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Abstract 

We investigated how the opportunity to learn (OTL) with different types of mathematics tasks are related to 

mathematical literacy and the role of perceived control in the relationship between OTL and mathematical 

literacy. The structural equation modeling was applied to the data of 1,649 Korean students from the PISA 2012 

database. OTL with the four different types of tasks – algebraic word problems, procedural tasks, pure 

mathematics reasoning, and applied mathematics reasoning – were measured via student survey on how often 

they have encountered each type of task in their mathematics lessons and tests. The results showed that OTL 

with the procedural tasks was likely to increase mathematical literacy directly and indirectly through internal 

perceived control. Engaging in the applied reasoning tasks is positively related to external perceived control, but 

negatively to mathematical literacy. 
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Abstrak 

Kami menyelidiki tentang bagaimana Kesempatan Belajar (KB) siswa dengan berbagai jenis tugas matematika 

yang terkait dengan literasi matematika dan peran perceived control dalam hubungan antara KB dan literasi 

matematika. Pemodelan persamaan struktural diterapkan pada data 1.649 siswa Korea dari database PISA 2012. 

KB dengan empat jenis tugas, yaitu soal cerita aljabar, tugas prosedural, penalaran matematika, dan penalaran 

matematika terapan, yang diukur melalui survei siswa tentang seberapa sering mereka menjumpai setiap jenis 

tugas dalam pelajaran dan tes matematika mereka. Hasil penelitian menunjukkan bahwa KB dengan tugas 

prosedural cenderung meningkatkan literasi matematika secara langsung dan tidak langsung melalui perceived 

control internal. Keterlibatannya dalam tugas penalaran yang diterapkan, bernilai positif terhadap perceived 

control eksternal, namun bernilai negatif terhadap literasi matematika. 
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Since Carroll (1963) introduced the concept of opportunity to learn (OTL), OTL has been 

conceptualized as the inputs and processes that are needed to produce student achievement of intended 

outcomes (Elliott & Bartlett, 2016). Building on the early conceptualization of OTL as allocation of 

learning time (Carroll, 1963; Cogan & Schmidt, 2015), studies on mathematical practices and OTL are 

concerned with the processes through which individuals come to know mathematics content (Barnard-

Brak et al., 2018). A contemporary definition of OTL is comprised of factors that have a significant 

influence on teachers’ instructional practices and students’ learning (Stevens & Grymes, 1993); these 

factors include content coverage and emphasis.  Content coverage refers to which concepts and 

cognitive skills of curricula are covered during classroom learning, whereas content emphasis is related 

to activities and tasks that engage students (Stevens & Grymes, 1993).   
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In this study, OTL in mathematics classrooms is conceptualized as mathematical tasks that allow 

learners to have actual experiences with mathematics, which focuses on OTL as content emphasis in 

learning tasks (Schoenfeld, 1992). Learners’ cognitive processes are shaped through the experiences 

with learning tasks.  Further, by engaging in the mathematical tasks, students develop their 

understanding of what it means to do mathematics (Schoenfeld, 1994). By tackling various types of 

mathematical tasks, students can do mathematics and construct an epistemological understanding of 

what doing so means. Therefore, we conceptualize OTL as cognitive processes that learners engage in 

while doing mathematics through engaging in different types of tasks.   

OTL, which is conceptualized around mathematical tasks, is related to students’ learning 

outcomes, according to the framework suggested by Stein et al. (1996). However, a large body of 

literature based on this framework has focused on teachers’ instructional practices, such as teachers’ 

implementation of mathematical tasks that require high cognitive demands. There are few previous 

research studies that exist on the relationship between students’ OTL and their learning outcomes, and 

these studies’ conceptualization of OTL did not include mathematical tasks used in the mathematics 

instruction. For example, OTL in the study of Ottmar et al. (2014) consisted of two dimensions: 

instructional quality (teachers’ efforts to promote reasoning and understanding of concepts via teacher-

student interaction) and exposure to mathematics instruction (how long students were exposed to 

mathematics instruction). To bridge this research gap, we question whether there is a relationship 

between OTL (students’ exposure to different types of mathematical tasks) and mathematics 

achievement.   

Due to the complex nature of learning environments (Berliner, 2002; Jacobson et al., 2019) we 

hypothesize that the relationship between our conceptualization of OTL (frequency and type of 

mathematics tasks) and mathematics achievement is not only a direct, but also an indirect relationship 

through other factors. According to the framework of mathematical instructional tasks (Stein et al., 

1996), the mathematical tasks that are set up by the teacher interact with and shape students’ dispositions, 

including attitudes, beliefs, and motivation. This interaction between mathematical tasks and learning 

disposition in turn, influences students’ cognitive processes and learning behaviors (Henningsen & Stein, 

1997). Finally, the overall processes that involve mathematical tasks and students’ perception are 

reflected in the students’ learning behaviors and outcomes. For this reason, we consider students’ 

perceived control as a meditating factor between OTL and achievement.  Students who believe that 

academic outcomes are under their own control are predicted to be more actively engaged in 

mathematical tasks and earn better academic outcomes. This interaction between learning tasks and 

students’ disposition (specifically, perceived control in this study) has not been found in previous 

literature.   

This study is a secondary analysis that uses the database from the Program for International 

Student Assessment (PISA) 2012. Using extensive data from the PISA 2012 database, we investigated 

the relationship between OTL, mathematical literacy, and perceived control using structural equation 



Hwang & Ham, Relationship Between Mathematical Literacy and Opportunity …          201 

modeling (SEM) approach.  In this study, we focused on one educational context, South Korea, rather 

than examining different contexts of multiple countries. Before making international comparisons, an 

exploratory study to understand the phenomenon in a single context would be required for meaningful 

conclusions.  Moreover, the rationale for selecting South Korea is that it is one of the high achieving 

countries, and that it has not been fully investigated in terms of OTL (Son, 2012).  Furthermore, the 

OECD working paper (Schmidt, Zoido, & Cogan, 2014) showed that in each country, there is linear or 

quadratic relationship between exposure to different types of mathematical tasks and mathematical 

literacy.  Since we focus on Korean student data and include perceived control in SEM analysis, our 

study can provide a broader picture of the relationship among different types of mathematics tasks, 

perceived control, and mathematical literacy.  

The purpose of this study is to explore the relationship between OTL – a combination of exposure 

and types of mathematical tasks – and mathematical literacy measured in the PISA 2012. The nature of 

the relationship between OTL and mathematical literacy is not direct, and rather, the relationship is 

mediated by perceived control.  OTL is hypothesized to be related to mathematical literacy via students’ 

perceived control.    

 

Opportunity to Learn 

Within an educational context, OTL refers to the inputs and processes that are provided to 

students for intended learning outcomes (Elliott & Bartlett, 2016). One of the first conceptualizations 

of OTL focused on sufficient time and adequate instruction to learn (e.g., Carroll, 1963; Schmidt, 1992). 

With growing interest in the concept of OTL in relation to the demand for curricular validity, the concept 

of OTL has been expanded to accommodate a multi-dimensional construct that encompasses both the 

quality of instruction and its alignment with the assessment of learning outcomes (Abedi & Herman, 

2010). Specifically, Stevens (1996) proposed a comprehensive conceptual framework of OTL that 

includes four elements: content coverage, content exposure, content emphasis, and quality of 

instructional delivery. As such, OTL, as a comprehensive and multi-dimensional concept, offers a basis 

for investigating students’ learning in the mathematics classroom (e.g., Abedi & Herman, 2010).  

When considering how these different dimensions of OTL are realized in the mathematics 

classroom, it is clear that mathematical tasks serve as a critical learning space that provide students with 

experiences of mathematical practice. In other words, mathematical tasks that comprise different 

dimensions of OTL (e.g., content coverage, content exposure, content emphasis, and quality of 

instructional delivery) interact with and, in turn, shape students’ learning processes, both cognitive and 

non-cognitive. For example, in the studies of Watson (2003) and Törnroos (2005), class tasks, in 

addition to the curriculum and the textbook, were identified as one of the critical aspects of OTL.    

In the PISA 2012, OTL is conceptualized as a constellation of three constructs that describe 

classroom learning environments: (1) measurement of content, (2) teaching practices, and (3) teaching 

quality (OECD, 2013).  According to Schmidt et al. (2014), OTL in the PISA 2012 refers to the content 
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students learn, as well as the cohesiveness that exists between what is taught and what they actually 

learn.  Also, students’ experiences with mathematical content are shaped by instructional practices, 

including student-centered instruction and lectures.  Students’ OTL is characterized by the factors 

underlying the quality of instructional practices, such as classroom organization, emotional support, and 

cognitive activation (OECD, 2013).  

In the frameworks that are used in previous studies and PISA 2012, the concept of OTL includes 

specific content that is covered in mathematics classrooms, as well as mathematical tasks that deliver 

mathematics content. On one hand, the commonality of these frameworks is that mathematical tasks are 

an important factor of mathematics learning, and that teachers can affect students’ cognitive and 

motivational processes of learning by designing these tasks. On the other hand, we also recognize 

differences among the frameworks that conceptualized OTL. One difference between the PISA 2012 

framework and other literature on OTL is that in the PISA, OTL is operationalized as students’ judgment 

on whether and how often they have encountered different mathematical tasks. This operationalization 

for measurement is partly limited in covering depth of teaching or quality of instructional delivery 

variables (E.g., Stevens, 1993), which is also recognized in the PISA 2012 framework (OECD, 2013, 

p.187). As such, we do recognize the multifaceted characteristic of OTL, but also acknowledge that 

large-scale assessment would not be enough to fully understand OTL that students experience in 

mathematics classrooms as reported in the PISA 2012 framework. In this study, we assume the 

operationalization of OTL in the PISA 2012, student-reported frequency of being exposed to different 

types of mathematical tasks. 

 

Mathematical Tasks 

Among the multiple aspects of OTL, we highlight students’ exposure to different types of 

mathematical tasks in lessons and tests, as the tasks themselves reflect what content the students learn 

and what doing mathematics entails (Stein et al., 1996). In other words, mathematical tasks are essential 

tools for ensuring that students can understand mathematical concepts more fully, as well as to develop 

cognitive processes of mathematical reasoning via their experience with the tasks (Martin & Gourley-

Delaney, 2014).   

With regard to the cognitive processes of learning, the students’ experience of mathematics 

depends on the level of cognitive demands, how the tasks are presented, and how the tasks are 

implemented.  Adopting the conceptual framework regarding the relationship between variables that 

are related to tasks and students’ learning outcomes (Stein et al., 1996), many studies have shown that 

cognitive demands of mathematical tasks can change as they are implemented (e.g., Boston & Smith, 

2009; Henningsen & Stein, 1997). When students engage in mathematics, their reasoning differs 

according to what type of mathematical tasks are being offered (see Potential of the Task in Boston & 

Smith, 2009). Mathematical thinking processes that students employ are closely related to the 

mathematical tasks that are embedded in the learning context (Henningsen & Stein, 1997). Certainly, 
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the elements and characteristics of mathematical tasks require students to engage in different cognitive 

processes. Hanna and Jahnke (2007) provided a good example by comparing activities that involve 

either pure mathematics or a real-life situation. Proving statements is a combination of two processes: 

“(1) finding the ‘right premises’ and (2) devising the chain of deductive steps leading from the premises 

to the statement” (p. 149).  Mulnix (2012) labeled these as the process of searching for reasons (e.g., 

abduction/induction) and the process of giving reasons (e.g., deduction). According to Hanna and 

Jahnke (2007), the process of giving reasons is more emphasized in tasks that involve pure mathematical 

reasoning, which is why the process of searching for reasons has usually been downplayed. In contrast, 

mathematical tasks with real situations require setting up the premise first (searching for reasons), which 

is followed by the process of building logical connectedness (giving reasons).     

Previous studies have scrutinized mathematical tasks set up by teachers and teachers’ actual 

implementation of the tasks based on the framework developed by Stein et al.’s (1996) (e.g., Arbaugh 

& Brown, 2005; Boston & Smith, 2009). However, few studies have been conducted to investigate the 

link between mathematical tasks and students’ learning outcomes, particularly measured by large-scale 

assessments. This is possibly because of the assumption that large-scale assessments are designed to 

evaluate students’ content knowledge, not their mathematical practices (Lane, 2004). However, we 

argue that students formulate and utilize epistemic and cognitive resources to reason through OTL with 

mathematical tasks (Hammer, 2000), and students utilize some of those resources to solve problems in 

assessments (Bailin & Siegler, 2003; Hwang et al., 2020). The common cognitive resources used while 

engaging in mathematics tasks and assessment settings can help us to understand how students’ OTL is 

connected to achievement scores in large-scale assessments.   

The relationships between OTL and achievement can also be influenced differ by what 

mathematics tasks are involved in students’ OTL. Individual differences in mathematics learning can 

be understood as interaction between features of tasks and students’ inputs (i.e., cognitive resources, 

affectivity; Bornemann et al., 2010; Muis et al., 2015). As discussed, students’ mathematical reasoning, 

as one of the critical components of doing mathematics, differs by what type of mathematical tasks are 

offered to them. The emotional components, such as task valuing and perceived control (Muis et al., 

2015), can motivate them to either continue reasoning or terminate the reasoning process (McLeod, 

1992). Particularly, students’ perceived control – “the tendency of people to perceive that outcomes in 

a particular arena were either within or outside of their control” (McNabb, 2003, p. 418) – influences 

students’ approaches to solving mathematical tasks.  For example, students are likely to engage more 

actively when they believe that the outcomes from engagement in tasks are under their control 

(Hrbáčková et al., 2012).   

 

Perceived Control 

Control beliefs refer to an overall set of beliefs about how effective one’s process of producing 

expected outcomes can be (Skinner et al., 1998). In academic settings, perceived control is understood 
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as a critical psychological disposition that affect students’ behavior, emotion, and achievement (d’Ailly, 

2003; Schunk, 1984; Murayama et al., 2013). According to the previous frameworks of perceived 

control (e.g., Skinner et al., 1998; Rotter, 1966; Rotter & Mulry, 1965), perceived control over learning 

is constituted of two types of beliefs: strategy beliefs (what it takes to do well) and capacity beliefs 

(whether I believe I have the strategies; Skinner et al., 1998). According to Rotter (1966), people differ 

in their beliefs whether outcomes occur independently of how one behaves (external control) or are 

highly contingent on one's behavior (internal control). The construct of locus of control assume that 

internal and external causes are inversely related to each other and thus, can be assessed as a single, 

bipolar dimension (Skinner et al., 1990). Though perceived control has been shown to be an important 

indicator of students’ motivation in learning (Patrick et al., 1993), previous studies on perceived control 

rarely examined it in the relation to the success in academic tasks (Skinner et al., 1990; Lipnevich et al., 

2016).  

In PISA 2012, the conceptualizations of perceived control and other self-perceptions are based 

on the planned behavior theory of Ajzen (2002). According to Ajzen (2002), perceived control belief is 

conceptualized as a person’s belief about the ease or difficulty of performing a behavior and this belief 

forms a behavioral intention that directly increases the likelihood of a desired behavior. In this study, 

we viewed locus of control as having two types and identified student survey items that ask about their 

locus of control over mathematics learning and categorized them into internal and external perceived 

control. It is assumed that a learner’s strong internal perceived control does not necessarily lead to weak 

external perceived control, and furthermore, they are qualitatively different with various sources of 

beliefs.   

 

Mathematical Literacy in the PISA 

The relationships between OTL and achievement can differ by how achievement is defined, and 

with what measure it is assessed. In this study, achievement scores represent students’ mathematical 

literacy measured with the PISA 2012. According to the PISA 2015 framework, mathematical literacy 

“explains the processes content knowledge, and contexts reflected in the assessment’s mathematics 

problems”, and this shows how students perform in mathematics (OECD, 2017). The construct of 

mathematical literacy describes competency of individuals to reason mathematically and use math 

concepts, procedures, facts, and tools to describe, explain, and predict phenomena (OECD, 2017). This 

conceptualization of mathematical literacy supports the importance of students’ engagement in pure 

mathematics tasks (reason mathematically) and their exploration in the abstract world of mathematics 

(use math concepts, procedures, facts, and tools; OECD, 2017).   

When contemplating PISA’s definition of mathematical literacy, it also emphasizes the capacities 

to formulate problem situations, employ mathematical problems, and interpret mathematics results in 

various contexts. In other words, rich experiences of real-world tasks in math classrooms are essential 

in developing these capacities. Accordingly, having experiences of doing mathematics in real world 
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contexts (personal, societal, occupational, and scientific situations) contributes to the development of 

mathematical literacy.   

 

Hypothesized Model 

According to the literature review, we suggest the hypothesized model in Figure 1 representing 

the relationships among OTL by different types of tasks, perceived control, and mathematical literacy. 

This model includes a latent variable for each type of mathematical tasks (word problems, procedural 

tasks, pure mathematics reasoning, and applied mathematics reasoning tasks. In addition, there are two 

latent variables for internal and external perceived control in the model. By evaluating the 

appropriateness of the hypothesized model, we aimed to answer the following questions: (1) what are 

the relationships between opportunities to learn with different types of tasks and perceived control? (2) 

what are the relationships between opportunities to learn with different types of tasks and mathematical 

literacy measured in the PISA 2012?   

 

 

Figure 1. Full Model of the Relationship among OTL, Perceived Control, and Mathematical Literacy 

 

It should be noted that each of the latent variables of OTL and EPC was estimated using two 

indicators due to the structure of the PISA 2012 data. It is commonly recommended to have more than 

two indicators per latent variable. However, some researchers argued that one or two indicators could 
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be sufficient (Hayduk & Littvay, 2012). Furthermore, the analysis did not yield any errors that are very 

likely to happen with two indicators (e.g., negative residual variances known as Haywood cases), and 

the number of indicators showed little effect of bias (Little et al., 1999). For those reasons, the estimated 

model is valid to interpret the relationship between OTL and mathematical literacy.   

Thus, we are interested in both direct relationship and indirect relationships through perceived 

control, between mathematical tasks and mathematical literacy. We attempted to test the positive 

relationships between OTL with different tasks and mathematical literacy by examining the 

hypothesized model with the structural equation modeling. When students learn mathematics through 

OTL with mathematical tasks, the positive relationships between the tasks and mathematical literacy 

are somewhat expected. Particularly, we expected that students’ opportunity to engage in applied 

mathematics reasoning tasks would be more strongly related to mathematical literacy based on the 

definition of mathematical literacy given by the PISA 2015.   

 

METHOD 

Participants  

We utilized the PISA 2012 international database, which is open to the public. The rationale to 

use this database instead of the PISA 2015 or 2018 was that the focus subjects of these recent PISA 

studies were not mathematics. The variables included to address our research questions were available 

only in the PISA 2012. Among 5,033 Korean students in the original PISA 2012 database we collected 

responses of 1,649 Korean students who participated in both student questionnaire and mathematical 

literacy assessment. The PISA 2012 student context questionnaires in a rotation design, which consisted 

of the ‘common’ question (answered by all students) and ‘rotated’ questions (answered by two thirds of 

the student sample; OECD, 2014, p. 59). Because all of the survey items used in this research (ST43, 

questions asking ‘Thinking about your mathematics lessons: to what extent do you agree with the 

following statements?’ and ST73-76, mathematical tasks) were included together in the form A, the 

rotation questionnaires design allowed us to observe only students taking this form, a third of the Korean 

students participating in the PISA 2012 (See figure 3.9 in OECD, 2014, p. 61).     

 

Variables 

Mathematical literacy.  As seen in the hypothesized model, we collected all sets of plausible 

values representing students’ mathematical literacy scores provided in the PISA 2012. Large-scale 

international studies such as TIMSS and PISA do not provide one value for each student’s achievement 

in mathematics. Rather, as Foy, Brossman, and Galia (2012) argued, plausible values are provided 

through the process called “conditioning” with all background variables, for which relationships 

between background variables and mathematics achievement can serve as a satisfactory explanation.    
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Table 1. Weighted Means and Standard Deviations of Mathematical Literacy 

Plausible 

Value 
PV1 PV2 PV3 PV4 PV5 

Weighted 

Mean 
553.57 553.53 555.08 553.56 553.44 

Standard 

Deviation 
99.61 100.22 99.53 100.52 101.30 

 
Furthermore, we highlighted that “[p]lausible values are not test scores and should not be treated 

as such” (OECD, 2014, p. 147) and the plausible values should be analyzed in a correct way. According 

to von Davier, Gonzalez, and Mislevy (2009), averaging plausible values themselves to have one value 

representing students’ mathematical literacy could lead to biased estimates. Chaney et al. (2001) 

suggested conducting separate analysis with each set of plausible values and average the estimated 

parameters. We also applied some formulas that Chaney and his colleagues provided to compute the 

standard errors for calculated estimates. Lastly, mathematical literacy was standardized in the SEM 

analysis. Table 1 shows the weighted mean and the standard deviation of each set of the plausible values. 

Perceived control.  We collected students’ responses to the question, given the code, ST43, asking 

students’ degrees of agreements to six statements in Table 2. For data analysis, we assigned “4” to 

students’ strong agreement to each statement, “3” to moderate agreement, “2” to moderate disagreement, 

and “1” to strong disagreement. Though the way of assigning numbers to students’ responses is different 

from the way used in the PISA 2012, our method allows us to interpret that higher numbers of students’ 

responses indicate stronger agreement to the statements about perceived control.   

After selecting the data of the question ST43, we categorized the six statements into the two: 

internal (IPC) and external perceived control (EPC) based on the discussion to build the hypothesized 

model. Internal perceived control was measured through the three statements – ST43Q01, ST43Q02, 

and ST43Q05.  Other two statements – ST43Q03 and ST43Q04 – were used to measure external 

perceived control. We excluded the statement, ST43Q06 that asked about test preparation because it is 

neither internal nor external perceived control. This statement can imply that students’ performance on 

mathematics exams is irrelevant to their efforts, but the statement itself does not allows us to identify 

the statement as either internal or external perceived control.  

As seen in Table 2, more than 85% of Korean students agreed with the three statements ST43Q01, 

ST43Q02, and ST43Q05, which were used to measure internal perceived control.  Simultaneously, most 

Korean students disagreed with the other statements about external perceived control and test 

preparation. When ST43Q03 and ST43Q04 were compared, it was interesting that more students 

strongly agreed that their success/failure is attributed to their teachers. 
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Table 2. The Number of Students and Weighted Percentage by Response to the Six Statements 

Code 

Question: Thinking about your 

mathematics lessons: to what extent do you 

agree with the following statements? 

Statement 

Frequency 

Strongly 

Agree 

(4) 

Agree 

(3) 

Disagree 

(2) 

Strongly 

Disagree 

(1) 

ST43Q01 
If I put in enough effort I can succeed in 

mathematics. 

503 

(30.1%) 

945 

(57.7%) 

166 

(10.1%) 

35 

(2.1%) 

ST43Q02 
Whether or not I do well in mathematics is 

completely up to me. 

612 

(37.0%) 

912 

(55.5%) 

93 

(5.6%) 

32 

(1.9%) 

ST43Q03 

Family demands or other problems prevent 

me from putting a lot of time into my 

mathematics work. 

66 

(3.9%) 

311 

(18.8%) 

940 

(57.2%) 

332 

(20.1%) 

ST43Q04 
If I had different teachers, I would try 

harder in mathematics. 

116 

(7.1%) 

333 

(20.0%) 

912 

(55.3%) 

288 

(17.6%) 

ST43Q05 
If I wanted to, I could do well in 

mathematics. 

482 

(29.0%) 

951 

(57.9%) 

172 

(10.5%) 

44 

(2.6%) 

ST43Q06 
I do badly in mathematics whether or not I 

study for my exams. 

108 

(6.6%) 

425 

(26.0%) 

793 

(48.2%) 

323 

(19.2%) 

 

Opportunity to Learn.  Students’ OTL data were collected with the responses to four questions 

(ST73, ST74, ST75, and ST76). Each question included two sub-questions showing different types of 

tasks: “how often have you encountered these types of problems in your mathematics lessons (ST[73–

76]Q01)?; and “in the tests you have taken at school (ST[73–76]Q02)?” We highlight that the four 

questions focused on students’ perception of how often they encountered OTL with the tasks, among 

other dimensions of OTL (Stevens & Grymes, 1993). Table 3 shows the detailed questions for OTLs 

labeled with algebraic word problem (WP; ST73) and procedural tasks (PT; ST74) in the PISA 2012. 

Table 4 also shows the other two questions used to identify OTL with pure mathematics reasoning 

(PMR) and applied mathematics reasoning (AMR). 

 

Table 3. OTL Questions for Algebraic Word Problem and Procedural Task (OECD, n.d.) 

Algebraic 

Word 

Problem 

(WP; 

ST73) 

 

Question. In the box is a series of problems. Each requires you to understand a 

problem written in text and perform the appropriate calculations. Usually the 

problem talks about practical situations, but the numbers and people and places 

mentioned are made up. All the information you need is given. Here are two 

examples: 

Example 1) <Ann> is two years older than <Betty> and <Betty> is four times 

as old as <Sam>. When <Betty> is 30, how old is <Sam>? 

Example 2) Mr. <Smith> bought a television and a bed. The television cost 

<$625> but he got a 10% discount. The bed cost <$200>. He paid <$20> for 

delivery. How much money did Mr. <Smith> spend? 

# of Students Frequently (4) Sometimes (3) Rarely (2) Never (1) 

ST73Q01 545 (33.1%) 821 (49.8%) 215 (13.1%) 68 (4.0%) 

ST73Q02 336 (20.5%) 792 (48.2%) 410 (24.7%) 111 (6.6%) 
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Procedural 

Tasks 

(PT; ST74) 

Question. Below are examples of another set of mathematical skills. 

Example 1) Solve 2x + 3 = 7. 

Example 2) Find the volume of a box with sides 3m, 4m and 5m. 

# of Students Frequently (4) Sometimes (3) Rarely (2) Never (1) 

ST74Q01 968 (58.9%) 540 (32.6%) 109 (6.6%) 32 (1.8%) 

ST74Q02 746 (45.5%) 623 (37.8%) 217 (13.1%) 63 (3.7%)  

Note. All percentages were weighted. 

 

An interesting finding from Tables 3 and 4 is that more than 70% of students answered that they 

encountered each of WP, PT, and PMR frequently in their mathematics lessons and tests.  However, 

approximately a half of students reported that they encountered AMR frequently or sometimes. 

Particularly, 91.4% of students encountered PT at least sometimes, whereas 44.2% of students saw 

AMR tasks at most rarely in lessons. This indicates that there were substantial gaps in the frequencies 

of OTL with different tasks that were offered to Korean students; specifically, limited OTL with AMR 

that requires students to make sense of real problem situations and interpret/explain the solutions. This 

is a unique mathematical process that AMR offers, while other task types do not. 

 

Table 4. OTL Questions for Pure Mathematics Reasoning and Applied Mathematics Reasoning 

(OECD, n.d.) 

Pure 

Mathematics 

Reasoning 

(PMR;  

ST75) 

Question. In the next type of problem, you have to use mathematical knowledge 

and draw conclusions. There is no practical application 

provided. Here are two examples. 

Example 1) Here you need to use geometrical theorems: 

Determine the height of the pyramid. 

Example 2) If n is any number: can (n+1)2 be a prime 

number?  

# of Students Frequently (4) Sometimes (3) Rarely (2) Never (1) 

ST75Q01 560 (34.0%) 722 (44.1%) 281 (16.8%) 86 (5.0%) 

ST75Q02 511 (31.0%) 719 (44.0%) 308 (18.6%) 111 (6.5%) 

Applied 

Mathematics 

Reasoning 

(AMR; ST76) 

 

Question. In this type of problem, you have to apply suitable mathematical 

knowledge to find a useful answer to a problem that arises in everyday life or work. 

The data and information are about real situations. Here are two examples. 

Example 1)  A TV reporter says “This graph shows that there is a huge increase in 

the number of robberies from 1998 to 1999.” 

Do you consider the reporter’s 

statement to be a reasonable 

interpretation of the graph? Give an 

explanation to support your answer. 

Example 2) For years the 

relationship between a person’s 

recommended maximum heart rate 

and the person’s age was described 

by the following formula: 

 

Recommended maximum heart rate = 220 – age 
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Recent research showed that this formula should be modified slightly. The new 

formula is as follows: 

Recommended maximum heart rate = 208 – (0.7 × age) 
From which age onwards does the recommended maximum heart rate increase as a 

result of the introduction of the new formula? Show your work. 

# of Students Frequently (4) Sometimes (3) Rarely (2) Never (1) 

ST76Q01 203 (12.4%) 717 (43.6%) 564 (34.1%) 165 (9.8%) 

ST76Q02 187 (11.3%) 631 (38.6%) 618 (37.2%) 218 (12.9%) 

Note. All percentages were weighted. 

 

Data Analysis 

Using the variables described above, we applied the structural equation modeling (SEM) to 

evaluate the hypothesized model in Figure 1. The SEM approach was utilized with the R package 

lavaan.survey (Obserski, 2016) and maximum likelihood estimation that considered all variables as 

continuous. The strength of this R package was that the complex PISA 2012 hierarchical design could 

be fully considered in the SEM analysis using students’ weights and balanced repeated replications 

(BRR). First, because our research interests were solely at the student level, the data analysis required 

to use student weights in data analysis (Asparouhov & Muthen, 2006). The PISA 2012 provided “final 

trimmed nonresponse adjusted student weight,” which was calculated with the consideration of 

stratified sampling design. Thus, statistical results such as descriptive statistics and SEM results were 

weighted.  Second, weighting was not enough to make unbiased decisions when multilevel sampling 

was applied. Particularly, “the variance estimator can be unstable” relying on the sample design (OECD, 

2017, p. 123). To resolve this issue, it was recommended to use BRR to estimate sampling variances 

(OECD, 2017). In this research, we employed Fay’s method of BRR by using variables “final student 

replicate BRR-Fay weights” in the databases.   

Considering the complexity of the analysis using the five sets of plausible values and Fay’s 

method of BRR, we applied the three steps of the SEM approach suggested by Byrne (1998): model 

specification, model assessment, and model respecification. First, as discussed in the previous section, 

the hypothesized model in Figure 1 was already constructed based on the relevant literatures. Second, 

the followings were evaluated for the next stage of respecification: the overall model fits, the suitability 

of parameter estimates, and the statistical significance of parameter estimates. It was checked that the 

outputs included some error messages like negative variances, correlations greater than 1, and non-

positive definite covariance matrices, which all are unreasonable (Bryne, 1998). Furthermore, non-

significant parameters could slightly contribute to the power of the model to explain the phenomenon. 

Thus, we considered the parameters with p < 0.1 because we had less concern of Type I error. For the 

overall model evaluation, all model fits were comprehensively evaluated using criteria summarized by 

Schreiber, Nora, Stage, Barlow, and King (2006, p. 330) – the comparative fit index (CFI), the Tucker-
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Lewis fit index (TLI), the standardized root mean square residual (SRMR), and the root mean square 

error of approximation (RMSEA).   

On one hand, we removed some non-significant indicators to respecify the hypothesis model after 

model assessments. On the other hand, we included correlated residuals having large modification 

indices representing expected changes in model fits. However, we should have theoretical rationales in 

addition to the statistical evidence to add correlated residuals (Kline, 2011). Accordingly, we considered 

four pairs of correlated residuals: (1) ST73Q1 and ST74Q1, (2) ST73Q2 and ST74Q2, (3) ST75Q1 and 

ST76Q1, and (4) ST75Q2 and ST76Q2. These pairs showed statistical evidence of large modification 

indices. Also, it is noticeable that residuals of the questions about WP and PT, and PMR and AMR were 

correlated, which could be due to the cognitive demands of mathematics tasks (Boston & Smith, 2009).     

 

 
 

Figure 2. Nested Model Respecified from the Full Model 

 

After the respecification, we compared the full model (see Figure 1) and the nested model (see 

Figure 2). Using χ2 tests, AIC, BIC, and sample-size adjusted BIC, the comparison could answer whether 

there was a significant difference in the goodness of fit between the nested and full models, though the 

nested model had a smaller number of parameters. If we retain the null hypothesis that there is no 

significant difference between the models, we prefer the nested model to the full model, because the 

nest model had a similar goodness of fit with less parameters. Then, the SEM results of the relationships 
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among OTLs, perceived control, and mathematical literacy would be based on the regression weights 

in the selected model.   

We highlight that estimation methods in SEM (e.g., maximum likelihood in this study) require a 

normality assumption of endogenous variables. However, it is known that parameter estimates are robust 

against violation of normality assumption while Type I error rate of hypothesis tests on individual parameters 

are likely to be inflated. Furthermore, plausible values of mathematical literacy measured in PISA 2015 were 

constructed based on normal population distributions.  Thus, we argued the robustness of the model.  

 

RESULTS AND DISCUSSION 

We will report the fit indices to compare the nested and full models to answer our research 

questions. After the discussion of model selection process, we will report the SEM results to explain the 

relationships among OTLs, perceived control, and mathematical literacy.   

 

Table 5. Model Fit Indices using Five Plausible Values 

  

CFI TLI 

Information Index RMSEA  

  AIC BIC 
Adjusted 

BIC 

Point Estimate & 

90% Confidence 

Interval 

SRMR 
χ2 test 

p-value 

PV1 Full 0.977 0.962 43687.9 44036.9 43830.4 0.049 (0.043 0.055) 0.021 
0.784 

 Nested 0.977 0.966 43679.6 43996.3 43808.9 0.046 (0.040 0.052) 0.022 

PV2 Full 0.977 0.961 43715.9 44064.9 43858.4 0.049 (0.043 0.055) 0.022 
0.785 

 Nested 0.977 0.965 43707.5 44024.3 43836.8 0.046 (0.041 0.052) 0.023 

PV3 Full 0.976 0.960 43678.0 44027.0 43820.5 0.050 (0.044 0.056) 0.023 
0.780 

 Nested 0.977 0.964 43669.7 43986.4 43799.0 0.047 (0.041 0.053) 0.023 

PV4 Full 0.978 0.962 43702.3 44051.3 43844.8 0.048 (0.042 0.054) 0.022 
0.784 

 Nested 0.978 0.966 43693.9 44010.7 43823.3 0.046 (0.040 0.051) 0.023 

PV5 Full 0.977 0.961 43702.6 44051.6 43845.1 0.049 (0.043 0.055) 0.022 
0.787 

 Nested 0.977 0.966 43694.2 44011.0 43823.5 0.046 (0.040 0.052) 0.023 

Note. Bold numbers indicate the better model between the nested and full models.   

 

Model Comparison 

The model fit indices of the full and nested models were estimated across all sets of plausible 

values of mathematical literacy. Based on the recent criteria (CFI ≥ 0.95, TLI ≥ 0.95, RMSEA < 0.06 

with confidence interval, and SRMR ≤ 0.08; Schreiber et al., 2006), all indices of both models were 

acceptable. When we compared the full and nested models, the χ2-test results indicated that there were 

no significant differences in the goodness of fit between the two models as seen in the last column of 

Table 5.  Additionally, most indices – CFI, TLI, RMSEA – showed that the nested model had slightly 

better fit indices with the smaller number of the parameters. Less values of information indices (AIC, 
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BIC, and adjusted BIC) indicated a better model, which led to the same conclusion.  Thus, we selected 

the nest model in Figure 2, which was a more parsimonious model with the similar goodness of fit. 

 

SEM Results 

Table 6 reports the estimated measurement model in the standardized metric. Lower factor 

loadings indicate that the corresponding indicators were conceptually distant from the latent variables.  

All factor loadings except for that of ST43Q03 were greater than 0.4 with p < 0.001, which satisfied 

previously suggested recommendations (Tabachnick & Fidell, 2007). Although the factor leading of 

ST43Q03 was 0.387, we argue that this coefficient was acceptable. However, the factor loadings for 

external perceived control were similar, which means that both statements can reflect conceptually 

similar distance of different facets of external perceived control – teachers and family.   

 

Table 6. Results from the Measurement Model 

Observed Variable Latent Variables Coefficient SE z-value p-value 

ST73Q01 WP 0.675 0.026 25.502 <0.001 

ST73Q02 WP 0.621 0.022 27.759 <0.001 

ST74Q01 PT 0.632 0.023 27.447 <0.001 

ST74Q02 PT 0.642 0.022 28.933 <0.001 

ST75Q01 PMR 0.786 0.022 35.501 <0.001 

ST75Q02 PMR 0.751 0.022 33.926 <0.001 

ST76Q01 AMR 0.746 0.021 35.454 <0.001 

ST76Q02 AMR 0.744 0.021 35.330 <0.001 

ST43Q01 IPC 0.540 0.018 29.934 <0.001 

ST43Q02 IPC 0.444 0.019 23.347 <0.001 

ST43Q05 IPC 0.505 0.017 29.676 <0.001 

ST43Q03 EPC 0.387 0.056 6.910 <0.001 

ST43Q04 EPC 0.439 0.069 6.332 <0.001 

 

The SEM results included the correlation coefficients between OTLs with different types of tasks 

as seen in Table 7. Overall, all OTLs were highly correlated with each other, which means that if 

students have more frequent OTLs with a certain type of task, they were very likely to do so with others. 

It should be noted that the correlation coefficient between AMR and PT was relatively low, 0.258. This 

correlation indicates that AMR with PT was somewhat independent compared to other pairs of OTLs. 

 

Table 7. Correlation Coefficients between Latent Variables 

 WP PT PMR AMR 

WP  1 0.572 0.387 0.396 

PT   1 0.426 0.258 

PMR   1 0.428 

AMR    1 
Note. All correlation coefficients are significant with p < 0.01 
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Figure 3 shows all SEM results based on the nested model. Table 8 reports the regression weights, 

which were all significant at the alpha level of 0.05. First, only the regression weight of AMR was 

negative (-0.174), the others were positive (0.132 for WP, 0.099 for PT, and 0.104 for PMR). The degree 

of this negative effects was also larger than others. IPC has much stronger relationship to mathematical 

literacy than EPC. It is remarkable that EPC is negatively related to mathematical literacy although it is 

not statistically significant at alpha 0.05. In addition, students’ EPC was expected to increase by 0.091 

when students had increase of 1 in their AMR. These findings about AMR indicate that encountering 

AMR frequently had negative influences on their mathematical literacy and positive influences on EPC 

simultaneously. However, OTL with PT was expected to increase mathematical literacy scores both 

directly and indirectly through IPC. When students increased 1 in their PT, students were expected to 

have increase in their IPC by 0.297. This value was remarkably large when considering that IPC was a 

psychological factor and that this result indicated possible impact of tasks introduced to students on 

their psychological perception. Because students’ increase in IPC by 1 was expected to increase 

mathematical literacy by 0.358, the indirect effect of PK was 0.106 = 0.2970.358 (SE = 0.016, p < 

0.001). This value was similar with the direct effect of PT, 0.099 (p = 0.004). 

 

Table 8. Results from the Structural Equation Modeling 

Independent 

Variable 

Dependent 

Variable 
Coefficient SE z-value p-value 

PT IPC 0.297 0.039 7.604 <0.001 

AMR EPC 0.091 0.043 2.120 0.034 

IPC Mathematical Literacy 0.358 0.030 11.970 < 0.001 

WP  Mathematical Literacy 0.132 0.035 3.738 < 0.001 

PT  Mathematical Literacy 0.099 0.044 2.259 0.024 

PMR Mathematical Literacy 0.104 0.036 2.914 0.004 

AMR Mathematical Literacy -0.174 0.032 -5.386 < 0.001 

 

This research studied the relationship among OTL, perceived control, and mathematical literacy. 

OTL itself is conceptualized as the frequency of engagement in four different mathematical tasks that 

was perceived by students. It is critical to think about the possible explanations for this finding, though 

verifying the speculated reasons is beyond the scope of this study. Here, we provide possible 

explanations that may be implemented by subsequent studies and, by extension, identify pathways for 

future research. First, we investigated the relationship between mathematical tasks as OTL and two 

types of perceived control: internal and external.  On the one hand, students’ OTL with procedural tasks 

was positively related to internal perceived control (p < 0.001); on the other hand, OTL with applied 

mathematics reasoning tasks was related to external perceived control (p = 0.034). Although these 

significant relationships were not necessarily causal, this suggests that students’ experiences with 

different types of tasks in mathematics classrooms are one of the factors that shape students’ perceptions 

of perceived locus of control. 
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Figure 3. The SEM Results based on the Nested Model 

 

When speculating several reasons for why perceived control and OTL diverged as observed, we 

put forward how students’ engagement in mathematical tasks can relate to variations in their teachers’ 

implementation of the tasks. Specifically, there could be larger variances in ways to implement of 

applied reasoning tasks (involving high cognitive demands) than in procedural tasks (involving low 

cognitive demands). In this sense, students’ OTL in applied mathematical reasoning tasks can also vary 

according to how teachers’ implement those tasks, which includes how the tasks are presented and how 

students’ learning is scaffolded by teachers. Since cognitive demand for tasks varies by the ways of 

teachers’ task presentation and scaffolding, students might perceive that their success/failure of the 

learning tasks is subject to teachers’ implementation and that their success/failure is out of their control. 

In contrast to the applied reasoning tasks, procedural tasks do not give as much space for 

implementation-variation, and hence, students’ positive/negative experiences with procedural tasks are 

perceived not to be contingent on how they are implemented by teachers. In this study, students who 

were frequently engaged in procedural tasks were more likely to think that their success/failure is under 

their own control, which resulted in a strongly positive relationship between OTL in procedural tasks 

and internal perceived control.    

In this study, we also investigated the relationship between OTL via mathematical tasks and 

mathematical literacy scores. In constructing the model in Figure 1, we conjectured that all types of 

OTL would be positively related to mathematical literacy, though the degree of the relationship may 

vary. Particularly, we expected that applied mathematical reasoning tasks would have a stronger positive 

relationship to mathematical literacy than the other three task types. The PISA assessment for 
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mathematical literacy involved items that assessed capabilities in mathematical reasoning, and use of 

mathematical concepts and procedures in various real contexts. At the beginning of the study, we 

reasoned that many constituent capacities of mathematical literacy are utilized when students engage in 

applied mathematical reasoning tasks; however, the findings challenged this conjecture. Indeed, OTL 

via applied mathematical reasoning was negatively related to mathematical literacy although all other 

mathematical tasks (word problems, procedural tasks, and pure mathematics reasoning tasks) were 

positively related to mathematical literacy. This means that those students who were exposed more 

frequently to applied mathematical reasoning tasks were likely to have lower mathematical literacy 

scores, whereas those who were more frequently engaged in other types of tasks were likely to have 

higher mathematical literacy scores.  

At this point, we will discuss why OTL via applied reasoning mathematical tasks had a uniquely 

different relationship with mathematical literacy compared to the other three tasks. We will highlight 

the specific cognitive processes that are required to successfully engage in each type of task, and how 

we can characterize such thinking processes. According to Hanna and Jahnke (2007), engagement in 

mathematical tasks requires students to undergo two reasoning processes: (1) making abductive 

inferences, such as “an action of selection,” to build the correct premise and (2) making deductive 

inferences between the premise and the conclusion (p. 149). As presented in the example tasks (Tables 

3 and 4), pure mathematical reasoning, word problems, and procedural tasks offer the correct premises 

directly to the students, thereby placing less emphasis on abductive inferences. For applied 

mathematical reasoning, abductive inference is one of the most important elements when formulating a 

given real situation and building premises.   

Also, theoretically, mathematical literacy is defined as a combination of both abductive and 

deductive inferences, which includes the abilities of formulating premises, employing mathematical 

concepts and ideas, and interpreting solutions in real situations. However, the mathematical literacy that 

was measured in the PISA 2012 might not have captured both abductive and deductive inferences in a 

balanced way. Even though the OECD reported that PISA mathematics assessments are improved by 

using computer-based delivery formats, it is still difficult to evaluate students’ inductive/abductive 

reasoning skills with mathematics test items. Students are asked to answer multiple-choices questions 

in the assessments, and this type of assessment does not well reflect students’ processes of searching 

for reasons. Thus, in standardized test settings, often with time limits, students focus more on finding a 

correct answer from the information that is presented in the test problems, rather than exploring and 

formulating a real-word problem situation.   

The questionnaire in PISA 2012 asked students how often they encountered each type of tasks 

during their mathematics classes. The negative relationship between applied reasoning mathematical 

tasks and mathematical literacy encouraged us to rethink how the frequency of OTL via applied 

reasoning tasks can affect mathematics learning. Departing from the idea of ‘the more, the better,’ we 

speculated that the implementation of applied reasoning tasks has much to do with how they are 
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implemented, as opposed to how often they are implemented. Considering that the PISA student survey 

was about how often students encountered each type of tasks, it is possible that other important aspects 

of OTL, such as quality and process of OTL, were not taken into consideration. The varying quality of 

students’ OTL of applied mathematical reasoning could be another reason for the negative relationship 

between applied mathematics reasoning tasks and mathematical literacy.  Particularly, some researchers 

(e.g., Boston & Smith, 2009) have argued that teachers tend to reduce the original cognitive demands 

of mathematical tasks when implementing them. This means that the result is probably due to the ways 

in which those reasoning tasks were implemented. It can be challenging for teachers to scaffold students’ 

learning process carefully and successfully by engaging them in applied mathematics reasoning tasks. 

As such, this may inhibit students from fully taking advantage of OTL via applied mathematical 

reasoning.   

The findings of this study support that allocating more learning time to applied reasoning task is 

not necessarily beneficial to, or does not guarantee, overall mathematics learning. However, our 

attempts made so far to explain the negative relation between applied reasoning tasks and mathematical 

literacy still may not seem to be sufficient. Thus, future research on teachers’ implementation of applied 

mathematics reasoning tasks in classrooms should be followed to validate and explain the negative 

relationship between applied mathematics reasoning task and mathematical literacy.   

Another research question of our study was on the role of perceived control in the relationship 

between OTL with mathematical tasks and mathematical literacy. The results showed that engagement 

in OTL with procedural tasks is likely to influence mathematical literacy directly and indirectly through 

internal perceived control. Particularly, the effect of engagement in procedural tasks on mathematical 

literacy is even greater when the indirect effect through internal perceived control is taken into 

consideration. Considering the strong positive relationship between internal perceived control and 

mathematical literacy, students are likely to have high mathematical literacy scores when they believe 

that being successful in mathematics is under their control. To synthesize, OTL through procedural tasks 

is likely to promote students’ internal perceived control, and in turn, this can have an effect on better 

mathematical literacy. Though this may suggest the merit of engaging students in procedural tasks in 

relation with students’ perceived control, we are not to argue that procedural tasks should be offered 

more in mathematics classrooms than other types of tasks. As Yeo (2007) argued, students need to have 

a variety of OTL, from procedural tasks to mathematizing tasks, and teachers need to be cognizant about 

different OTL that is afforded by various types of tasks. This is specifically because OTL through 

different types of tasks may have varying effect on cognitive and non-cognitive processes during 

mathematics learning, as shown in our study.    

 

CONCLUSION 

This research showed that students can improve their mathematical literacy by engaging in 

various types of tasks from procedural tasks, word problems, to pure and applied mathematics reasoning 
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tasks. Opposite from our expectation, the results showed that students are likely to have lower 

mathematical literacy when they have encountered applied mathematics reasoning tasks more 

frequently. In addition to the discussion of the results, we suggest future studies about how different 

types of tasks are implemented in classrooms, how such implementation influence students’ perceived 

control, and how students perform on tests based on their classroom experiences.   

We suggest several implications based on the findings in this research: First, teachers and 

curricular developers need to implement various tasks considering their relation to students’ perceived 

control and mathematical literacy.  However, it is important to recognize that students’ frequent 

engagement in certain tasks could have unexpected influences on their mathematical literacy, especially 

when they are not appropriately facilitated. Particularly, Korean students’ OTL with applied 

mathematics reasoning tasks had negative relationship with their achievement.  These findings call for 

more investigation on how to implement such tasks appropriately.   

Secondly, it is critical to consider how teachers select OTL with different types of tasks to offer 

in their teaching practices. When educators emphasize tasks with high cognitive demands, it is 

sometimes misunderstood that tasks with low cognitive demand are less beneficial to students’ higher 

order thinking processes in mathematics learning. Even worse, tasks with low cognitive demand are 

considered as something that teachers should avoid. However, our findings show that procedure tasks 

can help students believe that their success is under their own control, which could lead to better 

mathematics learning behaviors and higher mathematical literacy through appropriate scaffoldings for 

other types and levels of mathematical tasks. Then, students will be able to engage in different types of 

mathematical thinking and perceive that they can succeed in mathematics learning with their own effort.  

We did not make direct relation between educational contexts of Korea and the results of this 

study in our interpretation of the results, which should be noted when attempting to generalize the 

findings to different educational systems. Moreover, we highlight that mathematical literacy defined 

and measured by the PISA could be different from achievement measures in other mathematics 

assessments. Therefore, replication studies using other assessments tools or in other educational 

contexts are needed.     
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