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ABSTRACT  

 
Large-scale deployment and use of cloud computing in industry is accompanied and in the same 

time hampered by concerns regarding protection of data handled by cloud computing providers. 

One of the consequences of moving data processing and storage off company premises is that 

organizations have less control over their infrastructure. As a result, cloud service (CS) clients must 

trust that the CS provider is able to protect their data and infrastructure from both external and 

internal attacks.  Currently however, such trust can only rely on organizational processes declared 

by the CS provider and can not be remotely verified and validated by an external party.  

Enabling the CS client to verify the integrity of the host where the virtual machine instance will run, 

as well as to ensure that the virtual machine image has not been tampered with, are some steps 

towards building trust in the CS provider. Having the tools to perform such verifications prior to the 

launch of the VM instance allows the CS clients to decide in runtime whether certain data should be 

stored- or calculations should be made on the VM instance offered by the CS provider.  

This thesis combines three components - trusted computing, virtualization technology and cloud 

computing platforms - to address issues of trust and security in public cloud computing 

environments. Of the three components, virtualization technology has had the longest evolution and 

is a cornerstone for the realization of cloud computing. Trusted computing is a recent industry 

initiative that aims to implement the root of trust in a hardware component, the trusted platform 

module. The initiative has been formalized in a set of specifications and is currently at version 1.2.  

Cloud computing platforms pool virtualized computing, storage and network resources in order to 

serve a large number of customers customers that use a multi-tenant multiplexing model to offer on-

demand self-service over broad network. Open source cloud computing platforms are, similar to 

trusted computing, a fairly recent technology in active development.  

The issue of trust in public cloud environments is addressed by examining the state of the art within 

cloud computing security and subsequently addressing the issues of establishing trust in the launch 

of a generic virtual machine in a public cloud environment. As a result, the thesis proposes a trusted 

launch protocol that allows CS clients to verify and ensure the integrity of the VM instance at 

launch time, as well as the integrity of the host where the VM instance is launched. The protocol 

relies on the use of Trusted Platform Module (TPM) for key generation and data protection. The 

TPM also plays an essential part in the integrity attestation of the VM instance host. Along with a 

theoretical, platform agnostic protocol, the thesis also describes a detailed implementation design of 

the protocol using the OpenStack cloud computing platform.  

In order the verify the implementability of the proposed protocol, a prototype implementation has 

built using a distributed deployment of OpenStack. While the protocol covers only the trusted 

launch procedure using generic virtual machine images, it presents a step aimed to contribute 

towards the creation of a secure and trusted public cloud computing environment.  
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CHAPTER 1  

Introduction  

 

1.1 Cloud Computing Promise 

 

In spite of the rapid expansion of Infrastructure-as-a-Service (IaaS) technologies such as Amazon 

EC2 , Microsoft Azure , services provided by RackSpace  and others, IaaS services continue to be 

plagued by vulnerabilities at several levels of the software stack, from the web based cloud 

management console [1] to VM side-channel attacks, to information leakage, to collocated 

malicious virtual machine instances [2]. 

The need for secure cloud storage and cloud computing environments has been reiterated on 

numerous occasions. For example, Molnar et al [3] cite industry decision makers to emphasize the 

fact that security concerns are among the major factors that prevent businesses from deploying their 

data and computations into the cloud. Common reasons are unawareness of the state of the data and 

algorithms once it is in the cloud environment, as well as concerns regarding cloud provider 

bankruptcy and subsequent lack of clarity and established procedures of data protection and 

retrieval, along with many other examples.  

Similarly, Chen et al [4] cite opinions originating from academia, government and industry that 

point to security concerns as a barrier preventing a quicker adoption of cloud computing.  The 

reasons are both technical, such as the fear of data loss, data breach and data tampering as well as 

organizational, such as reputation fatesharing. Similar views are reported by other researchers 

within cloud computing security ([5, 6]).  

The economic benefits of using cloud storage and cloud computing are appealing enough to 

promote adoption of these technologies, hence their use is likely to increase over time [4]. In this 

situation, there is a risk that the economic benefits obtained today through the rapid adoption of 

cloud technologies will in some cases be compensated or even overcompensated by losses resulting 

from unexpected lack of availability as well as theft and corruption of data.  

The continuous flow of vulnerabilities discovered in the software stack underlying IaaS platforms 

has prompted the move towards implementing trust anchors into hardware.  Although this move has 

the potential to greatly reduce the risks posed by software vulnerabilities, it does not guarantee a 

secure platform out of the box. Rather, the results depend on the correct usage of the trusted 

hardware.  
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The Trusted Computing initiative and adoption of trusted platform modules (TPM) has been 

steadily gaining momentum since it’s inception [7]. Participation of hardware manufacturing 

industry leaders in the Trusted Computing Group is likely to accelerate the adoption of this 

technology across hardware architectures and platforms. Following its initial predominance and 

narrow focus on laptop computers, rusted computing is making its way into new devices.  For 

example, the use of trusted computing on mobile platforms is already the focus of several recent 

research projects [8, 9] with more to come as increased functionality and ever more information 

stored on mobile devices become more attractive targets for malware.  

Another important application domain of trusted computing is its use in virtualized systems and 

cloud computing [10].  Trustworthy integrity verification of the software components used within 

the cloud computing infrastructure, as well as information protection using trusted computing 

techniques can address some of the security concerns related to off-premises computing. While it 

does not actually offer absolute guarantees, trusted computing raises the complexity bar for 

attackers by placing the root of trust at the hardware level. With a correct implementation, an 

attacker would need physical access to the hardware in order to subvert the TPM [11]. However, as 

the technology is still new and in active development, the best practices for the use of TPM are yet 

to be identified. This is especially relevant for virtualized environments and trusted cloud 

computing, where the functionality of a single TPM chip needs to be shared between several virtual 

machines.  Solutions like virtualization of TPMs [12] create new possibilities for implementation of 

secure launch and secure migration of VMs [13, 14]. In the same time new attack techniques 

demonstrate that software implementation of TPM increases the trusted computing base (TCB) and 

introduces new vulnerabilities [15]. This implies that new solutions for secure VM launch and 

migration need to be found based on the existing components of the TPM and with minimal 

changes to the TCB.  

1.2 Problem Outline 

The four message protection classes available in the current specification of the TPM (binding, 

signing, sealing and signed sealing), together with the encryption and signature keys available to the 

TPM (further described in chapter 2) provide a powerful set of tools that can be used for trusted 

launch and migration of VMs in cloud environments. As an example, based on some of these tools 

Santos proposed a secure launch and migration protocol which relies on a third-party trusted 

coordinator to attest the TPM-enabled nodes and uses the capabilities of the hardware TPM chip 

[5].  Other researchers have proposed a set of migration protocols that rely on TPM virtualization 

([13, 14]).  

This paper describes a secure VM launch protocol that can be implemented in one of the existing 

open source cloud operating systems. The solution has been guided by the following equirements:  

• R1: The launch should be trustable, so that a user has the mechanisms to ensure that the VM has 

been launch or migrated to a trustworthy host.  

• R2: the client should have the possibility to reliably determine that it is communicating the the 

generic VM launched on a secure host, and not with a different generic VM instance.  
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• R3: The integrity of the VM must be verifiable by the target node.  

• R4:  The trusted VM launch procedure should be scalable and have a minimum impact on the 

performance of the cloud computing platform.  

• R5: Users should have a transparent view of the secure launch procedures.  

The protocol makes use of TPM protection classes and available signature and encryption keys to 

ensure a secure VM launch procedure on cloud computing platforms.  

1.3 Thesis outline 

Chapter 2 presents an overview of cloud computing, trusted computing and virtualization, we well 

as a review of the security concerns related to the current cloud computing model and continues 

with an overview of the state of the art in cloud security, focusing on threat models, exploits and 

attack techniques jeopardizing security of public cloud computing.  Chapter 3 formulates the scope 

of the problem examined throughout this thesis and defines two research propositions. Chapter 4 

contains a review of the research approach employed throughout this study.  Chapter 5 contains the 

theoretical contribution of the study, which addresses the issues described in the defined 

propositions.  Chapter 6 contains a detailed description of the implementation of the solution 

formulated in the theoretical contribution of the study as well as a discussion of the implementation 

results. The thesis concludes with a set of protocol implementation recommendations and further 

research suggestions in chapter  
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CHAPTER 2  

Security Aspects of Cloud Computing  
 

The term cloud computing, which is associated with the new paradigm for provisioning of 

computing infrastructure is still poorly defined and understood, and is often interpreted as a 

reincarnation of grid computing [16].  

Provisioning of computational resources over the network has been available as a tool at different 

scales, ranging from distcc, used between several user-owned computational devices, to the 

ambitious MilklyWay@Home project, which harnesses the unused computational power of 

personal PCs in order to calculate a 3-dimensional map of the Milky Way galaxy.  

However, the current definition of cloud computing focuses on a centralized provisioning of 

computational resources to multiple remote clients. Based on a review of 21 publications, Vaquero 

et al proposed in [16] the following definition of cloud computing:  

Clouds are a large pools of easily usable and accessible virtualized resources (such as hardware, 

development platforms and/or services).  These resources can be dynamically reconfigured to adjust 

to a variable load (scale), allowing also for an optimum resource utilization.  This pool of resources 

is typically exploited by a pay-per-use model in which guarantees are offered by the Infrastructure 

Provider by means of customized SLAs.  

This paradigm became popularized among businesses as a way to reduce upfront infrastructure 

investments, maintenance costs and eventual replacement costs. After a brief introduction to the 

structure of cloud computing, we will focus on the risks related to cloud computing and the building 

blocks of its security model.  While the definition provided by Vaquero et al offers broad 

perspective of cloud computing, other definitions will be used throughout the study in order to 

emphasize specific aspects, such as security risks or infrastructure architecture.  

2.1  Cloud Computing Basics  

Along the lines of the above definition, cloud computing offers on-demand self-service over broad 

network access by employing resource pooling in order to serve multiple customers using a 

multitenant model [17]. In this case, the physical location of the data is independent from its 

representation, so the users have no control nor knowledge of the physical placement of the data. 

Important capabilities of cloud computing are its rapid elasticity that allows to scale the provided 

computational and storage resources in line with the demand, as well as the built-in capability to 

measure the service at an appropriate level of abstraction (e.g. storage, processor time, bandwidth, 

active user accounts, etc.). Such an approach to measuring the service provides transparent picture 

of the utilized service to both the user and the provider of the service [17].  
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2.1.1  Service Classification  

Two other aspects that are important for the understanding of the cloud computing paradigm are its 

service models and deployment models. There are three widely adopted service models for cloud 

computing:  

• Software as a Service (SaaS) - in this model, the user has the capability to use the provider’s 

applications which are deployed on a cloud infrastructure.  In this case, all of the underlying 

implementation and deployment is normally abstracted from the user and only a limited set of  

configuration controls are made available.  Similarly, data created by the SaaS applications is 

transparently stored in the cloud infrastructure.  

• Platform as a Service (PaaS) - allows a wider range of capabilities for the user, providing the 

ability to deploy onto the cloud infrastructure applications created and acquired by the user, within 

the frame of the development languages, application programming interfaces (APIs) and services 

that are made available by the provider. The user has broad control of the deployed applications and 

data, however does not have control of the underlying computing infrastructure.  

• Infrastructure as a Service - allows the user to provision processing power, disk storage, random 

access memory, network capabilities et cetera. The user can use the allocated resources in order to 

develop, deploy and run arbitrary software using the provisioned computational resources. In this 

case, the user is still using a sandboxed environment, where they have broad control over the 

provisioned resources, but no control over the underlying cloud management infrastructure. This 

thesis focuses on certain aspects of the IaaS with regard to security and trustworthiness of the 

provisioned computational resources with respect to both third parties and the IaaS provider itself. 

There are four generic types of cloud deployment models: private clouds, public clouds, ommunity 

clouds and hybrid clouds. NIST [17] provides more details about the characteristics of the of the 

models. In the context of the current thesis focusing on trusted computing in cloud environments, 

we are mostly interested in the distinction between private clouds and other types of clouds. In the 

former case, the full stack forming the cloud deployment is part of the customer’s security perimeter 

and the customer has potentially full control over the hardware, network and software components. 

In the latter case, the cloud deployment infrastructure is either partially or fully placed on the 

premises of other organizations, hence limiting the capabilities of the client to monitor and control 

the infrastructure. This thesis focuses on aspects of trusted computing in clouds of the second type, 

collectively denoted as public clouds.  

2.1.2 Virtualization 

Virtualization has been a key enabling technology for the evolution of cloud computing into its 

current form. In particular, hardware virtualization has enabled IaaS providers to efficiently use the 

available hardware resources in order to provide computing and storage services to their clients.  
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Popek and Golberg defined a set of virtualization requirements in "Formal requirements for 

virtualizable third generation architectures" [18], which served as guidelines for the design of 

virtualized computer architectures.  

 The authors have defined three properties of interest for a virtual machine monitor (VMM) also 

known as a hypervisor: equivalence, resource control and efficiency.  This definition of hypervisors 

required satisfying all of the properties. In a later definition, Smith and Nair [19] only assume 

equivalence and resource control properties for VMMs, while efficient VMMs are required to 

satisfy all of the properties.  

Figure 2.1 presents a classification of hypervisors according to Popek and Goldberg [18]. Native (or 

bare metal) hypervisors run directly on the host hardware, while hosted hypervisors run in the 

environment of an operating system (OS) and hence their access to the hardware resources is 

mediated by the OS.  

 

Figure 2.1: Types of hypervisors accprding to Popek and Goldberg[18] 

 

Examples of native hypervisors are Citrix XenServer, VMWare ESX/ESXi and Microsoft Hyper-V 

hypervisors. KVM and VirtualBox are examples of hosted hypervisors.  

2.2 Under the hood 

While Amazon Web Services pioneered enterprise cloud computing [20] with its Amazon EC2 and 

Amazon S3, it has not established any well defined standard of cloud architecture and data 

exchange interfaces. As a result of several competing cloud computing projects that have either 

been released as open source projects or have been created as community-developed open source 

projects, currently there is range of cloud computing management platforms that are open for 

examination and implementation.  
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Thus, the currently available Open source cloud management systems are:  

• OpenNebula has started as a European research project in 2005 and supports Xen, KVM and 

VMWare hypervisors. One of its main advantages is its flexible architecture that allows for multiple 

combinations of hardware and software platforms [21];  

• OpenStack is an open sourced project based on the collaboration between National Aeronautics 

and Space Administration (NASA) and Rackspace .  The project maintains compatibility with the 

Amazon EC2 interfaces and focuses on massively scalable, flexible cloud deployments.  

• Nimbus is a scientific project that focuses on implementing and supporting features of interest for 

the research community. The projects offers a set of tools that allows its users to combine other 

platforms, e.g. OpenStack and Amazon EC2 ;  

• Eucalyptus is a community-driven open source project that aims to support wide compatibility 

with the EC2 interfaces in order to allow hybrid implementations that include both EC2 and 

Eucalyptus clouds.  

• other projects that have a narrow specialization and smaller distribution include Enomaly 6, 

Redhat Cloud, Yahoo’s TrafficServer and other smaller actors.  

Along with open source IaaS implementations, there are a number of commercial products which 

are however out of the scope of this section. Rimal et al provide a thorough examination of the 

taxonomy of cloud computing systems as of 2009 [22], where they describe the main providers of 

cloud computing services and cloud computing platforms available at the time. Furthermore, Jim et 

al provide examples of well-known SaaS products (e.g. Dropbox, Twitter, HeroKu) that are 

deployed based on infrastructures maintained by commercial IaaS and PaaS providers [23].  

2.2.1  Architectural overview of the OpenStack cloud management platform  

OpenStack has been chosen as the implementation platform used to validate the solution explored in 

this thesis. The motivation behind the choice of OpenStack as the implementation platform is 

mainly based on the wide industry interest and active community participation.  The motivation 

factors are covered in more detail below:  

• Industry interest and adoption: currently OpenStack is supported by "more than 175 companies" 

Considering the scope and the aim of the thesis, support from Intel and AMD (which are also 

members of the Trusted Computing Initiative) was an important industry adoption factor.  

• Community interest: since its first release in 2010, OpenStack has had a rapid community-driven 

evolution and is currently at its fifth release.  

• Availability of source code - OpenStack source code is licensed under an Apache License, a 

permissive license which does not require the distribution of modified versions under the same license.  

A brief introduction to the OpenStack platform is necessary in order to clarify the implementation 

of the secure VM launch protocol.  
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On a higher level, OpenStack is a collection of independent components that communicate with 

each other through public APIs and collectively form a robust cloud computing platform. From a 

logical view, also displayed in figure 2.2 , OpenStack is comprised of a dashboard which serves as a 

graphical user interface for the compute component, an image store and a object store. The three 

latter components authenticate through an authentication component.  

The current release of OpenStack ("Essex") comprises five components which correspond to the 

above logical structure:  

 

Figure 2.2: Logical architecture of OpenStack[5] 

• Horizon is a Django-based dashboard which serves as a user and administrator interface to Open 

Stack. The dashboad is deployed through mod_wsgi in Apache and is separated into a reusable 

python component and a presentation layer. Keystone also uses an easily replaceable data store 

which keeps information from other OpenStack components.  

• Nova is a core component of OpenStack and focuses on providing on-demand virtual servers. 

Nova offers several services, spawned on different nodes in an OpenStack deployment depending 

on the purpose of the node. The services are nova-api, nova-compute, nova-volume, nova network 

and nova-schedule. Additional services, which are not part of nova but are however used by it are a 

queue serve (currently RabbitMQ is used, however any other queue system can be used instead) as 
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well as a SQL database connection service (MySQL and PostgreSQL are supported for production, 

sqlite3 for testing purposes).  

• Glance is VM image repository that stores and versions the images that are made available to the 

users initially or modified through subsequent runtime updates.  

• Swift is an object store with a distributed architecture which aims to avoid single points of failure 

and facilitate horizontal scalability. It is limited to the storage and retrieval of files and does not 

support mounting directories as in the case of a fileserver.  

• Keystone is a unified point of integration for the OpenStack policy, token and catalog 

authentication. Keystone has a pluggable architecture to support multiple integrations, and currently 

LDAP, SQL and Key-Value Store backends are supported. The OpenStack documentation offers 

detailed information about each of the above named components and their interaction.  

2.3  Security Concerns  

A monetization of the risks involved for the main assets that need to be protected (data, algorithms, 

activity patterns or business reputation) would show that each of the aspects is likely to have a 

different value for each organization or person. Hence, cloud users would benefit from both a 

choice of different levels of security based on their requirements as well as different aspects of 

security (e.g.  special attention to business reputation risks). Both cases bring along their own trade-

offs and implementation peculiarities.  

In the given scenario, a constant research effort in the area of cloud storage and cloud computing 

security will help achieve the balance between economic feasibility, ease of deployment and a 

suitable collection of security considerations for each cloud service (CS) client.  

2.3.1  Risk aspects of public cloud services  

Along with the multiple economic, technological and management benefits of cloud computing 

services for organizations, there are a number of implementation risks that must be taken into 

account.  The Guidelines on Security and Privacy in Public Cloud Computing published by NIST 

offer an overview of the security, privacy and availability risks of cloud computing [24]. The NIST 

guidelines identify, among other points, the following risks related to the use of cloud computing by 

organizations:  

•  Governance Due to their wide availability and in many cases high degree of usability, CS 

(especially on the SaaS level) can easily bypass the security, privacy and software use policies 

adopted by the organization. While ensuring that systems are secure and risk is managed is possible 

(although not trivial) in the case of in-house system deployments, that is far more difficult in the 

case of cloud services.  One immediate reason for that is the fact that such services are made 

available through the public network, while their backends are running in unknown locations out of 

the security parameter of the organization. This can lead to a potentially vulnerable mix of secure 

and insecure services used throughout the organization.  
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•  Compliance to laws and regulations in the case of CS is more difficult compared to in-house 

systems for several reasons, such as inability to ensure proper disposal of data, limited ability to 

control and ensure the geographic location of data, and restricted possibilities for electronic 

discovery of data in case of litigation.  

•  Trust Through the use of cloud computing and CS the organization relinquishes control over 

significant parts of aspects of security and privacy. As a result of this, the organization makes a 

commitment and places trust into the control mechanisms and processes employed by the cloud 

provider. One risk is the potential for insider access to the information, provoking both intentional 

incidents leading to loss or corruption of data, or unintentional errors, leading to massive 

unavailability of the CS. Another risk is the potential lack of clarity over data ownership, especially 

in border cases such as transaction data generated through the use of CS. Third, the fact that many 

CS are composite, i.e. themselves operating through combining or nesting other CS implies that the 

unavailability of either a horizontal or vertical component dependency would in many cases be 

propagated to user level. In case damage is inflicted as a result of service unavailability, the 

responsible party may be hard to identified, as pointed out in [25]. Fourth, visibility of the state of 

the system and the state of the data produced by the CS is crucial in the process of managing 

security and privacy risks. However, such visibility can be easily lost as a result of migration from a 

service deployed in-house to a CS. The cloud provider is likely to be resistant to direct audits of the 

state of its infrastructure and as a result a third party would need to be assigned for independent 

regular audits [24]. Fifth, transactional data generated in the process of CS utilization, although not 

important to the customer, can prove to be useful for social engineering attacks against the 

customer. In other scenarios transactional or ancillary information can be a threat to the privacy of 

the organization’s customers (if exposed as a service for public use) in case it is sold or leaked. As a 

result, lack of a clear and explicit ownership of such metadata can pose a serious risk for the 

organization.  

•  Operational aspects The architecture of the CS model can contain a range of risks on both the CS 

server and client side. First, although virtualization offers additional security benefits through 

software isolation, increasing the attack surface is a risk in itself.  The hypervisor can be 

compromised as well as the sensitive data contained in the customer’s virtual machines can be 

leaked during VM launch, migration or paging. Secondly, the security of the virtual network which 

ensures connectivity between instances deployed in the cloud or between the cloud instances and 

the Internet must be taken into account. While traffic monitoring is important for intrusion 

detection, traffic between hosts on a virtual network might not be visible to network-based intrusion 

detection systems [26]. Third, ensuring the integrity of virtual machine images (VMI) loaded by the 

cloud provider remains an open issue. While a certain ability to verify the properties of the virtual 

machine can be built into the VM image by the customer in case of a tailored VMI, not even such 

simple mechanisms are available in the case of generic virtual machines offered by the cloud 

provider. Even in the case of a bona fide IaaS provider, malicious VMI can be contributed to the 

IaaS provider’s image repository and maliciously imposed to the IaaS users [24] Fourth, on the 

client side secure key management presents an ever more complex process due to the proliferation 
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of multipurpose handheld computing devices that are also used for cloud data access and 

management.  

•  Data protection From the CS customer perspective, there are fewer mechanisms for data 

protection when data is created through CS or maintained in cloud storage. Two aspects of data 

protection are considered, namely data availability and data access control. The first aspect depends 

on the migration and backup capabilities offered by the type of the CS chosen by the client. The 

second aspect is less trivial, due to the specifics of the shared multi-tenant environment in which CS 

are deployed.  

Thus, besides the fact that control and responsibility for the data is transferred from the data owner 

to the CS provider, physical isolation of data processing units is substituted by logical isolation in a 

multitennant environment. The type of CS (PaaS, SaaS, IaaS) used by the client determines both its 

degree of control over the underlying software stack and the type of logical data separation. For 

example, protecting commingled data (in the case of SaaS) is more complex than collocated data  

(in the case of IaaS) since on one hand the user has less control over the underlying software and on 

the other hand the complexity underlying a SaaS-level application increases the potential attack 

surface. Beyond the ones mentioned above, other potential CS risks are related to identity and 

access management, software isolation, availability issues and incident response aspects. More 

details about these aspects can be found in [24].  
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CHAPTER 3  

Problem Statement and Scope  

 

As pointed out in chapter 2 based on the results found in [4, 5, 6], concerns about the lack of clarity 

regarding data protection, reputation fatesharing, lack of traceability and transparency within cloud 

services as a whole, as well as the algorithms behind handling of VM images in particular are 

among the barriers that hamper the adoption of cloud computing in industry. However, while these 

barriers are indeed numerous, there is no reason to believe they are unsurmountable.  

In this chapter we examine several problematic issues related to cloud computing which if solved, 

could potentially have a positive impact on the adoption of cloud computing in general and IaaS in 

particular.  

3.1  IaaS security aspects revisited  

Of the three main types of cloud computing described earlier (IaaS, PaaS, SaaS), IaaS offers the 

broadest customer control over the computing stack. Such broad customer control (and hence 

transparency, from the customer’s point of view) provides the tools to address several of the 

concerns regarding adoption of public cloud computing services, namely "traceability and 

transparency within cloud computing", as well as "lack of information about the algorithms behind 

handling of VM images".  

3.1.1  Control over the cloud computing platform  

As defined by NIST, the context provided by IaaS offers customer access over the network to a 

sandboxed environment of a VM instance, or a collection of VM instances with limited control over 

the inter VM network communication and no control over the underlying components of the cloud 

computing environment, such as the VM manager (or hypervisor), physical servers (or hosts) that 

support multitenant environments and the network communication between the physical hosts. 

Hence, the customer does not have any control over the whole software stack underlying the 

virtualized environment. While different hypervisor models treat the instructions from the VMs 

their own specific ways, a hypervisor (regardless of its type) is in a position to intercept and 

interpret the instructions passed from the VM instance to the CPU . As a result, a compromised 

hypervisor can leak information about the data processed by the VM instance to the cloud platform 

provider or a malicious third party. Likewise, the host where the VM instance is running can be 

compromised by other software attacks, either by a malicious third party or the cloud service 

provider itself in the face of an insider (not necessarily malicious, as pointed out in [24]).  

3.2.  Problem statement  

This results in the following PROPOSITION 1:  

In the current public cloud computing model, the IaaS user has no control over the choice of the 

integrity configuration of the platform where their VM image is launched. We state that it is 
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possible to provide more granular control over the stack underlying the virtualized environment and 

enable the client to decide whether a certain operation should or should not be performed in a IaaS 

environment based on information about the structure and integrity of the underlying software and 

hardware stack.  

3.1.2  Need for transparency and information  

Another factor preventing the wider adoption of IaaS is that it is seen as a "black box" in terms of 

information about other VM instances collocated on the same physical servers, malicious attacks as 

well as intra-cloud migrations of the VM instance between different hosts.  

Importance of awareness of other VM instances collocated on the same physical servers has been 

demonstrated by Ristenpart et al in [2], who describes an exploratory attack on Amazon Web 

Services. The authors have succeeded in creating a map of the placement of physical nodes in the 

Amazon cloud as well as map them to the live, running instances. Furthermore, by exploiting the 

Amazon placement algorithms and checking co-residence based on Dom0 IP addressed, the authors 

have succeeded to migrate a malicious VM instance to the same host as the target VM instance.  

Co-residency with a target VM instance can be used for side-channel attacks as described in [29, 

30], making information regarding intra-cloud instance migration particularly important for bona 

fide customers.  

Providing full information regarding placement and co-residence state of VM instances to IaaS 

customers would potentially enable them to take more accurate, dynamic decisions regarding 

trustworthiness of the IaaS VM instance. Therefore, in order to simplify the task we consider a 

subset of such information, namely assurance regarding trustworthiness of the underlying software 

and hardware (SW/HW) stack. This will be a less disruptive first step towards adding more details 

to the black box perspective of IaaS that is shared by the users of public cloud services.  

Based on the above we formulate PROPOSITION 2:  

In the current public cloud computing model, it is not possible for a IaaS user to obtain guarantees 

regarding the integrity of the platform where the VM image is launched. Furthermore, there are 

currently no mechanisms for a IaaS user to verify the veridicality of the fact that a certain VM 

instance has been launched using the unmodified VM image provided by the user, unless the VM 

image has certain irreproducible and verifiable properties. We state the it is possible to provide the 

IaaS user with guaranteed, veridical and verifiable information about the integrity of the host 

running the client’s VM instance, as well as guarantees about the veridicality of the VM instance.  

Chapter 2 and the above sections in the current chapter have discussed some of the security aspects 

of public clouds and the risks related to adoption of public cloud computing, as well as the public 

opinion stance towards adoption of public cloud computing.  

Two propositions have been formulated, regarding control over placement of the VM instance with 

respect to the integrity guarantees of the host running the client’s VM instance.  

The problem formulated above will be addressed by this thesis in the context of a specific use case. 
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That will help reduce the complexity of the addressed question and allow us to focus on the exact 

issue with a minimum number of complementary aspects.  

3.2.1 Specific use case considered 

In this paper we consider the aspects of secure launch of generic VMs (VMs) in an untrusted public 

cloud computing environment. In this context, by generic VMs we mean the VMs made available 

by the cloud service provider but assumed to be identical with the vendor-issued models.  

The scenario implies that the actor that launches the VM instance (further referred to as "client") 

requires a trusted launch of a VM instance available with the IaaS provider. A specific requirement 

is that the trustworthiness of the virtualization environment where the VM instance is launched 

should be verifiable through an automatic, scalable and least-intrusive way. In the assumed 

scenario, the client should be able to automatically verify that the launch of the VM image has been 

performed in a trustable environment.  

An additional requirement is that the solution should be implementable using an open source cloud 

computing platform and should minimize the potential for introducing new vulnerabilities through 

the implementation of the solution.  

3.2.2  Solution requirements  

Based on the above defined security aspects of IaaS in public clouds and stated use case, we revisit 

the requirements for a satisfactory solution to the above defined problem:  

• R1: The launch should provide to a user the mechanisms to ensure that the VM has been launched 

on a trustworthy host. In order to establish whether the VM instance launched in the public cloud 

can be trusted, the client needs to have a verification mechanism to ensure that the VM instance is 

running on a host which is considered "secure", at least from the software point of view. The 

verification should be provided by a party or component which is trusted by the client.  

• R2: the client should have the possibility to reliably determine that it is communicating the the 

generic VM launched on a secure host, and not with a different generic VM instance. Given that a 

generic VM instance can not, by definition, posses any properties known to the client that would 

make it identifiable for the client, it is important to provide reliable tools for the CS client to 

distinguish a trusted VM instance from other types of generic VM instances.  

• R3: The integrity of the VM must be verifiable by the target node Besides the need to ensure the 

integrity of the host where the VM instance is run, it is equally important in the scenario of an 

untrusted cloud service provider to verify the integrity of the VM image.  This thesis considers the 

trusted launch of VMs using generic virtual machines images, i.e. VM images that have not 

undergone modifications of any kind, something which facilitates verification of the VM images at 

the time of their launch.  

•  R4: Users should have a clear view of the secure launch procedures, in case the IaaS has certain 

preferences regarding the software that may or should run on the host where the VM instance is 

launched. Creating such a capability could contribute to challenging the current perception of lack 
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of transparency, as pointed out in .  Furthermore, NIST guidelines name visibility and transparency 

of the cloud provider processes and mechanisms is one of the criteria for establishing trust in a 

cloud provider [24].  

•  R5: The mechanism supporting the trusted VM launch should be scalable and have a minimum 

impact on the performance of the cloud computing platform supporting the IaaS infrastructure. This 

requirement, which actually consists of two distinct parts is essential for the potential of a designed 

solution to be implemented in practice.  Given the growing scale of cloud computing adoption and 

the increasing number of hosts employed by cloud providers, any solution with a significant 

performance hit is likely to have very low adoption.  Therefore, while scalability of specific 

components is out of the scope of this paper, a potential solution should ideally not introduce 

known bottlenecks that would prevent its adoption for large IaaS deployments.  

3.3 Contribution 

In the following chapters we examine a scalable solution for secure VM launch and integrity 

checking in public clouds, to enable trusted launch of generic virtual machine images in trusted 

clouds.  The contribution of this study is both a theoretical description of a generic trusted VM 

launch and an image integrity verification (LIIV) protocol and a description of an implementation 

design and specific adaptation of the VM LIIV in the scope of an implementation design.  

3.3.1  Theoretical contribution  

The first part of the theoretical contribution of this study is a transversal overview of the state of the 

art in cloud computing security, from the web interface of known cloud service providers to the 

issues on the virtual machine manager and hardware-level vulnerabilities of trusted platform 

modules.  

The second and perhaps more important theoretical contribution of this study is a protocol for 

generic trusted VM launch on public IaaS platforms. The protocol adopts an abstracted view of 

cloud computing platform architecture and is aimed to be platform independent.  Application of the 

protocol allows a client to launch a generic VM instance on a public IaaS platform given a certain 

security profile to verify the integrity of the VM image, as well as ensure that the VM instance has 

been launched on a host corresponding to the selected security profile.  Finally, the protocol 

provides a way to verify that the client is communicating namely with the VM instance running on 

the trusted host and not on a different generic VM instance.  

3.3.2  Practical contribution  

The generic VM LIIV protocol mentioned above and described in full detail in Chapter 5 has been 

implemented using commodity hardware and OpenStack, an open source cloud management 

software. Along with the validation of the protocol itself, the implementation offers an insight into 

the modifications to the OpenStack codebase required in order to implement support for trusted VM 

launch and integration with the TPM hardware.  
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CHAPTER 4  

Secure VM Launch and Migration Protocol  

 

 

This chapter introduces a platform-agnostic secure launch protocol for a generic virtual machine 

image (GVMI). Generic virtual machine images are virtual machine images that do not differ from 

the vendorsupplied VM images (colloquially known as "vanilla software") ).  They are made 

available by the IaaS providers for clients that intend to use an instance of a VM image that was not 

subject to any modifications, such patches or injected software. The protocol described in this 

chapter allows a client that requests a GVMI to ensure that it is run on a trusted platform.  The 

concept of GVMI is also explained in further details below.  

4.1 Attacker model 

The use cases for a trusted VM launch in public clouds assumes that several parties are involved, 

such as the following:  

4.1.1  Malicious IaaS provider  

In the context of the proposed protocol, the domain of the IaaS provider is generally considered to 

be untrusted. That includes the deployment of the cloud management platform, as well as the 

hardware and software configuration of the physical machines supporting the IaaS infrastructure. 

The untrusted domain also includes the communication between servers that are part of the IaaS 

platform, as well as the generic VMs made available by the IaaS provider (although it is assumed 

that they are identical as the ones supplied by the vendor).  

However, this attacker model considers that the physical security of the hardware and the integrity 

of the TPM is ensured. This is important in order to be able to rely on the security model of the 

Trusted Computing Group (TCG), since TCG’s model is not designed to withstand physical attacks 

[28]. This assumption builds on the fact that the TPM is tamper-evident and a visual inspection 

would be enough to discover a hardware attack.  

4.1.2 Other actors 

The client is a user of cloud computing services and intends to launch or use a VM. The client can 

be both technically skilled (e.g. capable to assessing the security of platform configurations based 

on values from the measurement list, etc.) and a non-expert that requires access to a generic VM 

instance launched and running on a trusted platform.  

The Trusted third party (TTP) is, as the name implies, trusted by both the Client and the Cloud 

service provider. The breaches of Certificate Authorities during 2011 have emphasized the 

drawbacks of centralized security models and their susceptibility to attacks . The more complex the 

operations performed by the TTP, the higher the probability of it having exploitable vulnerabilities. 
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It is therefore important to keep the implementation of the TTP as simple as possible. The main task 

of the TTP is to attest the configuration of the nodes that will host the generic VMs and asses their 

security profile according to some predefined policies. Within the current trust model, TTPs could 

be implemented on the client side, as long as the IaaS provider agrees to that and the client has the 

capability to set up and operate an attestation and evaluation engine.  

4.1.3  On generic virtual machine images  

A peculiar aspect of generic virtual machine images is that they by definition can not posses any 

verifiable properties that could distinguish two different instances launched using a GVMI. That is, 

all of the GVMI of a particular distribution offered by the vendor are binary identical.  

This property of GVMI makes it difficult for a IaaS client to verify that the virtual machine instance 

it interacts with runs on a particular hardware or software stack, since as mentioned above, the VM 

instance launched from a GVMI does not possess any unique properties.  

In the case of trusted launch of a generic VM, it is essential for the client to be able to ensure both 

the integrity of the underlying platform and of the VM image supplied by the IaaS provider. The 

fact that all GVMI are identical can be used in the context of a secure launch protocol in order to 

verify that a generic VM image has been launched on a trusted platform.  

4.1.4  Specific attacker model  

The situation when a non-expert user requires the launch of a VM on a secure platform implies a 

recommendation that such VMs should generally not to be used for business-critical operations. 

However, since this generic VM will be part of the security perimeter of a larger organization, it is 

important to provide a security level that is as high as the setup allows.  Hence, the following 

attacker actions are likely in this situation:  

• The IaaS provider ignores the request for launching the VM on a trusted platform and launches the 

VM on a generic platform. This situation is addressed by requirement R1 and R4.  

• The IaaS provider launches a VM on a trusted platform, but alters the generic VM (e.g.  by 

injecting forged SSL certificates) in order to intercept the communication between the client and the 

VM to obtain valuable information (addressed by requirement R3).  

Revisiting requirement R2, in the following trusted launch protocol, obtaining a correct response to 

a challenge from the client to the VM (the object of the challenge being a secret nonce which is 

sealed by the TTP on the destination node after it has been attested) is a sufficient proof that the 

VM is launched on a trusted platform.  

4.2 A secure launch protocol for generic VMs 

This section describes a secure launch protocol based on the assumptions and limitations above. 

The protocol is designed to be implementable on any open source cloud management platforms and 

does not employ any platform-specific considerations.  
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4.2.1  Platform-agnostic protocol description  

The following steps are required in order to perform a trusted generic VM launch.  

• Before initiating the launch procedure, client C generates an 1024-bit long nonce denoted as N′ 

(1), which will be used as a proof token in communications between the client and the VM and 

must be kept secret throughout the launch process, as shown in Figure 5.1.  

•  Next, C creates a token T , containing N′, the preferred security profile (SP) and the hash of the 

VM image type that is to be launched (HV M ). The token is encrypted with the public key of TTP, 

noted as TPK′  To improve user experience these actions could be performed transparently to the 

user by a web browser plugin when navigating to the cloud control web interface. (2).  

• Further, C requests cloud controller (CC) to load a generic VM by providing the following 

parameters in the request (3):  

- VM type (e.g. Ubuntu 12.04)  

- Required security profile  

- URL of the TTP  

- Token TPK′ generated in step (2)  

The security profile will determine the lower bound of trust level that is required from the host H on 

which the VM will run, with stricter security profiles accepted.  

• In the next step, CC schedules a VM on the appropriate node, depending on its membership in the 

respective security profile group (4) and sends a request to generate a bind key PKBind, also 

providing the URL of the TTP.  

•  Once the destination host H receives the bind key request, it retrieves the PCR-locked 

nonmigratable TPM-based bind key PKBind. This key can be periodically regenerated by H 

according to a administrator-defined policy, using the current platform state represented by the 

TPM PCR. It is important to note that the values of the PCRs should not necessarily be in a trusted 

state in order to create a trusted state bind key (5)  

•  Next, H retrieves the TPM CERTIFY INFO structure by calling the TPM CERTIFY KEY TPM 

command, where the structure of TPM CERTIFY INFO consists of a hash of the bind key PKBind 

and the hash of the PCR values used to create PKBind, denoted as {HPKBind ,HPCR INFO} (6).  

•  H sends an attestation request to the TTP using the URL initially supplied by the client. The 

arguments sent with the request to the TTP are represented as follows:  

- Client-provided token TPK′  

- Attestation data, which includes the public bind key, the TPM CERTIFY INFO structure, the hash 

of TPM CERTIFY INFO signed with the Attestation Identity Key (AIK) , the Integrity 
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Measurement List (IML) and the AIK certificate followed by a session nonce, collectively 

represented as: {PKBind,TPM CERTIFY INFO, HTPM CERTIFY  INFOAIK, 

IML,AIKcert,Nsession} (7).  

• TTP uses its private key PrK′, which corresponds to the public PK′ to attempt to decrypt the  token 

TPK′  (8).  

• TTP validates the attestation information received from H through the following actions (9):  

- Validates the structure TPM CERTIFY INFO  

- Validates the key PKBind  

- Calculates the hash of the PCR values HPCR  based on the information in the IML and  compares 

it with the digest of PCR INFO, which is a component of TPM CERTIFY INFO  

• TTP examines the entries in the IML in order to determine the trustworthiness of the platform and 

decides whether the security preference SP is satisfied by the current configuration of node H (10).  

• If that is true TTP encrypts the nonce N′ and the hash HV M with the bind key PKBind obtained 

from H, in order to ensure that the secure token N′ is only available to H in a trusted state (11). 

Through the act of sending N′  encrypted with the public key PKBind  available to the trusted 

configuration of H, the security perimeter expands to include three parties: C itself, stateless TTP 

and node H in its trusted configuration. This has the implications that all actions performed by H in 

its trusted configuration are trusted by default.  

• Prior to launching the VM, node H decrypts N′ using the TPM-issued PrKBind, which is available 

to it in its trusted configuration but stored in the TPM; next H compares HV M obtained from the 

TTP with the hash of the provided VM image and accepts the image for launch only in case the 

values are equal (12).  

• Finally, H (13) injects N′ into the VM image prior to launching the VM.  

• To confirm a successful launch, H returns an acknowledgement to CC (14).  

• To verify that the requested VM image has been launched on a secure platform, C challenges the 

VM launched on host H to prove its knowledge of N′. Since N′ will become known to TTP, it 

should not be used as an encryption key. However, in the case when the TTP is implemented and 

operated by C, N′ could be used as a key to e.g. establish a secure communication channel (such as 

an IPSec tunnel) between C and the VM running on H (15)  

4.2.2  Security analysis  

As a result of the above protocol, the client C and the launched guest VM instance on node H have 

a shared secret N′ . C can then challenge its VM residing on H to check the knowledge of N′ . 

Returning to the security concerns of C, expressed in the requirements towards the trusted launch 

protocol formulated in chapter 3, they are addressed as follows:  
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• R1: The fact that a VM is running on a trusted platform is ensured by the properties of the bind 

key used to seal the shared secret N′ to the trusted configuration of host H;  

• R2: The fact that C is communicating with the VM launched on a trusted platform (and not a 

different generic VM running on an untrusted platform) is ensured by the possession of a secret 

token N′ encrypted with H’s PCR trusted configuration-bound TPM key and only available when 
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Figure 4.1: Trusted generic VM launch protocol[15] 

 
H it is in a certain configuration considered ’trusted’. Considering the fact that a change in the 

software stack of H would make N′ unavailable, C has a certain guarantee that the VM possessing 

N′ isrunningonatrustedplatform.  
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• R3: Integrity of the VM image is ensured through the verification performed by node H, which 

compares the VM image to be launched with the "expected" hash HV M , provided by the client. H 

must be running a trusted configuration at the time when it retrieves the generic VM image 

provided by the cloud platform through the image store in order to access the reference hash HV M 

• R4: Transparency of the trusted VM launch procedure is ensured by the introduction of client 

parameters, such as the URL of the TTP, the trust level of the VM host and the secret token 

generated by the client.  The ability to choose the TTP opens the possibility for the client to ensure 

the trustworthiness of the host attestation procedure, either through audit controls of the TTP or by 

itself serving the role of the TTP (in case the cloud service provider agrees to that).  

• R5: While the actual performance of the protocol depends on the specific implementation and 

must be verified in a realistic setting, the protocol does not display any elements that are, at least at 

this stage, known to not be scalable.  

Regarding the security of the client-generated secret N′, it is worth noting that throughout the course 

of the protocol, N′ has only been available in cleartext to C, (which generated it), TTP which has 

sealed it to H and finally H once considered to be in a trusted state.  

An additional advantage is the stateless nature of the TTP, which implies that it does not maintain 

knowledge of N′ except for the moment of sealing it to H. As a result, an attacker can only obtain N′ 

from TTP if they obtain TTP’s private key PrK′. However, it is assumed that TTP ensures the 

confidentiality of its private key. Furthermore, assessment of a hosts’ trust level according to a 

deterministic algorithms which only takes one two inputs (in the form of static set of reference 

measurement data and dynamic attestation calls from any H) will be easily traceable and 

reproducible based on the original input data, without the need to recreate or rely on a certain state 

of the TPP’s internal data. Finally, a stateless architecture of the TTP contributes indirectly towards 

requirement R5.  

By maintaining a minimalistic, transparent structure that relies only on the secrets created by the 

client, the TTP and the TPM, the protocol corresponds to Kerckhoff’s principle , according to which 

the security of a cryptosystem must not depend upon keeping the crypto algorithm secret, rather 

only depends on keeping the key secret. In order to further address requirement R4, all of the parties 

involved in the attestation process could log transactional information to inform the client about the 

progress of the trusted launch procedure. However, such functionality is not addressed in this thesis.  

4.2.3  Enhancement areas  

A potential vulnerability that requires attention is the post-launch modification of H’s software 

stack. The runtime process infection method, which is a method for infecting binaries during 

runtime is one of the malicious approaches that could be used in this situation. This scenario is in 

fact a common threat to all TCG-based systems, also touched upon in. A related attack strategy is 

described in detail in . However, such attacks are a common threat to all TCG-based systems and 

should be prevented using means within the platform which is part of the trusted computing base 

verified at boot time, the presence of which is verified by the above protocol.  
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From a client perspective, the secure launch protocol can be improved by reducing the number of 

steps that need to be performed prior to initiating the VM image launch. That would make 

implementations of the protocol more user-friendly and reduce the implementation efforts on the 

client side. However, we consider that the architecture of the current protocol does not contain any 

design decisions that make it impossible to further reduce during implementation stage the set of 

actions that need to be performed by the user.  
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CHAPTER 5  

Implementation Design  

 

 

5.1  Implementation model  

The trusted virtual machine launch protocol described in Chapter 5 was implemented using 

commodity hardware and software in order to practically verify the protocol’s implementability and 

performance. Several components are essential for the implementation of the above protocol, 

namely a cloud computing platform deployed on one or more hosts with at least one hardware TPM 

chip per compute host and network communication between the hosts.  In the current 

implementation we used two physical hosts, where one host ran an OpenStack Compute service and 

the other host ran the other required OpenStack services as well as the "Trusted Third Party" 

service. Communication between the nodes was established through a routed Ethernet connection 

over a Cat6 cable.  

5.1.1  Controller node setup  

The cloud controller was hosted on a Dell OptiPlex 170L with a Intel(R) Pentium(R) 4 CPU 

2.80GHz processor and 1 GB memory. No special hardware support was required, so a generic 

version of Ubuntu (Precise) 12.04 was installed. Devstack was used without any major 

modifications in order to install the nova-compute, nova-cert, nova-volume, nova-scheduler, 

novaconsoleauth and nova-network services on the controller node.  

5.1.2  Compute node setup  

The compute node was hosted a Dell PowerEdge 310 with a Intel(R) Xeon(R) CPUX3450, 

2.67GHz and 8 GB memory. The host was equipped with a TPM chip 1.2 Level 2 Revision 116 

model ST33TPM12LPC from STMicroelectronics and was installed with Ubuntu (Lucid) 10.04 

LTS which was subsequently upgraded to Ubuntu (Precise) 12.04 LTS. In order to enable support 

for TPM and integrity measurements, Trusted GRUB and Linux-IMA were additionally configured 

on the host.  

In order to enhance the standard GRUB into a version that offers TCG support, the Trusted GRUB 

patch for GRUB version 0.97 was installed. Generic Ubuntu 10.04 is shipped with GRUB version 

1.98, so GRUB was downgraded to version 0.97.  

The Linux Integrity Subsystem, implemented with Linux-IMA in kernel version 2.6.30 provides 

several integrity functions, namely: collect, store, attest, appraise and protect. Ubuntu 10.04 is 

shipped with the kernel version 2.6.32-25 which includes the IMA modules but does not have the 

IMA enabled by default. Thus, the kernel was recompiled with the option CONFIG_IMA in order 

to collect the runtime parameters measured by the TPM. The TPM software stack deployed on the 

compute node is visualized in figure 5.1  
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Figure 5.1: TPM stack deployed on the compute node[19] 

 

Devstack currently supports Ubuntu distributions 11.10 and 12.04, but a set of modifications was 

required in order to enable the multinode install of OpenStack.  The devstack installation script was 

configured to install the nova-compute and nova-volume services on the compute host.  

5.2 OpenStack 

5.2.1 OpenStack API 

OpenStack supports two user API interfaces, namely OpenStack API (currently at version 1.1) and 

the EC2 API, the latter being an open source implementation of the Amazon Elastic Compute Cloud 

API. A special Admin API is available in order to perform administration operations by privileged 

users.  

According to the notes from the OpenStack summit in December 2011, the EC2 API will eventually 

be deprecated; furthermore, the OpenStack API is being exclusively developed to reflect the 

OpenStack architecture and feature set. This makes the OpenStack API a more appropriate 

candidate to be used during the implementation of a trusted VM launch protocol.  
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5.2.2 Implementation considerations 

The fith release of OpenStack Nova ("Essex") was used for implementation of the above protocol. 

OpenStack Nova "Essex" was released on April, 5th, 2012. Throughout the protocol 

implementation, the following principles had prevailing importance for the implementation design:  

• Modifications to the underlying codebase (which consists of OpenStack Nova, OpenStack 

Horizon and a Python API client) were kept down to a minimum  

• The general encapsulation (here in the sense of transparency of operation related) principles 

observed in OpenStack Nova should be maintained. This implies maintaining separation of 

concerns between the OpenStack components, specifically relevant in case of implementing support 

for remote attestation and key sealing functionality on the compute nodes.  Additional functionality 

should not add unrelated functionality to modules other than the ones directly affected by the 

functionality.  

• Implementation of the trusted launch protocol should have minimal or ignorable effects on the 

performance on the system as a whole (i.e.  both in the case of trusted launch and standard operating 

mode).  

• Implementation-specific deviations from the above trusted launch protocol should not break the 

trust chain described in the protocol.  

5.3  Implementation design description  

By and large, the generic VM launch protocol does not require radical modifications to 

OpenStack’s codebase for implementation. Before a description of the proposed modifications to 

the codebase, several issues must be noted. First, the asynchronous, message-based architecture of 

OpenStack is essential for its scalability. Hence, in the process of launching a VM, all 

communication implemented as an RPC cast (typically until the compute is assigned and takes 

responsibility for the launch of the instance) should be maintained as such. Along with implications 

for the implementation design, this results in that a run instances call will return an 

acknowledgement from the scheduler after it casts the message to launch the instance on a selected 

compute node, before the actual VM is started. In case the VM launch will fail, the results will be 

displayed on the dashboard.  

Second, considering the above description of the available API implementations, the OpenStack 

API (rather than the EC2 version) will be used throughout the implementation.  

Third, in order to limit the performance hit of node attestation as much as possible, as well as 

encapsulate the tasks performed by respective components, it is suggested that the attestation 

procedure is done after the compute node has verified whether the instance is not already running 

and prior to the launch of the VM on the host.  

Fourth, detection of specific security vulnerabilities in the software stack of the compute host is out 

of the scope of this paper. Rather, the aim is to collect and provide dependable configuration 

information to an integrity appraisal party. It is assumed that such detailed information about the 

http://wiki.openstack.org/EssexReleaseSchedule
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software stack of a host is sufficient to assess whether the respective host can be included in the 

security perimeter of the client. Thus, evaluation of the host’s integrity is done by recalculating the 

hashes reported in the binary_bios_measurements and binary_runtime_measurements and 

comparing to respectively the boot_aggregate entry and the value of PCR10 .  

5.4 Proposed Trusted VM Launch Protocol Implementation 

In order to ensure that the study can be replicated, the maximum amount of details about the 

implementation have been provided below.  

A simple message sequence diagram for the implementation design is provided in figure 5.2  

5.4.1  OpenStack implementation model  

The implementation of the protocol in OpenStack requires changes on several levels of the 

platform. They are described in order from the user interface (dashboard) to the interface 

communicating with the TPM Interface (TPMI) middleware component.  

Horizon  

The Horizon dashboard has been modified in order to accept additional input from the user, namely 

an Attest host choice (1) for the user to select a trusted launch procedure, as well as a drop-down list 

for the Minimum accepted security profile on a scale of 1 to 10 (2).  In addition, an input field is 

available for the base64 encoded encrypted token generated by the client and denoted as TPK′ (3) 

and the URL of the preferred TTP (4).  The input method for the client-generated token is in itself 

less important and affects primarily the usability of the solution.  Alternative solutions, such as 

background daemons and browser plugins can be used to facilitate the trusted launch procedure. 

Serverside generation of client token is however not possible since in that case the cloud service 

provider would have the knowledge of the internals of the token during the token generation phase.  

Nova API  

The API interface of the Nova component required insignificant modifications through several 

modules in order to forward the client-generated token TPK′ , the attestation preference and the 

trust level preference from the client to the scheduler. The changes in Nova API can also be reused 

by other existing frontends (e.g.  the OpenStack command-line API or the Amazon EC2 API, that 

will however require certain modifications not covered in this thesis).  

Scheduler  

OpenStack Nova features a plugin scheduler architecture, which allows for simple modification of 

the scheduling mechanism as well as development of new schedulers. The schedulers available in 

the current "Essex" OpenStack edition are simple, chance, distributed scheduler, multi and vsa. The 

simple scheduler has been chosen for modification in this implementation.  

• According to normal behavior, the scheduler produces a list of eligible hosts to run the virtual 

machine. At this point, the trusted launch client choice is verified by examining (1).  
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• In case the client has requested a trusted VM launch, the scheduler performs a DB lookup to find a 

host with a security profile which is larger or equal than (2). OpenStack currently holds tables with 

per-host information, rather than per-tenant information, since per-tenant information would require 

integration with Keystone. The host security profile information will be pre-stored in the DB by the 

cloud service provider and made accessible to the trusted launch process. Failure to do so would 

effectively mean a denial of service, something which is not in the interest of the cloud service 

provider in this scenario’s attack model.  

• If the host, according to the information stored in the DB has a security profile which satisfies the 

requirements of the client, the scheduler sends an RPC call containing elements (3) and (4) to the 

host (i.e. to the nova-compute process of the host) to perform an attestation. If the security  
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Figure 5.2: Trusted generic VM launch implementation design[19] 
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profile of the host does not satisfy the client requirements, the scheduler will iterate through the host 

list until a suitable host H is found.  

• nova-compute performs an attestation using (3) and (4) according to the protocol described in 

5.4.2 and also in figure 5.3.  In case the attestation is successful, nova-compute returns to the 

scheduler the token received from the TTP, marked as {N′,HV M }PKBind .  

• Having enough information about the trust level of H and the encrypted token, the scheduler 

performs an RPC cast to H, in order to launch the requested VM.  

Compute  

At this point, H is part of the client’s security perimeter and is in a state which allows it to access 

the PrKBind stored in the TPM and as a result decrypt the token using TPMI. Appendix C presents 

the  run instance function in  /compute/manager.py, which performs a check on the VM instance to 

ensure that it has not already created and in case of a positive outcome obtains an IP address for the 

instance and finally spawns the instance.  The token decryption step is done after the call self. check 

instance not already created. Next, the nova-compute process on H performs the following steps:  

• Applies a hash function on the generic VM image obtained from the Glance component (offered 

by the cloud service provider)  

• Compares the hash with the reference value obtained from the client, HV M  

• If the hashes are identical, the client-originated nonce N′ is injected into the generic VM image 

and the VM is launched.  

5.4.2  Detailed Interaction with the TTP  

A call from compute/manager.py sends a call to a TPMI which initiates the communication with a 

TTP (having knowledge of the TTP URL) and the attestation procedure, as shown in Figure 6.3.  

• TPMI retrieves a pre-generated TPM keypair PKBind, PrKBind with the TSS command TPM 

CREATE KEY (0)  

• TPMI retrieves the TPM CERTIFY INFO structure, pre-generated with the TSS command 

CERTIFY KEY Both the keypair PKBind, PrKBind and the TPM CERTIFY INFO structure can be 

periodically regenerated by H according to a administrator-defined policy, using the current 

platform state represented in the TPM PCR (1)  

• TPMI will generate a nonce and send an attestation request call to the TTP (2), where it sends: the 

session nonce NSession, TPM public key PKBind, the encrypted token  

TPK′   and the attestation credentials:  TPM public bind key, and the TPM CERTIFY INFO 

construct along with its hash signed with the attestation identity key; the integrity measurement list 

and the attestation identity key are also sent:  PKBind,TPM CERTIFY INFO, {HTPM CERTIFY  

INFOAIK, IML,AIK − cert}  
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• On the TTP side, once a message from H is received, tcp listener spawns a ttp worker process (3).  

• ttp worker attempts to decrypt the token to verify whether the token was intended for it (4).  

• ttp worker validates the attestation arguments (TPM CERTIFY INFO, PKBind, verifies signature 

of PCR INFO) (5).  

• ttp worker parses the IML to evaluate the trustworthiness of the software stack on the host and 

assigns a security profile SP′′ based on the values of the IML (6)  

• ttp worker evaluates SP′′  ⋝ SP to identify whether the host platform H is trustable, i.e. fulfills the 

security profile requirements of the customer (7).  

• In case the host is trustable, ttp worker encrypts {N′,HV M }PKBind .  The size of the token is 

512 bits (a 256-bit nonce N′  and the 256 bit long SHA-256 hash of the VM image), which is 

significantly lower than a minimum RSA keysize of 1024 bits (the current implementation uses an 

asymmetric encryption key size of 4096 bits) (8).  

• ttp worker sends the reply token including the secret nonce obtained from the client and the hash 

 of the virtual machine to be loaded, encrypted with the bind key: {N′,HV M }PKBind ; the session 

 nonce NSession is also sent for session identification (9).  

Once TTP returns an acknowledgement to TPMI, it in turn decrypts the token {N′,HV M }PKBind 

using the TPM-stored private key PrKBind. Next, the function in TPMI sends a call to manager.py 

that injects the obtained N′ and continues the launch process. In case the attestation or sealing 

procedure fails at any point in time, or the call times out due to high load on the TTP, the process in 

manager.py exits with an exception.  

Implementation of TPMI  

In order to support the proposed protocol, the TPMI exposes the following public functions:  

• attest host/2 - should be called from manager.py in order to attest the host and obtain the  N′, HVM 

initiate attestation(URL ::string(),Token::string(),) -> {N’ , HV M } OR {error, Reason}internally, 

calls initiate attestation/2.  

• unseal/1 - function to unseal the TPM-key (PKBind) encrypted token received from TTP as a 

result of the attestation:  

unseal(Token::string()) -> {N’::string(), SP::integer(), HV M ::string()} returns the client’s secret 

nonce N′, security profile SP and the hash of the generic VM respectively. Other functions should 

not be exposed:  

• initiate attestation/2 - function to attest the host with a Trusted Third Party prior to a trusted VM 

launch:  
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initiate_attestation(URL ::string(),Token::string(),) -> {accepted, SealedToken} OR {error, Reason} 

the arguments are respectively:  

1. URL: the url of the TTP, obtained from the client;  
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Figure 5.3: Host to TTP communication[19] 
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2. Token:  encrypted token passed from the client, containing the nonce, security profile and  hash 

of the generic VM returns the tuple {accepted, SealedToken} OR {error, Reason}, where 

SealedToken is a token containing the client’s secret nonce N′ and the hash of the generic VM, all 

encrypted with the public key PKBind.  

This function can have the following structure (pseudocode):  

check TPM keychain if no keychain available call gen tpm keys/0 to generate TPM keychain  end 

try open_tcp_session_to_TTP(URL) send Token, IP to TTP, N, etc. receive confirmation of 

successful attestation and token {N’, HV M }PKˆBind catch tcp_session_failed -> 

propagate_to_dashboard:ttp_unreachablecatch attestation_failed -> 

propagate_to_scheduler:attestation_failed catch all -> abandon_launch after call unseal/1 to decrypt 

the token {N’, HV M }PKˆBind return {N’, HV M } | {error, Reason}  

• gen tpm keys/0 - calls underlying libraries to generate an asymmetric keypair from the TPM 

(using the TPM command TPM CREATE KEY). gen_tpm_keys() -> PKBind::string() returns an 

asymmetric Public Key, while the private key is kept in the TPM.  

• sign tpm keys/1 - signs the public key PKBind created by the TPM with the Attestation Identity 

Key, using the CERTIFY KEY TPM command. sign_tpm_keys(PKBind::string()) -> 

{HPKBindAIK::string(), HLockedPCR::string()} returns a token containing the public key PKBind 

signed with the TPM’s AIK and a hash of the PCR values to which the asymmetric key is bound. 

All of the methods described above, with the exception of attest host/2 should be kept private in 

order to minimize the coupling with other OpenStack modules and keep the internals of TPMI 

easily modifiable.  

5.4.3  Implementation of the TTP  

A prototype version of the TTP has been implemented for attestation purposes. It consists of the 

following components:  

• tcp listener a supervised process that accepts the incoming tcp connections, maintains the session 

and spawns ttp worker processes to process the attestation requests. For a production-quality 

implementation, "tcp listener" should be a scalable server capable of multiple concurrent 

connections, that is however not needed for the prototype.  

• ttp worker is the main process of the TTP. In particular, it has the following responsibilities:  

- decrypt the token TPK′ , in order to verify whether the token is addressed to the correct that  TTP.  

- Perform the validation and attestation based on the arguments received from the destination  host 

H  

- validate the TPM-issued credentials sent from the destination host.  

- Evaluate the security profile of the host based on the contents of the IML and the policy  stated in 

the IMA policy file;  
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- Decide the trustability of the host;  

- Perform other encryption operations needed to create the token containing the nonce N′ and  hash 

of the VM, all encrypted with the public key PKBind of H, denoted as {N′,HV M }PKBind .  

- Return a deterministic response with the result of the attestation to H.  

• ima parser verifies the contents of the IMA file received from H and recalculates the extension of 

the hashes according to the specification of TPM v1.2  

5.5  Implementation analysis  

The implementation described above in chapter 6 is mostly a description of the final result of the 

implementation. However, some knowledge has been obtained in the process of testing different 

approaches, tools and software configurations in order to implement the trusted launch protocol. 

This section contains information about the alternative tools and platforms considered, as well as 

motivation for some design decisions taken in the implementation phase.  

5.5.1  OpenPTS integration  

The possibility of using OpenPTS has been widely explored during the implementation phase of the 

project. OpenPTS is a proof-of-concept implementation of the Open Platform Trusted Services 

specification defined by the TCG. OpenPTS offers a range of features, such as reference manifest 

(RM) and integrity report (IR) generation from the integrity measurement log (IML), verification of 

the result report from IR and RM, validation engine based on a finite state machine model. The 

verification and validation capabilities of OpenPTS initially appeared to be applicable in the 

compute host integrity assessment segment of the protocol. However, an additional analysis 

concluded that OpenPTS does not contribute to the integrity validation model required by the 

protocol. In particular, OpenPTS does not have a network communication component and is 

designed to be deployed on the TPM-enabled host itself.  Thus, in order to be used in the 

implementation of the trusted launch protocol, the software would have to be extended to support 

remote host attestation. Furthermore, OpenPTS introduces an unnecessary layer of complexity 

particularly through the use of policy documents that determine the conformity of the hosts’ PCR 

measurements to set of finite state machine (FSM) models provided by the software.  However, 

OpenPTS currently lacks any support for the update of the provided FSM models. Considering the 

reasons stated above, as well as in an attempt to maintain the simplicity of the implementation 

design, it was decided to exclude OpenPTS from the TPM software stack used in the OpenStack 

deployment. Furthermore, it must be noted that OpenPTS lacks any kind of support in versions 

newer than Ubuntu 9.04 which resulted in a set of incompatible dependencies when attempting to 

install on Ubuntu 10.04 or 12.04. : 
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Figure 5.4: Host attestation call from the scheduler; ’CW’ stands for "Compute Worker"[25] 

5.5.2  Platform choice and supported software  

The decision to use Ubuntu long term support (LTS) versions 10.04 and 12.04 has proven beneficial 

for the implementation phase, due to both the relative stability of the LTS Ubuntu releases, as well 

as the support for OpenStack available in Ubuntu 12.04 LTS. Furthermore, Devstack support for 

Ubuntu 12.04 made the deployment of a multinode OpenStack environment significantly easier.  

Alternatives were primarily distributions of Fedora core (Fedora 12, Fedora 16) as well as other 

versions of Ubuntu which have certain support from both the OpenStack and the TPM-TCG 

communities. On the other hand, installation of GRUB-IMA was made significantly more difficult 

by the fact that support for GRUB-IMA is only available for GRUB-0.97, which has been 

discontinued and is no longer shipped since Ubuntu version 9.04. Thus, while LINUX-IMA, tpm-

tools and support for OpenStack are largely available in the latest LTS distributions of Ubuntu 

(10.04, 12.04) the lack of support for GRUB-IMA in the current version to GRUB (v1.98) is a 

significant barrier to the deployment of the protocol across TPM-enabled hosts.  

5.5.3  Protocol implementation  

Translation of the platform-agnostic trusted launch protocol described in Chapter 5 into an 

OpenStack specific implementation did not require any significant changes in the protocol 

sequence. An exception in this case is the communication between the nova-scheduler and the 

TPMI component. Thus, according to the protocol the compute host is the OpenStack 

communication endpoint which communicates with TTP through the Cloud Computing Platform - 

TPM integration module, TPMI However to account for the specifics of the OpenStack architecture, 

the scheduler performs an initial call to attest a selected host and retries in case the host could not be 

validated by the TTP. Once the host has been declared trusted by the TTP the scheduler transfers 

the VM image and the N′,{HV M }PKBind  token obtained as a result of successful host attestation.  
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This protocol adaptation can be seen as an optimization rather than a strict implementation 

necessity. The benefit of deciding the trustworthiness of the host at the scheduling step is that in 

case the TTP does now acknowledge the host as trusted, or the trust level is below the one required 

by the client, the scheduler will be able to retry the operation with a different host, as shown in 

figure 6.4.  

 

Figure 5.5: Host attestation call from the scheduler; ’CW’ stands for "Compute Worker"[25] 

Had the protocol been implemented without modification, as shown in figure 6.5 the scheduler 

would not be able retry the launch operation. That is because the VM launch call from the scheduler 

to the compute worker is asynchronous (followed by returning an ’ok’ acknowledgement to the 

dashboard, while the verification of whether the launch has actually succeeded or not occurs later, 

in a separate process. Thus, in the current implementation of OpenStack, the scheduler looses the 

control over the launch process at the point of calling the compute worker. Therefore, it has been 

decided to maintain the ability of the scheduler to retry the launch in case the host does not pass the 

TTP attestation process. An additional benefit is that the VM image will not have to be transferred  

to the host until after it has been included in the client’s security perimeter. Note that this does not 

compromise the security features of the trusted launch protocol, since the bind keys are generated 

for the specific host being attested and only a trusted host has the ability to decrypt the TTP token 

containing the client secret and the bind keys.  

5.5.4  IMA measurement verification  

As mentioned in chapter 2, the Linux-IMA kernel module, together with the GRUB-IMA patch 

supports the collection of runtime measurements throughout the boot sequence of the host. The 

measurements are collected on a granular, per-file level throughout the booting sequence. The 

measurements represent hashes of the contents of the loaded or executed datafile, along with a 

template hash, containing the name of the datafile. This data is both used in the calculation of the 

hash used to extend PCR10, as well as stored in ASCII format and binary format for subsequent 
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verification and validation. Appendix B contains a more detailed description of the contents of the 

IMA measurement files.  

While the number of entries in the measurement list can vary, the booting of Dell PowerEdge T310 

running Ubuntu 12.04 resulted in 4304 measurement entries. The integrity of the entries were 

verified by the Trusted Third Party prototype, using the trusted computing principles implemented 

in the IMA test programs, part of the Linux Test Project. The host integrity verification consisted of 

two distinct steps:  

1. Re-calculate the boot aggregate based on TPM’s binary bios measurement provided by the host, 

 and compare it with the boot aggregate entry of the ascii runtime measurement.  The two values are 

expected to be identical.  

2. Re-calculate the aggregate of the measurements stored in the binary runtime measurement file 

 and compare it with the entry stored in PCR10. The two values are expected to be identical.  

A failure to match the "expected" hash value at any stage automatically implied a failure of the 

attestation process. However, it must be noted that a separation of measurements into bios 

measurements and runtime measurements provides additional granularity that allows to determine 

at which stage of the boot process the configuration of the host diverged from the expected 

configuration.  
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CHAPTER 6  

Conclusion  

 

6.1  Thesis goals and process  

Broadly considered, the aim of this thesis has been to examine the possibilities to increase security 

(in its broadest sense - confidentiality, integrity, availability) of virtualized environments in public 

cloud computing. Three domains - trusted computing, cloud computing and virtualization 

technology were included in the background study phase.  While each of the three domains is 

actively evolving as a result of large numbers of industry and academic contributers, trusted 

computing had the advantage of being thoroughly specified and documented in detail. The security 

concerns that hamper the increased adoption of cloud computing abound, so this thesis has focused 

on establishing trust in the VM launch stage in a cloud computing environment.  Based on that, two 

propositions regarding control over the integrity of the host and integrity of the launched VM image 

were formulated in chapter 3.  In order to address the goal of building a chain of trust throughout 

the lifetime of a VM instance in a cloud computing environment, the launch phase of a virtual 

machine instance was closely reviewed in order to identify the means to address the two formulated 

propositions. A platform-independent trusted generic virtual machine launch protocol that would 

address the issues in both propositions (integrity verification of the VM host and of the launched 

VM image) was designed in an iterative approach. While the protocol is considered platform-

independent in terms of the applicable cloud computing platform, it relies heavily on the 

functionality provided by the Trusted Platform Module v1.2.  

In order to verify the implementability of the protocol and identify potential areas of improvement, 

a detailed applied implementation design has been developed based on the OpenStack cloud 

computing platform.  

As a result, the thesis has achieved its aim by designing and implementing a trusted launch protocol  

for generic VM instances in public cloud computing environments, something which can be seen as 

a contribution towards a more secure virtualized cloud computing environment. The result fulfills 

all of the requirements defined in the problem statement of the thesis. However, the test 

infrastructure for the evaluation of the protocol performance and scalability is currently in a 

development phase, hence no such results are available.  

In a broader sense, the thesis has addressed trust issues within virtualization environments in public 

cloud computing. The results of the thesis can be seen as a first contribution towards an 

implementation of a trusted generic VM launch protocol using an open source cloud computing 

platform.  

In contrast with the background study and the platform-agnostic protocol design, the 

implementation  
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phase of the thesis has been more iterative and exploratory. On the one hand, that is due to the 

immature state of the trusted computing software stack (unstable both in terms of software quality 

and in terms of support for the current versions of Linux-based operating systems distributions). On 

the other hand, the reason was partly due to the rapid development of OpenStack and introduction 

of new features and bugs introduced as a result.  

Contribution analysis  

The overall contribution on the thesis has both a theoretical and a practical aspect. An overview of 

the state of the art of security aspects in cloud computing and a detailed trusted launch protocol for 

generic VM launch in cloud computing environments can be named as the theoretical contributions.  

Two practical contributions are included, namely a detailed design for the implementation of the 

launch protocol in OpenStack and an ongoing implementation (the results of which will be reported 

in an updated version of this document). The detailed implementation design can be used in order to 

directly implement the protocol in a deployed OpenStack environment. The results of the 

implementation of the protocol will be provided in an updated version of this paper, along with a 

performance evaluation of the protocol once the implementation phase is concluded.  

Several findings of the thesis should be named. First, trusted computing can be used to address 

some of the security concerns in cloud computing within the security model of an untrusted cloud 

service provider. However, a set of assumptions, such as e.g. availability of physical access to the 

data center must be fulfilled in order to ensure a trusted VM launch in a public cloud computing 

environment.  

Secondly, while open source cloud computing systems are in active development (something which 

presents both challenges and opportunities), support for trusted computing from large chip 

manufacturers, such as Intel and AMD, as well as support for cloud computing platforms from open 

source operating system vendors facilitates the application of trusted computing capabilities into 

cloud computing.  

The results of this thesis make a case for broadening the range of use cases for trusted computing by 

applying it to cloud computing environments.  Trusted computing, when applied correctly with 

certain assumptions satisfied, can offer the capabilities to securely perform data manipulations on 

remote hardware owned and maintained by a third party with a minimal risk for data integrity.  

While the introduction of a trusted VM launch protocol can be seen as a contribution towards an 

opinion shift in the industry regarding trusted computing, it must be complemented by secure and 

trust-maintaining implementations of other frequently used cloud computing operations, such as 

VM migration, suspension and deletion, data storage, secure credentials management, etc.  
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6.2  Recommendations and future research  

While the secure launch protocol proposed in this thesis only covers a single use case within 

provisioning of VM instances in a public cloud computing environment, it is nevertheless a first 

step towards bridging the gap between developments within trusted computing, virtualization 

technology and cloud computing platforms.  The results of the current thesis (both the platform-

agnostic trusted VM launch protocol and the implementation design for OpenStack) can be 

extended, improved and applied in the process of developing a trusted virtualized environment 

within a public cloud computing service.  

However, future research on the topic is needed in order to address the assumptions and 

shortcomings of the current thesis. Such future research can be grouped into three categories. The 

first category broadly includes enhancement of the proposed trusted VM launch protocol and 

extension of the trust chain to other aspects of cloud computing. For example, application of trusted 

computing to develop trusted protocols for other VM instance operations (migration, suspension, 

etc.), data storage and virtual network communication security. Another aspect where trusted 

computing could be applied is maintaining the confidentiality and integrity of user updates to VM 

instances. Furthermore, benchmarking and performance evaluation of the trusted launch protocol 

under different circumstances need to be examined further.  

Topics in the second category have a more narrow scope, focusing on enhancing the proposed 

trusted launch protocol and addressing the shortcomings and assumptions it relies on. In particular, 

the proposed protocol assumes that the configuration of the host is not changed after the trusted 

launch of the VM instance. However, even in the case of a bona fide cloud service provider, the 

host of the VM can be compromised using runtime process infection. Hence, a technique to enable 

the client to either directly or through mediated access discover such events and protect the data 

used by the VM instance is a promising research area.  

The third category includes topics that address the question of using the attestation results, namely 

the design and implementation of the evaluation policies of the trusted third party. The current 

assumption is that the trusted third party has access to information regarding "secure" 

configurations and the PCR values that hosts with such configurations should present. However, if 

one is to take into account the diversity of available libraries, as well as the different combinations 

in which they can be loaded during the boot process, then verification of the PCR values (especially 

the values stored in PCR10 and the reference values in binary runtime measurements becomes a 

less trivial task.  

The immediate future steps of the current project will focus on finalizing the prototype 

implementation, performance evaluation of the proposed protocol and publication of the source 

code on a widely available web resource.  
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