
Dakota State University Dakota State University

Beadle Scholar Beadle Scholar

Masters Theses & Doctoral Dissertations

Spring 5-2021

Analysis of Theoretical and Applied Machine Learning Models for Analysis of Theoretical and Applied Machine Learning Models for

Network Intrusion Detection Network Intrusion Detection

Jonah Baron

Follow this and additional works at: https://scholar.dsu.edu/theses

 Part of the Databases and Information Systems Commons, Information Security Commons, OS and

Networks Commons, Other Computer Sciences Commons, Software Engineering Commons, and the

Systems Architecture Commons

https://scholar.dsu.edu/
https://scholar.dsu.edu/theses
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholar.dsu.edu%2Ftheses%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholar.dsu.edu%2Ftheses%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholar.dsu.edu%2Ftheses%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholar.dsu.edu%2Ftheses%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholar.dsu.edu%2Ftheses%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholar.dsu.edu%2Ftheses%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholar.dsu.edu%2Ftheses%2F359&utm_medium=PDF&utm_campaign=PDFCoverPages

ANALYSIS OF THEORETICAL AND APPLIED

MACHINE LEARNING MODELS FOR NETWORK

INTRUSION DETECTION

A dissertation submitted to Dakota State University in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Cyber Operations

May 2021

By

Jonah Baron

Dissertation Committee:

Dr. Kyle Cronin, PhD

Dr. Austin O’Brien, PhD

Dr. Christopher Olson, PhD

 ii

DISSERTATION APPROVAL FORM

This dissertation is approved as a credible and independent investigation by a

candidate for the Doctor of Science in Cyber Security degree and is acceptable for meeting

the dissertation requirements for this degree. Acceptance of this dissertation does not imply

that the conclusions reached by the candidate are necessarily the conclusions of the major

department or university.

Student Name: Jonah Baron

Dissertation Title: Analysis of Theoretical and Applied Machine Learning Models for

Network Intrusion Detection

Dissertation Chair/Co-Chair: Dr. Kyle Cronin Date:

Dissertation Chair/Co-Chair: Date:

Committee member: Dr. Austin O’Brien Date:

Committee member: Dr. Christopher Olson Date:

Committee member: Date:

Committee member: Date:

 iii

ACKNOWLEDGMENTS

The completion of this Ph.D. program and dissertation would not have been possible

with the support of those around me. I will be forever grateful for the generous support I

received from all my family, friends, and other associates during this long journey. There

have been numerous people around me who have heard me express my excitement and

frustration towards completing this degree. I cannot list everyone here, but I can note the most

influential advocates that sincerely helped me throughout this process. First, I want to thank

my parents, James Baron and Marlene Baron, who have been my biggest supporters ever

since my initial application and continued all the way through the completion of this

dissertation. Next, I want to thank my previous RIT professors, Dr. Sumita Mishra and Dr. Bo

Yuan, for their continued interest in my research and wellbeing throughout this program. I

also want to thank my workplace supervisor, Andrew Guyan, who was the largest workplace

advocate for my completion of this degree. Several friends were also unbelievably helpful and

supportive throughout this program, especially those from RIT. Specifically, I want to note

Jared Stroud, as he was one of the first to discuss the idea of seriously pursuing a Ph.D., even

while we were still undergraduate students together at RIT. Additionally, I want to thank the

friends I gained while attending my first DSU residency. I specifically want to thank Rick

Matthews and TJ Nelson, who provided a fantastic support group as fellow classmates in the

program. Next, I want to thank the excellent DSU faculty. Dr. Wayne Pauli is a spectacular

guide and resource to all of those enrolled in this program and has genuinely made this

process more manageable. I am also incredibly thankful for my first two committee members,

Dr. Kyle Cronin and Dr. Austin O’Brien, who were unbelievably supportive of me and my

research topic despite my initial lack of background knowledge on particular concepts of this

study. Additionally, I want to thank Dr. Chris Olson, who joined my committee after my

proposal and had since provided valuable feedback for my dissertation. Lastly, I want to thank

my dog, Nyx, who has silently been there with me during all the ups and downs; he has truly

been my greatest comfort throughout this whole journey.

 iv

ABSTRACT

Network Intrusion Detection System (IDS) devices play a crucial role in the realm of

network security. These systems generate alerts for security analysts by performing signature-

based and anomaly-based detection on malicious network traffic. However, there are several

challenges when configuring and fine-tuning these IDS devices for high accuracy and

precision. Machine learning utilizes a variety of algorithms and unique dataset input to

generate models for effective classification. These machine learning techniques can be

applied to IDS devices to classify and filter anomalous network traffic. This combination of

machine learning and network security provides improved automated network defense by

developing highly-optimized IDS models that utilize unique algorithms for enhanced

intrusion detection. Machine learning models can be trained using a combination of machine

learning algorithms, network intrusion datasets, and optimization techniques. This study

sought to identify which variation of these parameters yielded the best-performing network

intrusion detection models, measured by their accuracy, precision, recall, and F1 score

metrics. Additionally, this research aimed to validate theoretical models’ metrics by applying

them in a real-world environment to see if they perform as expected. This research utilized a

quantitative experimental study design to organize a two-phase approach to train and test a

series of machine learning models for network intrusion detection by utilizing Python

scripting, the scikit-learn library, and Zeek IDS software. The first phase involved optimizing

and training 105 machine learning models by testing a combination of seven machine learning

algorithms, five network intrusion datasets, and three optimization methods. These 105

models were then fed into the second phase, where the models were applied in a machine

learning IDS pipeline to observe how the models performed in an implemented environment.

The results of this study identify which algorithms, datasets, and optimization methods

generate the best-performing models for network intrusion detection. This research also

showcases the need to utilize various algorithms and datasets since no individual algorithm or

dataset consistently achieved high metric scores independent of other training variables.

Additionally, this research also indicates that optimization during model development is

highly recommended; however, there may not be a need to test for multiple optimization

methods since they did not typically impact the yielded models’ overall categorization of

 v

success or failure. Lastly, this study’s results strongly indicate that theoretical machine

learning models will most likely perform significantly worse when applied in an implemented

IDS ML pipeline environment. This study can be utilized by other industry professionals and

research academics in the fields of information security and machine learning to generate

better highly-optimized models for their work environments or experimental research.

 vi

DECLARATION

I hereby certify that this dissertation constitutes my own product, that where the

language of others is set forth, quotation marks so indicate, and that appropriate credit is given

where I have used the language, ideas, expressions or writings of another.

I declare that the dissertation describes original work that has not previously been

presented for the award of any other degree of any institution.

Signed,

Jonah Baron

 vii

TABLE OF CONTENTS

DISSERTATION APPROVAL FORM ..II

ACKNOWLEDGMENTS .. III

ABSTRACT .. IV

DECLARATION .. VI

TABLE OF CONTENTS .. VII

LIST OF TABLES .. X

LIST OF FIGURES ... XII

INTRODUCTION ... 1

BACKGROUND OF THE PROBLEM ... 1

STATEMENT OF THE PROBLEM ... 9

OBJECTIVES OF THE PROJECT .. 10

NATURE OF THE STUDY ... 11

TERMS AND DEFINITIONS .. 15

LITERATURE REVIEW ... 18

NETWORK INTRUSION DETECTION DATASETS ... 18

MACHINE LEARNING RESEARCH SURVEYS .. 25

MACHINE LEARNING RESEARCH EXPERIMENTS .. 32

QUANTITATIVE RESEARCH METHODOLOGY ... 39

PURPOSE STATEMENT .. 39

RESEARCH QUESTIONS AND HYPOTHESES ... 40

Research Question 1 .. 40

Hypothesis 1 ... 40

Research Question 2 .. 40

Hypothesis 2 ... 41

Research Question 3 .. 41

Hypothesis 3 ... 41

Research Question 4 .. 41

Hypothesis 4 ... 41

QUANTITATIVE METHOD – EXPERIMENTAL STUDY DESIGN .. 41

Design .. 41

 viii

Instruments and Tools .. 50

Procedures ... 51

Data Analysis and Interpretation of Results .. 53

Limitations and Challenges .. 55

PYTHON SCRIPTS – COMMENTARY WALKTHROUGH ... 55

Phase One – Python Script .. 56

Phase Two – Python Script .. 57

MAJOR DEVELOPMENT DECISIONS .. 58

Consistent Experimentation ... 58

Data Transformation Process .. 59

Model Optimization .. 61

Overfitting and Underfitting Avoidance ... 62

Prediction Dataset Selection and Development ... 64

RESULTS AND DISCUSSION .. 66

PHASE ONE – RESULTS .. 66

Phase One – Parameter Optimization ... 68

Phase One – KDD 99 Dataset Results ... 73

Phase One – NSL-KDD Dataset Results .. 74

Phase One – UNSW-NB15 Dataset Results ... 75

Phase One – CICIDS 2017 Dataset Results ... 76

Phase One – CIDDS-001 Dataset Results ... 77

PHASE ONE – DISCUSSION ... 78

Parameter Optimization ... 78

Model Production .. 78

PHASE TWO – RESULTS ... 81

Phase Two – CICIDS 2017 – True Values ... 81

Phase Two – Trained Models’ Predictions on CICIDS 2017 Raw Traffic 82

PHASE TWO – DISCUSSION .. 87

Predictions ... 87

CONCLUSIONS .. 89

MAJOR FINDINGS REVIEW ... 89

Phase One .. 89

Phase Two .. 90

RESEARCH QUESTIONS AND HYPOTHESES REVIEW ... 91

Research Question 1 .. 91

Hypothesis 1 ... 91

 ix

Research Question and Hypothesis 1 Analysis .. 92

All Trained Models – Grouped by Dataset .. 93

Research Question 2 .. 99

Hypothesis 2 ... 99

Research Question and Hypothesis 2 Analysis .. 99

All Trained Models – Grouped by Algorithm ... 100

Research Question 3 .. 104

Hypothesis 3 ... 104

Research Question and Hypothesis 3 Analysis .. 104

All Trained Models – Grouped by Optimization Method ... 105

Research Question 4 .. 108

Hypothesis 4 ... 108

Research Question and Hypothesis 4 Analysis .. 108

Successfully Applied Models .. 109

PROPOSED RESEARCH REVIEW .. 109

Successful Proposal Research Tasks.. 109

Failed or Altered Proposal Research Tasks... 110

CONCLUSIONS ... 112

Suggested Alterations ... 112

Recommendations for Enterprise Networks ... 114

Future Work ... 115

REFERENCES .. 116

APPENDIX A: PHASE ONE PYTHON SCRIPT .. 119

APPENDIX B: PHASE TWO PYTHON SCRIPT ... 131

APPENDIX C: LIST OF ZEEK CONNECTION LOG FIELDS AND DATASET FEATURES 135

 x

LIST OF TABLES

Table 1: Dataset Comparison – General Information and Nature of the Data 49

Table 2: Dataset Comparison – Data Volume, Recording Environment, and Evaluation

 .. 49

Table 3: Mapped Features – Dataset Features to Zeek Connection Log Fields........... 59

Table 4: Phase One – KDD 99 Models – Parameter Optimization.............................. 68

Table 5: Phase One – NSL-KDD Models – Parameter Optimization 69

Table 6: Phase One – UNSW-NB15 Models – Parameter Optimization 70

Table 7: Phase One – CICIDS 2017 Models – Parameter Optimization 71

Table 8: Phase One – CIDDS-001 Models – Parameter Optimization 72

Table 9: Phase One – KDD 99 Models – Accuracy Optimization 73

Table 10: Phase One – KDD 99 Models – Precision Optimization 73

Table 11: Phase One – KDD 99 Models – F1 Score Optimization 73

Table 12: Phase One – NSL-KDD Models – Accuracy Optimization 74

Table 13: Phase One – NSL-KDD Models – Precision Optimization 74

Table 14: Phase One – NSL-KDD Models – F1 Score Optimization.......................... 74

Table 15: Phase One – UNSW-NB15 Models – Accuracy Optimization 75

Table 16: Phase One – UNSW-NB15 Models – Precision Optimization 75

Table 17: Phase One – UNSW-NB15 Models – F1 Score Optimization 75

Table 18: Phase One – CICIDS 2017 Models – Accuracy Optimization 76

Table 19: Phase One – CICIDS 2017 Models – Precision Optimization 76

Table 20: Phase One – CICIDS 2017 Models – F1 Score Optimization 76

Table 21: Phase One – CIDDS-001 Models – Accuracy Optimization 77

Table 22: Phase One – CIDDS-001 Models – Precision Optimization 77

Table 23: Phase One – CIDDS-001 Models – F1 Score Optimization 77

Table 24: Phase Two – CICIDS 2017 – True Values .. 81

Table 25: Phase Two – KDD 99 Models – Predictions on CICIDS 2017 Raw Traffic82

Table 26: Phase Two – NSL-KDD Models – Predictions on CICIDS 2017 Raw Traffic

 .. 83

 xi

Table 27: Phase Two – UNSW-NB15 Models – Predictions on CICIDS 2017 Raw

Traffic ... 84

Table 28: Phase Two – CICIDS 2017 Models – Predictions on CICIDS 2017 Raw

Traffic ... 85

Table 29: Phase Two – CIDDS-001 Models – Predictions on CICIDS 2017 Raw

Traffic ... 86

Table 30: KDD 99 Models ... 93

Table 31: KDD-NSL Models ... 94

Table 32: NSL-KDD Models ... 95

Table 33: UNSW-NB15 Models .. 96

Table 34: CICIDS 2017 Models .. 97

Table 35: CICIDS-001 Models .. 98

Table 36: Naïve Bayes Models .. 100

Table 37: Decision Tree Models .. 100

Table 38: Random Forest Models .. 101

Table 39: Ada Boost Models.. 101

Table 40: Bagging Classifier Models ... 102

Table 41: Logistic Regression Models ... 102

Table 42: Stochastic Gradient Descent Models ... 103

Table 43: Accuracy Models ... 105

Table 44: Precision Models .. 106

Table 45: F1 Score Models .. 107

Table 46: Successful Models in Applied IDS Environment 109

 xii

LIST OF FIGURES

Figure 1: Naïve Bayes Algorithm Example ... 42

Figure 2: Classification and Regression Trees Algorithm Example 43

Figure 3: Random Forest Algorithm Example ... 43

Figure 4: Adaptive Boosting Algorithm Example ... 44

Figure 5: Bagging Classifier Algorithm Example ... 45

Figure 6: Logistic Regression Algorithm Example ... 45

Figure 7: Stochastic Gradient Descent Algorithm Example .. 46

Figure 8: Phase One and Phase Two Python Scripts – Flowchart 53

1

CHAPTER 1

INTRODUCTION

This section introduces the topic of this dissertation on machine learning and network

intrusion detection. This study evaluates a series of machine learning models for network

intrusion detection to identify how the combination of machine learning algorithms, network

intrusion detection datasets, and optimization parameters impacts the final models’ outcome

and performance. Additionally, this research created an intrusion detection system (IDS) with

a machine learning (ML) capabilities pipeline such that trained ML models can be applied and

evaluated in a real-world environment. A quantitative experimental study design effectively

organizes the tests for this research and analyzes their results. This section discusses the

background, goals, and significance of this research and briefly introduces how this study was

designed and conducted.

Background of the Problem

Detecting network anomalies and malicious traffic is a significant concern and

challenge for organizations today. Organizations must adequately protect private data from

external threats; however, attackers continue to develop new techniques to bypass standard

security practices and protocols. Organizations may employ security operation center (SOC)

analysts to review network traffic and alerts to track any potential compromise within the

network to address this ongoing threat (Schinagl, Schoon, & Paans, 2015). Typically, SOC

analysts will review network traffic and system logs whenever they identify an anomaly

within the network (Aijaz, Aslam, & Khalid, 2015). Many of these analysts rely on alerts

from different systems to warn them about potential threats or anomalies found on particular

devices. If a SOC analyst believes a system has been legitimately compromised, they will

likely try to correlate events to establish a complete timeline of how a threat actor obtained

initial access, established persistence, and exfiltrated data (Deyang & Dedong, 2011). This

extensive adversary tracking may require the analyst to verify and correlate logs from

2

numerous systems tediously. These analysts may easily miss malicious traffic or related

events while combing through the logs and security alerts between devices, as this process can

be extremely challenging. Experienced threat actors will utilize different tools, techniques,

and procedures (TTPs) to effectively bypass security systems and protection mechanisms.

Several different methods and tools provide obfuscation and evasion capabilities that prevent

detection within networks and devices. Advanced Persistent Threat (APT) groups are highly

technical adversaries that will almost certainly utilize these evasion techniques to effectively

blend into a victim organization’s network traffic to avoid detection over an extended period.

Intrusion Detection System (IDS) devices are security systems that monitor the

network for malicious or anomalous activity and generates alerts based on their configuration.

There are two primary detection techniques utilized by IDS devices, misuse detection and

anomaly detection (Nassar, El-Bahnasawy, Ahmed, Saleeb, & El-Samie, 2019). Misuse

detection, also known as signature-based detection, will flag malicious traffic based on a

vendor’s unique signatures. The biggest problem for misuse detection is maintaining an up-to-

date signature ruleset or database to flag known bad traffic. This type of detection method

struggles to identify unknown, or zero-day, network attacks that have not had signatures

developed. The benefit of misuse detection is that it has a low false alarm rate, meaning that

the alerts are typically very accurate. Anomaly detection will establish a baseline of normal

traffic behavior to identify abnormal traffic behavior based on the normal profile deviation.

Anomaly detection, or behavior-based detection, can strongly generalize traffic, thereby

enabling the capability to flag unknown zero-day attacks. The major challenges for anomaly

detection are the high false alarm rate and inaccuracies. Regardless of either misuse detection

or anomaly detection mode, a fine-tuned IDS should effectively flag malicious and anomalous

traffic while also allowing innocuous traffic to pass through to enable normal business

operations. It should also be noted that open-source IDS software operates by utilizing a

primary detection engine made up of various processes that apply filters to the ingested

network traffic.

An IDS configured for misuse detection will observe traffic and send alerts when

specific network traffic criteria match individual signatures configured on the device. The

rules or signatures on an IDS must be manually set up and regularly maintained by a user who

knows what is considered “bad” traffic and “good” traffic on their network. The challenge for

3

these IDS misuse detection configurations is properly defining and maintaining the rules to

alert on network traffic that may be malicious. Over time, threat actors and their attacks

change as more vulnerabilities and exploits for systems become published; thus, many

signature-based IDS devices will not utilize a relevant or up-to-date ruleset to alert against

new attacks unless analysts regularly review and update the IDS alert ruleset (Sopan,

Berninger, Mulakaluri, & Katakam, 2018).

An IDS configured for anomaly detection will require both setup and tuning. In a two-

phase process, the IDS must be trained to build a normal behavior profile of the network and

then tested to compare the current traffic to the previously generated normal behavior profile

(Anson, 2020). Historically, many IDS devices and software used strict statistical models to

analyze deviations from the normal traffic profile to determine if a piece of traffic is

anomalous. Newer techniques for anomaly detection incorporate artificial intelligence and

machine learning techniques, which will be further discussed later in this paper. An anomaly-

based IDS device aims to flag anomalous traffic while maintaining a low degree of false

positives false negatives. This type of configuration’s primary benefit is the potential to detect

unknown, or zero-day, network attacks before vendors even have published signatures. The

issue is that current anomaly detection techniques employed by most IDS devices do not

utilize ML classification algorithms to categorize pieces of traffic. A poorly tuned anomaly-

based IDS will generate numerous false alarms until a network security analyst decides to

ignore specific alerts due to the low confidence levels in the mismanaged IDS device or

software.

There are numerous ways to set up and configure an IDS on a network. One of the

first decisions that must be made when installing an IDS is where to set up the device on the

network (Bhuyan, Bhattacharyya, & Kalita, 2014). IDS devices can be installed inline on the

network, where live network traffic must pass through the system to reach the next device.

The benefit of an inline setup is live traffic monitoring analysis; a potential challenge with this

setup is traffic disruption due to excessive analysis on the device, thereby resulting in traffic

queues. Alternatively, IDS devices can be setup on a mirror or span port, a dedicated port on a

networking device configured to forward network traffic or logs. The benefit of this

configuration is the lack of potential traffic flow disruption; however, since the network

analysis is not live, threats may reach vulnerable devices on the network by the time the IDS

4

alert goes off. There are also hardware-based and software-based IDS setups. Hardware-based

IDS devices are physical systems that provide dedicated machines and processing power for

traffic analysis. Software-based IDS devices can be installed on a system that enables the

device to perform IDS capabilities in addition to its original function; administrators may

install IDS plugins onto existing networking systems or may stand up dedicated virtualized

devices with IDS software to act as a dedicated virtual IDS device. Lastly, it should be

mentioned that an Intrusion Detection System is closely related and commonly installed

alongside an Intrusion Prevention System (IPS). IDS devices are dedicated systems intended

to alert if specific network traffic patterns are detected on the network; IPS devices can be

used to drop malicious packets or alter security configurations or rules on systems (such as

routers or switches) if a threat is detected on the network. IPS devices can be set up just like

IDS devices but are meant to react to malicious threats on the network rather than just alert

(Johansen, 2020). IPS devices can be potent systems; however, these devices’ primary

concern is the potential disruption of innocuous traffic. IPS devices may identify a “threat”

and close critical ports or restrict communication between segmented networks, thereby

disrupting standard business operations. This automatic network reconfiguration could cost

the organization with the IPS a significant amount of money and reputation due to downtime

of communications between critical systems. It is even more challenging to properly

configure an IPS to identify and react based on a static ruleset due to the potential risk of

business downtime. Many organizations use a well-configured IDS to send alerts to security

analysts, who then manually investigate the alerts to determine if the threat was legitimate.

While there are several different IDS hardware and software solutions, they all contain

a similar syntax for IDS rules. Each IDS rule will have a set of fields configured to perform a

particular action when identifying specific network criteria (Collins, 2014). For example, an

IDS rule will contain specific fields to filter network packets such as a source IP, destination

IP, direction of traffic, source port, destination port, and protocol. These rules can become

even more granular by filtering packets based on fields unique to the protocol of the traffic or

even other layers in the Open Systems Interconnection (OSI) model. In addition to these filter

criteria, IDS rules will also be configured with specific rule actions (such as an alert or log if

the criteria are identified in a packet), rule numbers, rule priority, rule revision, and rule

classification. IDS rules can be highly specialized or extremely broad; it is up to the analyst to

5

finetune the IDS to properly configure these rules to alert on legitimate threats to the network

correctly, or else the IDS will alert on innocuous traffic.

IDS devices can be highly effective security systems that alert on threats within a

network. However, it can be an arduous and tedious process to keep the IDS ruleset updated

regularly. When initially setting up an IDS, it may take weeks or sometimes months to train

an IDS to create a proper baseline for the system to identify “normal” traffic (Bejtlich, 2013).

However, even after the initial baseline training, security analysts will need to continuously

review the network to identify typical traffic and then manually update the IDS rules to match

what they find. A misconfigured IDS ruleset can result in an overly sensitive IDS that

generates excessive alerts (incorporating both true positives and false positives); similarly, a

misconfigured IDS can also be configured with a loose ruleset that will not alert on legitimate

malicious traffic (involving false negatives and true negatives). It can take several months for

a security analyst to set up and adequately fine-tune an IDS, and even after it has been

configured, someone will still need to monitor the network traffic to generate up-to-date IDS

configurations continuously. In an ideal world, there would be a way to automate this process

of analyzing the network traffic to determine what is considered “normal” traffic and then

generate an effective IDS ruleset that alerts anomalous and malicious traffic while

maintaining a high level of true positive and true negative alerting.

Machine learning (ML) may provide a solution to this ongoing effort to detect new

malicious traffic. Machine learning uses algorithms and statistical models to analyze or learn

from training data to make decisions or predictions observed in other ingested datasets. There

are several different ML algorithm types along with numerous optimization techniques to best

train the ML model. ML algorithms can be categorized in different ways. There are

unsupervised learning, supervised learning, and semi-supervised learning techniques (Maseer,

Yusof, Bahaman, Mostafa, & Foozy, 2021). Unsupervised learning occurs when an algorithm

is given an unlabeled dataset and will attempt to identify patterns or structures within the data.

Human experts will label a portion of the semi-supervised learning dataset to assist the

algorithm in identifying patterns better. If a dataset is completely labeled, then this can be

used for supervised learning algorithms to identify a function or model that explains the data.

Additionally, ML algorithms can be grouped between shallow learning methods and deep

learning methods, which will be discussed later. These numerous ML learning techniques and

6

classification models will be further discussed in the Literature Review section. With the

adequately selected ML algorithm and training dataset, a machine learning IDS device can be

configured to automate the process of detecting anomalous network traffic through the use of

misuse or anomaly detection. This type of IDS with ML capabilities will potentially automate

detecting emerging threats and zero-day attacks utilized by attackers before the signatures are

published by vendors. However, there are several challenges with the proposed IDS devices

with ML capabilities due to the wide variety of possible ML algorithms and network intrusion

detection datasets’ quality. These variables will need to be tested and evaluated to identify the

best and most effective IDS ML configuration that produces the highest true positive

detection rate while keeping false positive alerts at a minimum.

Datasets are required to train and test ML algorithms. In the network intrusion

detection realm, the datasets can consist of three primary types of data that make up the

network traffic dataset (Ring, Wunderlich, Scheuring, Landes, & Hotho, 2019). First is

packet-based data; this is commonly obtained in a standard packet capture format and

contains full packet headers, fields, payloads, and associated metadata. The second is flow-

based data; this is a more condensed format which stripes out unique packet properties and

primarily maintains packet metadata. This type of data aggregates packets that share specific

properties within a given time window into a single flow and does not contain payload

information. Lastly, there is a hybrid category of network data; this data contains a mixture of

both packet-based and flow-based data. An example of this hybrid traffic would be flow-

based data that has been enriched to contain specific packet-based fields such as payloads and

unique header information. Additional details and examples of these types of datasets will

appear in the literature review of this paper.

Several evaluation metrics can be applied to machine learning algorithm results that

enable researchers to compare and contrast the models’ results. Before getting into these

unique metrics, the four base metrics used to classify sets of labeled data are true positive

(TP), true negative (TN), false positive (FP) or a statistical type I error, and false negative

(FN) or a statistical type II error (Vinayakumar et al., 2019). True positive data are correctly

labeled positive results; true negative data are correctly labeled false results; false-positive

data are incorrectly labeled positive results; false-negative data are incorrectly labeled

negative results. Machine learning researchers commonly utilize the following evaluation

7

metrics to compare the effectiveness of ML classification models: accuracy or proportion

correct [(TP + TN) / (TP + TN + FP + FN)], positive predictive value [TP / (TP + FP)],

sensitivity or recall or true positive rate or probability of detection or detection rate [TP / (TP

+ FN)], negative predictive value [TN / (TN + FN)], specificity or TN rate [TN / (TN + FP)],

and false alarm rate or false positive rate or fall-out [FP / (TN + FP)] (Chiba, 2019). These

terms and metrics will appear across several papers in the Literature Review section and will

be utilized to analyze this study’s results.

Deep learning (DL) is a subset of machine learning that analyses successive and

meaningful layers of representations from the original data input. The “deep” in deep learning

refers to the layers, or depth, of the modeled data. Modern deep learning models may

incorporate hundreds or even thousands of layers, whereas other learning models (such as

typical machine learning models) may only utilize one or two layers, which is sometimes

called shallow learning (Thapa, Liu, Kc, Gokaraju, & Roy, 2020). These layered

representations of data are typically referred to as a neural network (NN). Each layer in the

NN represents the original input data in an increasingly altered and informative perspective.

Applied weights, also referred to as parameters, modify the data representations at each NN

layer to slightly transform the data (Akashdeep, Manzoor, & Kumar, 2017). There can be

millions of parameters at each layer, and learning, in this context, actually means finding the

desired values for the weights applied in the NN. Next, after all the layers have transformed

the original data and produced a final result, a loss function, or objective function, is used to

take the output of the NN along with the true target value (the desired outcome) to calculate

the distance score, or loss score, to see how far off the NN was from the true target value.

Once this distance score has been calculated, a feedback signal, called an optimizer, is used to

implement a backpropagation algorithm to adjust the NN weights and hopefully lower the loss

score. This process will repeat several times; the weights are initially random values, but each

iteration of the NN will modify the parameter values and minimize the loss value. This

training loop process repeats a sufficient number of times until NN yields a minimal loss

value.

Data processing and optimization are additional significant factors when training

machine learning models. There are numerous data transformation steps required to properly

format the data such that it can be appropriately ingested while training an ML model (Buczak

8

& Guven, 2016). Additionally, each machine learning algorithm contains a series of highly

configurable parameters that can be fine-tuned to optimize the trained model to yield the

highest performance within a particular scoring method. As a result, models can be better

optimized for particular scoring methods, such as accuracy over precision or vice versa. The

optimization of ML models can dramatically change and affect the outcome of trained

models. Optimizing a model for a particular scoring method may yield higher results in that

specific metric; however, it may also severely impact the other evaluation metrics, both

positively and negatively. It is crucial to consider the impact of optimizing a particular scoring

method as it may dramatically affect the performance and other metrics of the model.

Artificial intelligence and machine learning are the future for several professional

fields. The research and integration of these automation techniques into different professions

are occurring now and are only bound to increase as time progresses. Properly trained ML

models will identify anomalies, outliers, patterns, and trends much better than humans. This

type of analysis will save organizations time, human resources, and money. The integration of

ML into IDS network environments is only a small subset and implementation of the whole

topic of ML. However, this research seeks to assist organizations that utilize IDS devices on

their network. This research reviews different ML classification models using a series of

network intrusion datasets to identify which ML algorithms most effectively identify network

traffic anomalous activity. Additionally, this research develops a proof of concept of an IDS

and Python scripting pipeline that applies the previously trained ML models to unseen

network traffic for evaluation. The machine learning models selected for this research will

include Naïve Bayes (NB), Decision Tree (DT), Random Forest (RT), Ada Boost (AB),

Bagging Classifier (BC), Logistic Regression (LR), and Stochastic Gradient Descent (SGD).

The datasets used to train and test each of these ML algorithms will include the KDD 99,

NSL-KDD, UNSW-NB 15, CICIDS 2017, and CIDDS-001 network traffic datasets.

Additionally, each model will be optimized for the following scoring methods: accuracy,

precision, and F1 score. These ML algorithms, network datasets, and scoring methods will be

further discussed later. Organizations can use this study’s results to implement highly

effective IDS pipelines by utilizing basic scripting with ML capabilities along with standard

IDS logging to enable strong automated network defenses against various threat actors and

attacks.

9

Statement of the Problem

The problems addressed by this study are the inefficiencies of current IDS

configurations (Sopan et al., 2018). One of the biggest challenges for managing an IDS is

investigating false positive alerts. With a properly configured IDS, every alert from the

system should be thoroughly investigated by an analyst. When there is a false positive alert,

this causes an organization to waste valuable time and money on analysts investigating an

innocuous event; additionally, there is also a huge opportunity cost to this alert because it also

delays time-sensitive investigations on true positive alerts. IDS devices can be extremely

challenging to set up and maintain. When an IDS is configured for misuse detection, it can be

difficult for analysts to maintain an up-to-date database of signatures. Security analysts will

still need to monitor the network and manually enter IDS rules to refine further the

configurations to match any network changes. Additionally, when an IDS is configured for

anomaly detection, creating a baseline profile of regular traffic can take an excessive amount

of time. The typical anomaly detection engine only applies fundamental statistical analysis to

the data to identify deviations from the normal traffic profile. Even after tuning the IDS for

misuse detection or anomaly detection, security analysts will need to ensure that the IDS

ruleset is not too strict or too loose as either option will result in over-alerting or under-

alerting. Machine learning provides a solution to these IDS challenges as it can automate the

process of training, configuring, and maintaining an IDS device with a high level of

confidence for identifying anomalous traffic (Dangi et al., 2020).

An organization should better identify malicious network attacks by utilizing an

intelligent IDS with ML capabilities. An IDS with ML capabilities will still generate alerts for

security analysts to review. However, this system will correlate and identify minute anomalies

found in the network traffic at a much more in-depth level than any individual. This

implementation of ML techniques for IDS devices should maintain a high degree of

confidence for detecting legitimate threats or anomalies within the network. Additionally,

machine learning models for network intrusion detection observed in the literature have not

been adequately trained and tested against multiple datasets in a standardized and repeatable

test environment. Evaluating the machine learning models and datasets in these controlled

10

experimental settings is extremely important to determine the most effective way to detect

malicious traffic. This research has the potential to impact any organization that utilizes IDS

devices to secure its networks. This study’s results can be used by organizations to identify

which ML classification models are the most effective at intrusion detection and then

implement an IDS device with ML capabilities to create a highly efficient detection engine.

This implementation within organizations will enable higher levels of anomaly and malware

detection across the network while requiring significantly less workforce to maintain the IDS

and investigate alerts. Additionally, this study’s results could affect the future development

and implementation of IDS devices or software worldwide. Developing a machine learning,

or intelligent, IDS that applies ML classification techniques for network intrusions will

significantly improve IDS alerts’ reliability and reduce the human resources necessary to

maintain proper IDS devices and rulesets within organizations. Over time and with proper

refinement, these types of intelligent IDS ML pipelines could potentially flag zero-day attacks

before vendors even publish signatures.

Objectives of the Project

This research compares multiple machine learning algorithms against a series of

datasets associated with network intrusion detection and different optimization methods to

determine which classification models are the most effective for detecting network attacks. In

addition to this goal, this research also created an IDS pipeline to apply the machine learning

techniques for intrusion detection on unseen network traffic. The first phase of this research

involved training multiple ML models by utilizing a series of machine learning algorithms,

multiple training datasets, and different optimization methods to evaluate each models’

different properties. The datasets used in this research are taken from multiple organizations

that have produced popular datasets and are used for academic papers and research within the

machine learning and network security communities. A common trend later seen in the

literature review of ML intrusion detection techniques is a lack of consistent experimentation

and critical analysis due to the researchers’ selection of ML models and the datasets. It is later

observed in the literature review that several researchers implement their custom ML

algorithm and training dataset to highlight their own techniques’ effectiveness. Using multiple

11

datasets across a series of controlled and repeatable experiments that evaluate ML algorithms

and intrusion detection datasets provides a fair comparison to determine which IDS ML

implementation is the most effective.

This study includes each experiments’ results and analysis, which evaluate each ML

model’s selected metrics. Each experiment for the first phase involved developing a series of

ML models that combine different ML classification algorithms, networking datasets, and

scoring techniques. The results of these tests were collected and analyzed to identify the

strengths and weaknesses of each ML model. Additionally, this research investigated the

feasibility of applying trained ML models on unseen network traffic and flagging malicious

traffic. The research deliverables include an in-depth analysis comparing and contrasting the

ML models and results and applying them to new traffic. Several evaluation metrics are

discussed in the literature review. However, this research primarily focuses on accuracy,

precision, recall, and F1 score as evaluation metrics. This research aims to create a better

anomaly detection IDS that utilizes machine learning over statistical analysis. Additionally,

this study identifies which combination of ML classification algorithms, IDS training datasets,

and different optimization methods generate the highest performing ML models based on the

selected evaluation metrics. This research also showcases the need to utilize various

algorithms, datasets, and optimization methods during ML model development. Another goal

of this study was to validate the ML models from other researchers, as seen throughout the

literature review. Lastly, a major goal of this study was to test the theoretical ML models in an

applied environment to validate their theoretical accuracy for identifying malicious content on

previously unseen network traffic.

Nature of the Study

This research study compared multiple ML models to determine which combination

most effectively identifies anomalous or malicious network behavior to be implemented into

an applied IDS environment with ML augmentation. The ML algorithm experiments consist

of training an ML classification algorithm against a series of network intrusion detection

datasets and scoring methods. The ML classification algorithms selected for this research

include Naïve Bayes (NB), Decision Tree (DT), Random Forest (RF), Ada Boost (AB),

12

Bagging Classifier (BC), Logistic Regression (LR), and Stochastic Gradient Descent (SGD).

Additionally, the datasets selected to train and test each of these ML models include the KDD

99, NSL-KDD, UNSW-NB 15, CICIDS 2017, and CIDDS-001 datasets. Lastly, the

optimization methods used for each of these models include accuracy, precision, and F1

score. These ML models, IDS datasets, and scoring techniques were selected based on the

research experiments, field surveys, and authors’ recommendations found in the Literature

Review section. These ML experiments were conducted through Python’s scikit-learn library

and utilized the same system resources within a virtual environment ("scikit-learn," 2020). A

significant priority for this research was to maintain consistent testing and resource utilization

between each experiment. This research seeks to achieve reliable and repeatable results where

others can utilize the same ML algorithms, datasets, and scoring techniques to generate the

same models. Once the ML models were generated and analyzed with a set of evaluation

metrics, the next step in this research was to apply the trained models in an IDS pipeline

environment to see if the models’ metrics hold up in an applied network environment filtering

previously unseen traffic. The IDS software selected for this research was Zeek, a popular

open-source IDS software ("zeek," 2020).

This study sought to achieve repeatability and consistency between each ML model

experiment. Additionally, this study strived to identify the most practical and efficient IDS

implementation that utilizes ML techniques for anomaly detection on network traffic. Several

researchers have conducted ML experiments to showcase the efficiency of their proposed

algorithm. Many of these research papers, seen later in the literature review, select a single

dataset, typically the KDD 99 or NSL-KDD dataset, and between one to five popular ML

algorithms to compare their results and highlight their newly proposed ML algorithm. There

have been several issues identified with the KDD 99 and NSL-KDD datasets despite being the

most popular datasets in this field of ML and network intrusion detection (Creech & Jiankun,

2013). The KDD 99 dataset was initially produced in 1999 as part of a data mining

competition and provided the community with an acceptable IDS training dataset. This dataset

is still used today as it provides several essential proofs of concept found in various

networking techniques and applications. However, despite its popularity, researchers have

found that the KDD 99 dataset contains several issues (Haider, 2017). Some of these issues

include redundant records that skew ML algorithms’ training, imbalanced attack categories

13

and distribution, poorly defined attack categories and techniques, old and impractical network

traffic, and nonstandard or hybrid data that consists of flow-based network traffic that has

been manually enriched with payloads. The NSL-KDD dataset was built on the KDD 99

dataset. This updated dataset addressed some of these issues, but some of the core problems

persisted. Certain researchers have strongly encouraged others in this field to utilize multiple

network intrusion datasets, especially ones that have been recently produced, to evaluate ML

classification algorithms effectively (Ring et al., 2019). Over the past few years, numerous

organizations have produced robust datasets intended to be used for ML training and IDS

evaluation. The Canadian Institute for Cybersecurity (CIC), based out of the University of

New Brunswick (UNB) in Fredericton, has produced multiple IDS evaluation datasets

intended to be reliable ML test and validation datasets for academic research. CIC also

created the NSL-KDD dataset, which patched some of the significant issues with the dataset.

Additionally, in Germany, Coburg University has been producing and updating the Coburg

Intrusion Detection Data Sets (CIDDS) repository, which contains multiple ML datasets

designed for network intrusion detection research. The University of South Wales in Australia

produced an intrusion detection dataset in 2015 that was also well accepted by the ML and

network security communities. These datasets are all public and provide a highly needed

update for network intrusion datasets. The KDD 99 and NSL-KDD datasets are still

considered the most popular. However, the datasets produced by these schools and

organizations provide the academic community stronger datasets that contain well-balanced

and adequately distributed network attacks, modern network traffic and attacks, and properly

labeled data. Again, this research utilizes the KDD 99, NSL-KDD, UNSW-NB 15, CICIDS

2017, and CIDDS-001 datasets for consistent analysis between ML models. These datasets

provide an extensive and unique comparison between each tested ML model experiment since

each dataset consists of different data types (packet-based, flow-based, hybrid), network

traffic, and attack techniques. Ideally, this study’s results show other professionals in the ML

and network security communities the need to utilize multiple datasets as a standard best

practice for future ML IDS research and evaluations. There will never be a “perfect” intrusion

detection dataset that will always be the best dataset to train a particular model. Multiple

datasets should be used to compare and identify the ideal dataset for an ML algorithm. This

research finds multiple options to implement an IDS with ML capabilities. This study applies

14

the trained ML models from the previous experiments to see if the same results are observed

in the detection models’ applied implementations. The following section’s Literature Review

reveals that many academic researchers only evaluate ML algorithms using a single dataset,

yielding purely proof of concept or theoretical detection results. Most researchers fail to apply

their ML models in a real-world scenario to validate the results they obtained. This research

sought to validate the theoretical results by implementing an ML IDS and comparing those

results with the previous ML experimental results.

While this research can benefit numerous industry organizations and academia’s

security development, this study also has several significant limitations. The largest limitation

of this research is that, while a primary goal is to maintain consistency between ML datasets,

each organizations’ network will consist of highly unique traffic. These variations of networks

mean that even though the testing and validation phases in this research may yield effective

detection results, that does not necessarily mean this type of IDS with ML capabilities can be

easily implemented into another network with different network traffic and maintain its

results without finetuning and training multiple ML models. Additionally, even if an

organization successfully implements an IDS with ML augmentation like this research,

security analysts will still be required. This type of ML IDS environment benefits from the

high confidence of automated IDS alerts and anomaly detection. This high confidence IDS

configuration means that organizations will not need to hire and maintain as many SOC

analysts. However, some analysts will still be required to investigate the alerts further, update

or modify the ML models, and check the IDS ruleset regularly. In theory, this should require

significantly fewer analysts, thereby saving organizations a substantial amount of manpower

and money on an automated IDS with ML capabilities. It should also be noted that this

research focuses on utilizing only supervised machine learning techniques that require labeled

datasets. That means that all other machine learning methods, including deep learning

techniques, a major field of research, are not incorporated into this particular research. There

are extensive research and funding in the subset field of deep learning; however, this is

excluded from this research due to the intense resource and time requirements to develop and

configure deep learning models properly.

This concludes the Introduction section of this paper, which reviewed the background,

goals, significance, and study implementation. This study evaluates the effectiveness of

15

multiple ML models when trained using various ML algorithms, IDS datasets, and

optimization techniques. Additionally, this study identifies multiple ways to apply trained IDS

ML models. This research performs an in-depth quantitative analysis of ML models’

outcomes and performance across two primary research phases. This study highlights the need

for researchers to utilize multiple algorithms, datasets, and optimization methods during ML

model development. Additionally, this study’s results identify which combination of ML

algorithms, datasets, and scoring methods yields the best evaluation metrics in terms of

accuracy, precision, recall, and F1 score. Academic researchers and industry professionals can

use this research to implement highly effective and autonomous ML IDS environments that

utilize the most effective ML classification models to identify anomalies and threats on their

unique networks. The next section of this paper will provide a literature review for the

existing research conducted in network security and machine learning.

Terms and Definitions

• Intrusion Detection System (IDS) – Device or software that monitors systems for

malicious activities and generates alerts if anomalous traffic is detected

• Intrusion Prevention System (IPS) – Device or software that changes network or host

behavior or security rules if anomalous traffic is identified

• IDS Ruleset – A series of IDS rules that are used for signature detection; each rule

contains a set of filter criteria to alert on certain observed traffic or behaviors

• Misuse detection / Signature-based detection – IDS detection technique that requires

the utilization of an IDS ruleset database to alert based on strict rule criteria; usually

highly accurate, but suffers from successful zero-day attack detection

• Anomaly detection / Behavior-based detection – IDS detection technique that requires

proper baselining of normal network traffic to identify anomalies, typical IDS engines

will utilize statistical standard deviation detection to identify anomalous behavior;

more capable of detecting zero-day attacks but suffers from inaccurate or low

detection

16

• Hybrid detection – utilizes both signature-based and behavior-based detection methods

to provide enhanced detection; both of these methods can be implemented at the same

time on the same IDS

• Flow-based datasets – condensed packets that are grouped based on different header

field information or network protocols; no payloads are included in network flows

• Packet-based datasets – entire IP packets that include full header information and

payloads

• Hybrid/Other NID datasets – enriched network packet capture that contain both flow-

based and packet-based data, typically requires manual alteration of the data

• Machine learning (ML) – algorithms that can perform a task by producing a model

and inferring future data without the need for explicit instructions

• Dataset features – unique properties or attributes belonging to a dataset; these unique

features can be identified and labeled for ML algorithms

• Supervised learning – a type of ML algorithm that ingests fully labeled datasets

• Unsupervised learning – a type of ML algorithm that can ingest unlabeled datasets

• Semi-supervised learning – a type of ML algorithm that ingests partially labeled

datasets

• Shallow learning – typical machine learning algorithms that only utilize a single layer

or round of analysis on ingested data; typically considered supervised learning that

utilizes labeled datasets

• Deep learning – machine learning algorithms that perform a series of transformations

or analysis on ingested data across multiple layers or rounds; typically considered

unsupervised or semi-supervised learning that utilizes unlabeled or partially labeled

datasets

• Training set – a subset of a full dataset used for training the ML models

• Testing set – a subset of a full dataset dedicated for testing and validating the

previously produced ML models

• Type I error = FP

• Type II error = FN

• Accuracy / Portion correct =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

17

• Precision / Positive predictive value =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

• Recall / Sensitivity / True positive rate / Probability of detection / Detection rate =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

• Negative predictive value =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁

• Specificity / TN rate =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

• False alarm rate / False positive rate / Fall-out =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃

• F1 Score = 2 (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
)

18

CHAPTER 2

LITERATURE REVIEW

There have been significant developments in machine learning techniques for network

intrusion detection in recent years. Several researchers worldwide have conducted valuable

experiments and produced exciting papers that perform a critical analysis of their results.

There are several essential literature pieces to review in this research field to understand

modern machine learning capabilities and limitations. This section will review impactful

conference proceedings and articles in the fields of machine learning and network intrusion

detection.

Network Intrusion Detection Datasets

A dataset is required before the selection of any machine learning model. A machine

learning algorithm cannot do anything unless it has multiple datasets to train, validate, and

test the models. Every research paper covered in the upcoming subsection will utilize a

dataset to input into a particular machine learning algorithm. This subsection will cover the

most popular datasets used for training machine learning algorithms focused on network

intrusion detection. Over the years, there have been individual datasets have become more

prominent than others.

The paper titled “A survey of network-based intrusion detection data sets” provides an

extremely comprehensive literature review of 34 datasets used for ML algorithms and

network intrusion detection (Ring et al., 2019). The authors of this paper begin by introducing

network attacks and network intrusion detection systems. They then review a series of other

papers that have analyzed network intrusion detection datasets and highlight the need for a

more thorough review of available datasets. The authors then discuss the type of data that

makes up certain NID datasets. Packet-based data is commonly obtained in a packet capture

format and contains payloads and associated metadata depending on the protocols utilized.

Next, flow-based data is a more condensed format and primarily contains meta-information

19

about network connections. Flow-based data aggregates packets that share certain properties

within a time window into an individual flow and does not contain payload information. The

authors categorize the last set of data as “other data,” which incorporates all datasets that are

neither purely packet-based nor flow-based. An example of these datasets may include flow-

based data enriched with additional information from packet-based data or host-based log

files. The authors state that the well-known KDD CUP 1999 dataset falls under this “other”

data category because each data point contains both network-based attributes as well as

enriched host-based attributes. Next, the authors identify a set of properties to compare and

contrast datasets. Each of the 15 properties can be grouped into one of five categories. The

authors identified the following properties in datasets: general information (year of creation,

public availability, normal user behavior, and attack traffic), nature of data (metadata, format,

and anonymity), data volume (count and duration), recording environment (kind of traffic,

type of network, and complete network), and evaluation (predefined splits, balanced, and

labeled). The researchers describe each of the properties and then display a three-page long

table that displays 34 datasets associated with network intrusion detection and their 15

properties. They also have another large table in the paper that lists the 34 datasets and

information about whether they are labeled and the data format (packet, flow, or other). There

is another table that also lists all the datasets and describes the attacks contained within each.

Lastly, the authors list another figure that shows certain relationships between associated

datasets. After reviewing each dataset’s properties, the authors then move into the bulk of

their paper, which briefly describes each dataset. Next, they review each of the data sources

that may have generated certain datasets and different traffic generator programs that could

have also been used to generate synthetic traffic data in certain datasets. The researchers then

provide a series of observations and recommendations based on their comprehensive

comparative analysis of collected datasets. They state that the perfect dataset does not exist

and probably never will be created. Rather, they suggest researchers utilize multiple datasets

to prevent overfitting with a single particular dataset, reduce the influence of artificial artifacts

within a certain dataset, and evaluate the ML algorithm methods in a more general context.

They also recommend using CICIDS 2017, CIDDS-001, UGR’16, and UNSWNB15 datasets

as they may be suitable for evaluation settings due to their wide variety of attacks and data

formats. They also recommend for researchers to make use of predefined subsets. Many ML

20

and data mining methods often use 10-fold cross-validation, which divides the dataset into ten

equal subsets. One subset is used for testing, and the other nine are used for training; this

procedure is repeated ten times such that every subset has been used once for testing. In an

IDS evaluation dataset, this splitting technique would cause each attack to appear in the

training data set, resulting in an improper generalization of attacks since they should detect

previously unseen threats. This paper’s researchers recommend creating meaningful training

and test splits to facilitate comparisons of different approaches evaluated on the same data set.

The authors also call for a closer collaboration of the security community to create and better

new intrusion detection datasets. The community could benefit from a single generally

accepted platform for sharing intrusion detection datasets without access restrictions. The

authors also state that all the mentioned datasets and repositories mentioned in this paper can

be found on the researchers’ websites and future datasets. Next, the researchers found that

most NIDS require standard input data formats and cannot handle preprocessed (enriched)

data, and it is unclear if datasets from the “other” datatype category can be calculated in real-

time. They recommend the community generating network-based datasets in standard packet-

based or flow-based formats as they can be captured in real network environments. However,

if researchers still produce “other” datatypes, the authors of this paper recommend publishing

both the network-based data in a standard format as well as the scripts for transforming the

dataset to another format. Lastly, the authors call for further anonymization of data within

datasets and the publication of all future datasets so that other parties can utilize and validate

them. This paper was one of the best sources for reviewing datasets associated with network

intrusion detection. The authors conducted an extensive and comprehensive survey of public

and private datasets and presented all 34 datasets in apparent formats for researchers to easily

pick and choose the datasets that will work best for their research.

In his 2000 publication, researcher and author McHugh conducts an extremely in-

depth analysis of the popular 1998 and 1999 DARPA datasets used for network intrusion

detection and identifies a series of flaws associated with them (McHugh, 2000). This

particular publication is the most referenced document by other authors and researchers in this

literature review. At the time, the most comprehensive evaluation of research on intrusion

detection systems was performed by MIT’s Lincoln Laboratory and sponsored by DARPA.

The author claims that while the research conducted contains many flaws, it was only a large-

21

scale attempt at evaluating IDS devices at that time, and it provides a basis for comparing

other systems and datasets. This paper also primarily focuses on the 1998 evaluation and only

briefly discusses the 1999 evaluation. The author then reviews other similar evaluation and

dataset generation attempts conducted by other organizations and researchers. Next, he then

moves into the actual evaluation of the dataset. The background and the attack data within the

dataset were heavily synthesized. This generated data was intended to simulate data for

present and future traffic, and as a result, this may have caused a bias towards unrealistic

expectations for IDS devices. The data generated for the 1998 evaluation consists of two

parts, background data that is supposed to be regular noise traffic and attack data that is

intended to consist purely of attack scenarios. These two individual subsets of data were then

further discussed, and the author reviewed the impracticality of each of these sets of traffic

due to a large amount of synthesized data generation. He also mentions a severe lack of

validation of the experiments and observed traffic for both the background and attack

datasets. Much of the background and attack data were generated from scripts and programs

collected from several sources, and there was no attempt to distribute the synthetic attacks in

the background noise realistically. The simulated background data was supposed to represent

the network traffic found in a typical Air Force Base. However, Lincoln Labs’ information

seems to differ based on the observed hosts within the traffic. The author states that it is

unclear if the actual complexity of the network devices matters. He explains that the burden is

typically on the researchers conducting the experiments to prove that the artificial

environment did not affect the outcome by typically performing a controlled pilot study. The

Lincoln Lab evaluators never conducted this type of controlled validation study. The

experiment evaluators prepared datasets for training and testing. The training set consisted of

seven weeks of data covering 22 hours per day, five days per week. The author then reviews

the taxonomy of the attacks performed in this dataset, including denial of service, remote to

user, user to superuser, and surveillance/probing attacks. Additionally, these attacks were

further characterized by certain mechanisms used, including masquerading, abuse of a feature,

implementation bug, system misconfiguration, and social engineering. The author then

explains that this taxonomy describes the kinds of attacks that can be conducted on systems or

networks, but it is not useful in describing what an IDS might see. This attacker-centric

taxonomy creates a highly unrealistic evaluation bias. The author proposes alternative

22

taxonomies for future researchers where attacks could be classified at the protocol layer. This

type of approach will lead to a better understanding of what one must do to detect attacks on a

network. He also proposes another approach to classify attacks based on whether a completed

protocol handshake is necessary out the attack. This classification technique will separate

attacks into two distinct classes, one that may reveal a spoofed address or something that

requires the attacker to reveal an actual location on the internal network. The author discusses

how the Lincoln Lab evaluators’ attacker-centric taxonomy results in unclear attack scenarios

within the network. For example, a packet that causes a buffer overflow may not necessarily

be an intentional attack. Next, the author discusses the evaluation of the 1998 dataset. He

explains that the dataset consists of raw TCPdump data collected from a sniffer device within

the network. He also explains that this tool’s usage could also be problematic because it can

become overloaded and drop packets; however, this is not a major concern for this evaluation

because of the low data rates within this experiment. The Lincoln Lab team used a scoring

metric referred to as the Receiver Operating Curve or Relative Operating Characteristic

(ROC) method to present their results. The author explains this metric and states that it is

commonly used for measuring signal-to-noise and alarm detection. He also reviews and

critiques a series of other metrics used by the Lincoln Labs team to evaluate their

experiments. The author then briefly reviewed the 1999 evaluation dataset; however, he did

not go into much detail because the preliminary results were just released, and he did not have

time to review the data before this publication. He states that the scoring method for

constructing ROC curves, used for the 1998 and 1999 datasets, is inappropriate due to the

detection process used by many IDS devices. He also states that the scanning/probing

scenarios should not always be associated with attacks nor always labeled as intrusions. The

author concludes this paper by restating that the Lincoln Lab IDS evaluation program was a

major and impressive undertaking, but it still contained several experimental flaws, and the

results remain unclear. He states that several other researchers attribute their success to this

IDS evaluation publication, whereas other researchers believe this evaluation harmed their

research efforts. The 1999 and 1998 evaluations demonstrate that IDS devices, at the time, are

inferior at detecting new attacks. The author and an anonymous review state that DARPA

could have obtained the same results with much less effort and resources than what was

dedicated to this research. DARPA failed to obtain significant IDS results and breakthroughs

23

with this research. However, the author hopes that this critique will lead to a rethinking of the

evaluation process and a recreation of its form to help DARPA reach its future IDS

development goals.

In the year 2000, researchers McHugh, Christie, and Allen publish a paper that

reviews IDS devices in-depth and includes an extensive discussion of why, how, and where

they are utilized in an enterprise organization (McHugh, Christie, & Allen, 2000).

Additionally, the authors discuss the two primary intrusion detection methods consisting of

signature-based and anomaly-based detection techniques. They review each technique’s pros

and cons and discuss how IDS tools can be configured to operate at the network-level or host-

level. After this in-depth discussion of IDS devices, they then discuss organizations’ resources

to set up and configure these systems correctly and their role as part of an overarching

defense-in-depth strategy. The IDS lifecycle includes evaluation and selection, deployment,

operation and use, and maintenance. The authors then review popular IDS tools and review

intrusion detection experiments conducted by different organizations. The authors state that,

at the time, the most comprehensive evaluations of IDS devices were conducted in 1998 and

1999 and performed by MIT’s Lincoln Laboratory. These IDS evaluation experiments were

funded by DARPA and had researchers utilize a packet capture of sniffed network traffic

containing simulated (virtualized) and physical machines that were launching attacks. The

attacks were divided into four categories: denial of service, remote to local, user to root, and

probing/surveillance. In the 1998 evaluation of select IDS devices, the best IDS could only

detect 75% of the attacks and generated multiple false alarms. The 1999 IDS evaluation

produced slightly better results for detection and false alarm rates for the tested devices. The

1998 and 1999 evaluations indicated that IDS devices, at the time, were only moderately

successful at identifying known intrusions or attack patterns and were much less successful at

identifying previously unseen attacks. The authors conclude this paper by stating that new

intrusion detection techniques and systems are being heavily researched, and they anticipate

positive improvements for IDS devices in terms of enhanced detection and false alarm

performance in the future.

In the paper titled “A Detailed Analysis of the KDD CUP 99 Data Set,” the authors

review one of the most popular datasets used for evaluating ML intrusion detection methods

(Tavallaee, Bagheri, Wei, & Ghorbani, 2009). This dataset is the most commonly selected

24

dataset for testing, as seen throughout this literature review. The paper introduces the

KDDCUP’99 dataset and how other researchers have used it to develop and evaluate machine

learning methods to obtain a high detection rate while maintaining a low false alarm rate. The

authors of this paper identify two primary issues with this KDDCUP’99 dataset. The first

problem they identify is that the KDD dataset has many redundant records, which causes

learning algorithms to become biased towards more frequent records during the training

phase. Additionally, the authors identify another issue with the dataset: labeling the KDD

dataset records. They found that even when using straightforward machine learning methods,

there will be a minimum classification rate of 86% for properly labeling records meaning that

the comparison of IDS devices will always be between 86% and 100% when using this

dataset. The authors then propose a solution to the two identified problems. Developing a new

dataset made up of selected records from the KDDCUP’99 dataset; they call this new dataset

NSL-KDD. The authors then review the KDD dataset and discuss the type of content within

the dataset. The KDDCUP’99 dataset contains attacks that fall into the following categories:

Denial of Service (DoS) Attacks, User to Root (U2R) Attacks, Remote to Local (R2L)

Attacks, and Probing Attacks. DoS attacks are when an attacker disrupts or denies system

resources to legitimate users. U2R attacks are a form of privilege escalation where the

attacker starts as a regular user with standard permissions and can exploit a vulnerability to

gain root access on a device. R2L attacks occur when the attacker can send packets to a target

device and exploits the system to gain access. Lastly, probing attacks are a way to gather

information about a network or system. Additionally, the KDD dataset contains three primary

features: basic, traffic, and content features. Basic features incorporate all attributes that can

be extracted from a TCP/IP connection. Traffic features are time-based and are generated

within a certain window timeframe from a specific host or service, and content features are

individual events or unique fields that occur across the network or individual connection. The

authors explain some of the existing issues that remain in both the KDDCUP’99 and

DARPA’98 datasets, both of which are popular datasets for evaluating intrusion detection

techniques. The first issue they identify in the datasets is the amount of synthesized data,

which does not correctly reflect traffic observed in the real networks. The second issue is the

traffic collection tools used to collect these datasets can be overloaded and dropping packets,

and there was no work done to check the possibility of dropped packets. The third issue is the

25

lack of exact definitions for the attacks performed in the network traffic. The authors then

review the two primary issues they want to address with their new dataset: redundant records

and the level of difficulty for classification. The authors provided a solution to these problems

by removing all the redundant records to remove the bias towards frequent records. They also

randomly sample records from each difficulty-level group, such as the selected records are

inversely proportional to the percentage of records in the original KDD dataset. This sampled

selection of records enables the classification rates of machine learning methods to vary in a

broader range and have a more accurate evaluation of learning techniques. This paper

provided the most comprehensive analysis and valuable commentary on the KDDCUP’99

dataset. The KDD’99 and NSL-KDD datasets proposed by these authors will be observed in

several upcoming experiments and research papers.

Machine Learning Research Surveys

The following publications consist of surveys or reviews that compare machine

learning techniques used for network intrusion detection. The authors of these surveys do not

conduct any experiments that produce results, but rather, they extract the results from several

other publications and analyze that data. Some of these surveys are more comprehensive than

others, but they do a great job showcasing the most popular machine learning techniques and

network intrusion detection datasets.

The research paper titled “A Survey of Data Mining and Machine Learning Methods

for Cyber Security Intrusion Detection” provides an extremely in-depth analysis of the

available machine learning models and datasets used for network intrusion detection (Buczak

& Guven, 2016). This comprehensive paper first reviews three main types of detection

analytics used by IDS devices: misuse-based (or signature-based), anomaly-based, and hybrid.

The researchers then introduce machine learning and data mining (DM) and how they relate

to the field of cybersecurity. They also discuss several processes for implementing machine

learning and data mining techniques. They identify certain metrics used to evaluate binary

classification models: accuracy or proportion correct [(TP + TN) / (TP + TN + FP + FN)],

positive predictive value [TP / (TP + FP)], sensitivity or recall or true positive rate or

probability of detection or detection rate [TP / (TP + FN)], negative predictive value [TN /

26

(TN + FN)], specificity or TN rate [TN / (TN + FP)], and FAR or FP rate or fall-out [FP / (TN

+ FP)]. The researchers also identify certain metrics used for multi-classification models:

overall accuracy (exemplars classified correctly, all exemplars), class detection rate

(exemplars from a given class classified correctly, all exemplars from a given class), and class

FAR or class FP rate (exemplars from a given class classified incorrectly, all exemplars not

from a given class). Next, the researchers briefly review the available cybersecurity datasets

used for ML; this includes packet-level data, NetFlow data, and public datasets. Packet-level

data includes the 144 Internet Protocols listed by the Internet Engineering Task Force (IETF)

and incorporates all data across all OSI model layers stored within an individual packet.

NetFlow data was introduced by Cisco and contained compressed and preprocessed data of

actual network packets. The public dataset section mentions the DARPA 1998 and 1999

datasets, KDD 1999 dataset, and NSL-KDD dataset. MIT’s Lincoln Laboratory created the

DARPA 1998 and 1999 sets and contained a mixture of simulated and real network traffic,

systems, and attacks. The DARPA 1998 data were collected for nine weeks, the first seven

weeks assigned as the training set and the last two assigned as the testing set. The DARPA

1999 dataset was collected for five weeks, with the first three weeks assigned as the training

set and the last two assigned as the testing set. The KDD 1999 dataset was created for the

KDD Cup challenge in 1999 and is based on the DARPA 1998 dataset. The KDD 1999

dataset was found to have limitations, including synthesized network and attack data (due to

actual traffic sampling), an unknown number of dropped packets, vague attack definitions,

and a huge amount of redundant records. The NSL-KDD dataset builds off the KDD 1999

dataset and consists of selected records to address some of the issues identified. All three of

these datasets contain four types of attacks as defined by DARPA, denial of service (DoS),

user to root (U2R), remote to local (R2L), and probe or scan attacks. DoS attacks attempt to

deny or disrupt systems or resources, U2R attacks grant privileged access to an attacker, R2L

attacks grant local network access to an attacker, and scan attacks collect information about

the network resources. The next section of the paper reviews ML and DM methods used for

cybersecurity. The authors provide an extensive explanation of how the following methods

operate: artificial neural networks, association rules and fuzzy association rules, Bayesian

network, clustering, decision trees, ensemble learning, evolutionary computation, hidden

Markov models, inductive learning, Naïve Bayes, sequential pattern mining, and support

27

vector machine. Within each of the descriptions for these ML methods, the authors also cite

two to three sources that utilize the technique for misuse, anomaly, and hybrid detection.

Artificial neural networks are composed of interconnected artificial neurons that are capable

of certain computations on their inputs. Each layer passes its output to the next layer.

Additionally, each layer performs a series of intrusions or computations on the input data such

that it is slightly transformed layer to layer. Association rules describe a relationship among

different attributes found among the data. Association rule mining attempts to discover

previously unknown associate rules from the input data. A Bayesian network is a

probabilistic, acyclic graphical model representing the variables and associated relationships

from input data. Clustering is a set of techniques for finding patterns in unlabeled data. This

method is considered unsupervised pattern discovery, where the input data are group together

based on a similarity measure. There are several different approaches and algorithms for

clustering input data, including connectivity models, distribution models, density models, and

graph models. A decision tree is a tree-like structure that has leaves and branches. The leaves

represent classifications, and the branches represent the conjunctions of features that lead to

those classifications. Data input is labeled (classified) by testing its feature (attribute) values

against the decision tree’s nodes. According to this author, the best-known methods for

automatically building decision trees are the ID3 and C4.5 algorithms. Ensemble learning

methods combine the output of multiple weak learner models to form a stronger learner.

There are several ensemble methods to develop and pick a strong learning output. Adaptive

boosting (AdaBoost), bagging (or bootstrap aggregating), and random forests are all ensemble

techniques that choose the best output developed from a series of weaker models.

Evolutionary computation encompasses genetic algorithms, genetic programming, evaluation

strategy, particle swarm optimization, ant colony optimization, and artificial immune systems.

Evolution computation builds models based on systems observed in nature. Genetic

algorithms and genetic programming algorithms are the two most widely used evolutionary

computation methods. These algorithms are based on the principle of survival of the fittest.

They operate on a population of individuals or chromosomes, which are evolved using certain

operators. Markov chains and hidden Markov models are within the same category. A Markov

chain is a set of states interconnected through transition probabilities that determine the

model’s topology. A hidden Markov model is a statistical model where the system is assumed

28

to be a Markov process with unknown parameters, and the goal is to identify the hidden

parameters derived from the observable parameters. Inductive learning starts with specific

observations and measurements, begins detecting patterns and regularities, formulates a

tentative hypothesis to explore, and develops some general conclusions, theories, or models.

Several ML algorithms are inductive, but researchers typically refer to Repeated Incremental

Pruning to Product Error Reduction (RIPPER) and quasi-optimal (AQ) when discussing

inductive learning. Naïve Bayes classifiers are probabilistic classifiers where input features

are assumed to be independent, and the conditional probabilities form the classifier model.

This model assigns classification labels to the input data features. Sequential pattern mining is

a data mining method associated with transactional databases where each transaction has a

temporal ID, a user ID, and an itemset. An itemset is a set of distinct items purchased in a

transaction, and a sequence is an ordered list of itemset values. The length of a sequence is

defined as the number of itemset values within the sequence. Additionally, the time ID

determines the order. A sequence is considered maximal in sequences if it is not contained in

any other sequence. A support vector machine is a classifier based on separating a hyperplane

in the feature space between two classes so that the distance between the hyperplane and the

closest data points of each class is maximized. This technique is based on a minimized

classification risk rather than an optimal classification. After this discussion of ML

techniques, the author then analyzes and charts the collected sources to generate figures that

depict the ML method, listed paper/author, intrusion detection technique (misuse, anomaly, or

hybrid), and the dataset utilized by the researchers. The researchers for this research survey

did a wonderful job identifying the datasets and ML techniques available for network

intrusion detection. This published research is one of the most comprehensive papers that

categorizes and explains ML methods in addition to collecting, categorizing, and charting

numerous other research papers related to ML network intrusion detection.

In their 2018 paper, researchers Shashank and Balachandra collect and analyze various

research publications based on ML intrusion detection techniques (Shashank & Balachandra,

2018). They begin their paper by discussing types of machine learning algorithms and divide

them into supervised learning, unsupervised learning, and semi-supervised learning

techniques. They then discuss the exact ML algorithms selected for the research: Bayesian

network, SVM classifier, K nearest neighbor, Naïve Bayes, fuzzy logic, genetic algorithm,

29

decision tree, random forest, and artificial neural network. They also briefly discuss a set of

optimization techniques used within neural networks, including particle swarm optimization,

backpropagation, and adaptive moment optimizer. The researchers then discuss three primary

intrusion detection datasets: KDD DataCup 1999, GureKDDcup, and NSL-KDD. They also

discuss the metrics they use to measure and evaluate ML techniques, including accuracy,

detection rate, and false alarms. The authors then present a table containing the ML methods,

authors who utilized the specified method in a published paper, the dataset selected, and the

ML method results. This paper’s authors could have conducted an additional analysis

comparing and contrasting the experiments and results between each of the ML methods

taken from author researchers’ published work.

Researchers Liu and Lang conduct a thorough review of modern machine learning and

deep learning models for intrusion detection while discussing their strengths and weaknesses

in their 2019 publication (Liu & Lang, 2019). The authors begin the paper by discussing IDS

devices and their limitations, such as high false alarm rates and inability to detect unknown

attacks. They then explain how machine and deep learning can provide a solution to these

problems. The researchers then develop a clear graphic that displays the components that

make up an IDS. This figure included different detection methods like anomaly detection and

misuse detection and also sources of data such as log-based detection for host-based IDS

devices and packet-based, flow-based, and session-based detection for network-based IDS

devices. The authors discuss the differences between misuse detection and anomaly detection.

They compared the detection performance, detection efficiency, dependence on domain

knowledge, interpretation, and unknown attack detection factors in their comparison.

Additionally, they review the differences between host-based IDS and network-based IDS by

discussing the source of data, deployment, detection efficiency, intrusion traceability, and

limitations. The authors then move on to the bulk of their survey, the machine learning

algorithms used for network intrusion detection. The researchers developed a well-made

graphic that reviews several models they discuss in the paper; this figure divided machine

learning models into two groups, shallow models and deep learning models, and then further

divided that by discussing supervised and unsupervised learning models. The authors create

another chart that reviews the pros and cons of several shallow models used for intrusion

detection; their table compared the algorithm, advantages, disadvantages, and improvement

30

measures. They discussed shallow models, including artificial neural networks, support vector

machine, K nearest neighbor, Naïve Bayes, logistic regression, decision tree, and K-means.

The authors then further discuss each of these algorithms and how they operate. Next, they

compare various deep learning models, also presented in a chart. This figure included the

algorithm, suitable data types, supervised or unsupervised, and functions. The deep learning

models discussed in this section include autoencoder, restricted Boltzmann machine, deep

brief network, deep neural network, convolution neural network, recurrent neural network,

and generative adversarial network. The researchers also identify five major differences

between shallow and deep models; this includes the running time, number of parameters,

feature representation, learning capacity, and interpretability. Next, they identify a series of

metrics used to evaluate machine learning models; this includes accuracy, precision, recall, F-

measure, false negative rate, and false positive rate. They then move on to briefly discuss the

datasets they found in their literature review for their survey. They review the DARPA 1998,

KDD99, NSL-KDD, and UNSW-NB15 datasets. Additionally, they discuss the traffic and

attacks within these datasets and how IDS devices can detect them, another major focus of

this survey paper. They start by discussing packet-based attack detection (consisting of packet

parsing-based detection and payload analysis-based detection), flow-based attack detection

(consisting of feature engineering-based detection, deep learning-based detection, and traffic

grouping-based detection), session-based attack detection (consisting of statistic-based feature

detection methods and sequence feature-based detection), and log-based attack detection

(consisting of rule and machine learning-based hybrid methods, log feature extraction-based

detection, and text analysis-based detection). They then display a large table that compares the

methods and papers on machine learning IDS devices; the categories in this table included the

methods, papers, data sources, machine learning algorithms, and datasets. The authors then

move on to discuss the challenges and future direction of machine learning-based IDS

devices. They state that there is a lack of available datasets (and there are several problems

with the KDD99 dataset, which is the most widespread), there is inferior detection accuracy in

actual environments, and there is low efficiency for implemented machine learning-based IDS

devices to detect attacks in real-time. Their reviewed papers identify three major IDS research

trends: utilizing domain knowledge, improving machine learning algorithms, and developing

practical models. This paper concludes by stating that deep learning models are becoming

31

more popular in IDS research. Deep learning models can improve IDS devices’ performance

and, compared to shallow learning models, deep learning models generate stronger fitting and

generalization abilities. Additionally, deep learning algorithms do not require manual feature

engineering or domain knowledge, giving deep learning a huge advantage over shallow

learning methods. However, the authors also state that the biggest downside for deep learning

models is the required running time, which is often too long to meet the real-time requirement

of implemented IDS devices. This survey paper also did a fantastic job extensively reviewing

and charting several machine learning and deep learning techniques. The authors also did a

wonderful job reviewing the defensive detection methods employed by IDS devices to

identify attacks, which many other researchers do not discuss.

Researchers discuss popular machine learning techniques and available datasets for

network intrusion detection in the paper “A Review of Machine Learning Methodologies for

Network Intrusion Detection” (Phadke, Kulkarni, Bhawalkar, & Bhattad, 2019). The

researchers begin the paper by introducing the rise of cyberattacks and explain how network-

based and host-based IDS devices can be used to assist this problem. They then introduce ML

and then explain that algorithms can be classified into supervised learning, unsupervised

learning, or semi-supervised learning models. They then introduce several ML methodologies

that can be used for network intrusion detection. This section is the bulk of the paper where

the authors list out and explain the following algorithms: support vector machine, an unnamed

algorithm (proposed by another author that seems to build upon SVM), min-max k-means

clustering, intelligent intrusion detection system (also proposed by another author and makes

use of random forest and clustering techniques), artificial neural networks, and back

propagation neural network. They then briefly discuss the three datasets used by other

researchers, including the KDD Cup 1999 dataset, the UNSW-NB15 dataset, and the custom-

made dataset to showcase their ANN. This paper’s authors then compare each algorithm’s

accuracy and false positive rate and their selected dataset. The authors could have done a

much more thorough analysis of the extracted results and incorporated several other papers

and ML methodologies. It seems like the authors of this paper handpicked particular research

publications and did not cover a wide range of available ML algorithms or datasets used for

network intrusion detection.

32

Machine Learning Research Experiments

This section reviews paper publications that focused on developing ML models

utilizing datasets for network intrusion detection. These papers’ researchers had designed

custom experiments, evaluation metrics, test results, and analysis. The experiments and results

from these publications should be repeatable and consistent. While each paper is unique,

specific ML algorithms, metrics, terms, and trends that appear across each of these

experiments were incorporated into this dissertation research.

 In a 2013 paper, authors Thaseen and Kumar evaluate several different tree-based

classification algorithms using the NSL-KDD 99 dataset (Thaseen & Kumar, 2013). The

algorithms selected for the experiments include ADTree, C4.5, LADTree, NBTree,

RandomTree, RandomForest, and REPTree. The researchers also utilize a series of classifier

performance metrics, which include the following: true positives, false positives, true

negatives, false negatives, accuracy, precision, recall, and F-measures. Error metrics, such as

Mean Absolute Error, Root Mean Squared Error, and Kappa Statistics. The experiments’

results indicate that the RandomTree, RandomForest, and REPTree models achieved the most

effective accuracy scores.

 Researchers for another publication, titled “Performance Comparison of Support

Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection,”

perform a comparative analysis between three types of machine learning methods using the

NSL-KDD dataset (Ahmad, Basheri, Iqbal, & Rahim, 2018). The researchers first discuss the

type of dataset that fits the needs of this research. They choose to use the NSL-KDD dataset,

perform data pre-processing, select a set of ML classifiers (SVM, RF, and ELM) for testing,

and then evaluate the results using specific metrics (accuracy, precision, and recall) and

dataset sample size (full NSL-KDD dataset, half dataset, or one-fourth dataset). The results

show that ELM (or hidden layer feedforward neural networks) outperform the other machine

learning techniques in every measured metric category (accuracy, precision, and recall) when

using the entire dataset.

 Researchers Choudhury and Bhowal published a paper in 2015 where they conduct

several experiments by selecting various ML classification algorithms trained using the NSL-

KDD dataset (Choudhury & Bhowal, 2015). The paper begins by mentioning network-based

and host-based IDS devices along with their associated anomaly-based and signature-based

33

detection classifiers. The authors then transition into data mining and machine learning by

discussing the WEKA tool and several ML classifiers (Bayes, function, lazy, meta, mi, misc,

rules, and trees classifier), classification algorithms (BayesNet, logistic, IBK, JRip, PART,

J48, random forest, random tree, and REPTree), and ensemble algorithms (AdaBoost,

bagging, and stacking). The authors conduct experiments on all the mentioned classification

algorithms and the ensemble algorithms using the NSL-KDD dataset and WEKA tool. They

also mention their performance metrics for this research, which includes true positive, false

negative, false positive, true negative, receiver operating characteristics (ROC), sensitivity,

specificity, precision, accuracy, kappa, mean absolute error, F1 score, false positive rate, false

discovery rate, negative predictive rate, and training time. The researchers then review their

classification tests and ensemble tests, which indicate that random forest, BayesNet, and

boosting algorithms are the most efficient for intrusion detection.

 The researchers who published “Machine-Learning-Based Feature Selection

Techniques for Large-Scale Network Intrusion Detection” propose novel feature selection

techniques and compare their results against three other well-known ML feature sets using the

NSL-KDD dataset (Al-Jarrah et al., 2014). The authors start the paper by discussing ML

methods and the challenges of feature selection; they propose two custom ensemble methods

using the Random Forest algorithm and compare their technique with other well-known ML

techniques. They also introduce the idea of big data IDS environments and their associated

challenges: large volumes of IDS data require efficient data storage methods, big data flows at

high velocity, which requires expensive storage and processing systems, and big data has

various types of structures and different sources. The researchers then explain their ensemble

algorithm using Random Forest and discuss the experiments conducted for this research. They

start by discussing the KDD 99 dataset explain why they chose the NSL-KDD dataset. The

authors pre-process the dataset by removing redundant records and then enumerating,

normalizing, discretizing, and balancing them. They then discuss feature selection and state its

significant impact on intrusion detection system performance since it reduces computation

costs, removed data redundancy, increases the detection algorithm’s accuracy, facilitates data

understanding, and improves generalization. The standard feature selection process includes

subset generation, evaluation, and validation. Different feature selection models are also

categorized into three groups based on the evaluation criteria: filter model, wrapper model,

34

and hybrid model. The authors then discuss their ML model selection and explain that

ensemble classifiers combine multiple models to generate a single model with better

prediction accuracy. They state that several popular ML classifier algorithms can be used for

an ensemble classifier, but they selected Random Forest (RF) for their research. They also

discuss their evaluation metrics for their experiments, including detection rate or sensitivity,

accuracy, training time, Mathew’s correction coefficient, and false alarm rate. The researchers

then review their conducted experiments using their Random Forest – Forward Selection

Ranking and Random Forest – Backward Elimination Ranking ensemble models and compare

their results to other researchers’ ensemble classifier results.

 Researchers conduct a comparative analysis of five ML algorithms while using the

KDD Cup 99 dataset in the paper “Intrusion Detection in Computer Networks via Machine

Learning Algorithms” (Ertam, Kilinçer, & Yaman, 2017). The authors briefly introduce IDS

devices and five ML algorithms selected for this research, including Naïve Bayes, Bayes

NET, random forest, multilayer perception, and sequential minimal optimization. The authors

never explain how each of their selected ML classifiers operates. They then introduce the

KDD Cup 99 dataset and state how other researchers have used it in their experiments. They

also discuss the four attack categories and distribution within the dataset. Next, the authors

discuss their evaluation metrics for this study: true positive, false positive, false negative, true

negative, false positive rate, precision, recall, f-measure, and accuracy. They also state the

physical machine resources used to perform their experiments and their usage of the WEKA

data mining tool to classify the data. The authors then display and discuss their results. Each

experiment was broken up by the attack class category and the ML classifier algorithm based

on the tables. The results were highly distributed across each selected ML algorithm and

attack category.

In 2018, researchers Maniriho and Ahmad published a paper where they compared the

results of four ML classification algorithms used in conjunction with two different feature

selection techniques while utilizing the NSL-KDD dataset (Maniriho & Ahmad, 2018). The

paper begins by introducing the topics of network IDS devices and machine learning

techniques. The authors also briefly discuss the NSL-KDD dataset and why it was used for

these experiments. They also state that they selected four ML algorithms that were a part of

the WEKA data mining tool. The four ML algorithms selected for this research are random

35

forest, decision stump, Naïve Bayes, and stochastic gradient descent combined with two

different feature selection techniques (correlation ranking filter and gain ratio feature

evaluator). This research’s performance evaluation metrics include accuracy, detection error,

true positive rate, true negative rate, precision, recall, and f-measure. The experiments

showcase the dramatically varying results between each ML algorithm and feature selection

test.

 In the 2011 paper, researcher Yu-Xin conducts tests on three ML algorithms utilizing

the KDD Cup 1999 dataset and WEKA data mining tool (Yu-Xin, 2011). The author

introduces NIDS and their two primary classification categories of misuse detection and

anomaly detection. The author then discusses how ML can assist network intrusion detection

categorization and introduces the three ML techniques selected for their research experiments,

including neural networks, support vector machines, and decision trees. The KDD 1999

dataset is selected for this research because it showcases the purpose of this research on

network intrusion detection and machine learning. This research also introduces feature

selection and reviews three attribute evaluation methods and four search methods

implemented in the experiments. The evaluation methods are: CfsSubsetEval,

InfoGainAttributeEval, and GainRatioAttributeEval; the search methods include: BestFirst,

GreedyStepwise, Ranker, and GeneticSearch. Next, the author reviews the exact setup for

each experiment and explains that the RBF network is used as the neural network algorithm,

SMO is used as the SVM algorithm, and J48 is used as the decision tree algorithm. Each of

these selected algorithms is used in conjunction with selected feature selection evaluation

methods and search methods. The author then reviews these tests’ results and explains how

these ML classifiers and feature selection techniques showcase ML schemes’ challenges in

intrusion detection. The key challenges identified are fluctuant capability, false alarm rate,

and difficulties in training. The results between each experiment vary or fluctuate

dramatically based on the selected ML algorithm and feature selection technique and, because

of these variations, the false alarm rate results are also affected. Training ML models is also a

challenge because more precise detection results require larger training datasets. However,

proper ML training becomes hard to achieve because the required training datasets will need

to be so enormous that they require too many system resources to store and process. The

author admits that their tests only include a small amount of ML algorithms and feature

36

selection techniques, but they wanted to showcase certain key challenges found in other ML

intrusion detection environments and research.

 The research paper “Machine Learning Algorithms In Context of Intrusion Detection”

selects four supervised ML algorithms to detect anomalies found in the KDD99 dataset

(Mehmood & Rais, 2016). The authors begin the paper by introducing host-based and

network-based intrusion detection along with the two primary intrusion detection

classifications of signature-based detection and anomaly-based detection. They then introduce

ML and explain how it can assist the classification process of network intrusion detection.

This research’s four ML algorithms are support vector machine, Naïve Bayes, J.48 (decision

tree), and decision table. The researchers select the KDD99 dataset to compare their four ML

classification algorithms. They briefly mention the KDD99 attack classes: root to local, denial

of service, probe, user to root, and normal. They also explain that they utilize the WEKA data

mining tool to implement their selected ML algorithms and compare the true positive and

false positive rate values as evaluation metrics between tests. The results indicate that each

ML algorithm had varying results for each KDD 99 dataset’s attack classes. The researchers

state that feature selection algorithms will help generate better results for future work.

 Researchers Rahat and Ahsan conduct a comparative study of five ML classifier

algorithms using the KDDCUP ‘99 dataset to analyze classification metrics in their 2015

paper (Rahat & Ahsan, 2015). The paper starts by introducing the topic of network intrusion

detection and how machine learning techniques can assist with this challenge. The authors

review a series of publications that discuss different ML classification techniques used for

network intrusion detection. They also mention class imbalance and feature selection as

challenging issues found within ML algorithms. Class imbalance is caused when there is an

unequal sample distribution within datasets. The authors review other researchers’ work and

how they went about trying to resolve the challenges of class imbalance and feature selection.

After this literature review, the authors discuss their performance metrics for this research,

including true positive, true negative, false positive, false negative, accuracy, precision, and

recall. They also briefly discuss the KDD’99 dataset, which contains 23 labels for different

attack types and 41 labeled features to detect network intrusions. Next, the researchers discuss

the methodology for their experiments. They first discuss two data sample methods that are

used to remove the class imbalance in the dataset. The researchers then perform feature set

37

reduction to find the minimum number of features that can effectively represent the data in a

classification problem. They utilize five ranking methods in conjunction with ranker search to

reduce the feature set. The ranking methods they use are PCA, information gain, gain ratio,

chi square, and filtered attribute. Lastly, they discuss the five ML classifiers used for their

experiments, including J48 (decision tree), Naïve Bayes, AdaBoost, bagging, and nearest

neighbor. Lastly, they note the four different experiment scenarios where they mix and match

the process of data sampling, feature selection, and ML classifiers. Scenario 1 only uses the

classifiers that are applied, scenario 2 performs feature reduction followed by applied

classifiers, scenario 3 performs feature reduction followed by data sampling and then

classifiers, and scenario 4 performs data sampling followed by applied classifiers. The

researchers then display and discuss their experiments, which were highly variable based on

each selected scenario, ML classifier, and evaluation metric.

 In the paper titled “Class Imbalance Problem in the Network Intrusion Detection

Systems,” researchers compare four ML classification algorithms and use the NSL-KDD

dataset to showcase the class imbalance problem found within the popular dataset (Rodda &

Erothi, 2016). The authors briefly introduce IDS devices and explain that ML techniques can

assist with classification. Several research publications and ML techniques have been

developed to create an effective intrusion detection system; however, there is a class

imbalance problem found in the most popular datasets. The class imbalance problem occurs

when the size of a specific class or category within a particular dataset is too small or too

large and thereby not adequately represented. They conduct a very brief literature review that

discusses ML research and experiments conducted on the NSL-KDD or KDD 99 datasets

performed by other researchers. The researchers explain why they selected the NSL-KDD

dataset and discuss the attack categories and their distribution. The authors then immediately

discuss their results without explaining how they set up each experiment or their evaluation

metrics. The ML algorithms evaluated for this research included Naïve Bayes, Bayes Net,

J48, and Random Forest. The results and analysis section indicate that the authors only really

compared the accuracy metric between each experiment. These results still showcase their

primary argument that the class imbalance problem because all of the ML classification

algorithms seemed to fail on the user to root attacks due to the minimal amount of U2R traffic

found within the NSL-KDD dataset.

38

39

CHAPTER 3

QUANTITATIVE RESEARCH METHODOLOGY

This section reviews the selected research methodology and design for this study. This

research performed a quantitative research study, which consisted of two primary phases. The

first phase involved developing machine learning models based on machine learning

classification algorithms and intrusion detection datasets. The second phase then attempted to

implement an ML IDS pipeline environment by applying the ML detection models from the

first phase to unseen network traffic fed through Zeek IDS software. The results gathered

from the second phase tests were then compared against the first phase results to determine if

the ML models operated differently between the theoretical and applied environments. Both

phases incorporated quantitative research methodologies, results, and analysis.

Purpose Statement

One purpose of this research was to showcase the need to utilize multiple intrusion

detection datasets. The large majority of researchers only selected a single dataset for

developing their ML models, typically incorporating the KDD 99 or NSL-KDD datasets.

Additionally, this research sought to help identify which ML classification algorithms are the

most effective at network intrusion detection in applied environments. This research study

implements an IDS ML pipeline that augments IDS logs with trained ML models to validate

the theoretical best ML algorithms, datasets, and optimization methods. This research benefits

both academic researchers as well as industry security professionals. As seen in the previous

Literature Review section, many academic researchers fail to train their ML algorithms using

multiple datasets. Numerous public datasets are associated with network intrusion detection,

each of which is unique and comes with associated pros and cons. Due to the wide variety of

intrusion detection datasets, it is best practice to train and evaluate ML algorithms using

multiple datasets (Ring et al., 2019). This research achieves and verifies this best practice by

40

conducting numerous research experiments that train multiple ML algorithms using multiple

datasets.

Additionally, as seen in the previous Literature Review section, most ML researchers

never design or explain practical implementations to validate their models in a real-world

environment. This research implements a live IDS ML pipeline and then compares each ML

model’s evaluation metric results in both the theoretical and implemented environments.

Additionally, this research documents the creation of an IDS with ML classification

capabilities. This research could greatly benefit security professionals because they can use

this as a guide to set up a highly effective IDS ML environment. There are very few guides or

papers online that document the process of configuring the IDS anomaly detection engine

utilizing ML techniques. An IDS with ML capabilities should incorporate anomaly detection

and standard signature detection using a single application for enhanced detection.

Research Questions and Hypotheses

Research Question 1

How does the selection of a single network intrusion dataset impact machine learning models’

outcomes and performance when trained using multiple machine learning algorithms and

optimization methods?

Hypothesis 1

Not all machine learning models will achieve high accuracy when trained using any network

intrusion dataset.

Research Question 2

How does the selection of a single machine learning algorithm impact machine learning

models’ outcomes and performance when trained using multiple network intrusion datasets

and optimization methods?

41

Hypothesis 2

Not all machine learning models will achieve high accuracy when trained using any machine

learning algorithm.

Research Question 3

How does the selection of a single optimization method impact machine learning models’

outcomes and performance when trained using multiple network intrusion datasets and

machine learning algorithms?

Hypothesis 3

Not all machine learning models will achieve high respective performance metrics when

trained using any optimization method.

Research Question 4

How does the performance of theoretical machine learning models change when tested in an

applied environment?

Hypothesis 4

The accuracy of theoretical machine learning models will perform significantly worse in an

applied environment.

Quantitative Method – Experimental Study Design

Design

This study was divided into two quantitative research phases. The first phase focused

on testing and quantitatively evaluating each of the selected ML algorithms, network intrusion

datasets, and optimization methods by producing a series of models. The machine learning

algorithms selected for this research include Naïve Bayes (NB), Decision Tree (DT), Random

Forest (RF), Ada Boost (AB), Bagging Classifier (BC), Logistic Regression (LR), and

42

Stochastic Gradient Descent (SGD). All of these algorithms are considered supervised

learning algorithms, which means they require fully labeled datasets.

These ML algorithms were identified and selected due to a few reasons. One part of

their selection was due to their popularity throughout the literature review. Individual

algorithms and entire algorithm categories were tallied during the literature review, and these

particular algorithms were selected due to their regular appearances throughout the research.

Additionally, these algorithms were selected based on their availability within the Python

scikit-learn library. The scikit-learn library is a publicly available Python module that contains

a wide variety of machine learning models and functions (Garreta, Moncecchi, Hauck, &

Hackeling, 2017). Lastly, the resource requirements and speed at which the algorithms

generate their models were considered factors. These algorithms’ speed and resource

requirements were major considerations due to the number of tests conducted for this study.

Certain algorithms were removed from this research if they took longer than three days to

produce a single model.

The Naïve Bayes (NB) algorithm belongs to its own Naïve Bayes category and is a

probabilistic classifier that applies Bayes’ theorem between features (Tsai, Hsu, Lin, & Lin,

2009). This classifier assumes strong or naïve independence between data features and

calculates conditional probabilities for different classes, then used to label the data.

Figure 1: Naïve Bayes Algorithm Example

The Classification and Regression Trees (CART) algorithm falls under the decision tree

category and develops tree-like structures where the leaves represent classifications and

43

branches represent conjunctions of features that lead to classifications (Tsai et al., 2009). This

algorithm is unique to scikit-learn as it is a type of decision tree algorithm based on the popular

C4.5 decision tree algorithm with very slight alterations.

Figure 2: Classification and Regression Trees Algorithm Example

The Random Forest (RF) algorithm belongs to the ensemble learning category

(Aburomman & Reaz, 2017). Ensemble learning constructs several models and then selects the

best model based on majority or weighted voting. This algorithm combines decision trees and

ensemble learning to produce several decision trees that use randomly selected data features or

attributes as their input, such that a forest is generated with trees with controlled variance.

Figure 3: Random Forest Algorithm Example

Adaptive Boosting, or AdaBoost (AB), is another type of machine learning algorithm

that falls under ensemble learning (Aburomman & Reaz, 2017). Boosting is a form of

machine learning ensemble algorithm where models are sequentially added, and later models

44

in this sequence can correct the predictions made by earlier models. The AdaBoost algorithm

is considered adaptive because it combines, or adapts, multiple weak classifiers into a single

strong classifier while boosting the sequence of models. As a result, this algorithm is

considered quite sensitive to noisy data and outliers. Additionally, this ensemble learning

technique makes the algorithm less susceptible to overfitting algorithms since it reduces

variance.

Figure 4: Adaptive Boosting Algorithm Example

Bagging Classifier (BC) is another machine learning algorithm that belongs to the

ensemble learning category (Aburomman & Reaz, 2017). Bagging, also known as bootstrap

aggregating, is another type of machine learning ensemble algorithm that generates subsets of

the original dataset through sampling. Bagging Classifier fits base classifiers (such as

Decision Tree) on random subsets of the original dataset and then aggregates their

predictions, by voting or averaging, to create a final model and prediction. Similar to the other

ensemble learning methods, this ensemble technique reduces variance and thereby helps avoid

overfitting.

45

Figure 5: Bagging Classifier Algorithm Example

The Logistic Regression (LR) algorithm is a well-known algorithm in machine

learning and falls under the linear regression category (Yihunie, Abdelfattah, & Regmi,

2019). Logistic regression applies a statistical model that uses the logistic function to model

binary dependent variables. After ingesting data, this algorithm calculates a particular

threshold coefficient to make classifications and predictions thereby.

Figure 6: Logistic Regression Algorithm Example

Stochastic Gradient Descent (SGD) is another form of linear regression. This

algorithm may also be known as a stochastic approximation of gradient descent optimization

46

(Yihunie et al., 2019). Gradient descent optimization is an iterative optimization algorithm

used for identifying the local minimum, or lowest point, on a function by taking repeated

steps in the opposite direction of the gradient. The term “stochastic” is another word for

“random.” As a result, SGD applies randomness in the gradient descent algorithm by selecting

a single random data point out of the whole dataset for each iteration of gradient descent

optimization. This random selection of data points dramatically reduces the necessary

computation.

Figure 7: Stochastic Gradient Descent Algorithm Example

Numerous machine learning algorithms were tested and discarded while investigating

a variety of algorithms for this research. In addition to the algorithms officially selected, the

following algorithms were tested and removed from this study: Bayesian Network, K-Nearest

Neighbor, Support Vector Machine (Linear, Radial Basis Function, and Sigmoid), Ridge

Classifier, One-Class SVM, Isolation Forest, and Local Outlier Factor. These algorithms were

considered and tested due to their popularity and success seen throughout the literature

review. The Bayesian Network algorithm was removed due to its absence within the scikit-

learn library, whereas all the other listed algorithms were discarded due to their intense

resource and time requirements. Many of these algorithms are extremely sensitive to feature

input, and each new feature exponentially increases the amount of time to develop a model

(Lee, 2019). These algorithms may have had difficulties ingesting the datasets due to their

immense size, especially when considering the high number of labeled features and the total

number of packets. If any of these algorithms took longer than three days to generate a single

model in the online virtual environment, they were discarded. Many of these algorithms may

have produced a highly successful machine learning model after several days of development.

47

However, it was decided to remove these intense algorithms due to the high number of

models required for this research. Using a single selected algorithm, 15 models (one

algorithm, five datasets, and three optimization methods) would need to be developed to be

adequately analyzed for this study. This considerable time and resource requirement for

developing these particular models did not fit this study’s proposed timeline.

Towards the end of investigating machine learning algorithms to include in this

research, a focus on the inclusion of novelty and outlier detection algorithm categories was

heavily considered. These two machine learning categories were considered due to their

extreme outlier sensitivity and success with anomaly detection ("scikit-learn," 2020). The

outlier detection category operates by identifying regions within the dataset observed as far or

different from other regions. The algorithms that fall under this outlier detection category

include Isolation Forest, Local Outlier Factor, and One-Class SVM. All of these algorithms

were tested for this study. However, they were all dropped due to their high resource and time

requirements. The outlier detection estimators fit the regions where the data is most

concentrated, thereby ignoring deviant observations. The category of novelty detection

operates by treating none of the training data as outliers and determining if new observations

are considered an outlier, or rather, a novelty. The One-Class SVM and Local Outlier Factor

algorithms could be configured to operate under this category of novelty detection but still

belong under the outlier detection category. Again, both these algorithms were tested and

dropped due to their requirements; they took longer than three days to develop a single model.

With more time and more robust computational resources, these algorithms may have

generated the most effective anomaly detection models for this study.

The datasets used to train and test each of these ML algorithms include the KDD 99,

NSL-KDD, UNSW-NB 15, CICIDS 2017, and CIDDS-001 datasets. The KDD 99 and NSL-

KDD datasets were selected because of their popularity in the literature review. Nearly all of

the literature utilized at least one of these datasets. The UNSW-NB 15, CICIDS 2017, and

CIDDS-001 datasets were selected at the recommendation of a comprehensive intrusion

detection datasets survey paper where the authors suggested these particular datasets due to

their wide variety of attack categories and network traffic composition (Ring et al., 2019).

Each experiment in this first phase of research applied a combination of machine learning

models, network intrusion datasets, and optimization methods.

48

The KDD 99 dataset was created as part of the International Knowledge Discovery

and Data Mining Competition (KDD) Cup in 1999. This dataset was based on the DARPA

1998 dataset, produced by MIT’s Lincoln Labs. This dataset is the most popular dataset for

network intrusion detection despite its several flaws previously discussed in the literature

review (Creech & Jiankun, 2013). The NSL-KDD dataset was created at the University of

New Brunswick in Fredericton, Canada, in 2009. This dataset essentially updated the KDD 99

dataset by purging many redundant records and improperly distributed attacks (Tavallaee et

al., 2009). The UNSW-NB15 dataset was produced at the University of New South Wales in

Sydney, Australia, in 2015. The CICIDS2017 dataset was also produced at the University of

New Brunswick, Fredericton, Canada, in 2017. This university is partnered with the Canada

Institute for Cybersecurity. The CIDDS-001 dataset was developed at the Coburg University

of Applied Sciences in Coburg, Germany, in 2017. Each of these datasets is fully labeled,

meaning that they can operate with supervised learning algorithms properly. These datasets

provide various data format types (packet-based, flow-based, hybrid/other), metadata, size,

attack scenarios, and features. A comparison of these selected datasets can be found in Tables

1 and 2. These tables were taken and modified from the previously referenced academic

research survey of available network intrusion datasets (Ring et al., 2019).

The second phase of research focused on modifying the Zeek anomaly detection

engine to enable ML classifications of network traffic ("zeek," 2020). This second phase

aimed to apply the ML models initially trained and tested in the first phase to a real-world

application of an IDS with ML capabilities. The implemented IDS ML pipeline results were

quantitatively analyzed and compared to the previous phase results to determine if there was a

difference in evaluation metrics between conceptual and applied environments.

49

 General Information Nature of the Data

Dataset Year Created
Public
Availability

Normal
Traffic

Attack
Traffic Metadata Format Anonymity

KDD 99 1998 Yes Yes Yes No Hybrid/other None

NSL-KDD 1998 (2009) Yes Yes Yes No Hybrid/other None

UNSW-NB15 2015 Yes Yes Yes Yes Packet, Hybrid/other None

CICIDS2017 2017 Yes Yes Yes Yes Packet, Flow (bi) Yes (IPs)

CIDDS-001 2017 Yes Yes Yes Yes Flow (uni.) None

Table 1: Dataset Comparison – General Information and Nature of the Data

 Data Volume Recording Environment Evaluation

Dataset Count Duration Kind of Traffic Type of Network
Complete
Network

Predefined
Splits Balanced Labeled

KDD 99 5M points Not specified Emulated Small enterprise Yes Yes No Yes

NSL-KDD 150K points Not specified Emulated Small enterprise Yes Yes No Yes

UNSW-NB15 2M points 31 hours Emulated Small enterprise Yes Yes No Yes

CICIDS2017 3.1M flows 5 days Emulated Small enterprise Yes No No Yes

CIDDS-001 32M flows 28 days Emulated and real Small enterprise Yes No No Yes

Table 2: Dataset Comparison – Data Volume, Recording Environment, and Evaluation

50

Instruments and Tools

 The first phase of this study was conducted using five cloned Ubuntu 20.04 virtual

machines (VMs) in the DSU Information Assurance (IA) Lab, an online virtual environment.

Each VM utilized 24 cores with a 2.30 GHz processing speed, 100 GB of RAM, and 500 GB

of hard disk space. These five VMs were labeled after the five datasets selected for this

research. This study utilized several free and open-source tools. Ubuntu was selected as the

underlying operating system on each VM due to its lightweight and open-source availability

("Ubuntu," 2021). Additionally, Ubuntu comes with a series of preinstalled tools that were

used for this research. One primary tool requirement necessary for this study was Python

version 3. Python is a very well documented and popular high-level scripting language with a

large community of supporters ("Python," 2021). This study also used the Anaconda suite, a

free platform-agnostic package, and environment manager ("Anaconda," 2021). The

Anaconda suite provided access to the Scientific Python Development Environment, or

Spyder Integrated Development Environment (IDE). Spyder is a free and open-source IDE

specializing in advanced data analytics and debugging ("Spyder," 2020). Anaconda was

utilized as a simple package manager for updating tools and libraries, including Python,

Spyder, and scikit-learn. The scikit-learn module can be imported into Python and contains

various machine learning capabilities and analytics ("scikit-learn," 2020). Scikit-learn

successfully trained, tested, and evaluated each of the ML models in this research. Each of the

previously mentioned datasets was downloaded from the developer organizations’ website for

free and were successfully ingested within the Python environment and scikit-learn functions.

Additionally, scikit-learn provides standardized measuring techniques for evaluating the

results of each ML experiment. The evaluation metrics analyzed between each ML

experiment included accuracy, precision, recall, and F1 score. Additionally, it should be noted

that during the development of the Python scripts for this research, several different online

resources were utilized. Numerous technical books were referenced during code development

through the use of the O’Reilly Online Learning library, which was previously known as

Safari Books Online ("O’Reilly," 2021). The second phase of this study was conducted using

the same set of online VMs. One of the five online VMs had Zeek installed, which acted as

the open-source IDS for this research. The prediction dataset and associated raw PCAPs

51

selected for the second phase of research were fed into this Zeek IDS to produce standardized

Zeek connection logs of the ingested traffic ("zeek," 2020). The Wireshark tool called

mergecap was also utilized in the second phase of research and combined multiple raw

PCAPs into a single PCAP format for Zeek ingestion ("mergecap," 2021).

 Some alternative tools were considered to be used in conjunction with or possibly

replace previously mentioned tools. Some other online virtual environments that were

considered include Amazon Web Services (AWS), Google Cloud Platform (GCP), or Digital

Ocean (DO). It should also be noted that VMware Workstation was a considered tool for this

research as it would allow for virtualization on a host desktop; however, it was not utilized

due to the intense resource requirements and the high number of experiments for this research

study. Additionally, the previously mentioned open-source IDS software, Zeek (previously

known as Bro), was just one open-source IDS option; Suricata or Snort was also considered.

A handful of other ML algorithms, intrusion detection datasets, or evaluation metrics were

removed or replaced while conducting this research.

Procedures

The first phase of this study involved developing a Python script that imports the

scikit-learn module and associated datasets to produce a series of ML models. The Python

script was configured to optimize and create a series of models based on the combination of

ML models, network datasets, and scoring methods. Additionally, this Phase One script

would first optimize each model to tune each of them to the highest associated metric score

based on the selected optimization method. This Phase One script was distributed to each of

the five VMs in the DSU Information Assurance (IA) Lab virtual environment. This first

phase trained 105 models based on seven ML algorithms, five datasets, and three scoring

methods. Each of these models, or experiments, utilized parameter optimization for each

algorithm to then develop fully trained and optimized models. The selected evaluation metrics

were used to compare each model effectively and consistently. A series of data

transformations are applied to each of the imported datasets. The steps involved in conducting

these transformations include label extraction and grouping, feature mapping and dropping,

feature encoding and standardization, feature scaling and normalization, subset creation, and

feature reduction. Additionally, a complete walkthrough of the Phase One Python script is

52

included in a later subsection. Essentially though, this phase’s goal was to develop a series of

highly optimized models that yield high evaluation metrics.

The second phase of this research involved applying the previously trained models to

filter through unseen network traffic and identify malicious behavior. This process involved

taking the raw PCAPs of the CICIDS 2017 dataset and feeding them through the Zeek IDS to

produce connection logs. This PCAP merging and Zeek ingestion were performed using just

one of the five available online VMs. These Zeek connection logs and the previously trained

models were then fed into a new Python script that applied the models and yielded each

model’s detection output. The Phase Two Python script was downloaded and executed on

each online VM, and the Zeek connection log output was generated from the raw PCAPs of

CICIDS 2017. This entire process could be considered an IDS ML pipeline environment with

additional scripts that push the necessary data between each script continuously. Below is a

diagram that shows the overall procedures and flow of data between each phase of this

research.

53

Figure 8: Phase One and Phase Two Python Scripts – Flowchart

Data Analysis and Interpretation of Results

The first phase of quantitative research produced a series of trained ML models with

associated evaluation metrics. The evaluation metrics included in Phase One include

accuracy, precision, recall, F1 score, and training time. These metrics were included due to

their appearance throughout the literature review and their availability within the scikit-learn

54

library. Accuracy measures the fraction of correct predictions (true positives and false

positives) out of the total results (true positives, true negatives, false positives, and false

negatives). Precision measures the amount of true positive results over the actual results (true

positives and false negatives), whereas recall measures the amount of true positive results

over the model’s predicted results (true positive and false negative). Perfect precision

corresponds to no false positives (Type I errors); meanwhile, perfect recall corresponds to no

false negatives (Type II errors). Additionally, precision and recall considered inverses of each

other; if precision increases, recall decreases and vice-versa. The F1 score metric is

considered to be the harmonic mean between these precision and recall metrics.

This research primarily focuses on the accuracy metric due to this study’s research

questions and hypotheses. Ideally, each trained model’s goal was to achieve 95% or higher in

each of these metric categories. This 95% threshold was selected because, while the realm of

network security seeks to achieve 100% detection of attacks, the realm of machine learning

must tolerate lower metrics to create an acceptable model depending on the problem at hand.

The 95% threshold of success for evaluation metrics provides a robust network intrusion

detection model. The second phase of this study involved applying the models and only

reviewing each model’s accuracy metric. The true values of the CICIDS 2017 detection rate

(normal or malicious) were extracted from the CICIDS 2017 CSV data. The goal of each

trained model in Phase Two was to match, as closely as possible, the same detection rate as

dictated by the true values observed in the CICIDS 2017 CSV dataset. This study aimed to

showcase the need for utilizing multiple datasets and testing models in an applied

environment. The focus of this research will be the comparison of ML models’ results

between each of the phases to determine how the models operate between theoretical

environments and implemented environments.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

55

𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

Limitations and Challenges

A primary goal for this research was actually to create and implement a real-world

IDS with ML capabilities. There are very few guides and papers that review this process, so a

significant hurdle for this study was investigating this task’s feasibility. There were only three

identified options for feasibly creating an IDS with ML capabilities. The first option was to

create a pipeline that takes the IDS output and feeds it into an ML processing script. A second

option was to modify the preprocessors of the IDS detection engine. However, after

investigating this option, it was determined that this route might take too long for this

proposed research timeline. Lastly, a third option was to create an IDS plugin using the

appropriate programming language. However, the biggest reason why the IDS preprocessor

modification and IDS plugin creation options were not utilized in this research is that both of

these methods required writing in the native language of the IDS. Some IDS software is

written in programming languages with very limited support for machine learning libraries,

meaning that machine learning algorithms would have to be manually coded, which was

outside the scope of this research. Several other significant challenges and limitations for this

research are further discussed in-depth in Chapter 5.

Python Scripts – Commentary Walkthrough

Two Pythons scripts were created for each phase of research. This subsection will

include a walkthrough of the scripts and review the significant coding choices. While extremely

enlightening, there were several challenges encountered while developing these scripts. Below

56

are pseudocode walkthroughs of the two primary Python scripts developed for each phase of

research. The entirety of each of these two scripts is included in the Appendices. The Phase

One Python Script is found in Appendix A, and the Phase Two Python Script is included in

Appendix B. Additionally, the following subsection will review certain significant decisions

made while developing and testing these Python scripts.

Phase One – Python Script

Python Script 1 Walkthrough

1. Import libraries

2. Loop through datasets

a. Import dataset (CSV format with labels)

b. Apply label extraction and grouping

c. Rename and drop features

d. Apply appropriate data transformations

i. Convert dataset to str/object

ii. Identify and save unique values via fullset.values.ravel() - saved as *_unique.joblib

iii. Encode dataset via LabelEncoder() - saved as *_encoder.joblib

iv. Scale dataset via StandardScaler() - saved as *_scaler.joblib

v. Create subsets via train_test_split() - returns X_train, X_test, Y_train, and Y_test

1. The CICIDS-001 dataset is unique in that train_test_splt() is performed twice to

only utilize only 10% of the total dataset

vi. Perform feature reduction via PCA() - saved as *_pca.joblib

e. Return transformed X_train, X_test, Y_train, and Y_test subsets

f. Optimize models - First run-through

i. Configure optimizations settings

1. Set scoring methods- accuracy, precision_macro, and f1_macro

2. Set classifiers/algorithms to optimize - Decision Tree, Random Forest, Ada

Boost, Bagging Classifier, Logistic Regression, Stochastic Gradient Descent

3. Set parameter grid for each algorithm (unique parameters for each classifier)

ii. Loop through scoring methods and classifiers

1. Optimize models via GridSearchCV, which will perform an exhaustive search

based on the provided classifiers and parameter grids, which will be optimized

for maximum scores based on the selected scoring methods

2. Save output with best scores and parameters to CSV (this was just for recording

purposes - these optimized parameters were manually inputted back into the

Python script)

57

g. Model production - Second run-through

i. Set scoring parameters again - accuracy, precision_macro, f1_macro

ii. Loop through scoring methods

1. Obtain the optimized parameters for each algorithm

2. Loop through each algorithm

a. Produce official models via clf.predict() while utilizing the optimized

parameters for different ML algorithms, different scoring methods, and

selected dataset

3. Save output with produced models and evaluation metrics (accuracy, precision,

recall, and F1 score) to CSV

Phase Two – Python Script

Python Script 2 Walkthrough

1. Import libraries

2. Loop through datasets

a. Import the prediction dataset (merged raw PCAPs of CICIDS 2017)

b. Store the dataset in a CSV format with the same matching columns/features as the other

trained models and their corresponding datasets

c. Based on the selected dataset, transform the prediction set in the same exact procedure the

previous model was trained

i. Load the *_unique.joblib, *_encoder.joblib, *_scaler.joblib, and *_pca.joblib to the

prediction set

ii. Add “-” to the encoder schema (a default value in case an unseen value is in the

prediction set)

iii. Convert dataset to str/object

iv. Identify and save unique values via predictionset.values.ravel() - loaded and applied

via *_unique.joblib

v. Iterate through the encoder schema and replace any unseen values with “-” (all the

values in the new unseen data must exist in the previously trained encoder schema)

vi. Encode dataset via LabelEncoder() - loaded and applied via *_encoder.joblib

vii. Scale dataset via StandardScaler() - loaded and applied via *_scaler.joblib

viii. Create subsets via train_test_split() - returns X_train, X_test, Y_train, and Y_test

ix. Perform feature reduction via PCA() - loaded and applied via *_pca.joblib

d. Set the scoring methods (accuracy, prevision_macro, and f1_macro) and classifiers/algorithms

(NB, DT, RF, AB, BC, LR, and SGD)

e. Iterate through the scoring methods and classifiers

i. Utilize the clf.prediction() function to predict malicious traffic in the unseen data

58

ii. Perform computations to determine the accuracy of the predicted value

iii. Store and save the output of the prediction values in a CSV

Major Development Decisions

Consistent Experimentation

A major goal of this research was to maintain consistency and repeatability. In Phase

One, a combination of machine learning classification algorithm, network dataset, and

optimization went through the same exact data transformation process except for a few items

taken from the datasets. The major difference between each dataset was the inclusion of

certain features. Features are unique labeled properties belonging to each dataset; the list of

features included for each of the datasets used in this study were various packet or NetFlow

fields. This study attempted to map as many Zeek IDS Connection Log fields to features

identified within each dataset. This mapping meant that specific datasets had as little as six

features mapped to the Zeek log fields when performing feature reduction, whereas other

datasets had as many as twelve features mapped. The complete list of features from each

dataset and Zeek connection log fields can be seen in Appendix C. There is a table below

containing each of the fully mapped features. The only mapped feature dropped was the

connection state (conn_state) field because each dataset had its own nonstandard format for

that particular attribute. In addition to this initial feature reduction, some more features may

have been dropped when conducting automated dimensionality reduction via the PCA

function. The only other distinction between the data transformations was reducing the size of

the CIDDS-001 dataset. Only 10% of the total CIDDS-001 was ingested due to its immense

size. When reading in the entire CIDDS-001 dataset, the Python script would crash due to

limited memory capacity despite the 100 GB of dedicated RAM for the VM. Aside from these

two unique data transformations of selective feature mapping and CIDDS-001 size reduction,

all the ML models went through the exact data ingestion and transformation process.

Zeek Conn Log KDD 99 NSL-KDD UNSW-NB15 CICIDS 2017 CIDDS-001

id.orig_h srcip Src IP Addr

id.orig_p sport Src Pt

id.resp_h dstip Dst IP Addr

59

id.resp_p dsport DestinationPort Dst Pt

proto protocol_type protocol_type proto Proto

conn_state* flag flag state Flags

duration duration duration dur FlowDuration Duration

orig_ip_bytes src_bytes src_bytes sbytes TotalLengthofFwdPackets Bytes

resp_ip_bytes dst_bytes dst_bytes dbytes TotalLengthofBwdPackets

service service service service

orig_pkts Spkts TotalFwdPackets Packets

resp_pkts Dpkts TotalBackwardPackets

Table 3: Mapped Features – Dataset Features to Zeek Connection Log Fields

Data Transformation Process

Several significant decisions were made while determining the transformations of data

imported into the Python scripts for this research. There are numerous steps involved in

machine learning to transform data into a proper ingestible format (Gron, 2017). A series of

steps are taken whenever a dataset is read into the scripts to perform a consistent data

transformation.

Data Preprocessing

1. Label extraction and grouping

2. Feature mapping and dropping

3. Feature encoding

4. Feature scaling

5. Subset creation and cross-validation

6. Automated feature reduction

The transformation process’s first steps involve the labels that classify the associated

packet as either malicious or innocuous. Many datasets have numerous subsets of malicious

traffic and classify packets as a particular type of attack. A decision was made to group all

these types of network attacks as only “malicious” since they are all unwanted network traffic

forms. This decision dramatically increased metric evaluation results during testing.

60

The next step in the transformation process involves dataset features. With the labels

in the previous step successfully extracted and grouped, the rest of each dataset’s unique

features are transformed. First, the applicable features’ names are mapped and modified to

match those belonging to the corresponding Zeek connection log fields. With the names of the

features changed to match the Zeek logs, the rest of the features are then dropped since they

will not be used. A significant decision here was to map as many features as possible between

each unique dataset and the Zeek logs. Specific datasets only mapped six features, whereas

others mapped as many as ten features.

Next, the feature data is then encoded. Feature encoding is vital to machine learning as

it is used to create a simple dictionary of sorts. This encoding schema is used to standardize

and parse through the feature data (Chio & Freeman, 2018). There are numerous encoding

methods available within the scikit-learn module; however, the well-known and standard

LabelEncoder function was selected for this step.

Feature scaling and regularization of the data is the next major data transformation.

This transformation step takes the encoded data and scales it in a particular way such that the

feature data is normalized (Albon, 2018). Regularization will scale the data such that each

feature and individual value is scaled and thereby have a fixed and proportional weight.

Similar to encoding, there are also several scaling methods available within the scikit-learn

library. The StandardScaler function is a popular option and was selected for this step.

Another scaler that was heavily considered was the MinMaxScaler. Both the StandardScaler

and MinMaxScaler functions are relatively sensitive to outlier data, which is essential since

many network attacks and anomalous traffic are typically considered infrequent, thereby

considered outlier packets.

The next transformation of data involved splitting the dataset into subsets for cross-

validation. Cross-validation takes the original full dataset and divides it into a series of

multiple subsets to be used for training and testing, or validation (Sarkar & Natarajan, 2019).

One type of cross-validation technique is called Leave-One-Out-Cross-Validation (LOOCV).

One widespread implementation of the LOOCV scheme is k-fold cross-validation, where the

original data is split into k equal-sized folds and, over a series of rounds, each fold becomes

the testing set and the rest act as the training set. This k-fold cross-validation process is

repeated k times, with each fold acting as the designated testing set once. This study utilized

61

the train_test_split function, which performed 10-fold cross-validation and outputs the

dedicated training and testing subsets. This function has several configurable parameters, and

one of the major decisions was to perform a 90/10 split, where 90% of the original data was

used for training, and 10% of the original data was split off as a dedicated test set.

Additionally, the parameters were also configured to incorporate the same proportion of

unique feature data between the training and testing datasets.

Feature reduction is the final data transformation step in this process. Feature

reduction is also crucial in machine learning as it removes the features deemed unhelpful for

categorization (Chollet, 2017). There are several different feature reduction methods;

however, the Principal Component Analysis (PCA) function was selected for this

transformation step. The utilization of PCA for feature reduction was a significant step

because it allowed for automated feature reduction, which was decided by the function. The

selection of PCA and automated feature reduction allowed for consistency between each

unique dataset, rather than applying highly unique and configured reduction methods.

Model Optimization

The optimization process was a significant step during the development of models for Phase

One. This stage involved the usage of scikit-learn’s GridSearchCV function, which performs

an exhaustive search for the best scoring models developed by a cross-validated grid-search

over a submitted parameter grid (Gron, 2017). This function will develop numerous models

based on each combination of parameters to identify which parameters yield the best models

with the highest scoring metrics. This optimization process is applied while developing

machine learning models to create models with ideal parameters and yield the highest possible

performance. Each of the algorithms selected for this study had a series of configurable

parameters that could drastically alter the models’ outcome. This optimization process was

identified which set of parameters were best suited for each combination of datasets and

algorithms. It should be noted that different models using different optimization methods may

select the same algorithm parameters, thereby leading to the same models with identical

metric scores; this is later seen in the results of this study. It should also be noted again that

the Naïve Bayes algorithm is the only algorithm in this study that cannot be optimized since it

62

does not have any optimizable parameters. Each algorithm and its corresponding parameter

grid can be seen below or in the Phase One Python Script in Appendix A.

• Decision Tree - criterion: [gini, entropy], max_features: [auto, sqrt, log2]

• Random Forest - n_estimators: [100, 1000, 3000, 5000], criterion: [gini, entropy],

max_features: [auto, sqrt, log2]

• Ada Boost - n_estimators: [100, 1000, 3000, 5000], learning_rate: [0.5, 1, 1.5]

• Bagging Classifier - n_estimators: [100, 1000, 3000, 5000], max_features: [0.5, 1, 5],

max_samples: [0.1, 0.5, 1]

• Logistic Regression - penalty: [l2, l1, elasticnet], C: [0.1, 1, 10], max_iter: [2500,

5000, 7500, 10000]

• Stochastic Gradient Descent - alpha: [5, 10, 15], penalty: [l2, l1, elasticnet], max_iter:

[100, 1000, 3000, 5000]

Overfitting and Underfitting Avoidance

When training ML models, two major concerns are to avoid overfitting and

underfitting the models (Kumar, 2019). Overfitting means that that produced model is over-

tailored for the particular training data. Overfit models perform well during the training and

testing phase; however, they severely underperform when ingesting new data. Underfitting is

the exact opposite problem of overfitting, meaning that models have not been trained enough.

Underfit models poorly perform during the testing phase as well as when ingesting new data.

It is typically much easier to detect underfitting because the ML models will yield poor metric

results during the testing phase.

Numerous experiments were conducted with various selected and discarded

algorithms, datasets, and optimization parameters. It can be seen later in the Results and

Discussion section that underfitting was never really a problem since the large majority of

trained ML models from Phase One were highly optimized with very positive metric results.

However, as a result, one primary concern for this study was overfitting due to the genuine

possibility of excessive model optimization.

When reviewing Phase One results, it could be argued that the models were overfit

based on how they performed when predicting malicious traffic in Phase Two. However, there

63

are some techniques to avoid or reduce the potential for overfitting. These overfitting

reduction techniques were considered and applied when initially training the ML models.

The first method to reduce overfitting is to apply more training data (Ameisen, 2020).

The more training data utilized, the harder it is for a model to learn too much from a single

small dataset. The size of all five of the datasets for this study was quite large and diverse.

Only 10% of the total CIDDS-001 dataset was utilized because the total dataset size was

causing the VM to exceed its 100 GB of RAM and crash the Python script for excessive

memory allocation.

The second technique to reduce overfitting is to apply regularization, also known as

normalization or scaling (Patterson & Gibson, 2017). Regularizing the ingested data while

training a model will scale the data such that each feature and individual value is scaled and

thereby have a fixed and proportional weight. Many different regularization methods can

cause the resulting ML models to be more sensitive or resistant to outlier data. This study

utilized the StandardScaler regularization method, which is considered reasonably sensitive to

outlier data input.

The third method for overfitting reduction is applying cross-validation when training

models (Bonaccorso, 2020). Cross-validation splits the original full dataset and divides it into

dedicated subsets for training, testing, or validation. Cross-validation helps reduce variability,

thereby limiting overfitting. This study applied 10-fold cross-validation techniques when

initially training the ML models by utilizing the train_test_split function in scikit-learn and

splitting each dataset into ten equal-sized folds, with nine folds used for training and one fold

used for validation.

The fourth method for overfitting avoidance is feature selection and dimensionality

reduction (Halder & Ozdemir, 2018). High-dimensional data, or data with several features, is

computationally expensive and prone to overfitting due to higher complexity. Feature

selection picks a particular subset of features as the most influential properties of the dataset

that more accurately correlates to the best classification of new data, reducing the total

number of features, overall complexity, and potential for overfitting. This research performed

dimensionality reduction two times when training ML models. First, a set of attributes found

in Zeek IDS logs were used to filter the available features found in each dataset; this initial

manual feature reduction removed the greatest number of features from each dataset. Second,

64

the Principal Component Analysis function was also applied to each dataset, which

automatically dropped features that did not directly correlate to the network traffic’s overall

categorization. Overall, the combination of these four overfitting avoidance techniques was

applied to reduce the potential for overfitting. The results of Phase Two may still indicate that

the ML models from Phase One were still overfitted. However, the overfitting avoidance

precautions were still taken nonetheless.

Prediction Dataset Selection and Development

The second phase of this research involved applying the trained models to predict

malicious traffic on unseen datasets. However, to verify the predicted values’ effectiveness

and accuracy, the research required labeled information about the prediction dataset to know

what portion of the traffic was considered malicious versus innocuous. Due to this verification

requirement, the second phase of research utilized one of the previously selected datasets for

training and applied it as a labeled prediction and verification dataset. This prediction dataset

utilized the raw PCAP files fed into the Zeek IDS to produce connection logs. These IDS logs

were then merged into a single PCAP and fed into the Phase Two Python script with the

trained models to make predictions of malicious traffic based on the parsed logs. It should be

noted that this Phase Two Python script utilized a custom Python package called

parsezeeklogs which was installed from the Python Package Index (PyPI) repository

("parsezeeklogs 2.0.1," 2019). This package is just a lightweight utility for reading Zeek IDS

log files and outputting them into CSV format. Everything else in the Phase One and Phase

Two scripts utilizes public Python libraries and includes custom-written code for this

research. The Phase Two script’s prediction values were compared to the CSV files’ labels

from the same prediction dataset.

The initial dataset selected as the prediction and verification dataset was the UNSW-

NB15 dataset. This dataset was selected because it includes publicly available labeled CSV

data as well as raw PCAPs. The UNSW-NB15 dataset contains roughly 100 GB of PCAP

files. However, there were numerous errors while merging the PCAP files to then feed into

the Zeek IDS. These errors may be due to synthetic packets produced by particular tools for

the UNSW-NB15 dataset during its development. Initially, the mergecap tool was utilized to

combine the PCAPs ("mergecap," 2021). However, while this tool is preinstalled on Ubuntu

65

and several other Linux systems, it has very poor error handling. While using mergecap, the

tool would crash due to malformed packets and would not produce any single PCAP output if

encountering an error. As a result, another public tool was identified called joincap, available

on GitHub (assafmo, 2020). This tool is very similar to mergecap; however, it focuses on

graceful error handling and will skip over malformed packets when combining PCAP files.

Through joincap, the 100 GB of PCAPs were joined together into a single 60 GB PCAP. Due

to the extreme loss of raw PCAP files when merging the files, the UNSW-NB15 dataset was

not selected for prediction and verification.

The final and officially selected dataset utilized for prediction comparison was the

CICIDS 2017 dataset. This dataset is publicly available online and includes both labeled CSV

files as well as raw PCAP files. The PCAPs were fed through the mergecap tool and

successfully produced a single PCAP file with no errors ("mergecap," 2021). Additionally, the

combined PCAP was the same size as the total split individual PCAP files, indicating an

entirely successful merge. As a result, the CICIDS 2017 was selected as the prediction and

verification dataset for Phase Two of this research. This dataset acted as a form of control

group since it was used in both research phases. The CICIDS 2017 dataset was utilized in the

first phase of research in the form of labeled CSV data as one of the five datasets to train the

105 ML models. Additionally, the raw PCAP files of the CICIDS 2017 dataset were utilized

for the second phase of research to be ingested into Zeek IDS to produce Zeek connection

logs and be ingested into the Phase Two Python script.

66

CHAPTER 4

RESULTS AND DISCUSSION

This section will review each phase of the research results and explain the different

experiments’ outcomes. As a quick review, this dissertation’s research utilized the

quantitative experimental study design, which was divided into two primary phases. The first

phase of this research involved generating ML models based on a series of datasets, ML

algorithms, and scoring methods. The first ML models are trained and evaluated on labeled

data and then fed into the second research phase. This second phase of research applies the

previously trained models on unseen network traffic to observe if the theoretical detection

rates still apply when scanning for malicious traffic in new network data.

Phase One – Results

For the first phase of research, a Python script was utilized to read in datasets and then

trained a series of ML models based on a combination of ML algorithms, datasets, and

scoring methods. The first time the script was executed, the algorithms were initially

optimized for specific scoring methods – accuracy, precision, and F1 score. The Grid Search

Cross-Validation function (GridSearchCV) operates by testing a series of parameters and

values to identify which parameters yield the best score based on the selected scoring method.

Note that the Naïve Bayes algorithm cannot be optimized due to its nature and the lack of

parameter options. After optimizing the parameters, the script was rerun and produced a total

of 105 models. The script output contained a series of CSV files, which contained the

evaluation metrics of each model.

5 datasets * 7 ML algorithms * 3 scoring optimization methods = 105 total trained models

Datasets – KDD 99, NSL-KDD, UNSW-NB15, CICIDS 2017, and CICIDS-001

67

ML algorithms – Naïve Bayes, Decision Tree, Random Forest, Ada Boost, Bagging

Classifier, Logistic Regression, and Stochastic Gradient Descent

Scoring (optimization) methods – accuracy, precision_macro (precision), and f1_macro (F1

score)

Evaluation metrics – accuracy, precision, recall, and F1 score

68

Phase One – Parameter Optimization

Score Method Algorithm Best Parameters Best Score Train Time

accuracy Decision Tree criterion='entropy', max_features='log2' 0.99796 0.48292

accuracy Random Forest criterion='gini', max_features='log2', n_estimators=100 0.99806 210.16277

accuracy Ada Boost learning_rate=1.5, n_estimators=5000 0.99793 814.39637

accuracy Bagging Classifier max_features=0.5, max_samples=0.5, n_estimators=5000 0.99801 243.03303

accuracy Logistic Regression C=10, max_iter=2500, penalty='l2' 0.96866 0.95317

accuracy Stochastic Gradient Descent alpha=15, max_iter=1000, penalty='l2' 0.83157 1.83523

precision_macro Decision Tree criterion='entropy', max_features='auto' 0.99572 0.49719

precision_macro Random Forest criterion='gini', max_features='log2', n_estimators=100 0.99577 213.23284

precision_macro Ada Boost learning_rate=1.5, n_estimators=5000 0.99557 790.43513

precision_macro Bagging Classifier max_features=5, max_samples=0.5, n_estimators=5000 0.99566 256.45741

precision_macro Logistic Regression C=10, max_iter=2500, penalty='l2' 0.96980 1.27933

precision_macro Stochastic Gradient Descent alpha=15, max_iter=1000, penalty='l2' 0.59331 2.53445

f1_macro Decision Tree criterion='entropy', max_features='auto' 0.99682 0.48747

f1_macro Random Forest criterion='gini', max_features='sqrt', n_estimators=100 0.99695 214.75251

f1_macro Ada Boost learning_rate=1.5, n_estimators=5000 0.99676 796.15304

f1_macro Bagging Classifier max_features=0.5, max_samples=0.5, n_estimators=100 0.99689 246.88263

f1_macro Logistic Regression C=10, max_iter=2500, penalty='l2' 0.94873 1.28646

f1_macro Stochastic Gradient Descent alpha=15, max_iter=1000, penalty='l2' 0.53052 2.66449

Table 4: Phase One – KDD 99 Models – Parameter Optimization

69

Score Method Algorithm Best Parameters Best Score Train Time

accuracy Decision Tree criterion='entropy', max_features='auto' 0.98169 0.02364

accuracy Random Forest criterion='gini', max_features='log2', n_estimators=5000 0.98371 33.80612

accuracy Ada Boost learning_rate=1.5, n_estimators=3000 0.97926 21.86760

accuracy Bagging Classifier max_features=0.5, max_samples=0.5, n_estimators=1000 0.98243 40.31787

accuracy Logistic Regression C=0.1, max_iter=2500, penalty='l2' 0.90567 0.05589

accuracy Stochastic Gradient Descent alpha=5, max_iter=1000, penalty='l2' 0.56294 0.06785

precision_macro Decision Tree criterion='gini', max_features='auto' 0.98071 0.02837

precision_macro Random Forest criterion='entropy', max_features='sqrt', n_estimators=100 0.98384 32.76877

precision_macro Ada Boost learning_rate=1.5, n_estimators=3000 0.97929 21.31620

precision_macro Bagging Classifier max_features=0.5, max_samples=0.5, n_estimators=3000 0.98285 40.37516

precision_macro Logistic Regression C=0.1, max_iter=2500, penalty='l2' 0.90559 0.06648

precision_macro Stochastic Gradient Descent alpha=5, max_iter=3000, penalty='l2' 0.73119 0.08599

f1_macro Decision Tree criterion='entropy', max_features='log2' 0.98161 0.03075

f1_macro Random Forest criterion='gini', max_features='log2', n_estimators=1000 0.98376 33.18701

f1_macro Ada Boost learning_rate=1.5, n_estimators=3000 0.97924 21.55623

f1_macro Bagging Classifier max_features=0.5, max_samples=0.5, n_estimators=1000 0.98261 40.31422

f1_macro Logistic Regression C=0.1, max_iter=2500, penalty='l2' 0.90562 0.06172

f1_macro Stochastic Gradient Descent alpha=5, max_iter=5000, penalty='l2' 0.44130 0.08950

Table 5: Phase One – NSL-KDD Models – Parameter Optimization

70

Score Method Algorithm Best Parameters Best Score Train Time

accuracy Decision Tree criterion='gini', max_features='sqrt' 0.98941 0.43377

accuracy Random Forest criterion='entropy', max_features='log2', n_estimators=100 0.99123 247.63014

accuracy Ada Boost learning_rate=1, n_estimators=3000 0.98921 605.48672

accuracy Bagging Classifier max_features=0.5, max_samples=0.5, n_estimators=1000 0.99115 189.27455

accuracy Logistic Regression C=0.1, max_iter=2500, penalty='l2' 0.97423 0.66619

accuracy Stochastic Gradient Descent alpha=15, max_iter=100, penalty='l2' 0.87683 0.98321

precision_macro Decision Tree criterion='entropy', max_features='sqrt' 0.97708 0.35475

precision_macro Random Forest criterion='entropy', max_features='sqrt', n_estimators=1000 0.98003 253.54329

precision_macro Ada Boost learning_rate=1, n_estimators=5000 0.97499 631.19595

precision_macro Bagging Classifier max_features=1, max_samples=0.5, n_estimators=100 0.98453 185.29858

precision_macro Logistic Regression C=0.1, max_iter=2500, penalty='l2' 0.94536 0.82141

precision_macro Stochastic Gradient Descent alpha=10, max_iter=100, penalty='l2' 0.53703 1.35347

f1_macro Decision Tree criterion='gini', max_features='log2' 0.97607 0.40691

f1_macro Random Forest criterion='entropy', max_features='auto', n_estimators=100 0.98013 251.29138

f1_macro Ada Boost learning_rate=1, n_estimators=3000 0.97550 613.18410

f1_macro Bagging Classifier max_features=0.5, max_samples=0.5, n_estimators=3000 0.97984 188.67667

f1_macro Logistic Regression C=0.1, max_iter=2500, penalty='l2' 0.94090 0.79907

f1_macro Stochastic Gradient Descent alpha=15, max_iter=1000, penalty='l2' 0.48656 1.22815

Table 6: Phase One – UNSW-NB15 Models – Parameter Optimization

71

Score Method Algorithm Best Parameters Best Score Train Time

accuracy Decision Tree criterion='entropy', max_features='sqrt' 0.98867 0.51552

accuracy Random Forest criterion='gini', max_features='sqrt', n_estimators=1000 0.99160 364.72154

accuracy Ada Boost learning_rate=1.5, n_estimators=5000 0.92834 552.42350

accuracy Bagging Classifier max_features=5, max_samples=0.5, n_estimators=5000 0.99115 257.60872

accuracy Logistic Regression C=1, max_iter=2500, penalty='l2' 0.84413 0.48867

accuracy Stochastic Gradient Descent alpha=15, max_iter=3000, penalty='l2' 0.80258 0.94233

precision_macro Decision Tree criterion='entropy', max_features='auto' 0.98147 0.45460

precision_macro Random Forest criterion='gini', max_features='sqrt', n_estimators=1000 0.98662 366.67431

precision_macro Ada Boost learning_rate=1.5, n_estimators=5000 0.89797 558.84882

precision_macro Bagging Classifier max_features=5, max_samples=0.5, n_estimators=5000 0.98653 260.66536

precision_macro Logistic Regression C=0.1, max_iter=2500, penalty='l2' 0.77686 0.65171

precision_macro Stochastic Gradient Descent alpha=15, max_iter=1000, penalty='l2' 0.47620 1.42750

f1_macro Decision Tree criterion='entropy', max_features='log2' 0.98226 0.46069

f1_macro Random Forest criterion='entropy', max_features='auto', n_estimators=1000 0.98678 371.29855

f1_macro Ada Boost learning_rate=1.5, n_estimators=5000 0.88283 560.62389

f1_macro Bagging Classifier max_features=5, max_samples=0.5, n_estimators=3000 0.98603 256.17446

f1_macro Logistic Regression C=10, max_iter=2500, penalty='l2' 0.69967 0.64171

f1_macro Stochastic Gradient Descent alpha=15, max_iter=1000, penalty='l2' 0.46995 1.31777

Table 7: Phase One – CICIDS 2017 Models – Parameter Optimization

72

Score Method Algorithm Best Parameters Best Score Train Time

accuracy Decision Tree criterion='entropy', max_features='sqrt' 0.99882 0.49638

accuracy Random Forest criterion='entropy', max_features='sqrt', n_estimators=1000 0.99927 259.87577

accuracy Ada Boost learning_rate=1.5, n_estimators=5000 0.99836 779.99958

accuracy Bagging Classifier max_features=5, max_samples=0.5, n_estimators=1000 0.99910 223.35500

accuracy Logistic Regression C=10, max_iter=2500, penalty='l2' 0.94686 0.74863

accuracy Stochastic Gradient Descent alpha=5, max_iter=100, penalty='l2' 0.89727 1.12009

precision_macro Decision Tree criterion='entropy', max_features='auto' 0.99703 0.46554

precision_macro Random Forest criterion='entropy', max_features='log2', n_estimators=3000 0.99817 264.88818

precision_macro Ada Boost learning_rate=1.5, n_estimators=5000 0.99516 769.69732

precision_macro Bagging Classifier max_features=0.5, max_samples=0.5, n_estimators=1000 0.99821 228.25839

precision_macro Logistic Regression C=10, max_iter=2500, penalty='l2' 0.89943 0.95949

precision_macro Stochastic Gradient Descent alpha=5, max_iter=100, penalty='l2' 0.44863 1.55976

f1_macro Decision Tree criterion='entropy', max_features='log2' 0.99690 0.47622

f1_macro Random Forest criterion='entropy', max_features='auto', n_estimators=3000 0.99801 265.96089

f1_macro Ada Boost learning_rate=1.5, n_estimators=5000 0.99549 785.13437

f1_macro Bagging Classifier max_features=5, max_samples=0.5, n_estimators=1000 0.99756 225.29216

f1_macro Logistic Regression C=10, max_iter=2500, penalty='l2' 0.83344 0.95891

f1_macro Stochastic Gradient Descent alpha=5, max_iter=100, penalty='l2' 0.47293 1.63497

Table 8: Phase One – CIDDS-001 Models – Parameter Optimization

73

Phase One – KDD 99 Dataset Results

Model Accuracy Precision Recall F1 Score Train Time

Naïve Bayes 0.97303 0.96586 0.94853 0.95689 0.19895

Decision Tree 0.99816 0.99600 0.99824 0.99712 0.36601

Random Forest 0.99819 0.99603 0.99831 0.99716 2.47200

Ada Boost 0.99794 0.99554 0.99804 0.99678 949.45873

Bagging Classifier 0.99816 0.99592 0.99831 0.99711 33.93054

Logistic Regression 0.96855 0.96973 0.93048 0.94854 0.43249

Stochastic Gradient Descent 0.80108 0.64298 0.50011 0.44508 0.67686

Table 9: Phase One – KDD 99 Models – Accuracy Optimization

Model Accuracy Precision Recall F1 Score Train Time

Naïve Bayes 0.97303 0.96586 0.94853 0.95689 0.19037

Decision Tree 0.99812 0.99598 0.99814 0.99706 0.32635

Random Forest 0.99818 0.99602 0.99830 0.99715 2.49991

Ada Boost 0.99794 0.99554 0.99804 0.99678 966.79733

Bagging Classifier 0.99816 0.99598 0.99829 0.99713 70.83681

Logistic Regression 0.96855 0.96973 0.93048 0.94854 0.35421

Stochastic Gradient Descent 0.80108 0.80108 1 0.88956 0.19012

Table 10: Phase One – KDD 99 Models – Precision Optimization

Model Accuracy Precision Recall F1 Score Train Time

Naïve Bayes 0.97303 0.96586 0.94853 0.95689 0.15929

Decision Tree 0.99816 0.99602 0.99822 0.99712 0.20516

Random Forest 0.99818 0.99602 0.99830 0.99715 1.78166

Ada Boost 0.99794 0.99554 0.99804 0.99678 943.96914

Bagging Classifier 0.99814 0.99589 0.99830 0.99709 1.05218

Logistic Regression 0.96855 0.96973 0.93048 0.94854 0.42434

Stochastic Gradient Descent 0.80108 0.80108 1 0.88956 0.18991

Table 11: Phase One – KDD 99 Models – F1 Score Optimization

74

Phase One – NSL-KDD Dataset Results

Model Accuracy Precision Recall F1 Score Train Time

Naïve Bayes 0.89173 0.89252 0.89246 0.89173 0.00726

Decision Tree 0.98613 0.98608 0.98616 0.98612 0.01268

Random Forest 0.98828 0.98831 0.98824 0.98827 3.80120

Ada Boost 0.98155 0.98154 0.98153 0.98154 15.72710

Bagging Classifier 0.98734 0.98742 0.98725 0.98733 0.58591

Logistic Regression 0.90648 0.90636 0.90653 0.90643 0.01096

Stochastic Gradient Descent 0.51387 0.51387 1 0.67888 0.00446

Table 12: Phase One – NSL-KDD Models – Accuracy Optimization

Model Accuracy Precision Recall F1 Score Train Time

Naïve Bayes 0.89173 0.89252 0.89246 0.89173 0.00478

Decision Tree 0.98741 0.98739 0.98741 0.98740 0.00858

Random Forest 0.98815 0.98817 0.98811 0.98814 0.05314

Ada Boost 0.98155 0.98154 0.98153 0.98154 15.61126

Bagging Classifier 0.98734 0.98742 0.98725 0.98733 0.87895

Logistic Regression 0.90648 0.90636 0.90653 0.90643 0.00951

Stochastic Gradient Descent 0.51387 0.51387 1 0.67888 0.00392

Table 13: Phase One – NSL-KDD Models – Precision Optimization

Model Accuracy Precision Recall F1 Score Train Time

Naïve Bayes 0.89173 0.89252 0.89246 0.89173 0.00491

Decision Tree 0.98647 0.98643 0.98649 0.98646 0.01002

Random Forest 0.98822 0.98825 0.98817 0.98821 0.81297

Ada Boost 0.98155 0.98154 0.98153 0.98154 15.61979

Bagging Classifier 0.98734 0.98742 0.98725 0.98733 0.63036

Logistic Regression 0.90648 0.90636 0.90653 0.90643 0.00933

Stochastic Gradient Descent 0.54612 0.71213 0.55799 0.45311 0.00573

Table 14: Phase One – NSL-KDD Models – F1 Score Optimization

75

Phase One – UNSW-NB15 Dataset Results

Model Accuracy Precision Recall F1 Score Train Time

Naïve Bayes 0.89293 0.78412 0.64256 0.68054 0.08435

Decision Tree 0.99170 0.98080 0.98154 0.98117 0.37921

Random Forest 0.99306 0.98372 0.98481 0.98426 1.49134

Ada Boost 0.98971 0.97442 0.97912 0.97675 466.55119

Bagging Classifier 0.99317 0.98403 0.98496 0.98449 19.65784

Logistic Regression 0.97419 0.94521 0.93655 0.94082 0.35886

Stochastic Gradient Descent 0.87405 0.87405 1 0.93279 0.08537

Table 15: Phase One – UNSW-NB15 Models – Accuracy Optimization

Model Accuracy Precision Recall F1 Score Train Time

Naïve Bayes 0.89293 0.78412 0.64256 0.68054 0.08946

Decision Tree 0.99187 0.98118 0.98195 0.98156 0.29828

Random Forest 0.99303 0.98386 0.98449 0.98418 12.24554

Ada Boost 0.98989 0.97491 0.97942 0.97715 778.32787

Bagging Classifier 0.97446 0.98575 0.89864 0.93638 1.08145

Logistic Regression 0.97419 0.94521 0.93655 0.94082 0.35494

Stochastic Gradient Descent 0.87405 0.87405 1 0.93279 0.08048

Table 16: Phase One – UNSW-NB15 Models – Precision Optimization

Model Accuracy Precision Recall F1 Score Train Time

Naïve Bayes 0.89293 0.78412 0.64256 0.68054 0.08273

Decision Tree 0.99126 0.97967 0.98066 0.98016 0.25876

Random Forest 0.99305 0.98386 0.98459 0.98422 1.38001

Ada Boost 0.98971 0.97442 0.97912 0.97675 480.33834

Bagging Classifier 0.99318 0.98397 0.98507 0.98452 54.13052

Logistic Regression 0.97419 0.94521 0.93655 0.94082 0.52767

Stochastic Gradient Descent 0.87405 0.87405 1 0.93279 0.09553

Table 17: Phase One – UNSW-NB15 Models – F1 Score Optimization

76

Phase One – CICIDS 2017 Dataset Results

Model Accuracy Precision Recall F1 Score Train Time

Naïve Bayes 0.85553 0.81139 0.68245 0.71751 0.09344

Decision Tree 0.99318 0.98845 0.99007 0.98926 0.42589

Random Forest 0.99415 0.99032 0.99124 0.99078 20.96378

Ada Boost 0.92856 0.89923 0.86886 0.88291 723.04974

Bagging Classifier 0.99440 0.99115 0.99117 0.99116 176.10695

Logistic Regression 0.84409 0.77625 0.67020 0.70009 0.19176

Stochastic Gradient Descent 0.80256 0.80256 1 0.89047 0.12037

Table 18: Phase One – CICIDS 2017 Models – Accuracy Optimization

Model Accuracy Precision Recall F1 Score Train Time

Naïve Bayes 0.85553 0.81139 0.68245 0.71751 0.09795

Decision Tree 0.99309 0.98826 0.98997 0.98911 0.47588

Random Forest 0.99415 0.99033 0.99122 0.99077 20.17999

Ada Boost 0.92856 0.89923 0.86886 0.88291 734.92824

Bagging Classifier 0.99440 0.99113 0.99121 0.99117 171.72592

Logistic Regression 0.84409 0.77625 0.67020 0.70009 0.16185

Stochastic Gradient Descent 0.80256 0.80256 1 0.89047 0.27912

Table 19: Phase One – CICIDS 2017 Models – Precision Optimization

Model Accuracy Precision Recall F1 Score Train Time

Naïve Bayes 0.85553 0.81139 0.68245 0.71751 0.08759

Decision Tree 0.99318 0.98842 0.99010 0.98926 0.41032

Random Forest 0.99416 0.99029 0.99132 0.99080 18.56984

Ada Boost 0.92856 0.89923 0.86886 0.88291 735.96754

Bagging Classifier 0.99440 0.99116 0.99119 0.99117 107.24517

Logistic Regression 0.84409 0.77625 0.67020 0.70009 0.18086

Stochastic Gradient Descent 0.80256 0.80256 1 0.89047 0.08245

Table 20: Phase One – CICIDS 2017 Models – F1 Score Optimization

77

Phase One – CIDDS-001 Dataset Results

Model Accuracy Precision Recall F1 Score Train Time

Naïve Bayes 0.90131 0.74686 0.88045 0.79145 0.16439

Decision Tree 0.99951 0.99877 0.99855 0.99866 0.50578

Random Forest 0.99963 0.99908 0.99893 0.99900 14.92514

Ada Boost 0.99852 0.99571 0.99627 0.99599 1203.30446

Bagging Classifier 0.99959 0.99904 0.99872 0.99888 22.60481

Logistic Regression 0.95024 0.91176 0.79929 0.84416 0.37160

Stochastic Gradient Descent 0.89727 0.89727 1 0.94585 0.14127

Table 21: Phase One – CIDDS-001 Models – Accuracy Optimization

Model Accuracy Precision Recall F1 Score Train Time

Naïve Bayes 0.90131 0.74686 0.88045 0.79145 0.15782

Decision Tree 0.99948 0.99869 0.99847 0.99858 0.37718

Random Forest 0.99963 0.99908 0.99893 0.99900 40.93319

Ada Boost 0.99852 0.99571 0.99627 0.99599 1116.44332

Bagging Classifier 0.99956 0.99909 0.99851 0.99880 15.54522

Logistic Regression 0.95024 0.91176 0.79929 0.84416 0.35591

Stochastic Gradient Descent 0.89727 0.89727 1 0.94585 0.13498

Table 22: Phase One – CIDDS-001 Models – Precision Optimization

Model Accuracy Precision Recall F1 Score Train Time

Naïve Bayes 0.90131 0.74686 0.88045 0.79145 0.13131

Decision Tree 0.99950 0.99873 0.99853 0.99863 0.31852

Random Forest 0.99963 0.99908 0.99893 0.99900 39.92271

Ada Boost 0.99852 0.99569 0.99627 0.99598 1051.30573

Bagging Classifier 0.99959 0.99903 0.99877 0.99890 22.53338

Logistic Regression 0.95024 0.91176 0.79929 0.84416 0.36495

Stochastic Gradient Descent 0.89727 0.89727 1 0.94585 0.13185

Table 23: Phase One – CIDDS-001 Models – F1 Score Optimization

78

Phase One – Discussion

Parameter Optimization

 The first time the script was executed, the goal was to identify optimized parameters

for each model. It should be noted that the Naïve Bayes algorithm cannot be optimized due to

the nature of the algorithm and a lack of parameters available. Additionally, when reviewing

the parameter optimization scores, it can be seen that some of the ideal parameters remain

consistent between different tests. The impact of these same selected and optimized

parameters can be better seen when reviewing the actual trained models’ evaluation metrics as

they yield consistent evaluation metric scores.

Many of the models were considered highly optimized as most of them were able to

obtain roughly 99% within their specified scoring method. Out of the 90 total trained models

(Naïve Bayes cannot be optimized), only 30 were considered poorly optimized. Regarding

this phase’s goals, anything lower than a 95% score within the respective scoring method is

considered poorly optimized. There was a noticeable trend identified by reviewing the results.

All the algorithms produced highly optimized models and scores except for three particular

algorithms. The Stochastic Gradient Descent, Logistic Regression, and Ada Boost algorithms

and associated models consistently underperformed.

The worst performing algorithm was the Stochastic Gradient Descent algorithm,

which consistently failed to reach a score higher than 95% across every single test, regardless

of the particular dataset or scoring method. The second worst performing algorithm was the

Logistic Regression algorithm. This algorithm consistently failed to reach a proper

optimization score across each dataset when the specified scoring method was set to

f1_macro. Additionally, there were multiple instances where the Logistic Regression

algorithm failed to optimize appropriately and yielded inconsistent metrics. Lastly, the only

other algorithm that failed to reach proper optimization was the Ada Boost algorithm. This

algorithm only failed when interacting with the CICIDS 2017 dataset. However, it failed all

three scoring methods.

Model Production

Similar to the parameter optimization phase, the actual production of the models

yielded promising results. The large majority of models obtained 95% or better scores across

79

each evaluation metric, including accuracy, precision, recall, and F1 score. It should be noted

that some of the different scoring methods utilized the same parameter configurations. The

reusing of the same function parameters caused some of the models to yield remarkably

similar, if not exact, metrics between tests with different scoring methods.

The only algorithm that yielded consistently low evaluation metrics was Stochastic

Gradient Descent. Across every test, regardless of dataset or scoring method, the SGD models

always produced evaluation metrics that were well below the 95% threshold. There were large

fluctuations of metric scores when trained using the KDD 99 and NSL-KDD datasets.

However, the UNSW-NB15, CICIDS 2017, and CIDDS-001 datasets yielded consistently low

metric scores.

Additionally, another interesting observation of these results indicates that the

differing scoring or optimization methods did not generate significantly different results. Each

model produced using different scoring methods generated slightly different metrics.

However, the models never caused the metrics to change enough to cross the threshold

between success (>95%) and failure (<95%). There were some instances where the

optimization method caused significant fluctuations, as seen in the tests involving the

Stochastic Gradient Descent algorithm and the KDD 99 and NSL-KDD datasets. Therefore,

while the differing scoring methods may have produced better respective metrics, they were

still not impactful enough to change the score’s overall category (success or failure).

While reviewing the models trained using the KDD 99 dataset, it appears that the

Naïve Bayes, Decision Tree, Random Forest, Ada Boost, and Bagging Classifier algorithms

maintained consistent metric scores greater than 95% across all the different scoring methods.

The Logistic Regression algorithm achieved high scores (>95%) in accuracy or precision

across all scoring methods; however, the algorithm also produced low scores (<95%) in recall

and f1 values across all scoring methods.

When trained using the NSL-KDD dataset, the Decision Tree, Random Forest, Ada

Boost, and Bagging Classifier algorithms produced positive metrics of >95% regardless of the

scoring method. The Naïve Bayes and Logistic Regression algorithms yielded consistently

below 95% across each scoring method.

The models trained off the UNSW-NB15 dataset produced highly consistent metrics

with hardly any fluctuations between differing scoring methods. The Decision Tree, Random

80

Forest, Ada Boost, and Bagging Classifier algorithms produced positive results above the

95% threshold regardless of the scoring method. Unfortunately, the Naïve Bayes algorithm

consistently yielded low metrics (<95%) across each scoring method. The Logistic Regression

algorithm produced models that achieved successful metrics (>95%) in terms of accuracy

metrics; however, it also maintained poor results (<95%) in terms of precision, recall, and F1

score metrics across all scoring methods.

The CICIDS 2017 dataset yielded interesting metrics because it was the only dataset

that caused the Ada Boost algorithm to produce low metrics consistently. These low Ada

Boost metrics may have been due to the dataset’s size or possibly features selected for

training. Additionally, this dataset also generated highly consistent metrics between each of

the scoring method tests. The Decision Tree, Random Forest, and Bagging Classifier

algorithms all produced models that generated positive metrics above the 95% threshold.

However, the Naïve Bayes and Ada Boost algorithms regularly stayed below the 95%

threshold across all scoring methods.

The models trained using the CIDDS-001 dataset also maintained remarkably

consistent results between algorithms. The Decision Tree, Random Forest, Ada Boost, and

Bagging classifier algorithms achieved positive metrics (>95%) across all scoring methods.

However, the Naïve Bayes algorithm maintained low metrics (<95%) regardless of the

scoring method. The Logistic Regression algorithm achieved positive results (>95%) in the

accuracy metric; however, it also generated negative results in precision, recall, and F1 score

across all scoring methods.

81

Phase Two – Results

This second phase of research attempted to apply the trained ML models from the

previous phase and see how the theoretical models handle unseen network traffic. For this

phase of research, the raw PCAPs of the CICIDS 2017 dataset were utilized. The CICIDS

2017 dataset was used in the first phase for training a model. However, this same dataset was

also used in this second phase as a sort of control group and a known true value indicator for

flagged traffic predictions. It should be noted for clarification that the CICIDS 2017 dataset

was used in both phases of research. The first phase utilized the CSV data, which consisted of

PCAP traffic and manual input for labels, whereas the second phase utilized only the raw

PCAP traffic only which were then fed into the Zeek IDS for log generation. A second Python

script was utilized for this second phase as well. This second script imported the Zeek logs

along with the previously trained ML models. After parsing and mapping Zeek log fields to

the applicable features for each trained ML model, the script successfully produced a

prediction value of malicious traffic. This script allowed for previously trained ML models to

predict malicious traffic on unseen data. However, the accuracy of these results appears to

vary dramatically. The results are, again, divided up by trained dataset, ML algorithm, and

scoring method.

Phase Two – CICIDS 2017 – True Values

Packets Percentage

Normal 2273097 0.80300

Malicious 557646 0.19699

Table 24: Phase Two – CICIDS 2017 – True Values

82

Phase Two – Trained Models’ Predictions on CICIDS 2017 Raw Traffic

Model Score Method Malicious Normal Total Flagged Traffic

Naïve Bayes Accuracy 0 2119207 2119207 0

Decision Tree Accuracy 1692378 426829 2119207 0.79859

Random Forest Accuracy 0 2119207 2119207 0

Ada Boost Accuracy 0 2119207 2119207 0

Bagging Classifier Accuracy 0 2119207 2119207 0

Logistic Regression Accuracy 1731105 388102 2119207 0.81686

Stochastic Gradient Descent Accuracy 2119207 0 2119207 1

Naïve Bayes Precision 0 2119207 2119207 0

Decision Tree Precision 2119207 0 2119207 1

Random Forest Precision 0 2119207 2119207 0

Ada Boost Precision 0 2119207 2119207 0

Bagging Classifier Precision 426829 1692378 2119207 0.20141

Logistic Regression Precision 1731105 388102 2119207 0.81686

Stochastic Gradient Descent Precision 1731105 388102 2119207 0.81686

Naïve Bayes F1 Score 0 2119207 2119207 0

Decision Tree F1 Score 0 2119207 2119207 0

Random Forest F1 Score 0 2119207 2119207 0

Ada Boost F1 Score 0 2119207 2119207 0

Bagging Classifier F1 Score 0 2119207 2119207 0

Logistic Regression F1 Score 1731105 388102 2119207 0.81686

Stochastic Gradient Descent F1 Score 2119207 0 2119207 1

Table 25: Phase Two – KDD 99 Models – Predictions on CICIDS 2017 Raw Traffic

83

Model Score Method Malicious Normal Total Flagged Traffic

Naïve Bayes Accuracy 2080480 38727 2119207 0.98173

Decision Tree Accuracy 38727 2080480 2119207 0.01827

Random Forest Accuracy 0 2119207 2119207 0

Ada Boost Accuracy 38727 2080480 2119207 0.01827

Bagging Classifier Accuracy 0 2119207 2119207 0

Logistic Regression Accuracy 1731105 388102 2119207 0.81686

Stochastic Gradient Descent Accuracy 1731105 388102 2119207 0.81686

Naïve Bayes Precision 2080480 38727 2119207 0.98173

Decision Tree Precision 0 2119207 2119207 0

Random Forest Precision 38727 2080480 2119207 0.01827

Ada Boost Precision 38727 2080480 2119207 0.01827

Bagging Classifier Precision 0 2119207 2119207 0

Logistic Regression Precision 1731105 388102 2119207 0.81686

Stochastic Gradient Descent Precision 1731105 388102 2119207 0.81686

Naïve Bayes F1 Score 2080480 38727 2119207 0.98173

Decision Tree F1 Score 0 2119207 2119207 0

Random Forest F1 Score 0 2119207 2119207 0

Ada Boost F1 Score 38727 2080480 2119207 0.01827

Bagging Classifier F1 Score 0 2119207 2119207 0

Logistic Regression F1 Score 1731105 388102 2119207 0.81686

Stochastic Gradient Descent F1 Score 1731105 388102 2119207 0.81686

Table 26: Phase Two – NSL-KDD Models – Predictions on CICIDS 2017 Raw Traffic

84

Model Score Method Malicious Normal Total Flagged Traffic

Naïve Bayes Accuracy 2119207 0 2119207 1

Decision Tree Accuracy 2081422 37785 2119207 0.98217

Random Forest Accuracy 2084743 34464 2119207 0.98374

Ada Boost Accuracy 3451 2115756 2119207 0.00163

Bagging Classifier Accuracy 1 2119206 2119207 0

Logistic Regression Accuracy 2119207 0 2119207 1

Stochastic Gradient Descent Accuracy 0 2119207 2119207 0

Naïve Bayes Precision 2119207 0 2119207 1

Decision Tree Precision 38208 2080999 2119207 0.01803

Random Forest Precision 2084403 34804 2119207 0.98358

Ada Boost Precision 0 2119207 2119207 0

Bagging Classifier Precision 0 2119207 2119207 0

Logistic Regression Precision 2119207 0 2119207 1

Stochastic Gradient Descent Precision 2119207 0 2119207 1

Naïve Bayes F1 Score 2119207 0 2119207 1

Decision Tree F1 Score 0 2119207 2119207 0

Random Forest F1 Score 2119194 13 2119207 0.99999

Ada Boost F1 Score 3451 2115756 2119207 0.00163

Bagging Classifier F1 Score 0 2119207 2119207 0

Logistic Regression F1 Score 2119207 0 2119207 1

Stochastic Gradient Descent F1 Score 0 2119207 2119207 0

Table 27: Phase Two – UNSW-NB15 Models – Predictions on CICIDS 2017 Raw Traffic

85

Model Score Method Malicious Normal Total Flagged Traffic

Naïve Bayes Accuracy 531212 1587995 2119207 0.25067

Decision Tree Accuracy 236062 1883145 2119207 0.11139

Random Forest Accuracy 360301 1758906 2119207 0.17002

Ada Boost Accuracy 783534 1335673 2119207 0.36973

Bagging Classifier Accuracy 369295 1749912 2119207 0.17426

Logistic Regression Accuracy 8948 2110259 2119207 0.00422

Stochastic Gradient Descent Accuracy 0 2119207 2119207 0

Naïve Bayes Precision 531212 1587995 2119207 0.25067

Decision Tree Precision 415476 1703731 2119207 0.19605

Random Forest Precision 361007 1758200 2119207 0.17035

Ada Boost Precision 783534 1335673 2119207 0.36973

Bagging Classifier Precision 368940 1750267 2119207 0.17409

Logistic Regression Precision 8948 2110259 2119207 0.00422

Stochastic Gradient Descent Precision 0 2119207 2119207 0

Naïve Bayes F1 Score 531212 1587995 2119207 0.25067

Decision Tree F1 Score 400550 1718657 2119207 0.18901

Random Forest F1 Score 360171 1759036 2119207 0.16996

Ada Boost F1 Score 783534 1335673 2119207 0.36973

Bagging Classifier F1 Score 368985 1750222 2119207 0.17411

Logistic Regression F1 Score 8948 2110259 2119207 0.00422

Stochastic Gradient Descent F1 Score 0 2119207 2119207 0

Table 28: Phase Two – CICIDS 2017 Models – Predictions on CICIDS 2017 Raw Traffic

86

Model Score Method Malicious Normal Total Flagged Traffic

Naïve Bayes Accuracy 0 2119207 2119207 0

Decision Tree Accuracy 0 2119207 2119207 0

Random Forest Accuracy 0 2119207 2119207 0

Ada Boost Accuracy 30 2119177 2119207 1.42E-05

Bagging Classifier Accuracy 0 2119207 2119207 0

Logistic Regression Accuracy 2119207 0 2119207 1

Stochastic Gradient Descent Accuracy 0 2119207 2119207 0

Naïve Bayes Precision 0 2119207 2119207 0

Decision Tree Precision 0 2119207 2119207 0

Random Forest Precision 0 2119207 2119207 0

Ada Boost Precision 30 2119177 2119207 1.42E-05

Bagging Classifier Precision 0 2119207 2119207 0

Logistic Regression Precision 2119207 0 2119207 1

Stochastic Gradient Descent Precision 0 2119207 2119207 0

Naïve Bayes F1 Score 0 2119207 2119207 0

Decision Tree F1 Score 44 2119163 2119207 2.08E-05

Random Forest F1 Score 0 2119207 2119207 0

Ada Boost F1 Score 30 2119177 2119207 1.42E-05

Bagging Classifier F1 Score 0 2119207 2119207 0

Logistic Regression F1 Score 2119207 0 2119207 1

Stochastic Gradient Descent F1 Score 0 2119207 2119207 0

Table 29: Phase Two – CIDDS-001 Models – Predictions on CICIDS 2017 Raw Traffic

87

Phase Two – Discussion

Predictions

The results of Phase Two were the most surprising of this research. Despite the high

metric scores (>95%) yielded by the large majority of optimized and trained models, most of

them failed to obtain a score resembling that of the CICIDS 2017 labels. According to the

CICIDS 2017 labeled CSV data, roughly 19.7% of the total CICIDS 2017 raw PCAP traffic

should be considered malicious. Ideally, adequately trained models should reach a similar

target score with a +/- 5% range. Only 13 of the 105 trained models reached a score close to

the target value of 19.7%. This low number of successful models was even with the

acceptable range expanded to +/- 10%. Since only 13 models achieved their target scores, that

means that the other 92 models failed. Of the 13 successful models, 12 of those models were

trained using the CICIDS 2017 dataset, which means they were operating off previously

trained data. The 12 trained models produced off the CICIDS 2017 dataset yielded successful

results when trained via the Naïve Bayes, Decision Tree, Random Forest, and Bagging

Classifier algorithms regardless of the optimization method. It makes sense for the models

trained using the CICIDS 2017 CSV data to yield better results than the models trained using

other datasets sets since all the CICIDS 2017 data was previously seen and the models were

fitted and optimized. The only successful model trained outside of the CICIDS 2017 dataset

was the model trained using the KDD 99 dataset, precision optimization, and Bagging

Classifier algorithm. This KDD 99, precision optimized, Bagging Classifier model managed

to obtain a score of 20.1% flagged malicious traffic. It is impressive that this particular model

achieved such highly accurate results; however, this particular model’s results may have just

been largely coincidental. There is certainly a possibility that if this unique model is applied

to a new prediction dataset, it will fail. There is no indication that this model achieved

accurate results due to any particular algorithm, dataset, or scoring method since all the other

models (not trained using the CICIDS 2017 dataset) failed.

The results of this phase were quite surprising. The large majority of models probably

failed due to overfitting or underfitting despite being optimized in the first phase. Overfitting

or underfitting is indicated by several of the models’ results that flag either 100% or 0% of the

CICIDS 2017 traffic. Additionally, another major factor that likely affected this phase’s

outcome was the selected features for training. As mentioned earlier, specific datasets only

88

included particular labeled features for training models. Many unique dataset features were

dropped when mapping them to the Zeek connection logs’ available features. Lastly, another

major probable factor that resulted in many of these models’ failure was likely due to unseen

data. While machine learning should perform better than typical IDS anomaly detection, this

phase’s results indicate that standard machine learning still needs to be highly optimized and

tuned to operate on unseen traffic effectively. Deep learning is likely to perform better when

determining if new or unseen traffic is malicious due to the nature of the algorithms.

89

CHAPTER 5

CONCLUSIONS

This section will review the significant findings, initially proposed research, and

conclusions for this research study. There were numerous challenges and setbacks

encountered throughout this research. As a result, certain aspects of the original proposal had

to be altered. Additionally, some of the results of this study were very surprising yet also

enlightening. It is hoped that this study’s resulting data and analysis can validate or assist

other industry professionals or academic researchers. Overall, the goals and intent of the

initially proposed research were successfully met. Some key findings and take-aways could

undoubtedly apply to real-world machine learning model development and IDS configuration.

There are numerous ways to expand upon this combined field of machine learning and

network security for future research and development.

Major Findings Review

Phase One

The results of Phase One yielded highly informative data. Interestingly enough, some

particular algorithms consistently underperformed during this phase of research. The linear

machine learning algorithms, such as the Logistic Regression and Stochastic Gradient

Descent algorithms, produced low metrics during optimization and model production. It can

be seen that this underperformance acted as a snowball effect. It could be argued that poor

optimization leads to inadequate model production and performance, leading to inaccurate

predictions. However, while these two algorithms performed inadequately, most other

algorithms did well to optimize and produce highly positive evaluation metrics.

This research phase also revealed that the optimization of parameters did not

significantly affect the metrics’ overall pass or fail categorization of the trained models. The

difference in scoring methods between datasets and algorithms never changed the overall

categorization with the threshold of 95% or higher in their respective scoring metrics. The

90

optimization seemed to have the most considerable impact on the worst-performing

algorithms, such as Logistic Regression and Stochastic Gradient Descent. The produced

models with different optimization methods using these two underperforming algorithms

yielded highly fluctuant results; however, they still did never meet the threshold of 95% or

higher.

One last interesting observation from this phase is the one-off instance where the Ada

Boost algorithm underperformed. When the models were trained using the NSL-KDD dataset,

the Ada Boost algorithm yielded low scores regardless of the selected optimization method.

This underperformance by the Ada Boost algorithm may have been due to the dataset’s size or

possibly the selection of particular features interacting with this particular algorithm.

Phase Two

Phase Two produced the most surprising results of this research. Despite the largely

successful, optimized, and trained models, 92 of the 105 total models failed to predict

malicious traffic in unseen data accurately. Only 13 of the 105 models successfully predicted

traffic. However, 12 of the 13 models were previously trained using the CICIDS 2017 dataset,

meaning that they were making predictions based on previously trained and observed data.

The only model that successfully predicted malicious traffic within truly unseen data was the

model trained under the KDD 99 dataset while using the precision optimization method and

Bagging Classifier algorithm.

The failure of the 92 models may be due to several reasons. One primary reason may

be due to overfitting or underfitting of the models to their respective datasets. Overfitting and

underfitting are commonly encountered challenges in machine learning and occur when a

model is excessively or insufficiently trained using a particular dataset, respectively. Another

potential reason for these failed models may be the selection of mapped features between

datasets and Zeek log fields. One of the fields or features included in each of the datasets was

the IP address field. IP addresses were included features while training the models because

some of the selected algorithms may have utilized the frequency of communication between

IP addresses and used this to identify malicious traffic.

Regarding the algorithms themselves, some of these models may have failed simply

due to the nature of the selected algorithm. These algorithms’ effectiveness may dramatically

91

change depending on the dataset’s size or the selection of particular features. As an example,

the Stochastic Gradient Descent algorithm underperformed since the very beginning of this

research. Another factor that likely played a role in the failure of the 92 models is that the

trained models needed to drop unseen variables or terms to ingest new data and make a

prediction. The dropping of new variables likely had a significant impact while making

predictions, which is another known problem with standard machine learning.

Despite only 13 models accurately predicting new data, this research phase still met

one of this research’s primary goals. This phase acted as a valid proof of concept that an

organization could set up an automated process to continually produce or refine models based

on IDS logs to identify malicious traffic. This research’s particular setup may not have

included inline machine learning computations to deem individual packets as malicious or

innocuous as they pass through the wire. However, this research proved that there could be a

dedicated and offloaded machine learning IDS device operating off a span port that watches

network traffic and flags for anomalies. The Python scripts created for this research could

easily be modified to operate in a corporate environment and a more automated fashion.

Additionally, the scripts could be further configured such that if malicious traffic is identified,

an alert could be sent to a network administrator or security analyst to investigate the traffic

further.

Research Questions and Hypotheses Review

Research Question 1

How does the selection of a single network intrusion dataset impact machine learning models’

outcomes and performance when trained using multiple machine learning algorithms and

optimization methods?

Hypothesis 1

Not all machine learning models will achieve high accuracy when trained using any network

intrusion dataset.

92

Research Question and Hypothesis 1 Analysis

This first hypothesis can be accepted based on the performance of the trained models

from Phase One. By grouping each set of models by individual dataset (seen in the tables

below), the data indicate that none of the groupings of models could achieve high accuracy,

specified as 95% or higher, across all algorithms and optimization methods. The KDD 99

dataset managed to reach the highest number of successful models, with 18 out of 21 models

(85.71%) yielding the desired accuracy threshold. The NSL-KDD and CIDDS-001 datasets

yielded 12 successful models (57.14%), and the UNSW-NB15 dataset yielded 15 successful

models (71.43%). The CICIDS 2017 dataset yielded the lowest number of successful models,

with 9 out of 21 models (42.86%) reaching the threshold. These results also show that the

major limiting factor for success was the machine learning algorithms. The Stochastic

Gradient Descent algorithm seemed always to fail to reach the desired accuracy threshold

across each dataset, even when optimized for accuracy.

93

All Trained Models – Grouped by Dataset

Algorithm Scoring Method Accuracy Precision Recall F1 Score Train Time

Naïve Bayes Accuracy 0.97303 0.96586 0.94853 0.95689 0.19895

Naïve Bayes Precision 0.97303 0.96586 0.94853 0.95689 0.19037

Naïve Bayes F1 Score 0.97303 0.96586 0.94853 0.95689 0.15929

Decision Tree Accuracy 0.99816 0.996 0.99824 0.99712 0.36601

Decision Tree Precision 0.99812 0.99598 0.99814 0.99706 0.32635

Decision Tree F1 Score 0.99816 0.99602 0.99822 0.99712 0.20516

Random Forest Accuracy 0.99819 0.99603 0.99831 0.99716 2.472

Random Forest Precision 0.99818 0.99602 0.9983 0.99715 2.49991

Random Forest F1 Score 0.99818 0.99602 0.9983 0.99715 1.78166

Ada Boost Accuracy 0.99794 0.99554 0.99804 0.99678 949.45873

Ada Boost Precision 0.99794 0.99554 0.99804 0.99678 966.79733

Ada Boost F1 Score 0.99794 0.99554 0.99804 0.99678 943.96914

Bagging Classifier Accuracy 0.99816 0.99592 0.99831 0.99711 33.93054

Bagging Classifier Precision 0.99816 0.99598 0.99829 0.99713 70.83681

Bagging Classifier F1 Score 0.99814 0.99589 0.9983 0.99709 1.05218

Logistic Regression Accuracy 0.96855 0.96973 0.93048 0.94854 0.43249

Logistic Regression Precision 0.96855 0.96973 0.93048 0.94854 0.35421

Logistic Regression F1 Score 0.96855 0.96973 0.93048 0.94854 0.42434

Stochastic Gradient Descent Accuracy 0.80108 0.64298 0.50011 0.44508 0.67686

Stochastic Gradient Descent Precision 0.80108 0.80108 1 0.88956 0.19012

Stochastic Gradient Descent F1 Score 0.80108 0.80108 1 0.88956 0.18991

Table 30: KDD 99 Models

94

Algorithm Scoring Method Accuracy Precision Recall F1 Score Train Time

Naïve Bayes Accuracy 0.89173 0.89252 0.89246 0.89173 0.00726

Naïve Bayes Precision 0.89173 0.89252 0.89246 0.89173 0.00478

Naïve Bayes F1 Score 0.89173 0.89252 0.89246 0.89173 0.00491

Decision Tree Accuracy 0.98613 0.98608 0.98616 0.98612 0.01268

Decision Tree Precision 0.98741 0.98739 0.98741 0.9874 0.00858

Decision Tree F1 Score 0.98647 0.98643 0.98649 0.98646 0.01002

Random Forest Accuracy 0.98828 0.98831 0.98824 0.98827 3.8012

Random Forest Precision 0.98815 0.98817 0.98811 0.98814 0.05314

Random Forest F1 Score 0.98822 0.98825 0.98817 0.98821 0.81297

Ada Boost Accuracy 0.98155 0.98154 0.98153 0.98154 15.7271

Ada Boost Precision 0.98155 0.98154 0.98153 0.98154 15.61126

Ada Boost F1 Score 0.98155 0.98154 0.98153 0.98154 15.61979

Bagging Classifier Accuracy 0.98734 0.98742 0.98725 0.98733 0.58591

Bagging Classifier Precision 0.98734 0.98742 0.98725 0.98733 0.87895

Bagging Classifier F1 Score 0.98734 0.98742 0.98725 0.98733 0.63036

Logistic Regression Accuracy 0.90648 0.90636 0.90653 0.90643 0.01096

Logistic Regression Precision 0.90648 0.90636 0.90653 0.90643 0.00951

Logistic Regression F1 Score 0.90648 0.90636 0.90653 0.90643 0.00933

Stochastic Gradient Descent Accuracy 0.51387 0.51387 1 0.67888 0.00446

Stochastic Gradient Descent Precision 0.51387 0.51387 1 0.67888 0.00392

Stochastic Gradient Descent F1 Score 0.54612 0.71213 0.55799 0.45311 0.00573

Table 31: KDD-NSL Models

95

Algorithm Scoring Method Accuracy Precision Recall F1 Score Train Time

Naïve Bayes Accuracy 0.89173 0.89252 0.89246 0.89173 0.00726

Naïve Bayes Precision 0.89173 0.89252 0.89246 0.89173 0.00478

Naïve Bayes F1 Score 0.89173 0.89252 0.89246 0.89173 0.00491

Decision Tree Accuracy 0.98613 0.98608 0.98616 0.98612 0.01268

Decision Tree Precision 0.98741 0.98739 0.98741 0.9874 0.00858

Decision Tree F1 Score 0.98647 0.98643 0.98649 0.98646 0.01002

Random Forest Accuracy 0.98828 0.98831 0.98824 0.98827 3.8012

Random Forest Precision 0.98815 0.98817 0.98811 0.98814 0.05314

Random Forest F1 Score 0.98822 0.98825 0.98817 0.98821 0.81297

Ada Boost Accuracy 0.98155 0.98154 0.98153 0.98154 15.7271

Ada Boost Precision 0.98155 0.98154 0.98153 0.98154 15.61126

Ada Boost F1 Score 0.98155 0.98154 0.98153 0.98154 15.61979

Bagging Classifier Accuracy 0.98734 0.98742 0.98725 0.98733 0.58591

Bagging Classifier Precision 0.98734 0.98742 0.98725 0.98733 0.87895

Bagging Classifier F1 Score 0.98734 0.98742 0.98725 0.98733 0.63036

Logistic Regression Accuracy 0.90648 0.90636 0.90653 0.90643 0.01096

Logistic Regression Precision 0.90648 0.90636 0.90653 0.90643 0.00951

Logistic Regression F1 Score 0.90648 0.90636 0.90653 0.90643 0.00933

Stochastic Gradient Descent Accuracy 0.51387 0.51387 1 0.67888 0.00446

Stochastic Gradient Descent Precision 0.51387 0.51387 1 0.67888 0.00392

Stochastic Gradient Descent F1 Score 0.54612 0.71213 0.55799 0.45311 0.00573

Table 32: NSL-KDD Models

96

Algorithm Scoring Method Accuracy Precision Recall F1 Score Train Time

Naïve Bayes Accuracy 0.89293 0.78412 0.64256 0.68054 0.08435

Naïve Bayes Precision 0.89293 0.78412 0.64256 0.68054 0.08946

Naïve Bayes F1 Score 0.89293 0.78412 0.64256 0.68054 0.08273

Decision Tree Accuracy 0.9917 0.9808 0.98154 0.98117 0.37921

Decision Tree Precision 0.99187 0.98118 0.98195 0.98156 0.29828

Decision Tree F1 Score 0.99126 0.97967 0.98066 0.98016 0.25876

Random Forest Accuracy 0.99306 0.98372 0.98481 0.98426 1.49134

Random Forest Precision 0.99303 0.98386 0.98449 0.98418 12.24554

Random Forest F1 Score 0.99305 0.98386 0.98459 0.98422 1.38001

Ada Boost Accuracy 0.98971 0.97442 0.97912 0.97675 466.55119

Ada Boost Precision 0.98989 0.97491 0.97942 0.97715 778.32787

Ada Boost F1 Score 0.98971 0.97442 0.97912 0.97675 480.33834

Bagging Classifier Accuracy 0.99317 0.98403 0.98496 0.98449 19.65784

Bagging Classifier Precision 0.97446 0.98575 0.89864 0.93638 1.08145

Bagging Classifier F1 Score 0.99318 0.98397 0.98507 0.98452 54.13052

Logistic Regression Accuracy 0.97419 0.94521 0.93655 0.94082 0.35886

Logistic Regression Precision 0.97419 0.94521 0.93655 0.94082 0.35494

Logistic Regression F1 Score 0.97419 0.94521 0.93655 0.94082 0.52767

Stochastic Gradient Descent Accuracy 0.87405 0.87405 1 0.93279 0.08537

Stochastic Gradient Descent Precision 0.87405 0.87405 1 0.93279 0.08048

Stochastic Gradient Descent F1 Score 0.87405 0.87405 1 0.93279 0.09553

Table 33: UNSW-NB15 Models

97

Algorithm Scoring Method Accuracy Precision Recall F1 Score Train Time

Naïve Bayes Accuracy 0.85553 0.81139 0.68245 0.71751 0.09344

Naïve Bayes Precision 0.85553 0.81139 0.68245 0.71751 0.09795

Naïve Bayes F1 Score 0.85553 0.81139 0.68245 0.71751 0.08759

Decision Tree Accuracy 0.99318 0.98845 0.99007 0.98926 0.42589

Decision Tree Precision 0.99309 0.98826 0.98997 0.98911 0.47588

Decision Tree F1 Score 0.99318 0.98842 0.9901 0.98926 0.41032

Random Forest Accuracy 0.99415 0.99032 0.99124 0.99078 20.96378

Random Forest Precision 0.99415 0.99033 0.99122 0.99077 20.17999

Random Forest F1 Score 0.99416 0.99029 0.99132 0.9908 18.56984

Ada Boost Accuracy 0.92856 0.89923 0.86886 0.88291 723.04974

Ada Boost Precision 0.92856 0.89923 0.86886 0.88291 734.92824

Ada Boost F1 Score 0.92856 0.89923 0.86886 0.88291 735.96754

Bagging Classifier Accuracy 0.9944 0.99115 0.99117 0.99116 176.10695

Bagging Classifier Precision 0.9944 0.99113 0.99121 0.99117 171.72592

Bagging Classifier F1 Score 0.9944 0.99116 0.99119 0.99117 107.24517

Logistic Regression Accuracy 0.84409 0.77625 0.6702 0.70009 0.19176

Logistic Regression Precision 0.84409 0.77625 0.6702 0.70009 0.16185

Logistic Regression F1 Score 0.84409 0.77625 0.6702 0.70009 0.18086

Stochastic Gradient Descent Accuracy 0.80256 0.80256 1 0.89047 0.12037

Stochastic Gradient Descent Precision 0.80256 0.80256 1 0.89047 0.27912

Stochastic Gradient Descent F1 Score 0.80256 0.80256 1 0.89047 0.08245

Table 34: CICIDS 2017 Models

98

Algorithm Scoring Method Accuracy Precision Recall F1 Score Train Time

Naïve Bayes Accuracy 0.90131 0.74686 0.88045 0.79145 0.16439

Naïve Bayes Precision 0.90131 0.74686 0.88045 0.79145 0.15782

Naïve Bayes F1 Score 0.90131 0.74686 0.88045 0.79145 0.13131

Decision Tree Accuracy 0.99951 0.99877 0.99855 0.99866 0.50578

Decision Tree Precision 0.99948 0.99869 0.99847 0.99858 0.37718

Decision Tree F1 Score 0.9995 0.99873 0.99853 0.99863 0.31852

Random Forest Accuracy 0.99963 0.99908 0.99893 0.999 14.92514

Random Forest Precision 0.99963 0.99908 0.99893 0.999 40.93319

Random Forest F1 Score 0.99963 0.99908 0.99893 0.999 39.92271

Ada Boost Accuracy 0.99852 0.99571 0.99627 0.99599 1203.30446

Ada Boost Precision 0.99852 0.99571 0.99627 0.99599 1116.44332

Ada Boost F1 Score 0.99852 0.99569 0.99627 0.99598 1051.30573

Bagging Classifier Accuracy 0.99959 0.99904 0.99872 0.99888 22.60481

Bagging Classifier Precision 0.99956 0.99909 0.99851 0.9988 15.54522

Bagging Classifier F1 Score 0.99959 0.99903 0.99877 0.9989 22.53338

Logistic Regression Accuracy 0.95024 0.91176 0.79929 0.84416 0.3716

Logistic Regression Precision 0.95024 0.91176 0.79929 0.84416 0.35591

Logistic Regression F1 Score 0.95024 0.91176 0.79929 0.84416 0.36495

Stochastic Gradient Descent Accuracy 0.89727 0.89727 1 0.94585 0.14127

Stochastic Gradient Descent Precision 0.89727 0.89727 1 0.94585 0.13498

Stochastic Gradient Descent F1 Score 0.89727 0.89727 1 0.94585 0.13185

Table 35: CICIDS-001 Models

99

Research Question 2

How does the selection of a single machine learning algorithm impact machine learning

models’ outcomes and performance when trained using multiple network intrusion datasets

and optimization methods?

Hypothesis 2

Not all machine learning models will achieve high accuracy when trained using any machine

learning algorithm.

Research Question and Hypothesis 2 Analysis

The trained models’ yielded metrics from Phase One indicate that this second

hypothesis can also be accepted. When grouping each set of the models by individual machine

learning algorithm (seen in the tables below), the results show that only some of the sets of

models achieved the desired 95% accuracy scores across all datasets and optimization

methods. Interestingly enough, the Decision Tree, Random Forest, and Bagging Classifier

algorithms all yielded 15 out of 15 models that successfully reached the 95% accuracy

threshold across all datasets and optimization methods. Another interesting result of these

tests found that the Stochastic Gradient Descent algorithm failed to produce any successful

models to reach the desired accuracy score; however, it should also be noted that this

algorithm yielded the best recall metrics, with 13 of the 15 models reaching 100% recall

scores. While the Stochastic Gradient Descent algorithm yielded lower accuracy scores, it did

achieve perfect recall for some of its models, which corresponds to no false negative results.

The Ada Boost algorithm yielded 12 successful models (80%), the Logistic Regression

algorithm yielded nine successful models (60%), and the Naïve Bayes algorithm yielded three

successful models (20%). These results indicate that the major limiting factor for these

models was the selection of datasets. The optimization technique selected did not appear to

impact the evaluation metrics of the models significantly.

100

All Trained Models – Grouped by Algorithm

Dataset Scoring Method Accuracy Precision Recall F1 Score Train Time

KDD 99 Accuracy 0.97303 0.96586 0.94853 0.95689 0.19895

KDD 99 Precision 0.97303 0.96586 0.94853 0.95689 0.19037

KDD 99 F1 Score 0.97303 0.96586 0.94853 0.95689 0.15929

NSL-KDD Accuracy 0.89173 0.89252 0.89246 0.89173 0.00726

NSL-KDD Precision 0.89173 0.89252 0.89246 0.89173 0.00478

NSL-KDD F1 Score 0.89173 0.89252 0.89246 0.89173 0.00491

UNSW-NB15 Accuracy 0.89293 0.78412 0.64256 0.68054 0.08435

UNSW-NB15 Precision 0.89293 0.78412 0.64256 0.68054 0.08946

UNSW-NB15 F1 Score 0.89293 0.78412 0.64256 0.68054 0.08273

CICIDS 2017 Accuracy 0.85553 0.81139 0.68245 0.71751 0.09344

CICIDS 2017 Precision 0.85553 0.81139 0.68245 0.71751 0.09795

CICIDS 2017 F1 Score 0.85553 0.81139 0.68245 0.71751 0.08759

CIDDS-001 Accuracy 0.90131 0.74686 0.88045 0.79145 0.16439

CIDDS-001 Precision 0.90131 0.74686 0.88045 0.79145 0.15782

CIDDS-001 F1 Score 0.90131 0.74686 0.88045 0.79145 0.13131

Table 36: Naïve Bayes Models

Dataset Scoring Method Accuracy Precision Recall F1 Score Train Time

KDD 99 Accuracy 0.99816 0.996 0.99824 0.99712 0.36601

KDD 99 Precision 0.99812 0.99598 0.99814 0.99706 0.32635

KDD 99 F1 Score 0.99816 0.99602 0.99822 0.99712 0.20516

NSL-KDD Accuracy 0.98613 0.98608 0.98616 0.98612 0.01268

NSL-KDD Precision 0.98741 0.98739 0.98741 0.9874 0.00858

NSL-KDD F1 Score 0.98647 0.98643 0.98649 0.98646 0.01002

UNSW-NB15 Accuracy 0.9917 0.9808 0.98154 0.98117 0.37921

UNSW-NB15 Precision 0.99187 0.98118 0.98195 0.98156 0.29828

UNSW-NB15 F1 Score 0.99126 0.97967 0.98066 0.98016 0.25876

CICIDS 2017 Accuracy 0.99318 0.98845 0.99007 0.98926 0.42589

CICIDS 2017 Precision 0.99309 0.98826 0.98997 0.98911 0.47588

CICIDS 2017 F1 Score 0.99318 0.98842 0.9901 0.98926 0.41032

CIDDS-001 Accuracy 0.99951 0.99877 0.99855 0.99866 0.50578

CIDDS-001 Precision 0.99948 0.99869 0.99847 0.99858 0.37718

CIDDS-001 F1 Score 0.9995 0.99873 0.99853 0.99863 0.31852

Table 37: Decision Tree Models

101

Dataset Scoring Method Accuracy Precision Recall F1 Score Train Time

KDD 99 Accuracy 0.99819 0.99603 0.99831 0.99716 2.472

KDD 99 Precision 0.99818 0.99602 0.9983 0.99715 2.49991

KDD 99 F1 Score 0.99818 0.99602 0.9983 0.99715 1.78166

NSL-KDD Accuracy 0.98828 0.98831 0.98824 0.98827 3.8012

NSL-KDD Precision 0.98815 0.98817 0.98811 0.98814 0.05314

NSL-KDD F1 Score 0.98822 0.98825 0.98817 0.98821 0.81297

UNSW-NB15 Accuracy 0.99306 0.98372 0.98481 0.98426 1.49134

UNSW-NB15 Precision 0.99303 0.98386 0.98449 0.98418 12.24554

UNSW-NB15 F1 Score 0.99305 0.98386 0.98459 0.98422 1.38001

CICIDS 2017 Accuracy 0.99415 0.99032 0.99124 0.99078 20.96378

CICIDS 2017 Precision 0.99415 0.99033 0.99122 0.99077 20.17999

CICIDS 2017 F1 Score 0.99416 0.99029 0.99132 0.9908 18.56984

CIDDS-001 Accuracy 0.99963 0.99908 0.99893 0.999 14.92514

CIDDS-001 Precision 0.99963 0.99908 0.99893 0.999 40.93319

CIDDS-001 F1 Score 0.99963 0.99908 0.99893 0.999 39.92271

Table 38: Random Forest Models

Dataset Scoring Method Accuracy Precision Recall F1 Score Train Time

KDD 99 Accuracy 0.99794 0.99554 0.99804 0.99678 949.45873

KDD 99 Precision 0.99794 0.99554 0.99804 0.99678 966.79733

KDD 99 F1 Score 0.99794 0.99554 0.99804 0.99678 943.96914

NSL-KDD Accuracy 0.98155 0.98154 0.98153 0.98154 15.7271

NSL-KDD Precision 0.98155 0.98154 0.98153 0.98154 15.61126

NSL-KDD F1 Score 0.98155 0.98154 0.98153 0.98154 15.61979

UNSW-NB15 Accuracy 0.98971 0.97442 0.97912 0.97675 466.55119

UNSW-NB15 Precision 0.98989 0.97491 0.97942 0.97715 778.32787

UNSW-NB15 F1 Score 0.98971 0.97442 0.97912 0.97675 480.33834

CICIDS 2017 Accuracy 0.92856 0.89923 0.86886 0.88291 723.04974

CICIDS 2017 Precision 0.92856 0.89923 0.86886 0.88291 734.92824

CICIDS 2017 F1 Score 0.92856 0.89923 0.86886 0.88291 735.96754

CIDDS-001 Accuracy 0.99852 0.99571 0.99627 0.99599 1203.3045

CIDDS-001 Precision 0.99852 0.99571 0.99627 0.99599 1116.4433

CIDDS-001 F1 Score 0.99852 0.99569 0.99627 0.99598 1051.3057

Table 39: Ada Boost Models

102

Dataset Scoring Method Accuracy Precision Recall F1 Score Train Time

KDD 99 Accuracy 0.99816 0.99592 0.99831 0.99711 33.93054

KDD 99 Precision 0.99816 0.99598 0.99829 0.99713 70.83681

KDD 99 F1 Score 0.99814 0.99589 0.9983 0.99709 1.05218

NSL-KDD Accuracy 0.98734 0.98742 0.98725 0.98733 0.58591

NSL-KDD Precision 0.98734 0.98742 0.98725 0.98733 0.87895

NSL-KDD F1 Score 0.98734 0.98742 0.98725 0.98733 0.63036

UNSW-NB15 Accuracy 0.99317 0.98403 0.98496 0.98449 19.65784

UNSW-NB15 Precision 0.97446 0.98575 0.89864 0.93638 1.08145

UNSW-NB15 F1 Score 0.99318 0.98397 0.98507 0.98452 54.13052

CICIDS 2017 Accuracy 0.9944 0.99115 0.99117 0.99116 176.10695

CICIDS 2017 Precision 0.9944 0.99113 0.99121 0.99117 171.72592

CICIDS 2017 F1 Score 0.9944 0.99116 0.99119 0.99117 107.24517

CIDDS-001 Accuracy 0.99959 0.99904 0.99872 0.99888 22.60481

CIDDS-001 Precision 0.99956 0.99909 0.99851 0.9988 15.54522

CIDDS-001 F1 Score 0.99959 0.99903 0.99877 0.9989 22.53338

Table 40: Bagging Classifier Models

Dataset Scoring Method Accuracy Precision Recall F1 Score Train Time

KDD 99 Accuracy 0.96855 0.96973 0.93048 0.94854 0.43249

KDD 99 Precision 0.96855 0.96973 0.93048 0.94854 0.35421

KDD 99 F1 Score 0.96855 0.96973 0.93048 0.94854 0.42434

NSL-KDD Accuracy 0.90648 0.90636 0.90653 0.90643 0.01096

NSL-KDD Precision 0.90648 0.90636 0.90653 0.90643 0.00951

NSL-KDD F1 Score 0.90648 0.90636 0.90653 0.90643 0.00933

UNSW-NB15 Accuracy 0.97419 0.94521 0.93655 0.94082 0.35886

UNSW-NB15 Precision 0.97419 0.94521 0.93655 0.94082 0.35494

UNSW-NB15 F1 Score 0.97419 0.94521 0.93655 0.94082 0.52767

CICIDS 2017 Accuracy 0.84409 0.77625 0.6702 0.70009 0.19176

CICIDS 2017 Precision 0.84409 0.77625 0.6702 0.70009 0.16185

CICIDS 2017 F1 Score 0.84409 0.77625 0.6702 0.70009 0.18086

CIDDS-001 Accuracy 0.95024 0.91176 0.79929 0.84416 0.3716

CIDDS-001 Precision 0.95024 0.91176 0.79929 0.84416 0.35591

CIDDS-001 F1 Score 0.95024 0.91176 0.79929 0.84416 0.36495

Table 41: Logistic Regression Models

103

Dataset Scoring Method Accuracy Precision Recall F1 Score Train Time

KDD 99 Accuracy 0.80108 0.64298 0.50011 0.44508 0.67686

KDD 99 Precision 0.80108 0.80108 1 0.88956 0.19012

KDD 99 F1 Score 0.80108 0.80108 1 0.88956 0.18991

NSL-KDD Accuracy 0.51387 0.51387 1 0.67888 0.00446

NSL-KDD Precision 0.51387 0.51387 1 0.67888 0.00392

NSL-KDD F1 Score 0.54612 0.71213 0.55799 0.45311 0.00573

UNSW-NB15 Accuracy 0.87405 0.87405 1 0.93279 0.08537

UNSW-NB15 Precision 0.87405 0.87405 1 0.93279 0.08048

UNSW-NB15 F1 Score 0.87405 0.87405 1 0.93279 0.09553

CICIDS 2017 Accuracy 0.80256 0.80256 1 0.89047 0.12037

CICIDS 2017 Precision 0.80256 0.80256 1 0.89047 0.27912

CICIDS 2017 F1 Score 0.80256 0.80256 1 0.89047 0.08245

CIDDS-001 Accuracy 0.89727 0.89727 1 0.94585 0.14127

CIDDS-001 Precision 0.89727 0.89727 1 0.94585 0.13498

CIDDS-001 F1 Score 0.89727 0.89727 1 0.94585 0.13185

Table 42: Stochastic Gradient Descent Models

104

Research Question 3

How does the selection of a single optimization method impact machine learning models’

outcomes and performance when trained using multiple network intrusion datasets and

machine learning algorithms?

Hypothesis 3

Not all machine learning models will achieve high respective performance metrics when

trained using any optimization method.

Research Question and Hypothesis 3 Analysis

After reviewing the data from Phase One, this hypothesis can be accepted. It should be

noted that this is the only hypothesis in this study that compares multiple evaluation metrics,

namely accuracy, precision, and F1 score, based on the respective optimization technique.

The threshold for success for this hypothesis is a respective metric score of 95% or higher.

When evaluating this hypothesis, the models can be grouped by the selected optimization

method (seen in the tables below). The models optimized for accuracy yielded 23 out of 35

successful models (65.71%) that achieved a 95% or higher accuracy score. The models

optimized for precision yielded 21 successful models (60%) that achieved a 95% or higher

precision score. The models optimized for the F1 score yielded 20 successful models

(57.14%) that achieved a 95% or higher F1 score. The only consistent parameter for failure

across these models appears to be the models trained using the Stochastic Gradient Descent

algorithm, which never achieved the 95% threshold across any of the desired evaluation

metrics. Lastly, these results indicate that it may have been beneficial to exaggerate the

optimization methods to yield more variant models. This optimization variance could be

achieved by the following: add in additional parameters, increase the number of values tested

for each parameter, or further exaggerate the parameter values used for optimization.

However, it should be noted that increasing the number of tested parameter values during this

optimization process would exponentially increase the amount of time for optimization

105

All Trained Models – Grouped by Optimization Method

Dataset Algorithm Accuracy Precision Recall F1 Score Train Time

KDD 99 Naïve Bayes 0.97303 0.96586 0.94853 0.95689 0.19895

KDD 99 Decision Tree 0.99816 0.996 0.99824 0.99712 0.36601

KDD 99 Random Forest 0.99819 0.99603 0.99831 0.99716 2.472

KDD 99 Ada Boost 0.99794 0.99554 0.99804 0.99678 949.45873

KDD 99 Bagging Classifier 0.99816 0.99592 0.99831 0.99711 33.93054

KDD 99 Logistic Regression 0.96855 0.96973 0.93048 0.94854 0.43249

KDD 99 Stochastic Gradient Descent 0.80108 0.64298 0.50011 0.44508 0.67686

NSL-KDD Naïve Bayes 0.89173 0.89252 0.89246 0.89173 0.00726

NSL-KDD Decision Tree 0.98613 0.98608 0.98616 0.98612 0.01268

NSL-KDD Random Forest 0.98828 0.98831 0.98824 0.98827 3.8012

NSL-KDD Ada Boost 0.98155 0.98154 0.98153 0.98154 15.7271

NSL-KDD Bagging Classifier 0.98734 0.98742 0.98725 0.98733 0.58591

NSL-KDD Logistic Regression 0.90648 0.90636 0.90653 0.90643 0.01096

NSL-KDD Stochastic Gradient Descent 0.51387 0.51387 1 0.67888 0.00446

UNSW-NB15 Naïve Bayes 0.89293 0.78412 0.64256 0.68054 0.08435

UNSW-NB15 Decision Tree 0.9917 0.9808 0.98154 0.98117 0.37921

UNSW-NB15 Random Forest 0.99306 0.98372 0.98481 0.98426 1.49134

UNSW-NB15 Ada Boost 0.98971 0.97442 0.97912 0.97675 466.55119

UNSW-NB15 Bagging Classifier 0.99317 0.98403 0.98496 0.98449 19.65784

UNSW-NB15 Logistic Regression 0.97419 0.94521 0.93655 0.94082 0.35886

UNSW-NB15 Stochastic Gradient Descent 0.87405 0.87405 1 0.93279 0.08537

CICIDS 2017 Naïve Bayes 0.85553 0.81139 0.68245 0.71751 0.09344

CICIDS 2017 Decision Tree 0.99318 0.98845 0.99007 0.98926 0.42589

CICIDS 2017 Random Forest 0.99415 0.99032 0.99124 0.99078 20.96378

CICIDS 2017 Ada Boost 0.92856 0.89923 0.86886 0.88291 723.04974

CICIDS 2017 Bagging Classifier 0.9944 0.99115 0.99117 0.99116 176.10695

CICIDS 2017 Logistic Regression 0.84409 0.77625 0.6702 0.70009 0.19176

CICIDS 2017 Stochastic Gradient Descent 0.80256 0.80256 1 0.89047 0.12037

CIDDS-001 Naïve Bayes 0.90131 0.74686 0.88045 0.79145 0.16439

CIDDS-001 Decision Tree 0.99951 0.99877 0.99855 0.99866 0.50578

CIDDS-001 Random Forest 0.99963 0.99908 0.99893 0.999 14.92514

CIDDS-001 Ada Boost 0.99852 0.99571 0.99627 0.99599 1203.30446

CIDDS-001 Bagging Classifier 0.99959 0.99904 0.99872 0.99888 22.60481

CIDDS-001 Logistic Regression 0.95024 0.91176 0.79929 0.84416 0.3716

CIDDS-001 Stochastic Gradient Descent 0.89727 0.89727 1 0.94585 0.14127

Table 43: Accuracy Models

106

Dataset Algorithm Accuracy Precision Recall F1 Score Train Time

KDD 99 Naïve Bayes 0.97303 0.96586 0.94853 0.95689 0.19037

KDD 99 Decision Tree 0.99812 0.99598 0.99814 0.99706 0.32635

KDD 99 Random Forest 0.99818 0.99602 0.9983 0.99715 2.49991

KDD 99 Ada Boost 0.99794 0.99554 0.99804 0.99678 966.79733

KDD 99 Bagging Classifier 0.99816 0.99598 0.99829 0.99713 70.83681

KDD 99 Logistic Regression 0.96855 0.96973 0.93048 0.94854 0.35421

KDD 99 Stochastic Gradient Descent 0.80108 0.80108 1 0.88956 0.19012

NSL-KDD Naïve Bayes 0.89173 0.89252 0.89246 0.89173 0.00478

NSL-KDD Decision Tree 0.98741 0.98739 0.98741 0.9874 0.00858

NSL-KDD Random Forest 0.98815 0.98817 0.98811 0.98814 0.05314

NSL-KDD Ada Boost 0.98155 0.98154 0.98153 0.98154 15.61126

NSL-KDD Bagging Classifier 0.98734 0.98742 0.98725 0.98733 0.87895

NSL-KDD Logistic Regression 0.90648 0.90636 0.90653 0.90643 0.00951

NSL-KDD Stochastic Gradient Descent 0.51387 0.51387 1 0.67888 0.00392

UNSW-NB15 Naïve Bayes 0.89293 0.78412 0.64256 0.68054 0.08946

UNSW-NB15 Decision Tree 0.99187 0.98118 0.98195 0.98156 0.29828

UNSW-NB15 Random Forest 0.99303 0.98386 0.98449 0.98418 12.24554

UNSW-NB15 Ada Boost 0.98989 0.97491 0.97942 0.97715 778.32787

UNSW-NB15 Bagging Classifier 0.97446 0.98575 0.89864 0.93638 1.08145

UNSW-NB15 Logistic Regression 0.97419 0.94521 0.93655 0.94082 0.35494

UNSW-NB15 Stochastic Gradient Descent 0.87405 0.87405 1 0.93279 0.08048

CICIDS 2017 Naïve Bayes 0.85553 0.81139 0.68245 0.71751 0.09795

CICIDS 2017 Decision Tree 0.99309 0.98826 0.98997 0.98911 0.47588

CICIDS 2017 Random Forest 0.99415 0.99033 0.99122 0.99077 20.17999

CICIDS 2017 Ada Boost 0.92856 0.89923 0.86886 0.88291 734.92824

CICIDS 2017 Bagging Classifier 0.9944 0.99113 0.99121 0.99117 171.72592

CICIDS 2017 Logistic Regression 0.84409 0.77625 0.6702 0.70009 0.16185

CICIDS 2017 Stochastic Gradient Descent 0.80256 0.80256 1 0.89047 0.27912

CIDDS-001 Naïve Bayes 0.90131 0.74686 0.88045 0.79145 0.15782

CIDDS-001 Decision Tree 0.99948 0.99869 0.99847 0.99858 0.37718

CIDDS-001 Random Forest 0.99963 0.99908 0.99893 0.999 40.93319

CIDDS-001 Ada Boost 0.99852 0.99571 0.99627 0.99599 1116.44332

CIDDS-001 Bagging Classifier 0.99956 0.99909 0.99851 0.9988 15.54522

CIDDS-001 Logistic Regression 0.95024 0.91176 0.79929 0.84416 0.35591

CIDDS-001 Stochastic Gradient Descent 0.89727 0.89727 1 0.94585 0.13498

Table 44: Precision Models

107

Dataset Algorithm Accuracy Precision Recall F1 Score Train Time

KDD 99 Naïve Bayes 0.97303 0.96586 0.94853 0.95689 0.15929

KDD 99 Decision Tree 0.99816 0.99602 0.99822 0.99712 0.20516

KDD 99 Random Forest 0.99818 0.99602 0.9983 0.99715 1.78166

KDD 99 Ada Boost 0.99794 0.99554 0.99804 0.99678 943.96914

KDD 99 Bagging Classifier 0.99814 0.99589 0.9983 0.99709 1.05218

KDD 99 Logistic Regression 0.96855 0.96973 0.93048 0.94854 0.42434

KDD 99 Stochastic Gradient Descent 0.80108 0.80108 1 0.88956 0.18991

NSL-KDD Naïve Bayes 0.89173 0.89252 0.89246 0.89173 0.00491

NSL-KDD Decision Tree 0.98647 0.98643 0.98649 0.98646 0.01002

NSL-KDD Random Forest 0.98822 0.98825 0.98817 0.98821 0.81297

NSL-KDD Ada Boost 0.98155 0.98154 0.98153 0.98154 15.61979

NSL-KDD Bagging Classifier 0.98734 0.98742 0.98725 0.98733 0.63036

NSL-KDD Logistic Regression 0.90648 0.90636 0.90653 0.90643 0.00933

NSL-KDD Stochastic Gradient Descent 0.54612 0.71213 0.55799 0.45311 0.00573

UNSW-NB15 Naïve Bayes 0.89293 0.78412 0.64256 0.68054 0.08273

UNSW-NB15 Decision Tree 0.99126 0.97967 0.98066 0.98016 0.25876

UNSW-NB15 Random Forest 0.99305 0.98386 0.98459 0.98422 1.38001

UNSW-NB15 Ada Boost 0.98971 0.97442 0.97912 0.97675 480.33834

UNSW-NB15 Bagging Classifier 0.99318 0.98397 0.98507 0.98452 54.13052

UNSW-NB15 Logistic Regression 0.97419 0.94521 0.93655 0.94082 0.52767

UNSW-NB15 Stochastic Gradient Descent 0.87405 0.87405 1 0.93279 0.09553

CICIDS 2017 Naïve Bayes 0.85553 0.81139 0.68245 0.71751 0.08759

CICIDS 2017 Decision Tree 0.99318 0.98842 0.9901 0.98926 0.41032

CICIDS 2017 Random Forest 0.99416 0.99029 0.99132 0.9908 18.56984

CICIDS 2017 Ada Boost 0.92856 0.89923 0.86886 0.88291 735.96754

CICIDS 2017 Bagging Classifier 0.9944 0.99116 0.99119 0.99117 107.24517

CICIDS 2017 Logistic Regression 0.84409 0.77625 0.6702 0.70009 0.18086

CICIDS 2017 Stochastic Gradient Descent 0.80256 0.80256 1 0.89047 0.08245

CIDDS-001 Naïve Bayes 0.90131 0.74686 0.88045 0.79145 0.13131

CIDDS-001 Decision Tree 0.9995 0.99873 0.99853 0.99863 0.31852

CIDDS-001 Random Forest 0.99963 0.99908 0.99893 0.999 39.92271

CIDDS-001 Ada Boost 0.99852 0.99569 0.99627 0.99598 1051.30573

CIDDS-001 Bagging Classifier 0.99959 0.99903 0.99877 0.9989 22.53338

CIDDS-001 Logistic Regression 0.95024 0.91176 0.79929 0.84416 0.36495

CIDDS-001 Stochastic Gradient Descent 0.89727 0.89727 1 0.94585 0.13185

Table 45: F1 Score Models

108

Research Question 4

How does the performance of theoretical machine learning models change when tested in an

applied environment?

Hypothesis 4

The accuracy of theoretical machine learning models will perform significantly worse in an

applied environment.

Research Question and Hypothesis 4 Analysis

This fourth hypothesis can also be accepted as accurate. Of the 105 total trained

models, only 13 of those models were within the acceptable +/- 10% threshold of the target

true value for detecting malicious traffic. These 13 successful models and their results can be

seen in the table below. Additionally, 12 of the 13 successful models were trained using the

same CICIDS 2017 dataset, meaning that those models evaluated previously observed data

and did not even filter through truly unseen or new network traffic. Additionally, of the total

21 models trained using the CICIDS 2017 dataset, 9 of those 21 models (42.86%) failed to

accurately detect malicious traffic despite being previously trained using the exact dataset,

just in a different form. In the end, only a single model was able to flag malicious traffic on

completely unseen data accurately. These experiments’ results show that 92 of the 105 total

models performed worse in an applied environment than a conceptual environment, meaning

that 87.62% of the total models failed to identify malicious traffic correctly. Additionally,

removing the set of models trained using the CICIDS 2017 dataset shows 83 of the 84 models

(98.81%) failed to detect traffic on truly unseen network traffic accurately. The only

successful applied model utilized the KDD 99 dataset, Bagging Classifier algorithm, and

precision optimization. The other failed models indicate that the success of this individual

model may be largely coincidental. Excluding the non-CICIDS 2017 models, the results show

that none of the other models trained using the KDD 99 dataset, the Bagging Classifier

algorithm, or the precision optimization method yielded successfully applied models.

Reviewing all these failed models indicates a strong need to utilize a variety of algorithms,

datasets, and optimization methods during model development to yield an ideal model and

effectively solve the particular problem at hand.

109

Successfully Applied Models

Dataset Model Score Method Malicious Normal Total Flagged Traffic

KDD 99 Bagging Classifier Precision 426829 1692378 2119207 0.20141

CICIDS 2017 Naïve Bayes Accuracy 531212 1587995 2119207 0.25067

CICIDS 2017 Decision Tree Accuracy 236062 1883145 2119207 0.11139

CICIDS 2017 Random Forest Accuracy 360301 1758906 2119207 0.17002

CICIDS 2017 Bagging Classifier Accuracy 369295 1749912 2119207 0.17426

CICIDS 2017 Naïve Bayes Precision 531212 1587995 2119207 0.25067

CICIDS 2017 Decision Tree Precision 415476 1703731 2119207 0.19605

CICIDS 2017 Random Forest Precision 361007 1758200 2119207 0.17035

CICIDS 2017 Bagging Classifier Precision 368940 1750267 2119207 0.17409

CICIDS 2017 Naïve Bayes F1 Score 531212 1587995 2119207 0.25067

CICIDS 2017 Decision Tree F1 Score 400550 1718657 2119207 0.18901

CICIDS 2017 Random Forest F1 Score 360171 1759036 2119207 0.16996

CICIDS 2017 Bagging Classifier F1 Score 368985 1750222 2119207 0.17411

Table 46: Successful Models in Applied IDS Environment

Proposed Research Review

Successful Proposal Research Tasks

Overall, the primary goals of Phase One and Phase Two of this research were

successfully met. In Phase One, this research successfully optimized and trained machine

learning models trained on various datasets, algorithms, and scoring methods. Additionally,

Phase Two provided a valuable proof of concept that displayed the possibility of creating an

automated pipeline to apply machine learning models to review IDS logs and network traffic.

The second phase displayed successful imports of trained machine learning models and the

utilization of them to predict malicious traffic in unseen data, although not as accurately as

desired.

This research study successfully answered each of the research questions and

conclusively accept each of the hypotheses. These results showcase the need for utilizing a

comprehensive combination of algorithms, datasets, and optimization techniques when

training machine learning models. They also display which algorithms, datasets, and

optimization techniques yield models with the highest evaluation metrics in accuracy,

110

precision, recall, and F1 score. Lastly, this study’s results strongly indicate that theoretical

machine learning models may perform substantially worse when applied in a real-world

environment.

Failed or Altered Proposal Research Tasks

There were a few deviations from the original proposal of this research. Initially, this

research attempted to alter the preprocessors of an IDS detection engine. This preprocessor

modification or creation did not occur within this research because, after investigating the

possibility, it appears that each preprocessor is protocol-specific and reviews particular packet

fields. IDS preprocessors are not intended for intense computation, let alone machine

learning. Also, depending on the programming language used to build the IDS, it may have

been necessary to manually code the machine learning algorithms since there may not have

been a publicly available library, like scikit-learn. Due to these reasons, going down the

preprocessor creation route would have been too time and effort-intensive to complete within

the proposed timeline. After investigating the feasibility of IDS preprocessor manipulation, it

appeared there were two other potential avenues to complete the goals of this research. The

second option involved creating an IDS plugin using the programming language of the

particular IDS. Due to similar concerns regarding preprocessor creation and the potential need

to code machine learning algorithms, this was not the desired route due to this proposed

research’s limited time. Finally, the third and final option involved a series of tools that could,

in theory, be easily set up as a pipeline. This option involved feeding raw network traffic into

an IDS, taking the logs and feeding them into Python scripts to produce machine learning

models, and then re-ingesting those trained models to predict unseen traffic. This final option

seemed to be the most practical option for this research since it still met the objectives while

still utilizing practical methods and tools.

The selection of machine learning algorithms also dramatically throughout the

research. As previously discussed in Chapter 3, numerous algorithms were tested and dropped

from this research. The algorithms tested and dropped include Support Vector Machine, K

Nearest Neighbor, Isolation Forest, Novelty Detection, and Outlier Detection. The primary

reason these algorithms were dropped is due to their high computation and resource

111

requirements. When testing different algorithms, if a single model took longer than three days

to produce or errored out, it was dropped.

Another alteration to the proposed research was the inclusion of the IRG’16 dataset.

This dataset is massive as it is intended to replicate ISP network traffic. This IRG’16 dataset

incorporated numerous 10+ GB PCAP files. The merging, ingestion, and sampling of this

dataset would have significantly impacted the resource requirements and timeline of this

research.

The proposed evaluation metrics also changed throughout this research. A few metrics

were dropped for this research, namely False Alarm Rate, Specificity, and Negative Predictive

Value. While it would have been possible to calculate these manually, the scikit-learn module

did not include an easy method or function to obtain these metrics. Additionally, while

reviewing the literature, the most commonly used model evaluation metrics included the ones

used for this research - accuracy, precision, recall, and F1 score.

One last alteration to the proposed research tasks was comparing machine learning

models to the standard IDS anomaly detection engine. The original plan was to set up the

Zeek IDS in anomaly detection mode, train the system using known “good” traffic, and test

how effectively the trained IDS handles unseen network traffic. This IDS anomaly detection

will act as a baseline to identify if machine learning models perform better than the standard

IDS anomaly detection engine. However, this IDS anomaly detection test did not occur in the

actual research. The CICIDS 2017 dataset was selected as the prediction and validation

dataset for comparing the trained models in an applied environment and observing their

detection of malicious traffic. The CICIDS 2017 dataset is publicly available online and

includes both labeled CSV and raw PCAP files. The raw PCAPs could easily be fed into the

Zeek IDS for anomaly detection training. However, the CICIDS 2017 dataset does not

perform proper grouping of known “good” or known “bad” network traffic in the PCAP files.

Therefore, unfortunately, the CICIDS 2017 PCAPs could not be split to properly train and test

the Zeek IDS.

112

Conclusions

Some significant conclusions were identified as a result of this research. First, this

study indicates a strong need to train ML models using various algorithms and datasets. A

researcher cannot simply select any algorithm or dataset and expect them always to generate

high-performing models. Second, optimizing models at least once is still highly

recommended. However, there may not be a need to test and compare multiple optimization

methods. Throughout the literature review, many of the researchers typically only optimized

for accuracy; the results of this research show that this may be a good enough practice since

the changing of optimization methods did not always yield significantly different models.

Lastly, this research showcases that theoretical ML models will most likely perform worse

when applied in an implemented environment.

Suggested Alterations

There were certain significant limitations identified after completing and reviewing

this research. Particular design decisions should be considered if this research were to be

modified and redone. The utilization of purely machine learning algorithms is a downside of

this research. These algorithms only operate on previously trained values and must

ignore/drop new values. Machine learning algorithms utilize previously seen values to make

predictions on newly ingested data, which could easily lead to inaccuracies. Deep learning

seems to alleviate this concern and is currently a significant field of study that may be applied

to this type of research.

Additionally, the source and destination IP addresses used for training may have

negatively impacted the models. As explained earlier, these fields or features were included

because specific machine learning algorithms will analyze and incorporate the frequency of

communication between devices to make a final categorization decision. Also related to the

features, this research only utilized a handful of features available between datasets and

matched them as best as possible to the Zeek connection logs. This feature mapping led to

inconsistent feature selection between datasets. Specific datasets had six features selected,

whereas others had ten features mapped to Zeek fields.

Also, it should be noted that the computational resources for this research could have

been better. While this research was conducted using DSU’s IA Lab online virtual

113

environment. Five machines with 100 GB of RAM and 24 processing cores were set up and

utilized for this research. However, no graphics cards for machine learning computation were

included in this environment. The optimization of machine learning algorithms is a major

field of research and, after researching some of these published papers, the application of

graphics cards for model development could dramatically increase the speed of production.

This lack of graphics cards and low computation speed may have affected the selection of

machine learning models for this research since there was a three-day threshold before

dropping an algorithm for this research.

It was stated earlier while reviewing this study’s research questions and hypotheses,

but it would have been quite beneficial for this study to increase variance between trained

models by further expanding the optimization process. Adding in additional parameters,

increasing the number of values tested for each parameter, and further exaggerating the

parameter values used for optimization would have led to better optimized and variant models

that utilize different parameter values. The different optimization techniques did appear to

optimize 76 of the 105 models before model production successfully. However, many of the

optimized models ended up using the same parameters, thereby reducing variance between

models and their metric scores. The optimization process for this study took multiple days to

complete. Adding in additional parameters and parameter values would have exponentially

increased the optimization process due to the nature of the GridSearchCV function. However,

this would have proved beneficial for this study if it yielded highly variant models that

utilized uniquely optimized parameters.

Lastly, after further researching network patterns and trends, it has been found that the

large majority of modern network attacks are identified in the payload of a packet and thereby

require deep packet inspection. The exclusion of deep packet inspection (DPI) is a

considerable limitation of this research since the models exclusively focused on the packets’

metadata fields’ size and contents. Network attacks conducted within the payload are

application-layer attacks and highly unique to the network’s particular hosts. However, there

are reasons to include or exclude application-layer data in datasets for model development. In

academia, many of these network intrusion datasets are developed to be generalized enough

for other researchers to utilize. Application-layer data is highly unique network traffic that

other researchers may not be interested in using, so dataset developers may not wish to

114

include this type of specialized traffic in their published dataset intended for academia.

However, the inclusion of DPI and application-layer data should absolutely be included for

model development within an applied enterprise network environment to train the model to

scan through this application data properly. Therefore, it makes sense for application-layer

data to be included when training ML models for applied network environments, but less so

for theoretical, proof-of-concept research in academia.

Recommendations for Enterprise Networks

The results of this research identify some essential suggestions for corporate networks

with enterprise environments that implement an IDS with machine learning capabilities. This

study shows that a model trained off a different dataset and then applied to new network

traffic will likely fail in terms of accuracy. Each network, especially enterprise networks, is

incredibly unique and has different expected device communication times, observed

protocols, open ports, and network segmentation. Despite published datasets attempting to be

generalized for others to utilize for research, these datasets are still too specialized in terms of

their available features, proportion and content of normal traffic, proportion and content of

malicious traffic, the total size of a dataset, collection data type (packet-based, flow-based,

hybrid), and their collection point on the network. Due to the extreme uniqueness of both

enterprise networks and published datasets, it is recommended for corporate environments to

utilize their own “known good” network traffic when training machine learning models.

Analysts could then extract the simulated attacks from public datasets and test the trained

models to identify specific simulated attacks. Additionally, even with these trained models, it

is highly suggested that analysts should continue to monitor and refine the model and

manually investigate flagged attacks. Over time, these models will become highly tuned to the

uniqueness of the corporate environment and should be able to identify malicious traffic

effectively. Additionally, with the customization of models, it should be possible to train the

models to implement deep packet inspection features that will scan for attacks within the

packet payload.

115

Future Work

The results of this research yielded some exciting and unsuspecting results. Future

research in this combined field of network security and artificial intelligence may consider the

following suggestions to expand this research. This research would have benefitted from live

network polling or sampling to produce continuous Zeek logs. With that in mind, an actual

pipeline configuration of scripts or other dedicated software that automatically transfers data

between the IDS and Python scripts would benefit this research. Additionally, the Python

scripts in this research could have been combined into a single script workflow that could

operate continuously through scheduled tasking and network polling.

Additionally, the inclusion of deep learning techniques will be advantageous for

expanding this type of research. Deep learning models are harder to train due to their

complexity and time requirements; however, they are considered much more accurate and

better prepared to predict attacks on unseen data. There are already numerous security

researchers in industry and academia looking into the application of deep learning models.

Lastly, the application of machine learning could also be incorporated into other

security intelligence applications and services. Rather than merely analyzing and correlating

potential threats at the network level via an IDS device, several other security products could

utilize machine learning to identify threats. For example, Security Information and Event

Management (SIEM) devices can act as a centralized logging system that can parse through

logs sent from numerous logging systems and individual host events across an entire network.

A SIEM with machine learning or deep learning capabilities may effectively identify new

threats by correlating every log and digital system’s events across an entire organization.

Additionally, machine learning could be applied to endpoint detection to categorize specific

processes, dynamic-link libraries (DDLs), connections, ports, or events as normal or

anomalous behaviors of an individual system.

116

REFERENCES

REFERENCES

Aburomman, A. A., & Reaz, M. B. I. (2017). A survey of intrusion detection systems based

on ensemble and hybrid classifiers. Computers & Security, 65, 135-152.

doi:10.1016/j.cose.2016.11.004

Ahmad, I., Basheri, M., Iqbal, M. J., & Rahim, A. (2018). Performance Comparison of

Support Vector Machine, Random Forest, and Extreme Learning Machine for

Intrusion Detection. IEEE Access, 6, 33789-33795.

doi:10.1109/ACCESS.2018.2841987

Aijaz, L., Aslam, B., & Khalid, U. (2015). Security operations center — A need for an

academic environment. In (pp. 1-7): IEEE.

Akashdeep, I., Manzoor, N., & Kumar, N. (2017). A feature reduced intrusion detection

system using ANN classifier. Expert Systems with Applications, 88, 249-257.

doi:10.1016/j.eswa.2017.07.005

Al-Jarrah, O. Y., Siddiqui, A., Elsalamouny, M., Yoo, P. D., Muhaidat, S., & Kim, K. (2014).

Machine-Learning-Based Feature Selection Techniques for Large-Scale Network

Intrusion Detection. In (Vol. 30-, pp. 177-181).

Albon, C. (2018). Machine Learning with Python Cookbook: Practical Solutions from

Preprocessing to Deep Learning: O'Reilly Media, Inc.

Ameisen, E. (2020). Building Machine Learning Powered Applications: Going from Idea to

Product: O'Reilly Media.

Anaconda. (2021). Retrieved from https://www.anaconda.com/

Anson, S. (2020). Applied Incident Response: Wiley.

assafmo. (2020). joincap. Retrieved from https://github.com/assafmo/joincap

Bejtlich, R. (2013). The Practice of Network Security Monitoring: Understanding Incident

Detection and Response: No Starch Press.

Bhuyan, M. H., Bhattacharyya, D. K., & Kalita, J. K. (2014). Network Anomaly Detection:

Methods, Systems and Tools. IEEE Communications Surveys & Tutorials, 16(1), 303-

336. doi:10.1109/SURV.2013.052213.00046

Bonaccorso, G. (2020). Mastering Machine Learning Algorithms: Expert techniques for

implementing popular machine learning algorithms, fine-tuning your models, and

understanding how they work, 2nd Edition: Packt Publishing.

Buczak, A. L., & Guven, E. (2016). A Survey of Data Mining and Machine Learning

Methods for Cyber Security Intrusion Detection. IEEE Communications Surveys &

Tutorials, 18(2), 1153-1176. doi:10.1109/COMST.2015.2494502

Chiba, Z. (2019). Intelligent approach to build a Deep Neural Network based IDS for cloud

environment using combination of machine learning algorithms. Computers &

Security, 86, 291-318. doi:10.1016/j.cose.2019.06.013

Chio, C., & Freeman, D. (2018). Machine Learning and Security: Protecting Systems with

Data and Algorithms: O'Reilly Media.

Chollet, F. (2017). Deep Learning with Python: Manning Publications Co.

https://www.anaconda.com/
https://github.com/assafmo/joincap

117

Choudhury, S., & Bhowal, A. (2015). Comparative analysis of machine learning algorithms

along with classifiers for network intrusion detection. In (pp. 89-95).

Collins, M. (2014). Network Security Through Data Analysis: Shroff Publishers & Distr.

Creech, G., & Jiankun, H. (2013). Generation of a new IDS test dataset: Time to retire the

KDD collection. In (pp. 4487-4492): IEEE.

Dangi, B., Gamet, J., Kulm, A., Nelson, T., O'Brien, A., & Pauli, W. E. (2020). Alert

Prioritization and Strengthening: Towards an Industry Standard Priority Scoring

System for IDS Analysts Using Open Source Tools and Models of Machine Learning.

South Dakota law review, 65(3), 556.

Deyang, Z., & Dedong, Z. (2011). The Analysis of Event Correlation in Security Operations

Center. In (Vol. 2, pp. 1214-1216): IEEE.

Ertam, F., Kilinçer, L. F., & Yaman, O. (2017). Intrusion detection in computer networks via

machine learning algorithms. In (pp. 1-4).

Garreta, R., Moncecchi, G., Hauck, T., & Hackeling, G. (2017). scikit-learn : Machine

Learning Simplified: Implement scikit-learn into every step of the data science

pipeline: Packt Publishing.

Gron, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts,

Tools, and Techniques to Build Intelligent Systems: O'Reilly Media, Inc.

Haider, W. (2017). Generating realistic intrusion detection system dataset based on fuzzy

qualitative modeling. Journal of Network & Computer Applications, 87, 185-193.

doi:10.1016/j.jnca.2017.03.018

Halder, S., & Ozdemir, S. (2018). Hands-On Machine Learning for Cybersecurity: Safeguard

your system by making your machines intelligent using the Python ecosystem: Packt

Publishing.

Johansen, G. (2020). Digital Forensics and Incident Response: Incident response techniques

and procedures to respond to modern cyber threats, 2nd Edition: Packt Publishing.

Kumar, R. (2019). Machine Learning Quick Reference: Quick and essential machine learning

hacks for training smart data models: Packt Publishing.

Lee, W. M. (2019). Python Machine Learning: Wiley.

Liu, H., & Lang, B. (2019). Machine Learning and Deep Learning Methods for Intrusion

Detection Systems: A Survey. applied sciences.

Maniriho, P., & Ahmad, T. (2018). Analyzing the Performance of Machine Learning

Algorithms in Anomaly Network Intrusion Detection Systems. In (pp. 1-6).

Maseer, Z. K., Yusof, R., Bahaman, N., Mostafa, S. A., & Foozy, C. F. M. (2021).

Benchmarking of Machine Learning for Anomaly-Based Intrusion Detection Systems

in the CICIDS2017 Dataset. Access, 9, 1-1. doi:10.1109/ACCESS.2021.3056614

McHugh, J. (2000). Testing Intrusion detection systems: a critique of the 1998 and 1999

DARPA intrusion detection system evaluations as performed by Lincoln Laboratory.

ACM Trans. Inf. Syst. Secur., 3(4), 262–294. doi:10.1145/382912.382923

McHugh, J., Christie, A., & Allen, J. (2000). Defending Yourself: The Role of Intrusion

Detection Systems. IEEE Software, 17(5), 42-51. doi:10.1109/52.877859

Mehmood, T., & Rais, H. B. (2016). Machine learning algorithms in context of intrusion

detection. In (pp. 369-373).

mergecap: Merging multiple capture files into one. (2021). Retrieved from

https://www.wireshark.org/docs/wsug_html_chunked/AppToolsmergecap.html

https://www.wireshark.org/docs/wsug_html_chunked/AppToolsmergecap.html

118

Nassar, M., El-Bahnasawy, N. A., Ahmed, H.-D. H., Saleeb, A. A., & El-Samie, F. E. A.

(2019). Network Intrusion Detection, Literature Review and Some Techniques

Comparision. In (pp. 62-71): IEEE.

O'Reilly. (2021). Retrieved from https://www.oreilly.com/

parsezeeklogs 2.0.1. (2019). Retrieved from https://pypi.org/project/parsezeeklogs/

Patterson, J., & Gibson, A. (2017). Deep Learning: A Practitioner's Approach: O'Reilly

Media.

Phadke, A., Kulkarni, M., Bhawalkar, P., & Bhattad, R. (2019). A Review of Machine

Learning Methodologies for Network Intrusion Detection. In (pp. 272-275).

Python. (2021). Retrieved from https://www.python.org/

Rahat, F., & Ahsan, S. N. (2015). Comparative study of machine learning techniques for pre-

processing of network intrusion data. In (pp. 46-51).

Ring, M., Wunderlich, S., Scheuring, D., Landes, D., & Hotho, A. (2019). A survey of

network-based intrusion detection data sets. Computers & Security, 86, 147-167.

doi:10.1016/j.cose.2019.06.005

Rodda, S., & Erothi, U. S. R. (2016). Class imbalance problem in the Network Intrusion

Detection Systems. In (pp. 2685-2688).

Sarkar, D., & Natarajan, V. (2019). Ensemble Machine Learning Cookbook: Packt Publishing.

Schinagl, S., Schoon, K., & Paans, R. (2015). A Framework for Designing a Security

Operations Centre (SOC). In (pp. 2253-2262): IEEE.

scikit-learn. (2020). Retrieved from https://scikit-learn.org/stable/index.html

Shashank, K., & Balachandra, M. (2018). Review on Network Intrusion Detection Techniques

using Machine Learning. In (pp. 104-109).

Sopan, A., Berninger, M., Mulakaluri, M., & Katakam, R. (2018). Building a Machine

Learning Model for the SOC, by the Input from the SOC, and Analyzing it for the

SOC. In (pp. 1-8): IEEE.

Spyder. (2020). Retrieved from https://www.spyder-ide.org/

Tavallaee, M., Bagheri, E., Wei, L., & Ghorbani, A. A. (2009). A detailed analysis of the

KDD CUP 99 data set. In (pp. 1-6).

Thapa, N., Liu, Z., Kc, D. B., Gokaraju, B., & Roy, K. (2020). Comparison of Machine

Learning and Deep Learning Models for Network Intrusion Detection Systems. Future

internet, 12(10), 1. doi:10.3390/fi12100167

Thaseen, S., & Kumar, C. A. (2013). An analysis of supervised tree based classifiers for

intrusion detection system. In (pp. 294-299).

Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., & Lin, W.-Y. (2009). Intrusion detection by machine

learning: A review. Expert Systems with Applications, 36(10), 11994-12000.

doi:10.1016/j.eswa.2009.05.029

Ubuntu. (2021). Retrieved from https://ubuntu.com/

Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., Al-Nemrat, A., &

Venkatraman, S. (2019). Deep Learning Approach for Intelligent Intrusion Detection

System. Access, 7, 41525-41550. doi:10.1109/ACCESS.2019.2895334

Yihunie, F., Abdelfattah, E., & Regmi, A. (2019). Applying Machine Learning to Anomaly-

Based Intrusion Detection Systems. In (pp. 1-5): IEEE.

Yu-Xin, M. (2011). The practice on using machine learning for network anomaly intrusion

detection. In (Vol. 2, pp. 576-581).

zeek. (2020). Retrieved from https://zeek.org/

https://www.oreilly.com/
https://pypi.org/project/parsezeeklogs/
https://www.python.org/
https://scikit-learn.org/stable/index.html
https://www.spyder-ide.org/
https://ubuntu.com/
https://zeek.org/

119

APPENDICES

APPENDIX A: PHASE ONE PYTHON SCRIPT

'''
Jonah Baron
PhD Cyber Operations
Dakota State University
MLNIDS - Phase One
'''

import os
import sys
import glob
import time
import numpy as np
import pandas as pd
import warnings
import csv
import bisect

import smtplib
import email.message
import email.utils

import joblib
from joblib import parallel_backend, Parallel

from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV

from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler, MinMaxScaler, MaxAbsScaler, RobustScaler, Normalizer,
LabelEncoder

from sklearn.feature_selection import SelectPercentile, f_classif, RFE, SelectKBest, VarianceThreshold
from sklearn.decomposition import PCA

from sklearn.naive_bayes import GaussianNB, MultinomialNB
from sklearn.neighbors import KNeighborsClassifier, LocalOutlierFactor
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier, BaggingClassifier, IsolationForest
from sklearn.svm import SVC, LinearSVC, OneClassSVM
from sklearn.linear_model import LogisticRegression, SGDClassifier, RidgeClassifier

from sklearn.metrics import confusion_matrix, multilabel_confusion_matrix
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score, roc_auc_score,
classification_report

hostname = "Windows"
#hostname = 'Ubuntu-1-KDD99'
#hostname = 'Ubuntu-2-NSLKDD'
#hostname = 'Ubuntu-3-UNSW'
#hostname = 'Ubuntu-4-CICIDS'
#hostname = 'Ubuntu-5-CIDDS'

def loadKDD99(datasetName):
 #http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
 print ('Loading dataset:', datasetName)

 col_names = ['duration','protocol_type','service','flag','src_bytes',
 'dst_bytes','land','wrong_fragment','urgent','hot','num_failed_logins',
 'logged_in','num_compromised','root_shell','su_attempted','num_root',
 'num_file_creations','num_shells','num_access_files','num_outbound_cmds',
 'is_host_login','is_guest_login','count','srv_count','serror_rate',

120

 'srv_serror_rate','rerror_rate','srv_rerror_rate','same_srv_rate',
 'diff_srv_rate','srv_diff_host_rate','dst_host_count','dst_host_srv_count',
 'dst_host_same_srv_rate','dst_host_diff_srv_rate','dst_host_same_src_port_rate',
 'dst_host_srv_diff_host_rate','dst_host_serror_rate','dst_host_srv_serror_rate',
 'dst_host_rerror_rate','dst_host_srv_rerror_rate','label']

 filename = os.path.join('KDD99', 'kddcup.data.csv')
 trainset = pd.read_csv(filename, header=None, names = col_names)
 filename = os.path.join('KDD99', 'corrected.csv')
 testset = pd.read_csv(filename, header=None, names = col_names)
 fullset = pd.concat([trainset, testset], ignore_index=True)
 del trainset, testset

 print ('Successfully read in dataset')
 print (fullset.head())
 print ('Fullset shape:', fullset.shape)

 #LABEL EXTRACTION AND GROUPING
 fullset = fullset.fillna(value='-')
 print (fullset['label'].value_counts())
 Y_labels = fullset['label'].copy()
 Y_labels[Y_labels != 'normal.'] = 'malicious'
 Y_labels[Y_labels == 'normal.'] = 'normal'
 print ('Successfully grouped malicious features')
 print (Y_labels.value_counts())

 #FEATURE RENAMING AND DROPPING
 filtered = ['duration', 'protocol_type', 'service',
 'flag', 'src_bytes', 'dst_bytes']
 fullset = fullset.filter(filtered)
 fullset = fullset.rename(columns={'duration':'duration', 'protocol_type':'proto',
 'service':'service', 'flag':'conn_state',
 'src_bytes':'orig_ip_bytes', 'dst_bytes':'resp_ip_bytes'})
 zeekpartial = ['duration', 'proto', 'service',
 'conn_state', 'orig_ip_bytes', 'resp_ip_bytes']
 fullset = fullset.reindex(columns=zeekpartial)
 #fullset = fullset.drop(['label'], axis=1)

 #ENCODING, SCALING, SUBSET CREATION, AND FEATURE REDUCTION
 X_train, X_test, Y_train, Y_test = transformBase(fullset, Y_labels, datasetName)

 return X_train, X_test, Y_train, Y_test

def loadNSLKDD(datasetName):
 #http://205.174.165.80/CICDataset/NSL-KDD/Dataset/
 #https://www.unb.ca/cic/datasets/index.html
 print ('Loading dataset:', datasetName)

 col_names = ['duration','protocol_type','service','flag','src_bytes',
 'dst_bytes','land','wrong_fragment','urgent','hot','num_failed_logins',
 'logged_in','num_compromised','root_shell','su_attempted','num_root',
 'num_file_creations','num_shells','num_access_files','num_outbound_cmds',
 'is_host_login','is_guest_login','count','srv_count','serror_rate',
 'srv_serror_rate','rerror_rate','srv_rerror_rate','same_srv_rate',
 'diff_srv_rate','srv_diff_host_rate','dst_host_count','dst_host_srv_count',
 'dst_host_same_srv_rate','dst_host_diff_srv_rate','dst_host_same_src_port_rate',
 'dst_host_srv_diff_host_rate','dst_host_serror_rate','dst_host_srv_serror_rate',
 'dst_host_rerror_rate','dst_host_srv_rerror_rate','label','unknown']

 filename = os.path.join('NSL-KDD', 'KDDTrain+.txt')
 trainset = pd.read_csv(filename, header=None, names = col_names)
 filename = os.path.join('NSL-KDD', 'KDDTest+.txt')
 testset = pd.read_csv(filename, header=None, names = col_names)
 fullset = pd.concat([trainset, testset], ignore_index=True)
 del trainset, testset

 print ('Successfully read in dataset')
 print (fullset.head())
 print ('Fullset shape:', fullset.shape)

 #LABEL EXTRACTION AND GROUPING
 fullset = fullset.fillna(value='-')
 print (fullset['label'].value_counts())

121

 Y_labels = fullset['label'].copy()
 Y_labels[Y_labels != 'normal'] = 'malicious'
 print ('Successfully grouped malicious features')
 print (Y_labels.value_counts())

 #FEATURE RENAMING AND DROPPING
 filtered = ['duration', 'protocol_type', 'service',
 'flag', 'src_bytes', 'dst_bytes']
 fullset = fullset.filter(filtered)
 fullset = fullset.rename(columns={'duration':'duration', 'protocol_type':'proto',
 'service':'service', 'flag':'conn_state',
 'src_bytes':'orig_ip_bytes', 'dst_bytes':'resp_ip_bytes'})
 zeekpartial = ['duration', 'proto', 'service',
 'conn_state', 'orig_ip_bytes', 'resp_ip_bytes']
 fullset = fullset.reindex(columns=zeekpartial)
 #fullset = fullset.drop(['label', 'unknown'], axis=1)

 #ENCODING, SCALING, SUBSET CREATION, AND FEATURE REDUCTION
 X_train, X_test, Y_train, Y_test = transformBase(fullset, Y_labels, datasetName)

 return X_train, X_test, Y_train, Y_test

def loadUNSWNB15(datasetName):
 #https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
 print ('Loading dataset:', datasetName)

 col_names = ['srcip', 'sport', 'dstip', 'dsport', 'proto', 'state',
 'dur', 'sbytes', 'dbytes', 'sttl', 'dttl', 'sloss', 'dloss',
 'service', 'Sload', 'Dload', 'Spkts', 'Dpkts', 'swin', 'dwin',
 'stcpb', 'dtcpb', 'smeansz', 'dmeansz', 'trans_depth', 'res_bdy_len',
 'Sjit', 'Djit', 'Stime', 'Ltime', 'Sintpkt', 'Dintpkt', 'tcprtt', 'synack',
 'ackdat', 'is_sm_ips_ports', 'ct_state_ttl', 'ct_flw_http_mthd',
 'is_ftp_login', 'ct_ftp_cmd', 'ct_srv_src', 'ct_srv_dst', 'ct_dst_ltm',
 'ct_src_ltm', 'ct_src_dport_ltm', 'ct_dst_sport_ltm', 'ct_dst_src_ltm',
 'attack_cat', 'Label']

 path = os.path.join('UNSW-NB15', 'Full', '')
 fnames = glob.glob(path + '*.csv')

 fcontent = []
 for fname in fnames:
 fcontent.append(pd.read_csv(fname, header=None, names=col_names, dtype='str'))
 fullset = pd.concat(fcontent, ignore_index=True)
 del fcontent

 print ('Successfully read in dataset')
 print (fullset.head())
 print ('Fullset shape:', fullset.shape)

 #LABEL EXTRACTION AND GROUPING
 fullset = fullset.fillna(value='-')
 print (fullset['Label'].value_counts())
 Y_labels = fullset['Label'].copy()
 Y_labels[Y_labels != '0'] = 'malicious'
 Y_labels[Y_labels == '0'] = 'normal'
 print ('Successfully grouped malicious features')
 print (Y_labels.value_counts())

 #FEATURE RENAMING AND DROPPING
 filtered = ['srcip', 'sport', 'dstip', 'dsport',
 'proto', 'service', 'dur', 'sbytes',
 'dbytes', 'Spkts', 'Dpkts']
 fullset = fullset.filter(filtered)
 fullset = fullset.rename(columns={'srcip':'id.orig_h', 'sport':'id.orig_p',
 'dstip':'id.resp_h', 'dsport':'id.resp_p',
 'dur':'duration', 'sbytes':'orig_ip_bytes', 'dbytes':'resp_ip_bytes',
 'Spkts':'orig_pkts', 'Dpkts':'resp_pkts'})
 zeekpartial = ['id.orig_h', 'id.orig_p', 'id.resp_h', 'id.resp_p',
 'proto', 'service', 'duration', 'orig_pkts',
 'orig_ip_bytes', 'resp_pkts', 'resp_ip_bytes']
 fullset = fullset.reindex(columns=zeekpartial)
 #fullset = fullset.drop(['attack_cat', 'label'], axis=1)

122

 #ENCODING, SCALING, SUBSET CREATION, AND FEATURE REDUCTION
 X_train, X_test, Y_train, Y_test = transformBase(fullset, Y_labels, datasetName)

 return X_train, X_test, Y_train, Y_test

def loadCICIDS2017(datasetName):
 #http://205.174.165.80/CICDataset/CIC-IDS-2017/Dataset/
 #https://www.unb.ca/cic/datasets/index.html
 print ('Loading dataset:', datasetName)

 path = os.path.join('CICIDS2017', 'MachineLearningCSV', 'MachineLearningCVE', '')
 fnames = glob.glob(path + '*.csv')

 fcontent = []
 for fname in fnames:
 fcontent.append(pd.read_csv(fname))
 fullset = pd.concat(fcontent, ignore_index=True)
 fullset.columns = fullset.columns.str.strip()

 print ('Successfully read in dataset')
 print (fullset.head())
 print ('Fullset shape:', fullset.shape)

 #LABEL EXTRACTION AND GROUPING
 fullset = fullset.fillna(value='-')
 print (fullset['Label'].value_counts())
 Y_labels = fullset['Label'].copy()
 Y_labels[Y_labels != 'BENIGN'] = 'malicious'
 Y_labels[Y_labels == 'BENIGN'] = 'normal'
 print ('Successfully grouped malicious features')
 print (Y_labels.value_counts())

 #FEATURE RENAMING AND DROPPING
 filtered = ['Destination Port', 'Flow Duration', 'Total Fwd Packets',
 'Total Backward Packets', 'Total Length of Fwd Packets', 'Total Length of Bwd Packets']
 fullset = fullset.filter(filtered)
 fullset = fullset.rename(columns={'Destination Port':'id.resp_p', 'Flow Duration':'duration',
 'Total Fwd Packets':'orig_pkts', 'Total Backward Packets':'resp_pkts',
 'Total Length of Fwd Packets':'orig_ip_bytes', 'Total Length of Bwd
Packets':'resp_ip_bytes'})
 zeekpartial = ['id.resp_p', 'duration', 'orig_pkts',
 'resp_pkts', 'orig_ip_bytes', 'resp_ip_bytes']
 fullset = fullset.reindex(columns=zeekpartial)
 #fullset = fullset.drop(['Label'], axis=1)

 #ENCODING, SCALING, SUBSET CREATION, AND FEATURE REDUCTION
 X_train, X_test, Y_train, Y_test = transformBase(fullset, Y_labels, datasetName)

 return X_train, X_test, Y_train, Y_test

def loadCIDDS001(datasetName):
 #https://www.hs-coburg.de/forschung/forschungsprojekte-oeffentlich/informationstechnologie/cidds-coburg-
intrusion-detection-data-sets.html
 print ('Loading dataset:', datasetName)

 filtered_cols = ['Duration','Proto','Src IP Addr','Src Pt','Dst IP Addr','Dst Pt',
 'Packets', #'Bytes' not included due to naming convention like '10 M'
 'Flows','Flags','Tos','class']

 path = os.path.join('CIDDS-001', 'WISENT-CIDDS-001', 'CIDDS-001', 'traffic', 'OpenStack', '')
 fnames = glob.glob(path + '*.csv')

 fcontent = []
 for fname in fnames:
 fcontent.append(pd.read_csv(fname, usecols = filtered_cols))
 fullset = pd.concat(fcontent, ignore_index=True)

 print ('Successfully read in dataset')
 print (fullset.head())
 print ('Fullset shape:', fullset.shape)

 #LABEL EXTRACTION AND GROUPING
 fullset = fullset.fillna(value='-')

123

 print (fullset['class'].value_counts())
 Y_labels = fullset['class'].copy()
 Y_labels[Y_labels != 'normal'] = 'malicious'
 print ('Successfully grouped malicious features')
 print (Y_labels.value_counts())

 #FEATURE RENAMING AND DROPPING
 filtered = ['Duration', 'Proto', 'Src IP Addr', 'Src Pt',
 'Dst IP Addr', 'Dst Pt', 'Packets']
 fullset = fullset.filter(filtered)
 fullset = fullset.rename(columns={'Duration':'duration', 'Proto':'proto',
 'Src IP Addr':'id.orig_h', 'Src Pt':'id.orig_p',
 'Dst IP Addr':'id.resp_h', 'Dst Pt':'id.resp_p',
 'Packets':'orig_pkts'})
 zeekpartial = ['duration', 'proto', 'id.orig_h', 'id.orig_p',
 'id.resp_h', 'id.resp_p', 'orig_pkts']
 fullset = fullset.reindex(columns=zeekpartial)
 #fullset = fullset.drop(['class'], axis=1)

 #ENCODING, SCALING, SUBSET CREATION, AND FEATURE REDUCTION
 X_train, X_test, Y_train, Y_test = transformBase(fullset, Y_labels, datasetName)

 #Utilize only 10% of full dataset (contained in X_test/Y_test) - Unique to CIDDS-001
 X_train, X_test, Y_train, Y_test = train_test_split(X_test, Y_test, test_size = .10, random_state = 0)

 return X_train, X_test, Y_train, Y_test

def transformBase(fullset, Y_labels, datasetName):
 pathname = saveConfig(datasetName)

 #DATATYPE CONVERSION TO STR/OBJECT
 #print (fullset.dtypes)
 col_names = list(fullset)
 for col in col_names:
 fullset[col] = fullset[col].astype('str')
 #print (fullset.dtypes)
 print ('Successfully converted dataframe column datatypes')
 print (fullset.head())

 #UNIQUE VALUES AND ENCODING
 unique = fullset.values.ravel()
 save = pathname + '_unique.joblib'
 joblib.dump(unique, save)

 enc = LabelEncoder()
 enc.fit(np.unique(fullset.values))
 save = pathname + '_encoder.joblib'
 joblib.dump(enc, save)
 fullset = fullset.apply(enc.transform)
 print ('Successfully encoded data')
 print (fullset.head())

 #SCALING
 scaler = StandardScaler()
 scaler.fit(fullset)
 save = pathname + '_scaler.joblib'
 joblib.dump(scaler, save)
 fullset = scaler.transform(fullset)
 print ('Successfully scaled data')

 #SUBSET CREATION
 X_train, X_test, Y_train, Y_test = train_test_split(fullset, Y_labels, test_size = .10, random_state = 0)
 print ('Successfully created subsets')

 #FEATURE REDUCTION
 print ('X_train shape:', X_train.shape)
 print ('X_test shape:', X_test.shape)

 pca = PCA(n_components='mle', svd_solver='full') #svd_solver='auto'
 pca.fit(X_train)
 save = pathname + '_pca.joblib'
 joblib.dump(pca, save)
 X_train = pd.DataFrame(pca.transform(X_train))

124

 X_test = pd.DataFrame(pca.transform(X_test))

 print ('Successfully reduced features')
 print ('X_train shape:', X_train.shape)
 print ('X_test shape:', X_test.shape)

 return X_train, X_test, Y_train, Y_test

def saveConfig(datasetName):
 if datasetName == 'KDD Cup 1999':
 pathname = os.path.join('KDD99', 'Output', 'KDD99')
 if datasetName == 'NSL-KDD':
 pathname = os.path.join('NSL-KDD', 'Output', 'NSLKDD')
 if datasetName == 'UNSW-NB15':
 pathname = os.path.join('UNSW-NB15', 'Output', 'UNSW')
 if datasetName == 'CICIDS 2017':
 pathname = os.path.join('CICIDS2017', 'Output', 'CICIDS')
 if datasetName == 'CIDDS-001':
 pathname = os.path.join('CIDDS-001', 'Output', 'CIDDS')
 #return path, name
 return pathname

def modelOutput(expected, predicted, modelName, datasetName):
 accuracy = accuracy_score(expected, predicted)
 precision = precision_score(expected, predicted , average='macro', labels=np.unique(predicted))
 recall = recall_score(expected, predicted, average='macro', labels=np.unique(predicted))
 f1 = f1_score(expected, predicted , average='macro', labels=np.unique(predicted))
 class_report = classification_report(expected, predicted)
 #returned = confusion_matrix(expected, predicted).ravel()
 #print(cm)

 #print(expected, predicted)
 #print ('Labels not found in expected set:')
 #print (set(expected)-set(predicted))

 print ('===')
 print (datasetName, '|', modelName)
 print ('===')
 print('Accuracy: %.3f' %accuracy)
 print('Precision: %.3f' %precision)
 print('Recall: %.3f' %recall)
 print('F1 score: %.3f' %f1)
 print('Classification report')
 print(class_report)
 print('****************************')

 return accuracy, precision, recall, f1

def modelProduction(datasetName, X_train, X_test, Y_train, Y_test):
 print ('\nProducing models...\n')

 scoringMethods = ['accuracy', 'precision_macro', 'f1_macro']
 for scoreMethod in scoringMethods:
 clfs = getOptimized(datasetName, scoreMethod)

 pathname = saveConfig(datasetName)
 rows = []

 for clf_name in clfs:
 start = time.time()
 print('Producing',clf_name)
 clf = clfs[clf_name]
 clf = clf.fit(X_train, Y_train)
 predicted = clf.predict(X_test)
 expected = Y_test
 end = time.time()
 trainTime = (end-start)/60
 print ('Model training time: %.3f' %trainTime, 'minutes')

 accuracy, precision, recall, f1 = modelOutput(expected, predicted, clf_name, datasetName)
 rows.append([clf_name, accuracy, precision, recall, f1, trainTime, scoreMethod])

 if clf_name == 'Naive Bayes - Gaussian NB':

125

 modelSave = 'NB'
 if clf_name == 'Decision Tree':
 modelSave = 'DT'
 if clf_name == 'Ensemble - Random Forest':
 modelSave = 'RF'
 if clf_name == 'Ensemble - Ada Boost':
 modelSave = 'AB'
 if clf_name == 'Ensemble - Bagging Classifier':
 modelSave = 'BC'
 if clf_name == 'Linear - Logistic Regression':
 modelSave = 'LR'
 if clf_name == 'Linear - Stochastic Gradient Descent':
 modelSave = 'SGD'
 saveName = pathname + '-' + scoreMethod + '-' + modelSave + '.joblib'
 joblib.dump(clf, saveName)
 #input('Press any key to continue...')

 fields = ['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score', 'Time', 'Score Method', datasetName]
 csvname = pathname + '-Models' + '-' + scoreMethod + '.csv'
 with open(csvname, 'w', newline = '') as csvfile:
 csvwriter = csv.writer(csvfile)
 csvwriter.writerow(fields)
 for row in rows:
 csvwriter.writerow(row)

def getOptimized(datasetName, scoreMethod):
 print ('Obtaining optimized model parameters...')

 #ACCURACY SCORE OPTIMIZATION
 if scoreMethod == 'accuracy':
 if datasetName == 'KDD Cup 1999':
 clfs = {
 #Updated - 10/13/2020
 'Naive Bayes - Gaussian NB' : GaussianNB(),
 'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='log2'),
 'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='gini',
max_features='log2', n_estimators=100),
 'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=5000),
 'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=0.5,
max_samples=0.5, n_estimators=5000),
 'Linear - Logistic Regression' : LogisticRegression(C=10, max_iter=2500, penalty='l2'),
 'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=15, max_iter=1000,
penalty='l2'),
 }
 if datasetName == 'NSL-KDD':
 clfs = {
 #Updated - 10/13/2020
 'Naive Bayes - Gaussian NB' : GaussianNB(),
 'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='log2'),
 'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='gini',
max_features='log2', n_estimators=5000),
 'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=3000),
 'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=0.5,
max_samples=0.5, n_estimators=1000),
 'Linear - Logistic Regression' : LogisticRegression(C=0.1, max_iter=2500, penalty='l2'),
 'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=5, max_iter=1000,
penalty='l2'),
 }
 if datasetName == 'UNSW-NB15':
 clfs = {
 #Updated - 10/13/2020
 'Naive Bayes - Gaussian NB' : GaussianNB(),
 'Decision Tree' : DecisionTreeClassifier(criterion='gini', max_features='sqrt'),
 'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='entropy',
max_features='log2', n_estimators=100),
 'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1, n_estimators=3000),
 'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=0.5,
max_samples=0.5, n_estimators=1000),
 'Linear - Logistic Regression' : LogisticRegression(C=0.1, max_iter=2500, penalty='l2'),
 'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=15, max_iter=100,
penalty='l2'),
 }
 if datasetName == 'CICIDS 2017':

126

 clfs = {
 #Updated - 10/14/2020
 'Naive Bayes - Gaussian NB' : GaussianNB(),
 'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='sqrt'),
 'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='gini',
max_features='sqrt', n_estimators=1000),
 'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=5000),
 'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=5,
max_samples=0.5, n_estimators=5000),
 'Linear - Logistic Regression' : LogisticRegression(C=1, max_iter=2500, penalty='l2'),
 'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=15, max_iter=3000,
penalty='l2'),
 }
 if datasetName == 'CIDDS-001':
 clfs = {
 #Updated 10/28/2020
 'Naive Bayes - Gaussian NB' : GaussianNB(),
 'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='sqrt'),
 'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='entropy',
max_features='sqrt', n_estimators=1000),
 'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=5000),
 'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=5,
max_samples=0.5, n_estimators=1000),
 'Linear - Logistic Regression' : LogisticRegression(C=10, max_iter=2500, penalty='l2'),
 'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=5, max_iter=100,
penalty='l2'),
 }

 #PRECISION SCORE OPTIMIZATION
 if scoreMethod == 'precision_macro':
 if datasetName == 'KDD Cup 1999':
 clfs = {
 #Updated - 10/13/2020
 'Naive Bayes - Gaussian NB' : GaussianNB(),
 'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='auto'),
 'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='gini',
max_features='log2', n_estimators=100),
 'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=5000),
 'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=5,
max_samples=0.5, n_estimators=5000),
 'Linear - Logistic Regression' : LogisticRegression(C=10, max_iter=2500, penalty='l2'),
 'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=15, max_iter=1000,
penalty='l2'),
 }
 if datasetName == 'NSL-KDD':
 clfs = {
 #Updated - 10/13/2020
 'Naive Bayes - Gaussian NB' : GaussianNB(),
 'Decision Tree' : DecisionTreeClassifier(criterion='gini', max_features='auto'),
 'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='entropy',
max_features='sqrt', n_estimators=100),
 'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=3000),
 'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=0.5,
max_samples=0.5, n_estimators=3000),
 'Linear - Logistic Regression' : LogisticRegression(C=0.1, max_iter=2500, penalty='l2'),
 'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=5, max_iter=3000,
penalty='l2'),
 }
 if datasetName == 'UNSW-NB15':
 clfs = {
 #Updated - 10/13/2020
 'Naive Bayes - Gaussian NB' : GaussianNB(),
 'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='sqrt'),
 'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='entropy',
max_features='sqrt', n_estimators=1000),
 'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1, n_estimators=5000),
 'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=1,
max_samples=0.5, n_estimators=100),
 'Linear - Logistic Regression' : LogisticRegression(C=0.1, max_iter=2500, penalty='l2'),
 'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=10, max_iter=100,
penalty='l2'),
 }
 if datasetName == 'CICIDS 2017':

127

 clfs = {
 #Updated - 10/14/2020
 'Naive Bayes - Gaussian NB' : GaussianNB(),
 'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='auto'),
 'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='gini',
max_features='sqrt', n_estimators=1000),
 'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=5000),
 'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=5,
max_samples=0.5, n_estimators=5000),
 'Linear - Logistic Regression' : LogisticRegression(C=0.1, max_iter=2500, penalty='l2'),
 'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=15, max_iter=1000,
penalty='l2'),
 }
 if datasetName == 'CIDDS-001':
 clfs = {
 #Updated 10/28/2020
 'Naive Bayes - Gaussian NB' : GaussianNB(),
 'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='auto'),
 'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='entropy',
max_features='log2', n_estimators=3000),
 'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=5000),
 'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=0.5,
max_samples=0.5, n_estimators=1000),
 'Linear - Logistic Regression' : LogisticRegression(C=10, max_iter=2500, penalty='l2'),
 'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=5, max_iter=100,
penalty='l2'),
 }

 #F1 SCORE OPTIMIZATION
 if scoreMethod == 'f1_macro':
 if datasetName == 'KDD Cup 1999':
 clfs = {
 #Updated - 10/13/2020
 'Naive Bayes - Gaussian NB' : GaussianNB(),
 'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='auto'),
 'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='gini',
max_features='sqrt', n_estimators=100),
 'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=5000),
 'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=0.5,
max_samples=0.5, n_estimators=100),
 'Linear - Logistic Regression' : LogisticRegression(C=10, max_iter=2500, penalty='l2'),
 'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=15, max_iter=1000,
penalty='l2'),
 }
 if datasetName == 'NSL-KDD':
 clfs = {
 #Updated - 10/13/2020
 'Naive Bayes - Gaussian NB' : GaussianNB(),
 'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='log2'),
 'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='gini',
max_features='log2', n_estimators=1000),
 'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=3000),
 'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=0.5,
max_samples=0.5, n_estimators=1000),
 'Linear - Logistic Regression' : LogisticRegression(C=0.1, max_iter=2500, penalty='l2'),
 'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=5, max_iter=5000,
penalty='l2'),
 }
 if datasetName == 'UNSW-NB15':
 clfs = {
 #Updated - 10/13/2020
 'Naive Bayes - Gaussian NB' : GaussianNB(),
 'Decision Tree' : DecisionTreeClassifier(criterion='gini', max_features='log2'),
 'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='entropy',
max_features='auto', n_estimators=100),
 'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1, n_estimators=3000),
 'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=0.5,
max_samples=0.5, n_estimators=3000),
 'Linear - Logistic Regression' : LogisticRegression(C=0.1, max_iter=2500, penalty='l2'),
 'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=15, max_iter=1000,
penalty='l2'),
 }
 if datasetName == 'CICIDS 2017':

128

 clfs = {
 #Updated - 10/14/2020
 'Naive Bayes - Gaussian NB' : GaussianNB(),
 'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='log2'),
 'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='entropy',
max_features='auto', n_estimators=1000),
 'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=5000),
 'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=5,
max_samples=0.5, n_estimators=3000),
 'Linear - Logistic Regression' : LogisticRegression(C=10, max_iter=2500, penalty='l2'),
 'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=15, max_iter=1000,
penalty='l2'),
 }
 if datasetName == 'CIDDS-001':
 clfs = {
 #Updated 10/28/2020
 'Naive Bayes - Gaussian NB' : GaussianNB(),
 'Decision Tree' : DecisionTreeClassifier(criterion='entropy', max_features='log2'),
 'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1, criterion='entropy',
max_features='auto', n_estimators=3000),
 'Ensemble - Ada Boost' : AdaBoostClassifier(learning_rate=1.5, n_estimators=5000),
 'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1, max_features=5,
max_samples=0.5, n_estimators=1000),
 'Linear - Logistic Regression' : LogisticRegression(C=10, max_iter=2500, penalty='l2'),
 'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1, alpha=5, max_iter=100,
penalty='l2'),
 }

 return clfs

def optimizeModels(datasetName, X_test, Y_test):
 print ('\nOptimizing models...\n')

 rows = []
 scoringMethods = ['accuracy', 'precision_macro', 'f1_macro']
 clfs = {
 #'Naive Bayes - Gaussian NB' : GaussianNB(),
 'Decision Tree' : DecisionTreeClassifier(),
 'Ensemble - Random Forest' : RandomForestClassifier(n_jobs=-1),
 'Ensemble - Ada Boost' : AdaBoostClassifier(),
 'Ensemble - Bagging Classifier' : BaggingClassifier(n_jobs=-1),
 'Linear - Logistic Regression' : LogisticRegression(),
 'Linear - Stochastic Gradient Descent' : SGDClassifier(n_jobs=-1),
 }
 for scoreMethod in scoringMethods:
 for clf_name in clfs:
 print('Tuning', clf_name, 'for ideal', scoreMethod, 'score')
 start = time.time()
 if clf_name == 'Decision Tree':
 param_grid = {'criterion' : ['gini', 'entropy'],
 'max_features' : ['auto', 'sqrt', 'log2']
 }
 if clf_name == 'Ensemble - Random Forest':
 param_grid = {'n_estimators' : [100, 1000, 3000, 5000],
 'criterion' : ['gini', 'entropy'],
 'max_features' : ['auto', 'sqrt', 'log2']
 }
 if clf_name == 'Ensemble - Ada Boost':
 param_grid = {'n_estimators' : [100, 1000, 3000, 5000],
 'learning_rate' : [0.5, 1, 1.5]
 }
 if clf_name == 'Ensemble - Bagging Classifier':
 param_grid = {'n_estimators' : [100, 1000, 3000, 5000],
 'max_features' : [0.5, 1, 5],
 'max_samples' : [0.1, 0.5, 1]
 }
 if clf_name == 'Linear - Logistic Regression':
 param_grid = {'penalty' : ['l2', 'l1', 'elasticnet'],
 'C' : [0.1, 1, 10],
 'max_iter' : [2500, 5000, 7500, 10000]
 }
 if clf_name == 'Linear - Stochastic Gradient Descent':
 param_grid = {'alpha' : [5, 10, 15],

129

 'penalty' : ['l2', 'l1', 'elasticnet'],
 'max_iter' : [100, 1000, 3000, 5000]
 }
 clf = GridSearchCV(clfs[clf_name], param_grid, pre_dispatch=3, n_jobs=-1, verbose=5, cv=5,
scoring=scoreMethod)
 #with parallel_backend('threading'):
 try:
 clf = clf.fit(X_test, Y_test)
 except:
 subject = hostname + ' - Python Script Crash'
 message = 'Python script crash for %s' %datasetName
 sendEmail(subject, message)
 end = time.time()
 trainTime = (end-start)/60

 rows.append([scoreMethod, clf_name, clf.best_params_, clf.best_score_, trainTime])
 print ('=======================================')
 print (datasetName)
 print (scoreMethod)
 print (clf_name)
 print ('Model training time: %.3f' %trainTime, 'minutes')
 print ('Best parameters:', clf.best_params_)
 print ('Best score: %.5f' %clf.best_score_)
 print ('=======================================')
 print (clf.cv_results_)
 #modelOutput(expected, predicted, clf_name, datasetName)
 #input('Press any key to continue...')

 pathname = saveConfig(datasetName)
 csvname = pathname + '-ModelParams.csv'
 fields = ['Score Method', 'Model', 'Best Parameters', 'Best Score', 'Time', datasetName]
 with open(csvname, 'w', newline = '') as csvfile:
 csvwriter = csv.writer(csvfile)
 csvwriter.writerow(fields)
 for row in rows:
 csvwriter.writerow(row)

def sendEmail(subject, message):
 from_email = #source email
 password = #source email password credential
 to_email = #destination alterate email
 msg = '\r\n'.join([
 'To: %s' %to_email,
 'From: %s' %from_email,
 'Subject: %s' %subject,
 '', message])

 server = smtplib.SMTP('smtp.gmail.com', 587)
 server.ehlo()
 server.starttls()
 server.ehlo()
 server.login(from_email, password)
 server.sendmail(from_email, [to_email], msg)
 server.quit()

def main():
 scriptStart = time.time()
 warnings.filterwarnings('always')
 #sys.stdout = open('output.txt', 'w')
 #sys.stderr = open('output.txt', 'w')
 #pd.set_option('display.max_rows', 300)
 #Parallel(n_jobs=-1)

 for dataset in range(5):
 if dataset == 0:
 datasetName = 'KDD Cup 1999'
 X_train, X_test, Y_train, Y_test = loadKDD99(datasetName)
 if dataset == 1:
 datasetName = 'NSL-KDD'
 X_train, X_test, Y_train, Y_test = loadNSLKDD(datasetName)
 if dataset == 2:
 datasetName = 'UNSW-NB15'
 X_train, X_test, Y_train, Y_test = loadUNSWNB15(datasetName)

130

 if dataset == 3:
 datasetName = 'CICIDS 2017'
 X_train, X_test, Y_train, Y_test = loadCICIDS2017(datasetName)
 if dataset == 4:
 datasetName = 'CIDDS-001'
 X_train, X_test, Y_train, Y_test = loadCIDDS001(datasetName)

 print ('X_train shape:', X_train.shape)
 print ('X_test shape:', X_test.shape)

 #optimizeModels(datasetName, X_test, Y_test)
 #modelProduction(datasetName, X_train, X_test, Y_train, Y_test)

 scriptFinish = time.time()
 elapsedTime = scriptFinish-scriptStart

 subject = hostname + ' - Script Completed'
 message = 'Elapsed runtime: %s' %elapsedTime
 sendEmail(subject, message)

if __name__ == '__main__':
 main()

131

APPENDIX B: PHASE TWO PYTHON SCRIPT

'''
Jonah Baron
PhD Cyber Operations
Dakota State University
MLNIDS - Phase Two
'''

import os
import sys
import glob
import time
import numpy as np
import pandas as pd
import warnings
import csv
import bisect

import smtplib
import email.message
import email.utils

import joblib
from joblib import parallel_backend, Parallel

from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV

from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler, MinMaxScaler, MaxAbsScaler, RobustScaler, Normalizer,
LabelEncoder

from sklearn.feature_selection import SelectPercentile, f_classif, RFE, SelectKBest, VarianceThreshold
from sklearn.decomposition import PCA

from sklearn.naive_bayes import GaussianNB, MultinomialNB
from sklearn.neighbors import KNeighborsClassifier, LocalOutlierFactor
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier, BaggingClassifier, IsolationForest
from sklearn.svm import SVC, LinearSVC, OneClassSVM
from sklearn.linear_model import LogisticRegression, SGDClassifier, RidgeClassifier

from sklearn.metrics import confusion_matrix, multilabel_confusion_matrix
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score, roc_auc_score,
classification_report

from parsezeeklogs import ParseZeekLogs #custom downloaded PyPI package

hostname = "Windows"
#hostname = 'Ubuntu-1-KDD99'
#hostname = 'Ubuntu-2-NSLKDD'
#hostname = 'Ubuntu-3-UNSW'
#hostname = 'Ubuntu-4-CICIDS'
#hostname = 'Ubuntu-5-CIDDS'

def loadZeekLogs(datasetName):
 zeekFile = os.path.join('Zeek', 'Final', 'CICIDS2017', 'conn.log')
 zeekLogs = ParseZeekLogs(zeekFile, output_format='csv', safe_headers=False)
 print(zeekLogs.get_fields())

 predictionFile = os.path.join('Zeek', 'predictionset.csv')
 with open(predictionFile,'w') as outfile:
 outfile.write(zeekLogs.get_fields() + '\n')
 for log in zeekLogs:
 if log is not None:
 outfile.write(log + '\n')

 zeekfull = ['ts', 'uid', 'id.orig_h', 'id.orig_p', 'id.resp_h', 'id.resp_p',

132

 'proto', 'service', 'duration', 'orig_bytes', 'resp_bytes', 'conn_state',
 'local_orig', 'local_resp', 'missed_bytes', 'history', 'orig_pkts',
 'orig_ip_bytes', 'resp_pkts', 'resp_ip_bytes', 'tunnel_parents']

 if datasetName == 'KDD Cup 1999':
 zeekpartial = ['duration', 'proto', 'service',
 'conn_state', 'orig_ip_bytes', 'resp_ip_bytes']
 if datasetName == 'NSL-KDD':
 zeekpartial = ['duration', 'proto', 'service',
 'conn_state', 'orig_ip_bytes', 'resp_ip_bytes']
 if datasetName == 'UNSW-NB15':
 zeekpartial = ['id.orig_h', 'id.orig_p', 'id.resp_h', 'id.resp_p',
 'proto', 'service', 'duration', 'orig_pkts',
 'orig_ip_bytes', 'resp_pkts', 'resp_ip_bytes']
 if datasetName == 'CICIDS 2017':
 zeekpartial = ['id.resp_p', 'duration', 'orig_pkts',
 'resp_pkts', 'orig_ip_bytes', 'resp_ip_bytes']
 if datasetName == 'CIDDS-001':
 zeekpartial = ['duration', 'proto', 'id.orig_h', 'id.orig_p',
 'id.resp_h', 'id.resp_p', 'orig_pkts']

 predictionset = pd.read_csv(predictionFile, usecols=zeekpartial)

 print ('Successfully read in prediction dataset')
 print (predictionset.head())
 print ('Predictionset shape:', predictionset.shape)

 return predictionset

def transformPrediction(predictionset, datasetName):
 pathname = saveConfig(datasetName)

 enc = joblib.load(pathname + '_encoder.joblib')
 scaler = joblib.load(pathname + '_scaler.joblib')
 pca = joblib.load(pathname + '_pca.joblib')
 unique = joblib.load(pathname + '_unique.joblib')

 #Transformations - datatype conversions, encoding, scaling, subset creation, feature reduction
 print (enc)
 print (scaler)
 print (pca)
 print (unique)

 #ENSURE '-' IS SEEN IN ENCODER SCHEMA
 enc_classes = enc.classes_.tolist()
 bisect.insort_left(enc_classes, '-')
 enc.classes_ = enc_classes

 #DATATYPE CONVERSION TO STR/OBJECT
 predictionset = predictionset.fillna(value='-')
 #print (fullset.dtypes)
 col_names = list(predictionset)
 for col in col_names:
 predictionset[col] = predictionset[col].astype('str')
 #print (fullset.dtypes)
 print ('Successfully converted dataframe column datatypes')
 print (predictionset.head())

 #ENCODING
 predictionvalues = list(np.unique(predictionset.values.ravel()))
 trainedvalues = list(np.unique(unique.tolist()))

 remove = []
 for value in predictionvalues:
 if value not in trainedvalues:
 remove.append(value)
 predictionset.replace(to_replace=remove, value='-', inplace=True)

 predictionset = predictionset.apply(enc.transform)
 print ('Successfully encoded data')
 print (predictionset.head())

 #SCALING

133

 predictionset = scaler.transform(predictionset)
 print ('Successfully scaled data')

 #FEATURE REDUCTION
 predictionset = pca.transform(predictionset)
 print ('Successfully reduced features')
 print ('Prediction set shape:', predictionset.shape)

 scoringMethods = ['accuracy', 'precision_macro', 'f1_macro']
 clfs = ['NB', 'DT', 'RF', 'AB', 'BC', 'LR', 'SGD']
 rows = []

 for scoreMethod in scoringMethods:
 for clfName in clfs:
 clfFile = '-' + scoreMethod + '-' + clfName + '.joblib'
 clf = joblib.load(pathname + clfFile)
 print (clf)
 #print (clf.feature_importances_)

 prediction = clf.predict(predictionset)
 unique, counts = np.unique(prediction, return_counts=True)
 #print (unique, counts)
 print (np.asarray((unique, counts)).T)
 if len(unique) == 1:
 if unique[0] == 'normal':
 flagged = 0
 rows.append([clfName, scoreMethod, 0, counts[0], counts[0], flagged])
 if unique[0] == 'malicious':
 flagged = 1
 rows.append([clfName, scoreMethod, counts[0], 0, counts[0], flagged])
 if len(unique) == 2:
 flagged = counts[0]/(counts[0]+counts[1])
 rows.append([clfName, scoreMethod, counts[0], counts[1], (counts[0] + counts[1]), flagged])
 print ('Flagged traffic: ', flagged)

 fields = ['Model', 'Score Method', 'Malicious', 'Normal', 'Total', 'Flagged Traffic', datasetName]
 csvname = pathname + '-Predictions.csv'
 with open(csvname, 'w', newline = '') as csvfile:
 csvwriter = csv.writer(csvfile)
 csvwriter.writerow(fields)
 for row in rows:
 csvwriter.writerow(row)

def saveConfig(datasetName):
 if datasetName == 'KDD Cup 1999':
 pathname = os.path.join('KDD99', 'Output', 'KDD99')
 if datasetName == 'NSL-KDD':
 pathname = os.path.join('NSL-KDD', 'Output', 'NSLKDD')
 if datasetName == 'UNSW-NB15':
 pathname = os.path.join('UNSW-NB15', 'Output', 'UNSW')
 if datasetName == 'CICIDS 2017':
 pathname = os.path.join('CICIDS2017', 'Output', 'CICIDS')
 if datasetName == 'CIDDS-001':
 pathname = os.path.join('CIDDS-001', 'Output', 'CIDDS')

 return pathname

def sendEmail(subject, message):
 from_email = #source email
 password = #source email password credential
 to_email = #destination alter email
 msg = '\r\n'.join([
 'To: %s' %to_email,
 'From: %s' %from_email,
 'Subject: %s' %subject,
 '', message])

 server = smtplib.SMTP('smtp.gmail.com', 587)
 server.ehlo()
 server.starttls()
 server.ehlo()
 server.login(from_email, password)

134

 server.sendmail(from_email, [to_email], msg)
 server.quit()

def main():
 warnings.filterwarnings('always')
 scriptStart = time.time()

 for dataset in range(5):
 if dataset == 0:
 datasetName = 'KDD Cup 1999'
 if dataset == 1:
 datasetName = 'NSL-KDD'
 if dataset == 2:
 datasetName = 'UNSW-NB15'
 if dataset == 3:
 datasetName = 'CICIDS 2017'
 if dataset == 4:
 datasetName = 'CIDDS-001'

 #LOAD ZEEK CONN LOG AND PREDICT
 predictionset = loadZeekLogs(datasetName)
 transformPrediction(predictionset, datasetName)

 scriptFinish = time.time()
 elapsedTime = scriptFinish-scriptStart

 subject = hostname + ' - Script Completed'
 message = 'Elapsed runtime: %s' %elapsedTime
 sendEmail(subject, message)

if __name__ == '__main__':
 main()

135

APPENDIX C: LIST OF ZEEK CONNECTION LOG FIELDS

AND DATASET FEATURES

• Zeek Connection Log - ts, uid, id, proto, service, duration, orig_bytes, resp_bytes,

conn_state, local_orig, local_resp, missed_bytes, history, orig_pkts, orig_ip_bytes,

resp_pkts, resp_ip_bytes, tunnel_parents, orig_l2_addr, resp_l2_addr, vlan,

inner_vlan, speculative_service

• KDD 99 Dataset - duration, protocol_type, service, flag, src_bytes, dst_bytes, land,

wrong_fragment, urgent, hot, num_failed_logins, logged_in, num_compromised,

root_shell, su_attempted, num_root, num_file_creations, num_shells,

num_access_files, num_outbound_cmds, is_host_login, is_guest_login, count,

srv_count, serror_rate, srv_serror_rate, rerror_rate, srv_rerror_rate, same_srv_rate,

diff_srv_rate, srv_diff_host_rate, dst_host_count, dst_host_srv_count,

dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_same_src_port_rate,

dst_host_srv_diff_host_rate, dst_host_serror_rate, dst_host_srv_serror_rate,

dst_host_rerror_rate, dst_host_srv_rerror_rate

• NSL-KDD Dataset - duration, protocol_type, service, flag, src_bytes, dst_bytes, land,

wrong_fragment, urgent, hot, num_failed_logins, logged_in, num_compromised,

root_shell, su_attempted, num_root, num_file_creations, num_shells,

num_access_files, num_outbound_cmds, is_host_login, is_guest_login, count,

srv_count, serror_rate, srv_serror_rate, rerror_rate, srv_rerror_rate, same_srv_rate,

diff_srv_rate, srv_diff_host_rate, dst_host_count, dst_host_srv_count,

dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_same_src_port_rate,

dst_host_srv_diff_host_rate, dst_host_serror_rate, dst_host_srv_serror_rate,

dst_host_rerror_rate, dst_host_srv_rerror_rate,

• UNSW-NB15 Dataset - srcip, sport, dstip, dsport, proto, state, dur, sbytes, dbytes, sttl,

dttl, sloss, dloss, service, Sload, Dload, Spkts, Dpkts, swin, dwin, stcpb, dtcpb,

smeansz, dmeansz, trans_depth, res_bdy_len, Sjit, Djit, Stime, Ltime, Sintpkt,

Dintpkt, tcprtt, synack, ackdat, is_sm_ips_ports, ct_state_ttl, ct_flw_http_mthd,

136

is_ftp_login, ct_ftp_cmd, ct_srv_src, ct_srv_dst, ct_dst_ltm, ct_src_ ltm,

ct_src_dport_ltm, ct_dst_sport_ltm, ct_dst_src_ltm, attack_cat, Label

• CICIDS 2017 Dataset - DestinationPort, FlowDuration, TotalFwdPackets,

TotalBackwardPackets, TotalLengthofFwdPackets, TotalLengthofBwdPackets,

FwdPacketLengthMax, FwdPacketLengthMin, FwdPacketLengthMean,

FwdPacketLengthStd, BwdPacketLengthMax, BwdPacketLengthMin,

BwdPacketLengthMean, BwdPacketLengthStd, FlowBytes/s, FlowPackets/s,

FlowIATMean, FlowIATStd, FlowIATMax, FlowIATMin, FwdIATTotal,

FwdIATMean, FwdIATStd, FwdIATMax, FwdIATMin, BwdIATTotal,

BwdIATMean, BwdIATStd, BwdIATMax, BwdIATMin, FwdPSHFlags,

BwdPSHFlags, FwdURGFlags, BwdURGFlags, FwdHeaderLength,

BwdHeaderLength, FwdPackets/s, BwdPackets/s, MinPacketLength,

MaxPacketLength, PacketLengthMean, PacketLengthStd, PacketLengthVariance,

FINFlagCount, SYNFlagCount, RSTFlagCount, PSHFlagCount, ACKFlagCount,

URGFlagCount, CWEFlagCount, ECEFlagCount, Down/UpRatio,

AveragePacketSize, AvgFwdSegmentSize, AvgBwdSegmentSize, FwdHeaderLength,

FwdAvgBytes/Bulk, FwdAvgPackets/Bulk, FwdAvgBulkRate, BwdAvgBytes/Bulk,

BwdAvgPackets/Bulk, BwdAvgBulkRate, SubflowFwdPackets, SubflowFwdBytes,

SubflowBwdPackets, SubflowBwdBytes, Init_Win_bytes_forward,

Init_Win_bytes_backward, act_data_pkt_fwd, min_seg_size_forward, ActiveMean,

ActiveStd, ActiveMax, ActiveMin, IdleMean, IdleStd, IdleMax, IdleMin, Label,

• CIDDS-001 Dataset - Date first seen, Duration, Proto, Src IP Addr, Src Pt, Dst IP

Addr, Dst Pt, Packets, Bytes, Flows, Flags, Tos, class, attackType, attackID,

attackDescription

	Analysis of Theoretical and Applied Machine Learning Models for Network Intrusion Detection
	tmp.1617730157.pdf.ztmO2

