
University of Business and Technology in Kosovo University of Business and Technology in Kosovo

UBT Knowledge Center UBT Knowledge Center

Theses and Dissertations Student Work

Fall 9-2016

Virtual Networks Comparison Solutions for Community Clouds Virtual Networks Comparison Solutions for Community Clouds

Adnan Lupçi
University for Business and Technology - UBT

Follow this and additional works at: https://knowledgecenter.ubt-uni.net/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Lupçi, Adnan, "Virtual Networks Comparison Solutions for Community Clouds" (2016). Theses and
Dissertations. 1180.
https://knowledgecenter.ubt-uni.net/etd/1180

This Thesis is brought to you for free and open access by the Student Work at UBT Knowledge Center. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of UBT Knowledge Center. For
more information, please contact knowledge.center@ubt-uni.net.

https://knowledgecenter.ubt-uni.net/
https://knowledgecenter.ubt-uni.net/etd
https://knowledgecenter.ubt-uni.net/student
https://knowledgecenter.ubt-uni.net/etd?utm_source=knowledgecenter.ubt-uni.net%2Fetd%2F1180&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=knowledgecenter.ubt-uni.net%2Fetd%2F1180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledgecenter.ubt-uni.net/etd/1180?utm_source=knowledgecenter.ubt-uni.net%2Fetd%2F1180&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:knowledge.center@ubt-uni.net

College UBT

Department of Computer Science and Engineering

Virtual Networks Comparison Solutions for

Community Clouds

Student: Adnan Lupçi

September 2016

Prishtinë

College UBT

Department of Computer Science and Engineering

Bachelor Thesis

Academic Year 2012-2016

Student: Adnan Lupçi

Virtual Networks Comparison Solutions for Community Clouds

Mentor: Fisnik Prekazi

September 2016

This Thesis was prepared and submitted in partial fulfillment of the

requirements for the Bachelor Degree

i

Abstract

Cloud computing has a huge importance and big impact nowadays on the IT world. The idea

of community clouds has emerged recently in order to satisfy several user expectations.

Clouds are distributed technology platforms that leverage sophisticated technology

innovations to provide highly scalable and resilient environments that can be remotely utilized

by organizations in a multitude of powerful ways. To successfully build upon, integrate with,

or even create a cloud environment requires an understanding of its common inner mechanics,

architectural layers, and models, as well as an understanding of the business and economic

factors that result from the adoption and real-world use of cloud-based services. Albanian

Cloud Community is an Albanian project that aims to provide a design and implementation of

a self-configured, fully distributed, decentralized, scalable and robust cloud for a community

of users across a community network. One of the aspects to analyze in this design is which

kind of Virtual Private Network (VPN) is going to be used to interconnect the nodes of the

community members interested in access cloud services. In this thesis we will study, compare

and analyze the possibility of using Tinc, IPOP or SDN-based solutions such as OpenFlow to

establish such a VPN.

ii

Acknowledgements

This thesis would have been incomplete without the contributions of the following people.

First and foremost, I would like to express my sincere gratitude to my mentor prof. MSc.

Fisnik Prekazi who despite his busy schedule devoted a great deal of time in supervising me.

Thank you very much for your constant confidence and encouraging support throughout the

process of writing this thesis. I will also have to show appreciation to the management of the

department of Computer Science for the period of my Bachelor studies here at University of

Business and Technology – UBT in Prishtina.

Lastly, I am very grateful to my Family, who always expressed full hope and encouragement

toward me. Without their support, this thesis would prove unsuccessful.

Prishtinë, 02 September 2016

Adnan Lupçi

1

Table of Content

Contents
1. Introduction .. 4

2. Literature Review ... 6

2.1 Cloud Computing ... 6

2.2 Community Clouds .. 6

2.3 Virtual Private Networks .. 8

2.3.1 Tinc VPN .. 9

2.3.2 IPOP .. 10

2.4 Software-Defined Networks ... 11

3. Problem Statement .. 14

3.1 Goals .. 14

4. Methodology .. 15

5. Case Study .. 16

5.1 Solutions Study ... 16

5.1.1 Tinc VPN .. 16

5.1.2 IPOP ... 18

5.1.3 SDN .. 21

5.1.4 Feature Comparison Table .. 21

5.2 Tinc and IPOP Evaluation .. 22

5.2.1 Tinc Test .. 22

5.2.2 Fault tolerance .. 23

5.2.3 Resource Consumption ... 23

5.3 IPOP Tests .. 23

5.3.1 Latency added ... 23

5.3.2 Fault Tolerance .. 25

5.3.3 Join/Leave ... 25

5.3.4 Resources Consumption .. 25

5.4 Evaluation Outcome ... 26

2

6. Conclusions and future work .. 28

6.1 Conclusions .. 28

6.2 Future Work ... 29

6.2.1 Evaluation on bigger scenario ... 29

6.2.2 Configuration server in Tinc .. 29

i. IPOP bootstrapping node improvements .. 30

7. References .. 31

8. Appendix A: IPOP Deployment Scripts ... 33

List of figures

Figure 1 : Architecture of Public Cloud vs Community Cloud .. 7

Figure 2 :VPN Tunnel over Internet.. 9

Figure 3 :Ring topology of IPOP VPN. (source: slide 14 of ”Peer-to-peer Virtual Private Networks and

Applications” by Renato Figueiredo).. 11

Figure 4: Software-De_ned Network Architecture. (source: opennetworking.org) 12

Figure 5: Schema of Tinc testing environment .. 18

Figure 6: Schema of IPOP testing environment ... 20

Figure 7: Screenshot of the network crawling tool included in IPOP .. 20

Figure 8: Tinc evaluation: Graph showing different ping times in milliseconds for a period of 30

seconds ... 22

Figure 9: Tinc and IPOP ping times. .. 26

3

Abbreviations

ARP Address Resolution Protocol

CN Community Network

DHCP Dynamic Host Configuration Protocol

DHT Distributed Hash Table

ICT Information & Communications Technology

IPOP IP Over P2P LAN Local Area Network

NAT Network Address Translator

P2P Peer To Peer

QoS Quality of Service

RTT Round Trip Delay

SDN Software Defined Network

STUN SessionTransversal Utilities for NAT

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

VLAN Virtual Local Area Network

VM Virtual Machine

VNI Virtual Network Interface

VPN Virtual Private Network

4

1. Introduction

In the last years cloud computing has been rising incredible popularity and becoming an

ordinary working tool for many people and companies. Many businesses use cloud services

offered by big companies such as Amazon or Google. Meanwhile, another model of network

infrastructure has been slowly emerging: community networks (CN). This kind of network

focus on satisfy a community’s demand for ICT services and Internet access.

A community cloud is based on a community network. Existing CNs offer free services to

community members such as e-mail or web space, nonetheless, they lack many other features

and services like storage or media streaming applications. Also, most of existing services lack

elasticity, scalability and reliability needs. The need of these services and features evolved to

the idea of creating community clouds using the already proven and tested infrastructure of

community networks. An example of a community network is guifi.net : a WiFi community

mesh network mainly deployed in Catalonia with more than 50946 operational nodes, 31978

of which working nodes, and more than 58.304,1 km of links [1].

The main difference between community clouds and public or private clouds is that

community clouds are distributed among the participating users/entities without the need to

rely on any other third parties [2]. Furthermore, community clouds have many benefits

including increased privacy and security while also introducing challenges to face such as the

heterogeneity and dynamism of the network itself. The design and creation of the community

cloud is a big step because many things have to be changed to get the idea of a ”cloud”

working. One of the problems that have to be solved is the way nodes communicate among

each other and offer services discovery and sharing, therefore, which virtual network software

we can use to do so. This private network has to be decentralized and it has three main

requirements: scalable, robust and self-configuring. It has to be scalable due to the unknown

number of members of the community; a community can be formed by a few members such

as in a building or it can have many more like in a small town. Also, it has to be robust and be

able to manage join/leave/fail of nodes because the topology is very dynamic due to the

continuous change of the number of users.

Lastly the virtual private network has to be self-configuring or easy to configure. In many

cases the end-users of community clouds will not have the knowledge to establish difficult

connections, therefore having an easy to configure with the minimum participation of the user

it is also an important feature. Furthermore, we have to take into consideration the dynamical

behavior of the network and how it can be constantly changed with new links joining the set

5

of nodes and other leaving/failing. In this project we will study and analyze different solutions

to find the best way to automate neighbor discovery, enable self-configuration of the nodes in

a scalable and robust virtual network. There are many VPN solutions that could accomplish

these requirements such as: OpenVPN [3], FreeLan [4] or PeerVPN [5]. However, in this

thesis, the analysis is done with three specific solutions: Tinc VPN, IPOP, and OpenFlow; and

an evaluation and comparison is done between Tinc and IPOP.

Firstly, Tinc is chosen because it is already used in Community networks such as FreiFunk 2

[6]. Tinc is an overlay based VPN solution used to interconnect nodes in a private network.

Tinc is a scalable, stable and reliable, with easiness of configuration, and flexible P2P VPN.

Secondly, another overlay solution for VPNs would be to use IPOP virtual network [7]

because it is a quite new solution which, not only fits all the requirements , but only has some

advantages such as self-optimizing connections or decentralized NAT transversal. IPOP

creates a virtual network which supports the deployment of IP-based protocols over a self-

configuring and robust P2P overlay. Lastly, we consider the possibility of using the newest

and more powerful technology: SDN, more precisely OpenFlow software but only in a

conceptual way due to its complexity. The goal of this thesis is to help in the decision of

which network virtualization technology could be best used in Community Clouds and more

specifically for the Albanian Could Community Project. The Albanian Cloud Community

project is a project that is meant to be funded by Albanian and Kosovo government as well as

diaspora and it aims at helping Albanian community around the world in bootstrapping,

deploying, running and expanding community owned networks in an easy way to provide

community services and create a community cloud.

6

2. Literature Review

2.1 Cloud Computing

To understand community clouds first the concept of cloud computing has to be explained.

Cloud computing is a set of concepts and technologies that involve a larger set of computers

connected over a private or public network (internet). With cloud computing we can run

programs or applications on a distributed way and remotely. Cloud computing in many cases

let the companies or users increase capacity or add capabilities on the fly without investing in

new infrastructure, training new, or paying new software licenses. Nowadays, the term ”cloud

computing” is mostly used to provide hosted services on the internet. We can distinguish

basically four different services that current cloud providers offer: PaaS (platform as a

service), IaaS (infrastructure as a service), SaaS (software as a service) and finally HaaS

(hardware as a service). Cloud users have access to cloudbased applications via a web

browser, a thin client on their machine or a smartphone app because the software logic and

user’s data are stored on remote servers. Examples include Amazon web services and Google

App engine which allocate space for a user to deploy and manage software ”in the cloud”.

Usually, the term ”cloud computing” refers to hosting services that run client server software

at a remote location. Some examples include Google App Engine or Amazon web services

which let the user allocate space for to deploy, run and manage all kinds of software in the

cloud.

2.2 Community Clouds

There are three main architectures of clouds: public, hybrid and private. In public clouds

everyone who is willing to pay for it or in some cases free can use them. In private clouds

only the people from that domain or company can use the cloud, increasing the security of it

regarding the access from the public network and making its management easier. When we

merge or interconnect these two kinds of clouds then we get an hybrid cloud. In the last past

years, people has been increasingly worrying about security, privacy, efficiency and

environmental sustainability while using public cloud services of the biggest companies such

as Google or Amazon [11]. Also, the high individual costs for an individual to access internet

nowadays has increased the number of people who have been deploying community networks

to share internet access. For these reasons the concept of community cloud emerged, allowing

a community to create and manage its own cloud infrastructure in addition to optionally

sharing internet connection. This also brought up more challenging issues regarding security,

privacy and networking in such shared environments.

7

Figure 1 : Architecture of Public Cloud vs Community Cloud

In a more conceptual way, a community cloud has five main features that differentiate it from

public/private clouds:

• Openness: It removes the dependence on vendors which makes the community cloud

an open cloud, and therefore it is a dimension in the open versus proprietary discussion

[12] that has emerged in many other fields such as code, standards, and data, but has

not been explored in hosted services until now.

• Community: A community cloud is not only a technological structure, it is also a social

structure made by the community of individuals.

• Sustainability: Because the community cloud makes use of user machines which are

much more energy efficient than vendor clouds data centers it has less impact on the

environment.

• Graceful Failures: A community cloud is not owned or controlled by any private or

public organization, and therefore it is not dependent on the failure or decisions of

such. It is more robust, resilient to failures and immune to the whole-system failures

compared to standard clouds providers because of the different kind of nodes and

decentralized architecture. If it fails it will be non-destructively, and with low

downtime because the other nodes compensate the nodes which fail.

• Control and management: Unlike vendor clouds, a community cloud has no problems

on deciding which things can control the user and which it can not, because it is owned

by the community, the decisions and management is done and decided on a democratic

way.

A community cloud architecture could follow a fully distributed set of nodes where each one

acts as consumer and producer, allowing the possibility of having a lot of services distributed

among all the members of the community. In January 2016, a new project meant to be funded

by Albanian and Kosovo Governments as well as Albanian diaspora called Albanian Cloud

8

Community Project started to research about how we could create a low-powered devices

community cloud.

The Albanian Cloud Community Project is based on the idea of community networking, also

known as bottom-up networking which is an emerging model for communities of citizens so

they can build, operate and own their own open IP-based networks. This project aims to build

cloud infrastructure in community networks allowing groups of citizens to bootstrap, run and

expand community-owned networks on the creation of a community cloud which offers

services. To do this, some challenges appear to make possible the creation of a self-managing

and scalable decentralized infrastructure which allows the management and aggregation of

many and widespread low-cost networking devices, cheap storage solutions and home desktop

computing resources. Also, it has to provide a distributed platform services that makes easier

the design and operation of elastic, resilient and scalable services for end-users which

provides good quality of experience at a low cost and sustainable way. Furthermore, the cloud

system developed by Albanian Cloud Community is dynamic, therefore is resilient to the

instability of the community network, which is by nature erratic and uncertain.

2.3 Virtual Private Networks

A virtual private network establishes a secure private network across a public network. It uses

Virtual Network Interfaces for the connection which are an abstract virtualized representation

of a computer network interface that may or may not correspond directly to a physical

network interface. Nowadays, common uses of VPNs include securing access to enterprise

network resources from remote/insecure locations, connecting distributed resources from

multiple sites, and establishing virtual LANs for uses such as multiplayer video games and

media sharing over the Internet. In our case, in community clouds this is necessary because

each node has its own public IP address and we need to create a private network to share

resources and services between virtual nodes and to improve the security and privacy of the

network creating tunnels among the nodes.

9

Figure 2 :VPN Tunnel over Internet.

Usually, we separate mainly two different types of VPNs: LAN to LAN and Remote access.

On LAN to LAN VPNs, a device such as router, firewall or concentrator terminates both ends

of the connection. On Remote access, there is a piece of software installed on a PC/Laptop on

one end and the other end would be established into a router, firewall or concentrator. Also

VPNs can be distributed depending on which OSI layer they work on or whether they are

centralized (e.g. OpenVPN) or decentralized (e.g. IPOP).

In general terms, a VPN works doing the following steps:

• Set up a Virtual Network Interface (VNI)

• Set up a tunnel to another computer/router

• Get any traffic coming from the VNI

• Encrypt the traffic and send it over the tunnel

• The receiver reads the information received.

2.3.1 Tinc VPN

Tinc is a Virtual Private Network daemon that uses tunneling and optional encryption to

create a secure private network between hosts on the Internet. Tinc is free open source

software and licensed under the GNU General Public License version 2 or later. Since this

VPN works at the IP level network (layer 3) as a normal network device, there is no need to

adapt existing software. This allows VPN sites to share and send information with each other

over the public Internet on a secure way without exposing the information to others. In

addition, another features of Tinc are:

• Encryption, authentication and compression.

• Automatic mesh routing and fully decentralized management.

10

• Easily expandable VPN. • Ability to bridge Ethernet segments.

• Runs on many operating systems and supports IPv6.

Tinc is currently used for the management network of Confine and in Community Networks

such as FreiFunk. In the case of community clouds, the use of Tinc could be done in layer

two. Some points in favor of layer two are that all the nodes are in the same collision domain

and we can make use of broadcast and multicast packets, avoid NAT translation problems.

Mind that service discovery software like avahi works on this layer. On the other hand, layer

two VPN introduces more traffic on the network due to the Address Resolution Protocol

(ARP) which continuously broadcasts packets that reach every node in the virtnetwork[2,3]

2.3.2 IPOP

IPOP open-source project provides a decentralized and distributed overlay virtual network.

IPOP is architected as a peer-to-peer (P2P) overlay which allows tunneling and routing of

encapsulated IP packets that are captured and injected into virtual network interfaces created

on the nodes. This P2P networks is self-configurable and it makes use of fully decentralized

DHCP requests and Distributed Hash Table, allowing user mobility, scalability and

robustness.

The use of P2P routing to overlay virtual IP traffic differentiates IPOP from existing network

virtualization solutions in the following properties:

• Resiliency: P2P networks are robust even under high node failure rate. IPOP overlay

dynamically adapts routing of packets as nodes fail or leave the network meaning that

autonomously deals with joins/leaves and failures.

• Accessibility: IPOP doesn’t need a dedicated STUN or STUNT server to cross NAT or

Firewalls. Each overlay node can provide the functionality to detect NATs and their

subsequent transversal.

• Scalability: P2P network overlay allows a large number of nodes because routing

information is naturally self-configured, decentralized, and dynamically adaptive in

response to nodes joining/leaving.

• Self-optimizing: It autonomously forms 1-hop connections between nodes which

frequently communicate at the virtual IP layer. It also trims on-demand edges no

longer in use.

11

The IPOP architecture relies on a virtual network interface (tap) that captures and injects IP

packets and a P2P routing substrate that encapsulates, tunnels and routes packets within the

overlay. This is possible because IPOP makes use of the Brunet P2P library. Brunet library

provides core services of routing, object storage and lookup, and overlay connection

management. It also supports multiple protocols (UDP, TCP and tunnels) and NAT traversal.

The topology relies on a bi-directional ring ordered by 160-bit IPOP IDs with close and

distant connections. See figure 3. some of the characteristics of this ring includes:

• Overlay edges: Multiple transports: UDP, TCP, TLS

• NAT traversal (UDP hole-punching): Greedy routing

• Deliver to peer closest to destination IPOPid: Constant number of edges per node

• On-demand edges: Created/trimmed down based on IP communication

Figure 3 :Ring topology of IPOP VPN. (source: slide 14 of ”Peer-to-peer Virtual Private Networks and Applications” by

Renato Figueiredo)

Another interesting property is that one P2P overlay can multiplex more than one VN by using

different namespaces. This feature gives among others the community cloud the ability to

create different VNs for different services or applications.

2.4 Software-Defined Networks

The installation and configurations of networks usually requires skilled people adept at

configuring many network elements such as routers, switches, etc. If we have a very complex

network context, an optimal configuration is difficult to achieve and changes on the network

12

require a lot of work. To support this, a new network model was born with the idea of separate

data and control plane and control the network behavior from a logically-centralized single

high-level controller.

SDN focuses in 5 key features:

• Control and Data plane are decoupled

• A centralized controller that has a global view of the network which allows the creation of

complex topologies (e.g. hierarchical, multi-tier architectures) that are impossible to

achieve via VPN technology

• Open interfaces between the devices in the control plane (controllers) and those in the

data plane

• External application can program and manage the underlying network

• In addition to providing connectivity between virtual nodes it allows full control of the

network components such as routers, firewalls, subnets, dhcp server, etc.

Figure 4: Software-De_ned Network Architecture. (source: opennetworking.org)

The term software-defined networking (SDN) has been emerging in the last years. However,

the concept behind SDN has been evolving since 1996, it started by the desire to provide user-

controlled management of forwarding in network nodes [13]. Many implementations have

been done by research groups and companies but the most interesting appeared in 2007:

OpenFlow. SDN is not, however, limited to any one of these implementations, it is just a

general term to refer to this kind of platform.

13

OpenFlow enables entries in the Flow Table to be defined by a server external to the switch. It

provides an API with an standard interface for programming the data plane switches and it

requires an OpenFlow controller.

An advantage of using OpenFlow SDN for clouds is the topology optimization or ability to

create more complex topologies, control logic is not tied to hardware and the networkwide

view makes easier to infer network behavior.

Also, some challenges arise with the use of OpenFlow:

• Scalability: controller responsible for many nodes

• Security/reliability: Controller fails or its compromised

• Specialized/extra Hardware should, in some cases, be required

14

3. Problem Statement

The idea of this thesis emerged when I was thinking of the network requirements and design

for a community cloud and I experienced this problem: Which is the best option to create a

decentralized VPN among the nodes of a Community Network which is self-configuring,

robust and scalable? In this work three types of VPN solutions are considered as possible

solutions to the aforementioned problem, Tinc, IPOP and SDNs. The purpose of this project is

to enumerate and compare the features of each solution while also providing a performance

evaluation of IPOP and Tinc which are currently considered the most effective VPN solutions.

3.1 Goals

• Comparison between VPN technologies which will serve the best the project is terms

of configuration

• Comparison between VPN technology which would best suit in project in terms of

scalability and robustness.

15

4. Methodology

The main part of the research for the thesis will be based on the Case Study. In the thesis we

have also used comparatives methodology for the purpose of analyzing various technologies

and techniques for cloud computing, community clouds, virtual private networks, Tinc VPN,

IPOP and SDN.

Extensive secondary research will be conducted. Acknowledged texts, standards documents,

industry periodicals and white papers, analysts’ reports and conference journals will be

referenced. A critical analysis of the secondary research is applied in the formulation of the

roadmap and framework proposed.

The data for this research will be collected from statements about privacy policy, acceptable

use policy, terms of use and service level agreements available from the websites of the

equipment vendors. In case of any such information missing from the websites, similar

information will be sought via internet research of whitepapers, press releases and news

articles on cloud computing, community clouds, virtual private networks, Tinc VPN, IPOP

and SDN.

16

5. Case Study

To The concept of community clouds is relatively new and lacks sufficient background

research. However, some researchers have studied the architecture of community clouds using

concepts of the intercloud, which is the creation of a community cloud interconnecting already

existing small clouds [2]. Also, related to community networks we can find papers suggesting

different topologies for community networks, more precisely in Guifi.net [8]. One of the most

interesting related projects is GroupVPN [9] . In this project they make use of IPOP VPN to

create a user interface that lets a group of friends deploy its own VPN. It has a web interface

where you can register and the user can create individual accounts or groups, as well as

joining existing groups sharing the same overlay network. Recently a project of the Vrije

Universiteit called ConPaas which is an integrated cloud environment for elastic cloud

applications has integrated IPOP as the virtual network technology. ConPaas aims at offering

the full power of the developers of cloud application while hiding the complexity of the cloud.

ConPaaS is designed to host two different applications: high performance scientific

applications and online Web applications. It automates the whole life-cycle of an application.

It includes collaborative development, performance monitoring, deployment, and, also,

automatic scaling [10]. One of the motivators of this thesis is to add the Albanian Cloud

Community Project in the decision of which VPN can integrate in the Albanian Cloud

Community cloud. Previously to Albanian Cloud Community, a project named Confine that

aimed at the creation of Community Networks Testbeds has been using Tinc as a VPN for the

management network establishing connection among the nodes with an improvement based on

a server package that maintains a list of all the nodes and helps on the neighbor discovery and

initialization.

5.1 Solutions Study

In this chapter three different approaches are shown for the creation of a Virtual Network

among a set of nodes that simulate a small community cloud. First of all we analyze Tinc

VPN Software and we prepare a testbed with three nodes to evaluate it. Secondly, we will use

the IPOP project Virtual Network to create a testbed where we can do set of tests. Lastly, we

will do a brief analysis of how we could use SDN in the scenario of community clouds.

5.1.1 Tinc VPN

One of the VPNs options for the community cloud is Tinc. Tinc is being used in some projects

like Freifunk [6] or qMp [14]. Tinc can work either in layer 3 (router mode) or layer 2 (switch

mode). Currently in the Albanian Cloud Community Project it is under consideration to use a

distribution service software that requires layer 2 connectivity so in this case Tinc should be

17

configured in that layer. Compared to other VPNs like IPOP, Tinc is more complex to

configure, every node should contact their neighbors with configuration information for the

public key exchange. Even if it is distributed, nodes need to know at least the public key and

IP of another node to be able to connect to it. This is a barrier in the context of a community

cloud where we focus on a self-configured system where the user does not have to do any, or

almost any, manual configuration. To overpass this problem we can use syncTinc VPN, a

client/server tool where the nodes can PULL to get the list of nodes they can connect with. A

problem is that if this server fails, the network will continue working but no nodes will be able

to join the existing VPN due to the server failure.

Although Tinc is supposed to add a latency of only around a millisecond, being a user space

program means that the operating system’s scheduler itself can add more latency if other

programs are running simultaneously.

In the following subsection a scenario with three nodes interconnected with Tinc is explained

in order to do a set of tests.

5.1.1.1 Implementation of Tinc testbed

To evaluate Tinc an scenario is defined simulating a very small community of only three

nodes. To prepare this scenario we deploy 3 VMs on micro instances with Ubuntu Server

13.04 on Amazon EC2 and a VPN connection using Tinc between three hosts is established.

Once virtual machines are deployed we execute a series of tests that measure the

communication latency overhead of Tinc, fault tolerance and resources consumption. First of

all we launch three micro instances on Amazon EC2 where we will install and configure Tinc

VPN. After, we install the Tinc software which can be currently found on Ubuntu repository,

therefore, we can install it using ”pat-get install Tinc”. Once we have Tinc installed on the

three nodes we had to decide which node acts as a bootstrapping node so the other can connect

to it the first time they join the P2P overlay network. If we name the virtual machines as VM1,

VM2 and VM3; our scenario will look like the following figure:

18

Figure 5: Schema of Tinc testing environment

For this testbed, synctinc server which helps keeping track of a list of nodes has not been used.

For this reason we configured all nodes manually. To do so we followed these steps:

• Define a name for our vpn. In our case I called it ”myvpn”

• Create ”/etc/tinc/myvpn/hosts” and configuration file: ”/etc/tinc/myvpn/tinc.conf”. Note

that the configuration is different for each node, indicating if it is the boostrapper node or

a node that Connects to it. It also defines the name of the node.

• Generate private/public keys on each node

• Create scripts which configure the tun0 interface which a given private IP address

assigned manually (10.0.0.0/32)

• Manual copy the public keys of VM1 and VM2 to VM3 and vice versa.

• Launch Tinc daemon. First on the bootstrapping node and then on the other two nodes.

If we don’t establish any kind of connection from VM1 to VM3 they don’t create a direct

link, however the first time we ping each other they will establish a direct connection. Now

that we have our testbed configured we proceed to do a set of tests that are explained in this

chapter.

5.1.2 IPOP

In this section we run some experiments with IPOP protocol. To simulate the scenario of a

small community cloud we have defined two different cases. In the first case we have

deployed four Ubuntu Server 13.04 virtual machines in Amazon EC2 [15] to simulate a small

cloud. Once virtual machines are deployed we execute a series of tests that measure the

communication latency overhead of IPOP, fault-tolerance, JOIN/LEAVE of nodes and

resources consumption.

19

 5.1.2.1 Implementation of IPOP testbed

The purposes of these tests is to find out if IPOP is a VPN solution that satisfies the

requirements we have in community clouds mentioned in chapter 1.

To accomplish this, one scenario is defined to simulate a small community cloud

geographically in the same location with four VMs which deploy 19 virtual nodes. To do so,

we deploy 4 VMs on Amazon EC2. More precisely, we have three VMs with one virtual node,

and 1 VM with 16 virtual nodes. IPOP lets you deploy more than one virtual node for testing

purposes, therefore to simulate a bigger community we deploy 16 virtual extra virtual nodes

that will join the overlay network, having a total of 19 simulated community members.

The first step is to deploy the virtual machines which will be connected by the IPOP virtual

network. IPOP runs inside VMs and the main requirement is that VMs should have Internet

access. A VM can have a public IP address, or a private one that connects to the Internet

through NAT. Only the P2P network overlay bootstrap node should have a public IP address.

In our case have used Amazon EC2 to deploy four virtual machines with Ubuntu Server 13.04

distribution in Amazon micro-instances. These instances have low memory and CPU

resources but it is enough to do the tests.

Once we have deployed the virtual machines we have to take into consideration that one VM

(VM1) is going to act as the P2P overlay boostrapper and also have 16 virtual nodes, and the

other three only as ”individual community cloud users”. To do so, first of all we installed the

IPOP package to these virtual machines.

The second step was to bring up IPOP in different Virtual Machines. First of all we configured

VM1 as the P2P overlay bootstrap machine. To do so we have a script that helps with the

configuration. (see Appendix A)

• Install IPOP package

• Create configuration file bootstrap.conf

• Launch IPOP bootstrap node

In this case on the bootstrap node we can simulate 16 virtual nodes at the same time to have

more links and edges. Therefore, these 16 nodes plus the other 3 nodes on the other VMs will

make in total 19 virtual nodes deployed.

20

Next step was to configure the three nodes that were going to be connected to the P2P overlay.

• Install IPOP package

• Create configuration file bootstrap.conf

• Launch IPOP

Lastly we had our first scenario configured like this:

Figure 6: Schema of IPOP testing environment

IPOP comes with a tool to crawl the network via the Bootstrap node. If we use it we could see

the following:

Figure 7: Screenshot of the network crawling tool included in IPOP

21

In this figure we can see that the number of Nodes is 19, 16 virtualized nodes on the Bootstrap

and 3 virtual nodes on each of the other three Amazon VMs. Also the consistency let us know

when a node is failing or not responding. Another information that we can observe is

SecurityAssociations which in this case is 0 because we haven’t configured any kind of secure

communication protocol like IPsec, providing privacy, integrity, and authentication at the IP

layer. Also, we can see that we are using UDP and not TCP looking at the UdpEdges metric.

Now that we had our first scenario configured, we could proceed with the tests.

5.1.3 SDN

This approach is done only in a conceptual way due to lack of time and requirements about

how to run SDN software. In the first instance, the chosen software to run this would be

OpenFlow. The main advantage of SDN as explained in chapter two is to separate Data plane

and Control plane entities, doing this you don’t just only control a networking device but an

entire network. With OpenFlow you get an open API that provides standard interfaces for

programming the data plane switches. One of the differences if we would try to implement

OpenFlow in a community cloud would be the need of having extra hardware such as an

Ethernet switch where we can modify the flow tables and a machine to install the main

controller of the network [16].

After researching more SDN solutions another option would be an approach using Open

vSwitch [13] which creates a virtual switch that enables massive network automation through

programmatic extension, while supporting standard management interfaces and protocols (e.g.

NetFlow, SPAN, CLI, 802.1ag, LACP). It can act as a virtual software switch in the virtual

environment and provides different features for the network management such as VLAN, flow

control or QoS.

5.1.4 Feature Comparison Table

Upon analyzing the features of all three solutions presented in this section we can provide a

table mainly for feature comparison reasons.

 Tinc IPOP SDN

IPv6 Support Yes Under Development Yes

Topology Optimization No Yes Yes

Scalability 1000 nodes +10000 nodes Yes (via controller load

balancing)

Failure Recover No Yes Yes

Encryption Optional Optional – with IPSEC Yes (supports any protocol)

Nat Transversal Manual cfg Yes – UDP hole punching Yes (FWaaS support on SDN)

Single point of failure No No No (if there is HA on

controller)

22

5.2 Tinc and IPOP Evaluation

5.2.1 Tinc Test

On this section the tests done with Tinc are explained. These tests include latency added,

join/leave/failure management and resource consumption. One thing that left unfeasible would

be the test of traffic going through each node. This would provide more interesting data to

evaluate.

The first test consist of seeing the latency added of Tinc VPN software when pinging another

node of the testbed. To compare the ping tool provided by Linux has been used. The ping was

done every 1 second for a period of 30 seconds. The packet size is of 84 bytes (20 bytes of IP

header + 8 bytes of ICMP header + 56 bytes of data). We will do three different test cases.

First we will ping two nodes using the public IP address of the node, secondly using the

amazon private IP address and finally using the Tinc VPN private address. For each different

case we get the minimum latency, the average, the maximum latency and the standard

deviation, which is an average of how far each ping is from the mean RTT (round-trip time).

Figure 8: Tinc evaluation: Graph showing different ping times in milliseconds for a period of 30 seconds

In the previous figure we can see a graph with the comparison of the ping times between the

different IP addresses used. We can observe three different behaviors. First of all, the amazon

private address is very stable and with the lowest latency. Secondly we can see how the public

IP address ping has strange peaks which even if we don’t know the cause, could be due to the

network configuration on Amazon EC2 because the peaks looks like a cache refreshing every

23

3-5 seconds. Lastly the ping times of Tinc are the highest and not very stable. With the

realization of these tests an average latency added of 1 ms has been observed using tinc vpn

instead of the standard Amazon private network. The minimum latency, average latency,

maximum latency and standard deviation can be observed as follows:

Address Latency min Latency avg Latency max Deviation

Public IP 0.871 ms 1.154 ms 1.664 ms 0.214 ms

Amazon Private IP 0.414 ms 0.572 ms 0.698 ms 0.069 ms

Tinc Overlay Private IP 1.327 ms 1.617 ms 2.042 ms 0.169 ms

5.2.2 Fault tolerance

In Tinc fault-tolerance has to be managed manually on each node because we don’t have a

global view of the network. If a node fails, the rest of the overlay keeps working but this node

has to be reseted/reconnected manually. In this test two things have been proven. The first one

is to shut down VM2, and the second one to shutdown VM1, which is the bootstrapping node

of this small overlay. The results shown that when shutting down a standard node everything

still working while when shutting down the bootstrapping node makes the other two nodes

loose connection.

5.2.3 Resource Consumption

Having initialized Tinc in the three nodes and sending traffic to all of them using ”ping” tool,

the CPU usage was stable at 0.3% and the memory usage close to 0 Mb. Taking in

consideration that the experiments are running in a low-resources machine this means that

Tinc is lightweight and doesn’t cause any heavy load on the CPU or high consumption of

memory which means that could easily run on end-user devices without affecting other

services running.

5.3 IPOP Tests

On this section the tests done with IPOP are explained. These tests include latency added,

join/leave/failure management and resource consumption.

5.3.1 Latency added

The idea of this test is to compare the latency between two nodes using their private IP

address provided by Amazon, their virtual IP address deployed with IPOP and their public IP

address. On the first instance we will use the public IP address assigned by Amazon. Secondly

we will use the private IP of the Amazon network, and lastly we will use the private IP in the

P2P overlay network created by IPOP. The tests have been done using Linux ping tool

sending a total of 30 packets of 84 bytes (20 bytes of IP header + 8 bytes of ICMP header + 56

24

bytes of data) every 1 second during a period of 30 seconds. Of each test we get the minimum

latency, the average, the maximum and the standard deviation, essentially an average of how

far each ping RTT is from the mean RTT.

Ping test times comparison

Figure 4.2: IPOP evaluation: IPOP evaluation: Graph showing different ping times in milliseconds for a period of 30

seconds.

As we can see on the previous image ping times for the public IP address and IPOP overlay

network addresses are not very stable, this could be due to VM location on Amazon Cloud

which could cause this peaks behavior every 3-5 seconds. If we put all the values together on

a table and we calculate the average and the deviation:

Address Latency min Latency avg Latency max Deviation

Public IP 0.871 ms 1.154 m 1.664 ms 0.214 ms Amazon

Private IP 0.414 ms 0.572 ms 0.698 ms 0.069 ms

IPOP Overlay Private IP 0.668 ms 0.943 ms 1.423 ms 0.188 ms

As we can see the overhead added by IPOP is quite low, IPOP overlay ping is an average of

0.4 ms slower if we compare it to the Amazon private IP address test. A factor that could

affect this value is the reduced number of hops that we have between the nodes of this

experiment. On a scenario with more nodes probably it would be a little higher but IPOP is

configured to optimize links between nodes to reduce the number of hops.

Either way, this delay is deprecated for most services that we could be using/offering in a

community cloud.

25

5.3.2 Fault Tolerance

In this part the purpose is to check how IPOP manages failures of nodes and how is the

response of them. In a real case scenario where users are connected to the community cloud

many things can go wrong and we need to ensure that our VPN knows how to manage such

failures. To try to emulate different failures we will kill the connection of the node in two

ways:

• Shutting down the ipop interface

• Shutting down the machine

In the first case, if you shut down the tapipop interface simulating a failure, IPOP overlay

detects that than node is failing but it does not drop it of the list, however it appears as off-

line. On the other hand, if we shut down the computer the bootstrap node detects that that

node is OFF and after a period of 10 seconds that node is dropped of the list of nodes.

The worst failure that may occur is the failure of the bootstrapping node shutting down the

whole overlay network. If this happens all the overlay stop working and the nodes have to

reconnect to the bootsrapping node as soon as this is up again. Assuming that the public IP

address of this node has not changed the reconnection is done automatically. A possible option

to avoid this failure is to replicate the bootstrapping server, and have more than one server

across the network. However, this option is not being studied on this thesis.

5.3.3 Join/Leave

Assuming that we have the bootstrapping node initialized the connection of one node to the

overlay takes a few seconds. We need to know the public IP address and namespace of that

overlay and establish connection.

If we want to leave the overlay we have just have to stop the tapipop interface manually or

stopping it using the proper script.

5.3.4 Resources Consumption

An important aspect to take into account is the resource consumption of the VPN software we

will use. In some cases users have a low resources device to be part of the community cloud,

because of this we have to focus on a lightweight and low-resources demanding VPN

software. We should check approximately the amount of memory it uses and see if the CPU

usage is notable or not.

26

In this case with IPOP, because it is only a small daemon running on the machine. After

checking the memory usage on the VMs I can say that is not going to affect the global

performance being the memory consumption of this, less than 2 MB. Regarding CPU

consumption was less than 1% all the time.

5.4 Evaluation Outcome

Having done tests with both solutions we can compare the results obtained.

Firstly, regarding latency added using IPOP or Tinc the difference is very small but the tests

done in this experiments show that Tinc has more overhead than IPOP. In Tinc, we have a

theoretical added latency of some milliseconds while the latency observed in the tests with

IPOP is less than 1 ms which is almost negligible and will not affect the functionality of the

services of the cloud. On the other hand, Tinc has proven to have more stable times and a

lower standard deviation.

Figure 9: Tinc and IPOP ping times.

Address Latency min Latency avg Latency max Deviation

Tinc Overlay Private IP 1.327 ms 1.617 ms 2.042 ms 0.169 ms

IPOP Overlay Private IP 0.668 ms 0.943 ms 1.423 ms 0.188 ms

Secondly, on the fault tolerance tests both solutions need manual management of failures, the

difference is that with IPOP and the crawling tool provided we can see how the topology

knows about the failures and drop the node of the list so it can avoid routing packets through

that node. Also, checking the resources consumption of both solution show that none of both

could be considered as ”high demanding” software. Therefore we can say that both solutions

are lightweight and a good option for low-end machines. Another important thing that has not

been tested but has been researched is how these solutions manage NAT transversal. In the

27

case of Tinc, this uses publicly addressable servers to help route traffic whereas IPOP uses

Google libjingle. Using this library, it can have lower latencies and higher bandwidth because

traffic is not routed directly. also, IPOP performs NAT hole-punching automatically and

transparently to the user and with Tinc you need access to NAT/firewall devices to configure

them properly. In terms of scalability, according to the official website, with Tinc VPN we

have a theoretical maximum of number of nodes which is limited to 1000, however, with

IPOP we can find existing overlay networks like PlanetLab [17] which has currently more

than 1000 nodes but its developer says that it can handle a few thousand nodes. According to

the developer of IPOP, the scalability of IPOP is limited due to the NAT transversal protocol

to an approximate number of +10000 nodes. This amount of nodes fits my idea of community

cloud for a small/medium community but could be a problem in a near future to expand the

number of users.

28

6. Conclusions and future work

6.1 Conclusions

The following conclusions come out after the study of three main VPN technologies: Tinc,

IPOP and SDN and the comparison of Tinc and IPOP. Firstly we have to take into

consideration that we can focus on having the best results in scalability, robustness and

easiness on configuration, being, if it is possible, to find the best all-around solution.

Secondly, another important aspect when we are deciding which technology fits better is

which is more deprecated or which solution has more ongoing projects and is still under

development/improvement.

After this considerations and the development of the tests I came to the conclusion that the

solution that seems to fit better for the community cloud virtual private network would be to

use IPOP and an initialization script/server with DHCP functionalities for the following

reasons.

First of all, even though SDN is the newest and more powerful technology it is more

complicated to install and it is in most cases hardware dependent, also, it is not fully

decentralized because we need the main controller that manages the virtual network and

usually requires specific compatible hardware. Also, due to being a solution with more

features than the others it requires more complex configuration. On the other hand, IPOP is a

relatively new technology which satisfies all the requirements of the community cloud VPN

and does not need any specific hardware compatible. It is more flexible in this sense.

Furthermore, the easiness of configuration of IPOP, its dynamic topology optimizations and

the fact that being a newer technology which has more active projects under development and

patches/bug fixes makes me decide in favor of this one instead of Tinc. Tinc and IPOP could

be considered similar as both solutions create a P2P overlay network and rely on an external

server at some point, in the case of Tinc it is to be able to provide the public keys of the nodes

and keep a list of all the nodes and in the case of IPOP to create and manage the overlay

network. Also, comparing another important aspect to take into consideration due to the

dynamism of community network and end-users IPOP manages better the failure of nodes and

reconnection process.

Regarding latency added using IPOP or Tinc the difference is very small but the tests done in

this thesis show that Tinc has more overhead than IPOP. In Tinc, we have a theoretical added

latency of a few milliseconds while the latency observed in the tests with IPOP is an average

of approximately 1 ms which is almost negligible and will not affect the functionality of the

services of the cloud.

29

Also, another advantage of IPOP over Tinc is that IPOP performs NAT-transversal

automatically and in a transparent way for the user while with Tinc you have to manually

configure NAT/firewall rules.

Lastly, another reason that makes me decide in favor of IPOP is the fact that IPOP is proven to

be more scalable, with Tinc VPN we have a theoretical maximum of number of nodes which

is limited to approximately 1000, however, with IPOP we can find existing overlay networks

like PlanetLab [17] which has a few thousand nodes. According to the developer of IPOP, the

scalability of IPOP is limited due to the NAT transversal protocol to an approximate number

of more than 10000 nodes. This amount of nodes fits my idea of community cloud for a

small/medium community but could be a problem in a near future to expand the number of

users.

6.2 Future Work

Due to the lack of time and in some cases resources, there are a lot of things which I would

like to try in a near future, being the last step to fully integrate one of these VPNs in the

Albanian Cloud Community distribution and test it over a community network.

6.2.1 Evaluation on bigger scenario

As a future work, I would like to do a configuration for IPOP with a larger set of nodes

(around 50 virtual nodes) geographically spread to make the context more realistic.

Furthermore, currently, the private IP address of each node of the overlay network has to be

added manually as well as the namespace, an option would be to modify the bootstrap node

source code to automatically assign private IP of a specific range when a node wants to

connect to the network doing the first-time connection transparent to the end user.

Also, the possibility of using Tinc packet for Albanian Cloud Community Distribution which

is under development by members of Confine Project is a big advantage and could be used to

compare face to face Tinc and IPOP in a real case scenario in terms of performance and also,

for example, on doing more tests such as resources consumption or compatibility with service

discovery software.

6.2.2 Configuration server in Tinc

The original code of Tinc VPN makes it difficult to use it on a community cloud due to the

user has to know the IP of another node and they have to manually configure both to be able

to exchange the public keys and establish a connection to access the p2p vpn. To solve this

problem an idea of creating a configuration server with public IP address that is responsible of

30

doing this exchange appeared and was developed by members of guifi.net. However its

functionality is limited and many improvements can be made.

At the beginning the configuration server was a package that you could install and it was able

to receive polls from the nodes to get a list of all the other nodes which it can connect to so

they can establish connection with their neighbors.

The new version which is under development will include a web interface where a user could

select which Tinc network it wants to create/connect to and then download a .deb package

which includes all the required configuration. This is a good approach because the user does

not need to have high knowledge about how the network works. The main problem of relying

on one server persists and one of the solution could be to make use of some decentralized

database with unique identifiers to synchronize other nodes information among all the nodes

set. Another feature which is not implemented and could be beneficial is the support for IPv6

which would allow multicasting which can help on finding bootstrappers.

i. IPOP bootstrapping node improvements

IPOP needs a server which helps the first-time configuration of the node and creating the P2P

overlay network, as well as managing the topology, crawling the network and optimizing links

among nodes. The problem is that with the basic deployment scripts the node has to provide a

manual private IP to be used on the Overlay Network and the namespace that it wants to use.

To make the configuration easier we can implement a functionality on the bootstrapping node

that works as a DHCP server assigning privates IPs of a previously configured range. IP

addresses can be assigned to nodes through the use of a DHT by performing a lookup to see if

the key already exists, if so a different IP is looked up until an unallocated IP is found. Doing

such a thing the user would only need to provide the name of namespace.

31

7. References

[1] Guifi.net, documentation from guifi.net, 2016. URL http://guifi.net/ca/CADocs.

[2] M. Gall, A. Schneider, and N. Fallenbeck. An architecture for community clouds using

concepts of the intercloud. In Advanced Information Networking and Applications (AINA),

2013 IEEE 27th International Conference on, pages 74–81, 2013. doi:

10.1109/AINA.2013.42.

[3] Openvpn, 2016. URL http://openvpn.net.

[4] Freelan, a vpn client, done it right., 2016. URL http://www.freelan.org/.

[5] Fpeervpn - the open source peer-to-peer vpn, 2016. URL http://www.peervpn. net/.

[6] Freifunk wiki, tinc vpn, 2016. URL http://wiki.freifunk.net/Tinc.

[7] Ipop (ip over p2p) opensource project, 2016. URL http://www.grid-appliance.

org/wiki/index.php/IPOP.

[8] D. Vega, L. Cerda-Alabern, L. Navarro, and R. Meseguer. Topology patterns of a

community network: Guifi.net. In Wireless and Mobile Computing, Networking and

Communications (WiMob), 2012 IEEE 8th International Conference on, pages 612–619,

2012. doi: 10.1109/WiMOB.2012.6379139.

[9] D.I. Wolinsky, Kyungyong Lee, P.O. Boykin, and R. Figueiredo. On the design of

autonomic, decentralized vpns. In Collaborative Computing: Networking, Applications and

Worksharing (CollaborateCom), 2010 6th International Conference on, pages 1–10, 2010.

[10] G. Pierre and C. Stratan. Conpaas: A platform for hosting elastic cloud applications.

Internet Computing, IEEE, 16(5):88–92, 2012. ISSN 1089-7801. doi: 10.1109/MIC.2012.105.

[11] G. Briscoe and A. Marinos. Digital ecosystems in the clouds: Towards community cloud

computing. In Digital Ecosystems and Technologies, 2009. DEST ’09. 3rd IEEE International

Conference on, pages 103–108, 2009. doi: 10.1109/DEST.2009. 5276725.

[12] J. West and J. Dedrick. Proprietary vs. open standards in the network era: an examination

of the linux phenomenon. In System Sciences, 2001. Proceedings of the 34th Annual Hawaii

International Conference on, pages 10 pp.–, 2001. doi: 10.1109/HICSS.2001.926525.

[13] S. Sezer, S. Scott-Hayward, P.K. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen,

M. Miller, and N. Rao. Are we ready for sdn? implementation challenges for software-defined

http://openvpn.net/
http://www.freelan.org/
http://wiki.freifunk.net/Tinc

32

networks. Communications Magazine, IEEE, 51(7):36– 43, 2013. ISSN 0163-6804. doi:

10.1109/MCOM.2013.6553676.

[14] Quick mesh project - wiki, 2016. URL http://dev.qmp.cat/projects/qmp/wiki/ Start.

[15] Amazon elastic compute cloud (amazon ec2), information, 2016. URL http://aws.

amazon.com/es/ec2/.

[16] K. Bakshi. Considerations for software defined networking (sdn): Approaches and use

cases. In Aerospace Conference, 2013 IEEE, pages 1–9, 2013. doi: 10.1109/

AERO.2013.6496914.

[17] Planetlab - an open platform for developing, deploying, and accessing planetaryscale

services, 2016. URL https://www.planet-lab.org/.

33

8. Appendix A: IPOP Deployment Scripts

SCRIPTS TO DEPLOY IPOP.

Bootsrap prepare.

#!/ bin /sh

if [$# -ne 3]; then

echo " Usage : $0 P2PNamespace BootstrapIP BootstrapPort "

echo " Where P2PNamespace is a unique string you should choose for your P2P network ,"

echo " BootstrapIP is the public IP address of this machine "

echo " and BootstrapPort is the port you would like to run the P2P bootstrap node "

exit ;

fi

echo "--"

echo " Configuring P2P node : namespace $1 IP address : port $2:$3"

echo "---"

sed -i "s/ BRUNET_NAMESPACE /$1/g" bootstrap . config

sed -i "s/ BOOTSTRAP_IP /$2/g" bootstrap . config

sed -i "s/ BOOTSTRAP_PORT /$3/g" bootstrap . config

34

Run Bootstrap Node or node of the Overlay.

#!/ bin / sh

export MONO_PATH =/ opt / ipop / lib

if [$# -ne 1]; then

echo " Usage : $0 BootstrapConfFile "

echo " Where BootstrapConfFile is the name of the bootstrap configuration file "

exit ;

fi

echo " - -- - - - - - - -- - - - - - - -- - - - - - - -- - -- - - - - - - - - - -- - - - -- - - - - - - -- - - - - - - - - - -- - - - - - - -- - - - -"

echo " Downloading IPOP bootstrap code and mono "

echo " -- - - - - -- - - - - - - -- - - - - - - -- - - - - - - -- -- - - - - - - - - - -- - - - - - - - - - -- - - - - - - -- - - - - - - -- - - - -"

echo " deb http :// www . grid - appliance . org / files / packages / deb / stable contrib " >> / etc / apt / sources .

list wget http :// www . grid - appliance . org / files / packages / deb / repo . key

apt - key add repo . key

apt - get update

apt - get -y install zip

apt - get -y install ipop

echo " - - - - - - - -- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - - --- - - - - - - -- - - - - - - -- - - -"

echo " Starting up bootstrap node "

echo " -- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - - -- - - -"

nohup mono / opt / ipop / bin / P2PNode . exe -n $1 -c 16 &

	Virtual Networks Comparison Solutions for Community Clouds
	Recommended Citation

	page1
	page3
	page5
	page7
	page9
	page13
	page15

