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ABSTRACT 

 

The advent of the Internet and a large number of digital technologies has brought with it 

many different challenges. A large amount of data is found on the web, which in most cases 

is unstructured and unorganized, and this contributes to the fact that the use and 

manipulation of this data is quite a difficult process. Due to this fact, the usage of different 

machine learning techniques for Text Classification has gained its importance, which 

improved this discipline and made it more interesting for scientists and researchers for 

further study. These techniques bring a lot of advantages, as they are now in very large 

numbers, where they provide solutions to almost every problem we may encounter. With 

this, we can notice that text classification is quite extensive as a discipline. The objective of 

this paper is to indicate several different classification techniques that will classify a 

transcript from a video lesson into the specific category to which it belongs.  
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1. INTRODUCTION 

 

Billions of users create a large amount of data every day, which in a sense comes from 

various types of sources. This data is in most cases unorganized and unclassified and is 

presented in various formats such as text, video, audio, or images. Processing and analyzing 

this data is a major challenge that we face every day. The problem of unstructured and 

unorganized text dates back to ancient times, but Text Classification as a discipline first 

appeared in the early ‘60s, where 30 years later in the early ‘90s interest in various spheres 

for it increased [1], and began to be applied in various types of domains and applications. 

As interest has grown more and the years, where the uses of these applications have begun 

to solve problems that allow for easier and more flexible ways to arrive at more accurate 

results. Knowledge Engineering (KE) was one of the applications of text classification in 

the late ‘80s, where the process took place by manually defining rules based on expert 

knowledge in terms of categorization of the document for a particular category [1]. After 

this time, there was a great wave of use of various modern and advanced methods for text 

classification, which all improved this discipline and made it more interesting for scientists 

and researchers, more specifically the use of machine learning techniques. These 

techniques bring a lot of advantages, as they are now in very large numbers, where they 

provide solutions to almost every problem we may encounter. The need for education and 

learning dates back to ancient times, where people are constantly improving and trying to 

gain as much knowledge as possible. There are various sources of learning available today, 

and as technology has evolved it has contributed to better methods of acquiring knowledge 

that will facilitate this process. The data coming from these sources are in most cases in 

digital form, more specifically in the form of video lessons. The platforms that contain 

these video lessons are called Massive Open Online Courses (MOOCs), where in addition 

to the video lesson, it also contains its textual representation called a transcript. Considering 

that the duration of a video lesson depends on several parameters, such as the category of 

video material, the platform on which the lesson is provided, the complexity of the topic, 

the number of instructors, and the group of lesson attendants. The duration of the lessons 

indirectly dictates how long the transcript will be, in other words how many words it can 
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contain. The category shows the nature of the video and the topics that will be presented in 

it. As it is already known, that each video lesson belongs to a certain category, or in a group 

of categories, so does the transcript as well. From this advantage, we can conclude the fact 

that text classification is quite extensive as a discipline, where also its use can solve many 

challenging problems. To better indicate the idea we want to present, the paper will be 

divided into several sections, as follows: Chapter 2 presents a declaration of the problems 

and challenges of document classification, as well as the objectives of the paper. Chapter 3 

will explain the process of classifying documents, classification techniques, applications 

and domains of its use, as well as previous works and research that have been done in this 

area. The following is Chapter 4, which will present the methodology of work and the 

objectives of studying this paper. Chapter 5 focuses on the design and implementation of 

the experiment, followed by Chapter 6 where the results of the experiment will be 

presented and discussed. And the last Chapter 7 shows the conclusions of the results of the 

experiments, and this paper in general. 
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2.  PROBLEM DECLARATION AND OBJECTIVES 

As we stated in the previous chapter, where the need for education is growing, the 

development of technology in the provision of better services has had a significant impact. 

One of the methods that has helped a lot to make it easier and more efficient for people to 

access educational resources is the MOOCs platform. As the name suggests it is that these 

platforms are designed to support a large number of participants. Given this fact, the 

number of courses and materials on these platforms has increased dramatically in recent 

years. As already mentioned, the video lessons on these platforms also contain a transcript. 

And as such, this fact shows that a large number of video lessons already exist on these 

platforms, and their classification by certain techniques is not an easy task. The aim of this 

paper is to indicate several different classification techniques that will classify a transcript 

from a video lesson into the specific category to which it belongs. One of the challenges in 

selecting classifiers is to adapt to the number of classes that may be available. In most 

cases, there is more than one category, where the use of single-class or so called one-class 

classifiers is not a good idea, so the use of multi-class classifiers is needed, but it is still a 

challenge in predicting the accuracy of the results. In this paper, we will select techniques 

and create models for multi-class classification. And after that, we will compare the results 

of both techniques, and come to the conclusion which of them better classifies in the case 

when a large number of classes are involved. For the automatic classification of the 

documents in this paper we will use supervised algorithms. 

 

There are a total of six main objectives that are part of this paper, and they are as follows: 

Objective 1: Explore several techniques for both single-class and multi-class 

classification. 

Objective 2: Review different datasets that best fit the case for classification and are 

from the category of pedagogical domain. These datasets can be provided by 

various MOOCs platforms. 
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Objective 3: Select two appropriate multi-class classification techniques. 

Objective 4: Create a model using both classification techniques. 

Objective 5: Compare the results of these previously created models. 

Objective 6: Design scenarios to test the models. 
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3.  LITERATURE REVIEW 

 

This chapter will try to present previous work on the topic of classification of documents 

for pedagogical content, and the challenges that come with it. Also, the concepts of 

document classification, classification techniques and applications and domains in which it 

is used will be pointed out. Each of the above topics will be explained in the remainder of 

the chapter. 

 

3.1 Background 

 

Text mining or text analytics is one of the artificial intelligence techniques that uses 

Natural Language Processing (NLP) to transform unorganized and unstructured text into 

an appropriately structured format that will make it easier to process and analyze data. For 

businesses and other corporations, generating large amounts of data has become a daily 

routine. Analysis of this data help companies gains smarter and more creative insights 

regarding their services or products collected from a variety of sources. But this analysis 

step requires processing a huge amount of data where the data needs to be prepared, and 

this is in most cases the cause of various problems. We can point out that NLP is one of the 

analysis methodologies used in text mining, and also depending on what kind of approach 

is used by this methodology.  

 

Text mining and NLP are closely related to each other, where NLP can help machines to 

understand natural languages spoken by human beings, like English or any other language. 

In some other words, it can be described as a concept of creating and understanding 

expressions in human language, or so-called natural language. And as such NLP is made up 

of five steps or phases, and they are Lexical Analysis, Syntax Analysis, Semantic Analysis, 

Pragmatics, and Discourse [2]. 
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Figure 1. Natural Language Processing steps. 

 

 

Figure 1 shows the steps of NLP, where each of these steps will be briefly described, with 

the idea of a better understanding of how this methodology works. The following is a 

description of these steps: 

 

1. Lexical Analysis - involves identifying the structure of a sentence, to separate 

words from the text, and create individual words, sentences, or paragraphs, which 

also includes separating punctuation from words 

2. Syntax Analysis - involves parsing words and arranging words in a sentence to have 

a certain meaning and relationship between them, where it is based exclusively on 

grammar. 

3. Semantic Analysis - implicates to analyze the grammatical structure of a word and 

seeks for a specific meaning in that word. The semantic analysis makes it possible 

to understand the relationship between lexical items. 

4. Pragmatics - means how the interpretation of a sentence is affected in its use in 

different situations to understand what it means and encompasses. 

5. Discourse - points out that the current sentence may depend on the previous 

sentence, where it can also affect the meaning of the sentence that comes after it. 
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Visualization and description of the steps of NLP are aimed at giving the reader more 

knowledge about this methodology or even its refreshment which will be helpful in the 

following sections of the paper. 

 

As already stated above, the goal of text classification or text analysis is to structure and 

classify data to facilitate the analysis process. And just like many other smaller tasks or 

sub-processes that make up this overall flow of steps or so-called text classification 

pipeline. It can be observed that text classification systems can be found presented in 

various scientific papers, where researchers have contributed to several types of division 

and the number of steps that make up text classification systems. These divisions imply 

how one process will be presented, and whether it needs to be divided into one bigger step 

or a few smaller steps, but the overall meaning of the separation is the same in almost every 

paper.  

 

In this paper, we will present the four phases of which most text classification systems 

consist [3], and they are: 

 

I. Feature Extraction 

II. Dimension Reductions 

III. Classifier Selection 

IV. Evaluation  

 

 

 

 

Figure 2.Four-phase model of a text classification system. 
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Figure 2 shows a four-phase model of a text classification system, where we tried to explain 

it as clearly as possible every detail that is important in the text classification. The 

explanation of each phase is shown in the next section. 

 

3.2 Related Work 

 

The various technologies available today have drastically improved the way people try to 

gain new knowledge. Technology has greatly influenced the improvement of this process, 

and at the same time contributed to the development of systems that enable a more efficient 

and easier learning process. With this fact the use of various Massive Open Online Courses 

(MOOCs) begins to increase, which bring with them various opportunities, but also 

challenges. Through SWOT analysis have been presented strengths, weaknesses, 

opportunities and threats related to MOOCs. Attempts to identify and analyze the 

opportunities and challenges of MOOCs both from pedagogical and business standpoint 

have led to understand how some of the very well known and successful platforms like 

Coursera, edX and Udacity have contributed to the improvement of their business model 

through various aspects [4]. Each of these platforms strives to improve the business model 

and strategy, in order to contribute to better results, and most importantly increase user 

interest. During the analysis of these platforms it was concluded that quite a low number of 

students actually take assessment exams at the end of a MOOC which makes it difficult to 

assess whether students joining a MOOC are actually learning the content, and hence 

whether the MOOC is achieving its goal. We can observe five common business models of 

these platforms, which are: certification model, freemium model, advertising model, job-

matching model, and subcontractor model. The main goal of these models and their 

provision is charging for certificates, linking students with potential employers, and 

charging for additional services [4].The Learning Management System (LMS) is a platform 

that supports and hosts MOOCs. In addition to LMS, one of the components of the e-

learning system architecture is Learning Objects (LOs). Various techniques regarding 
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Learning Objects (LOs) are presented, in a context in which it contains pedagogical values. 

These LOs may contain data that is in digital and non-digital form. Referring to paper [5], 

the authors have identified several very important features that are not present in existing 

LMSs, and believe that they should be integrated into these LMSs. This will increase 

collaboration and interaction between users and course content. The author's 

recommendations are: personalization of learning path, customizable video learning objects 

(VLO), ontology adaptation, multi-agent systems and customizable syllabus and learning 

path. Also, integrating these features will provide better personalized and customizable 

contents to learners along with the ability to choose a learning path that best suits them, that 

will maximize the learning outcome [5]. Although, there are already a lot of tools that allow 

sharing and using LOs, but with difficulties that allow their creation. A three-component 

based Multimedia Learning Object (MLO) framework was proposed that exceeds the limits 

of other available MLO systems, while it is complied with SCORM standard. The proposed 

framework consists of three components that are intended for two types of users: authors 

and learners. The authors have shown that with the first component which is the Media 

Analysis and Processing Unit (MAPU) through five modules (Video Segmentation, Quality 

Evaluation and Estimation, Meta-data Extraction, Video Indexing and MLO Structuring) it 

can create LOs from the received instructional video as input [6]. As is well known, student 

dropout is a very big and everyday problem we face in the education system. This problem 

is also very pronounced in MOOCs, in the sense where students / learners leave courses due 

to various factors, and the percentage of interest becomes lower and lower. There are two 

types of factors that affect this problem and they are: Student related (lack of motivation, 

lack of time, insufficient background knowledge and skills) and MOOC related (course 

design, isolation and lack of interactivity, hidden costs). The current state-of-the-art 

approaches dealing with MOOC dropout prediction are mostly using clickstream features 

as engagement patterns. There are plenty of examples where K-Means, Decision Trees, 

Deep Neural Network (DNN) and other machine learning techniques have been used [7]. 

There are many challenges in using machine learning techniques regarding student 

dropouts problems, such as: lack of sufficient sample data, managing large masses of 

unstructured data, data variance, high data imbalance, availability of publicly accessible 
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dataset, lack of standard for creating and representing clickstream data, and student 

schedule related challenges [7]. The are presented various recommendations and proposals 

towards useful and effective predictive solutions for dropout predictions,  which may not 

only assist in developing generalizable solutions across different MOOCs but also help 

lecturers to timely intervene if they foresee dropouts during a course [7]. As e-Learning 

platforms are becoming more accessible, where their main goal is to provide a smarter way 

of learning. The new paradigm of e-Learning is also known as Cloud e-Learning where the 

whole process is done through Cloud services, where it allows a much easier and more 

flexible way. Part of these platforms are recommendation systems that try to recommend 

learners courses or materials that are similar to their learning path. There is a 

recommendation system based on hierarchical clustering or the so-called Cloud e-Learning 

Recommendation System (CeLRS) [8]. The whole CeLRS process contains several steps 

(Information Retrieval, Text Mining and Mapping Process). In Mapping Process CeL 

Learning Objects (CeLLOs) the relevant CeLLOs are generated in the same cluster which 

are categorized hierarchically, partial, graph-based, etc. via various clustering algorithms. 

Related study in this field attempts to recommend a hierarchical approach for clustering the 

CeLLOs as part of topics and sub-topics of computer domain based on a specific ontology 

and a vector space model [8]. Also, previous research has tried to contribute to the 

classification systems in pedagogical content, where a rather large focus has been on the 

content classification of video lectures.In a previous study [9] the authors recommended 

model for the visual content classification system (VCCS) for multimedia lecture videos is 

to classify the content displayed on the blackboard. Through this recommended model, the 

authors showed over several stages how lecture videos are processed and then a 

combination of support vector machines (SVM) and optical character recognition (OCR) to 

classify visual content into figures, text and equations [9]. The assumptions that they have 

made is that there is no clear demarcation between handwritten text lines and figures. As 

the handwritten text varies significantly in size and there is also a lack of uniform edge 

density due to chalk, so the traditional OCR techniques are not effective in this context [9]. 

Furthermore, classifying lecture content into figure, text and equation can be useful for 

applications like: automatic structuring and indexing of lecture video, creating multimedia 
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learning objects for e-learning and for useful meta-data extraction [9]. Also, other research 

in this field has presented the classification and organization of pedagogical documents 

using domain ontology [10]. 

 

3.3 Phases Overview 

The general overview of the classification model phases as described above. 

 

I. Feature Extraction- Since we now have more knowledge about the fact that the 

data in most cases is not structured, and as such there must be stages where they 

will be better constructed. This phase or process in which an attempt is made to 

remove and clean a piece of text from metadata and characters or letters that are not 

useful in further processing, where they are often referred to as noisy data. Through 

this, we will convert one piece of text or document into a so-called structured 

feature space, which will be useful to us when using a classifier. If data cleaning 

and removal of unnecessary characters or letters are not applied, it can directly 

affect the performance of the system to lead to adverse and inaccurate results.  

We can observe that one of the theories is that the text can be presented in two ways 

as [11]: 

● bag-of-words - in this method the text is divided into a set of words where a 

number is also indicated which shows how many times the word was found 

in the text. 

● strings format - each sequence of words in the text is displayed in this way. 

 

We do not want to describe every technique or method that makes up this phase, 

because there are a large number of them that are covered and perhaps even more 

that exist that are not covered in this paper. The idea is to show only a few of them 

that we will use during further work. The various methods used during this phase to 

clear the data and prepare it for further processing are [3]: 
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● Tokenization - is the process of separating a piece of text into smaller units 

called tokens. The way the token is formed is based on a delimiter, which in 

most cases is space. Also, tokens can be words or subwords, but also at a 

lower level based on characters. 

● Stop Words - are words that are commonly used in one language, that are 

not needed in the data processing part, and in most cases are ignored because 

they take up more space in the database, and affect longer processing times. 

In English stop words are words like: "a", "the", "an", "it", "in", "because", 

"what", and many others. 

● Capitalization - is the part where it is necessary to identify the correct 

capitalization of the word, where the first word in the sentence will be 

automatically capitalized first. 

● Noise Removal - is the process of removing characters, numbers, and parts 

of text that affect your analysis. These characters can be some special 

characters, punctuations, source code removal, html code removal, unique 

characters that represent a particular word, numbers, and many other 

identifiers. 

● Spelling Correction - is a problem where the meaning of a particular word 

can be mispronounced, where the word loses its meaning. This problem can 

be solved in two ways: with edit distance and another with overlap using k-

gram [20]. 

● Stemming - is a process where more morphological variants are produced 

than the base word or the so-called root word. For example different 

morphological variants of root words "like" such as "likes", "liked", "liking" 

and "likely". 

● Lemmatization - in this technique words are replaced with root words or 

words that have a similar meaning, and such words are called lemmas. 

● Syntactic Word Representation (such as N-Gram) - is a contiguous 

sequence of n items from one part of the text. 
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● Syntactic N-Gram 

○ Weighted Words (such as TF and TF*IDF) 

○ Word Embedding (such as Word2Vec, GloVe, FastText) 

 

 

Figure 3. Techniques of data preprocessing phase. 

 

 

II. Dimension Reductions - As we can conclude from the name itself that in this step 

the goal is to transform from a high-dimensional space to a low-dimensional space. 

The reason for this is that we strive to improve performance, speed uptime, and 

reduce memory complexity. There are many types of algorithms or techniques in 

this step such as: 

 

● Principal Component Analysis (PCA) - is the most widely used 

unsupervised technique for dimensionality reduction of large datasets in a 

interpretable way. This method works on the principle of finding as many 

variations as possible, where with the help of creating new variables that 

serve as linear functions of data, whose variation is maximized. By finding 

these variables, Principal Components (PCs) solve the eigenvalue or 

eigenvector problem [16]. 
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● Non-negative Matrix Factorization (NMF) - is a group of algorithms that 

one matrix is factorized into two matrices that contain non-negative 

elements. To better illustrate this method, we can explain via the formula 

where one matrix X is factorized into two matrices W and H. 

  

𝑿 ≈ 𝑾 𝑯[17] 

 

Each of these matrices consists of a specific number of rows. We consider 

that the matrix X, W and H consist of k rows. 

 

[17] 

 

Figure 4. Factorization of matrices. 

 

As we have already mentioned, the elements of the matrix X are 

x1, 𝑥2, . . . x𝑘. The matrices W arew1, 𝑤2, . . . w𝑘. And the matrices H 

areh1, h2, . . . h𝑘. Using this we can visualize our equation by taking each i-th 

row in the X matrix.  
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[17] 

 

Figure 5. Equation of weights and components of matrices. 

 

In Figure 5 we can see that 𝑥𝑖 is the weighted sum of some components, so 

that  each row of the W matrix represents the weight of the component that 

we consider each row in the H matrix. NMF is used in most cases in facial 

analysis and topic modeling, and is implemented in the scikit-learn library 

which helps us to use this method more easily. 

 

● Linear Discriminant Analysis (LDA) - is one of the supervised 

dimensionality reduction methods, which attempts to transform features into 

lower dimensional space by maximizing the ratio between class variants to 

the within-class variance [18].  

 

[18] 

Figure 6. Linear Discriminant Analysis equation. 

 

 There are two types of LDA techniques that deal with classes, and they are [18]: 

1. Class-dependent - separate lower dimensional space is calculated for 

each class. 
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2. Class-independent - each class is considered as a separate class in the 

relation with other classes.   

   

The main goal of the LDA technique is to project the original data into the 

matrix  but into the lower dimensional space, and this process in most cases 

consists of three steps: 

 

Step 1. In this step, the distance between the means of different classes is  

calculated, which is called between-class variance or between class matrices 

[18]. 

Step 2. In this step, the distance between the mean and the samples of each 

class, which is called within-class variance or within-class matrices [18]. 

Step 3. In the last step, the idea is to construct the lower dimensional space 

in which will be achieved maximization of the between-class variance and 

minimization of the within-class variance. 

 

● Kernel PCA - as we already know that traditional PCA allows only linear 

dimensionality reduction, but in cases where the data are more complex, 

traditional PCA becomes helpless. And in this sense, the PCA kernel allows 

us to generalize traditional PCA to nonlinear dimensionality reduction [19]. 

Kernel PCA is quite similar to Support Vector Machines (SVM), where it 

uses kernel functions to project datasets into a higher dimensional feature 

space, where they are linearly separable. 

 

We can see that it pays more to use dimensional reduction for pre-processing than 

some kind of classification algorithm [3]. 

 

III. Classifier Selection - One of the main concerns is to choose the right classifier 

model that will be able to perform with a certain set of data to achieve the desired 

results. Choosing the right classifier model is not an easy task, and is a challenge 
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that is also referred to in the literature as the Algorithm Selection Problem (ASP). 

Every day we come across applications that use classification algorithms in some 

hands. The results of the task depend on choosing the right algorithm that will 

complete a particular job while showing very good performance and problem 

optimization. In general, there is no single algorithm that can work for every type of 

problem, and that can learn all the tasks while still being efficient, and this 

phenomenon is also known as performance complementarity [12]. Many factors 

affect the performance of a particular algorithm, some of which is the amount of 

data assigned to it for testing and training, the operating system to be executed, the 

specifications of the machine on which the algorithm will be performed, and many 

other factors that directly or indirectly affect the selection of the algorithm. One of 

the first models to deal with ASP is Rice’s model, which recommends several 

features and options to be controlled when selecting an algorithm [13]. 

 

 Some of the algorithms used for text classification are: 

● Logistic Regression 

● Naive Bayes 

● K-Nearest Neighbor (KNN) 

● Support Vector Machines (SVM) 

● Decision Trees 

● Random Forests 

● Neural Network algorithms (such as DNN, CNN, RNN) 

● Combination Techniques 

 

IV. Evaluations - One of the most important steps that text mining systems consist of is 

the Evaluation part. In this step, algorithms are analyzed or scored to assess how 

efficiently they performed. One of the problems where evaluating just about every 

method or algorithm is not possible, but only a couple of them and that is the reason 

for the lack of data and standard evaluation methods. It should also be suggested 

that comparing different parameters or metrics with this method is not an easy task. 
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There is a so-called confusion matrix table in which classification metrics such as 

True Positives (TPs), False Positives (FPs), False Negatives (FNs) and True 

Negatives (TNs) are calculated and presented [15]. 

 

 

Figure 7. Confusion Matrix table. 

 

Figure 7 shows a confusion matrix table in which the prediction results are 

displayed horizontally, while a label that is positive or negative is shown vertically. 

 

3.4 Classification Algorithms 

This section will describe the K-Nearest Neighbours (KNN) and Recurrent Neural 

Networks (RNN) algorithms that will be used further in our experiment. 
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3.4.1 K-Nearest Neighbours (KNN) 

K-Nearest Neighbors (KNN) is one of the techniques that can be used in both classification 

and regression. It is known that KNN has no model other than collecting the entire dataset, 

and there is no need for learning. The predictions made with the KNN for the new data 

point are by searching the entire dataset for the K most similar instance (so-called 

neighbors) in relation to the output variant of the K instance [21].   

 

In order to identify which of the K instances in the dataset is similar to the received input 

variable, in this case we measure the distance. One of the most popular distance measures 

used is the Euclidean distance, which is shown by the formula: 

 

               Euclidean Distance (a, b) = √∑ (𝑎𝑖 −  𝑏𝑖)2𝑛
𝑖=1 [21] 

 

Figure 8. Euclidean Distance between two points. 

 

As we can see, the Euclidean Distance is calculated by the formula as the square root of the 

sum of the differences between two points a and b over all the input attributes i. The greater 

the distance between two points in the KNN model, the smaller the similarity between 

them. 

 

There are several assumptions regarding the KNN model that should be considered: 

● KNN is a non-parametric algorithm, where there are no assumptions 

regarding the data before the model is used. 

● As we already know, in most other algorithms the data are divided into test 

sets and training sets, while in this model they are not. This model does not 

generalize data, but takes the entire dataset. 

● There is no need to learn the model, the whole job happens at the time of 

prediction, and this is known as the Lazy Learning concept. 
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There are a number of steps that the KNN algorithm goes through, and these steps are [22]: 

 

1. Modify K with the number of specific neighbors. 

2. Calculate the distance between the available raw data examples. 

3. Sort the calculated distances. 

4. Get the labels of top K entries. 

5. Generated prediction results for the test case. 

 

One of the main problems with the KNN algorithm is to determine the exact number of K 

neighbors, and if this number is not determined correctly it can lead to incorrect prediction 

results. 

 

To conclude, KNN is one of the very efficient algorithms used for both classification and 

regression, and is very simple and easy to use. KNN does not make any assumptions about 

the data, and can be used for a variety of problems. The disadvantage of the KNN algorithm 

is memory load and a long process time, because this algorithm uses the entire data set. 

3.4.2 Recurrent Neural Networks (RNN) 

Recurrent Neural Networks (RNN) are types of artificial neural networks that allow 

previous outputs to be used as inputs while having hidden states [24]. These algorithms are 

mostly used in fields such as: Natural Language Processing (NLP), Speech Recognition, 

Robot Control, Machine Translation, Music Composition, Grammar Learning, and many 

others. Typically, a feedforward network maps one input to one output. But as such, the 

inputs and outputs of neural networks can vary in the length and type of networks used for 

different examples and applications [23].  

 

Depending on the mapping of inputs from output, there are different topology types for 

RNNs, and they will be shown in the figures below. 
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Figure 9. One-to-one type of RNN. 

 

In Figure 9 you can see one-to-one mapping, where 𝑋𝑡 = 𝑌𝑡 = 1. This type of mapping in 

RNN is in most cases used in examples as a traditional neural network [24]. 

 

 

 

 

 

Figure 10. One-to-many type of RNN. 

 

In Figure 10 one-to-many type of mapping is presented, where 𝑋𝑡 = 1;  𝑌𝑡 > 1. This type of 

mapping is used in music generation applications [24]. 
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Figure 11. Many-to-one type of RNN. 

 

 

Figure 11 shows a similar type of mapping as in the previous figure, only this type of 

mapping is many-to-one compared to the previous one which is one-to-many. For this 

mapping the presentation is 𝑋𝑡 > 1;  𝑌𝑡 = 1. 
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Figure 12. First example of many-to-many type of RNN. 

 

 

 

 

Figure 13. Second example of many-to-many type of RNN. 
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Figure 12 shows the type of RNN mapping where 𝑋𝑡 =  𝑌𝑡 ,  while Figure 13 shows when 

𝑋𝑡  ≠  𝑌𝑡 ,. Both of these figures represent a many-to-many type of mapping, except that 

mapping in both cases is not direct, but in one example is indirect via hidden states. 

 

In the neural network implementation process, it is very important to decide which 

activation function to use in the hidden and output layer, with the aim of enabling back-

propagation to update weights and biases. We will show the three most common activation 

functions that are Sigmoid, Tanh, Relu, and they are shown below: 

 

[24] 

 

 Figure 14. Representation of activation functions. 

 

3.5 Application and Domains 

As stated earlier in the paper, the use of text classification methods is found in various 

types of applications in several different domains. There are several reasons why the 

application is so extensive, first one of the reasons is the existence of different classification 

techniques available today. Another reason is that businesses and companies have direct 

profits for various purposes after one of the techniques is applied and results are obtained. 

 

Text classifications are used in different domains, where some of the examples are: 
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● Risk Management and Analysis - text mining is very widely used especially in the 

financial industry where risk analysis is much needed to increase the ability to 

mitigate risk, and through this, a large number of documents are managed and 

analyzed. 

 

● News Filtering - as is the case today with most media and portals in an electronic 

edition, where all their information is contained in digital documents. Over time, it 

becomes quite a problem to more easily search or manage this data, where it is 

necessary to use text mining techniques to achieve a better organization and 

structure of documents [11]. 

 

● Document organization and retrieval - here it can be shown how the use of 

supervised methods can lead to better classification in large bookstores, scientific 

collections, bookstores, social sites, etc. The goal is to better structure this data 

hierarchically [11]. 

 

● Opinion Mining - in this domain it is hinted that customer reviews and opinions are 

very important and they are often recorded in the form of a text document, where 

interesting data and statistics that would be needed for various purposes of 

improving products or services are processed and extracted.  

 

● Email Classification and Spam Filtering - to separate the emails that are sent daily 

in large numbers between billions of users around the world, from those emails or 

so-called spams that try to take personal information from email users, and use them 

for bad purposes. This process is automatically advanced using text mining, where 

emails, spams, and junk emails are filtered and classified, and these applications are 

called email filters or spam filters [11]. 

 

● Business Intelligence - in this domain, text mining is used to make it easier to make 

decisions and conclusions that application users could use more effectively. 
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Through this one can analyze and decide regarding the information collected from 

the client or user [14]. 

 

● Data Analysis in Social Media - text mining techniques helps to analyze data on 

social networks, such as the number of likes, comments, shares of posts, users' 

interests for different pages or groups, and their activity on social networks [14]. 
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4.  METHODOLOGY 

 

In this chapter, we will focus on the methodology of work we used during the research part, 

as well as designing and implementing an experiment part.  

First of all, we tried to review the existing literature and scientific papers in order to get 

better acquainted with the research that was done earlier in this domain, and what other 

authors tried to contribute in order to gain new knowledge when it comes to review and 

research challenges in classification of documents in a pedagogical content. After this, we 

gained a lot of information about document classification, where several authors tried using 

different techniques to get better results, and helped us a lot to have a better view when 

selecting the classification algorithm when designing our experiment. 

During the literature review, we noticed that there are different models that contain certain 

flow processes or phases, and that the idea of these models is the same, but differs in the 

order and design of these phases. We have chosen in our paper to use the four-phase model 

that most text classification systems use. As an input to this model we provide a dataset that 

we have chosen for the further process. This model consists of four phases and they are: 

Feature Extraction, Dimension Reductions, Classifier Selection and Evaluation. 

 

Figure 15. Representation of four-phase experimental model. 
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The research method used in this paper is a secondary data collection based on provided 

datasets. After a long research and analysis of several datasets, and various questions that 

we can further explore, during further work on this paper we use a dataset that was 

manually collected from the Coursera platform, and which contains four attributes. The first 

three attributes are the categories of the video lesson and are divided into three levels: 

General level, Specific level and Course level, and also the fourth attribute is the textual 

transcript taken from the video lesson. This dataset is provided by Professor Ali Shariq 

Imran, where it was used in one of his scientific papers [25]. Our further work in this paper 

will be based on review dataset, data preprocessing, selection of two classifiers, creation of 

models for both classifiers, comparison of results from previously created models, creation 

of test scenarios and evaluation of models. 

 

Figure 16. Organization and structure of processes. 
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5.  DESIGN AND IMPLEMENTATION OF EXPERIMENT 

 

In this chapter, we will focus on explaining the experimental part of the paper. The 

structure of this chapter will be divided into sections where the data collection process will 

be explained first, followed by a section showing how we prepared and cleaned our data for 

the further process. And after that, in the last section, the selected models, their architecture 

and implementation during the experiment will be presented. 

 

5.1 Data Collection 

The process of collecting and reviewing data is not an easy task, and in most cases requires 

a lot of research and finding relevant data that can be used to achieve the desired results. 

We analyzed several open-source datasets collected from multiple MOOCs platforms, 

which were published on the Kaggle. One of these datasets consisted of online course data 

from the MITx and HarvardX, where we came up with the idea of classifying the number 

of certified participants based on the course subject category who completed more than 

50% of the course content. One of the reasons we did not want to analyze and use this 

dataset further in our experiment was due to the insufficient number of records, there were 

a total of 291 records, which did not meet the requirements of this research. Thanks to 

Professor Ali Shariq Imran who expressed a desire to help us, and shared with us the 

dataset he used to conduct the experiments and validate the proposed video classification 

framework that uses the transcript from the video as feature representations [25]. This 

dataset consists of a total of 12,032 videos collected from the Coursera platform from more 

than 200 different courses. Coursera categorizes courses into a 2-level hierarchical structure 

from general level to fine-grained level. The general level consists of 8 categories, the 

specific level of 40 categories, and the course level of a total of 200 categories. In addition 

to these three levels that made up the course, a video lesson transcript was also included. To 

conduct our experiment we will further use this dataset, where we will try to classify the 
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course transcript based on the course level or also known as the fine-grained level to which 

it belongs. 

5.2 Data Preparation and Preprocessing 

In order for the data to be in the correct format for further analysis and modeling process, 

the data needs to be prepared, cleaned, and transformed. This is one of the very important 

steps to primarily improve the quality of the data, and thus the results of the learned 

models, because the data is directly fed into the model. The data preparation and 

preprocessing part depends on the given dataset, and in our case the first step after the 

review is to remove the word '[MUSIC]' which was in most of the transcript records. After 

that, we converted the entire textual content of the transcript to lowercase, and removed the 

non-letters characters. Also, we removed stopwords from the transcript where it helped us 

reduce the number of features, and kept the model of the appropriate size. In the last part 

we applied stemming, where we separated their root form from words, where in most cases 

this process can help improve the accuracy of classification, and keep the vocabulary in 

more standardized format. 

5.3 Classification 

In this part, the creation of a model with the aim of classifying transcripts depending on the 

category of course level will be presented. As we have already stated in the paper 

objectives, we selected two appropriate multi-class classification techniques, and in this 

case we chose to create the first model with K-Nearest Neighbors and the second model 

with Recurrent Neural Networks. Both of these techniques are well known in solving 

classification problems. RNN is one of the most well-known Deep Learning 

methodologies, while KNN is one of the simplest and easy to implement machine learning 

algorithms. The implementation for both of these techniques used in the experiment has 

been explained in Chapter 3. 
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6.  RESULTS AND DISCUSSION 

 

In this chapter, we will present the results and conclusions on the results obtained from the 

classification of textual content (transcripts) of a video lesson based on the category to 

which they belong. In the previous chapter we explained the designs and implementation of 

the experiment, while in this chapter the focus will be on discussing and comparing the 

results. We will first show the results we obtained with the K-Nearest Neighbors algorithm, 

for all three categorization levels General level, Specific Level and Course Level, 

depending on the number of categories they contain. We will then repeat the same process 

for the results obtained with Recurrent Neural Networks.  

To evaluate the performance of our models and algorithms, we used evaluation metrics: 

precision, recall, f1 score, and accuracy. In order to have a better idea regarding these 

evaluation metrics, we will describe each of them below. 

Precision - represents the evaluation metrics that points out how accurate the model is 

based on those which are positively predicted. This evaluation metric is really precise when 

the number of False Positives is high. The formula for calculating the precision metric is as 

follows: 

Precision = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

Recall - this evaluation metric is kind the same as Precision, but in comparison with it, this 

method is really precise when the number of False Negatives is high. The formula for 

calculating the recall metric is as follows: 

Recall = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
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F1 Score - is an evaluation metric that is used when you want to find a balance between 

two mentioned metrics above - Recall and Precision. The formula for calculating the f1 

score is as follows: 

F1 Score = 2 * 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Accuracy or classification accuracy - is an evaluation metric that represents a ratio 

between the number of correct predictions to the total number of predictions that are made. 

The formula for calculating the accuracy is as follows: 

Accuracy = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

 

Table 1 shows the classification results with the K-Nearest Neighbours algorithm. The table 

is structured so that the columns show the corresponding values of the evaluation metrics, 

and the rows show the categorization of a particular level. We will explain the analysis of 

the obtained results for each level individually. As we can see from the table, the general 

level based on the precision metric has shown a very good result of 92.63% accuracy. For a 

specific level, we can observe that 87.89% accuracy is estimated by precision metrics. And 

at the course level, also based on the precision metric, we can see the achieved result of 

78.59% accuracy. If we analyze the obtained results for all three levels, we notice that the 

percentage of accuracy decreases, where the highest accuracy is achieved at the general 

level, followed by a specific level, while the lowest accuracy is achieved at the course level. 

In our case, taking into account the number of categories for a single level by which the 

video is classified on the Coursera platform differs drastically, where the general level 

consists of 8 categories, the specific level of 40 categories, and the course level of in the 

total of 200 categories. With this, we finished analyzing presenting the results with the 

KNN as a classifier. 
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Table 1. Classification results with K-Nearest Neighbours. 

Category Precision (%) Recall (%)  F1 Score (%) Accuracy (%) 

General Level 92.63 92.52 92.53 92.52 

Specific Level 87.89 87.58 87.49 87.58 

Course Level 78.59 76.73 76.11 76.73 

 

 

Table 2 shows the classification results with the Recurrent Neural Networks, more 

specifically with an Long Short-Term Memory (LSTM) type. The table is constructed with 

the same structure as the previous one, where columns show the corresponding values of 

the evaluation metrics, and the rows show the categorization of a particular level. As we 

can see from the table, the general level based on the precision metric has shown a very 

good result of 88.22% accuracy. For a specific level, we can observe that 72.31% accuracy 

is estimated by precision metrics. And at the course level, also based on the precision 

metric, we can see the achieved result of 59.49% accuracy. If we analyze the obtained 

results for all three levels, we notice that the percentage of accuracy decreases, where the 

highest accuracy is achieved at the general level, followed by a specific level, while the 

lowest accuracy is achieved at the course level. With this, we finished analyzing presenting 

the results with the LSTM as a classifier. 

 

Table 2. Classification results with Recurrent Neural Networks. 

Category Precision (%) Recall (%)  F1 Score (%) Accuracy (%) 

General Level 88.22 87.71 87.68 87.71 

Specific Level 72.31 69.93 70.13 69.93 

Course Level 59.49 52.91 53.99 52.91 
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As stated in the objectives of this paper, below we will present several test scenarios, in 

which we will give as input the transcript we have chosen randomly, and we expect that 

after classification the model predicts the appropriate course level category in which it 

belongs.Test scenarios are shown and described below. 

 

Figure 17. First test scenario. 

 

Figure 18. Second test scenario. 
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Figure 17 shows the first test scenario where our model predicted the "Introduction to 

Ancient Egypt and its Civilization" course level category for the entered transcript. While 

Figure 18 envisages a “Computer Architecture” course level category. We can see that 

both of these results are correct because these two transcripts belong to these categories, 

where we can also manually check in the dataset. 

 

Figure 19. Third test scenario. 

We can see in Figure 19 that the entered transcript does not belong to the category "Data 

Structures", which our model predicted. In fact, this transcript belongs to the category 

"Microeconomics: The Power of Markets", and in this scenario, our model gave us the 

wrong result. 
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7.  CONCLUSION 

 

So far, we have presented and discussed the classification results of the experiment we 

conducted within this paper for all three category levels both with KNN and LSTM. We 

can conclude that better results were achieved for levels with a smaller number of 

categories than for levels with a larger number of categories. In our case, as the category 

number increased in classes the results decreased. With this, we can conclude that the 

classification results are directly affected by the number of categories that each level 

contains. From results above we can clearly see that KNN in most cases performed much 

better than LSTM which can be best noticed at Course level category. This fact depends on 

several factors. First, is the quantity of data required for LSTM, and this is because a large 

number of categories increases the complexity of the problem, and thus requires more data 

to train the model. Another reason why LSTM has not given higher accuracy is due to the 

high similarity of different transcripts. Many of the transcripts belonging to different 

classes at the third level had many similarities in the context of the sentences and keywords, 

so the model could not properly distinguish in which class the transcripts belonged. 

In closing, this research can be improved by investigating more on recurrent neural 

networks like, applying hyperparameters tuning. Another step that can be taken is using 

other classification techniques such as Support Vector Machines, Random Forests and 

Decision Trees. These and other potential improvements are left to be addressed in future 

work. 
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