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Abstract 

 This dissertation presents a study on hybrid brain machine interface system (HBMI) that 

combines electroencephalographic (EEG) and electromyographic (EMG) signals to extend the 

controllability and usability of existing standalone BMI system. In developing HBMI system, the 

emphasis will be placed on the practicability and usability of the system. For this purpose, a 

consumer-grade EEG/EMG acquisition device will be used. To develop a HBMI system, first, 

several types of BMI system (steady state visual evoked potential-based (SSVEP) BMI, motor 

imagery-based BMI, electromyography-based BMI) are developed to evaluate the feasibility of the 

consumer-grade acquisition device as well as grasp the strengths and weaknesses of each system. In 

the next step, a control paradigm for HBMI system is proposed with consideration to the strength and 

weaknesses of each standalone system. In this study, HBMI will be applied to prosthetic control as 

an example. Experiments are conducted to evaluate the feasibility of the proposed HBMI system. 

 In the design of a 3-class self-paced SSVEP-based BMI, two low-cost EEG sensors are used 

to capture the SSVEP responses. Multiple second order bandpass filters are employed to extract 

SSVEP features and the type of response is classified using artificial neural network (ANN). 

Experimental results showed that the proposed design is capable of achieving an average accuracy of 

up to 93% and a mean information transfer rate of up to 4.2 bits/min. Furthermore, tradeoff between 

the number of commands and accuracy is also presented. This tradeoff allows the user to adjust the 

responsiveness and the accuracy to suit their preference or target application. Overall, the results of 

this study have demonstrated that a consumer-grade EEG device can serve as a modality in 

SSVEP-based BMI for device control applications.  

In the design of a 3-class motor imagery based BMI, 8 low-cost EEG sensors are used to 

capture the EEG signals. Power spectrum densities are extracted from EEG signals during mental 

tasks and fed to the ANN in order to detect the user intention. Experiment results showed that the 

proposed method is capable of achieving an overall true positive rate of up to 67% with 15 minutes 

of training time by a first time BMI user. Furthermore, a tradeoff between true positive rate and false 

positive rate is also presented. Again, based on this tradeoff, the user can adjust the responsiveness 

and the accuracy to suit their preference or target application. 

In the design of an EMG-based BMI, 6 consumer-grade EMG electrodes are used to capture 

muscle activity during arm/hand movements. Power spectrum densities are extracted from EMG 

signals and fed to the ANN in order to detect the hand motions. Experimental results showed that the 

proposed algorithm achieves an overall correct classification rate of up to 83%; thus, demonstrating 

the potential to classify 17 movements from 6 EMG sensors. Furthermore; classifying 9 motions 

using this method could achieve an accuracy of up to 92%. These results show that if the prosthetic 

hand is intended for a specific task; limiting the number of motions can significantly increase the 



 

 

performance and usability. Compared to EEG, EMG is easier to analyze and more reliable as an 

input source. Despite these advantages, more improvements in responsiveness and accuracy is still 

needed to raise the level of usability. 

In the design of a hybrid BMI (HBMI) system, EMG and EEG are fused together in an 

attempt to raise the controllability of the system. EMG is used to control the prosthetic hand while 

EEG is used to reduce misclassifications. Results showed that using EEG in parallel with EMG helps 

reduce erroneous classifications. The results also show that EEG can be used to modify the motion 

trajectories of the prosthetic hand. Based on these results, HBMI is effective for raising the 

controllability and usability of BMI systems. 

Overall, this work has provided a foundation for further research that aims to develop a 

practical BMI system with consumer-grade acquisition device. Our results are supportive that 

consumer-grade acquisition device can serve as a modality in device control, and their usability can 

be further enhanced by combining multiple BMI systems together. 

 

Keywords: Artificial neural network; Brain machine interface (BMI); electroencephalography 

(EEG); electromyography (EMG); motor imagery; steady state visual evoked potential (SSVEP); 

prosthetic hand. 
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1 Introduction 

Chapter 1 offers an introduction to the topic and the extent of this study through three 

different sections. Section 1.1 describes the motivation of this research. Section 1.2 states the aim 

and describes the approach to the research question. Section 1.3 gives an overview of the layout of 

the dissertation. 

 

1.1 Motivation 

The realization of robotic systems that understand human intentions and produce accordingly 

complex behaviors is needed particularly for disabled persons and would consequently benefit the 

aged. For this purpose, a novel control technique that uses brain signals to control external devices 

called brain machine interface (BMI) have been suggested [1]-[3]. Through the detection of specific 

brain patterns, BMIs can provide a communication channel without the involvement of muscular 

activity and therefore possess the potential to be utilized as assistive technology. At Brown 

University, a research conducted by Hochberg and their team has demonstrated that it is possible to 

use neural responses from the brain to control robotic arms in 3D space and grab objects. In their 

research, they implanted an electrode into a patient’s head whose suffering from amyotrophic lateral 

sclerosis (ALS) and analyzed the electrical impulses obtained from the electrodes [4]. The result of 

their work suggests that ALS patients who are unable to move their body, or in some cases unable to 

speak at all, would greatly benefit from using BMI systems. Other related works in [5]-[7] also show 

promising results. The disadvantage of this invasive BMI system is that there are risks from surgery 

when implanting the electrode and are hence unsuitable for healthy people. For this reason, 

noninvasive BMI systems have been preferably adopted and extensively studied over the past several 

years. 

 

 In a noninvasive BMI system, electroencephalograph (EEG) signals recorded from the scalp 

are often used to identify the user intent. Chae and their research team at Korea Advanced Institute of 

Science and Technology have successfully demonstrated the ability of the user to control a humanoid 

robot and navigate it to reach a target in an indoor maze. By using the combination of 3 basic motor 

imagery (MI) states i.e. left hand, right hand and foot imagery, the subjects were able to control the 
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humanoid through five complex instructions i.e. stop, turn head to the left, turn head to the right, turn 

body and walk forward. In this system, the EEG signals are recorded using a 32-channel EEG 

recording system. To identify the user intent, amplitude features of the EEG signal are extracted 

using power spectrum analysis and the informative feature components are selected based on fisher 

ratio. Two classifiers are constructed using linear discriminant analysis (LDA) and quadratic 

discriminant analysis (QDA) [8]. 

 

 Other uses of BMI system include controlling wheelchairs [9]-[11]. A joint research 

organized by Riken and Toyota demonstrates a user controlling the wheelchair forward, turn right 

and turn left using EEG signals. In order to move forward, the subjects imagine themselves walking. 

To turn left or right, they imagine gripping their left or right hand [12]. Recently, BMI systems 

intended for quadcopters [13], smart home controls [14]-[17] and video games [18]-[21] have also 

been suggested. 

 

Although large amounts of research have demonstrated the bright future perspectives of 

BMI technology, these existing BMI systems have yet been successfully deployed in homes. There 

are several challenges inherent in employing BMI control for real-world tasks. These challenges can 

be generalized into several categories. 

⚫ Low information transfer rate (ITR) and high error rate [22] 

⚫ Existing system are expensive and rely on convention acquisition equipment [23], [24] 

⚫ Require expert assistance to mount the electrode or EEG cap on the user’s scalp [24] 

⚫ Most system do not incorporate an idle signal for when the user is in an idle state [25] 

⚫ Classification of continuous data are not fully explored (most study focus on 

classification of single-trials) [26], [27] 

 

First of all, even one of the best average ITR for experienced subjects and well-tuned BMI 

systems are relatively low, in the vicinity of 24 bit (roughly three characters) / min [1]. This is too 

slow for natural interactive conversation and many research groups are finding ways to overcome 

this challenge. Also, the ITR achievable through EEG, is approximately one order of magnitude 

lower than the one observed by invasive methods in monkey studies [31]-[33]. That said, the 

potential benefits of brain-implanted based BMI have so far not been demonstrated to be worth the 

associated cost and risk in the most disabled of patients, let alone in healthy users. EEG seems for 

now the only practical brain-machine interaction choice (cost and ITR limitations hamper other 

non-invasive methods). Furthermore, a significant complicating factor in the slow ITR of BMI users 

is the high probability of errors Brain signals are highly variable, and this problem is exacerbated in 

severely disabled user by fatigue, medications, and medical conditions such as seizures or spasms. 
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Self-reporting errors is also extremely difficult, particularly if the subject has little or no 

communication channel outside of the BMI system itself. Devising methods of quickly resolving or 

preventing errors is critical to successful BMI interaction [22]. 

 

Secondly, implementing and effective BMI system requires multielectrode 

research/clinical-grade EEG device to accurately capture brain signals, and such equipment are very 

expensive. In addition, standard EEG practice involves the tedious application of conductive gel on 

EEG electrodes in order to provide for accurate measurements of the micro-volt level scalp potentials 

that constitute EEG signals. Unfortunately, most of the existing BMI systems still require extensive 

assistance from caretakers to properly set up the electrodes or signal receiving devices in BMI 

sessions, which makes it impractical to deploy this technology in a home environment. 

 

So far, most BCI systems are capable of performing asynchronously (self-paced). However, 

this can become tiring since the user is required to continuously imagine one of the two classes. 

Often the user does not intend to control anything but rather leave the BMI inactive, thus BMI 

usability would benefit from an “idle” or “rest” class where the cursor does not respond when no 

active class (from a set of two or more) is activated, on top the BMI being self-paced. The “idle” 

state may take one of two forms: a “relax” state where the subject stays still and tries to “think of 

nothing”, or can do almost any other mental task than those which belong to the active classes, but 

the latter may not be intuitive. Remaining challenges are to find a classifier that can induce rest state 

without a “relax” cue and to optimize the relationship between classifier output and BMI command. 

Due to physiological variations in background EEG activity, where a main factor is fatigue, 

introduction of a controller layer is necessary for maximal performance [25]. 

 

Lastly, most study only focus on the classification of single-trials. A characteristic feature of 

all of these systems is that the onset of mental activity is known in advance and associated with a 

specific cue or trigger stimulus. In the case of an ideal asynchronous BMI system, no cue stimulus is 

used, and the subject can intend whenever she/he wishes, a specific mental activity. The ongoing 

brain signals have to be analyzed and classified continuously. Mental events have to be detected and 

discriminated from noise and nonevents and transformed into a control signal as quickly and 

accurately as possible [26], [27].  

 

Due to all of the above challenges, the current BMI technology have very little to offer 

healthy users and thus have limited the target user range to only ALS and tetraplegic patients. To 

solve these problems, researchers have come up with numerous solutions and they can be generalized 

into four areas. 
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⚫ Improvement of ITR and the error rate 

⚫ Improvement of the usability and practicability 

⚫ Improvement of equipment hardware 

⚫ Development of novel applications 

To raise the ITR, new preprocessing techniques, feature selection method [28], and classification 

algorithms [29] have been suggested. In addition, methods to reduce erroneous commands (error 

rate) such as the use of error-related potentials have been introduced [30]. To improve the usability 

and practicability of BMI systems, hybrid BMIs that concurrently utilizes two or more types of brain 

signals (e.g. SSVEP and motor imagery) have been developed. The benefits of using these systems 

includes expansion in the number of commands (tasks) and improvements in ITR (see section 6 for 

more details). In recent years, developments of more and more inexpensive EEG device by 

specialized companies such as Emotiv or Neurosky have started to appear in the market and these 

companies have already started to develop some initial applications towards the general public. 

However, despite these efforts, the current BMI technology is still far from being used in real life 

scenarios, mainly due to the ITR and the number of commands still being far too low. 

 

 For the purpose of increasing the ITR and the number of commands, the use of 

electromyographic (EMG) activities to control external devices are shown to be very effective. EMG 

signal is a biomedical signal that measures electrical currents generated in muscles during its 

contraction representing neuromuscular activities. Since movement and muscle activities are 

generated based on the neural signal, in a broader sense, the definition of BMI can be extended to 

include EMG signals. Applications of EMG signal are mostly found in the field of myoelectric 

prostheses control, robotic exoskeleton, and wheelchair navigation. Since the signal level of EMG 

signals is higher compared to EEG signals, it is easier to analyze and discriminate different signal 

patterns from EMG signal. Usually, if the target user is able to generate EMG signal, adopting is type 

of signal as the control signal would greatly enhanced the practicability and usability of the system. 

However, there are also some challenges in developing EMG-based control system. Changes in 

muscle condition or the occurrence of unintended subtle muscle activities can cause the system to 

perform erroneous actions. Considering the case that the target application is aimed at assistive 

technologies for people with disabilities or the aged, erroneous actions can be potentially dangerous. 

From the viewpoint of safety, the reduction of erroneous actions is strongly preferred. 
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1.2 Research Aims and Approach 

This study aims to develop a practical BMI system using a consumer-grade acquisition 

device. In this work, the feasibility of consumer grade device in BMI-based control as well as 

concurrent use of EEG and EMG for the purpose of enhancing the usability of BMI systems will be 

explored. To realize this aim, first, two types of EEG-based BMI systems (steady state visual evoked 

potential (SSVEP) based BMI and motor imagery-based BMI systems) are developed to evaluate the 

feasibility of the consumer-grade EEG device. 

Next, we will shift our attention to focus on the development of EMG-based gesture 

recognition for prosthetic hand control. The feasibility of low-cost EMG sensors will be evaluated. 

Finally, taking into account the strengths and weaknesses of EEG and EMG, a hybrid BMI 

(HBMI) system that uses both EEG and EMG will be developed to enhanced to controllability and 

usability of the existing BMI system. Experiments will be conducted to evaluate the feasibility of the 

prosed HBMI system. 

Based on the results obtained, this study also aims to answer the following questions. 

(1) Is it possible to develop a BMI system using a consumer-grade EEG acquisition device? 

If so, to what extent can the system perform with limited hardware? 

(2) Can a consumer grade EMG sensor serve as a modality in myoelectric prosthetic 

control? 

(3) Does the concurrent use of EEG and EMG signals help improve the practicability and 

usability of the existing system? 

 

1.3 Organization of Dissertation 

The rest of the dissertation are organized as follows: 

 

Chapter 2 presents the fundamental background knowledge on the human brain anatomy, 

BMI systems, brain activity measurement modalities, types of control signal used in BMI systems, 

electromyography and the anatomy of forearm and hand muscles. 

 

 Chapter 3 proposes the design of a self-paced steady state visually evoked potential 

(SSVEP) based BMI. The proposed system is to classify SSVEP responses which is elicited by 

presenting the user with flashing LED stimuli. Multiple bandpass filters are used to extract features 

and artificial neural network (ANN) is employed to for classification. Online experiments are 

conducted to evaluate the accuracy, response speed, and the information transfer capability of the 

proposed system. The feasibility of the system is shown and the limitations of this study are 
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discussed. In addition, future research is outlined. 

 

 Chapter 4 presents a design of motor imagery based BMI which alleviates the restriction of 

having to continuously gaze at the stimulus during device control. The system is designed to classify 

user intentions of moving an object up or down as well as rest state. Power spectrum densities (PSD) 

is used to represent the features of each intent and classified using ANN. Online experiments are 

conducted to evaluate the accuracy of the proposed system. Tradeoffs between true positive value 

and false positive value are also presented. The feasibility of a consumer-grade EEG device as a 

modality in device control is shown and the limitations of this study are discussed. In addition, future 

research is outlined. 

 

 Chapter 5 presents a signal processing technique for electromyography (EMG) based control 

of prosthetic hands. The aim of this study is to classify a reasonable large number of arm/hand 

motions using a small set of low-cost EMG sensors. FFT will be applied to the EMG signals in order 

to extract PSD features. ANN is employed to classify the arm/hand motions. Online experiments are 

conducted to evaluate the accuracy of the system. Comparisons with existing studies are given to 

confirm the feasibility of the proposed method. The limitations and future research are also 

discussed. 

 

 Chapter 6 starts by talking about the strength and weaknesses of EEG and EMG-based 

control and proposes a concept EEG-EMG-based hybrid BMI (HBMI) system which uses both EEG 

and EMG signals to improve the operability of the system. This study considers applying the HBMI 

to prosthetic hand control as an example to show that combination of multiple BMI protocols can 

provide extended controllability even with consumer-grade devices. Experiments are conducted to 

evaluate the validity of the proposed system. 

 

 Chapter 7 concludes the dissertation. The obtained results are summarized and discussed in 

this chapter. The contributions of this study and future research will also be highlighted. 
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2 Background and Overview 

 This chapter provides background information about the human brain anatomy. This is 

followed by an overview of the BMI system as well as brain activity measurement methods. 

Emphasis will be put on electroencephalography (EEG) since this is the most widely used method for 

noninvasive BMI applications and it is the method used in the work presented in this thesis. Lastly, 

different control signal types employed in current BMI system will be briefly explained. 

 

2.1 Human Brain Anatomy 

 The central nervous system (CNS) consists of two main components, the spinal cord and the 

brain, where the latter is defined as the part that is located inside the skull. The cerebrum is the 

largest portion of the brain, and contains tools which are responsible for most of the brain's function. 

It is divided into four sections: the temporal lobe, the occipital lobe, parietal lobe and frontal lobe as 

shown in Fig. 2.1. Since the frontal lobe is responsible for motor planning and thinking, we will 

mainly focus on EEG signals on this part of the brain. 

 

 

Fig. 2.1 The functionality of different areas of the brain 

Parietal lobe (yellow region)
Perception, making sense of 
the world, arithmetic, spelling

Occipital lobe (pink region)
Vision

Temporal lobe (green region)
Memory, understanding, 
language

Sensory cortex
Sensations

Motor cortex
Movement

Frontal lobe (blue region)
Executive functions, thinking, 
planning, organizing and 
problem solving, emotions and 
behavioral control, personality
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2.2 Brain Machine Interface Systems 

 Brain machine interface (BMI), or brain computer interface (BCI) represents a direct 

interface between the brain and a computer or any other system. BMI is a broad concept and 

comprehends any communication between the brain and a machine in both directions: effectively 

opening a completely new communication channel without the use of any peripheral nervous system 

or muscles activity. In principle this communication is thought to be two-way. But at present, BMI is 

mainly focusing on communication from the brain to the computer. This study will mainly focus on 

this type of BMI system. 

 

 In a BMI system, signals from the brain are being analyzed to determine the user's state of 

mind or intentions, which in turn can be translated into actions [34]. In order to achieve this, first of 

all, the subject performs a specific mental task in order to produce a signal of interest in his brain; 

then this signal is acquired and generally pre-processed in order to get rid of different artifacts. 

Afterwards, some discriminating features are extracted and classified (pattern recognition) to 

determine which specific signal was produced. Finally, the identified signal is associated to a specific 

action to be performed by a computer or any electronic device [35]. A diagram of a classic BMI 

system is shown in Fig. 2.2. BMIs can be categorized according to several criteria: i) exogenous or 

endogenous and ii) synchronous (cue-paced) or asynchronous (self-paced). Types of BMI are listed 

in Table 2.1 and Table 2.2 along with information related to brain signals that can be modulated to 

convey information as well as advantages and disadvantages. 

 

 

Fig. 2.2 General Scheme of a Classical Brain Machine Interface (BMI) 
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 According to the nature of the signals used as input, BMI systems can be classified as either 

exogenous or endogenous. Exogenous BMI uses the neuron activity elicited in the brain by an 

external stimulus such as visual evoked potentials (VEP) or auditory evoked potentials. On the other 

hand, endogenous BMI is based on self-regulation of brain rhythms and potentials without external 

stimuli [36], [37]. Through neurofeedback training, the users learn to generate specific brain patterns 

which may be decoded by the BMI such as modulations in the sensorimotor rhythms [38] or the slow 

cortical potentials (SCP) [39]. 

 

 According to the input data processing modality, BMI systems can be classified as 

synchronous or asynchronous. Synchronous BMIs analyze brain signals during predefined time 

windows. Any brain signal outside the predefined window is ignored. Therefore, the user is only 

allowed to send commands during specific periods determined by the BMI system. For example, the 

standard Graz BMI [40] represents a synchronous BMI system. On the other hand, asynchronous 

BMIs continuously analyze brain signals no matter when the user acts. Although they offer a more 

natural mode of human-machine interaction than synchronous BMI, this kind of interfaces requires a 

more complex and demanding signal processing pipeline: the detection of the non-control 

(non-action) state is essential. 

 

Table 2.1 Main Differences Between Exogenous and Endogenous BMI Systems 

(adopted from [36]) 

Approach Brain Signals Advantages Disadvantages 

Exogenous 

BMI 

-SSVEP 

-P300 

-Minimal training 

-Control signal set-up easily and 

quickly 

-High bit rate (60 bit/min) 

-Only one EEG channel required 

-Permanent attention to external 

stimuli 

-May cause tiredness in some 

users 

Endogenous 

BMI 

-SCP 

-Sensorimotor 

Rhythms 

-Independent of any stimulation 

-Can be operated at free will 

-Useful for users with sensory 

organs affected 

-Lots of training are needed 

(months or weeks) 

-Multichannel EEG recordings 

required for good performance 

-Lower bit rate (20-30 bit/min) 
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Table 2.2 Main Differences Between Synchronous and Asynchronous BMI Systems 

(adopted from [36]) 

Approach Advantages Disadvantages 

Synchronous 

BMI 

-Simpler design and performance evaluation 

-The user can avoid generating artifacts since 

they can perform eye blinks and other eye 

movements when brain signals are not analyze 

-Does not offer a more natural 

mode of interaction 

Asynchronous 

BMI 

-No requirements to wait for external cues 

-Offers a more natural mode of interaction 

-Much more complicated design 

-More difficult evaluation  

 

2.3 Measuring Neural Activity 

 BMI uses brain signals to gather information on user intentions. There are several different 

approaches to measure activity in the brain. These approaches allow us to monitor two types of brain 

activities: first, the electrophysiological activity and, second, the hemodynamic response of the brain.  

 

 Electrophysiological activity is produced by the electro-chemical transmitters exchanging 

information between the neurons. The neurons generate ionic currents which flow within and across 

neuronal assemblies. The large variety of current pathways can be simplified as a dipole conducting 

current from a source to a sink through the dendritic trunk. These intracellular currents are known as 

primary currents. Conservation of electric charges means that the primary currents are enclosed by 

extracellular current flows, which are known as secondary currents [36], [41]. Electrophysiological 

activity can be measured by electroencephalography (EEG), electrocorticography (ECoG), 

magnetoencephalography (MEG), and invasive electrical signal measurement operated at the single 

neurons level. 

 

 The hemodynamic response is a process in which the blood releases glucose to active 

neurons at a greater rate than in the area of inactive neurons, thus, they allow us to distinguish active 

from less activated neurons. The presence of glucose and oxygen delivered through the blood stream 

results in a surplus of oxyhemoglobin in the veins of the active area. Hence, the local ratio of 

oxyhemoglobin to deoxyhemoglobin changes [36], [42]. These changes can be quantified by 

neuroimaging methods such as functional magnetic resonance (fMRI) and near infrared spectroscopy 

(NIRS), from which it is possible to build 3D maps of the brain activity. These kinds of methods are 

categorized as indirect, because they measure the hemodynamic response, which, in contrast to 

electrophysiological activity, is not directly related to neuronal activity. 
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 In most current BMI systems, EEG is by far the most widely used neuroimaging modality. 

The prime reason for this is due to its high temporal resolution which is a necessity for real-time 

application. And although the spatial data resulting from EEG is often distorted and far from perfect, 

EEG offers direct functional correlation of brain activity. Another major advantage is the ease of 

applying this method. With a cap containing only a few electrodes, brain activity measurements can 

start. For practical uses and applications, it is small and relatively portable, which improves prospects 

of future applications. Aside from the ease of appliance, this is also a relatively low-cost method, 

certainly compared to methods like positron emission tomography (PET), MEG or MRI, which 

require expensive equipment and skilled professionals to operate. BMI systems based on EEG 

consist of a set of sensors that acquire electroencephalography signals from different brain areas. 

However, the quality of EEG signals is affected by scalp, skull, and many other layers as well as 

background noise. Noise is the key to EEG and to other neuroimaging methods, insofar as it reduces 

the signal to noise ratio (SNR) and therefore the ability to extract meaningful information from the 

recorded signals [36]. From the above reasons, EEG is used as the main method to measure brain 

activities in this study. Table 2.3 summarizes the different imaging techniques by listing in each case 

the type of brain activity measured, the temporal and spatial resolutions, safety and portability 

(adapted from [36]). 

 

Table 2.3 Summary of Neuroimaging Methods (adapted from [36]) 

Neuroimaging 

Method 

Activity 

Measured 

Direct/Indirect 

Measurement 

Temporal 

Resolution 

Spatial 

Resolution 
Risk Portability 

EEG Electrical Direct ~0.001 s ~10 mm Non-invasive Portable 

MEG Magnetic Direct ~0.05 s ~5 mm Non-invasive Non-portable 

ECoG Electrical Direct ~0.003 s ~1 mm 
Slightly 

invasive 
Portable 

Intracortical 

Neuron 

Recording 

Electrical Direct ~0.003 s 

~0.5 mm 

(LPF) 

~0.1 mm 

(MUA) 

~0.05 mm 

(SUA) 

Strongly 

invasive 
Portable 

fMRI Metabolic Indirect ~1-10 s ~1 mm Non-invasive Non-portable 

SPECT Metabolic Indirect ~10 s-30 min ~1 cm Non-invasive Non-portable 

PET Metabolic Indirect ~0.2 s ~1 mm Non-invasive Non-portable 

NIRS Metabolic Indirect ~1-10 s ~5 mm Non-invasive Portable 
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2.4 Control Signal Types in BMI Systems 

 Numerous studies have described a vast group of brain signals that might serve as control 

signals in BMI systems. Nevertheless, only those control signals employed in current BMI systems 

will be discussed below: visual evoked potentials, slow cortical potentials, P300 evoked potentials, 

and sensorimotor rhythms. All the signal controls are listed in Table 2.4, along with some of their 

main features (adapted from [36]). 

 

Table 2.4 Summary of Control Signals (adopted from [36]) 

Signal Physiological Phenomena 
Number of 

Choices 
Training 

Information 

Transfer Rate 

VEP 
Brain signal modulations in the visual 

cortex 
High No 60-100 bits/min 

SCP Slow voltages shift in the brain signals 
Low (2 or 4, 

very difficult) 
Yes 5-12 bits/min 

P300 
Positive peaks due to infrequent 

stimulus 
High No 20-25 bits/min 

Sensorimotor 

Rhythms 

Modulations in sensorimotor rhythms 

synchronized to motor activities 
Low (2, 3, 4, 5) Yes 3-35 bits/mins 

 

2.4.1 Visual Evoked Potential (VEP) 

 VEPs are brain activity modulations that occur in the visual cortex after receiving a visual 

stimulus [36], [43]. These modulations are relatively easy to detect since the amplitude of VEPs 

increases enormously as the stimulus is moved closer to the central visual field [44]. VEPs can be 

classified according to three different criteria which are the morphology of the optical stimuli, the 

stimulated frequency (it is possible to get a visual VEP response in the range 1-100 Hz [45]) and the 

field of stimulation [46], the focus here is on steady state visual evoked potential (SSVEP). 

 

 SSVEP is a strong steady state potential that mainly arises in the occipital area when a 

subject is looking at a visual stimulus which changes at a frequency higher than 6 Hz. If the stimulus 

is a flash, SSVEP shows a sinusoidal-like waveform, the fundamental frequency of which is the same 

as the blinking frequency of the stimulus. If the stimulus is a pattern, the SSVEP occurs at the 

reversal rate and at their harmonics [36], [47]. Fig. 2.3 shows an example of a SSVEP waveform and 

its frequency spectrum (adopted from [47]). 

 

 The typical VEP-based BMI application displays flashing stimuli, such as digits or letters, 

on a screen to induce SSVEPs while the user stares at one of the symbols. The user can move their 

gaze to the flashing digits or letters, in order to communicate with the computer [36], [48]. The main 
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advantage of this type of BMI is the relatively high SNR with a clear peak in the FFT occurring at 

the frequency of interest and some of its harmonics. Moreover, as discussed in [44], the SNR SSVEP 

response has three main frequency bands with peaks around 15 Hz, 31 Hz and 41 Hz. Logically, this 

leads to a high potential bit rate that can even reach around 100 bits/min [49]. Another big advantage 

of this type of control signal is that very little training is required. Its drawback is that the user has to 

watch the screen and keep his eyes fixed on one point. This type of control signal can only be used 

for exogenous BMIs. Therefore, VEPs are not suitable for patients in advanced stages of 

Amyotrophic Lateral Sclerosis (ALS) or with uncontrollable eye or neck movements. Some 

independent SSVEP-based BMIs that are controlled by the attention of the user have been introduced 

to overcome this drawback [36], [50], [51]. 

 

 

Fig. 2.3 Typical waveform of an EEG signal (Oz-Cz) acquired during visual light stimulation 

with a frequency of 15 Hz and its frequency spectrum. (a) SSVEP waveform resulting from 

the time-locked average of 10 realizations. A transient VEP can be observed at the moment 

where the stimulation began and a clear oscillation (the steady state VEP) can be seen 

afterwards; (b) Frequency content of the signal in (a). The SSVEP manifests itself in 

oscillations at 15 Hz and higher harmonics (adopted from [47]). 

(a)

(b)
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2.4.2 Slow Cortical Potential (SCP) 

 SCPs are gradual variations of the cortical activity, which can last from a second to several 

seconds. SCPs belong to the part of the EEG signals below 1 Hz, thus, they have the lowest 

frequency range of all EEG electrophysiological signals suitable for BMI systems [52]. 

 

 SCPs are associated with changes in the level of cortical activity. Negative SCPs correlate 

with increased neuronal activity, whereas positive SCPs coincide with decreased activity in 

individual cells [36], [52]. These brain signals can be self-regulated by both healthy users and 

paralyzed patients to control external devices, e.g. to move a cursor and select the targets presented 

on a computer screen. People can be trained to generate voluntary SCP changes using a 

thought-translation device [39]. The thought-translation device typically comprises a cursor on a 

screen in such a way that the vertical position of the cursor constantly reflects the amplitude of SCP 

shifts. 

 

 Success in SCP self-regulation training depends on numerous factors, such as the patient’s 

psychological and physical state, motivation, social context, or the trainer-patient relationship. It is 

known that the learning capability of the user drastically affects SCP modulation training. Other 

factors, such as sleep quality, pain, and mood also have an influence on self-regulation performance 

[36], [39]. Self-regulation of SCPs has been tested extensively with patients suffering from ALS 

[53]-[55]. Typical accuracy rates achieved for SCP classification are acceptable and vary between 

70% and 80%, but the rates of information provided by SCP-based BMI are relatively low. Besides, 

longer training is required to use SCP-based BMI and it is likely that users will need continuous 

practice for several months. 
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2.4.3 P300 Evoked Potentials 

 P300 evoked potentials are positive peaks in the EEG due to infrequent auditory, visual, or 

somatosensory stimuli. The P300 responses are elicited about 300 ms after attending to an oddball 

stimulus among several frequent stimuli [36], [56], [57]. In an oddball paradigm, the user is 

requested to attend to a random sequence composed of two kinds of stimuli with one stimulus much 

less frequent than the other one. In case the infrequent stimulus is relevant to the user and, assuming 

that the subject was focusing on it by, for example, silently counting it, its actual appearance 

activates a P300 waveform in the user’s EEG, which is mainly located in the parietal areas. Some 

studies have proven that the less probable the stimulus, the larger the amplitude of the response peak 

[58]. The use of P300 based BMIs does not require training. However, the performance may be 

reduced because the user gets used to the infrequent stimulus and consequently P300 amplitude is 

decreased [36], [59]. 

 

 The most widely known P300 based BMI is the P300 speller [60]. As depicted in Fig. 2.4, it 

is basically composed of a 6×6 matrix of letters, symbols, numbers or commands [56], [9], [61]. The 

rows or columns of this matrix are flashed at random while the EEG is monitored. The user gazes at 

the desired symbol and counts how many times the row or column containing the desired choice 

flashes. P300 is elicited only when the desired row or column flashes. Thus, the BMI uses this effect 

to determine the target symbol. Due to the low SNR in EEG signals, the detection of target symbols 

from a single trial is very difficult. The rows or columns must be flashed several times for each 

choice. The epochs corresponding to each row or column are averaged over the trials, in order to 

improve their accuracy. However, these repetitions decrease the number of choices per minute, e.g., 

with 15 repetitions, only two characters are spelled per minute and therefore decreases the reactivity 

of the device [36], [56]. Although most of the applications based on P300 evoked potentials employ 

visual stimuli, auditory stimuli have been used for people with visual impairment [62]. 

 

 P300 based BMIs provide a very low rate of information transmission because the classifier 

based on an average is too simple, and the accuracy of P300 potential detection is too low [63]. 

Consequently, too many trials are required to select a single symbol in the matrix. Accuracy of P300 

based BMIs can be improved, while using a more complicated classifier than a simple average to 

ensure that the number of repetitions remain unaffected [63], [64]. 
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Fig. 2.4 BMI “P300 speller”. (a) Screen display as shown to the subjects with the third 

highlighted row. (b) Time course of the actual signal waveforms at Cz. The continuous line 

represents the average over rare (i.e., target) stimuli and the dashed line corresponds to the 

average over common (i.e., nontarget) stimuli (adopted from [63]). 

 

2.4.4 Sensorimotor Rhythms (mu and beta) 

 Sensorimotor rhythms comprise mu and beta rhythms, which are oscillations in the brain 

activity localized in the mu band (7-13 Hz), also known as the Rolandic band, and beta band (13-30 

Hz), respectively. Both rhythms are associated in such a way that some beta rhythms are harmonic 

mu rhythms, although some beta rhythms may also be independent [36], [65]. The amplitude of the 

sensorimotor rhythms varies when cerebral activity is related to any motor task although actual 

movement is not required to modulate the amplitude of sensorimotor rhythms [66], [67]. Similar 

modulation patterns in the motor rhythms are produced as a result of mental rehearsal of a motor act 

without any overt motor output [66]. Sensorimotor rhythms have been used to control BMIs, because 

people can learn to generate these modulations voluntarily in the sensorimotor rhythms [68], [69]. 

 

 Sensorimotor rhythms can endure two kinds of amplitude modulations known as 

event-related desynchronization (ERD) and event-related synchronization (ERS) that are generated 

sensory stimulation, motor behavior, and mental imagery [36], [68]. ERD involves an amplitude 

suppression of the rhythm and ERS implies amplitude enhancement. Fig. 2.5 (left panel) shows the 

temporal behavior of ERD and ERS during a voluntary movement experiment which involves brisk 

finger lifting [68]. The mu band ERD starts 2.5 s before movement on-set, reaches the maximal ERD 

shortly after movement-onset, and recovers its original level within a few seconds. In contrast, the 

beta rhythm shows a short ERD during the movement initiation of movement, followed by ERS that 
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reaches the maximum after movement execution. This ERS occurs while the mu rhythm is still 

attenuated. Fig. 2.5 also shows the gamma oscillation (36–40 Hz), which is another rhythm related to 

motor tasks as well [68]. Gamma rhythms reveal an ERS shortly before movement-onset. Finally, the 

right panel of Fig. 2.5 illustrates that simultaneous ERD and ERS are possible at different scalp 

locations [68]. 

 

 Sensorimotor rhythms are related to motor imagery without any actual movement [36], [67]. 

This makes it possible to use sensorimotor rhythms for the design of endogenous BMIs, which are 

more useful than exogenous BMIs. Nevertheless, self-control of sensorimotor rhythms is not easy, 

and most people have difficulties with motor imagery. 

 

 Sensorimotor rhythms have been investigated extensively in BMI research. Well known 

BMI systems such as Wadsworth [70], Berlin [71], or Graz [40] BMIs employ sensorimotor rhythms 

as control signals. The BMIs based on sensorimotor rhythms can operate in either synchronous or 

asynchronous mode. The latest advances in the field of BMIs based on sensorimotor rhythms have 

shown that it is possible to predict human voluntary movements before they occur based on the 

modulations in sensorimotor rhythms [72]. Furthermore, this prediction could be provided without 

the user making any movements at all. 

 

 

Fig. 2.5 Superimposed band power time courses computed for three different frequency 

bands (10-12 Hz, 14-18 Hz, and 36-40 Hz) from EEG trials recorded from electrode position 

C3 during right index finger lifting. EEG data triggered with respect to movement-offset 

(vertical line at t = 0 s). The right panel shows an examples of ongoing EEG recorded during 

right finger movement (adapted from [68]). 
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2.5 The Anatomy of the Forearm 

There are thirty-nine hand muscles located either in the forearm or the hand itself [73]. 

These muscles are divided into two groups: the extrinsic and intrinsic muscles. The extrinsic muscles 

are responsible for crude movements of the hand, while the intrinsic muscles are responsible for the 

fine movements of the hand. These group of muscles must work together to fulfill the functionality 

of the hand [74]. In this section, the details of the intrinsic muscles will be omitted since it is not used 

in this study. 

 

The extrinsic muscles are subdivided into the anterior compartments, and the posterior 

compartments, depending on the location of the muscles within the forearm. 

 

The muscles in the anterior compartment of the forearm generally perform flexion at the 

wrist and fingers, and pronation. Within this compartment, muscles are divided into three categories: 

superficial, intermediate and deep. The superficial muscles include: the flexor carpi ulnaris, palmaris 

longus, flexor carpi radialis and pronator teres, which originate from a common tendon (see Fig. 2.6 

(a)). The deep layer consists of three muscles: flexor digitorum profundus, flexor pollicis longus, and 

pronator quadratus (see Fig. 2.6 (b)). Sandwiched between the superficial and the deep layers lies the 

intermediate layer, which has only one muscle, the flexor digitorum superficialis (see Fig. 2.6 (a)). 

The median nerves innervate these muscles, as well as those in the superficial layer. 

 

The muscles in the posterior compartment of the forearm generally produce the extension at 

the wrist and fingers, also known as the extensor muscles. The muscles are innervated by the radial 

nerve. The muscles in this layer are split into two layers: superficial and deep layers, which are 

separated by a layer of fascia. The superficial layer contains seven muscles:  brachioradialis, 

extensor carpi radialis longus, extensor carpi radialis brevis, extensor digitorum, extensor digiti 

minimi, extensor carpi ulnaris and anoconeus (see Fig. 2.7 (a)). Within the deep layer, there are five 

muscles: supinator, abductor pollicis longus, extensor pollicis brevis, extensor pollicis longus and 

extensor indicis (see Fig. 2.7 (b)). These muscles act on the thumb and the index finger, except the 

supinator [75], [76]. 
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Fig. 2.6 Anterior compartment of the forearm: (a) Superficial and intermediate muscles, (b) 

Deep muscles (adopted from [76]). 

 

 

Fig. 2.7 Posterior compartment of the forearm: (a) Superficial muscles (b) Deep muscles 

(adopted from [76]). 

(a) (b)

(a) (b)
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2.6 Measuring Muscle Activity 

Electromyography (EMG) is an experimental technique that records and evaluates the 

electrical signals the body muscles emanate. The myoelectric signals are formed by physiological 

variations in the state of muscle fiber membranes. 

 

The excitability of muscle fibers through neural control represents a major factor in muscle 

physiology. This phenomenon can be explained by a model of a semi-permeable membrane 

describing the electrical properties of the sarcolemma, the cell membrane of muscle cells, as shown 

in Fig. 2.8 [77]. The ionic difference between the inner and outer spaces of a muscle cell forms a 

resting potential at the muscle fiber membrane, at approximately -80 to -90 mV when not contracted. 

Similarly, a study done by Daud et al. showed that the amplitude of the EMG signal depends on the 

muscle types and conditions during the observation process, which ranges from microvolts, µV, to 

millivolts, mV [78]. This difference in potential which is maintained by physiological processes (ion 

pump) results in a negative intracellular charge compared to the external surface. The activation of an 

alpha-motor anterior horn cell (induced by the central nervous system or reflex) results in the 

conduction of the excitation along the motor nerve. After the release of transmitter substances at the 

motor endplates, an endplate potential is formed at the muscle fiber innervated by this motor unit. 

The diffusion characteristics of the muscle fiber membrane are briefly modified and Na+ ions flow in. 

This causes a membrane depolarization, which is immediately restored by backward exchange of 

ions within the active ion pump mechanism, i.e. repolarization [77]. 

 

There are two techniques used to acquire EMG signals: the invasive and non-invasive 

techniques. Invasive techniques involve inserting a needle or wire electrode directly into the muscle 

detect to detect and record EMG signals [79]. A more preferred technique is the non-invasive 

technique, since signals are acquired from the electrodes place on the surface of the skin, as it is free 

of discomfort and provides minimal risk of infection to amputees [80]-[83]. The signals obtained by 

both techniques is a composite of all the muscle fiber action potentials occurring in the muscles 

underlying the skin. They can be either positive of negative voltage, due to action potentials that 

occur at random intervals. In a single motor unit, the combination of the muscle fiber action 

potentials from all the muscle fibers is the motor unit action potential (MUAP) which can be detected 

by both invasive and non-invasive methods [3]. For surface EMG signals, the amplitude is in a range 

between 0 to 10 mV, with a frequency range restricted to 10 to 500 Hz [8]. 
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Fig. 2.8 Schematic illustration of repolarization/depolarization cycle within excitable 

membranes (adopted from [77]). 
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3 Development of Steady State Visually 

Evoked Potential Based Brain Machine 

Interface 

Abstract: This chapter presents a signal processing technique to recognize human mental states from 

steady state visual evoked potentials (SSVEP). In this method, multiple bandpass filters are applied 

to the electroencephalographic (EEG) signals in order to extract the features of SSVEP. An artificial 

neural network classifier is used to recognize the type of SSVEP response. The main highlight will 

be the use of only two low-cost sensors for EEG recording. Experimental results showed that the 

proposed algorithm is capable of achieving an average accuracy of up to 93% and an information 

transfer rate of 4.2 bits/min. Furthermore, tradeoff between the number of commands and accuracy is 

also presented. Overall, the results of this study have demonstrated that a consumer-grade EEG 

device can serve as a modality in device control applications. 

 

3.1 Introduction 

According to the reports by the Japan Intractable Diseases Information Center, there are 

9,950 people diagnosed with amyotrophic lateral sclerosis (ALS) in Japan [85], and it is estimated 

that over 400,000 people have ALS worldwide [86]. Depending on the stages of ALS, patients 

experience partial or complete paralysis which hinders the execution of daily activities. Brain 

machine interface (BMI) is an emerging technology developed to help these people by al-lowing 

them to manipulate devices with thought alone. BMI systems recognizes user intentions by decoding 

the brain signals and maps the outcome to several commands for control-ling the device [70]. 

 

BMI can be either invasive [87] or noninvasive [88], [89]. Noninvasive BMIs are often 

preferred over invasive ones because brain activities can be recorded without the need to implant any 

electrodes. Not only that it is safer, noninvasive BMIs also extends the target user range to include 

healthy people. In noninvasive BMIs, electroencephalography (EEG) is commonly employed 

because of its high time resolution, ease of acquisition, and cost effectiveness as compared to other 

measurement modalities [47]. 
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EEG-based BMIs can be categorized into several different types depending on the brain 

activity patterns being used as control signal. For example, the use of event-related 

desynchronization/synchronization (ERD/ERS) [65], steady state visual evoked potentials (SSVEP) 

[90], P300 evoked potentials [56], and slow cortical potentials [91] have been studied by research 

groups across the globe. Compared to other types of BMI, SSVEP-based BMI has attracted 

increasing attention due to its high accuracy, high information transfer rate and little user training 

[51]. 

 

Current studies have demonstrated the potential of using SSVEP-based BMI as a mean to 

allow people to control external devices [92]-[95]. However, despite recent developments, many of 

these existing BMI systems are still difficult to be deployed at homes because they are very 

expensive in terms of cost and processing speed. Most BMI studies found in literature generally 

adopt high-end EEG equipment such as the g.USBamp (made by Guger Technologies in Austria) to 

get satisfactory performances [96]. Apart from the high financial costs, other drawbacks of using 

high-end devices are the need for longer preparation time and expert assistance. Usually, BMI users 

have to wash their hair before an experiment in order to remove oil or dirt on the scalp. In addition, it 

is required for the users to wear an electrode cap filled with conductive gel to ensure good 

conductivity. However, this procedure is generally time consuming, requires expert assistance to 

properly mount the electrode cap on the scalp and are usually uncomfortable [97]. Due to the above 

limitations, no BMI system has become commercially successful to this date. One way to counter 

this problem is by using a consumer-grade acquisition device to lower the cost. However, obtaining a 

high classification rate is very challenging due to lower accuracies of the acquisition device. 

 

So far, only few studies have attempted to implement a SSVEP-based BMI with a 

consumer-grade EEG device such as the Emotiv EPOC (made by Emotiv Systems Inc. in USA) 

[98]-[101]. Güneysu and Akin [98] designed a four-class SSVEP-based BMI to control humanoid 

robots. They reported having achieved an average accuracy of 81.7% but no evaluation on 

recognition speed or the number of commands per minute were given. As such, it is hard to decide 

whether a low-cost device can serve as a modality in external device control. In comparison, a study 

done by Holewa and Nawrocka [99] reported having achieved an average accuracy of 73.75% and an 

average information transfer rate (ITR) of 11.36 bit/mins. How-ever, their evaluations are not based 

on classification of consecutive trials therefore it is un-certain to conclude whether the system will 

function satisfactorily under continuous input by the user. Very recently, a study done by Martišius 

and Damaševičius [100] addressed this issue by conducting real-time classification experiments 

where participants played a computer game using SSVEP-based BMI system. In their experiments, 

participants had to continuously command the spaceship to rotate left or right so that the cannon 
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points towards the target. Once the user is able to do so, they can issue another command to fire the 

cannon at the target. Their results have demonstrated that a consumer-grade EEG equipment has the 

potential to provide real-time gameplay. However, there are also has some limitations. The features 

of SSVEP are extracted using wave atom transform which is rather expensive in terms of 

computational costs, making the algorithm unsuitable for implementation on low-cost 

microcontrollers such as the Arduino. Similarly, works in [98] and [99] uses fast Fourier transform 

(FFT) in feature extraction and therefore also faces the same limitations. Overall, the accuracy, 

recognition speed, computational cost and ease of use of SSVEP-based BMI system still re-quire 

further improvements in order to raise the level of usability. 

 

For the purpose of developing a user-friendly, low-cost SSVEP-based BMI system, this 

study presents a signal classification technique for a 3-class self-paced SSVEP-based BMI system 

with a rest state. There are two main features to this study. One is that this study uses only two 

electrodes from the Emotiv EPOC+ to acquire EEG signals. Another feature is the use of multiple 

bandpass filters to extract SSVEP features which requires very low computational cost and can be 

easily implemented on inexpensive microcontrollers like the Arduino. Artificial neural networks will 

be used to classify user intentions. The aim of this study is to explore and determine the extent of the 

recognition capabilities and the usability of a consumer-grade EEG acquisition device. The 

feasibility of the proposed method is evaluated based on the classification accuracy, recognition 

speed, and information transfer capability. 

 

The rest of the chapter are organized as follows. Section 3.2 gives a brief introduction to 

SSVEP. Section 3.3 describes the system architecture, experimental methods as well as the necessary 

preprocessing procedures. Section 3.4 explains in detail, the feature extraction method using multiple 

bandpass filters and classification algorithm using artificial neural network. Section 3.5 presents an 

evaluation of the proposed algorithm. Discussions on accuracy, recognition speed, and information 

transfer capability will also be given in this section. Lastly, section 3.6 concludes the study. 

 

3.2 Steady State Visual Evoked Potentials (SSVEP) 

SSVEP are brainwave signals which occur naturally in response to visual stimulation. When 

the retina is stimulated by a visual stimulator (e.g. a flashing light) with a certain frequency, the brain 

generates response with the same spectrum as the stimulus. This response can be recorded in the 

form of electrical signal by placing electrodes on the occipital region of the brain [102]. Through 

numerous studies, researchers had concluded that SSVEP evoking frequencies had a wide range from 

1 to at least 90 Hz, and the steady-state potentials exhibited clear resonance phenomena around 10, 
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20, 40, and 80 Hz [45]. The most commonly used frequencies range from 4 to 60 Hz. To elicit a 

SSVEP, repetitive visual stimulus (RVS) [47] has to be presented to the user. The RVS can be 

rendered on a computer screen by alternating graphical patterns or with external light sources able to 

emit modulated light. Alternating graphical patterns mainly include simple square flicker, 

checkerboard, and gratings [103]. In the case of external light sources, light-emitting diode (LED) 

are often used [104]. Fig. 3.1 shows an example of a SSVEP response elicited by presenting three 

LEDs flickering at 5Hz, 7Hz, and 9Hz to the user. The top row in Fig. 1 shows the time response of 

the EEG signal. A 5Hz stimuli is presented during t = 5-10s, 7Hz during t = 15-20s, and 9Hz during t 

= 25-30s. The bottom row of Fig.1 shows the spectral power of this EEG signal. From this figure, 

spectral peaks corresponding to the flickering frequency of the LEDs can be observed. 

 

 

Fig. 3.1 Example of a time response of electroencephalographic signals (top subfigure) 

and its power spectrums while gazing at three LEDs flickering at different frequencies (lower 

three subfigures). 
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3.3 Experimental Methods 

3.3.1 SSVEP-Based BMI System Architecture 

The aim of this study is to classify three types of SSVEP response based on the frequency of 

the flickering LEDs and a rest state (no stimuli presented). A self-paced SSVEP-based BMI system is 

designed as illustrated in Fig. 3.2 to achieve this purpose. As depicted in Fig. 3.2, the system consists 

of three subsystems: the data acquisition system, the EEG signal processing system, and the interface 

system. The data acquisition system acquires EEG signals in a noninvasive fashion using the Emotiv 

EPOC+ headset. The acquired data is first sampled at 2048Hz internally and then downsampled to 

128Hz before being sent wirelessly to the signal processing system. The signal processing system 

interprets the EEG signal and identifies the SSVEP response. The interface system consists of a PC 

monitor and a LED panel. The PC monitor is for displaying the signal status (for checking electrode 

impedance) and classification results in real-time. The LED panel is equipped with three 8×8 red 

LED dot matrix dis-plays for eliciting SSVEP and an Arduino for modulating the blinking 

frequencies. (Fig. 3.3). 

 

Compared to other high-end EEG acquisition device, although the Emotiv EPOC+ headset 

offers a relatively low sampling rate at only 128Hz, there are many advantages that makes this device 

very attractive. The main benefit is that this device is relatively inexpensive. Another advantage is 

that it does not require conductive gel for the electrodes, making it easier to put on and use and 

saving lots of preparation time. To use the headset, users only need to apply saline solution (contact 

lens protection solution) to the electrodes before wearing it. In addition, Emotiv EPOC+ is able to 

transfer EEG data wirelessly to the computer and therefore does not restrict the user range of motion 

like many other clinical-grade devices. Since its wireless and compact, transport and setup are very 

easy even for users with little or no knowledge of BMI. This feature is very important in everyday 

use setting. 

 

3.3.2 Experimental Design 

In this study, three experiments are designed to evaluate several performance metrics of the 

SSVEP-based BMI system. The first experiment aims to evaluate the classification performance of 

the proposed system based on the correct and incorrect classification rates. In this experiment, 

participants are given the task to gaze at one of the three LED matrix displays according to the cues. 

Each LED is controlled by the Arduino to flicker at different frequencies. The EEG signals are 

recorded and analyzed to extract features that describe the brain-wave patterns elicited by each 

stimulus. These features will be used to train the artificial neural network (ANN) classifier and to 
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identify which LED the participant is gazing at. Fig. 3.4 shows the experiment protocol for each trial. 

In this study, rest state is also included in the classification. Therefore, the classification problem will 

consist of four classes. Features for rest state will be extracted from the alpha band (8-13Hz). To 

evaluate the classification accuracy, 5 trials of EEG data are collected for each participant. 

Leave-one-out cross-validation is applied to these data to compute the classification rate. 

 

 

Fig. 3.2 SSVEP-based BMI system architecture 

 

Fig. 3.3  View of the LED panel: (a) Three 8x8 dot matrix displays are used to elicit SSVEP 

response. The Arduino is programmed to modulate the blinking frequencies; (b) Dimensions 

of the dot matrix display. 
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The second experiment aims to evaluate the recognition speed, i.e. the time taken for the 

system to decide which LED the participant is gazing at. This duration of time is referred to as 

recognition time. In this experiment, 5 training datasets are acquired for each participant using the 

experimental protocol shown in Fig. 3.4. These datasets are used to train the ANN. In the evaluation 

stage, participants are asked to gaze at the flickering LED according to the experimental procedure 

shown in Fig. 3.5. During the execution of the task, the system will per-form online classification to 

decide which LED the participant is gazing at. The time taken for the ANN to reach a decision 

(recognition time) is measured and evaluated. The experiment is repeated 10 times for each 

flickering frequency. 

 

The third experiment is designed to evaluate the information transfer capability of the system. 

The evaluation will be based on how many commands can be given out within 1 minute. In this 

experiment, participant will be asked to gaze at one of the three LED matrix display according to the 

predefined sequence. Once the system reaches a decision, an audio message saying “next” will be 

played and the participant can move on to select (gaze at) the next LED. This procedure is repeated 

for one minute. The total number of commands issued are counted at the end of each trial. Fig. 3.6 

depicts the experimental protocol of a single trial. A total of 10 trials will be conducted for each 

participant. 

 

 

Fig. 3.4 Experimental protocol for acquiring training data. The acquired data will also be 

used to evaluate the classification performance. 

 

 

Fig. 3.5 Experimental protocol for the evaluation of recognition speed. 

 

 

Fig. 3.6 Experimental protocol for evaluating the number of commands the BMI system can 

issue within one minute.  
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3.3.3 Preprocessing of EEG Signals 

EEG signals are recorded in a noninvasive fashion on the participant's scalp using the 

Emotiv EPOC+ headset (Fig. 3.7(a)) and transmitted wirelessly to the computer. The headset is 

equipped with 14 electrodes that are arranged based on the 10-20 system as shown in Fig. 3.7(b). Out 

of the 14 electrodes, 2 electrodes (O1 and O2) that are positioned over the occipital region 

(highlighted in green) are used in this study. Two circles high-lighted in grey (CMS, DRL) indicate 

reference electrodes which are located behind the ears. The sampling frequency of the EEG headset 

is 128 Hz. 

 

The acquired raw EEG signal is accompanied by a DC offset which needs to be removed 

before any analysis can be performed. This offset is removed by demeaning, i.e. subtracting the 

average amplitude of the raw EEG signal during the first 5 seconds from the whole signal. Next, a 

second order bandpass filter 
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is applied to the EEG signal to emphasize the frequency component of interest. Here, 
n  is the 

angular frequency to be emphasized, the damping coefficient   in the numerator is 0.6, and the 

damping factor    in the denominator is 0.01. Next, the bandpass filtered EEG signal is full-wave 

rectified. By using multiple second order bandpass filter to extract the same frequency component as 

the stimulus, we can keep the computational cost low, which is important for implementing the 

algorithm on low-cost microcontrollers. Lastly, a second order lowpass filter 
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is applied to the EEG signals. This preprocessed EEG signal will be later used in the feature 

extraction process. 
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3.4 Signal Processing Algorithm for Classification of SSVEP 

Responses 

This study aims to develop a BMI system that is able to classify three types of SSVEP 

responses and rest state. In this work, features points that represent the characteristics of each SSVEP 

response are extracted from the preprocessed signal to form feature vectors. The type of SSVEP will 

be identified based on these feature vectors using an artificial neural network classifier. In this 

section, a detailed explanation of the proposed classification algorithm will be given. According to 

our preliminary experiments, the set of stimulation frequencies that can elicit strong SSVEP response 

vary from person to person. Therefore, the set of flickering frequencies used in this study are 

customized for each participant. For better understanding of the algorithm, we will assume that the 

flickering frequency of LED matrix displays are 7Hz, 8Hz and 13Hz. 

 

 

Fig. 3.7 The EEG acquisition device and the electrode arrangement: (a) The Emotiv 

EPOC+ headset [105]; (b) Positioning of the electrode based on the international 10-20 

system. Two green circles (O1 and O2) indicate the electrodes used in this study. Two grey 

circles indicate the reference electrodes. Two circles highlighted in dark grey indicate 

reference electrodes which are located behind the ears. 
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3.4.1 Feature Extraction 

Let the time series data of the preprocessed EEG signal be defined as 

    11
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where l  represents the trial number ( ml ,,2,1 = ), k  represents the discrete-time index, and n  

represents the final time index of the time series (the length of the vector is 1+n ). Also, 

 HzHz,Hz,Hz, 101387f  represents the emphasized frequency components. The 10Hz 

frequency component is used to detect the rest state. Furthermore,  O2O1ch  represents the two 

EEG channels. Thus, as an example, 
3

1,7 OHzx  denotes the 7Hz time series data of channel O1 

recorded on the third trial. Next, time series data of all trials (belonging to a particular frequency 

component) combined into one matrix can be expressed as 
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Then, the time series signal of each trial can be normalized by 
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Fig. 3.8 shows the normalized EEG signal of the O1 and O2 electrodes acquired during the third 

experimental trial (
3

,chfd ). The feature points are selected from the normalized EEG signals. Note that   

)max( , chfX  should be determined beforehand from m training datasets in order to normalized the 

time series of each frequency components in the online classification stage. As shown in Fig. 3.8, for 

each class of SSVEP response, the extracted feature points can be put together to form an 

8-dimensional (4 frequency component × 2 channels) feature vector which can be expressed as 

   cc

i

cc vvv 81 =v , (3.6) 

where c

iv  is the ith element of the feature vector belonging to the c class 

(  RestHz,Hz,Hz, 1387c ). The feature vectors are used as the input signal to train the 

artificial neural network classifier. 
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Fig. 3.8 An example of time responses of normalized preprocessed 

electroencephalographic signals and the selected feature points. The symbols □, ○, ×, * 

represents the feature points belonging to 7 Hz class, 8 Hz class, 13 Hz class and rest class, 

respectively. 

 

3.4.2 Training of the Artificial Neural Network Classifier 

In this study, artificial neural network (ANN) is selected as the classifier to discriminate 

three SSVEP brain patterns and rest state. Currently, several kinds of ANN have been proposed. In 

this study, a multilayered perceptron, which is a feed-forward ANN is chosen. 

 

The multilayer perceptron is a multilayered ANN that consists of one or more hidden layers. 

This type of ANN is known as a supervised network because it requires a desired output (teaching 

signal) in order to learn. A set of learning data that consists of the feature vector and the 

corresponding teaching signals is used to have the perceptron acquire appropriate connection weights 

and threshold values of the middle layer and the output layer by machine learning. The multilayered 

perceptron and many other ANN learn by using an algorithm called backpropagation. With back 

propagation method, the input data (feature vector) is repeatedly presented to the ANN. With each 

presentation, the output of the ANN is com-pared to the desired output (teaching signal) and an error 

is computed. This error is then feedback (backpropagated) to the ANN and used to adjust weights so 

REST REST REST REST REST REST7 Hz 7 Hz8 Hz 8 Hz13 Hz 13 Hz

Time [s] Time [s]
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that the error decreases with each iteration and the ANN model gets closer and closer to producing 

the desired output [106]. When performing real-time classification, these connection weights and 

threshold values are fixed and determined beforehand. To keep the computational cost low, an ANN 

with only one hidden layer is structured in this study. There are 8 neurons in the input layer, 12 in the 

hidden layer, and 4 in the output layer. The learning coefficient is set to 1.2. Note that the number of 

neurons in the hidden layer is determined by trial and error. 

 

In the online classification stage, the classification label of a SSVEP response is deter-mined 

based on the integrated value of ANN outputs. More details on this procedure will be given in the 

next section. 

 

3.5 Experiment 

3.5.1 Experimental Conditions 

In this study, the experiments were carried out with the cooperation of 3 able-bodied 

participants. One of the participant is female (referred to as participant A) and two are male (referred 

to as participant B and C) and one is female. The entire protocol and aims of the study are fully 

explained to them before the experiment, and all the participants signed the written informed consent. 

All of the experiments are conducted with the approval from Tokyo Denki University Human 

Bioethics Committee. Apart from participant B, all other participants had no prior experience with 

BMI experiments at all. 

 

During the equipment setup, no skin preparation technique was applied to the scalp as the 

mimic the real-life usage scenario. The experiments are divided into training and online testing stage 

(with the exception of experiment 1) both conducted on the same day. Table 1 shows the number of 

trials performed in the training and evaluation and stage for each experiment. 

 

Table 3.1 Experimental Procedure and Number of Trials Performed in the Training and 

Evaluation Stage of Each Experiment.  

Experiment 

Number 

Number of Trials in 

the Training Stage 

Experimental 

Procedure 

Number of Trials in 

the Training Stage 

Experimental 

Procedure 

1 
5 (Leave-one-out cross-validation was used to evaluate the 

classification accuracy) 
Fig. 3.4 

2 5 Fig. 3.4 10 Fig. 3.5 

3 5 Fig. 3.4 10 Fig. 3.6 
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3.5.2 Evaluation of the Classification Performance 

In this experiment, EEG signals are recorded according to the procedure in Fig. 3.4 and 

repeated 5 times. Since the number of training data is small, leave-one-out cross-validation 

(LOOCV) is used to evaluate the classification performance. Here, the classification label of each 

task is determined based on the SSVEP class with the highest area overlap rate defined as 

  [%]100=
signalcontrolofArea

signaloutputANNofArea
RateOverlapArea . (3.7) 

If the classification label and the frequency of the stimulus match, the classification is considered 

correct. The accuracy of a given class will be evaluated based on the number of correct decisions. Fig. 

3.9 shows the ANN output of participant B as a function of time. We will use the result from the 3rd 

iteration of LOOCV as an example. According to Fig. 3.9, participant B gazes at the 7Hz stimulus 

(task 1) during st 4020−= . In this time frame, the area overlap rate is 70.5% for 7Hz class, 10.5 

for 8Hz class, and 2.76 for 13Hz class. Clearly, the highest area overlap rate of the ANN output 

neuron belongs to the 7Hz class, thus, the classification result will be labeled ‘7Hz’. Furthermore, 

since the classification label matches the frequency of the stimulus, this decision is deemed correct. 

The area overlap rate for the remaining tasks are shown in Table 2. Based on this result, the accuracy 

of the 3rd iteration of LOOCV is 100%. It is worth mentioning that although rest state is included in 

the classification, the accuracy is not calculated because rest state is not part of the control 

commands. Finally, in order to evaluate the classification performance, the accuracy of all LOCCV 

iterations was calculated and averaged. Table 3 shows the classification performance (average 

accuracy) of three participants. The average accuracy across subject was 80%. Note that the 

frequency of the stimulus is different for each individual as mentioned previously. 
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Fig. 3.9 Time responses of ANN output of participant B. From the top, output neurons 

corresponding to 7Hz, 8Hz, 13Hz class and rest state (in order from the top) of participant B. 

Leave-one-out cross-validation is performed and the result of the 3rd iteration is shown as an 

example. The blue line represents the classification signal. The red line represents the 

control signal. 

 

Table 3.2 Area Overlap Rate of Each Tasks (LED Stimuli) in Fig. 3.9 

Stimuli Frequency 

(Start-End Time of Task) 

ANN Output Neurons Corresponding to Three Classes 

7Hz 8Hz 13Hz 

7Hz ( st 4020−= ) 70.5 10.5 2.76 

8Hz ( st 8060−= ) 12.0 68.9 1.74 

13Hz ( st 120100−= ) 8.20 23.5 34.8 

 

Table 3.3 Classification Accuracy of Three Participants [%] 

Participant Task 1 Task 2 Task 3 Average 

A 80 80 80 80 

B 100 100 100 100 

C 40 60 80 60 

Average 73.3 80 86.7 80 

Time [s]5 10 15 2520 300

Rest

Task 1
(7Hz) Rest Rest

Task 2
(8Hz)

Task 3
(13Hz)
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3.5.3 Evaluation of Recognition Speed 

Other than achieving high accuracy, having a fast recognition speed is also an important 

factor for improving the usability of a BMI system. In this experiment, the procedure in Fig. 3.4 is 

repeated 5 times to acquire training data. After the ANN is trained, the experiment protocol in Fig. 

3.5 is performed 10 times to evaluate the recognition speed. Here, the classification label is decided 

by comparing the integrated value of ANN output of each class. We will use Fig. 3.10 to explain this 

procedure in detail. In this example, the 7Hz stimulus was presented to the participant. 

 

Starting from st 0= , the ANN output signals (Fig. 3.10(a)) are integrated and compared 

with each other. At any sampling instance, if the integrated value of class is twice more than the 

remaining two classes, then the classification signal for that particular class will be ‘1’. However, if 

this condition is not satisfied by any class, then the classification signal belonging to the rest state 

will be ‘1’. In addition, if the classification signal of a class lasts for 3 seconds, then the classification 

label will belong to that particular class (Fig. 3.10(b)). Here, the time taken for the system to make a 

decision (referred to as decision time) is recorded and used to evaluate the recognition speed. In the 

example shown in Fig. 3.10(b), starting from st 3= , the classification signal for 7Hz class is 

assigned the value ‘1’ and lasts for more than 3s. Hence the decision time for this class is 6.09s. Note 

that since the classification signal for the other classes did not last 3s, no incorrect decision was made 

in this example. 

 

Fig. 3.11 shows average decision time of each stimulus of 10 experiment trials. The red 

error bars indicate the standard deviation. The results show that the proposed method can achieve an 

average recognition speed of 4.74 seconds. Based on this result, it is theoretically possible for the 

user to issue 12.66 commands (decisions) per minute. In addition, statistical analysis result suggests 

that the recognition speed is different for each flickering frequency. Perhaps by searching for more 

suitable frequency, the recognition speed of the system could be further enhanced. As an extension to 

this study, a broader range of frequencies should be investigated. It would be interesting to see 

whether there is a relationship between recognition speed and the frequency or not. 
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Fig. 3.10 Diagram illustrating the definition of decision time (recognition speed): (a) Time 

response of ANN output of the experiment in Fig. 3.5; (b) Time response of the classification 

signal derive from Fig. 3.10(a). In this example, the recognition speed of 7Hz LED stimulus is 

6.09 seconds. 

 

Fig. 3.11 Decision time (recognition speed) of each stimulus (participant B). The red error 

bars indicate standard deviation. (*) represents 05.0p  and (**) represents 01.0p . 

  

Sustain for 3 sec

Less than 3 sec

Decision time

(a) Time response of ANN output (b) Time response of the classification signal

＊ ＊ p < 0.05
＊＊ p < 0.01＊＊
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3.5.4 Evaluation of Information Transfer Capability 

In the previous two experiments, the evaluation of the proposed BMI system is done offline. 

However, since BMI systems operate in real-time, it is important to test whether the proposed 

algorithm will work in real-time environments. To do this, first the training data is obtained by 

repeating the procedure in Fig. 3.4 5 times. After the ANN is trained, the experiment protocol in Fig. 

3.6 is performed 10 times to evaluate the information transfer capability. Using the same method as 

the second experiment, the classification label (decision) will be given to the class that can sustain 

the classification signal for 3 seconds (Fig. 3.10). Once a decision has been reached, the integrated 

value of ANN outputs will be reset to zero. Furthermore, investigation on how different time length 

of sustained classification signal affects the information transfer capability was also be conducted. 

 

In this experiment, information transfer capability is evaluated based on the total number of 

decisions (NOD), accuracy (defined as the number of correct decisions divide by the total number of 

decisions), and information transfer rate (ITR). ITR is the amount of information communicated per 

unit time shown as bits per minute. This measure incorporates both speed and accuracy in a single 

value. ITR is define by Wolpaw et al. [70] as 
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where N is the number of possible choices (commands), P is the accuracy of classification and T 

(seconds/choice) is the time length of the trial or choice. 

 

Two experiments are conducted over 2 days. On the second day, to investigate the in-fluence 

of time length of sustained classification signal on information transfer capability, 10 online 

classification trials were performed for the time length of 2 seconds and 3 seconds. Fig. 3.12 shows 

the information transfer capability. According to this figure, the proposed algorithm is capable of 

producing 5.53 commands/minute on average. Depending on condition of the user and the time 

length of sustained classification signal, the user can issue an average of up to 6.8 commands/minute. 

Compared to the theoretical value of 12.66 commands/minute reported in the previous section, the 

number of commands is lower in online classifications. One reason could be that during the 

one-minute trials, the participant was not always fully attentive to the LED stimuli. Therefore, the 

results reported in this study includes ‘short breaks’ in the evaluation. 

 

Furthermore, the BMI system was able achieve a mean accuracy of 80.1%. Again, 

depending on the condition, an average accuracy of up to 93.5% (Day2) can be achieved. Compared 
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with previous studies that uses the same EEG hardware [98]-[101], this work uses a much smaller set 

of electrodes and offers a slightly higher accuracy. Since only two electrodes are involved in EEG 

recording, further reduction of hardware costs and setup time may be possible. Another advantage of 

this study is the simplicity of the algorithm. Compared to works like [98], [99] that uses FFT or [100] 

that uses wave atom transform (WAT), the computational cost of the proposed method is much lower. 

In addition, statistical analysis shows that shortening the time length of sustained classification signal 

increases the number of commands per minute but lowers the accuracy. This suggest that there is a 

tradeoff between number of commands and accuracy. So, depending on the target application, a 

different time length of sustained classification signal might be preferable over the others. For 

example, if the target application prefers faster response speed, then a shorter time length should be 

used. On the other hand, if the target application requires accurate classifications such as control of a 

wheelchair, then a longer time length is more suitable. 

 

In addition to accuracy and number of commands, this work also gives an evaluation of the 

ITR. The mean ITR achieved by this system is 3.53 bits/minute and the highest average ITR 

achieved is 4.2 bits/minute. Although the ITR is relatively low compared to studies using high-end 

EEG device, the above results have shown that the proposed method is functional and has the 

potential to control external devices in real-time environment. Furthermore, the results also suggest 

that a consumer-grade EEG device can serve as a modality in device control and other 

human-machine interface applications. 

 

The limitations of this research lie in fact that only a small number of participants were 

involved in the evaluation process. As an extension to this study, more participants should be 

recruited so that the reliability of the system can be evaluated. 
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Fig. 3.12 Information transfer capability of participant B: (a) The number of decision 

(commands per minute); (b) Accuracy of 10 trials; (c) Information transfer rate (ITR). In all 

three subfigures, red error bars indicate standard deviation. (*) represents 05.0p . 

  

(a) Number of decisions per minute (b) Accuracy

(c) Information transfer rate

＊ ＊
＊ p < 0.05 ＊ p < 0.05
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3.6 Conclusion 

In this chapter, a signal processing algorithm has been proposed for a 3-class self-paced 

SSVEP-based BMI system with a rest state. The function of the system is to classify the type of 

SSVEP response from EEG patterns in real-time. The major novelty of this study is the use of only 

two low-cost sensors (low sampling rate) for EEG recording. In the proposed method, multiple 

bandpass filters are used to extract SSVEP features and classifications are performed using artificial 

neural network. Experiment results show that the proposed system could achieve an average 

accuracy of up 93%. Also, the user is able to issue up to 6.8 commands/minute on average using this 

system. Furthermore, this study also presents a tradeoff between the number of commands per 

minute and accuracy. Using this tradeoff, the user can adjust the responsiveness and the accuracy of 

the system to suit the target application. Overall, the results of this study have shown the possibility 

of using a consumer-grade EEG device as a modality in device control and serves as a foundation for 

further interesting research. The discussions have also revealed the challenges towards developing a 

practical BMI system. An extension to this study would be to raise the overall performance by 

improving the feature extraction algorithm. Also, it would be interesting to investigate the 

characteristics of other frequencies in order to find the optimal set of frequencies that can elicit 

stronger SSVEP response and are more responsive. 
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4 Development of Motor Imagery Based 

Brain Machine Interface 

Abstract: This chapter presents a signal processing technique for a low-cost brain machine interface 

(BMI) that uses spectral analysis and artificial neural network (ANN) to classify human mental states 

from electroencephalographic (EEG) signals. In this study, a BMI system has been prototyped to 

classify the intention of moving an object up, down, left, right and at rest state. EEG signals are 

recorded using a consumer grade EEG acquisition device. The device is equipped with 14 electrodes 

but only 8 electrodes are used in this study. To evaluate the system performance, online classification 

experiments for three subjects are conducted. True positive and false positive rates are used as an 

evaluation index. Experiment results show that for the classification of three mental states, the 

proposed method is capable of achieving an overall true positive rate of up to 67% with 15 minutes 

of training time by a novice BMI user. On the other hand, the overall true positive rate was below 

50% for classification of five mental states. These findings strongly suggest that the BMI system can 

classify 2-3 mental tasks at most when using a consumer grade EEG hardware. Furthermore, offline 

analysis is carried out using the same EEG data to explore ways of using spectral analysis and ANN 

to reduce erroneous classifications. Analysis results show that by setting the classification threshold 

value higher, the false positive rate can be reduced. Another finding suggests that in contrast with the 

study results by other research teams, the use of multiple ANNs to classify three mental states do not 

improve the accuracy. Lastly, a hamming window size of 64 samples is found to be optimal for 

achieving real-time control when performing spectral analysis. 

 

4.1 Introduction 

Brain machine interface (BMI) is an emerging technology that aims to assist people with 

disabilities as well as the aged by allowing their users to intuitively control external devices by intent 

alone. BMI systems recognizes human intentions from changes in neural responses and translates 

them into operative control signals [1]-[3]. These brain signals can be recorded in an invasive or a 

noninvasive fashion, where the latter approach is preferably adopted because no surgical 

implantations of electrodes are required and hence extending the target user range to include healthy 
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people. 

 

In a noninvasive BMI system, brain activity can be measured through 

electroencephalography (EEG), magnetoencephalography (MEG), functional magnetic resonance 

imaging (fMRI), functional near infrared imaging (fNIR), or positron emission tomography (PET), 

where EEG is commonly used in most BMI studies due to its high portability, inexpensiveness and 

high temporal resolution [36]. The traditional application of BMI is to control external devices such 

as a wheelchair [9]-[12] or a robot arm [107], as well as provide communication [56] for disabled 

users. In recent years, the use of BMI for smart home controls [14]-[17] and entertainment [18]-[21] 

have also been suggested which have the potential to also benefit healthy people. 

 

However, many of these existing BMI systems are still difficult to be deployed at homes 

because they are very expensive in terms of cost and processing speed. Furthermore, since many 

BMI systems rely on large number of electrodes, the proper positioning of each electrode requires 

expert assistance and takes significant amount of time. Hence, most BMI systems are still unsuitable 

for household and daily applications. One way to counter this problem is by reducing the number of 

electrodes. Another way may be achieved by using a consumer grade acquisition device to lower the 

cost. However, obtaining a high classification rate is very challenging due to lower accuracies of the 

acquisition device. 

 

This study presents a signal processing technique to classify three mental states for BMI 

systems that uses a consumer grade EEG acquisition device. The aim is to develop a low-cost BMI 

system suitable for households and daily applications. As a preliminary study, an experiment has 

been conducted to classify the intention of moving an object up, down, left, right and at rest state, 

which are basic instructions needed for controlling most electronic devices, by using only EEG 

signals. Specifically, the experiment is divided into two parts. The first part aims to classify three 

types of mental tasks (up, down and rest). The second part attempts to classify all five mental states 

(up, down, left, right and rest). The results are analyzed and discussed to determine the limitations of 

the proposed system. In this study, spectral analysis method is used in feature extraction process and 

artificial neural networks are employed as classifiers. This study also introduces true positive rate 

and false positive rate to evaluate system performance. In addition, offline analysis is carried out 

using the same EEG data to explore ways of reducing erroneous classifications. More specifically, 

the influence of the classification threshold value, the use of multiple artificial neural network for 

classification, and the influence of hamming window size are investigated and discussed. 

 

This chapter is organized as follows. Section 4.2 describes the task design and experimental 
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procedures and setup in order to acquire EEG signals. Section 4.3 explains the necessary signal 

processing methods for classification of mental states. Section 4.4 shows the classification results of 

three and five mental states. The results will also be discussed in this section. Section 4.5 presents the 

findings of offline analysis. Lastly, section 4.6 concludes the study. 

 

4.2 Experimental Design 

Experiments are conducted in order to record changes in EEG signals during mental tasks. 

The acquired data will later be used to select informative features of each intended motion. Also, the 

experiment is conducted in order to evaluate the classification performance of the proposed 

algorithm. In this chapter, details of the experiment are described. 

 

4.2.1 Task Design 

 Fig. 4.1 shows the experimental setup. In this experiment, the subjects are asked to sit 

comfortably and look at the display. Next, they are instructed to imagine moving the solid circle 

shown on the screen up, down, left or right as indicated by the imagery cues. During the task, EEG 

signals are acquired. 

 

 In this study, the subjects are asked to choose a mental task that is closely related to up, 

down, left or right movements. As such, for up or down mental tasks, the subjects may choose to 

imagine an object sliding up or down but asked not to choose imagery tasks such as foot imagery 

since they have little relation to the actual movement. The purpose is to record the “real intentions” 

and to observe the differences in EEG signals. 

 

 

Fig. 4.1 Experimental Setup  
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4.2.2 Experimental Procedure 

 Two kinds of experiments are conducted in this study. The first one aims to correctly 

identify 3 mental states which are up and down intentions and rest state. In this experiment, only up 

and down cues are used during mental tasks trial as illustrated in Fig. 4.2 (left). The second 

experiment aims to classify 5 mental states which are up, down, left and right intentions and rest state. 

In this experiment, all four kinds of imagery cues are used as illustrated in Fig. 4.2 (right). 

 

During the rest period, the subject gazed at a black circle that was shown at the center of the 

screen for 60 seconds to reduce eye movement. Next, an arrow indicating up, down, left, or right 

motion were presented and the subject began to perform the mental task for 10 seconds. To prevent 

forecasting, the mental task cues are randomized. 

 

 

Fig. 4.2 Experiment Procedure. The illustration on the left shows the procedure for the 

identification of 3 mental states experiment. The illustration of the right shows the procedure 

for the identification of 5 mental states experiment. 
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4.2.3 Experimental Setup 

 As illustrated in Fig. 4.3, the proposed system consists of three main subsystems; the data 

acquisition system, the BMI system and the interface system. The data acquisition system acquires 

the electroencephalographic (EEG) signals in a noninvasive fashion and sends the recorded data 

wirelessly to the BMI system to be process. The BMI system then interprets the EEG signals and 

identifies the user intent. The interface system displays three types of data; 

(1) Motor imagery (mental task) cues used during the offline training sessions 

(2) Identification result from the BMI system during online testing sessions 

(3) Signal status 

In this study, the aim is to correctly identify the intention of moving an object up, down, left or right. 

Here, the non-control state is referred to as the “rest” state. 

 

 

Fig. 4.3 System Architecture 
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 EEG signals are recorded on the subject's scalp using a headset (Emotiv) equipped with 14 

electrodes (AF3, F3, F7, FC5, T7, P7 O1, O2, P8, T8, FC6, F4, F8 and AF4). The electrodes are 

positioned based on the 10-20 system as shown in Fig. 4.4. Out of the 14 electrodes, 8 electrodes 

(AF3, F3, F7, FC5, FC6, F4, F8 and AF4) positioned over the frontal lobe (highlighted in light grey) 

are selected based on the knowledge that. the frontal lobe is responsible for thinking, planning, and 

the execution of cognitive tasks. Two circles highlighted in dark grey (CMS, DRL) indicate reference 

electrodes which are located behind the ears. The sampling frequency of the EEG headset is 128 Hz. 

 

In most BMI studies, electrode placement is often concentrated on the primary motor cortex, 

e.g. C3 and C4. This is because these studies primarily focus on classifying motor imagery states by 

observing power changes in movement related mu (8-12 Hz) and beta (18-26 Hz) rhythms over this 

part of the brain, which is responsible for body/limb movements. There are two reasons why 

electrodes over primary motor cortex are not chosen in this study. One reason is that the Emotiv EEG 

headset do not provide electrodes over the primary motor cortex and since the electrode positions are 

fixed to the headset, they cannot be moved. The other reason is that the mental task in this study is 

not limited to motor imagery. For example, when the subject tries to imagine an up motion, they can 

choose to imagine ‘a ball sliding up’ instead of imagining ‘moving their right arm up.’ As such, 

electrodes placement in areas other than motor cortex is also preferred. 

 

 In this system, the recorded EEG signals are wirelessly transmitted to the PC in real-time 

after being converted to digital form. The headset also has a built-in 2 axis gyroscope used to 

monitor head movement in horizontal and vertical axes in real-time. The software development 

environment is MATLAB/Simulink®. The proposed algorithm is executed after being built by 

Simulink real-time workshop. During online testing session, identification results are feedback to the 

user in real-time by looking at the screen. In this way, the user can easily see whether the 

identification results are correct or not and allows them to modulate their brain waves accordingly. 

Since signal status is also visually available for the user on the screen, less preparation time is needed 

to setup the experiment. This also helps ensure that the acquired EEG data are reliable. 
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Fig. 4.4 Electrodes Position. Out of the 14 electrodes, the 8 electrodes highlighted in light 

grey are used in this study. Two circles highlighted in dark grey indicate reference electrodes 

which are located behind the ears. 

 

4.2.4 Experimental Outline 

 The experiments are conducted based on the following protocols: 

(1) Offline training session 

(2) Selection of feature components and training of the classifier 

(3) Online identification testing 

During the offline training session, motor imagery (MI) cues, which indicate up or down motion, 

were displayed on the screen. The subjects imagine an object moving up or down according to the 

cues. After the offline training session, the recorded EEG data were analyzed in order to extract 

features that best describe each intention. Next, the classifier is trained based on the selected features. 

Lastly, online identification testing is conducted to evaluate the system performance. 
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4.3 Signal Processing 

 In this chapter, the proposed algorithm that is used to identify the user intent is described. 

According to the signal flow shown in Fig. 1, initially, the reordered EEG signals are transformed 

from time domain to frequency domain by performing Fast Fourier Transform (FFT) that uses a 

hamming window function. Next, the power spectrum densities are calculated from the FFT results. 

Feature vectors components that are used as the input signal of the classifier are selected from the 

power spectrum density. Finally, the classifier identifies the user intention and outputs the result. 

Here, a threshold value is established to define the identification signal. In this study, the artificial 

neural network is used as the classifier. 

 

4.3.1 Preprocessing 

 The EEG data is stored as floating point values directly converted from the unsigned 14-bit 

analog-digital converter (ADC) output from the headset. This means that the (floating) DC level of 

the signal occurs at approximately 4200 μV where the negative voltages are transmitted as positive 

values less than the average level, and the positive voltages are transmitted as positive values greater 

than the average. Before performing FFT, it is necessary to apply some kind of DC offset removal. In 

this study, a 0.16 Hz first order high pass filter is applied to remove the background signal. The time 

taken for the DC offset to be fully removed is approximately 6 seconds. Therefore the first 10 

seconds of the EEG data will be discarded during signal processing. Examples of EEG signal for up 

and down imagery (60 s - 70 s) task after high pass filter has been applied are respectively shown in 

Fig. 4.5 and Fig. 4.6. 

 

 As a preliminary stage of this study, no artifact removal algorithm has been implemented 

into the system. This is to minimize computation complexity as well as investigate how well the 

system could tolerate against artifacts such as head movements or eye blinks. During the experiments, 

very minor head movements were detected from the 2 axis gyroscope. Occasionally, eye blinks were 

also detected. 

 

 



50 

 

 

Fig. 4.5 Electroencephalograph signals during up imagery task at F7and F8 electrode. The 

experiment starts with a 60 seconds rest period followed by a 10 second imagery task. 

 

 

Fig. 4.6 Electroencephalograph signals during down imagery task at F7and F8 electrode. 

The experiment starts with a 60 seconds rest period followed by a 10 second MI task 
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4.3.2 Feature Extraction 

 After the DC offset has been removed by applying the high-pass filter, FFT is applied to the 

EEG signals. Then, the FFT results are used to calculate the power spectrum densities (PSD) which 

are used to generate the feature vector. The elements of the feature vector are made up of the spectral 

magnitude at 4 Hz, 10 Hz, 12 Hz, 20 Hz, 22 Hz, 24 Hz, 30 Hz and 44 Hz of each channel. Fig. 4.7 

and Fig. 4.8 show an example of selected features for up and down motion and rest state at F7 

electrodes and F3 electrodes respectively. These feature components are selected by looking at the 

spectral graph of the 8 electrodes and find the frequency where the PSD value of each intention 

differs from each other the most. The selected features are used to generate a 64 dimension (8 

channel × 8 frequency components) feature vector. In generating the feature vector, power spectrum 

densities are estimated using a 64 sample hamming window with 25 % overlap transform processing 

and being averaged eight times. This method of using overlapping windowed FFT is known as the 

Welch's method. Lastly, the elements of the feature vector are normalized by the difference between 

the largest and smallest feature components. By this normalization, the elements of the feature vector 

are converted to the ratio of the spectral magnitude where the values are ranged from 0 to 1. This 

normalization scheme is formulated as 

  ( )
( ) ( )( )
( )( ) ( )( )kxkx

kxkx
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ii
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minmax

min~

−

−
=  (4.1) 

where ( )kxi  is the ith element at kth sampling instance and ( )kxi
~  is the normalized magnitude. The 

normalized feature vector will be use as the input signal and to train the classifier. 

 

 Prior to conducting online identification sessions, ( )( )kximin  and ( )( )kximax  is 

calculated from feature vectors generated from EEG signals obtained during offline training sessions 

and relayed to the classifier as parameters. 

 

 It is important to normalize the elements of the feature vector first before feeding them into 

the classifier. This is because the criterion for identifying the user intent of the proposed method is 

based on the distributions of the input signals in the frequency domain, not based on the amplitude 

itself in time domain. In our previous study, offline identification tests were conducted with and 

without normalization of feature vectors. The results proved that normalizing the features yield much 

better results. 
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Fig. 4.7 Spectral power of F7 electrode shown as a function of frequency. In this figure, the 

spectral power for rest state and up imagery task is calculated by performing FFT on the 

EEG signals of Fig. 5 at 24 seconds and 67 seconds, respectively. Similary, spectral power 

for down imagery task is calculated by performing FFT on the EEG signals of Fig. 6 at 68 

seconds 

 

 

Fig. 4.8 Spectral power at F3 electrode shown as a function of frequency. In this figure, the 

spectral power for rest state and up imagery task is calculated by performing FFT on the 

EEG signals of Fig. 5 at 24 seconds and 67 seconds, respectively. Similary, spectral power 

for down imagery task is calculated by performing FFT on the EEG signals of Fig. 6 at 68 

seconds 
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4.3.3 Classification of User Intentions Based on ANN Output 

 Several kinds of identification methods have been proposed for BMI systems. Many of 

those are based on linear models such as the auto aggressive (AR) models [108]-[112] or 

discriminant functions [8], [113]-[115]. However, it might be difficult to handle nonlinearities such 

as changes in subject's physiological states caused by perspiration, tiredness, emotions etc. To solve 

the problem, artificial neural networks (ANN), which acquire nonlinear mapping by machine 

learning have been put to use [116]. In this study, ANN is chosen as the classifier. In this section, the 

generation of neural network output signals needed in identifying the user intention is described. The 

output signals are generated by feeding 64 elements of the feature vector obtained from the recorded 

EEG signals to the ANN. Currently, many types of ANN have been suggested. In this study, a 

multilayered perceptron, which is a feed-forward ANN is chosen due to its implementation 

simplicity. 

 

 The multilayer perceptron is a multilayered ANN which consists of one or more hidden 

layers as shown in Fig. 4.9. This type of ANN is known as a supervised network because it requires a 

desired output (teaching signal) in order to learn. A set of learning data that consists of the feature 

vector and the corresponding teaching signals is used to have the perceptron acquire appropriate 

connection weights and threshold values of the middle layer and the output layer by machine 

learning. The multilayered perceptron and many other ANN learn by using an algorithm called 

backpropagation. With back propagation method, the input data (feature vector) is repeatedly 

presented to the ANN. With each presentation, the output of the ANN is compared to the desired 

output (teaching signal) and an error is computed. This error is then feedback (backpropagated) to 

the ANN and used to adjust weights so that the error decreases with each iteration and the ANN 

model gets closer and closer to producing the desired output [117]. The outline of learning 

procedures using the back propagation are as follows [118]: 

(1) The ith middle layer’s output ih  is calculated using the feature vector, and the jth output 

jo  is calculated using the middle layer’s output ih  as follows: 
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where ikwh  is connection weight of the middle layer, ivh  is threshold of the middle 

layer, ikwo  is connection weight of the output layer, and ivo  is the threshold of the 

output layer. 

 

(2) Connection weight jiwo  is updated by computing 

  ( ) ijjjjiji hooEwowo −+ 1  (4.4) 

  jj ooE −=  (4.5) 

where jE  is the output error of the output layer, and α is the learning constant. 

 

(3) Then, generalized error i  of the ith neuron of middle layer is calculated by 

  ( ) ( )jjjjiiii ooEwohh −− 11  (4.6) 

 

(4) Connection weight ikwh  of the ith input of the kth middle layer’s neuron is updated by 

  ikikik xwhwh +   (4.7) 

 

Fig. 4.9 Structure of a multilayered perceptron 
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 Training of the ANN is performed using the above procedure while the thresholds values are 

also trained and updated in the same way. The training process is repeatedly conducted until the 

output error becomes less than 0.0001 or until the number of training iteration reaches 8000. 

 

 The identification of user intention is defined by the class with the highest ANN output. 

Thus the output can take one of the following states: up, down, left, right and rest. A threshold value 

of 0.5 is established to define the output. If the threshold value is not achieved by any of the classes, 

identification is labeled “uncertain.” An example showing how the identification signals are 

generated is shown in Fig. 4.10. Currently, the threshold value is fixed for all experiment sessions. 

 

 

Fig. 4.10 An example of the generation of identification signals (classification of 3 mental 

states). The top three rows corressponds to the ANN output signal of up intention, down 

intention and rest state. The last four rows corresponds to the identification signal of up 

intention, down intention, rest state and uncertain state. At each sampling time, the ANN 

output signal can take one of the following states: up, down and rest. Similarly, the 
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identification signal can take one of the following states: up, down, rest and uncertain. 

4.3.4 Definition of True Positive Rate and False Positive Rate 

In this study, true positive rate (TPR) and false positive rate (FPR) are introduced to 

evaluate the system performance. Also, unlike other studies, each imagery tasks are evaluated 

separately in addition to evaluating the overall performance. Fig. 4.11 illustrates the definition of 

TPR and FPR. Let positive be defined as when the final classification signal is 1 and negative be 

defined as when the final classification signal is 0. By comparing the classification signal to the 

teaching signal TPR and FPR can be calculated by 

  
FNTP

TP
TPR

+
=  (4.8) 

  
FPTN

FP
FPR

+
=  (4.9) 

where true positive (TP), false positive (FP), true negative (TN) and false negative (FN) are defined 

as follows: 

⚫ True positive is defined as the total number of samples where the classification signal says an 

event has occurred (ANN output value is 1) and that this statement is true (teaching signal 

value is 1). 

⚫ False positive is defined as the total number of samples where the classification signal says an 

event has occurred (ANN output value is 1) and that this statement is not true (teaching signal 

value is 0). 

⚫ True negative is defined as the total number of sample where the classification signal says 

there is no event (ANN output value is 0) and that this statement is true (teaching signal value 

is 0). 

⚫ True negative is defined as the total number of sample where the classification signal says 

there is no event (ANN output value is 0) and that this statement is not true (teaching signal 

value is 1). 
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Fig. 4.11 Classification signal during up imagery task trial. From the top, classification 

signal of up intention, down intention, rest state and uncertain state. At each sampling time, 

the classification signal can take one of the following states: up, down, rest and uncertain. 

 

4.4 Experiment 

 Two experiments have been conducted in order to evaluate the proposed BMI system 

performance. The first experiment is conducted to identify 3 mental states which are up and down 

intentions as well as rest state. The second experiment, aims to identify 5 mental states. In this 

chapter, the correct and incorrect identification rates of each experiment are evaluated and discussed. 

 

4.4.1 Subjects 

 The experiments were carried out with 3 able-bodied male subjects (referred to as subject A, 

subject B and subject C) aged from 21 to 24 years old. Subject A took part in our previous BMI study 

where he performed several mental tasks trials and therefore have little experience with BMI. On the 

other hand, subject B and subject C have never participated in any BMI experiment before and 

therefore possess no prior experience with BMI at all. The entire protocol and aims of the study were 

fully explained to them before the experiment, and all participants signed the written informed 

consent. All of the experiments are conducted under the approval of Tokyo Denki University Human 

Up

Down

Rest

Uncertain

TPFPTN FN FN

TN FPFP

TPFN FN FP TN

Classification signal

Teaching signal
1

1

1

1

0

0

0

0
Time [s]



58 

 

Bioethics Committee（東京電機大学ヒト生命倫理委員会）. 

 

 As a measure to control and reduce any factors that might affect the subject's physiological 

state as much as possible, all subjects were asked to get enough sleep the day before the experiment. 

They are also instructed to take their meals 3 hours before the experiment begins. This is to prevent 

sleepiness during the experiment so that the subjects can fully concentrate on the mental tasks. It 

should be noted that not every subject participated in all of the three experiments. 

 

4.4.2 Identification of 3 Mental States (Up Intention, Down Intention and Rest 

State) 

4.4.2.1 Experimental Conditions 

 This experiment is conducted to evaluate the system identification performance of 3 mental 

states which are up and down intentions as well as rest state. All three subjects participated in this 

experiment. In this experiment, subject A chose to imagine pushing up the black circle presented in 

the visual cues with the palm of his right hand for the up intention. As for the down intention, subject 

A chose to imagine pushing the black circle downwards with both hands. On the other hand, subject 

B and subject C both chose to imagine the black circle sliding upwards for up imagery task while 

imagining pushing the black circle downwards with both hands for down imagery task. 

 

 As mentioned in section 4.2.4, the experiments in this study are divided into two parts both 

conducted on the same day. The first part is intended for determining the necessary parameters of 

ANN. In this part, the experiments are conducted based on the procedures described in section 4.2.2. 

The subject is asked to perform a total of 10 sessions (5 sessions for up intentions and 5 sessions for 

down intentions) of mental task. From this data, 20 sets of feature vectors (5 sets each for up and 

down intentions and 10 sets for rest state) are generated. All of these feature vectors are used to train 

the ANN. Here, the number of training sessions (epochs) are determined based on the consideration 

that short training time is preferable for BMI system to be easy-of-use. However, too little training 

sessions may result in poor identification accuracy. As a first step, the number of training session is 

set so that the training time required is under 15 minutes. Since each session takes about 1.5 minutes, 

hence the total number of training session is set to 10. 

 

 The second part of the experiment consists of online identification sessions. A total of 20 

sessions (10 sessions for up intentions and 10 sessions for down intentions) is performed. Correct 

and incorrect identification rate is calculated from these data. Two experiments, with each one 
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consisting of 20 sessions are conducted over two days for each subject. 

 

 As mentioned in section 4.3.3, the identification output signals are generated by ANN. For 

this experiment, an ANN with 64 neurons in the input layers, 6 neurons in the middle layers and 3 

neurons in the output layers are used. The learning constant in equation (4.4) and (4.7) is set to be 

1.1. 

 

 The number of neurons hidden layer is determined from the results of previous offline 

identification experiments. In that experiment, subject A performed a total of 20 sessions (10 sessions 

for up intentions and 10 sessions for down intentions) of mental tasks. The experiment were carried 

out according to the same procedures describe in section 4.2.2. From this data, 20 sets of feature 

vectors (5 sets each for up and down intentions and 10 sets for rest state) were generated. Out of the 

20 sets, 10 sets (5 sets each up and down intentions and 10 sets for rest state) were selected to train 

the ANN and the remaining 10 sets were fed into the ANN for identification. Here, the number of 

neurons in the hidden layer was initially set to 2. After identification of 10 sets was over, the number 

of neurons in the hidden layer was increased by 1. Then, the training and identification process were 

repeated by using the same training and identification data sets as the previous cycle. In each cycle, 

correct identification rates were evaluated. The above steps were repeated until identification rates 

declined for 3 consecutive cycles. Lastly, the identification rates were compared and the cycle with 

the highest identification rate was selected, which is in this case, the cycle in which the number of 

neurons in the hidden layer is set to 6. As a preliminary stage, in order to investigate the extent of the 

performance of ANN with a fix network arrangement, the number of neurons in the hidden layer is 

fixed in all experiment sessions for all 3 subjects. A systematic approach to optimize the number of 

neurons in the hidden layer is scheduled for future work. 

 

4.4.2.2 Results 

 Mean and standard deviation of true positive and false positive rates of three mental states 

calculated from 20 trials are listed respectively in Table 4.1 and Table 4.2. The mean overall TPR is 

calculated by taking the average of the TPR of the three mental states from 20 trials. The mean 

overall FPR is calculated in the same way. Similarly, standard deviation of the overall TPR are 

calculated by computing the standard deviation of TPR of the three mental states from 20 trials. 

Standard deviation of the overall FPR is calculated in the same way. 

 

The experimental results show that subject B performed the best in obtaining the highest 

overall TPR and the lowest overall FPR. On the other hand, subject C performed worst among the 
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three subjects in obtaining the lowest overall TPR and the highest overall FPR. According to Table 

4.1, subject B were able to achieve an overall TPR of 67% on the first day despite being a first-time 

user and had little training time. Furthermore, all three subjects performed better on the second day. 

The TPR of each mental task were also better on the second day with the exception of down mental 

task for subject B and C. Also, the overall TPR improved and the overall FPR lowered (Table 4.2) for 

all subjects. One reason for this improvement is that the subjects became accustom to the task and 

the way to modulate their brain waves. This suggests that training of each individual can potentially 

improve the performance. At the end of the second day, the performances of subject A, subject B, 

subject C are 60 %, 67 %, 42%, respectively. 

 

Also, according to Table 4.1, subject B performed better on the down imagery task than that 

of the up imagery task. Whereas, subject A performed better on the up imagery task than that of the 

down imagery task. This suggests that a certain individual may perform well on a certain imagery 

task but not on the others depending on his/her aptitude. This also suggests that the selection of 

mental tasks that are easy for the user to execute are extremely important in order to achieve high 

accuracy. 

 

As shown in Table 4.2, the FPR of rest state for all subject is relatively high compared to the 

FPR of up or down intentions. This may be due to the fact that during the imagery tasks (duration of 

10 seconds), each subject was unable to sustain the imagery intention for long periods of time and for 

most of the time, he remained in a relaxed state. For example, on day 2, the FPR of rest state for 

subject B is 22%. Furthermore, from Table 4.1, the TPR rates of up and down intention are 43% and 

54%, respectively. Therefore, in this case, subject B could focus and sustain his mental tasks for only 

about 5 seconds on average. Generally, sustaining the imagery intention for 10 seconds is a difficult 

task because it requires a lot of continuous concentration as well as a stable physiological condition. 

The same is true for rest state. Keeping a relaxed state of mind for 50 seconds while not being 

engaged in any task proved to be uneasy especially for subject C. From the above results, it is clear 

that the physical and mental conditions of the subject greatly influence the performance of the BMI 

system. 

 

Although the overall accuracy presented in this work may sound slightly lower than those in 

some other studies, the difficulty of each tasks are in fact much higher than other studies. More 

specifically, the duration of mental tasks in other studies are usually around 3-5 seconds [119] 

whereas the tasks are twice longer (10 seconds) in this study. In addition, the rest period is 

considered to be especially long. Therefore, to obtain higher accuracy, the subjects will have to 

sustain their mental task for longer periods of time for which it is difficult to achieve. So, by 
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considering these facts, all the three subjects have performed well. 

 

Based on the above results, the proposed BMI system has basically worked well. Also, one 

subjects was able to achieve an overall TPR of 67% with 10 sessions (15 minutes) of training. The 

extension to this study would be to improve the basic performance by improving the feature selection 

algorithm and tuning the ANN parameters. It would also be interesting to investigate on how the 

number of training datasets affect the classification accuracy in order to determine the optimal 

number of training datasets. 

 

Table 4.1 True Positive Rates of Three Subjects (Classification Threshold Value is 0.5)  

Intention 

Classification Results (Mean ± Standard Deviation) [%] 

Subject A Subject B Subject C 

Day 1 Day 2 Day1 Day2 Day 1 Day 2 

Up 35.11 ± 11.75 61.00 ± 15.13 34.00 ± 10.64 43.48 ± 12.73 15.16 ± 11.87 39.24 ± 13.51 

Down 15.81 ± 6.44 35.19 ± 3.98 80.78 ± 14.10 54.24 ± 16.45 74.91 ± 10.54 39.59 ± 12.02 

Rest 42.00 ± 13.22 72.37 ± 11.43 62.40 ± 9.06 85.70 ± 8.03 37.82 ± 10.69 45.48 ± 15.49 

Overall 33.73 ± 15.54 60.23 ± 18.87 59.89 ± 19.98 67.28 ± 22.23 41.43 ± 24.18 42.45 ± 14.20 

 

Table 4.2 False Positive Rates of Three Subjects (Classification Threshold Value is 

0.5) 

Intention 

Classification Results (Mean ± Standard Deviation) [%] 

Subject A Subject B Subject C 

Day 1 Day 2 Day1 Day2 Day 1 Day 2 

Up 30.93 ± 15.82 15.32 ± 12.42 17.79 ± 7.35 9.26 ± 4.95 7.60 ± 5.01 25.99 ± 9.28 

Down 15.30 ± 6.76 8.62 ± 5.07 14.79 ± 7.78 1.06 ± 1.07 45.82 ± 14.03 18.78 ± 12.82 

Rest 30.66 ± 21.34 19.65 ± 10.79 14.11 ± 7.31 22.75 ± 19.27 12.88 ± 11.21 20.97 ± 15.09 

Overall 25.63 ± 16.98 14.53 ± 10.64 15.56 ± 7.40 11.02 ± 14.46 22.10 ± 20.07 21.92 ± 12.78 
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4.4.3 Identification of 5 Mental States 

4.4.3.1 Experimental Conditions 

 This experiment is conducted to evaluate the system identification performance of 5 mental 

states which are up, down, left and right intentions as well as rest state. Two subjects (subject B and 

subject C) participated in this experiment. In this experiment, subject B and subject C chose to 

imagine pushing up the black circle presented in the visual cues with the palm of his right hand for 

the up intention. As for the down intention, both subjects chose to imagine pushing the black circle 

downwards with both hands. For left intention, subject B and subject C both chose to imagine sliding 

the black circle towards the left side with their left hand. Lastly, for right intention, both subjects 

chose to imagine moving the black circle toward the right side in a spiral motion with their right 

hand. 

 

 The experiments are conducted using the same procedure as the previous experiments 

(section 4.4.2). During the offline training sessions, the subject is asked to perform a total of 20 

sessions (5 sessions for each intention) of mental task. From this data, 40 sets of feature vectors (5 

sets for each intention and 20 sets for rest state) are generated. All of these feature vectors are used to 

train the ANN. For the online identification sessions, the subject is asked to perform a total of 20 

sessions (5 sessions for each intention). Correct and incorrect identification rate is calculated from 

these data. It should be noted that the number of experiment sessions for each intention is reduced to 

5 instead of 10. The reason is that too many experiment sessions will lengthen the experiment 

duration in which user could become too tired. This could greatly affect and lower the system 

performance. 

 

 In this experiment, an ANN with 64 neurons in the input layers, 6 neurons in the middle 

layers and 5 neurons in the output layers are used. The learning constant in equation (4.4) and (4.7) is 

set to be 1.1. 
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4.4.3.2 Results 

 Mean and standard deviation of correct identification rates for the 20 sessions are listed in 

Table 4.3. Also, mean and standard deviation of incorrect identification rates are listed in Table 4.4. 

According to Table 4.3, the overall performance of both subjects is below 50 %. Also, the correct 

identification rate of each individual intention is also low. Furthermore, according to Table 4.4, both 

subject obtained a very high overall incorrect identification rate. These results show that the 

proposed BMI system failed to classify 5 mental states. One reason for this failure may be that the 

feature extraction algorithm could not find distinct features for all 5 mental states. More work need to 

be done in implementing a more advanced algorithm. Another reason may be due to the experience 

of the user. Since this is the first time that both subjects tried to execute 4 different imagery tasks, the 

subjects are still inexperience in modulating their brain waves. As a result, they failed to create 5 

distinct brain wave patterns which made the classifier unable to correctly identify the intentions. 

Hence, training the user to modulate their brain waves is also an important part in raising the system 

performance. Currently, it is not clear which reason leads to this failure. The future work would be to 

investigate and make clear the reason as well as propose a suitable countermeasure. 

 

Table 4.3 Correct Identification Rates of Five Mental States 

Intention 
Identification Results (Mean ± Standard Deviation) [%] 

Subject B Subject C 

Up 2.20 ± 4.03 15.84 ± 9.26 

Down 0.0 ± 0.0 47.81 ± 25.84 

Left 18.05± 8.67 17.25 ± 13.32 

Right 16.02 ± 14.78 26.20 ± 9.67 

Rest 55.72 ± 22.77 12.67 ± 16.75 

Overall 47.94 ± 18.45 15.02 ± 14.65 

 

Table 4.4 Incorrect Identification Rates of Five Mental States 

Intention 
Identification Results (Mean ± Standard Deviation) [%] 

Subject B Subject C 

Up 3.25 ± 5.45 8.65 ± 3.06 

Down 2.51 ± 3.07 38.78 ± 15.78 

Left 21.96 ± 6.74 5.75 ± 3.78 

Right 16.65 ± 22.17 25.89 ± 7.17 

Rest 16.06 ± 12.10 4.89 ± 8.14 

Overall 45.20 ± 20.57 76.59 ± 18.03 
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4.5 Offline Analysis 

 Offline analysis is conducted using the same EEG data recorded from experiments in section 

4.2 to investigate the influence of the classification threshold value, the use of multiple ANN for 

classification, and the influence hamming window size. 

 

4.5.1 Influence of the Classification Threshold Value 

 In order to investigate how different threshold affect the system performance, first, the 

threshold value was altered from 0.0 to 1.0 as shown in Table 4.5. Next, the same EEG data recorded 

during online classification sessions on the second day were fed into the BMI system to be classified. 

Here, the set of ANN parameters are exactly the same as the one used in experiment. Mean overall 

TPR and FPR are calculated based on the results. In addition, the receiver operating characteristic 

(ROC) curve is plotted based on the results of Table 4.5. Table 4.5 shows the TPR and FPR of each 

threshold value. Fig. 4.12 shows the ROC curve of 3 subjects. 

 

Table 4.5 shows that the lower the threshold value is, the higher the TPR and FPR becomes. 

On the contrary, when higher threshold value is set, the TPR decreases, but in return, the FPR 

improves. The above results show that there is a tradeoff relationship between TPR and FPR and that 

high threshold value is the key to reduce FPR. So, depending on the target application a different 

threshold value might be preferable over the others. For example, if the application is the type where 

high FPR would pose a serious problem such as controlling a wheelchair, then using a high threshold 

value could help reduce the FPR. 

 

Furthermore, by looking at Fig. 4.12, the ROC curve of subject B is the furthest away 

(towards the upper left corner) from the black straight line. This means that subject B performed best 

amongst the 3 subjects. On the other hand, subject C has the worst performance. In addition, a 

relatively large improvement in FPR can be seen in all three subject when the classification threshold 

value is set 0.8. However, on the contrary, TPR declines significantly. 
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Table 4.5 True Positive Rates and False Positive Rates of Each Classification 

Threshold Value 

Threshold 

Value 

Classification Results [%] 

Subject A Subject B Subject C 

TPR FPR TPR FPR TPR FPR 

0.0 64.07 16.68 72.43 13.56 47.13 25.42 

0.2 64.04 16.82 72.20 13.37 47.10 25.40 

0.4 62.24 15.65 69.44 11.95 44.75 23.56 

0.5 60.23 14.53 67.28 11.02 42.45 21.92 

0.6 57.36 13.19 65.00 9.85 39.76 19.94 

0.8 47.54 9.50 57.87 7.49 31.90 14.94 

1.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

 

Fig. 4.12  ROC curve of 3 subjects. The further away (towards the upper left corner) the 

curve is from the black straight line, the better the peformance. Subject B performed best 

among the 3 subjects while subject C performed worst. 
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4.5.2 Multiple ANN Classification Scheme 

Most researches on classification problems involving ANN classifiers are often focused on 

the design of efficient learning algorithms to train a single ANN to solve a specific problem. 

However, in multiclass classification problems, the accuracy of the classifier tends to degrade as the 

number of classes involved in the classification task increases. According to the report of some 

studies, the use of multiple ANN may help increase the classification accuracy [120]-[122]. In order 

to test the validity of this idea, the use of two and three ANNs to classify three mental states are 

explored. In each classification scheme, ANN are structured as shown in Fig. 4.13. 

 

In the two ANN classification scheme, the first ANN is use to classify whether the intent 

belongs to the mental task category or the rest state category. If the output is labeled “rest”, then the 

final result will be classified as rest. On the other hand, if the output is labeled “task”, then the 

second ANN will determine whether the intention belongs to up category or the down category. As 

with the single ANN classification scheme, a classification threshold value of 0.5 is adopted in both 

ANNs to define the final classification output. If the threshold value is not achieved by any of the 

categories, classification will be labeled as “uncertain.” 

 

Similarly, in the three ANN classification scheme, each ANN is used to perform binary 

classification. The first ANN is used to classify between up or down intentions. The second one is 

used to classify between down intention and rest state. The last ANN is used to classify between up 

intention and rest state. Hence, each class has two ANNs that is responsible for determining the final 

classification output. In this scheme, the final classification output is defined by the class with 

classification label from two ANNs. For example, in order for the final output to be labeled “rest”, 

the classification output of two ANNs associating must all belong to the rest class. If none of the 

three class is able to obtains two classification labels, then the final output will be labeled as 

uncertain. Again, a threshold value of 0.5 is adopted in all of the ANN. 

 

To evaluate the effectiveness of this method, the same EEG data recorded on the second day 

were fed into the BMI system to be classified. Here, all the ANNs in both classification scheme 

consist of 64 neurons in the input layer, 6 neurons in the middle layer and 2 neurons in the output 

layers. The learning constant for both ANN are 1.1. The ANNs are trained using the training data set 

recorded on the second day. 

 

Mean and standard deviation of true positive and false positive rate for the 20 sessions are 

listed respectively in Table 4.6 and Table 4.7. In contrast to the findings of other studies, the results 
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show that using multiple ANN to classify three mental state do not improve the accuracy. As shown 

in Table 4.6, the accuracy of subject A declined significantly in both classification schemes; the true 

positive rate lowered and false positive rate increased. For subject B and C, the accuracy appears to 

decline slightly. This result suggests that in contrast with the results from studies mentioned above, 

using multiple ANN do not improve the classification accuracy. 

 

 

Fig. 4.13 Classification scheme using multiple artificial neural networks. 

 

 

Table 4.6 True Positive Rates of Each Classification Scheme (Single ANN and Two 

ANN) 

Intention 

Classification Results (Mean) [%] 

Subject A Subject B Subject C 

Single 

ANN 

Two 

ANNs 

Three 

ANNs 

Single 

ANN 

Two 

ANNs 

Three 

ANNs 

Single 

ANN 

Two 

ANNs 

Three 

ANNs 

Up 61.00 61.38 48.73 43.48 33.45 34.37 39.24 56.50 79.52 

Down 35.19 48.69 58.02 54.24 45.82 51.79 39.59 29.35 19.04 

Rest 72.37 18.59 29.99 85.70 91.44 90.94 45.48 47.44 43.90 

Overall 60.23 36.81 41.68 67.28 65.54 67.01 43.45 45.19 46.59 
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Table 4.7 False Positive Rates of Each Classification Scheme (Single ANN and Two 

ANN) 

Intention 

Classification Results (Mean) [%] 

Subject A Subject B Subject C 

Single 

ANN 

Two 

ANNs 

Three 

ANNs 

Single 

ANN 

Two 

ANNs 

Three 

ANNs 

Single 

ANN 

Two 

ANNs 

Three 

ANNs 

Up 15.32 34.16 22.51 9.26 8.59 7.79 25.99 38.89 46.27 

Down 8.62 46.33 35.42 1.06 3.85 2.19 18.78 15.83 7.06 

Rest 19.65 5.28 7.71 22.75 30.99 36.00 20.97 21.14 24.24 

Overall 14.53 28.59 21.88 11.02 14.48 15.33 21.92 25.12 25.86 

 

4.5.3 Influence of Hamming Window Size 

In this section, the size of hamming window used when performing FFT are altered in order 

to investigate how it affects the system performance. The same EEG data recorded on the second day 

of subject B is use in this analysis. The overlap percentage of 25% is fixed for all window size. In 

addition, the same frequency components are selected to construct the feature vector for all window 

size. Mean and standard deviation of true positive and false positive rate for each window size are 

listed respectively in Table 4.8. In this study, window size smaller than 64 samples are omitted 

because the classification fails or the accuracy are too low (less than 20%). Also, window size larger 

than 256 samples (2 seconds) are omitted either because the classification fails (the accuracy is too 

low) or because the time taken to gather enough data sample for FFT processing is too long and 

therefore rendering the system unable to control the devices in real time. 

 

As shown in Table 4.8, the overall accuracy improves slightly as well as the overall FPR 

when the window size is set to 128 sample. However in general, no significant change in accuracy 

between these three windows size. Thus, considering real time control properties, a window size of 

64 sample is most suitable. 

 

Table 4.8 True Positive and False Positive Rates of Each Window Size (Subject B 

Only) 

Intention 

Classification Results (Mean ± Standard Deviation) [%] 

64 sample window (default) 
128 sample window 

(default) 

256 sample window 

(default) 

TPR FPR TPR FPR TPR FPR 

Up 43.48 ± 12.73 9.26 ± 4.95 61.88 ± 26.86 15.47 ± 8.29 54.21 ± 32.30 9.99 ± 7.20 

Down 54.24 ± 16.45 1.06 ± 1.07 45.02 ± 22.59 0.24 ± 0.67 35.97 ± 24.27 0.22 ± 0.71 

Rest 85.70 ± 8.03 22.75 ± 19.27 82.57 ± 11.27 15.82 ± 14.77 88.47 ± 8.52 25.36 ± 19.06 

Overall 67.28 ± 22.23 11.02 ± 14.46 68.01 ± 24.50 10.51 ± 12.09 66.78 ± 30.61 11.86 ± 15.58 



69 

 

4.6 Conclusion 

 This chapter presents a signal processing technique using spectral analysis and artificial 

neural network for a low-cost BMI system. As a preliminary study, experiments have been conducted 

to classify up and down intentions as well as rest state. Experimental results have shown that the 

proposed BMI system has basically worked well. The system is able to achieve an overall true 

positive rate of up to 67 % with 5 trials (15 minutes) of training by a novice user. Furthermore, 

offline analysis is carried out using the same EEG data recorded from the previous experiments. 

Analysis results show that by setting the classification threshold value higher, the erroneous 

classification can be reduced. Another finding shows that in contrast with the study results reported 

by other research groups, the use of multiple ANNs to classify three mental states do not improve the 

accuracy. Lastly, the optimal hamming window size is 64 samples for achieving real-time control. 
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5 Development of Electromyogram-based 

Brain Machine Interface for Multi-Degree 

Myoelectric Prosthetic Hand Control 

Abstract: Myoelectric prosthetic hand is a powerful tool developed to help people with upper limb 

loss restore the functions of a biological hand. Recognizing multiple hand motions from only few 

electromyography (EMG) sensors is one of the requirements for the development of prosthetic hands 

with high level of usability. This task is highly challenging because both classification rate and 

misclassification rate worsen with additional hand motions. This chapter presents a signal processing 

technique that uses spectral features and artificial neural network to classify 17 voluntary movements 

from EMG signals. The main highlight will be on the use of a small set of low-cost EMG sensor for 

classification of a reasonably large number of hand movements. The aim of this work is to extend the 

capabilities to recognize and produce multiple movements beyond what is currently feasible. This 

work will also show and discuss about how tailoring the number of hand motions for a specific task 

can help develop a more reliable prosthetic hand system. Online classification experiments have been 

conducted on seven male and five female participants to evaluate the validity of the proposed method. 

The proposed algorithm achieves an overall correct classification rate of up to 83%; thus, 

demonstrating the potential to classify 17 movements from 6 EMG sensors. Furthermore; classifying 

9 motions using this method could achieve an accuracy of up to 92%. These results show that if the 

prosthetic hand is intended for a specific task; limiting the number of motions can significantly 

increase the performance and usability. 
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5.1 Introduction 

 The hand is one of the most important parts of the human body. It is responsible for almost 

all of the intellectual activities of our daily living [123] The dexterity of the hand not only enables us 

to perform delicate tasks but to also regard that object as a part of our body and manipulate it to 

execute new tasks that are not possible with the hand alone. Also, the fingertip is equipped with fine 

sensors that allow the sensing of pressure, temperature, pain etc. For these reasons, amputation of the 

hand generates both psychological trauma and functional impairment because the person becomes 

unable to perform most daily tasks and baffled by the change in their appearance [124]. According to 

the 2006 survey on persons with physical disability conducted by the ministry of health, labour and 

welfare of Japan, there are approximately 80 thousand upper limb amputees in Japan [125]. 

Prosthetic arm/hand were developed to help these people by restoring as much as possible the 

functions of a biological hand and natural appearance. Myoelectric prosthetic hand/arm is a type of 

externally powered prostheses that is controlled by electrical signals generated during voluntary 

muscle contraction. The measuring of muscle activity via electric potential is referred to as 

electromyography (EMG). Since EMG signals can be recorded by placing surface electrodes on top 

of the skin, it is possible to use this electrical potential to provide a signal for control of prosthetic 

limbs that is relatively intuitive and non-invasive. 

 

 Over the past decades, extensive research on myoelectric prosthetic hand/arm have been 

conducted by many research groups across the globe, improving the overall functionality and 

reliability of myoelectric hands rapidly each year. However, despite these technological advances, 

the capability to recognize and produce extensive movements of many existing myoelectric hands is 

still primitive. The limited capability to execute many movements or to provide the user with the 

control of multiple degrees of freedom (DOF) consequently limits the number of task the user can 

perform, and is one of the cause that leads to rejection or abandonment of a prosthesis [126], [127]. 

Recently, due to huge progress in the mechanical development of prosthetic hands, several complex, 

articulated (multi degree of freedom) myoelectric hands have become available on the market. The 

Bebionic hand [128] and the iLimb hand [129] are examples of articulated prosthetic hands. Other 

multi-DOF prosthetic hands like the Vanderbilt hand [130], the UNB hand [131], the Yale hand [132], 

Smart hand [133], the DLR/HIT hand [134], the Keio hand [135], and the 6 DOF hand [136] are also 

being developed as research devices. 

 

With the emerging of complex multi-DOF prosthetic hands, development of a control 

system that can distinguish and produce large number of movements are needed to allow the 

execution of more complex daily tasks. This study presents a signal processing technique to classify 
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17 forearm motions (with a rest state included) using 6 EMG sensors. The aim is to explore and 

determine the extent of hand movement recognition capabilities for myoelectric prosthetic hands 

with the currently available hardware. The novelty of this work is providing the basic methodology 

to classify not only wrist movements (grasping, opening, flexing, etc.) but also individual flexion and 

extension control of the five fingers. It will extend the capabilities of recognizing multiple motions 

beyond what is currently feasible (3-10 motions) [137]-[141]. The experiments will be conducted on 

fully-limbed participants as we believe that this defines the upper bound. Furthermore, this work will 

also show and discuss about how tailoring the number of hand motions for a specific task can help 

increase the performance and usability of the prosthetic hand system. 

 

This chapter is organized as follows. Section 5.2 gives a literature review of EMG based 

pattern recognition and highlights the features of this study. Section 5.3 describes the system 

architecture and the procedures needed to acquire EMG signals. Details on the necessary 

preprocessing steps are also given in this section. Section 5.4 explains in detail, the feature extraction 

method using spectral analysis and classification algorithm using artificial neural network. Section 

5.5 gives an evaluation of the proposed algorithm. The classification accuracy of the proposed 

system will be given and discussed. Section 5.6 concludes this study. 

 

5.2 Related Works 

To myo-electrically control a dexterous hand it is necessary to map EMG signals 

(corresponding to different muscle contractions) to the different existing degree of freedom using 

pattern recognition based algorithms. To this aim, researchers have been working on various aspects 

of EMG classification techniques such as electrode placement, selection of suitable feature extraction 

techniques, and selection of suitable classification algorithms to improve the classification accuracy 

and increase the number of controllable functions (motions). 

 

Electromyography are usually performed by placing several electrodes on the skin. Over the 

past decades, different electrode placement strategies have been investigated. Some researches study 

the use of multichannel electrode arrays [142] or high-density EMG (large number of electrodes) 

strategy [143], [144], while others explore the precise anatomical positioning approach [140], [145]. 

 

In the pattern recognition based control approach, feature extraction and classification are 

the two important steps in achieving higher classification performance. The feature extraction 

process involves the transforming of raw EMG signals into feature vector that are assigned to 

represent different motions. Several features extraction methods have been suggested and these 
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features can be sorted into time domain features [139], frequency domain features [140], and 

time-frequency domain features [146]. Time domain features are generally evaluated based on signal 

amplitude that varies with time. On the other hand, frequency domain features contain the power 

spectrum density of the signals and are computed by parametric methods or a periodogram. 

Time-frequency domain features contains the combination of temporal and frequency information. 

These features can characterize varying frequency information at different time locations, providing 

plentiful non-stationary information of the EMG signals. A list of specific features in each category 

can be found in [84]. Classification of arm/hand motions based on the extracted features can be 

performed by a large variety of methods such as linear discriminant analysis [147], support vector 

machines [18], or artificial neural networks [139]. 

 

Using these state-of-the-art approaches, many studies concentrate on the forearm and wrist 

movements such as flexion/extension, pronation/supination, and sometimes hand grasping/opening 

(all fingers simultaneously). However, since these systems can only produce a small number of 

motions, they have yet to fully mimic the human hand. With increasing number of multi-DOF 

prosthetic hands on the market, additional motions are needed to dexterously control these devices in 

daily activities. In one survey, ten participants with upper limb deficiency were asked what 

movements or features useful in a future prosthetic hand [148]. All participants wanted to point with 

the extended finger, 90% of them desired individual control of fingers, and 70% responded that wrist 

flexion and extension would be beneficial. 

 

Control of the fingers using EMG is extremely challenging compared to forearm/wrist 

movements. This is because the amplitude of EMG signal for finger movements are generally 

smaller than those of arm/wrist movements. Furthermore, since the muscles controlling the finger 

movements lie in the intermediate and deep layers of the forearm [149], attenuation of EMG signals 

caused by forearm tissues can be observed. Therefore, multiple electrodes are needed to provide 

enough information to distinguish the intended movement. In recent years, studies on finger 

movement control have started to appear in literature. However, the number of available literature is 

still relatively small compared to studies on classification of arm/wrist movements. Furthermore, 

arm/wrist movement and finger movements are rarely investigated together. However, both wrist and 

finger movements are needed in daily activities and thus, it is desirable to develop a system that can 

classify both wrist and finger movements. 

 

Fig. 5.1 shows an overview of recent studies on EMG based pattern recognition. The 

number of electrodes used in the study is plotted against the number of classes. As can be seen, the 

number of electrode is greater than or equal to the number of classes in nearly all of these researches. 
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Also, almost all of the current works only deals with small number of classes (less than 10) [133], 

[139]-[142], [145], [150], [151]. Only an extremely small number of studies have reported 

classification results for more than 10 classes but they require large number of electrodes [143], 

[152]-[154]. However, this option may not be possible with an amputee. This is because using large 

number of electrodes requires a large surface on the forearm, which may not be available in the case 

of amputees. Furthermore, having large number of electrodes will increase the cost and complexity 

of the required hardware as well as increase the computation load which slows down the processing 

speed of the system [155]. As such, it is desirable to reduce the number of electrode but at the same 

time have the ability to classify large number of movements. It is also worth noting that most 

existing researches involve sophisticated clinical grade sensor equipment that are expensive, making 

practical social use difficult or prohibitive. 

 

For the purpose of developing a low-cost EMG control system that can classify large 

numbers of movements, this study presents a signal processing technique to classify 17 wrist and 

finger movements (with a rest state included) using 6 consumer grade EMG sensors. This study will 

tackle the following research questions: 

(1) How well can the state-of-the-art classification scheme classify 17 types of movements? 

(2) Can a consumer grade EMG sensor serve as a modality in myoelectric prosthetic 

control? 

(3) How long can the user control the prosthetic hands until the accuracy drops 

significantly? 

To answer the first question, evaluation of a classification scheme using spectral features and 

multilayer perceptron as the classifier will be performed and discussed. To answer the second 

question, a consumer grade acquisition device (sampling frequency of 200Hz) will be used in the 

experiment. The answer to these two questions will give us an idea of the extent of hand movement 

recognition capabilities with limited hardware. The answer to the third question will give us a hint of 

when classifiers may need to be recalibrate. 
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Fig. 5.1 Overview of current EMG based pattern recognition studies illustrating the number 

of electrodes used and the number of movements classified. 

 

5.3 Data Acquisition and Preprocessing of EMG Signals 

The aim of this study is to classify 17 types of motion from EMG signals. The 17 motions 

include 6 forearm/wrist movements (pronation, supination, flexion, extension, hand grasping and 

hand opening) as shown in Fig. 5.2, flexion and extension of the five fingers, and a rest state (no 

movement). In this work, an EMG-based control system is designed as illustrated in Fig. 5.3 to 

achieve the aim of classifying these 17 motions. As depicted in Fig. 5.3, the system consists of three 

subsystems: the data acquisition system, the EMG signal processing system, and the interface system. 

The data acquisition system records EMG signals in a noninvasive fashion using six EMG sensors 

(IDPAD series manufactured by Oisaka Electronic Equipment Ltd.). These signals are sampled at 

200 Hz using a 12-bit analog-digital converter (ADC) and then sent to the signal processing system 

to undergo further processing. The EMG signal processing system processes the EMG signal and 

classifies the arm/hand motion. The interface system displays EMG signal waveform, movement 

cues, as well as classification results in real-time. The software is developed using 

MATLAB/Simulink® environment. The proposed algorithm is executed after being built by 

Simulink real-time workshop. 
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Fig. 5.2 Six forearm motions. 

 

In this study, six EMG sensors are positioned on the flexor carpi radialis muscle, flexor carpi 

ulnaris muscle, flexor digitorum profundus muscle, flexor pollicis longus muscle, extensor carpi 

radialis longus muscle and extensor pollicis longus muscle of the left arm as shown in Fig. 5.4 [156]. 

The functions of each muscle are summarized in Table 5.1. Muscles acting on the hand can be 

divided into two groups: extrinsic and intrinsic muscles. Intrinsic muscles of the hand are muscles 

which are located within the hand itself. On the other hand, extrinsic muscles are located in the 

anterior and posterior compartments of the forearm. Extrinsic muscles are responsible for crude 

movements of hand whereas intrinsic muscles control fine movements. Controlling the prosthesis 

using intrinsic hand muscles has the advantage of providing finger control independent of wrist 

motion [153], but depending on the level of amputation, the required region may not be available. 

For this reason, this study will only concentrate on extrinsic muscles. 

 

According to the standards for reporting EMG data, significant EMG activity occurs in the 

5-450Hz bandwidth [157]. To analyze EMG signals in this bandwidth, most studies uses a clinical 

grade EMG acquisition device which samples data at 1000Hz or higher. However, these instruments 

are expensive, making practical social use difficult or prohibitive. To overcome this issue, this study 

takes on the challenge of using a relatively low-cost consumer grade EMG sensor with lower 

sampling rate to decode large number of wrist and finger motions. The results of this work will help 

determine the validity of low cost EMG sensors as a modality in myoelectric prosthetic control. 

Pronation SupinationFlexion ExtensionHand Grasping Hand Opening
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Fig. 5.3 System Architecture. 

 

 

Fig. 5.4 Electrode positions. The positions of the six electrodes are selected with reference 

to previous work [156]. 
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Table 5.1 Muscle of the Forearm and Their Functions. 

Channel 

Number 
Muscle Function 

1 Flexor carpi radialis muscle 

Flexion of the hand at the wrist, pronation of 

the forearm (works along with other muscles 

which pronate the forearm) 

2 Flexor carpi ulnaris muscle Flexion of the hand at the wrist 

3 Flexor digitorum profundus muscle Flexion of the fingers (excluding the thumb) 

4 Flexor pollicis longus muscle Flexion of the thumb 

5 Extensor carpi radialis longus muscle 
Extension of the wrist, assists movements of 

the digits 

6 Extensor pollicis longus muscle Extension of the thumb 

 

The acquired raw EMG (rEMG) signals comes with a DC offset of 2.5V which needs to be 

removed before any analysis can be performed. The offset is removed by demeaning, i.e. subtracting 

the average amplitude of rEMG signal during the first 10 seconds from the whole signal. The 

preprocessed EMG (pEMG) signals will be later used in the feature extraction process. An example 

of raw EMG signals during the execution of 17 motions is shown in Fig. 5.5. 

 

 

Fig. 5.5 An example of raw EMG (rEMG) signal during the execution of 17 motions. The 

channels are layout in ascending order starting from the top. 
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5.4 Signal Processing Algorithm for Classification of 17 Motions 

In this section, the proposed signal processing algorithm to classify 17 motions is described. 

In this method, the pEMG signals are transformed from time domain to frequency domain by 

performing fast Fourier transform (FFT) that uses a hamming window function. Next, power 

spectrum densities (PSDs) are calculated from the FFT results. Feature points that best characterize 

each motion are selected from the power spectrum densities for each channel to form feature vectors. 

Finally, the 17 motions are classified by feeding the feature vectors into the artificial neural network 

(ANN) classifier. The details of the proposed method are described in the following sections. 

 

5.4.1 Feature Extraction Based on Spectral Analysis 

After removing the DC offset, PSDs are calculated by applying FFT to the pEMG signals. In 

this step, a 32-sample hamming window with 75% overlap is used when performing FFT. Next, 

feature points for each motion are extracted from the PSDs to construct a feature vector. In this study, 

spectral magnitudes at 6 frequencies are used as features. Considering the fact that the Nyquist 

frequency is 100Hz (sampling frequency of the equipment is 200Hz) and the frequency resolution is 

6.25Hz, one frequency is chosen from each of the following frequency range: 10-20Hz, 20-30Hz, 

30-40Hz, 60-70Hz, 70-80Hz, 80-90Hz. The 40-50Hz and 50-60Hz frequency ranges are not 

considered because they contain the frequencies of the power-line interferences. Based on the 

selection results, the elements of the feature vectors are made up of log-transformed spectral 

magnitude at 18.75Hz, 25Hz, 31.25Hz, 68.75Hz, 75Hz, 81.25Hz of each channel. Thus, the feature 

vector of jth motion is a 36-dimensional vector and can be expressed as 

  361
361 ][ =
jj

i
jj fff f , (5.1) 

where j
if  is the ith element of the feature vector of jth motion. Fig. 5.6 and Fig. 5.7 shows an 

example of normalized PSDs of all 17 motions derived from pEMG signals on channel 2 and channel 

5. 
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Fig. 5.6 An example of PSDs prior to log transform of 17 motions shown as a function of 

time. The PSDs are derived from pEMG signals on channel 2. In order from the top, PSDs at 

18.75 Hz, 25 Hz, 31.25 Hz, 68.75 Hz, 75 Hz, 81.25 Hz. Note that the PSDs are normalized 

for better visualization. 

 

 

Fig. 5.7 An example of PSDs prior to log transform of 17 motions shown as a function of 

time. The PSDs are derived from pEMG signals on channel 5. In order from the top, PSDs at 

18.75 Hz, 25 Hz, 31.25 Hz, 68.75 Hz, 75 Hz, 81.25 Hz. Note that the PSDs are normalized 

for better visualization. 
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 Let m be the number of sets of training data used in the training process, with each set 

containing EMG signals of all 17 motions (1 trial for each motion). Then, from a single set of 

training data, a matrix consisting of feature vectors of each motion can be derived and defined as 
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Furthermore, using (2), a feature matrix containing all feature vectors derived from m sets of 

training data can be expressed as 
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where if  is a 17m dimension column vector. Next, the feature matrix (3) is normalized by 
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and use as the input signal to train the ANN classifier. In the online classification stage, the feature 

vector at kth sampling instance are given by 
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Note that )min( if  should be determined beforehand from m training data sets. 

 

5.4.2 Training of Artificial Neural Network Classifier 

A feature vector of a given motion consists of 36 elements as denoted in (1). Since there are 

17 motions, a data set can produce 17 feature vectors (one feature vector for each motion). In the 

training stage, feature matrix generate from m data sets are used to train the classifier as defined in 

(4). Thus, the teaching signal T  is given by 

    1717T 
171717 III = mT . (5.6) 
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In this study, the artificial neural network (ANN) is chosen as the classifier to discriminate 

the 17 motions. Currently, several kinds of ANN have been proposed. In this study, a multilayered 

perceptron, which is a feed-forward ANN is chosen. 

 

The multilayer perceptron is a multilayered ANN which consists of one or more hidden 

layers. This type of ANN is known as a supervised network because it requires a desired output 

(teaching signal) in order to learn. A set of learning data that consists of the feature vector and the 

corresponding teaching signals is used to have the perceptron acquire appropriate connection weights 

and threshold values of the middle layer and the output layer by machine learning. The multilayered 

perceptron and many other ANN learn by using an algorithm called backpropagation. With back 

propagation method, the input data (feature vector) is repeatedly presented to the ANN. With each 

presentation, the output of the ANN is compared to the desired output (teaching signal) and an error 

is computed. This error is then feedback (backpropagated) to the ANN and used to adjust weights so 

that the error decreases with each iteration and the ANN model gets closer and closer to producing 

the desired output [117], [118]. When performing real-time classification, these connection weights 

and threshold values are fixed and determined beforehand. To keep the computational cost low, an 

ANN with only one hidden layer is structured in this study. Table 5.2 shows the number of neurons in 

the input, hidden and output layer along with the learning coefficient of each classification scenarios 

(see section 5.1.2). Based on our experience [156] and also suggested by [158], overfitting may occur 

in ANN if the training iteration (epoch) is too long. To prevent this, the training process is terminated 

when the error reaches 0.001 or when the number of training epoch reaches 2000. It is also worth 

noting that the number of neurons in the hidden layer for each classification scenarios are determined 

based on our experience and trial and error. More specifically, the number of neurons that produces 

the lowest training error is selected. In the case that the training error reaches 0.001 for two or more 

neuron arrangements, the number of neurons that requires the least training epoch will be chosen. 

 

Furthermore, a classification label of a motion at any given sampling instance is defined by 

the class with the highest ANN output. Thus, the classification output corresponding to the 

discriminated motion will have a value of 1 while classification output for other motions will have a 

value of 0. 
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5.5 Online Classification Experiment  

In this section, experimental conditions necessary to perform online classification of 17 

motions are described. The aim of this experiment is to clarify how well the proposed algorithm 

works based on the following three criteria: 

(1) Classification accuracy of 17 motions 

(2) Classification accuracy without re-training the classifier 

(3) Classification accuracy of 9 motions (motions that are required to complete most daily 

tasks). 

The results of the experiment are evaluated and discussed. 

 

5.5.1 Experimental Conditions 

5.5.1.1 Participants 

In this study, the experiments were carried out with cooperation of 12 able-bodied 

participants (referred to as participant A to L) in their twenties. 7 were males (participant A, D, E, G, 

H, I, and L) and 5 were females (participant B, C, F, J and K). The entire protocol and aims of the 

study are fully explained to them before the experiment, and all participants signed the written 

informed consent. All of the experiments are conducted with the approval from Tokyo Denki 

University Human Bioethics Committee. Apart from participant A and B, all other participants had 

no prior experience with myoelectric control experiments at all. 

 

During the electrode placement, no particular skin preparation technique was applied to the 

forearm as to mimic the real-life usage scenarios. Also, hair on the forearms of male participants 

were not shaved according their request. 

 

5.5.1.2 Experiment Protocol 

In the experiment, participants were seated in front of a monitor and we asked to perform the 

17 movements in order as shown in Fig. 5.8. During the experiment, visual and audio cues were 

presented to the participants. In each experimental run, participants were asked to perform each 

motion once and sustain that motion for 5 seconds. They were also instructed to execute each motion 

naturally and not forcefully. For flexion and extension movements of middle, ring, and little finger, it 

is generally difficult to independently move each finger without simultaneously moving the other 

two. The participants were informed that it is perfectly fine if the other fingers were to also move. 
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Fig. 5.8 Execution sequence of 17 motions (including rest state). Each motion is executed 

for five seconds with a five second resting interval in between each motion. The total 

duration of each run is 180 seconds. The feature point for rest state is selected between 170 

to 175 seconds. 

 

The experiment is divided into training and online testing stage both conducted on the same 

day. First, five sets of data were acquired for training the ANN and later, 10 sets of testing data were 

recorded for evaluation. The same experiment is repeated again on a different day for participants A, 

B, E and H. There was a 4-day gap in between day 1 and day 2 for participant A, a 2-day gap for 

participant B, and a 6-day gap for participant E and H. To address the research questions, four online 

and pseudo-online classification scenarios are designed as describe below. Details of each 

classification scenarios can also be found in Table 5.2. The results are evaluated and discussed in the 

next section. 

(1) Classification of 17 voluntary movements: This classification scenario aims to evaluate 

the classification performance of the proposed system. The result of this experiment 

will give us a hint of the extent of using state-of-the-art pattern recognition scheme to 

classify 17 types of motions. It will also help demonstrate the validity of low-cost 

hardware as a modality for myoelectric control. In this experiment, ANN is trained 

using all five training data sets and the accuracy is evaluated using all 10 testing data 

sets. 

(2) Classification of 17 movements using testing data obtain on a different day: This 

classification scenario aims to determine how well the proposed method can perform 

without having to re-train the classifier. To do so, the ANN parameters from day1 are 

used to classify the testing data obtained in day 2, and vice-versa. 

(3) Classification of 9 movements: This scenario is intended to see how much the accuracy 

improves when the number of classes are reduced to nine. The 9 motions involved in 

this classification scenario are pronation, supination, hand grasping, hand opening, 

flexion and extension of thumb and index finger, and a rest state. These motions were 

selected because they are the basic hand/arm movements needed to carry out most daily 

0         10      20      30     40       50      60       70       80       90     100     110    120     130    140    150 160    170    180

P
ro

n
atio

n

…Rest …Task

Su
p

in
atio

n

Flexio
n

Exten
sio

n

H
an

d
 G

rasp
in

g

H
an

d
 O

p
en

in
g

Th
u

m
b

 Flexio
n

Th
u

m
b

 Exten
sio

n

In
d

ex Flexio
n

In
d

ex Exten
sio

n

M
id

d
le Flexio

n

M
id

d
le Exten

sio
n

R
in

g Flexio
n

R
in

g Exten
sio

n

P
in

ky Flexio
n

P
in

ky Exten
sio

n

R
est



85 

 

tasks, e.g. turning a door knob, grabbing and relocating an object, picking up a small 

object. The same EMG data involved in the previous classifications are used in this 

scenario. Since both training and testing data sets contains EMG signals for 17 motions, 

the epoch of the non-target motions along with subsequent rest period was cut off and 

the remaining epoch were merged together to form a new time series data set lasting 

100 seconds. 

(4) Classification of 9 movements using testing data obtain on a different day: Similar to 

the scenario 2, this scenario hopes to test the functionality of the proposed algorithm 

without having to re-train the classifier. 

 

Table 5.2 Details of Each Classification Scenarios 

Classification 

Scenario 

Number of 

Motions 

Training 

Data 

Testing 

Data 
Participant 

Number of Neurons in the  

Input Layer / Hidden 

Layer / Output Layer 

Learning 

Coefficient 

1 17 

Day 1 Day 1 A 36 / 20 / 17 

1.2 

Day 2 Day 2 A 36 / 20 / 17 

Day 1 Day 1 B 36 / 20 / 17 

Day 2 Day 2 B 36 / 20 / 17 

Day 1 Day 1 C 36 / 24 / 17 

Day 1 Day 1 D 36 / 20 / 17 

Day 1 Day 1 E 36 / 24 / 17 

Day 2 Day 2 E 36 / 20 / 17 

Day 1 Day 1 F 36 / 16 / 17 

Day 1 Day 1 G 36 / 20 / 17 

Day 1 Day 1 H 36 / 18 / 17 

Day 2 Day 2 H 36 / 18 / 17 

Day 1 Day 1 I 36 / 20 / 17 

Day 1 Day 1 J 36 / 22 / 17 

Day 1 Day 1 K 36 / 24 / 17 

Day 1 Day 1 L 36 / 20 / 17 

2 17 

Day 1 Day 2 A 36 / 20 / 17 

1.2 

Day 2 Day 1 A 36 / 20 / 17 

Day 1 Day 2 B 36 / 20 / 17 

Day 2 Day 1 B 36 / 20 / 17 

Day 1 Day 2 E 36 / 24 / 17 

Day 2 Day 1 E 36 / 20 / 17 

Day 1 Day 2 H 36 / 18 / 17 

Day 2 Day 1 H 36 / 18 / 17 

3 9 Day 1 Day 1 A 36 / 14 / 9 1.2 
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Day 2 Day 2 A 36 / 12 / 9 

Day 1 Day 1 B 36 / 14 / 9 

Day 2 Day 2 B 36 / 16 / 9 

Day 1 Day 1 C 36 / 20 / 9 

Day 1 Day 1 D 36 / 14 / 9 

Day 1 Day 1 E 36 / 16 / 9 

Day 2 Day 2 E 36 / 14 / 9 

Day 1 Day 1 F 36 / 12 / 9 

Day 1 Day 1 G 36 / 18 / 9 

Day 1 Day 1 H 36 / 20 / 9 

Day 2 Day 2 H 36 / 16 / 9 

Day 1 Day 1 I 36 / 20 / 9 

Day 1 Day 1 J 36 / 16 / 9 

Day 1 Day 1 K 36 / 14 / 9 

Day 1 Day 1 L 36 / 18 / 9 

4 9 

Day 1 Day 2 A 36 / 14 / 9 

1.2 

Day 2 Day 1 A 36 / 12 / 9 

Day 1 Day 2 B 36 / 14 / 9 

Day 2 Day 1 B 36 / 16 / 9 

Day 1 Day 2 E 36 / 16 / 9 

Day 2 Day 1 E 36 / 14 / 9 

Day 1 Day 2 H 36 / 20 / 9 

Day 2 Day 1 H 36 / 16 / 9 

 

In this study, the evaluation of classification accuracy is based on correct and incorrect rates. 

Since the ANN has the same number of output neurons as the number of motions, the correct and 

incorrect rates for each motion are calculated from the output neuron belonging to the motion of 

interest (Fig. 5.9). Correct classification rate is given by 

 100%
samplestionclassificaofnumberTotal

tionclassificacorrectofNumber
RateCorrect =  (5.7) 

On the other hand, incorrect classification rate is calculated by 

 100%
samplestionclassificaofnumberTotal

tionclassificaerroneousofNumber
RateIncorrect =  (5.8) 

Fig. 5.9 shows an example of a classification output. We will use this example to demonstrate how 

correct and incorrect rates are calculated using (7) and (8). In this example, correct classification 

label of pronation movement is indicated by the green circle. Three red circles indicate the incorrect 

classification label of pronation movement. Since the ANN classifier gives a decision every 0.005 

seconds (200 Hz), and each movement is sustained for 5 seconds, the total number of classification 
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samples for each motion is 1000. In the example shown in Fig. 5.9, 904 samples out of 1000 samples 

were correctly classified for pronation movement, thus, the correct rate becomes 90.4%. On the other 

hand, 1/1000 samples (0.1%) were misclassified as supination movement, 19/1000 samples (1.9%) 

were misclassified as middle finger flexion movement, and 76/1000 samples (7.6%) were 

misclassified as rest state. Adding up these numbers will give an incorrect rate of 9.6% for middle 

finger flexion movement. 

 

5.5.2 Results and Discussions 

5.5.2.1 Classification of 17 Voluntary Movements 

This classification scenario provides some answers to all of the three research questions. 

The questions are: 

(1) How well can the state-of-the-art classification scheme classify 17 types of movements? 

(2) Can a consumer grade EMG sensor serve as a modality in myoelectric prosthetic 

control? 

(3) How long can the user control the prosthetic hands until the accuracy drops 

significantly? 

 

First, let’s answer question number 1 and 2. According to Fig. 5.10, under the condition that 

training and testing are done on the same day, an overall correct rate of 63.8% across subject can be 

achieved for classification of 17 motions using the proposed method. Also, depending on the 

participant and the muscle condition, the system can accomplish a correct rate of 82.9% (participant 

E) or an average accuracy of up to 76.1% (participant H). Furthermore, the statistical results in Fig. 

5.11 suggests that improvement in accuracy may be due to the fact that the user has gained more 

experience from the training on the previous day. However, since the current work only compares the 

accuracy between two days, it is still too early to draw a decisive conclusion based on the current 

results. As an extension to this study, more experiments should be conducted for multiple days. It 

would be interesting to observe how long this trend will persist and how long can the training effect 

last. Based on the above results combined with the fact that the user can promptly modify any 

erroneous actions executed by the prosthetic hand by looking at the actual output, the proposed 

method is functional and has demonstrated the potential to classify 17 motions using six EMG 

sensors. Furthermore, the results also suggest that a consumer-grade EMG sensor can serve as a 

modality in myoelectric prosthetic control and other human-machine interface applications. 
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Fig. 5.9 Example of a classification output. The blue line indicates the classification signal. 

The red line indicates teaching signals. The green circle represents correct classification 

label of pronation movement as an example. The red circle indicates the incorrect 

classification label of pronation movement. In this study, the ANN classifier gives a decision 

every 0.005 seconds (200 Hz). 

 

Correct classification 

rate of pronation
movement is 90.4%

Two red circles 

indicate the incorrect  
classification label of 
middle finger flexion 

movement. The 
incorrect rate is 9.6%
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Although our results cannot be directly compared with results in other studies due the 

difference in participants, equipment, experiment conditions, type of movement, etc., the results 

reported in this study has demonstrated some advantages over existing researches. We will compare 

with some of the works summarized in Table 5.3. 

 

The first advantage is that the number of movements involved in this work is much greater 

than most studies. The work done by Adewuyi et al. [153] is the only study that involves more 

movement than this work. They report very high accuracy of up to 96% for classification of 19 

classes. In their work, 19 electrodes are placed on the surface of the hand to capture the EMG signals 

responsible for fine motor control of the fingers. However, this electrode configuration is limited to 

only amputees who still retain a portion of the hand. At the same time, it is also inconvenient for 

healthy people to wear many electrodes. Works by Tenore et al. [143] Kanitz et al. [154] show that 

accurate classification of 12 finger motions is possible but they also face the disadvantage of having 

very large number of electrodes. In contrast, our work involves a smaller number of electrodes on the 

forearm which contributes to reducing equipment costs and preparation time, hence increases the 

usability of the system. Another wonderful advantage of using small number of electrodes is that it is 

easier to configure the current setup onto existing prosthetic hand. Furthermore, this work also offers 

the highest ratio of movements to electrodes ( chm NN ). 

 

On the other hand, the limitation of the proposed system lies in the fact that the accuracy is 

lower than others studies. One of the reasons for this is that duration of each motion is too long. 

Many participants have reported experiencing difficulty in sustaining each movement for 5 seconds. 

Pronation/supination and flexion/extension of the index, middle, and the ring finger movements were 

especially hard according to the participants. This can be observed by looking at the ANN output 

signal where the system outputs the correct decisions only for the first 3 seconds. Muscle fatigue is 

also another reason for low accuracy. Participants also reported that they experienced muscular 

fatigue after performing 6-7 continuous classification trials (11-12 trials, if including trials from the 

training stage). The effects of the fatigue can be seen in the gradual decline of correct rates shown in 

Fig. 5.12. The results of a paired t-test show that decline of accuracy due to fatigue starts on the 8th 

trial ( 1.0p ) and drops significantly on the 9th trial ( 05.0p , approximately 1 hour of continuous 

usage). This observation suggests that in practice, a control strategy that will hold the posture of the 

prosthetic hand without having to sustain muscular contraction may be desirable to help relief the 

level of fatigue. Also, re-training of the classifier should be performed after 1 hour of continuous 

usage. Thus, the above results address the research question number 3. 
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It is also worth mentioning that there is a tradeoff between the number of channels and the 

accuracy of the system. In practice, depending on the demands of the user or the type of application, 

the number of electrodes should be configured for each user in order to suit the needs of any 

individual. 

 

5.5.2.2 Classification of 17 Movements Using Testing Data Obtain on a 

Different Day 

The classification results of 17 motions where training and testing data sets are not from the 

same day are shown in Fig. 5.11. According to this figure, the accuracy of classification using ANN 

parameters that are a few days old is around 40%. Depending on user and their condition, the system 

can yield an accuracy of 56% at best. Although re-training the classifier is highly recommended in 

order to restore dexterous control, the results suggest that control of the prosthetic hand is possible to 

a certain degree without having to re-train the classifier. An extension to this study would be to 

investigate how accuracy changes over time in order to reduce the number of recalibration and 

optimize the usability. 

 

Fig. 5.10 Average overall correct classification rate of 17 voluntary movements of 12 

participants. The red error bars indicate standard deviation. The two numbers on top of the 

bars indicate highest and lowest overall correct rate. Note that the average correct rate of 

participant A, B, E and H are from the experiment on day 2 (best classification). Also, the 

mean overall correct rate indicates the overall correct rate across subjects. 
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Fig. 5.11 Comparison of mean correct rates of each classification scenario (17 

Movements). (*) represents 05.0p  and (***) represents 001.0p . 

 

Fig. 5.12 Correct classification rate of 17 voluntary movements of each trial. Note that the 

correct rates of participant A, B, E and H are from the experiment on day 2 (best 

classification). 

＊

＊
＊＊＊

＊ p < 0.05

＊＊ p < 0.01

＊＊＊ p < 0.001
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Table 5.3 Summary of existing EMG Based Pattern Recognition Studies 

Author/s Year 

No. of 

Electrodes 

chN  

No. of 

Movements 

mN  

Sampling 

Frequency chm NN  Accuracy 
Number of 

Subjects 

Fukuda et al. 

[151] 
2004 6 6 W 200 Hz 1 92.1% 3 H and 2 A 

Jiang et al. 

[145] 
2005 4 6 IF 2,000 Hz 1.5 80% 10 H 

Oskoei & Hu 

[140] 
2008 4 6 (5 W + R) 1,000 Hz 1.5 95 % 11 H 

Tenore et al. 

[143] 
2009 

32 12 (10 IF & 

2 CF) 
2,000 Hz 

0.38 90% 5 H 

19 0.63 83% 1 A 

Ahsan et al. 

[139] 
2011 2 4 W 1,000 Hz 2 88.4% 3 H 

Cipriani et al. 

[133] 
2011 8 

7 (4 IF + 

2CF + HG) 
10,000 Hz 0.88 

89% 
5 H 

79% 

Kanitz et al. 

[154] 
2011 16 

13 (12 IF + 

R) 
16,000 Hz 0.81 80% 5 A 

Tsujimura et 

al. [150] 
2012 3 3 CF 10,000 Hz 1 97% 5 H and 1 A 

Benatti et al. 

[141] 
2015 8 

7 (5 W + IF 

+ R) 
1,000 Hz 0.88 90% 1 H 

Adewuyi et al. 

[153] 
2016 19 

19 (12 IF + 7 

HG) 
1,000 Hz 1 96% 4 H 

This work - 6 

17 (10 IF + 6 

W + R) 
200 Hz 

2.83 63.8% 9 H 

9 (4 IF + 4 

W + R) 
1.5 72.9% 12 H 

 

1IF: Individual Finger Movement. W: Wrist Movement. R: Rest State. CF: Combine Finger 

Movement. HG: Hand Grasp Movement. H: Healthy. A: Amputee 

 

5.5.2.3 Classification of 9 Movements 

This scenario is intended to see how much the accuracy improves when the number of 

classes are reduced to nine. According to Fig. 5.13, under the condition that training and testing are 

done on the same day, an overall correct rate of 72.9% across subject can be achieved for 

classification of 9 motions using the proposed method. Also, depending on the participant and the 

muscle condition, the system can accomplish a correct rate of 92.1% (participant L) or an average 

accuracy of up to 82.6% (participant F). These results demonstrate that reducing the number of 

motions helps improve the overall performance. Therefore, if the prosthetic hand is intended for a 

specific task, limiting the number of motions can significantly increase the performance and usability 

of the system. Furthermore, the above results also help strengthened the conclusion that a 
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consumer-grade EMG sensor can serve as a modality in myoelectric prosthetic control. 

 

Compared with the scenario dealing with 17 motions (Fig. 5.11), it is interesting to see that 

no significant statistical difference can be observed for participant B, E and H in this scenario. On the 

other hand, statistical difference can now be observed for participant A. This statistical difference 

was not present in the previous classification scenario with 17 movements. The above results suggest 

that for participant B, E and H, the accuracies of the selected 9 motions may already be relatively 

high to begin with and that the trainings done on day 1 may not be sufficient to significantly improve 

these accuracies. The opposite could be implied for participant A. Since the current skill level and the 

rate of improvement is different for each individual for each type of motion, a training method/menu 

specifically tailored for each individual may help improve the accuracy significantly. 

 

 

Fig. 5.13 Average overall correct classification rate of 9 voluntary movements of 12 

participants. The red error bars indicate standard deviation. The two numbers on top of the 

bars indicate highest and lowest overall correct rate. Note that the average correct rate of 

participant A, B, E and H are from the experiment on day 2 (best classification). Also, the 

mean overall correct rate indicates the overall correct rate across subjects. 
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5.5.2.4 Classification of 9 Movements Using Testing Data Obtain on a 

Different Day 

The classification results of 9 motions where training and testing data sets are not from the 

same day are shown in Fig. 5.14. According to this figure, the accuracy of classification using ANN 

parameters that are a few days old is around 50%. Depending on user and their condition, the system 

can yield an accuracy of 67.5% at best. Compared to the scenario involving 17 movements, the 

accuracy has improved greatly. An extension to this study would be to test this scenario in real-time 

in order to evaluate the feasibility of a system with accuracy of around 50%. 

 

 

Fig. 5.14 Comparison of mean correct rates of each classification scenario (9 movements). 

(*) represents 05.0p . 

  

＊

＊ p < 0.05
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5.5.2.5 Erroneous Classification 

Further analysis shows that erroneous classification sometimes occurs for motions 

associated with fingers. As shown in Fig. 5.15, for example, when the participant flexes his/her ring 

finger, the ANN sometimes misclassifies the motion as flexion of the middle finger. This happens 

because as the participant tries to flex the ring finger, the middle finger also flexes as well. Another 

example is when the participant extends his/her index finger or performs hand opening motion, the 

ANN misclassifies the intended motion as extension of the ring finger. In this case, misclassification 

happens because the muscles associated with the movement of these fingers are very close to each 

other which makes it difficult to obtain distinguishable EMG patterns. Interestingly, the motions that 

often get misclassified are different depending on who the user is. This may be due to the fact that 

each participant executes each motion in a different manner. An extension to this study would be to 

discuss ways to deal with these erroneous classifications in order to improve the accuracy. 

 

 

Fig. 5.15 Confusion matrix of classification performance across subject. The 17 motions 

include pronation (pro), supination (sup), flexion (flex), extension (ext), hand grasping 

(grasp), hand opening (open), thumb flexion (TF) and extension (TE), index finger flexion 

(IF) and extension (IE), middle finger flexion (MF) and extension (ME), ring finger flexion 

(RF) and extension (RE), little finger flexion (LF) and extension (LE), and rest state (rest). 

 

  

True Label

Pro Sup Flex Ext Grasp Open TF TE IF IE MF ME RF RE LF LE Rest

E
xe

c
u

te
d

 M
o
ti

o
n

Pro 69.8 4.2 1.9 0.1 1.0 0.0 3.2 1.5 6.2 0.5 0.6 0.3 0.6 1.3 1.2 0.7 6.8

Sup 0.3 66.5 0.1 0.3 0.1 1.7 3.4 5.5 2.2 5.2 2.3 0.6 2.5 0.6 1.4 1.0 6.4

Flex 2.0 0.2 81.3 0.1 1.0 0.0 0.1 0.6 0.4 2.1 1.7 0.8 1.3 0.3 0.5 4.9 2.6

Ext 0.1 1.1 0.0 89.0 0.0 3.2 1.1 0.1 0.6 0.5 0.0 0.3 0.2 2.4 0.4 0.1 0.9

Grasp 3.7 1.8 5.8 0.2 71.0 0.0 1.9 0.9 2.1 1.1 0.9 1.8 2.0 0.7 1.5 0.7 3.7

Open 0.0 2.6 0.0 5.2 0.0 56.4 5.6 1.1 3.6 3.7 0.3 3.2 0.4 10.5 5.6 1.0 0.8

TF 1.6 4.9 0.0 0.9 0.5 3.3 57.9 5.9 5.0 5.4 1.5 0.8 0.9 1.7 5.8 1.5 2.5

TE 1.5 2.9 0.9 0.1 0.2 1.8 1.0 67.0 3.7 6.0 3.9 0.2 1.0 0.5 0.7 5.9 2.6

IF 3.0 5.8 0.4 0.4 3.3 1.6 1.4 2.9 50.1 2.3 7.0 1.6 2.5 4.8 6.6 2.0 4.2

IE 0.5 3.6 0.9 0.2 1.5 3.9 6.2 11.6 3.5 43.3 7.7 0.7 1.3 4.3 3.9 4.1 2.9

MF 2.0 1.6 1.0 0.1 1.3 0.2 1.3 5.1 7.0 4.3 53.9 1.4 3.6 4.7 7.4 2.5 2.6

ME 0.2 2.7 0.1 0.1 1.8 2.7 3.1 0.2 1.0 1.8 0.5 62.0 6.5 7.9 6.1 1.7 1.4

RF 0.3 0.7 2.1 0.0 1.1 0.2 0.3 1.0 3.2 1.6 5.2 3.9 65.6 2.5 3.6 7.0 1.6

RE 0.5 2.2 0.0 2.1 0.5 8.9 2.1 1.8 3.4 1.6 1.9 2.8 1.2 49.8 15.8 4.1 1.2

LF 0.3 1.4 0.1 0.5 0.2 2.3 7.3 2.9 7.1 3.0 1.9 5.9 1.0 6.6 57.1 1.3 1.0

LE 0.6 0.4 1.1 0.0 0.4 1.0 0.3 3.6 4.0 2.8 3.0 0.2 5.1 6.8 2.9 64.9 2.7

Rest 1.2 4.0 0.6 0.4 0.2 0.2 2.2 0.7 1.2 3.6 0.6 0.6 0.6 1.1 3.5 0.6 78.6
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5.6 Conclusions 

In this chapter, a signal processing technique to classify 17 voluntary movements from EMG 

signals is proposed. The major novelty of this study is the use of a small set of low-cost EMG 

sensors (low sampling rate) to classify a reasonably large number of hand movements. Only six 

electrodes were used for EMG recording. In the proposed method, power spectrum densities are used 

as features and the motions are classified using artificial neural network. Online classification 

experiments were conducted on 12 participants to evaluate the validity of the proposed method. The 

results show that the proposed method is capable of achieving 42-83% overall accuracy (average of 

63.8% across subjects). Statistical analysis results suggest that improvement in accuracy may be due 

to the fact that the user had gained more experience from the training on the previous day. Results 

also indicate that the accuracy drops significantly after one hour of continuous usage and re-training 

of the classifier is recommended. Based on the above results combined with the fact that users can 

promptly modify any incorrect classifications by looking at the actual output of the prosthetic hand, 

the proposed algorithm demonstrates the potential to classify 17 voluntary movements from 6 

consumer grade EMG sensors. Furthermore, classifying 9 motions using this method could achieve 

43%-92% accuracy (average of 72.9% across subjects). Based on this result, if the prosthetic hand is 

intended for a specific task, limiting the number of motions can significantly increase the 

performance and usability. Overall, the findings reported in this study have given us an idea of the 

extent of how well the current state-of-the-art classification scheme can perform with limited 

hardware. The discussions have also revealed the challenges towards developing a practical and 

multi-functional prosthesis. An extension to this study would be to raise the overall performance by 

improving the feature extraction algorithm as well as devising a training method in order to improve 

the accuracy. 
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6 Development of a Hybrid Brain Machine 

Interface Based on the Fusion of 

Electroencephalographic and 

Electromyographic Activities 

Abstract: This chapter proposes a design of hybrid brain machine interface (HBMI) that combines 

brain and muscle signals intended to improve the controllability of the system. As a possible 

application of HBMI, we will assume that the proposed system will be used to control a prosthetic 

hand. The proposed system enables users to control the prosthetic hand using EMG signals. The user 

intention of ‘action’ and ‘rest’ are detected from EEG signals and the detection results are used to 

modify the control input for the prosthetic hands as well as reduce misclassification of EMG-based 

BMI system. Online experiments are conducted to evaluate the effectiveness of the proposed system. 

Results suggests that using EEG in parallel with EMG helps reduce erroneous classifications. The 

results also show that EEG can be used to modify the motion trajectories of the prosthetic hand. 

Based on these results, HBMI is effective for raising the controllability and usability of BMI systems. 

This work presents a foundation for further research that aims to develop a practical BMI system 

with consumer-grade acquisition device. 
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6.1 Introduction 

Electroencephalograph (EEG) based brain machine interfaces (BMI) has the potential to 

provide users with highly intuitive control of external devices. Although there has been immense 

progress in the BMI technology over the last few years [159], in general, it is still difficult to decode 

the user’s intention using non-invasive brain signals and the task becomes even more challenging 

when the brain signals are recorded by a consumer-grade device. The studies in chapters 3 and 4 

have demonstrated that while it is feasible to use a consumer-grade EEG device for external device 

control, the number of commands (classes) are limited to 3 or 4 for steady state visual evoked 

potential (SSVEP) based BMI, and limited to 2 or 3 for motor imagery (MI) based BMI. Unless the 

system is intended for patients in the later stages of amyotrophic lateral sclerosis (ALS) whose only 

way of controlling a device is by using brain signals, the small number of functional commands 

makes it difficult to deploy the current BMI technology into real-life usage scenarios. 

 

 In contrast, using electromyographic (EMG) signals as a control input can provide the users 

with up to 17 types of commands (with rest state included), even with low-cost acquisition device as 

demonstrated in chapter 5. In addition, EMG offers a relatively faster interaction speed than EEG 

during real-time control and is therefore a more suitable candidate for external device control. 

However, as demonstrated in chapter 5, additional improvements could be made to reduce 

misclassifications in order to improve the usability of the system. It is also shown that accuracy 

decreases with prolonged usage due to factors like muscle fatigue. 

 

 Recently, as an approach to overcome the limitations and improve the usability of BMI 

systems, the concept of parallel usage of at least one BMI and at least one additional communication 

channel (e.g. another physiological signal or assistive input devices such as joysticks or switches) 

called hybrid BMI (HBMI) was suggested and developed [160]-[162]. The idea of an HBMI is very 

appealing because it can increase the possibility to provide a larger number of commands for control. 

Other benefits of HBMI include improved accuracy and information transfer rates. These benefits 

have been verified by previous studies [163]-[171]. 

 

 For the purpose of developing a low-cost BMI system with a high level of usability and 

controllability, this is study proposes the concurrent use of EEG and EMG signals for HBMI systems. 

In our HBMI framework, EMG will be used as the primary control signal while EEG will be will be 

use as a secondary control signal to modify the trajectory and to reduce the misclassifications. 
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6.2 The Hybrid Machine Interface (HBMI) 

As already mentioned, HBMI combines two or more types of BMI in an attempt to 

compensate for the shortcomings and utilize the advantages of each BMI system. In general, two 

systems can be combined sequentially or simultaneously as shown in Fig. 6.1. In a simultaneous 

HBMI, both systems are process in parallel and may play the same or different role to achieve a 

certain goal. In the case that two systems play the same role, the feature vectors from each system 

can be combined into one larger feature vector and fed into one classification algorithm, or the 

decisions made by each system can be fused together to make one final decision. On the other hand, 

both systems can play two different roles simultaneously to achieve one larger goal. For example, a 

2-dimensional cursor control can be achieved by controlling the horizontal movements with motor 

imagery paradigm, and controlling the vertical movements with P300 paradigm [172]. 

 

Sequential HBMIs can be further categorized into sequential-switch or sequential-selector 

type HBMI. In sequential-switch HBMIs, the output of one system is used as the input of the other 

system. This approach is mostly used when the first system task is to indicate that the user does not 

intend to communicate or as a “brain switch” [160]. On the other hand, in a sequential-selector type 

HBMI, the first system can decide to choose a certain function as a selector, then the second system 

can control levels in a specified sequence [173]. 

 

In recent years, there has been more attention to HBMI systems. A list of existing HBMI 

systems and their features are summarized in Table 6.1. In this study, a simultaneous HBMI, 

combining EEG and EMG signals will be explored. The feasibility of the proposed system will be 

evaluated and discussed. 
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Fig. 6.1 A schematic diagram of sequential and simultaneous hybrid brain machine 

interface (HBMI) systems. 

 

Table 6.1 A comparison of several different hybrid brain machine interface (HBMI) 

systems (adapted from [168]) 

Paper # Type of Signal Fusion Approach Improvement 

[169] ERD, SSVEP Simultaneous Improve accuracy 

[170] ERD, SSVEP Sequential False positive rate was reduced 

[163] P300, SSVEP Sequential Improved information transfer rate 

[171] P300, ERD Sequential Expand control functions in virtual environment 

[164] ERD, EOG Simultaneous 
Improvement in classification accuracy, reduction 

in number of electrodes and training time 

[165] ERD, EOG Sequential Improvement in performance 

[166] EEG, EMG Simultaneous Improvement in performance 

[167] ERD, NIRS Simultaneous 
Improvement in classification accuracy and 

performance 

BMI 
System 1
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Bio-signal 2

(b) Sequential Switch
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BMI 
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Bio-signal 1

BMI
System 2
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Application
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6.3 Experimental Methods 

6.3.1 EEG/EMG-based HBMI Architecture 

The aim of this study is to explore the feasibility of a HBMI system that classifies 

hand/wrist movements from EMG signal which will be translated into operative commands for 

control of external devices. At the same time, the control input (control signal) for the external device 

will be modified and the misclassifications will be reduced using EEG signals. In this study, we will 

apply the HBMI system to prosthetic hand control as an example. The concept of the proposed 

HBMI system is shown in Fig. 6.2. 

 

According to Fig. 6.2, the proposed HBMI system consists of two subsystems; the EEG 

BMI system and the EMG BMI system. The role of the EMG BMI system is to classify hand 

movements from EMG signal while EEG BMI system is used to classify two mental states, i.e. the 

intention to perform hand movements and rest state from EEG signals. The classification output of 

the EEG BMI subsystem is used to modify the classification output of the EMG BMI system before 

it is translated into operative commands for controlling external devices. More specifically, if the 

EEG BMI system decides that the user is in a relaxed state, then the classification signal of the EMG 

BMI system is modified to output a rest (no-motion) command as the final decision. In this way, 

erroneous classification caused by unintentional movement of the hand, subtle movements of 

muscles, changes in muscle condition etc. can be reduced to enhance the controllability and the 

usability of the control system. 

 

 

Fig. 6.2 A schematic diagram of the concept of the proposed system. 

 

 

EEG 
Signal

EEG BMI System

Feature 
Extraction

Classification

EMG BMI System

Feature 
Extraction

Classification
Trajectory 

Generation

Control 
Signal

EMG 
Signal



102 

 

The design of HBMI system is based on the physiological function of brain wave rhythms. 

It is well known that the amplitude of alpha rhythms (8-13 Hz) attenuates during mental activities  

such as thinking and execution of movement [36]. Based on this phenomenon, we hypothesize that 

alpha activities would increase during rest/unintended hand movements and decrease during intended 

movements. As such, distinguishing between intended movements and unintended movements 

should be possible by observing the changes in alpha activities. 

 

In this study, EMG is recorded using the Myo armband (manufactured by Thalmic Labs 

Inc.). The Myo armband is a consumer-grade EMG acquisition device consisting of a circular array 

of 8 electrodes (Fig. 6.3). The EMG signals are sampled at 200Hz and transferred to the PC 

wirelessly which help raise the level of usability. The EEG is measured using Emotiv EPOC+ 

headset which has a sampling frequency 128 Hz. In this study, only 2 electrodes over the occipital 

lobe (O1 and O2) are used (Fig. 6.4). The software development environment is 

MATLAB/Simulink®. The proposed algorithm is executed after being built by Simulink real-time 

workshop. 

 

Fig. 6.3 Myo armband. 8 electrodes for EMG recording are arranged in a circular array. 

The sensor is also equipped with a 9-axis IMU. The EMG data is acquired at 200Hz while 

the IMU data is acquired at 50Hz. 

 

 

Fig. 6.4 Location of electrodes. Only 2 electrodes located on the occipital lobe are used in 

this study.  

AF3 AF4
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CMS DRL

P7 P8
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(a) Emotiv EPOC+ headset (b) Arrangement of 10-20 electrode system
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6.3.2 Task Design 

 In this experiment, the subjects are asked to sit comfortably and perform 5 hand motions 

(including a rest state) according to the cues. The motions include flexion/extension of the wrist, and 

grasping/opening of the hand. The experiment protocol is shown in Fig. 6.5. During the execution of 

the task, EMG signals and EEG signals are recorded simultaneously. To simulate unintended hand 

movement, the same hand motion is repeated again, but this time, in a relaxed state. 

 

 The experiment is divided into two parts: offline training and online testing. In the first part, 

training data are acquired to train the classifier. The second part involves online classification in 

order to evaluate the validity of the proposed system. 

 

 

Fig. 6.5 Experimental protocol of a trial. A total of 5 hand motions are executed in this 

experiment. 

 

6.3.3 Preprocessing of EEG and EMG Signals 

Using the same preprocessing procedure as chapter 3, first, the DC offset of the EEG signal 

is removed by demeaning, i.e. subtracting the average amplitude of the raw EEG signal during the 

first 5 seconds from the whole signal. Next, a second order bandpass filter is applied to the EEG 

signal to emphasize the 10Hz frequency component. Next, the bandpass filtered EEG signal is 

full-wave rectified. Lastly, a second order lowpass filter is applied to the EEG signals. 

 

In the case with EMG signals, first, resampling of the data so that the sampling frequency of 

the EMG signals is the same as the sampling frequency of EEG signals (128Hz). This is done by 

interpolating the data by a factor of 16 followed by decimating the data by a factor of 25. After the 

data has been resampled, demeaning is applied to remove the DC offset.  
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Fig. 6.6 shows an example of preprocessed EMG and EEG signals (O1 and O2 electrode 

only). According to this figure, muscle activity can be observed even when hand motions are 

performed in a relaxed manner. Since less force is used to perform the movements, the amplitude of 

EMG signals is smaller compared to that of normal hand motion tasks. In addition, it is also 

observable that alpha activity of both O1 and O2 decreases during intended hand motions. On the 

other hand, an increase in alpha activity can be seen when the user performs the hand motions in a 

relaxed. Furthermore, according to Fig. 6.7, statistical differences in alpha activity have been 

confirmed. Thus, this confirms that our hypothesis is correct and suggests that discrimination 

between intentional and unintentional movement from alpha activity is possible. 

 

6.4 Classification of Hand Motions 

6.4.1 Feature Extraction of EEG signals 

In this study, we attempt to classify two mental states, i.e. the intent to move and rest state, 

from EEG signals. To do so, first, down-sampling of preprocessed EEG signal of both O1 and O2 

channels by a factor of 8 is performed. Next, 2-dimensional (2 channels) feature vectors are 

constructed from the down-sampled signal. Then, the feature vectors are normalized so that the 

feature values range from -1 to 1. Lastly, the training data are fed into the ANN to be trained. Here, 

the EEG signals during hand movements belong to the ‘movement’ class and EEG signal during rest 

belong to the ‘rest’ class. 

 

6.4.2 Feature Extraction of EMG signals 

In order to classify hand motions, this study adopts the same algorithm proposed in chapter 5. 

First, FFT is applied to the preprocessed EMG signals to extract the power spectrum densities. Next, 

a feature vector is formed based on the extracted points. These feature vectors are then normalized 

and fed into the ANN to be classified. 

 

6.4.3 Postprocessing of classification results 

As depicted in Fig. 6.2, the output results of EEG BMI system are used to modify the 

classification outputs of the EMG BMI system. The modifications are done in a way such that when 

the user is in a relaxed state, no motion commands will be sent to the external device (e.g. prosthetic 

hand). To do so, we focus on the output result of EEG BMI system. If the value of the output neuron 

belonging to the rest class is higher than the threshold value T, then the classification output of EMG 

BMI system is labeled as ‘rest state’. More specifically, the output neuron belonging to the rest class  
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Fig. 6.6 An example of preprocessed EMG and EEG signals. The first 8 rows show the 

time response of preprocessed EMG signal. The last 2 rows show the time response of 

preprocessed EEG signal of O1 and O2 electrodes. 
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Fig. 6.7 Alpha activity (10Hz) during intended hand motion and relaxed hand motion 

 

will take the value of 1, while the output neuron of all other hand classes will take the value of 0. An 

example of this procedure is illustrated in Fig. 6.8. The effect of different threshold values on system 

performance is investigated and discussed in the next section. 

 

6.5 Experiment 

6.5.1 Participants 

In this study, the experiments were carried out with the cooperation of one able-bodied male 

participant. The entire protocol and aims of the study are fully explained to him before the 

experiment, and he signed the written informed consent. All of the experiments are conducted with 

the approval from Tokyo Denki University Human Bioethics Committee. Previously, this participant 

has experienced with both EMG and EEG BMI experiments. 

 

6.5.2 Results 

Fig. 6.8 shows an example of classification result. As shown in this figure, the 

misclassifications of EMG BMI system are corrected. Comparing Fig. 6.8 (b) to Fig. 6.8 (c), it is 

clear that misclassifications has been greatly reduced.  

 

Fig. 6.9 shows the FPR of online classification when only EMG signal are used (EMG only) 

and when both EMG and EEG are used (EMG+EEG). According to this figure, FPR of hand motion 

is lower in HBMI for all threshold value except for 1.0T = . This shows that the proposed system is 

functional and effective in reducing FPR. Furthermore, ROC curve in Fig. 6.10 shows that there is a 

tradeoff relationship between TPR and FPR. By using this tradeoff, the user can adjust the 

responsiveness and the accuracy to suit the target application. 
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Fig. 6.8 An example of classification result ( 0.8T = ). 
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Fig. 6.9 False postive rates of each motion. 

 

 

Fig. 6.10 ROC curve of the proposed HBMI system. 
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6.6 Conclusion 

In this chapter, a hybrid brain machine interface based on the fusion of 

electroencephalographic and electromyographic activities is proposed. In this system, external 

devices are controlled by the EMG-based BMI system. The EEG-based BMI helps reduce the 

misclassifications and also modify the control input for the device. Online classifications were 

conducted to evaluate the validity of the proposed HBMI system. Results show that concurrent use of 

EMG and EEG system helps reduce the number of misclassifications. Based on the above results, the 

hybridization of EMG and EEG signals for control of external device can provide better 

controllability of external devices, thus, enhancing the level of usability of consumer-grade 

acquisition device. An extension to this study would be explore other fusion techniques. 
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7 Conclusion 

In this dissertation, the designs of 4 types of brain machine interface (BMI) systems has been 

proposed. They include a design of a self-paced steady state visually evoked potential (SSVEP) 

based BMI system, a motor imagery based BMI system for classification of three mental states, 

electromyography (EMG) based BMI system for control of myoelectric prosthetic hand, and a hybrid 

BMI (HBMI) system that fuses electroencephalography (EEG) with EMG to provide enhanced 

controllability and usability. Experiments are designed and conducted to evaluate the feasibility of 

each BMI system. The results of each system are summarized as follows: 

 

In the design of the a 3-class self-paced SSVEP-based BMI, two low-cost EEG sensors are 

used to capture the SSVEP responses. Multiple second order bandpass filters are employed to extract 

SSVEP features and the type of response is classified using artificial neural network (ANN). 

Experimental results showed that the proposed design is capable of achieving an average accuracy of 

up to 93% and a mean information transfer rate of up to 4.2 bits/min. Furthermore, tradeoff between 

the number of commands and accuracy is also presented. This tradeoff allows the user to adjust the 

responsiveness and the accuracy to suit their preference or target application. Overall, the results of 

this study have demonstrated that a consumer-grade EEG device can serve as a modality in 

SSVEP-based BMI for device control applications. The limitation of this design is the need to 

constantly gaze at the stimuli and may cause severe fatigue after prolonged use. 

 

In the design of a 3-class motor imagery based BMI, 8 low-cost EEG sensors are used to 

capture the EEG signals. Power spectrum densities are extracted from EEG signals during mental 

tasks and fed to the ANN in order to detect the user intention. Experiment results showed that the 

proposed method is capable of achieving an overall true positive rate of up to 67% with 15 minutes 

of training time by a first time BMI user. Furthermore, a tradeoff between true positive rate and false 

positive rate is also presented. Again, based on this tradeoff, the user can adjust the responsiveness 

and the accuracy to suit their preference or target application. Lastly, a hamming window size of 64 

samples is found to be optimal for achieving real-time control when performing spectral analysis. In 

this design, although the need to constantly gaze at the stimuli is alleviated, the number of commands 

are limited to 2-3 for achieving acceptable accuracy with low-cost acquisition device. 
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In the design of an EMG-based BMI, 6 consumer-grade EMG electrodes are used to capture 

muscle activity during arm/hand movements. Power spectrum densities are extracted from EMG 

signals and fed to the ANN in order to detect the hand motions. Experimental results showed that the 

proposed algorithm achieves an overall correct classification rate of up to 83%; thus, demonstrating 

the potential to classify 17 movements from 6 EMG sensors. Furthermore; classifying 9 motions 

using this method could achieve an accuracy of up to 92%. These results show that if the prosthetic 

hand is intended for a specific task; limiting the number of motions can significantly increase the 

performance and usability. Compared to EEG, EMG is easier to analyze and more reliable as an 

input source. Despite these advantages, more improvements in responsiveness and accuracy is still 

needed to raise the level of usability. 

 

In the design of a hybrid BMI (HBMI) system, EMG and EEG are fused together in an 

attempt to raise the controllability of the system. EMG is used to control the prosthetic hand while 

EEG is used to reduce misclassifications. Results showed that using EEG in parallel with EMG helps 

reduce erroneous classifications. The results also show that EEG can be used to modify the motion 

trajectories of the prosthetic hand. Based on these results, HBMI is effective for raising the 

controllability and usability of BMI systems. 

 

As a future work, more efforts can be put in to improve the efficiency of feature extraction 

and classification algorithms. Investigations on the performance of ensemble classifier such as 

AdaBoost or random forest could also be conducted. Also, design and implementation of a control 

strategy that allows dynamic control of the prosthetic hand could help realize a more natural hand 

movement, similar to that of the human hand. Finally, additional experiments using the prosthetic 

hand to execute everyday tasks could be performed to evaluate the total performance of the whole 

system. 

 

 Overall, this work has provided a foundation for further research that aims to develop a 

practical BMI system with consumer-grade acquisition device. Our results are supportive that 

consumer-grade acquisition device can serve as a modality in device control, and their usability can 

be further enhanced by combining multiple BMI systems together. 
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