagging Classifier 0.99318 0.98397 0.98507 0.98452 54.13052 

Logistic Regression 0.97419 0.94521 0.93655 0.94082 0.52767 

Stochastic Gradient Descent 0.87405 0.87405 1 0.93279 0.09553 

Table 17: Phase One – UNSW-NB15 Models – F1 Score Optimization 
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Phase One – CICIDS 2017 Dataset Results 

 

Model Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes 0.85553 0.81139 0.68245 0.71751 0.09344 

Decision Tree 0.99318 0.98845 0.99007 0.98926 0.42589 

Random Forest 0.99415 0.99032 0.99124 0.99078 20.96378 

Ada Boost 0.92856 0.89923 0.86886 0.88291 723.04974 

Bagging Classifier 0.99440 0.99115 0.99117 0.99116 176.10695 

Logistic Regression 0.84409 0.77625 0.67020 0.70009 0.19176 

Stochastic Gradient Descent 0.80256 0.80256 1 0.89047 0.12037 

Table 18: Phase One – CICIDS 2017 Models – Accuracy Optimization 

 

Model Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes 0.85553 0.81139 0.68245 0.71751 0.09795 

Decision Tree 0.99309 0.98826 0.98997 0.98911 0.47588 

Random Forest 0.99415 0.99033 0.99122 0.99077 20.17999 

Ada Boost 0.92856 0.89923 0.86886 0.88291 734.92824 

Bagging Classifier 0.99440 0.99113 0.99121 0.99117 171.72592 

Logistic Regression 0.84409 0.77625 0.67020 0.70009 0.16185 

Stochastic Gradient Descent 0.80256 0.80256 1 0.89047 0.27912 

Table 19: Phase One – CICIDS 2017 Models – Precision Optimization 

 

Model Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes 0.85553 0.81139 0.68245 0.71751 0.08759 

Decision Tree 0.99318 0.98842 0.99010 0.98926 0.41032 

Random Forest 0.99416 0.99029 0.99132 0.99080 18.56984 

Ada Boost 0.92856 0.89923 0.86886 0.88291 735.96754 

Bagging Classifier 0.99440 0.99116 0.99119 0.99117 107.24517 

Logistic Regression 0.84409 0.77625 0.67020 0.70009 0.18086 

Stochastic Gradient Descent 0.80256 0.80256 1 0.89047 0.08245 

Table 20: Phase One – CICIDS 2017 Models – F1 Score Optimization 
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Phase One – CIDDS-001 Dataset Results 

 

Model Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes 0.90131 0.74686 0.88045 0.79145 0.16439 

Decision Tree 0.99951 0.99877 0.99855 0.99866 0.50578 

Random Forest 0.99963 0.99908 0.99893 0.99900 14.92514 

Ada Boost 0.99852 0.99571 0.99627 0.99599 1203.30446 

Bagging Classifier 0.99959 0.99904 0.99872 0.99888 22.60481 

Logistic Regression 0.95024 0.91176 0.79929 0.84416 0.37160 

Stochastic Gradient Descent 0.89727 0.89727 1 0.94585 0.14127 

Table 21: Phase One – CIDDS-001 Models – Accuracy Optimization 

 

Model Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes 0.90131 0.74686 0.88045 0.79145 0.15782 

Decision Tree 0.99948 0.99869 0.99847 0.99858 0.37718 

Random Forest 0.99963 0.99908 0.99893 0.99900 40.93319 

Ada Boost 0.99852 0.99571 0.99627 0.99599 1116.44332 

Bagging Classifier 0.99956 0.99909 0.99851 0.99880 15.54522 

Logistic Regression 0.95024 0.91176 0.79929 0.84416 0.35591 

Stochastic Gradient Descent 0.89727 0.89727 1 0.94585 0.13498 

Table 22: Phase One – CIDDS-001 Models – Precision Optimization 

 

Model Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes 0.90131 0.74686 0.88045 0.79145 0.13131 

Decision Tree 0.99950 0.99873 0.99853 0.99863 0.31852 

Random Forest 0.99963 0.99908 0.99893 0.99900 39.92271 

Ada Boost 0.99852 0.99569 0.99627 0.99598 1051.30573 

Bagging Classifier 0.99959 0.99903 0.99877 0.99890 22.53338 

Logistic Regression 0.95024 0.91176 0.79929 0.84416 0.36495 

Stochastic Gradient Descent 0.89727 0.89727 1 0.94585 0.13185 

Table 23: Phase One – CIDDS-001 Models – F1 Score Optimization 
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Phase One – Discussion 

Parameter Optimization 

 The first time the script was executed, the goal was to identify optimized parameters 

for each model. It should be noted that the Naïve Bayes algorithm cannot be optimized due to 

the nature of the algorithm and a lack of parameters available. Additionally, when reviewing 

the parameter optimization scores, it can be seen that some of the ideal parameters remain 

consistent between different tests. The impact of these same selected and optimized 

parameters can be better seen when reviewing the actual trained models’ evaluation metrics as 

they yield consistent evaluation metric scores. 

Many of the models were considered highly optimized as most of them were able to 

obtain roughly 99% within their specified scoring method. Out of the 90 total trained models 

(Naïve Bayes cannot be optimized), only 30 were considered poorly optimized. Regarding 

this phase’s goals, anything lower than a 95% score within the respective scoring method is 

considered poorly optimized. There was a noticeable trend identified by reviewing the results. 

All the algorithms produced highly optimized models and scores except for three particular 

algorithms. The Stochastic Gradient Descent, Logistic Regression, and Ada Boost algorithms 

and associated models consistently underperformed. 

The worst performing algorithm was the Stochastic Gradient Descent algorithm, 

which consistently failed to reach a score higher than 95% across every single test, regardless 

of the particular dataset or scoring method. The second worst performing algorithm was the 

Logistic Regression algorithm. This algorithm consistently failed to reach a proper 

optimization score across each dataset when the specified scoring method was set to 

f1_macro. Additionally, there were multiple instances where the Logistic Regression 

algorithm failed to optimize appropriately and yielded inconsistent metrics. Lastly, the only 

other algorithm that failed to reach proper optimization was the Ada Boost algorithm. This 

algorithm only failed when interacting with the CICIDS 2017 dataset. However, it failed all 

three scoring methods. 

 

Model Production 

Similar to the parameter optimization phase, the actual production of the models 

yielded promising results. The large majority of models obtained 95% or better scores across 
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each evaluation metric, including accuracy, precision, recall, and F1 score. It should be noted 

that some of the different scoring methods utilized the same parameter configurations. The 

reusing of the same function parameters caused some of the models to yield remarkably 

similar, if not exact, metrics between tests with different scoring methods. 

The only algorithm that yielded consistently low evaluation metrics was Stochastic 

Gradient Descent. Across every test, regardless of dataset or scoring method, the SGD models 

always produced evaluation metrics that were well below the 95% threshold. There were large 

fluctuations of metric scores when trained using the KDD 99 and NSL-KDD datasets. 

However, the UNSW-NB15, CICIDS 2017, and CIDDS-001 datasets yielded consistently low 

metric scores. 

Additionally, another interesting observation of these results indicates that the 

differing scoring or optimization methods did not generate significantly different results. Each 

model produced using different scoring methods generated slightly different metrics. 

However, the models never caused the metrics to change enough to cross the threshold 

between success (>95%) and failure (<95%). There were some instances where the 

optimization method caused significant fluctuations, as seen in the tests involving the 

Stochastic Gradient Descent algorithm and the KDD 99 and NSL-KDD datasets. Therefore, 

while the differing scoring methods may have produced better respective metrics, they were 

still not impactful enough to change the score’s overall category (success or failure).  

While reviewing the models trained using the KDD 99 dataset, it appears that the 

Naïve Bayes, Decision Tree, Random Forest, Ada Boost, and Bagging Classifier algorithms 

maintained consistent metric scores greater than 95% across all the different scoring methods. 

The Logistic Regression algorithm achieved high scores (>95%) in accuracy or precision 

across all scoring methods; however, the algorithm also produced low scores (<95%) in recall 

and f1 values across all scoring methods. 

When trained using the NSL-KDD dataset, the Decision Tree, Random Forest, Ada 

Boost, and Bagging Classifier algorithms produced positive metrics of >95% regardless of the 

scoring method. The Naïve Bayes and Logistic Regression algorithms yielded consistently 

below 95% across each scoring method. 

The models trained off the UNSW-NB15 dataset produced highly consistent metrics 

with hardly any fluctuations between differing scoring methods. The Decision Tree, Random 
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Forest, Ada Boost, and Bagging Classifier algorithms produced positive results above the 

95% threshold regardless of the scoring method. Unfortunately, the Naïve Bayes algorithm 

consistently yielded low metrics (<95%) across each scoring method. The Logistic Regression 

algorithm produced models that achieved successful metrics (>95%) in terms of accuracy 

metrics; however, it also maintained poor results (<95%) in terms of precision, recall, and F1 

score metrics across all scoring methods. 

The CICIDS 2017 dataset yielded interesting metrics because it was the only dataset 

that caused the Ada Boost algorithm to produce low metrics consistently. These low Ada 

Boost metrics may have been due to the dataset’s size or possibly features selected for 

training. Additionally, this dataset also generated highly consistent metrics between each of 

the scoring method tests. The Decision Tree, Random Forest, and Bagging Classifier 

algorithms all produced models that generated positive metrics above the 95% threshold. 

However, the Naïve Bayes and Ada Boost algorithms regularly stayed below the 95% 

threshold across all scoring methods. 

The models trained using the CIDDS-001 dataset also maintained remarkably 

consistent results between algorithms. The Decision Tree, Random Forest, Ada Boost, and 

Bagging classifier algorithms achieved positive metrics (>95%) across all scoring methods. 

However, the Naïve Bayes algorithm maintained low metrics (<95%) regardless of the 

scoring method. The Logistic Regression algorithm achieved positive results (>95%) in the 

accuracy metric; however, it also generated negative results in precision, recall, and F1 score 

across all scoring methods. 
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Phase Two – Results 

This second phase of research attempted to apply the trained ML models from the 

previous phase and see how the theoretical models handle unseen network traffic. For this 

phase of research, the raw PCAPs of the CICIDS 2017 dataset were utilized. The CICIDS 

2017 dataset was used in the first phase for training a model. However, this same dataset was 

also used in this second phase as a sort of control group and a known true value indicator for 

flagged traffic predictions. It should be noted for clarification that the CICIDS 2017 dataset 

was used in both phases of research. The first phase utilized the CSV data, which consisted of 

PCAP traffic and manual input for labels, whereas the second phase utilized only the raw 

PCAP traffic only which were then fed into the Zeek IDS for log generation. A second Python 

script was utilized for this second phase as well. This second script imported the Zeek logs 

along with the previously trained ML models. After parsing and mapping Zeek log fields to 

the applicable features for each trained ML model, the script successfully produced a 

prediction value of malicious traffic. This script allowed for previously trained ML models to 

predict malicious traffic on unseen data. However, the accuracy of these results appears to 

vary dramatically. The results are, again, divided up by trained dataset, ML algorithm, and 

scoring method. 

 

Phase Two – CICIDS 2017 – True Values 

 
 

Packets Percentage 

Normal 2273097 0.80300 

Malicious 557646 0.19699 

Table 24: Phase Two – CICIDS 2017 – True Values 
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Phase Two – Trained Models’ Predictions on CICIDS 2017 Raw Traffic 

 
Model Score Method Malicious Normal Total Flagged Traffic 

Naïve Bayes Accuracy 0 2119207 2119207 0 

Decision Tree Accuracy 1692378 426829 2119207 0.79859 

Random Forest Accuracy 0 2119207 2119207 0 

Ada Boost Accuracy 0 2119207 2119207 0 

Bagging Classifier Accuracy 0 2119207 2119207 0 

Logistic Regression Accuracy 1731105 388102 2119207 0.81686 

Stochastic Gradient Descent Accuracy 2119207 0 2119207 1 

Naïve Bayes Precision 0 2119207 2119207 0 

Decision Tree Precision 2119207 0 2119207 1 

Random Forest Precision 0 2119207 2119207 0 

Ada Boost Precision 0 2119207 2119207 0 

Bagging Classifier Precision 426829 1692378 2119207 0.20141 

Logistic Regression Precision 1731105 388102 2119207 0.81686 

Stochastic Gradient Descent Precision 1731105 388102 2119207 0.81686 

Naïve Bayes F1 Score 0 2119207 2119207 0 

Decision Tree F1 Score 0 2119207 2119207 0 

Random Forest F1 Score 0 2119207 2119207 0 

Ada Boost F1 Score 0 2119207 2119207 0 

Bagging Classifier F1 Score 0 2119207 2119207 0 

Logistic Regression F1 Score 1731105 388102 2119207 0.81686 

Stochastic Gradient Descent F1 Score 2119207 0 2119207 1 

Table 25: Phase Two – KDD 99 Models – Predictions on CICIDS 2017 Raw Traffic 
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Model Score Method Malicious Normal Total Flagged Traffic 

Naïve Bayes Accuracy 2080480 38727 2119207 0.98173 

Decision Tree Accuracy 38727 2080480 2119207 0.01827 

Random Forest Accuracy 0 2119207 2119207 0 

Ada Boost Accuracy 38727 2080480 2119207 0.01827 

Bagging Classifier Accuracy 0 2119207 2119207 0 

Logistic Regression Accuracy 1731105 388102 2119207 0.81686 

Stochastic Gradient Descent Accuracy 1731105 388102 2119207 0.81686 

Naïve Bayes Precision 2080480 38727 2119207 0.98173 

Decision Tree Precision 0 2119207 2119207 0 

Random Forest Precision 38727 2080480 2119207 0.01827 

Ada Boost Precision 38727 2080480 2119207 0.01827 

Bagging Classifier Precision 0 2119207 2119207 0 

Logistic Regression Precision 1731105 388102 2119207 0.81686 

Stochastic Gradient Descent Precision 1731105 388102 2119207 0.81686 

Naïve Bayes F1 Score 2080480 38727 2119207 0.98173 

Decision Tree F1 Score 0 2119207 2119207 0 

Random Forest F1 Score 0 2119207 2119207 0 

Ada Boost F1 Score 38727 2080480 2119207 0.01827 

Bagging Classifier F1 Score 0 2119207 2119207 0 

Logistic Regression F1 Score 1731105 388102 2119207 0.81686 

Stochastic Gradient Descent F1 Score 1731105 388102 2119207 0.81686 

Table 26: Phase Two – NSL-KDD Models – Predictions on CICIDS 2017 Raw Traffic 
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Model Score Method Malicious Normal Total Flagged Traffic 

Naïve Bayes Accuracy 2119207 0 2119207 1 

Decision Tree Accuracy 2081422 37785 2119207 0.98217 

Random Forest Accuracy 2084743 34464 2119207 0.98374 

Ada Boost Accuracy 3451 2115756 2119207 0.00163 

Bagging Classifier Accuracy 1 2119206 2119207 0 

Logistic Regression Accuracy 2119207 0 2119207 1 

Stochastic Gradient Descent Accuracy 0 2119207 2119207 0 

Naïve Bayes Precision 2119207 0 2119207 1 

Decision Tree Precision 38208 2080999 2119207 0.01803 

Random Forest Precision 2084403 34804 2119207 0.98358 

Ada Boost Precision 0 2119207 2119207 0 

Bagging Classifier Precision 0 2119207 2119207 0 

Logistic Regression Precision 2119207 0 2119207 1 

Stochastic Gradient Descent Precision 2119207 0 2119207 1 

Naïve Bayes F1 Score 2119207 0 2119207 1 

Decision Tree F1 Score 0 2119207 2119207 0 

Random Forest F1 Score 2119194 13 2119207 0.99999 

Ada Boost F1 Score 3451 2115756 2119207 0.00163 

Bagging Classifier F1 Score 0 2119207 2119207 0 

Logistic Regression F1 Score 2119207 0 2119207 1 

Stochastic Gradient Descent F1 Score 0 2119207 2119207 0 

Table 27: Phase Two – UNSW-NB15 Models – Predictions on CICIDS 2017 Raw Traffic 
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Model Score Method Malicious Normal Total Flagged Traffic 

Naïve Bayes Accuracy 531212 1587995 2119207 0.25067 

Decision Tree Accuracy 236062 1883145 2119207 0.11139 

Random Forest Accuracy 360301 1758906 2119207 0.17002 

Ada Boost Accuracy 783534 1335673 2119207 0.36973 

Bagging Classifier Accuracy 369295 1749912 2119207 0.17426 

Logistic Regression Accuracy 8948 2110259 2119207 0.00422 

Stochastic Gradient Descent Accuracy 0 2119207 2119207 0 

Naïve Bayes Precision 531212 1587995 2119207 0.25067 

Decision Tree Precision 415476 1703731 2119207 0.19605 

Random Forest Precision 361007 1758200 2119207 0.17035 

Ada Boost Precision 783534 1335673 2119207 0.36973 

Bagging Classifier Precision 368940 1750267 2119207 0.17409 

Logistic Regression Precision 8948 2110259 2119207 0.00422 

Stochastic Gradient Descent Precision 0 2119207 2119207 0 

Naïve Bayes F1 Score 531212 1587995 2119207 0.25067 

Decision Tree F1 Score 400550 1718657 2119207 0.18901 

Random Forest F1 Score 360171 1759036 2119207 0.16996 

Ada Boost F1 Score 783534 1335673 2119207 0.36973 

Bagging Classifier F1 Score 368985 1750222 2119207 0.17411 

Logistic Regression F1 Score 8948 2110259 2119207 0.00422 

Stochastic Gradient Descent F1 Score 0 2119207 2119207 0 

Table 28: Phase Two – CICIDS 2017 Models – Predictions on CICIDS 2017 Raw Traffic 
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Model Score Method Malicious Normal Total Flagged Traffic 

Naïve Bayes Accuracy 0 2119207 2119207 0 

Decision Tree Accuracy 0 2119207 2119207 0 

Random Forest Accuracy 0 2119207 2119207 0 

Ada Boost Accuracy 30 2119177 2119207 1.42E-05 

Bagging Classifier Accuracy 0 2119207 2119207 0 

Logistic Regression Accuracy 2119207 0 2119207 1 

Stochastic Gradient Descent Accuracy 0 2119207 2119207 0 

Naïve Bayes Precision 0 2119207 2119207 0 

Decision Tree Precision 0 2119207 2119207 0 

Random Forest Precision 0 2119207 2119207 0 

Ada Boost Precision 30 2119177 2119207 1.42E-05 

Bagging Classifier Precision 0 2119207 2119207 0 

Logistic Regression Precision 2119207 0 2119207 1 

Stochastic Gradient Descent Precision 0 2119207 2119207 0 

Naïve Bayes F1 Score 0 2119207 2119207 0 

Decision Tree F1 Score 44 2119163 2119207 2.08E-05 

Random Forest F1 Score 0 2119207 2119207 0 

Ada Boost F1 Score 30 2119177 2119207 1.42E-05 

Bagging Classifier F1 Score 0 2119207 2119207 0 

Logistic Regression F1 Score 2119207 0 2119207 1 

Stochastic Gradient Descent F1 Score 0 2119207 2119207 0 

Table 29: Phase Two – CIDDS-001 Models – Predictions on CICIDS 2017 Raw Traffic 
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Phase Two – Discussion 

Predictions 

The results of Phase Two were the most surprising of this research. Despite the high 

metric scores (>95%) yielded by the large majority of optimized and trained models, most of 

them failed to obtain a score resembling that of the CICIDS 2017 labels. According to the 

CICIDS 2017 labeled CSV data, roughly 19.7% of the total CICIDS 2017 raw PCAP traffic 

should be considered malicious. Ideally, adequately trained models should reach a similar 

target score with a +/- 5% range. Only 13 of the 105 trained models reached a score close to 

the target value of 19.7%. This low number of successful models was even with the 

acceptable range expanded to +/- 10%. Since only 13 models achieved their target scores, that 

means that the other 92 models failed. Of the 13 successful models, 12 of those models were 

trained using the CICIDS 2017 dataset, which means they were operating off previously 

trained data. The 12 trained models produced off the CICIDS 2017 dataset yielded successful 

results when trained via the Naïve Bayes, Decision Tree, Random Forest, and Bagging 

Classifier algorithms regardless of the optimization method. It makes sense for the models 

trained using the CICIDS 2017 CSV data to yield better results than the models trained using 

other datasets sets since all the CICIDS 2017 data was previously seen and the models were 

fitted and optimized. The only successful model trained outside of the CICIDS 2017 dataset 

was the model trained using the KDD 99 dataset, precision optimization, and Bagging 

Classifier algorithm. This KDD 99, precision optimized, Bagging Classifier model managed 

to obtain a score of 20.1% flagged malicious traffic. It is impressive that this particular model 

achieved such highly accurate results; however, this particular model’s results may have just 

been largely coincidental. There is certainly a possibility that if this unique model is applied 

to a new prediction dataset, it will fail. There is no indication that this model achieved 

accurate results due to any particular algorithm, dataset, or scoring method since all the other 

models (not trained using the CICIDS 2017 dataset) failed. 

The results of this phase were quite surprising. The large majority of models probably 

failed due to overfitting or underfitting despite being optimized in the first phase. Overfitting 

or underfitting is indicated by several of the models’ results that flag either 100% or 0% of the 

CICIDS 2017 traffic. Additionally, another major factor that likely affected this phase’s 

outcome was the selected features for training. As mentioned earlier, specific datasets only 
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included particular labeled features for training models. Many unique dataset features were 

dropped when mapping them to the Zeek connection logs’ available features. Lastly, another 

major probable factor that resulted in many of these models’ failure was likely due to unseen 

data. While machine learning should perform better than typical IDS anomaly detection, this 

phase’s results indicate that standard machine learning still needs to be highly optimized and 

tuned to operate on unseen traffic effectively. Deep learning is likely to perform better when 

determining if new or unseen traffic is malicious due to the nature of the algorithms. 
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CHAPTER 5 

CONCLUSIONS 

This section will review the significant findings, initially proposed research, and 

conclusions for this research study. There were numerous challenges and setbacks 

encountered throughout this research. As a result, certain aspects of the original proposal had 

to be altered. Additionally, some of the results of this study were very surprising yet also 

enlightening. It is hoped that this study’s resulting data and analysis can validate or assist 

other industry professionals or academic researchers. Overall, the goals and intent of the 

initially proposed research were successfully met. Some key findings and take-aways could 

undoubtedly apply to real-world machine learning model development and IDS configuration. 

There are numerous ways to expand upon this combined field of machine learning and 

network security for future research and development. 

 

Major Findings Review 

Phase One 

The results of Phase One yielded highly informative data. Interestingly enough, some 

particular algorithms consistently underperformed during this phase of research. The linear 

machine learning algorithms, such as the Logistic Regression and Stochastic Gradient 

Descent algorithms, produced low metrics during optimization and model production. It can 

be seen that this underperformance acted as a snowball effect. It could be argued that poor 

optimization leads to inadequate model production and performance, leading to inaccurate 

predictions. However, while these two algorithms performed inadequately, most other 

algorithms did well to optimize and produce highly positive evaluation metrics. 

This research phase also revealed that the optimization of parameters did not 

significantly affect the metrics’ overall pass or fail categorization of the trained models. The 

difference in scoring methods between datasets and algorithms never changed the overall 

categorization with the threshold of 95% or higher in their respective scoring metrics. The 
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optimization seemed to have the most considerable impact on the worst-performing 

algorithms, such as Logistic Regression and Stochastic Gradient Descent. The produced 

models with different optimization methods using these two underperforming algorithms 

yielded highly fluctuant results; however, they still did never meet the threshold of 95% or 

higher. 

One last interesting observation from this phase is the one-off instance where the Ada 

Boost algorithm underperformed. When the models were trained using the NSL-KDD dataset, 

the Ada Boost algorithm yielded low scores regardless of the selected optimization method. 

This underperformance by the Ada Boost algorithm may have been due to the dataset’s size or 

possibly the selection of particular features interacting with this particular algorithm. 

 

Phase Two 

Phase Two produced the most surprising results of this research. Despite the largely 

successful, optimized, and trained models, 92 of the 105 total models failed to predict 

malicious traffic in unseen data accurately. Only 13 of the 105 models successfully predicted 

traffic. However, 12 of the 13 models were previously trained using the CICIDS 2017 dataset, 

meaning that they were making predictions based on previously trained and observed data. 

The only model that successfully predicted malicious traffic within truly unseen data was the 

model trained under the KDD 99 dataset while using the precision optimization method and 

Bagging Classifier algorithm. 

The failure of the 92 models may be due to several reasons. One primary reason may 

be due to overfitting or underfitting of the models to their respective datasets. Overfitting and 

underfitting are commonly encountered challenges in machine learning and occur when a 

model is excessively or insufficiently trained using a particular dataset, respectively. Another 

potential reason for these failed models may be the selection of mapped features between 

datasets and Zeek log fields. One of the fields or features included in each of the datasets was 

the IP address field. IP addresses were included features while training the models because 

some of the selected algorithms may have utilized the frequency of communication between 

IP addresses and used this to identify malicious traffic. 

Regarding the algorithms themselves, some of these models may have failed simply 

due to the nature of the selected algorithm. These algorithms’ effectiveness may dramatically 
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change depending on the dataset’s size or the selection of particular features. As an example, 

the Stochastic Gradient Descent algorithm underperformed since the very beginning of this 

research. Another factor that likely played a role in the failure of the 92 models is that the 

trained models needed to drop unseen variables or terms to ingest new data and make a 

prediction. The dropping of new variables likely had a significant impact while making 

predictions, which is another known problem with standard machine learning. 

Despite only 13 models accurately predicting new data, this research phase still met 

one of this research’s primary goals. This phase acted as a valid proof of concept that an 

organization could set up an automated process to continually produce or refine models based 

on IDS logs to identify malicious traffic. This research’s particular setup may not have 

included inline machine learning computations to deem individual packets as malicious or 

innocuous as they pass through the wire. However, this research proved that there could be a 

dedicated and offloaded machine learning IDS device operating off a span port that watches 

network traffic and flags for anomalies. The Python scripts created for this research could 

easily be modified to operate in a corporate environment and a more automated fashion. 

Additionally, the scripts could be further configured such that if malicious traffic is identified, 

an alert could be sent to a network administrator or security analyst to investigate the traffic 

further. 

 

Research Questions and Hypotheses Review 

Research Question 1 

How does the selection of a single network intrusion dataset impact machine learning models’ 

outcomes and performance when trained using multiple machine learning algorithms and 

optimization methods? 

 

Hypothesis 1 

Not all machine learning models will achieve high accuracy when trained using any network 

intrusion dataset. 
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Research Question and Hypothesis 1 Analysis 

This first hypothesis can be accepted based on the performance of the trained models 

from Phase One. By grouping each set of models by individual dataset (seen in the tables 

below), the data indicate that none of the groupings of models could achieve high accuracy, 

specified as 95% or higher, across all algorithms and optimization methods. The KDD 99 

dataset managed to reach the highest number of successful models, with 18 out of 21 models 

(85.71%) yielding the desired accuracy threshold. The NSL-KDD and CIDDS-001 datasets 

yielded 12 successful models (57.14%), and the UNSW-NB15 dataset yielded 15 successful 

models (71.43%). The CICIDS 2017 dataset yielded the lowest number of successful models, 

with 9 out of 21 models (42.86%) reaching the threshold. These results also show that the 

major limiting factor for success was the machine learning algorithms. The Stochastic 

Gradient Descent algorithm seemed always to fail to reach the desired accuracy threshold 

across each dataset, even when optimized for accuracy. 
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All Trained Models – Grouped by Dataset 

 

Algorithm Scoring Method Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes Accuracy 0.97303 0.96586 0.94853 0.95689 0.19895 

Naïve Bayes Precision 0.97303 0.96586 0.94853 0.95689 0.19037 

Naïve Bayes F1 Score 0.97303 0.96586 0.94853 0.95689 0.15929 

Decision Tree Accuracy 0.99816 0.996 0.99824 0.99712 0.36601 

Decision Tree Precision 0.99812 0.99598 0.99814 0.99706 0.32635 

Decision Tree F1 Score 0.99816 0.99602 0.99822 0.99712 0.20516 

Random Forest Accuracy 0.99819 0.99603 0.99831 0.99716 2.472 

Random Forest Precision 0.99818 0.99602 0.9983 0.99715 2.49991 

Random Forest F1 Score 0.99818 0.99602 0.9983 0.99715 1.78166 

Ada Boost Accuracy 0.99794 0.99554 0.99804 0.99678 949.45873 

Ada Boost Precision 0.99794 0.99554 0.99804 0.99678 966.79733 

Ada Boost F1 Score 0.99794 0.99554 0.99804 0.99678 943.96914 

Bagging Classifier Accuracy 0.99816 0.99592 0.99831 0.99711 33.93054 

Bagging Classifier Precision 0.99816 0.99598 0.99829 0.99713 70.83681 

Bagging Classifier F1 Score 0.99814 0.99589 0.9983 0.99709 1.05218 

Logistic Regression Accuracy 0.96855 0.96973 0.93048 0.94854 0.43249 

Logistic Regression Precision 0.96855 0.96973 0.93048 0.94854 0.35421 

Logistic Regression F1 Score 0.96855 0.96973 0.93048 0.94854 0.42434 

Stochastic Gradient Descent Accuracy 0.80108 0.64298 0.50011 0.44508 0.67686 

Stochastic Gradient Descent Precision 0.80108 0.80108 1 0.88956 0.19012 

Stochastic Gradient Descent F1 Score 0.80108 0.80108 1 0.88956 0.18991 

Table 30: KDD 99 Models 
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Algorithm Scoring Method Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes Accuracy 0.89173 0.89252 0.89246 0.89173 0.00726 

Naïve Bayes Precision 0.89173 0.89252 0.89246 0.89173 0.00478 

Naïve Bayes F1 Score 0.89173 0.89252 0.89246 0.89173 0.00491 

Decision Tree Accuracy 0.98613 0.98608 0.98616 0.98612 0.01268 

Decision Tree Precision 0.98741 0.98739 0.98741 0.9874 0.00858 

Decision Tree F1 Score 0.98647 0.98643 0.98649 0.98646 0.01002 

Random Forest Accuracy 0.98828 0.98831 0.98824 0.98827 3.8012 

Random Forest Precision 0.98815 0.98817 0.98811 0.98814 0.05314 

Random Forest F1 Score 0.98822 0.98825 0.98817 0.98821 0.81297 

Ada Boost Accuracy 0.98155 0.98154 0.98153 0.98154 15.7271 

Ada Boost Precision 0.98155 0.98154 0.98153 0.98154 15.61126 

Ada Boost F1 Score 0.98155 0.98154 0.98153 0.98154 15.61979 

Bagging Classifier Accuracy 0.98734 0.98742 0.98725 0.98733 0.58591 

Bagging Classifier Precision 0.98734 0.98742 0.98725 0.98733 0.87895 

Bagging Classifier F1 Score 0.98734 0.98742 0.98725 0.98733 0.63036 

Logistic Regression Accuracy 0.90648 0.90636 0.90653 0.90643 0.01096 

Logistic Regression Precision 0.90648 0.90636 0.90653 0.90643 0.00951 

Logistic Regression F1 Score 0.90648 0.90636 0.90653 0.90643 0.00933 

Stochastic Gradient Descent Accuracy 0.51387 0.51387 1 0.67888 0.00446 

Stochastic Gradient Descent Precision 0.51387 0.51387 1 0.67888 0.00392 

Stochastic Gradient Descent F1 Score 0.54612 0.71213 0.55799 0.45311 0.00573 

Table 31: KDD-NSL Models 
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Algorithm Scoring Method Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes Accuracy 0.89173 0.89252 0.89246 0.89173 0.00726 

Naïve Bayes Precision 0.89173 0.89252 0.89246 0.89173 0.00478 

Naïve Bayes F1 Score 0.89173 0.89252 0.89246 0.89173 0.00491 

Decision Tree Accuracy 0.98613 0.98608 0.98616 0.98612 0.01268 

Decision Tree Precision 0.98741 0.98739 0.98741 0.9874 0.00858 

Decision Tree F1 Score 0.98647 0.98643 0.98649 0.98646 0.01002 

Random Forest Accuracy 0.98828 0.98831 0.98824 0.98827 3.8012 

Random Forest Precision 0.98815 0.98817 0.98811 0.98814 0.05314 

Random Forest F1 Score 0.98822 0.98825 0.98817 0.98821 0.81297 

Ada Boost Accuracy 0.98155 0.98154 0.98153 0.98154 15.7271 

Ada Boost Precision 0.98155 0.98154 0.98153 0.98154 15.61126 

Ada Boost F1 Score 0.98155 0.98154 0.98153 0.98154 15.61979 

Bagging Classifier Accuracy 0.98734 0.98742 0.98725 0.98733 0.58591 

Bagging Classifier Precision 0.98734 0.98742 0.98725 0.98733 0.87895 

Bagging Classifier F1 Score 0.98734 0.98742 0.98725 0.98733 0.63036 

Logistic Regression Accuracy 0.90648 0.90636 0.90653 0.90643 0.01096 

Logistic Regression Precision 0.90648 0.90636 0.90653 0.90643 0.00951 

Logistic Regression F1 Score 0.90648 0.90636 0.90653 0.90643 0.00933 

Stochastic Gradient Descent Accuracy 0.51387 0.51387 1 0.67888 0.00446 

Stochastic Gradient Descent Precision 0.51387 0.51387 1 0.67888 0.00392 

Stochastic Gradient Descent F1 Score 0.54612 0.71213 0.55799 0.45311 0.00573 

Table 32: NSL-KDD Models 
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Algorithm Scoring Method Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes Accuracy 0.89293 0.78412 0.64256 0.68054 0.08435 

Naïve Bayes Precision 0.89293 0.78412 0.64256 0.68054 0.08946 

Naïve Bayes F1 Score 0.89293 0.78412 0.64256 0.68054 0.08273 

Decision Tree Accuracy 0.9917 0.9808 0.98154 0.98117 0.37921 

Decision Tree Precision 0.99187 0.98118 0.98195 0.98156 0.29828 

Decision Tree F1 Score 0.99126 0.97967 0.98066 0.98016 0.25876 

Random Forest Accuracy 0.99306 0.98372 0.98481 0.98426 1.49134 

Random Forest Precision 0.99303 0.98386 0.98449 0.98418 12.24554 

Random Forest F1 Score 0.99305 0.98386 0.98459 0.98422 1.38001 

Ada Boost Accuracy 0.98971 0.97442 0.97912 0.97675 466.55119 

Ada Boost Precision 0.98989 0.97491 0.97942 0.97715 778.32787 

Ada Boost F1 Score 0.98971 0.97442 0.97912 0.97675 480.33834 

Bagging Classifier Accuracy 0.99317 0.98403 0.98496 0.98449 19.65784 

Bagging Classifier Precision 0.97446 0.98575 0.89864 0.93638 1.08145 

Bagging Classifier F1 Score 0.99318 0.98397 0.98507 0.98452 54.13052 

Logistic Regression Accuracy 0.97419 0.94521 0.93655 0.94082 0.35886 

Logistic Regression Precision 0.97419 0.94521 0.93655 0.94082 0.35494 

Logistic Regression F1 Score 0.97419 0.94521 0.93655 0.94082 0.52767 

Stochastic Gradient Descent Accuracy 0.87405 0.87405 1 0.93279 0.08537 

Stochastic Gradient Descent Precision 0.87405 0.87405 1 0.93279 0.08048 

Stochastic Gradient Descent F1 Score 0.87405 0.87405 1 0.93279 0.09553 

Table 33: UNSW-NB15 Models 
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Algorithm Scoring Method Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes Accuracy 0.85553 0.81139 0.68245 0.71751 0.09344 

Naïve Bayes Precision 0.85553 0.81139 0.68245 0.71751 0.09795 

Naïve Bayes F1 Score 0.85553 0.81139 0.68245 0.71751 0.08759 

Decision Tree Accuracy 0.99318 0.98845 0.99007 0.98926 0.42589 

Decision Tree Precision 0.99309 0.98826 0.98997 0.98911 0.47588 

Decision Tree F1 Score 0.99318 0.98842 0.9901 0.98926 0.41032 

Random Forest Accuracy 0.99415 0.99032 0.99124 0.99078 20.96378 

Random Forest Precision 0.99415 0.99033 0.99122 0.99077 20.17999 

Random Forest F1 Score 0.99416 0.99029 0.99132 0.9908 18.56984 

Ada Boost Accuracy 0.92856 0.89923 0.86886 0.88291 723.04974 

Ada Boost Precision 0.92856 0.89923 0.86886 0.88291 734.92824 

Ada Boost F1 Score 0.92856 0.89923 0.86886 0.88291 735.96754 

Bagging Classifier Accuracy 0.9944 0.99115 0.99117 0.99116 176.10695 

Bagging Classifier Precision 0.9944 0.99113 0.99121 0.99117 171.72592 

Bagging Classifier F1 Score 0.9944 0.99116 0.99119 0.99117 107.24517 

Logistic Regression Accuracy 0.84409 0.77625 0.6702 0.70009 0.19176 

Logistic Regression Precision 0.84409 0.77625 0.6702 0.70009 0.16185 

Logistic Regression F1 Score 0.84409 0.77625 0.6702 0.70009 0.18086 

Stochastic Gradient Descent Accuracy 0.80256 0.80256 1 0.89047 0.12037 

Stochastic Gradient Descent Precision 0.80256 0.80256 1 0.89047 0.27912 

Stochastic Gradient Descent F1 Score 0.80256 0.80256 1 0.89047 0.08245 

Table 34: CICIDS 2017 Models 
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Algorithm Scoring Method Accuracy Precision Recall F1 Score Train Time 

Naïve Bayes Accuracy 0.90131 0.74686 0.88045 0.79145 0.16439 

Naïve Bayes Precision 0.90131 0.74686 0.88045 0.79145 0.15782 

Naïve Bayes F1 Score 0.90131 0.74686 0.88045 0.79145 0.13131 

Decision Tree Accuracy 0.99951 0.99877 0.99855 0.99866 0.50578 

Decision Tree Precision 0.99948 0.99869 0.99847 0.99858 0.37718 

Decision Tree F1 Score 0.9995 0.99873 0.99853 0.99863 0.31852 

Random Forest Accuracy 0.99963 0.99908 0.99893 0.999 14.92514 

Random Forest Precision 0.99963 0.99908 0.99893 0.999 40.93319 

Random Forest F1 Score 0.99963 0.99908 0.99893 0.999 39.92271 

Ada Boost Accuracy 0.99852 0.99571 0.99627 0.99599 1203.30446 

Ada Boost Precision 0.99852 0.99571 0.99627 0.99599 1116.44332 

Ada Boost F1 Score 0.99852 0.99569 0.99627 0.99598 1051.30573 

Bagging Classifier Accuracy 0.99959 0.99904 0.99872 0.99888 22.60481 

Bagging Classifier Precision 0.99956 0.99909 0.99851 0.9988 15.54522 

Bagging Classifier F1 Score 0.99959 0.99903 0.99877 0.9989 22.53338 

Logistic Regression Accuracy 0.95024 0.91176 0.79929 0.84416 0.3716 

Logistic Regression Precision 0.95024 0.91176 0.79929 0.84416 0.35591 

Logistic Regression F1 Score 0.95024 0.91176 0.79929 0.84416 0.36495 

Stochastic Gradient Descent Accuracy 0.89727 0.89727 1 0.94585 0.14127 

Stochastic Gradient Descent Precision 0.89727 0.89727 1 0.94585 0.13498 

Stochastic Gradient Descent F1 Score 0.89727 0.89727 1 0.94585 0.13185 

Table 35: CICIDS-001 Models 
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Research Question 2 

How does the selection of a single machine learning algorithm impact machine learning 

models’ outcomes and performance when trained using multiple network intrusion datasets 

and optimization methods? 

 

Hypothesis 2 

Not all machine learning models will achieve high accuracy when trained using any machine 

learning algorithm. 

 

Research Question and Hypothesis 2 Analysis 

The trained models’ yielded metrics from Phase One indicate that this second 

hypothesis can also be accepted. When grouping each set of the models by individual machine 

learning algorithm (seen in the tables below), the results show that only some of the sets of 

models achieved the desired 95% accuracy scores across all datasets and optimization 

methods. Interestingly enough, the Decision Tree, Random Forest, and Bagging Classifier 

algorithms all yielded 15 out of 15 models that successfully reached the 95% accuracy 

threshold across all datasets and optimization methods. Another interesting result of these 

tests found that the Stochastic Gradient Descent algorithm failed to produce any successful 

models to reach the desired accuracy score; however, it should also be noted that this 

algorithm yielded the best recall metrics, with 13 of the 15 models reaching 100% recall 

scores. While the Stochastic Gradient Descent algorithm yielded lower accuracy scores, it did 

achieve perfect recall for some of its models, which corresponds to no false negative results. 

The Ada Boost algorithm yielded 12 successful models (80%), the Logistic Regression 

algorithm yielded nine successful models (60%), and the Naïve Bayes algorithm yielded three 

successful models (20%). These results indicate that the major limiting factor for these 

models was the selection of datasets. The optimization technique selected did not appear to 

impact the evaluation metrics of the models significantly. 
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All Trained Models – Grouped by Algorithm 

 

Dataset Scoring Method Accuracy Precision Recall F1 Score Train Time 

KDD 99 Accuracy 0.97303 0.96586 0.94853 0.95689 0.19895 

KDD 99 Precision 0.97303 0.96586 0.94853 0.95689 0.19037 

KDD 99 F1 Score 0.97303 0.96586 0.94853 0.95689 0.15929 

NSL-KDD Accuracy 0.89173 0.89252 0.89246 0.89173 0.00726 

NSL-KDD Precision 0.89173 0.89252 0.89246 0.89173 0.00478 

NSL-KDD F1 Score 0.89173 0.89252 0.89246 0.89173 0.00491 

UNSW-NB15 Accuracy 0.89293 0.78412 0.64256 0.68054 0.08435 

UNSW-NB15 Precision 0.89293 0.78412 0.64256 0.68054 0.08946 

UNSW-NB15 F1 Score 0.89293 0.78412 0.64256 0.68054 0.08273 

CICIDS 2017 Accuracy 0.85553 0.81139 0.68245 0.71751 0.09344 

CICIDS 2017 Precision 0.85553 0.81139 0.68245 0.71751 0.09795 

CICIDS 2017 F1 Score 0.85553 0.81139 0.68245 0.71751 0.08759 

CIDDS-001 Accuracy 0.90131 0.74686 0.88045 0.79145 0.16439 

CIDDS-001 Precision 0.90131 0.74686 0.88045 0.79145 0.15782 

CIDDS-001 F1 Score 0.90131 0.74686 0.88045 0.79145 0.13131 

Table 36: Naïve Bayes Models 

 

Dataset Scoring Method Accuracy Precision Recall F1 Score Train Time 

KDD 99 Accuracy 0.99816 0.996 0.99824 0.99712 0.36601 

KDD 99 Precision 0.99812 0.99598 0.99814 0.99706 0.32635 

KDD 99 F1 Score 0.99816 0.99602 0.99822 0.99712 0.20516 

NSL-KDD Accuracy 0.98613 0.98608 0.98616 0.98612 0.01268 

NSL-KDD Precision 0.98741 0.98739 0.98741 0.9874 0.00858 

NSL-KDD F1 Score 0.98647 0.98643 0.98649 0.98646 0.01002 

UNSW-NB15 Accuracy 0.9917 0.9808 0.98154 0.98117 0.37921 

UNSW-NB15 Precision 0.99187 0.98118 0.98195 0.98156 0.29828 

UNSW-NB15 F1 Score 0.99126 0.97967 0.98066 0.98016 0.25876 

CICIDS 2017 Accuracy 0.99318 0.98845 0.99007 0.98926 0.42589 

CICIDS 2017 Precision 0.99309 0.98826 0.98997 0.98911 0.47588 

CICIDS 2017 F1 Score 0.99318 0.98842 0.9901 0.98926 0.41032 

CIDDS-001 Accuracy 0.99951 0.99877 0.99855 0.99866 0.50578 

CIDDS-001 Precision 0.99948 0.99869 0.99847 0.99858 0.37718 

CIDDS-001 F1 Score 0.9995 0.99873 0.99853 0.99863 0.31852 

Table 37: Decision Tree Models 
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Dataset Scoring Method Accuracy Precision Recall F1 Score Train Time 

KDD 99 Accuracy 0.99819 0.99603 0.99831 0.99716 2.472 

KDD 99 Precision 0.99818 0.99602 0.9983 0.99715 2.49991 

KDD 99 F1 Score 0.99818 0.99602 0.9983 0.99715 1.78166 

NSL-KDD Accuracy 0.98828 0.98831 0.98824 0.98827 3.8012 

NSL-KDD Precision 0.98815 0.98817 0.98811 0.98814 0.05314 

NSL-KDD F1 Score 0.98822 0.98825 0.98817 0.98821 0.81297 

UNSW-NB15 Accuracy 0.99306 0.98372 0.98481 0.98426 1.49134 

UNSW-NB15 Precision 0.99303 0.98386 0.98449 0.98418 12.24554 

UNSW-NB15 F1 Score 0.99305 0.98386 0.98459 0.98422 1.38001 

CICIDS 2017 Accuracy 0.99415 0.99032 0.99124 0.99078 20.96378 

CICIDS 2017 Precision 0.99415 0.99033 0.99122 0.99077 20.17999 

CICIDS 2017 F1 Score 0.99416 0.99029 0.99132 0.9908 18.56984 

CIDDS-001 Accuracy 0.99963 0.99908 0.99893 0.999 14.92514 

CIDDS-001 Precision 0.99963 0.99908 0.99893 0.999 40.93319 

CIDDS-001 F1 Score 0.99963 0.99908 0.99893 0.999 39.92271 

Table 38: Random Forest Models 

 

Dataset Scoring Method Accuracy Precision Recall F1 Score Train Time 

KDD 99 Accuracy 0.99794 0.99554 0.99804 0.99678 949.45873 

KDD 99 Precision 0.99794 0.99554 0.99804 0.99678 966.79733 

KDD 99 F1 Score 0.99794 0.99554 0.99804 0.99678 943.96914 

NSL-KDD Accuracy 0.98155 0.98154 0.98153 0.98154 15.7271 

NSL-KDD Precision 0.98155 0.98154 0.98153 0.98154 15.61126 

NSL-KDD F1 Score 0.98155 0.98154 0.98153 0.98154 15.61979 

UNSW-NB15 Accuracy 0.98971 0.97442 0.97912 0.97675 466.55119 

UNSW-NB15 Precision 0.98989 0.97491 0.97942 0.97715 778.32787 

UNSW-NB15 F1 Score 0.98971 0.97442 0.97912 0.97675 480.33834 

CICIDS 2017 Accuracy 0.92856 0.89923 0.86886 0.88291 723.04974 

CICIDS 2017 Precision 0.92856 0.89923 0.86886 0.88291 734.92824 

CICIDS 2017 F1 Score 0.92856 0.89923 0.86886 0.88291 735.96754 

CIDDS-001 Accuracy 0.99852 0.99571 0.99627 0.99599 1203.3045 

CIDDS-001 Precision 0.99852 0.99571 0.99627 0.99599 1116.4433 

CIDDS-001 F1 Score 0.99852 0.99569 0.99627 0.99598 1051.3057 

Table 39: Ada Boost Models 
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Dataset Scoring Method Accuracy Precision Recall F1 Score Train Time 

KDD 99 Accuracy 0.99816 0.99592 0.99831 0.99711 33.93054 

KDD 99 Precision 0.99816 0.99598 0.99829 0.99713 70.83681 

KDD 99 F1 Score 0.99814 0.99589 0.9983 0.99709 1.05218 

NSL-KDD Accuracy 0.98734 0.98742 0.98725 0.98733 0.58591 

NSL-KDD Precision 0.98734 0.98742 0.98725 0.98733 0.87895 

NSL-KDD F1 Score 0.98734 0.98742 0.98725 0.98733 0.63036 

UNSW-NB15 Accuracy 0.99317 0.98403 0.98496 0.98449 19.65784 

UNSW-NB15 Precision 0.97446 0.98575 0.89864 0.93638 1.08145 

UNSW-NB15 F1 Score 0.99318 0.98397 0.98507 0.98452 54.13052 

CICIDS 2017 Accuracy 0.9944 0.99115 0.99117 0.99116 176.10695 

CICIDS 2017 Precision 0.9944 0.99113 0.99121 0.99117 171.72592 

CICIDS 2017 F1 Score 0.9944 0.99116 0.99119 0.99117 107.24517 

CIDDS-001 Accuracy 0.99959 0.99904 0.99872 0.99888 22.60481 

CIDDS-001 Precision 0.99956 0.99909 0.99851 0.9988 15.54522 

CIDDS-001 F1 Score 0.99959 0.99903 0.99877 0.9989 22.53338 

Table 40: Bagging Classifier Models 

 

Dataset Scoring Method Accuracy Precision Recall F1 Score Train Time 

KDD 99 Accuracy 0.96855 0.96973 0.93048 0.94854 0.43249 

KDD 99 Precision 0.96855 0.96973 0.93048 0.94854 0.35421 

KDD 99 F1 Score 0.96855 0.96973 0.93048 0.94854 0.42434 

NSL-KDD Accuracy 0.90648 0.90636 0.90653 0.90643 0.01096 

NSL-KDD Precision 0.90648 0.90636 0.90653 0.90643 0.00951 

NSL-KDD F1 Score 0.90648 0.90636 0.90653 0.90643 0.00933 

UNSW-NB15 Accuracy 0.97419 0.94521 0.93655 0.94082 0.35886 

UNSW-NB15 Precision 0.97419 0.94521 0.93655 0.94082 0.35494 

UNSW-NB15 F1 Score 0.97419 0.94521 0.93655 0.94082 0.52767 

CICIDS 2017 Accuracy 0.84409 0.77625 0.6702 0.70009 0.19176 

CICIDS 2017 Precision 0.84409 0.77625 0.6702 0.70009 0.16185 

CICIDS 2017 F1 Score 0.84409 0.77625 0.6702 0.70009 0.18086 

CIDDS-001 Accuracy 0.95024 0.91176 0.79929 0.84416 0.3716 

CIDDS-001 Precision 0.95024 0.91176 0.79929 0.84416 0.35591 

CIDDS-001 F1 Score 0.95024 0.91176 0.79929 0.84416 0.36495 

Table 41: Logistic Regression Models 
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Dataset Scoring Method Accuracy Precision Recall F1 Score Train Time 

KDD 99 Accuracy 0.80108 0.64298 0.50011 0.44508 0.67686 

KDD 99 Precision 0.80108 0.80108 1 0.88956 0.19012 

KDD 99 F1 Score 0.80108 0.80108 1 0.88956 0.18991 

NSL-KDD Accuracy 0.51387 0.51387 1 0.67888 0.00446 

NSL-KDD Precision 0.51387 0.51387 1 0.67888 0.00392 

NSL-KDD F1 Score 0.54612 0.71213 0.55799 0.45311 0.00573 

UNSW-NB15 Accuracy 0.87405 0.87405 1 0.93279 0.08537 

UNSW-NB15 Precision 0.87405 0.87405 1 0.93279 0.08048 

UNSW-NB15 F1 Score 0.87405 0.87405 1 0.93279 0.09553 

CICIDS 2017 Accuracy 0.80256 0.80256 1 0.89047 0.12037 

CICIDS 2017 Precision 0.80256 0.80256 1 0.89047 0.27912 

CICIDS 2017 F1 Score 0.80256 0.80256 1 0.89047 0.08245 

CIDDS-001 Accuracy 0.89727 0.89727 1 0.94585 0.14127 

CIDDS-001 Precision 0.89727 0.89727 1 0.94585 0.13498 

CIDDS-001 F1 Score 0.89727 0.89727 1 0.94585 0.13185 

Table 42: Stochastic Gradient Descent Models 

 

  



104 

Research Question 3 

How does the selection of a single optimization method impact machine learning models’ 

outcomes and performance when trained using multiple network intrusion datasets and 

machine learning algorithms? 

 

Hypothesis 3 

Not all machine learning models will achieve high respective performance metrics when 

trained using any optimization method. 

 

Research Question and Hypothesis 3 Analysis 

After reviewing the data from Phase One, this hypothesis can be accepted. It should be 

noted that this is the only hypothesis in this study that compares multiple evaluation metrics, 

namely accuracy, precision, and F1 score, based on the respective optimization technique. 

The threshold for success for this hypothesis is a respective metric score of 95% or higher. 

When evaluating this hypothesis, the models can be grouped by the selected optimization 

method (seen in the tables below). The models optimized for accuracy yielded 23 out of 35 

successful models (65.71%) that achieved a 95% or higher accuracy score. The models 

optimized for precision yielded 21 successful models (60%) that achieved a 95% or higher 

precision score. The models optimized for the F1 score yielded 20 successful models 

(57.14%) that achieved a 95% or higher F1 score. The only consistent parameter for failure 

across these models appears to be the models trained using the Stochastic Gradient Descent 

algorithm, which never achieved the 95% threshold across any of the desired evaluation 

metrics. Lastly, these results indicate that it may have been beneficial to exaggerate the 

optimization methods to yield more variant models. This optimization variance could be 

achieved by the following: add in additional parameters, increase the number of values tested 

for each parameter, or further exaggerate the parameter values used for optimization. 

However, it should be noted that increasing the number of tested parameter values during this 

optimization process would exponentially increase the amount of time for optimization 
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All Trained Models – Grouped by Optimization Method 

 

Dataset Algorithm Accuracy Precision Recall F1 Score Train Time 

KDD 99 Naïve Bayes 0.97303 0.96586 0.94853 0.95689 0.19895 

KDD 99 Decision Tree 0.99816 0.996 0.99824 0.99712 0.36601 

KDD 99 Random Forest 0.99819 0.99603 0.99831 0.99716 2.472 

KDD 99 Ada Boost 0.99794 0.99554 0.99804 0.99678 949.45873 

KDD 99 Bagging Classifier 0.99816 0.99592 0.99831 0.99711 33.93054 

KDD 99 Logistic Regression 0.96855 0.96973 0.93048 0.94854 0.43249 

KDD 99 Stochastic Gradient Descent 0.80108 0.64298 0.50011 0.44508 0.67686 

NSL-KDD Naïve Bayes 0.89173 0.89252 0.89246 0.89173 0.00726 

NSL-KDD Decision Tree 0.98613 0.98608 0.98616 0.98612 0.01268 

NSL-KDD Random Forest 0.98828 0.98831 0.98824 0.98827 3.8012 

NSL-KDD Ada Boost 0.98155 0.98154 0.98153 0.98154 15.7271 

NSL-KDD Bagging Classifier 0.98734 0.98742 0.98725 0.98733 0.58591 

NSL-KDD Logistic Regression 0.90648 0.90636 0.90653 0.90643 0.01096 

NSL-KDD Stochastic Gradient Descent 0.51387 0.51387 1 0.67888 0.00446 

UNSW-NB15 Naïve Bayes 0.89293 0.78412 0.64256 0.68054 0.08435 

UNSW-NB15 Decision Tree 0.9917 0.9808 0.98154 0.98117 0.37921 

UNSW-NB15 Random Forest 0.99306 0.98372 0.98481 0.98426 1.49134 

UNSW-NB15 Ada Boost 0.98971 0.97442 0.97912 0.97675 466.55119 

UNSW-NB15 Bagging Classifier 0.99317 0.98403 0.98496 0.98449 19.65784 

UNSW-NB15 Logistic Regression 0.97419 0.94521 0.93655 0.94082 0.35886 

UNSW-NB15 Stochastic Gradient Descent 0.87405 0.87405 1 0.93279 0.08537 

CICIDS 2017 Naïve Bayes 0.85553 0.81139 0.68245 0.71751 0.09344 

CICIDS 2017 Decision Tree 0.99318 0.98845 0.99007 0.98926 0.42589 

CICIDS 2017 Random Forest 0.99415 0.99032 0.99124 0.99078 20.96378 

CICIDS 2017 Ada Boost 0.92856 0.89923 0.86886 0.88291 723.04974 

CICIDS 2017 Bagging Classifier 0.9944 0.99115 0.99117 0.99116 176.10695 

CICIDS 2017 Logistic Regression 0.84409 0.77625 0.6702 0.70009 0.19176 

CICIDS 2017 Stochastic Gradient Descent 0.80256 0.80256 1 0.89047 0.12037 

CIDDS-001 Naïve Bayes 0.90131 0.74686 0.88045 0.79145 0.16439 

CIDDS-001 Decision Tree 0.99951 0.99877 0.99855 0.99866 0.50578 

CIDDS-001 Random Forest 0.99963 0.99908 0.99893 0.999 14.92514 

CIDDS-001 Ada Boost 0.99852 0.99571 0.99627 0.99599 1203.30446 

CIDDS-001 Bagging Classifier 0.99959 0.99904 0.99872 0.99888 22.60481 

CIDDS-001 Logistic Regression 0.95024 0.91176 0.79929 0.84416 0.3716 

CIDDS-001 Stochastic Gradient Descent 0.89727 0.89727 1 0.94585 0.14127 

Table 43: Accuracy Models 
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Dataset Algorithm Accuracy Precision Recall F1 Score Train Time 

KDD 99 Naïve Bayes 0.97303 0.96586 0.94853 0.95689 0.19037 

KDD 99 Decision Tree 0.99812 0.99598 0.99814 0.99706 0.32635 

KDD 99 Random Forest 0.99818 0.99602 0.9983 0.99715 2.49991 

KDD 99 Ada Boost 0.99794 0.99554 0.99804 0.99678 966.79733 

KDD 99 Bagging Classifier 0.99816 0.99598 0.99829 0.99713 70.83681 

KDD 99 Logistic Regression 0.96855 0.96973 0.93048 0.94854 0.35421 

KDD 99 Stochastic Gradient Descent 0.80108 0.80108 1 0.88956 0.19012 

NSL-KDD Naïve Bayes 0.89173 0.89252 0.89246 0.89173 0.00478 

NSL-KDD Decision Tree 0.98741 0.98739 0.98741 0.9874 0.00858 

NSL-KDD Random Forest 0.98815 0.98817 0.98811 0.98814 0.05314 

NSL-KDD Ada Boost 0.98155 0.98154 0.98153 0.98154 15.61126 

NSL-KDD Bagging Classifier 0.98734 0.98742 0.98725 0.98733 0.87895 

NSL-KDD Logistic Regression 0.90648 0.90636 0.90653 0.90643 0.00951 

NSL-KDD Stochastic Gradient Descent 0.51387 0.51387 1 0.67888 0.00392 

UNSW-NB15 Naïve Bayes 0.89293 0.78412 0.64256 0.68054 0.08946 

UNSW-NB15 Decision Tree 0.99187 0.98118 0.98195 0.98156 0.29828 

UNSW-NB15 Random Forest 0.99303 0.98386 0.98449 0.98418 12.24554 

UNSW-NB15 Ada Boost 0.98989 0.97491 0.97942 0.97715 778.32787 

UNSW-NB15 Bagging Classifier 0.97446 0.98575 0.89864 0.93638 1.08145 

UNSW-NB15 Logistic Regression 0.97419 0.94521 0.93655 0.94082 0.35494 

UNSW-NB15 Stochastic Gradient Descent 0.87405 0.87405 1 0.93279 0.08048 

CICIDS 2017 Naïve Bayes 0.85553 0.81139 0.68245 0.71751 0.09795 

CICIDS 2017 Decision Tree 0.99309 0.98826 0.98997 0.98911 0.47588 

CICIDS 2017 Random Forest 0.99415 0.99033 0.99122 0.99077 20.17999 

CICIDS 2017 Ada Boost 0.92856 0.89923 0.86886 0.88291 734.92824 

CICIDS 2017 Bagging Classifier 0.9944 0.99113 0.99121 0.99117 171.72592 

CICIDS 2017 Logistic Regression 0.84409 0.77625 0.6702 0.70009 0.16185 

CICIDS 2017 Stochastic Gradient Descent 0.80256 0.80256 1 0.89047 0.27912 

CIDDS-001 Naïve Bayes 0.90131 0.74686 0.88045 0.79145 0.15782 

CIDDS-001 Decision Tree 0.99948 0.99869 0.99847 0.99858 0.37718 

CIDDS-001 Random Forest 0.99963 0.99908 0.99893 0.999 40.93319 

CIDDS-001 Ada Boost 0.99852 0.99571 0.99627 0.99599 1116.44332 

CIDDS-001 Bagging Classifier 0.99956 0.99909 0.99851 0.9988 15.54522 

CIDDS-001 Logistic Regression 0.95024 0.91176 0.79929 0.84416 0.35591 

CIDDS-001 Stochastic Gradient Descent 0.89727 0.89727 1 0.94585 0.13498 

Table 44: Precision Models 
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Dataset Algorithm Accuracy Precision Recall F1 Score Train Time 

KDD 99 Naïve Bayes 0.97303 0.96586 0.94853 0.95689 0.15929 

KDD 99 Decision Tree 0.99816 0.99602 0.99822 0.99712 0.20516 

KDD 99 Random Forest 0.99818 0.99602 0.9983 0.99715 1.78166 

KDD 99 Ada Boost 0.99794 0.99554 0.99804 0.99678 943.96914 

KDD 99 Bagging Classifier 0.99814 0.99589 0.9983 0.99709 1.05218 

KDD 99 Logistic Regression 0.96855 0.96973 0.93048 0.94854 0.42434 

KDD 99 Stochastic Gradient Descent 0.80108 0.80108 1 0.88956 0.18991 

NSL-KDD Naïve Bayes 0.89173 0.89252 0.89246 0.89173 0.00491 

NSL-KDD Decision Tree 0.98647 0.98643 0.98649 0.98646 0.01002 

NSL-KDD Random Forest 0.98822 0.98825 0.98817 0.98821 0.81297 

NSL-KDD Ada Boost 0.98155 0.98154 0.98153 0.98154 15.61979 

NSL-KDD Bagging Classifier 0.98734 0.98742 0.98725 0.98733 0.63036 

NSL-KDD Logistic Regression 0.90648 0.90636 0.90653 0.90643 0.00933 

NSL-KDD Stochastic Gradient Descent 0.54612 0.71213 0.55799 0.45311 0.00573 

UNSW-NB15 Naïve Bayes 0.89293 0.78412 0.64256 0.68054 0.08273 

UNSW-NB15 Decision Tree 0.99126 0.97967 0.98066 0.98016 0.25876 

UNSW-NB15 Random Forest 0.99305 0.98386 0.98459 0.98422 1.38001 

UNSW-NB15 Ada Boost 0.98971 0.97442 0.97912 0.97675 480.33834 

UNSW-NB15 Bagging Classifier 0.99318 0.98397 0.98507 0.98452 54.13052 

UNSW-NB15 Logistic Regression 0.97419 0.94521 0.93655 0.94082 0.52767 

UNSW-NB15 Stochastic Gradient Descent 0.87405 0.87405 1 0.93279 0.09553 

CICIDS 2017 Naïve Bayes 0.85553 0.81139 0.68245 0.71751 0.08759 

CICIDS 2017 Decision Tree 0.99318 0.98842 0.9901 0.98926 0.41032 

CICIDS 2017 Random Forest 0.99416 0.99029 0.99132 0.9908 18.56984 

CICIDS 2017 Ada Boost 0.92856 0.89923 0.86886 0.88291 735.96754 

CICIDS 2017 Bagging Classifier 0.9944 0.99116 0.99119 0.99117 107.24517 

CICIDS 2017 Logistic Regression 0.84409 0.77625 0.6702 0.70009 0.18086 

CICIDS 2017 Stochastic Gradient Descent 0.80256 0.80256 1 0.89047 0.08245 

CIDDS-001 Naïve Bayes 0.90131 0.74686 0.88045 0.79145 0.13131 

CIDDS-001 Decision Tree 0.9995 0.99873 0.99853 0.99863 0.31852 

CIDDS-001 Random Forest 0.99963 0.99908 0.99893 0.999 39.92271 

CIDDS-001 Ada Boost 0.99852 0.99569 0.99627 0.99598 1051.30573 

CIDDS-001 Bagging Classifier 0.99959 0.99903 0.99877 0.9989 22.53338 

CIDDS-001 Logistic Regression 0.95024 0.91176 0.79929 0.84416 0.36495 

CIDDS-001 Stochastic Gradient Descent 0.89727 0.89727 1 0.94585 0.13185 

Table 45: F1 Score Models 
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Research Question 4 

How does the performance of theoretical machine learning models change when tested in an 

applied environment? 

 

Hypothesis 4 

The accuracy of theoretical machine learning models will perform significantly worse in an 

applied environment. 

 

Research Question and Hypothesis 4 Analysis 

This fourth hypothesis can also be accepted as accurate. Of the 105 total trained 

models, only 13 of those models were within the acceptable +/- 10% threshold of the target 

true value for detecting malicious traffic. These 13 successful models and their results can be 

seen in the table below. Additionally, 12 of the 13 successful models were trained using the 

same CICIDS 2017 dataset, meaning that those models evaluated previously observed data 

and did not even filter through truly unseen or new network traffic. Additionally, of the total 

21 models trained using the CICIDS 2017 dataset, 9 of those 21 models (42.86%) failed to 

accurately detect malicious traffic despite being previously trained using the exact dataset, 

just in a different form. In the end, only a single model was able to flag malicious traffic on 

completely unseen data accurately. These experiments’ results show that 92 of the 105 total 

models performed worse in an applied environment than a conceptual environment, meaning 

that 87.62% of the total models failed to identify malicious traffic correctly. Additionally, 

removing the set of models trained using the CICIDS 2017 dataset shows 83 of the 84 models 

(98.81%) failed to detect traffic on truly unseen network traffic accurately. The only 

successful applied model utilized the KDD 99 dataset, Bagging Classifier algorithm, and 

precision optimization. The other failed models indicate that the success of this individual 

model may be largely coincidental. Excluding the non-CICIDS 2017 models, the results show 

that none of the other models trained using the KDD 99 dataset, the Bagging Classifier 

algorithm, or the precision optimization method yielded successfully applied models. 

Reviewing all these failed models indicates a strong need to utilize a variety of algorithms, 

datasets, and optimization methods during model development to yield an ideal model and 

effectively solve the particular problem at hand.  
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Successfully Applied Models 

 

Dataset Model Score Method Malicious Normal Total Flagged Traffic 

KDD 99 Bagging Classifier Precision 426829 1692378 2119207 0.20141 

CICIDS 2017 Naïve Bayes Accuracy 531212 1587995 2119207 0.25067 

CICIDS 2017 Decision Tree Accuracy 236062 1883145 2119207 0.11139 

CICIDS 2017 Random Forest Accuracy 360301 1758906 2119207 0.17002 

CICIDS 2017 Bagging Classifier Accuracy 369295 1749912 2119207 0.17426 

CICIDS 2017 Naïve Bayes Precision 531212 1587995 2119207 0.25067 

CICIDS 2017 Decision Tree Precision 415476 1703731 2119207 0.19605 

CICIDS 2017 Random Forest Precision 361007 1758200 2119207 0.17035 

CICIDS 2017 Bagging Classifier Precision 368940 1750267 2119207 0.17409 

CICIDS 2017 Naïve Bayes F1 Score 531212 1587995 2119207 0.25067 

CICIDS 2017 Decision Tree F1 Score 400550 1718657 2119207 0.18901 

CICIDS 2017 Random Forest F1 Score 360171 1759036 2119207 0.16996 

CICIDS 2017 Bagging Classifier F1 Score 368985 1750222 2119207 0.17411 

Table 46: Successful Models in Applied IDS Environment 

 

Proposed Research Review 

Successful Proposal Research Tasks 

Overall, the primary goals of Phase One and Phase Two of this research were 

successfully met. In Phase One, this research successfully optimized and trained machine 

learning models trained on various datasets, algorithms, and scoring methods. Additionally, 

Phase Two provided a valuable proof of concept that displayed the possibility of creating an 

automated pipeline to apply machine learning models to review IDS logs and network traffic. 

The second phase displayed successful imports of trained machine learning models and the 

utilization of them to predict malicious traffic in unseen data, although not as accurately as 

desired. 

This research study successfully answered each of the research questions and 

conclusively accept each of the hypotheses. These results showcase the need for utilizing a 

comprehensive combination of algorithms, datasets, and optimization techniques when 

training machine learning models. They also display which algorithms, datasets, and 

optimization techniques yield models with the highest evaluation metrics in accuracy, 
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precision, recall, and F1 score. Lastly, this study’s results strongly indicate that theoretical 

machine learning models may perform substantially worse when applied in a real-world 

environment.  

 

Failed or Altered Proposal Research Tasks 

There were a few deviations from the original proposal of this research. Initially, this 

research attempted to alter the preprocessors of an IDS detection engine. This preprocessor 

modification or creation did not occur within this research because, after investigating the 

possibility, it appears that each preprocessor is protocol-specific and reviews particular packet 

fields. IDS preprocessors are not intended for intense computation, let alone machine 

learning. Also, depending on the programming language used to build the IDS, it may have 

been necessary to manually code the machine learning algorithms since there may not have 

been a publicly available library, like scikit-learn. Due to these reasons, going down the 

preprocessor creation route would have been too time and effort-intensive to complete within 

the proposed timeline. After investigating the feasibility of IDS preprocessor manipulation, it 

appeared there were two other potential avenues to complete the goals of this research. The 

second option involved creating an IDS plugin using the programming language of the 

particular IDS. Due to similar concerns regarding preprocessor creation and the potential need 

to code machine learning algorithms, this was not the desired route due to this proposed 

research’s limited time. Finally, the third and final option involved a series of tools that could, 

in theory, be easily set up as a pipeline. This option involved feeding raw network traffic into 

an IDS, taking the logs and feeding them into Python scripts to produce machine learning 

models, and then re-ingesting those trained models to predict unseen traffic. This final option 

seemed to be the most practical option for this research since it still met the objectives while 

still utilizing practical methods and tools. 

The selection of machine learning algorithms also dramatically throughout the 

research. As previously discussed in Chapter 3, numerous algorithms were tested and dropped 

from this research. The algorithms tested and dropped include Support Vector Machine, K 

Nearest Neighbor, Isolation Forest, Novelty Detection, and Outlier Detection. The primary 

reason these algorithms were dropped is due to their high computation and resource 
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requirements. When testing different algorithms, if a single model took longer than three days 

to produce or errored out, it was dropped. 

Another alteration to the proposed research was the inclusion of the IRG’16 dataset. 

This dataset is massive as it is intended to replicate ISP network traffic. This IRG’16 dataset 

incorporated numerous 10+ GB PCAP files. The merging, ingestion, and sampling of this 

dataset would have significantly impacted the resource requirements and timeline of this 

research. 

The proposed evaluation metrics also changed throughout this research. A few metrics 

were dropped for this research, namely False Alarm Rate, Specificity, and Negative Predictive 

Value. While it would have been possible to calculate these manually, the scikit-learn module 

did not include an easy method or function to obtain these metrics. Additionally, while 

reviewing the literature, the most commonly used model evaluation metrics included the ones 

used for this research - accuracy, precision, recall, and F1 score. 

One last alteration to the proposed research tasks was comparing machine learning 

models to the standard IDS anomaly detection engine. The original plan was to set up the 

Zeek IDS in anomaly detection mode, train the system using known “good” traffic, and test 

how effectively the trained IDS handles unseen network traffic. This IDS anomaly detection 

will act as a baseline to identify if machine learning models perform better than the standard 

IDS anomaly detection engine. However, this IDS anomaly detection test did not occur in the 

actual research. The CICIDS 2017 dataset was selected as the prediction and validation 

dataset for comparing the trained models in an applied environment and observing their 

detection of malicious traffic. The CICIDS 2017 dataset is publicly available online and 

includes both labeled CSV and raw PCAP files. The raw PCAPs could easily be fed into the 

Zeek IDS for anomaly detection training. However, the CICIDS 2017 dataset does not 

perform proper grouping of known “good” or known “bad” network traffic in the PCAP files. 

Therefore, unfortunately, the CICIDS 2017 PCAPs could not be split to properly train and test 

the Zeek IDS. 
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Conclusions 

Some significant conclusions were identified as a result of this research. First, this 

study indicates a strong need to train ML models using various algorithms and datasets. A 

researcher cannot simply select any algorithm or dataset and expect them always to generate 

high-performing models. Second, optimizing models at least once is still highly 

recommended. However, there may not be a need to test and compare multiple optimization 

methods. Throughout the literature review, many of the researchers typically only optimized 

for accuracy; the results of this research show that this may be a good enough practice since 

the changing of optimization methods did not always yield significantly different models. 

Lastly, this research showcases that theoretical ML models will most likely perform worse 

when applied in an implemented environment. 

 

Suggested Alterations 

There were certain significant limitations identified after completing and reviewing 

this research. Particular design decisions should be considered if this research were to be 

modified and redone. The utilization of purely machine learning algorithms is a downside of 

this research. These algorithms only operate on previously trained values and must 

ignore/drop new values. Machine learning algorithms utilize previously seen values to make 

predictions on newly ingested data, which could easily lead to inaccuracies. Deep learning 

seems to alleviate this concern and is currently a significant field of study that may be applied 

to this type of research. 

Additionally, the source and destination IP addresses used for training may have 

negatively impacted the models. As explained earlier, these fields or features were included 

because specific machine learning algorithms will analyze and incorporate the frequency of 

communication between devices to make a final categorization decision. Also related to the 

features, this research only utilized a handful of features available between datasets and 

matched them as best as possible to the Zeek connection logs. This feature mapping led to 

inconsistent feature selection between datasets. Specific datasets had six features selected, 

whereas others had ten features mapped to Zeek fields. 

Also, it should be noted that the computational resources for this research could have 

been better. While this research was conducted using DSU’s IA Lab online virtual 
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environment. Five machines with 100 GB of RAM and 24 processing cores were set up and 

utilized for this research. However, no graphics cards for machine learning computation were 

included in this environment. The optimization of machine learning algorithms is a major 

field of research and, after researching some of these published papers, the application of 

graphics cards for model development could dramatically increase the speed of production. 

This lack of graphics cards and low computation speed may have affected the selection of 

machine learning models for this research since there was a three-day threshold before 

dropping an algorithm for this research. 

It was stated earlier while reviewing this study’s research questions and hypotheses, 

but it would have been quite beneficial for this study to increase variance between trained 

models by further expanding the optimization process. Adding in additional parameters, 

increasing the number of values tested for each parameter, and further exaggerating the 

parameter values used for optimization would have led to better optimized and variant models 

that utilize different parameter values. The different optimization techniques did appear to 

optimize 76 of the 105 models before model production successfully. However, many of the 

optimized models ended up using the same parameters, thereby reducing variance between 

models and their metric scores. The optimization process for this study took multiple days to 

complete. Adding in additional parameters and parameter values would have exponentially 

increased the optimization process due to the nature of the GridSearchCV function. However, 

this would have proved beneficial for this study if it yielded highly variant models that 

utilized uniquely optimized parameters. 

Lastly, after further researching network patterns and trends, it has been found that the 

large majority of modern network attacks are identified in the payload of a packet and thereby 

require deep packet inspection. The exclusion of deep packet inspection (DPI) is a 

considerable limitation of this research since the models exclusively focused on the packets’ 

metadata fields’ size and contents. Network attacks conducted within the payload are 

application-layer attacks and highly unique to the network’s particular hosts. However, there 

are reasons to include or exclude application-layer data in datasets for model development. In 

academia, many of these network intrusion datasets are developed to be generalized enough 

for other researchers to utilize. Application-layer data is highly unique network traffic that 

other researchers may not be interested in using, so dataset developers may not wish to 
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include this type of specialized traffic in their published dataset intended for academia. 

However, the inclusion of DPI and application-layer data should absolutely be included for 

model development within an applied enterprise network environment to train the model to 

scan through this application data properly. Therefore, it makes sense for application-layer 

data to be included when training ML models for applied network environments, but less so 

for theoretical, proof-of-concept research in academia. 

 

Recommendations for Enterprise Networks 

The results of this research identify some essential suggestions for corporate networks 

with enterprise environments that implement an IDS with machine learning capabilities. This 

study shows that a model trained off a different dataset and then applied to new network 

traffic will likely fail in terms of accuracy. Each network, especially enterprise networks, is 

incredibly unique and has different expected device communication times, observed 

protocols, open ports, and network segmentation. Despite published datasets attempting to be 

generalized for others to utilize for research, these datasets are still too specialized in terms of 

their available features, proportion and content of normal traffic, proportion and content of 

malicious traffic, the total size of a dataset, collection data type (packet-based, flow-based, 

hybrid), and their collection point on the network. Due to the extreme uniqueness of both 

enterprise networks and published datasets, it is recommended for corporate environments to 

utilize their own “known good” network traffic when training machine learning models. 

Analysts could then extract the simulated attacks from public datasets and test the trained 

models to identify specific simulated attacks. Additionally, even with these trained models, it 

is highly suggested that analysts should continue to monitor and refine the model and 

manually investigate flagged attacks. Over time, these models will become highly tuned to the 

uniqueness of the corporate environment and should be able to identify malicious traffic 

effectively. Additionally, with the customization of models, it should be possible to train the 

models to implement deep packet inspection features that will scan for attacks within the 

packet payload. 
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Future Work 

The results of this research yielded some exciting and unsuspecting results. Future 

research in this combined field of network security and artificial intelligence may consider the 

following suggestions to expand this research. This research would have benefitted from live 

network polling or sampling to produce continuous Zeek logs. With that in mind, an actual 

pipeline configuration of scripts or other dedicated software that automatically transfers data 

between the IDS and Python scripts would benefit this research. Additionally, the Python 

scripts in this research could have been combined into a single script workflow that could 

operate continuously through scheduled tasking and network polling. 

Additionally, the inclusion of deep learning techniques will be advantageous for 

expanding this type of research. Deep learning models are harder to train due to their 

complexity and time requirements; however, they are considered much more accurate and 

better prepared to predict attacks on unseen data. There are already numerous security 

researchers in industry and academia looking into the application of deep learning models. 

Lastly, the application of machine learning could also be incorporated into other 

security intelligence applications and services. Rather than merely analyzing and correlating 

potential threats at the network level via an IDS device, several other security products could 

utilize machine learning to identify threats. For example, Security Information and Event 

Management (SIEM) devices can act as a centralized logging system that can parse through 

logs sent from numerous logging systems and individual host events across an entire network. 

A SIEM with machine learning or deep learning capabilities may effectively identify new 

threats by correlating every log and digital system’s events across an entire organization. 

Additionally, machine learning could be applied to endpoint detection to categorize specific 

processes, dynamic-link libraries (DDLs), connections, ports, or events as normal or 

anomalous behaviors of an individual system. 
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APPENDICES 

APPENDIX A: PHASE ONE PYTHON SCRIPT 

''' 
Jonah Baron 
PhD Cyber Operations 
Dakota State University 
MLNIDS - Phase One 
''' 
 
import os 
import sys 
import glob 
import time 
import numpy as np 
import pandas as pd 
import warnings 
import csv 
import bisect 
 
import smtplib 
import email.message 
import email.utils 
 
import joblib 
from joblib import parallel_backend, Parallel 
 
from sklearn.model_selection import train_test_split 
from sklearn.model_selection import GridSearchCV 
 
from sklearn import preprocessing 
from sklearn.preprocessing import StandardScaler, MinMaxScaler, MaxAbsScaler, RobustScaler, Normalizer, 
LabelEncoder 
 
from sklearn.feature_selection import SelectPercentile, f_classif, RFE, SelectKBest, VarianceThreshold 
from sklearn.decomposition import PCA 
 
from sklearn.naive_bayes import GaussianNB, MultinomialNB 
from sklearn.neighbors import KNeighborsClassifier, LocalOutlierFactor 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier, BaggingClassifier, IsolationForest 
from sklearn.svm import SVC, LinearSVC, OneClassSVM 
from sklearn.linear_model import LogisticRegression, SGDClassifier, RidgeClassifier 
 
from sklearn.metrics import confusion_matrix, multilabel_confusion_matrix 
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score, roc_auc_score, 
classification_report 
 
hostname = "Windows" 
#hostname = 'Ubuntu-1-KDD99' 
#hostname = 'Ubuntu-2-NSLKDD' 
#hostname = 'Ubuntu-3-UNSW' 
#hostname = 'Ubuntu-4-CICIDS' 
#hostname = 'Ubuntu-5-CIDDS' 
 
def loadKDD99(datasetName): 
    #http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html 
    print ('Loading dataset:', datasetName) 
 
    col_names = ['duration','protocol_type','service','flag','src_bytes', 
        'dst_bytes','land','wrong_fragment','urgent','hot','num_failed_logins', 
        'logged_in','num_compromised','root_shell','su_attempted','num_root', 
        'num_file_creations','num_shells','num_access_files','num_outbound_cmds', 
        'is_host_login','is_guest_login','count','srv_count','serror_rate', 
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        'srv_serror_rate','rerror_rate','srv_rerror_rate','same_srv_rate', 
        'diff_srv_rate','srv_diff_host_rate','dst_host_count','dst_host_srv_count', 
        'dst_host_same_srv_rate','dst_host_diff_srv_rate','dst_host_same_src_port_rate', 
        'dst_host_srv_diff_host_rate','dst_host_serror_rate','dst_host_srv_serror_rate', 
        'dst_host_rerror_rate','dst_host_srv_rerror_rate','label'] 
 
    filename = os.path.join('KDD99', 'kddcup.data.csv') 
    trainset = pd.read_csv(filename, header=None, names = col_names) 
    filename = os.path.join('KDD99', 'corrected.csv') 
    testset = pd.read_csv(filename, header=None, names = col_names) 
    fullset = pd.concat([trainset, testset], ignore_index=True) 
    del trainset, testset 
     
    print ('Successfully read in dataset') 
    print (fullset.head()) 
    print ('Fullset shape:', fullset.shape) 
 
    #LABEL EXTRACTION AND GROUPING 
    fullset = fullset.fillna(value='-') 
    print (fullset['label'].value_counts()) 
    Y_labels = fullset['label'].copy() 
    Y_labels[Y_labels != 'normal.'] = 'malicious' 
    Y_labels[Y_labels == 'normal.'] = 'normal' 
    print ('Successfully grouped malicious features') 
    print (Y_labels.value_counts()) 
     
    #FEATURE RENAMING AND DROPPING 
    filtered = ['duration', 'protocol_type', 'service',  
                'flag', 'src_bytes', 'dst_bytes'] 
    fullset = fullset.filter(filtered) 
    fullset = fullset.rename(columns={'duration':'duration', 'protocol_type':'proto',  
                                      'service':'service', 'flag':'conn_state', 
                                      'src_bytes':'orig_ip_bytes', 'dst_bytes':'resp_ip_bytes'}) 
    zeekpartial = ['duration', 'proto', 'service',  
                   'conn_state', 'orig_ip_bytes', 'resp_ip_bytes'] 
    fullset = fullset.reindex(columns=zeekpartial) 
    #fullset = fullset.drop(['label'], axis=1) 
     
    #ENCODING, SCALING, SUBSET CREATION, AND FEATURE REDUCTION 
    X_train, X_test, Y_train, Y_test = transformBase(fullset, Y_labels, datasetName) 
 
    return X_train, X_test, Y_train, Y_test 
 
def loadNSLKDD(datasetName): 
    #http://205.174.165.80/CICDataset/NSL-KDD/Dataset/ 
    #https://www.unb.ca/cic/datasets/index.html 
    print ('Loading dataset:', datasetName) 
     
    col_names = ['duration','protocol_type','service','flag','src_bytes', 
        'dst_bytes','land','wrong_fragment','urgent','hot','num_failed_logins', 
        'logged_in','num_compromised','root_shell','su_attempted','num_root', 
        'num_file_creations','num_shells','num_access_files','num_outbound_cmds', 
        'is_host_login','is_guest_login','count','srv_count','serror_rate', 
        'srv_serror_rate','rerror_rate','srv_rerror_rate','same_srv_rate', 
        'diff_srv_rate','srv_diff_host_rate','dst_host_count','dst_host_srv_count', 
        'dst_host_same_srv_rate','dst_host_diff_srv_rate','dst_host_same_src_port_rate', 
        'dst_host_srv_diff_host_rate','dst_host_serror_rate','dst_host_srv_serror_rate', 
        'dst_host_rerror_rate','dst_host_srv_rerror_rate','label','unknown'] 
 
    filename = os.path.join('NSL-KDD', 'KDDTrain+.txt') 
    trainset = pd.read_csv(filename, header=None, names = col_names) 
    filename = os.path.join('NSL-KDD', 'KDDTest+.txt') 
    testset = pd.read_csv(filename, header=None, names = col_names) 
    fullset = pd.concat([trainset, testset], ignore_index=True) 
    del trainset, testset 
     
    print ('Successfully read in dataset') 
    print (fullset.head()) 
    print ('Fullset shape:', fullset.shape) 
 
    #LABEL EXTRACTION AND GROUPING 
    fullset = fullset.fillna(value='-') 
    print (fullset['label'].value_counts()) 
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    Y_labels = fullset['label'].copy() 
    Y_labels[Y_labels != 'normal'] = 'malicious' 
    print ('Successfully grouped malicious features') 
    print (Y_labels.value_counts()) 
     
    #FEATURE RENAMING AND DROPPING 
    filtered = ['duration', 'protocol_type', 'service',  
                'flag', 'src_bytes', 'dst_bytes'] 
    fullset = fullset.filter(filtered) 
    fullset = fullset.rename(columns={'duration':'duration', 'protocol_type':'proto',  
                                      'service':'service', 'flag':'conn_state', 
                                      'src_bytes':'orig_ip_bytes', 'dst_bytes':'resp_ip_bytes'}) 
    zeekpartial = ['duration', 'proto', 'service',  
                   'conn_state', 'orig_ip_bytes', 'resp_ip_bytes'] 
    fullset = fullset.reindex(columns=zeekpartial) 
    #fullset = fullset.drop(['label', 'unknown'], axis=1) 
     
    #ENCODING, SCALING, SUBSET CREATION, AND FEATURE REDUCTION 
    X_train, X_test, Y_train, Y_test = transformBase(fullset, Y_labels, datasetName) 
     
    return X_train, X_test, Y_train, Y_test 
 
def loadUNSWNB15(datasetName): 
    #https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/ 
    print ('Loading dataset:', datasetName) 
 
    col_names = ['srcip', 'sport', 'dstip', 'dsport', 'proto', 'state',  
                 'dur', 'sbytes', 'dbytes', 'sttl', 'dttl', 'sloss', 'dloss',  
                 'service', 'Sload', 'Dload', 'Spkts', 'Dpkts', 'swin', 'dwin',  
                 'stcpb', 'dtcpb', 'smeansz', 'dmeansz', 'trans_depth', 'res_bdy_len',  
                 'Sjit', 'Djit', 'Stime', 'Ltime', 'Sintpkt', 'Dintpkt', 'tcprtt', 'synack',  
                 'ackdat', 'is_sm_ips_ports', 'ct_state_ttl', 'ct_flw_http_mthd',  
                 'is_ftp_login', 'ct_ftp_cmd', 'ct_srv_src', 'ct_srv_dst', 'ct_dst_ltm',  
                 'ct_src_ltm', 'ct_src_dport_ltm', 'ct_dst_sport_ltm', 'ct_dst_src_ltm',  
                 'attack_cat', 'Label'] 
 
    path = os.path.join('UNSW-NB15', 'Full', '') 
    fnames = glob.glob(path + '*.csv') 
 
    fcontent = [] 
    for fname in fnames: 
        fcontent.append(pd.read_csv(fname, header=None, names=col_names, dtype='str')) 
    fullset = pd.concat(fcontent, ignore_index=True) 
    del fcontent 
 
    print ('Successfully read in dataset') 
    print (fullset.head()) 
    print ('Fullset shape:', fullset.shape) 
 
    #LABEL EXTRACTION AND GROUPING 
    fullset = fullset.fillna(value='-') 
    print (fullset['Label'].value_counts()) 
    Y_labels = fullset['Label'].copy() 
    Y_labels[Y_labels != '0'] = 'malicious' 
    Y_labels[Y_labels == '0'] = 'normal' 
    print ('Successfully grouped malicious features') 
    print (Y_labels.value_counts()) 
     
    #FEATURE RENAMING AND DROPPING 
    filtered = ['srcip', 'sport', 'dstip', 'dsport', 
                'proto', 'service', 'dur', 'sbytes', 
                'dbytes', 'Spkts', 'Dpkts'] 
    fullset = fullset.filter(filtered) 
    fullset = fullset.rename(columns={'srcip':'id.orig_h', 'sport':'id.orig_p',  
                                      'dstip':'id.resp_h', 'dsport':'id.resp_p', 
                                      'dur':'duration', 'sbytes':'orig_ip_bytes', 'dbytes':'resp_ip_bytes',  
                                      'Spkts':'orig_pkts', 'Dpkts':'resp_pkts'}) 
    zeekpartial = ['id.orig_h', 'id.orig_p', 'id.resp_h', 'id.resp_p',  
                   'proto', 'service', 'duration', 'orig_pkts', 
                   'orig_ip_bytes', 'resp_pkts', 'resp_ip_bytes'] 
    fullset = fullset.reindex(columns=zeekpartial) 
    #fullset = fullset.drop(['attack_cat', 'label'], axis=1) 
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    #ENCODING, SCALING, SUBSET CREATION, AND FEATURE REDUCTION 
    X_train, X_test, Y_train, Y_test = transformBase(fullset, Y_labels, datasetName) 
 
    return X_train, X_test, Y_train, Y_test 
 
def loadCICIDS2017(datasetName): 
    #http://205.174.165.80/CICDataset/CIC-IDS-2017/Dataset/ 
    #https://www.unb.ca/cic/datasets/index.html 
    print ('Loading dataset:', datasetName) 
 
    path = os.path.join('CICIDS2017', 'MachineLearningCSV', 'MachineLearningCVE', '') 
    fnames = glob.glob(path + '*.csv') 
 
    fcontent = [] 
    for fname in fnames: 
        fcontent.append(pd.read_csv(fname)) 
    fullset = pd.concat(fcontent, ignore_index=True) 
    fullset.columns = fullset.columns.str.strip() 
     
    print ('Successfully read in dataset') 
    print (fullset.head()) 
    print ('Fullset shape:', fullset.shape) 
 
    #LABEL EXTRACTION AND GROUPING 
    fullset = fullset.fillna(value='-') 
    print (fullset['Label'].value_counts()) 
    Y_labels = fullset['Label'].copy() 
    Y_labels[Y_labels != 'BENIGN'] = 'malicious' 
    Y_labels[Y_labels == 'BENIGN'] = 'normal' 
    print ('Successfully grouped malicious features') 
    print (Y_labels.value_counts()) 
     
    #FEATURE RENAMING AND DROPPING 
    filtered = ['Destination Port', 'Flow Duration', 'Total Fwd Packets',  
                'Total Backward Packets', 'Total Length of Fwd Packets', 'Total Length of Bwd Packets'] 
    fullset = fullset.filter(filtered) 
    fullset = fullset.rename(columns={'Destination Port':'id.resp_p', 'Flow Duration':'duration',  
                                      'Total Fwd Packets':'orig_pkts', 'Total Backward Packets':'resp_pkts', 
                                      'Total Length of Fwd Packets':'orig_ip_bytes', 'Total Length of Bwd 
Packets':'resp_ip_bytes'}) 
    zeekpartial = ['id.resp_p', 'duration', 'orig_pkts',  
                   'resp_pkts', 'orig_ip_bytes', 'resp_ip_bytes'] 
    fullset = fullset.reindex(columns=zeekpartial) 
    #fullset = fullset.drop(['Label'], axis=1) 
     
    #ENCODING, SCALING, SUBSET CREATION, AND FEATURE REDUCTION 
    X_train, X_test, Y_train, Y_test = transformBase(fullset, Y_labels, datasetName) 
 
    return X_train, X_test, Y_train, Y_test 
 
def loadCIDDS001(datasetName): 
    #https://www.hs-coburg.de/forschung/forschungsprojekte-oeffentlich/informationstechnologie/cidds-coburg-
intrusion-detection-data-sets.html 
    print ('Loading dataset:', datasetName) 
 
    filtered_cols = ['Duration','Proto','Src IP Addr','Src Pt','Dst IP Addr','Dst Pt', 
                     'Packets', #'Bytes' not included due to naming convention like '10 M' 
                     'Flows','Flags','Tos','class']  
 
    path = os.path.join('CIDDS-001', 'WISENT-CIDDS-001', 'CIDDS-001', 'traffic', 'OpenStack', '') 
    fnames = glob.glob(path + '*.csv') 
 
    fcontent = [] 
    for fname in fnames: 
        fcontent.append(pd.read_csv(fname, usecols = filtered_cols)) 
    fullset = pd.concat(fcontent, ignore_index=True) 
     
    print ('Successfully read in dataset') 
    print (fullset.head()) 
    print ('Fullset shape:', fullset.shape) 
 
    #LABEL EXTRACTION AND GROUPING 
    fullset = fullset.fillna(value='-') 
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    print (fullset['class'].value_counts()) 
    Y_labels = fullset['class'].copy() 
    Y_labels[Y_labels != 'normal'] = 'malicious' 
    print ('Successfully grouped malicious features') 
    print (Y_labels.value_counts()) 
     
    #FEATURE RENAMING AND DROPPING 
    filtered = ['Duration', 'Proto', 'Src IP Addr', 'Src Pt', 
                'Dst IP Addr', 'Dst Pt', 'Packets'] 
    fullset = fullset.filter(filtered) 
    fullset = fullset.rename(columns={'Duration':'duration', 'Proto':'proto',  
                                      'Src IP Addr':'id.orig_h', 'Src Pt':'id.orig_p', 
                                      'Dst IP Addr':'id.resp_h', 'Dst Pt':'id.resp_p', 
                                      'Packets':'orig_pkts'}) 
    zeekpartial = ['duration', 'proto', 'id.orig_h', 'id.orig_p',  
                   'id.resp_h', 'id.resp_p', 'orig_pkts'] 
    fullset = fullset.reindex(columns=zeekpartial) 
    #fullset = fullset.drop(['class'], axis=1) 
     
    #ENCODING, SCALING, SUBSET CREATION, AND FEATURE REDUCTION 
    X_train, X_test, Y_train, Y_test = transformBase(fullset, Y_labels, datasetName) 
     
    #Utilize only 10% of full dataset (contained in X_test/Y_test) - Unique to CIDDS-001 
    X_train, X_test, Y_train, Y_test = train_test_split(X_test, Y_test, test_size = .10, random_state = 0) 
 
    return X_train, X_test, Y_train, Y_test 
 
def transformBase(fullset, Y_labels, datasetName): 
    pathname = saveConfig(datasetName) 
     
    #DATATYPE CONVERSION TO STR/OBJECT 
    #print (fullset.dtypes) 
    col_names = list(fullset) 
    for col in col_names: 
        fullset[col] = fullset[col].astype('str') 
    #print (fullset.dtypes) 
    print ('Successfully converted dataframe column datatypes') 
    print (fullset.head()) 
 
    #UNIQUE VALUES AND ENCODING 
    unique = fullset.values.ravel() 
    save = pathname + '_unique.joblib' 
    joblib.dump(unique, save) 
     
    enc = LabelEncoder() 
    enc.fit(np.unique(fullset.values)) 
    save = pathname + '_encoder.joblib' 
    joblib.dump(enc, save) 
    fullset = fullset.apply(enc.transform) 
    print ('Successfully encoded data') 
    print (fullset.head()) 
 
    #SCALING 
    scaler = StandardScaler() 
    scaler.fit(fullset) 
    save = pathname + '_scaler.joblib' 
    joblib.dump(scaler, save) 
    fullset = scaler.transform(fullset) 
    print ('Successfully scaled data') 
     
    #SUBSET CREATION 
    X_train, X_test, Y_train, Y_test = train_test_split(fullset, Y_labels, test_size = .10, random_state = 0) 
    print ('Successfully created subsets') 
 
    #FEATURE REDUCTION 
    print ('X_train shape:', X_train.shape) 
    print ('X_test shape:', X_test.shape) 
     
    pca = PCA(n_components='mle', svd_solver='full') #svd_solver='auto' 
    pca.fit(X_train) 
    save = pathname + '_pca.joblib' 
    joblib.dump(pca, save) 
    X_train = pd.DataFrame(pca.transform(X_train)) 
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    X_test = pd.DataFrame(pca.transform(X_test)) 
     
    print ('Successfully reduced features') 
    print ('X_train shape:', X_train.shape) 
    print ('X_test shape:', X_test.shape) 
            
    return X_train, X_test, Y_train, Y_test 
 
def saveConfig(datasetName): 
    if datasetName == 'KDD Cup 1999': 
        pathname = os.path.join('KDD99', 'Output', 'KDD99') 
    if datasetName == 'NSL-KDD': 
        pathname = os.path.join('NSL-KDD', 'Output', 'NSLKDD') 
    if datasetName == 'UNSW-NB15': 
        pathname = os.path.join('UNSW-NB15', 'Output', 'UNSW') 
    if datasetName == 'CICIDS 2017': 
        pathname = os.path.join('CICIDS2017', 'Output', 'CICIDS') 
    if datasetName == 'CIDDS-001': 
        pathname = os.path.join('CIDDS-001', 'Output', 'CIDDS') 
    #return path, name 
    return pathname 
 
def modelOutput(expected, predicted, modelName, datasetName): 
    accuracy = accuracy_score(expected, predicted) 
    precision = precision_score(expected, predicted , average='macro', labels=np.unique(predicted)) 
    recall = recall_score(expected, predicted, average='macro', labels=np.unique(predicted)) 
    f1 = f1_score(expected, predicted , average='macro', labels=np.unique(predicted)) 
    class_report = classification_report(expected, predicted) 
    #returned = confusion_matrix(expected, predicted).ravel() 
    #print(cm) 
 
    #print(expected, predicted) 
    #print ('Labels not found in expected set:') 
    #print (set(expected)-set(predicted)) 
 
    print ('=========================================') 
    print (datasetName, '|', modelName) 
    print ('=========================================') 
    print('Accuracy: %.3f' %accuracy) 
    print('Precision: %.3f' %precision) 
    print('Recall: %.3f' %recall) 
    print('F1 score: %.3f' %f1) 
    print('Classification report') 
    print(class_report) 
    print('****************************') 
     
    return accuracy, precision, recall, f1 
 
def modelProduction(datasetName, X_train, X_test, Y_train, Y_test): 
    print ('\nProducing models...\n') 
     
    scoringMethods = ['accuracy', 'precision_macro', 'f1_macro'] 
    for scoreMethod in scoringMethods: 
        clfs = getOptimized(datasetName, scoreMethod) 
         
        pathname = saveConfig(datasetName) 
        rows = [] 
         
        for clf_name in clfs: 
            start = time.time() 
            print('Producing',clf_name) 
            clf = clfs[clf_name] 
            clf = clf.fit(X_train, Y_train) 
            predicted = clf.predict(X_test) 
            expected = Y_test 
            end = time.time() 
            trainTime = (end-start)/60 
            print ('Model training time: %.3f' %trainTime, 'minutes') 
             
            accuracy, precision, recall, f1 = modelOutput(expected, predicted, clf_name, datasetName) 
            rows.append([clf_name, accuracy, precision, recall, f1, trainTime, scoreMethod]) 
             
            if clf_name == 'Naive Bayes - Gaussian NB': 
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                modelSave = 'NB' 
            if clf_name == 'Decision Tree': 
                modelSave = 'DT' 
            if clf_name == 'Ensemble - Random Forest': 
                modelSave = 'RF' 
            if clf_name == 'Ensemble - Ada Boost': 
                modelSave = 'AB' 
            if clf_name == 'Ensemble - Bagging Classifier': 
                modelSave = 'BC' 
            if clf_name == 'Linear - Logistic Regression': 
                modelSave = 'LR' 
            if clf_name == 'Linear - Stochastic Gradient Descent': 
                modelSave = 'SGD' 
            saveName = pathname + '-' + scoreMethod + '-' + modelSave + '.joblib' 
            joblib.dump(clf, saveName) 
            #input('Press any key to continue...') 
             
        fields = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score', 'Time', 'Score Method', datasetName] 
        csvname = pathname + '-Models' + '-' + scoreMethod + '.csv' 
        with open(csvname, 'w', newline = '') as csvfile: 
            csvwriter = csv.writer(csvfile) 
            csvwriter.writerow(fields) 
            for row in rows: 
                csvwriter.writerow(row) 
 
def getOptimized(datasetName, scoreMethod): 
    print ('Obtaining optimized model parameters...') 
     
    #ACCURACY SCORE OPTIMIZATION 
    if scoreMethod == 'accuracy': 
        if datasetName == 'KDD Cup 1999': 
            clfs = { 
                #Updated - 10/13/2020 
                'Naive Bayes - Gaussian NB' : GaussianNB(), 
                'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='log2'), 
                'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='gini', 
max_features='log2', n_estimators=100), 
                'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=5000), 
                'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=0.5, 
max_samples=0.5, n_estimators=5000), 
                'Linear - Logistic Regression' : LogisticRegression(C=10, max_iter=2500, penalty='l2'), 
                'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=15, max_iter=1000, 
penalty='l2'), 
                } 
        if datasetName == 'NSL-KDD': 
            clfs = { 
                #Updated - 10/13/2020 
                'Naive Bayes - Gaussian NB' : GaussianNB(), 
                'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='log2'), 
                'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='gini', 
max_features='log2', n_estimators=5000), 
                'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=3000), 
                'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=0.5, 
max_samples=0.5, n_estimators=1000), 
                'Linear - Logistic Regression' : LogisticRegression(C=0.1, max_iter=2500, penalty='l2'), 
                'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=5, max_iter=1000, 
penalty='l2'), 
                } 
        if datasetName == 'UNSW-NB15': 
            clfs = { 
                #Updated - 10/13/2020 
                'Naive Bayes - Gaussian NB' : GaussianNB(), 
                'Decision Tree' : DecisionTreeClassifier(criterion='gini', max_features='sqrt'), 
                'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='entropy', 
max_features='log2', n_estimators=100), 
                'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1, n_estimators=3000), 
                'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=0.5, 
max_samples=0.5, n_estimators=1000), 
                'Linear - Logistic Regression' : LogisticRegression(C=0.1, max_iter=2500, penalty='l2'), 
                'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=15, max_iter=100, 
penalty='l2'), 
                } 
        if datasetName == 'CICIDS 2017': 
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            clfs = { 
                #Updated - 10/14/2020 
                'Naive Bayes - Gaussian NB' : GaussianNB(), 
                'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='sqrt'), 
                'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='gini', 
max_features='sqrt', n_estimators=1000), 
                'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=5000), 
                'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=5, 
max_samples=0.5, n_estimators=5000), 
                'Linear - Logistic Regression' : LogisticRegression(C=1, max_iter=2500, penalty='l2'), 
                'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=15, max_iter=3000, 
penalty='l2'), 
                } 
        if datasetName == 'CIDDS-001': 
            clfs = { 
                #Updated 10/28/2020 
                'Naive Bayes - Gaussian NB' : GaussianNB(), 
                'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='sqrt'), 
                'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='entropy', 
max_features='sqrt', n_estimators=1000), 
                'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=5000), 
                'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=5, 
max_samples=0.5, n_estimators=1000), 
                'Linear - Logistic Regression' : LogisticRegression(C=10, max_iter=2500, penalty='l2'), 
                'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=5, max_iter=100, 
penalty='l2'), 
                } 
     
    #PRECISION SCORE OPTIMIZATION 
    if scoreMethod == 'precision_macro': 
        if datasetName == 'KDD Cup 1999': 
            clfs = { 
                #Updated - 10/13/2020 
                'Naive Bayes - Gaussian NB' : GaussianNB(), 
                'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='auto'), 
                'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='gini', 
max_features='log2', n_estimators=100), 
                'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=5000), 
                'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=5, 
max_samples=0.5, n_estimators=5000), 
                'Linear - Logistic Regression' : LogisticRegression(C=10, max_iter=2500, penalty='l2'), 
                'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=15, max_iter=1000, 
penalty='l2'), 
                } 
        if datasetName == 'NSL-KDD': 
            clfs = { 
                #Updated - 10/13/2020 
                'Naive Bayes - Gaussian NB' : GaussianNB(), 
                'Decision Tree' : DecisionTreeClassifier(criterion='gini', max_features='auto'), 
                'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='entropy', 
max_features='sqrt', n_estimators=100), 
                'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=3000), 
                'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=0.5, 
max_samples=0.5, n_estimators=3000), 
                'Linear - Logistic Regression' : LogisticRegression(C=0.1, max_iter=2500, penalty='l2'), 
                'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=5, max_iter=3000, 
penalty='l2'), 
                } 
        if datasetName == 'UNSW-NB15': 
            clfs = { 
                #Updated - 10/13/2020 
                'Naive Bayes - Gaussian NB' : GaussianNB(), 
                'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='sqrt'), 
                'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='entropy', 
max_features='sqrt', n_estimators=1000), 
                'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1, n_estimators=5000), 
                'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=1, 
max_samples=0.5, n_estimators=100), 
                'Linear - Logistic Regression' : LogisticRegression(C=0.1, max_iter=2500, penalty='l2'), 
                'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=10, max_iter=100, 
penalty='l2'), 
                } 
        if datasetName == 'CICIDS 2017': 
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            clfs = { 
                #Updated - 10/14/2020 
                'Naive Bayes - Gaussian NB' : GaussianNB(), 
                'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='auto'), 
                'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='gini', 
max_features='sqrt', n_estimators=1000), 
                'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=5000), 
                'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=5, 
max_samples=0.5, n_estimators=5000), 
                'Linear - Logistic Regression' : LogisticRegression(C=0.1, max_iter=2500, penalty='l2'), 
                'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=15, max_iter=1000, 
penalty='l2'), 
                } 
        if datasetName == 'CIDDS-001': 
            clfs = { 
                #Updated 10/28/2020 
                'Naive Bayes - Gaussian NB' : GaussianNB(), 
                'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='auto'), 
                'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='entropy', 
max_features='log2', n_estimators=3000), 
                'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=5000), 
                'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=0.5, 
max_samples=0.5, n_estimators=1000), 
                'Linear - Logistic Regression' : LogisticRegression(C=10, max_iter=2500, penalty='l2'), 
                'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=5, max_iter=100, 
penalty='l2'), 
                } 
     
    #F1 SCORE OPTIMIZATION 
    if scoreMethod == 'f1_macro': 
        if datasetName == 'KDD Cup 1999': 
            clfs = { 
                #Updated - 10/13/2020 
                'Naive Bayes - Gaussian NB' : GaussianNB(), 
                'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='auto'), 
                'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='gini', 
max_features='sqrt', n_estimators=100), 
                'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=5000), 
                'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=0.5, 
max_samples=0.5, n_estimators=100), 
                'Linear - Logistic Regression' : LogisticRegression(C=10, max_iter=2500, penalty='l2'), 
                'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=15, max_iter=1000, 
penalty='l2'), 
                } 
        if datasetName == 'NSL-KDD': 
            clfs = { 
                #Updated - 10/13/2020 
                'Naive Bayes - Gaussian NB' : GaussianNB(), 
                'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='log2'), 
                'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='gini', 
max_features='log2', n_estimators=1000), 
                'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=3000), 
                'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=0.5, 
max_samples=0.5, n_estimators=1000), 
                'Linear - Logistic Regression' : LogisticRegression(C=0.1, max_iter=2500, penalty='l2'), 
                'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=5, max_iter=5000, 
penalty='l2'), 
                } 
        if datasetName == 'UNSW-NB15': 
            clfs = { 
                #Updated - 10/13/2020 
                'Naive Bayes - Gaussian NB' : GaussianNB(), 
                'Decision Tree' : DecisionTreeClassifier(criterion='gini', max_features='log2'), 
                'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='entropy', 
max_features='auto', n_estimators=100), 
                'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1, n_estimators=3000), 
                'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=0.5, 
max_samples=0.5, n_estimators=3000), 
                'Linear - Logistic Regression' : LogisticRegression(C=0.1, max_iter=2500, penalty='l2'), 
                'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=15, max_iter=1000, 
penalty='l2'), 
                } 
        if datasetName == 'CICIDS 2017': 



128 

            clfs = { 
                #Updated - 10/14/2020 
                'Naive Bayes - Gaussian NB' : GaussianNB(), 
                'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='log2'), 
                'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='entropy', 
max_features='auto', n_estimators=1000), 
                'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=5000), 
                'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=5, 
max_samples=0.5, n_estimators=3000), 
                'Linear - Logistic Regression' : LogisticRegression(C=10, max_iter=2500, penalty='l2'), 
                'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=15, max_iter=1000, 
penalty='l2'), 
                } 
        if datasetName == 'CIDDS-001': 
            clfs = { 
                #Updated 10/28/2020 
                'Naive Bayes - Gaussian NB' : GaussianNB(), 
                'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='log2'), 
                'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='entropy', 
max_features='auto', n_estimators=3000), 
                'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=5000), 
                'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=5, 
max_samples=0.5, n_estimators=1000), 
                'Linear - Logistic Regression' : LogisticRegression(C=10, max_iter=2500, penalty='l2'), 
                'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=5, max_iter=100, 
penalty='l2'), 
                } 
     
    return clfs 
 
def optimizeModels(datasetName, X_test, Y_test): 
    print ('\nOptimizing models...\n') 
     
    rows = [] 
    scoringMethods = ['accuracy', 'precision_macro', 'f1_macro'] 
    clfs = { 
        #'Naive Bayes - Gaussian NB' : GaussianNB(), 
        'Decision Tree' : DecisionTreeClassifier(), 
        'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1), 
        'Ensemble - Ada Boost' : AdaBoostClassifier(), 
        'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1), 
        'Linear - Logistic Regression' : LogisticRegression(), 
        'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1), 
        } 
    for scoreMethod in scoringMethods: 
        for clf_name in clfs: 
            print('Tuning', clf_name, 'for ideal', scoreMethod, 'score')     
            start = time.time() 
            if clf_name == 'Decision Tree': 
                param_grid = {'criterion' : ['gini', 'entropy'], 
                              'max_features' : ['auto', 'sqrt', 'log2'] 
                              } 
            if clf_name == 'Ensemble - Random Forest': 
                param_grid = {'n_estimators' : [100, 1000, 3000, 5000], 
                              'criterion' : ['gini', 'entropy'], 
                              'max_features' : ['auto', 'sqrt', 'log2'] 
                              } 
            if clf_name == 'Ensemble - Ada Boost': 
                param_grid = {'n_estimators' : [100, 1000, 3000, 5000], 
                              'learning_rate' : [0.5, 1, 1.5] 
                              } 
            if clf_name == 'Ensemble - Bagging Classifier': 
                param_grid = {'n_estimators' : [100, 1000, 3000, 5000], 
                              'max_features' : [0.5, 1, 5], 
                              'max_samples' : [0.1, 0.5, 1] 
                              } 
            if clf_name == 'Linear - Logistic Regression': 
                param_grid = {'penalty' : ['l2', 'l1', 'elasticnet'], 
                              'C' : [0.1, 1, 10], 
                              'max_iter' : [2500, 5000, 7500, 10000] 
                              } 
            if clf_name == 'Linear - Stochastic Gradient Descent': 
                param_grid = {'alpha' : [5, 10, 15], 
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                              'penalty' : ['l2', 'l1', 'elasticnet'], 
                              'max_iter' : [100, 1000, 3000, 5000] 
                              } 
            clf = GridSearchCV(clfs[clf_name], param_grid, pre_dispatch=3, n_jobs=-1, verbose=5, cv=5, 
scoring=scoreMethod) 
            #with parallel_backend('threading'): 
            try: 
                clf = clf.fit(X_test, Y_test) 
            except: 
                subject = hostname + ' - Python Script Crash' 
                message = 'Python script crash for %s' %datasetName 
                sendEmail(subject, message) 
            end = time.time() 
            trainTime = (end-start)/60 
             
            rows.append([scoreMethod, clf_name, clf.best_params_, clf.best_score_, trainTime]) 
            print ('=======================================') 
            print (datasetName) 
            print (scoreMethod) 
            print (clf_name) 
            print ('Model training time: %.3f' %trainTime, 'minutes') 
            print ('Best parameters:', clf.best_params_) 
            print ('Best score: %.5f' %clf.best_score_) 
            print ('=======================================') 
            print (clf.cv_results_) 
            #modelOutput(expected, predicted, clf_name, datasetName) 
            #input('Press any key to continue...') 
         
    pathname = saveConfig(datasetName) 
    csvname = pathname + '-ModelParams.csv' 
    fields = ['Score Method', 'Model', 'Best Parameters', 'Best Score', 'Time', datasetName] 
    with open(csvname, 'w', newline = '') as csvfile: 
        csvwriter = csv.writer(csvfile) 
        csvwriter.writerow(fields) 
        for row in rows: 
            csvwriter.writerow(row) 
 
def sendEmail(subject, message): 
    from_email = #source email 
    password = #source email password credential 
    to_email = #destination alterate email 
    msg = '\r\n'.join([ 
        'To: %s' %to_email, 
        'From: %s' %from_email, 
        'Subject: %s' %subject, 
        '', message]) 
     
    server = smtplib.SMTP('smtp.gmail.com', 587) 
    server.ehlo() 
    server.starttls() 
    server.ehlo() 
    server.login(from_email, password) 
    server.sendmail(from_email, [to_email], msg) 
    server.quit() 
 
def main(): 
    scriptStart = time.time() 
    warnings.filterwarnings('always') 
    #sys.stdout = open('output.txt', 'w') 
    #sys.stderr = open('output.txt', 'w') 
    #pd.set_option('display.max_rows', 300) 
    #Parallel(n_jobs=-1) 
 
    for dataset in range(5): 
        if dataset == 0: 
            datasetName = 'KDD Cup 1999' 
            X_train, X_test, Y_train, Y_test = loadKDD99(datasetName) 
        if dataset == 1: 
            datasetName = 'NSL-KDD' 
            X_train, X_test, Y_train, Y_test = loadNSLKDD(datasetName) 
        if dataset == 2: 
            datasetName = 'UNSW-NB15' 
            X_train, X_test, Y_train, Y_test = loadUNSWNB15(datasetName) 
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        if dataset == 3: 
            datasetName = 'CICIDS 2017' 
            X_train, X_test, Y_train, Y_test = loadCICIDS2017(datasetName) 
        if dataset == 4: 
           datasetName = 'CIDDS-001' 
           X_train, X_test, Y_train, Y_test = loadCIDDS001(datasetName) 
 
        print ('X_train shape:', X_train.shape) 
        print ('X_test shape:', X_test.shape) 
 
        #optimizeModels(datasetName, X_test, Y_test)         
        #modelProduction(datasetName, X_train, X_test, Y_train, Y_test) 
         
    scriptFinish = time.time() 
    elapsedTime = scriptFinish-scriptStart 
     
    subject = hostname + ' - Script Completed' 
    message = 'Elapsed runtime: %s' %elapsedTime 
    sendEmail(subject, message) 
 
if __name__ == '__main__': 
    main() 
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APPENDIX B: PHASE TWO PYTHON SCRIPT 

''' 
Jonah Baron 
PhD Cyber Operations 
Dakota State University 
MLNIDS - Phase Two 
''' 
 
import os 
import sys 
import glob 
import time 
import numpy as np 
import pandas as pd 
import warnings 
import csv 
import bisect 
 
import smtplib 
import email.message 
import email.utils 
 
import joblib 
from joblib import parallel_backend, Parallel 
 
from sklearn.model_selection import train_test_split 
from sklearn.model_selection import GridSearchCV 
 
from sklearn import preprocessing 
from sklearn.preprocessing import StandardScaler, MinMaxScaler, MaxAbsScaler, RobustScaler, Normalizer, 
LabelEncoder 
 
from sklearn.feature_selection import SelectPercentile, f_classif, RFE, SelectKBest, VarianceThreshold 
from sklearn.decomposition import PCA 
 
from sklearn.naive_bayes import GaussianNB, MultinomialNB 
from sklearn.neighbors import KNeighborsClassifier, LocalOutlierFactor 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier, BaggingClassifier, IsolationForest 
from sklearn.svm import SVC, LinearSVC, OneClassSVM 
from sklearn.linear_model import LogisticRegression, SGDClassifier, RidgeClassifier 
 
from sklearn.metrics import confusion_matrix, multilabel_confusion_matrix 
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score, roc_auc_score, 
classification_report 
 
from parsezeeklogs import ParseZeekLogs #custom downloaded PyPI package 
 
hostname = "Windows" 
#hostname = 'Ubuntu-1-KDD99' 
#hostname = 'Ubuntu-2-NSLKDD' 
#hostname = 'Ubuntu-3-UNSW' 
#hostname = 'Ubuntu-4-CICIDS' 
#hostname = 'Ubuntu-5-CIDDS' 
 
def loadZeekLogs(datasetName):    
    zeekFile = os.path.join('Zeek', 'Final', 'CICIDS2017', 'conn.log') 
    zeekLogs = ParseZeekLogs(zeekFile, output_format='csv', safe_headers=False) 
    print(zeekLogs.get_fields()) 
     
    predictionFile = os.path.join('Zeek', 'predictionset.csv') 
    with open(predictionFile,'w') as outfile: 
        outfile.write(zeekLogs.get_fields() + '\n') 
        for log in zeekLogs: 
            if log is not None: 
                outfile.write(log + '\n') 
                 
    zeekfull = ['ts', 'uid', 'id.orig_h', 'id.orig_p', 'id.resp_h', 'id.resp_p', 
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                   'proto', 'service', 'duration', 'orig_bytes', 'resp_bytes', 'conn_state', 
                   'local_orig', 'local_resp', 'missed_bytes', 'history', 'orig_pkts', 
                   'orig_ip_bytes', 'resp_pkts', 'resp_ip_bytes', 'tunnel_parents'] 
     
    if datasetName == 'KDD Cup 1999': 
        zeekpartial = ['duration', 'proto', 'service',  
                   'conn_state', 'orig_ip_bytes', 'resp_ip_bytes'] 
    if datasetName == 'NSL-KDD': 
        zeekpartial = ['duration', 'proto', 'service',  
                   'conn_state', 'orig_ip_bytes', 'resp_ip_bytes'] 
    if datasetName == 'UNSW-NB15': 
        zeekpartial = ['id.orig_h', 'id.orig_p', 'id.resp_h', 'id.resp_p',  
                   'proto', 'service', 'duration', 'orig_pkts', 
                   'orig_ip_bytes', 'resp_pkts', 'resp_ip_bytes'] 
    if datasetName == 'CICIDS 2017': 
        zeekpartial = ['id.resp_p', 'duration', 'orig_pkts',  
                   'resp_pkts', 'orig_ip_bytes', 'resp_ip_bytes'] 
    if datasetName == 'CIDDS-001': 
       zeekpartial = ['duration', 'proto', 'id.orig_h', 'id.orig_p',  
                   'id.resp_h', 'id.resp_p', 'orig_pkts'] 
     
    predictionset = pd.read_csv(predictionFile, usecols=zeekpartial) 
     
    print ('Successfully read in prediction dataset') 
    print (predictionset.head()) 
    print ('Predictionset shape:', predictionset.shape) 
     
    return predictionset 
 
def transformPrediction(predictionset, datasetName): 
    pathname = saveConfig(datasetName) 
         
    enc = joblib.load(pathname + '_encoder.joblib') 
    scaler = joblib.load(pathname + '_scaler.joblib') 
    pca = joblib.load(pathname + '_pca.joblib') 
    unique = joblib.load(pathname + '_unique.joblib') 
     
    #Transformations - datatype conversions, encoding, scaling, subset creation, feature reduction 
    print (enc) 
    print (scaler) 
    print (pca) 
    print (unique) 
     
    #ENSURE '-' IS SEEN IN ENCODER SCHEMA 
    enc_classes = enc.classes_.tolist() 
    bisect.insort_left(enc_classes, '-') 
    enc.classes_ = enc_classes 
     
    #DATATYPE CONVERSION TO STR/OBJECT 
    predictionset = predictionset.fillna(value='-') 
    #print (fullset.dtypes) 
    col_names = list(predictionset) 
    for col in col_names: 
        predictionset[col] = predictionset[col].astype('str') 
    #print (fullset.dtypes) 
    print ('Successfully converted dataframe column datatypes') 
    print (predictionset.head()) 
 
    #ENCODING 
    predictionvalues = list(np.unique(predictionset.values.ravel())) 
    trainedvalues = list(np.unique(unique.tolist())) 
     
    remove = [] 
    for value in predictionvalues: 
        if value not in trainedvalues: 
            remove.append(value) 
    predictionset.replace(to_replace=remove, value='-', inplace=True) 
     
    predictionset = predictionset.apply(enc.transform) 
    print ('Successfully encoded data') 
    print (predictionset.head()) 
 
    #SCALING 
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    predictionset = scaler.transform(predictionset) 
    print ('Successfully scaled data') 
     
    #FEATURE REDUCTION 
    predictionset = pca.transform(predictionset) 
    print ('Successfully reduced features') 
    print ('Prediction set shape:', predictionset.shape) 
     
     
    scoringMethods = ['accuracy', 'precision_macro', 'f1_macro'] 
    clfs = ['NB', 'DT', 'RF', 'AB', 'BC', 'LR', 'SGD'] 
    rows = [] 
     
    for scoreMethod in scoringMethods: 
        for clfName in clfs: 
            clfFile = '-' + scoreMethod + '-' + clfName + '.joblib' 
            clf = joblib.load(pathname + clfFile) 
            print (clf) 
            #print (clf.feature_importances_) 
             
            prediction = clf.predict(predictionset) 
            unique, counts = np.unique(prediction, return_counts=True) 
            #print (unique, counts) 
            print (np.asarray((unique, counts)).T) 
            if len(unique) == 1: 
                if unique[0] == 'normal': 
                    flagged = 0 
                    rows.append([clfName, scoreMethod, 0, counts[0], counts[0], flagged]) 
                if unique[0] == 'malicious': 
                    flagged = 1 
                    rows.append([clfName, scoreMethod, counts[0], 0, counts[0], flagged]) 
            if len(unique) == 2: 
                flagged = counts[0]/(counts[0]+counts[1]) 
                rows.append([clfName, scoreMethod, counts[0], counts[1], (counts[0] + counts[1]), flagged]) 
            print ('Flagged traffic: ', flagged) 
         
    fields = ['Model', 'Score Method', 'Malicious', 'Normal', 'Total', 'Flagged Traffic', datasetName] 
    csvname = pathname + '-Predictions.csv' 
    with open(csvname, 'w', newline = '') as csvfile: 
        csvwriter = csv.writer(csvfile) 
        csvwriter.writerow(fields) 
        for row in rows: 
            csvwriter.writerow(row) 
 
def saveConfig(datasetName): 
    if datasetName == 'KDD Cup 1999': 
        pathname = os.path.join('KDD99', 'Output', 'KDD99') 
    if datasetName == 'NSL-KDD': 
        pathname = os.path.join('NSL-KDD', 'Output', 'NSLKDD') 
    if datasetName == 'UNSW-NB15': 
        pathname = os.path.join('UNSW-NB15', 'Output', 'UNSW') 
    if datasetName == 'CICIDS 2017': 
        pathname = os.path.join('CICIDS2017', 'Output', 'CICIDS') 
    if datasetName == 'CIDDS-001': 
        pathname = os.path.join('CIDDS-001', 'Output', 'CIDDS') 
 
    return pathname 
 
def sendEmail(subject, message): 
    from_email = #source email 
    password = #source email password credential 
    to_email = #destination alter email 
    msg = '\r\n'.join([ 
        'To: %s' %to_email, 
        'From: %s' %from_email, 
        'Subject: %s' %subject, 
        '', message]) 
     
    server = smtplib.SMTP('smtp.gmail.com', 587) 
    server.ehlo() 
    server.starttls() 
    server.ehlo() 
    server.login(from_email, password) 
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    server.sendmail(from_email, [to_email], msg) 
    server.quit() 
 
def main(): 
    warnings.filterwarnings('always') 
    scriptStart = time.time() 
     
    for dataset in range(5): 
        if dataset == 0: 
            datasetName = 'KDD Cup 1999' 
        if dataset == 1: 
            datasetName = 'NSL-KDD' 
        if dataset == 2: 
            datasetName = 'UNSW-NB15' 
        if dataset == 3: 
            datasetName = 'CICIDS 2017' 
        if dataset == 4: 
           datasetName = 'CIDDS-001' 
     
        #LOAD ZEEK CONN LOG AND PREDICT 
        predictionset = loadZeekLogs(datasetName) 
        transformPrediction(predictionset, datasetName) 
         
    scriptFinish = time.time() 
    elapsedTime = scriptFinish-scriptStart 
     
    subject = hostname + ' - Script Completed' 
    message = 'Elapsed runtime: %s' %elapsedTime 
    sendEmail(subject, message) 
 
if __name__ == '__main__': 
    main() 
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APPENDIX C: LIST OF ZEEK CONNECTION LOG FIELDS 

AND DATASET FEATURES 

• Zeek Connection Log - ts, uid, id, proto, service, duration, orig_bytes, resp_bytes, 

conn_state, local_orig, local_resp, missed_bytes, history, orig_pkts, orig_ip_bytes, 

resp_pkts, resp_ip_bytes, tunnel_parents, orig_l2_addr, resp_l2_addr, vlan, 

inner_vlan, speculative_service 

• KDD 99 Dataset - duration, protocol_type, service, flag, src_bytes, dst_bytes, land, 

wrong_fragment, urgent, hot, num_failed_logins, logged_in, num_compromised, 

root_shell, su_attempted, num_root, num_file_creations, num_shells, 

num_access_files, num_outbound_cmds, is_host_login, is_guest_login, count, 

srv_count, serror_rate, srv_serror_rate, rerror_rate, srv_rerror_rate, same_srv_rate, 

diff_srv_rate, srv_diff_host_rate, dst_host_count, dst_host_srv_count, 

dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_same_src_port_rate, 

dst_host_srv_diff_host_rate, dst_host_serror_rate, dst_host_srv_serror_rate, 

dst_host_rerror_rate, dst_host_srv_rerror_rate 

• NSL-KDD Dataset - duration, protocol_type, service, flag, src_bytes, dst_bytes, land, 

wrong_fragment, urgent, hot, num_failed_logins, logged_in, num_compromised, 

root_shell, su_attempted, num_root, num_file_creations, num_shells, 

num_access_files, num_outbound_cmds, is_host_login, is_guest_login, count, 

srv_count, serror_rate, srv_serror_rate, rerror_rate, srv_rerror_rate, same_srv_rate, 

diff_srv_rate, srv_diff_host_rate, dst_host_count, dst_host_srv_count, 

dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_same_src_port_rate, 

dst_host_srv_diff_host_rate, dst_host_serror_rate, dst_host_srv_serror_rate, 

dst_host_rerror_rate, dst_host_srv_rerror_rate, 

• UNSW-NB15 Dataset - srcip, sport, dstip, dsport, proto, state, dur, sbytes, dbytes, sttl, 

dttl, sloss, dloss, service, Sload, Dload, Spkts, Dpkts, swin, dwin, stcpb, dtcpb, 

smeansz, dmeansz, trans_depth, res_bdy_len, Sjit, Djit, Stime, Ltime, Sintpkt, 

Dintpkt, tcprtt, synack, ackdat, is_sm_ips_ports, ct_state_ttl, ct_flw_http_mthd, 
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is_ftp_login, ct_ftp_cmd, ct_srv_src, ct_srv_dst, ct_dst_ltm, ct_src_ ltm, 

ct_src_dport_ltm, ct_dst_sport_ltm, ct_dst_src_ltm, attack_cat, Label 

• CICIDS 2017 Dataset - DestinationPort, FlowDuration, TotalFwdPackets, 

TotalBackwardPackets, TotalLengthofFwdPackets, TotalLengthofBwdPackets, 

FwdPacketLengthMax, FwdPacketLengthMin, FwdPacketLengthMean, 

FwdPacketLengthStd, BwdPacketLengthMax, BwdPacketLengthMin, 

BwdPacketLengthMean, BwdPacketLengthStd, FlowBytes/s, FlowPackets/s, 

FlowIATMean, FlowIATStd, FlowIATMax, FlowIATMin, FwdIATTotal, 

FwdIATMean, FwdIATStd, FwdIATMax, FwdIATMin, BwdIATTotal, 

BwdIATMean, BwdIATStd, BwdIATMax, BwdIATMin, FwdPSHFlags, 

BwdPSHFlags, FwdURGFlags, BwdURGFlags, FwdHeaderLength, 

BwdHeaderLength, FwdPackets/s, BwdPackets/s, MinPacketLength, 

MaxPacketLength, PacketLengthMean, PacketLengthStd, PacketLengthVariance, 

FINFlagCount, SYNFlagCount, RSTFlagCount, PSHFlagCount, ACKFlagCount, 

URGFlagCount, CWEFlagCount, ECEFlagCount, Down/UpRatio, 

AveragePacketSize, AvgFwdSegmentSize, AvgBwdSegmentSize, FwdHeaderLength, 

FwdAvgBytes/Bulk, FwdAvgPackets/Bulk, FwdAvgBulkRate, BwdAvgBytes/Bulk, 

BwdAvgPackets/Bulk, BwdAvgBulkRate, SubflowFwdPackets, SubflowFwdBytes, 

SubflowBwdPackets, SubflowBwdBytes, Init_Win_bytes_forward, 

Init_Win_bytes_backward, act_data_pkt_fwd, min_seg_size_forward, ActiveMean, 

ActiveStd, ActiveMax, ActiveMin, IdleMean, IdleStd, IdleMax, IdleMin, Label, 

• CIDDS-001 Dataset - Date first seen, Duration, Proto, Src IP Addr, Src Pt, Dst IP 

Addr, Dst Pt, Packets, Bytes, Flows, Flags, Tos, class, attackType, attackID, 

attackDescription 
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