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51 ABSTRACT

52 SARS-CoV-2 viral loads change rapidly following symptom onset so to assess antivirals it is important to understand the 

53 natural history and patient factors influencing this. We undertook an individual patient-level meta-analysis of SARS-CoV-

54 2 viral dynamics in humans to describe viral dynamics and estimate the effects of antivirals used to-date. This systematic 

55 review identified case reports, case series and clinical trial data from publications between 1/1/2020 and 31/5/2020 

56 following PRISMA guidelines. A multivariable Cox proportional hazards regression model (Cox-PH) of time to viral 

57 clearance was fitted to respiratory and stool samples. A simplified four parameter nonlinear mixed-effects (NLME) model 

58 was fitted to viral load trajectories in all sampling sites and covariate modelling of respiratory viral dynamics was 

59 performed to quantify time dependent drug effects. Patient-level data from 645 individuals (age 1 month-100 years) with 

60 6316 viral loads were extracted. Model-based simulations of viral load trajectories in samples from the upper and lower 

61 respiratory tract, stool, blood, urine, ocular secretions and breast milk were generated. Cox-PH modelling showed longer 

62 time to viral clearance in older patients, males and those with more severe disease. Remdesivir was associated with faster 

63 viral clearance (adjusted hazard ratio (AHR) = 9.19, p<0.001), as well as interferon, particularly when combined with 

64 ribavirin (AHR = 2.2, p=0.015; AHR = 6.04, p = 0.006). Combination therapy should be further investigated. A viral 

65 dynamic dataset and NLME model for designing and analysing antiviral trials has been established.
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66 INTRODUCTION

67 Finding antivirals that target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will be crucial in managing 

68 the ongoing pandemic. In addition to the development of novel agents, substantial efforts are underway to establish 

69 whether currently available agents may be re-purposed1. A key biomarker for clinical antiviral activity is viral load in 

70 bodily fluids and assessing a drug’s or drug combination’s ability to reduce viral load is an important first step in 

71 identifying therapies that influence clinical outcome.

72

73 To correctly assess antiviral activity, it is first necessary to understand viral load natural history. As a rapidly progressing, 

74 primarily respiratory viral infection, SARS-CoV-2 elimination from the body seems to be mainly driven by a combination 

75 of innate immune response and exhaustion of target cells available for infection2. Observational cohort studies published 

76 to date have shown that the rate of viral load decline seems slower in older patients, those with more severe disease and 

77 those with comorbidities such as diabetes mellitus and immunosuppression3, 4, 5, 6. Interpreting these observational studies 

78 requires caution because patients have often received antiviral therapies. Due to the time point of initial infection being 

79 unknown, assessing viral load in response to treatment must account for time since symptom onset7. 

80

81 Since February 2020 case reports and case series of patient-level viral dynamics have been published, some of which 

82 report dosing of antiviral drugs8. Clinical trials of antivirals and their association with viral load are also beginning to read 

83 out9. Meanwhile large pragmatic trials of repurposed monotherapy antivirals have yet to find a clearly effective agent10. At 

84 this crucial juncture, it is vital to develop a pharmacodynamic modelling framework that can be used to describe the 

85 natural history of SARS-CoV-2 viral dynamics, make initial estimates on antiviral efficacy of agents used to-date, and to 

86 design and evaluate Phase II trials using viral load as a biomarker.

87

88 This systematic review therefore aimed to search for case reports, case series and clinical trials reporting serial individual 

89 patient-level SARS-CoV-2 viral load measurements in humans from any sampling site upon which an individual patient-

90 level meta-analysis was then performed. A nonlinear mixed effects (NLME) viral dynamic model was fitted to describe 

91 the viral trajectories in each sampling site and to give a quantitative measure of viral dynamics. In data of sufficient 

92 quality, the parameters of multivariable Cox proportional hazards regression models of time to viral clearance, and NLME 

93 models of antiviral efficacy were estimated.
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94 METHODS

95 Protocol and registration

96 The protocol for this systematic review and individual patient meta-analysis, which follows the PRISMA Individual 

97 Patient Data systematic reviews guideline11, was first published on 27/5/2020 at: https://github.com/ucl-

98 pharmacometrics/SARS-CoV-2-viral-dynamic-meta-analysis. The final dataset and statistical analysis code are also 

99 published here. The review was registered with PROSPERO (CRD42020189000).

100

101 Eligibility criteria

102 This study aimed to identify serial viral loads with time in human subjects infected with SARS-CoV-2 in order to describe 

103 and model viral load trajectory. The inclusion criteria were therefore papers containing individual subject-level reports of 

104 viral load with time, either since symptom onset or time since start of monitoring for asymptomatic subjects, and sampling 

105 site. Authors of manuscripts describing summary statistics of viral load with time were contacted requesting participant 

106 level data. Viral load was defined as either a value in copies/mL or a cycle threshold (Ct) value of an uncalibrated 

107 polymerase chain reaction (PCR) assay.

108

109 Overall search strategy

110 Since SARS-CoV-2 was notified to the WHO on 31/12/2019, we did not expect to find relevant papers published prior to 

111 this date. Hence, PubMed, EMBASE, medRxiv, and bioRxiv were searched with a date range of 1/1/2020 to 31/5/2020. 

112 The following search terms were used for PubMed and EMBASE: (SARS-CoV-2 OR COVID OR coronavirus OR 2019-

113 nCoV) AND (viral load OR cycle threshold OR rtPCR OR real-time PCR OR viral kinetics OR viral dynamics OR 

114 shedding OR detection OR clinical trial). Due to character limits in the search engine, the following search terms were 

115 used for medRxiv and bioRxiv: (SARS-CoV-2 OR COVID-19 OR coronavirus) AND (viral load OR cycle threshold OR 

116 PCR OR viral dynamics OR clinical trial).

117

118 After removing duplicates, two reviewers independently identified papers for full text screening, with any discrepancies 

119 resolved by a third reviewer.

120

121 Data extraction

122 Viral loads were reported as either numerical values in tables, figures, or in viral load versus time plots. Where possible, 

123 numerical values were copy-pasted directly into a comma separated value (csv) format from the source, whereas tabulated A
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124 numerical values contained in pdf images were extracted using https://extracttable.com/. Viral loads reported in plots were 

125 extracted using Web Plot Digitizer12. 

126

127 Each viral load was paired with a time since symptom onset or in asymptomatic subjects, the time since viral monitoring 

128 started. Furthermore, sampling site and, if viral load not reported in copies/mL, the PCR assay including the primers used, 

129 were extracted along with limit of quantification and limit of detection, if available. The following patient-level covariates 

130 were extracted if available:

131  Presence of fever >37.5 °C at any time (non-time varying covariate) 

132  age, where possible individual age but otherwise the study’s reported central measure (e.g. mean, median) 

133  sex or the male/female ratio was extracted if patient-level data not reported 

134  need for and days of intensive care treatment

135  need for and days of mechanical ventilation 

136  whether patient died and time to death from symptom onset. 

137 In addition, a standardised disease score was constructed for each patient as follows:

138 0 - asymptomatic

139 1 - mild disease (fever, cough or other mild symptoms reported)

140 2 - moderate disease (in addition to mild criterion: need for supplemental oxygen /non-invasive ventilation)

141 3 - severe disease (requirement for mechanical ventilation)

142 All data were stored on a shared github repository, and standardised R-scripts took data from each paper to merge into a 

143 single master dataset. A quality control (QC) check on viral load values and all covariates was performed for each paper 

144 by an independent reviewer.

145

146 Data quality assessment

147 Viral load quality score

148 Two quality assessments were applied to each dataset. Firstly, the quality of viral load reporting was rated on a 1-3 scale. 

149 The highest quality 1 was assigned to studies reporting viral load in copies/mL or reporting a calibration curve allowing 

150 for direct conversion of Ct values to viral load. Quality 2 was assigned if viral load was reported in PCR Ct and primers 

151 used in the assay were reported, but calibration data was missing. In this case a published calibration curve for that primer 

152 from another source was used to convert to viral load in copies/mL13, 14. Where more than one calibration curve was 

153 available for the same primer the mean slope and intercept was used. The lowest (quality score 3) was assigned when viral A
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154 load was reported in PCR Ct but no further information was available on the PCR assay. In this instance a conversion to 

155 copies/mL was made using the mean slope and intercepts from all calibration curves.

156

157 Drug quality score

158 The second quality assessment on a 3-point scale related to reporting of the antiviral drug therapy administered: which 

159 drug(s) and upon which days did patients receive the drug(s). The highest quality 1 was assigned when it was reported 

160 which days each patient received each drug, or these data were provided by corresponding authors.  If it was reported that 

161 no antiviral was administered this was also assigned quality 1. Quality 2 was assigned when antiviral drug treatment was 

162 reported, but ascertaining which days the patient had received the drugs was not possible. The lowest category, quality 3, 

163 was assigned when it was not possible to determine whether or not antivirals had been administered.

164

165 Statistical analysis

166 Primary analysis of time to viral clearance using Cox proportional hazards modelling 

167 The primary analysis was conducted on observed time to viral clearance, which was analysed fitting Cox proportional 

168 hazards regression models with adjusted hazard ratios estimated for each covariate. We verified the assumptions of 

169 proportional hazards using the Therneau-Grambsch test.15 The data used for this analysis were limited to respiratory and 

170 stool sampling sites only, as virus was found to be mostly undetectable at other sites. Furthermore, only data from patients 

171 with known antiviral history (drug quality 1 and 2) were used. To assess the possible risk of bias in different drug and viral 

172 load qualities, the analysis was repeated on two further subsets: Firstly, with only drug quality 1 and respiratory samples, 

173 and secondly on assay quality 1 data only.

174

175 Time to viral load dropping below the limit of detection was modelled with Cox proportional hazards regression in R 

176 (version 3.6.3)16. Where a single patient contributed samples from multiple sampling sites (e.g. upper respiratory and 

177 stool), the time to the last site testing negative was used. Multivariable models for covariate effects on time to viral 

178 clearance were fitted, with additional interaction terms for drug therapies included, where multiple antiviral agents were 

179 given simultaneously. In studies reporting sex as a proportion of males, 10 000 datasets were simulated using the reported 

180 fraction of males to randomly assign individuals to being male from the binomial distribution. The Cox proportional 

181 hazards regression model was then fitted to each dataset and parameter estimates compared with the model, where 

182 individual sex was assigned by rounding the fraction of males. Model parameter estimates were visualised using forest 

183 plots.
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184 Secondary analysis antiviral pharmacology model 

185 The secondary analysis was to use a NLME model to quantify the increase in viral elimination rate with antiviral therapy.  

186 This analysis used data only from respiratory samples and rated drug quality 1.

187 Nonlinear mixed-effects (NLME) viral dynamic model 

188 Firstly, a descriptive analysis of all data was undertaken. A NLME viral dynamics model was fitted to the individual 

189 patient-level viral load versus time data. The structural model was based on the general target cell limited model, which 

190 has previously been used to describe respiratory viral infections7, 17. This model consists of three ordinary differential 

191 equations relating to changes in uninfected target cells (T), infected target cells (I) and free virus (V) over time (t), as 

192 follows:

193
𝑑𝑇(𝑡)

𝑑𝑡 =  ― 𝛽𝑇(𝑡)𝑉(𝑡)

194
𝑑𝐼(𝑡)

𝑑𝑡 =  𝛽𝑇(𝑡)𝑉(𝑡) ― 𝛿𝐼(𝑡)

195
𝑑𝑉(𝑡)

𝑑𝑡 =  𝜌𝐼(𝑡) ― 𝑐𝑉(𝑡)

196 where β is the rate at which target cells become infected in the presence of virus, δ is the death rate of infected cells, ρ is 

197 the rate of viral production from infected cells and c is the rate of clearance of free virus. This model is structurally 

198 unidentifiable, as tested through the IdentifiabiltyAnalysis package in Wolfram Mathematica 12.1 (Wolfram Research, 

199 Illinois, USA) 18, unless the initial condition for T, β, or ρ are known. Furthermore, the elimination rate of free virus (c) is 

200 likely to be much faster than the death rate of infected cells (δ). Hence, by assuming a quasi-steady-state between I and V, 

201 and normalising the total cell number by the number of infected cells when observations begin (t = 0), it is then possible to 

202 reduce the model to a structurally identifiable, two state ordinary differential equation model relating to the fraction (f) of 

203 infected cells with time and infected cells as a proxy for viral load as follows19:

204
𝑑𝑓(𝑡)

𝑑𝑡 =  ― 𝛽𝑓(𝑡)𝑉(𝑡)

205
𝑑𝑉(𝑡)

𝑑𝑡 =  𝛾𝑓(𝑡)𝑉(𝑡) ― 𝛿𝑉(𝑡)

206 with γ, a new parameter equal to ρβT0/c and interpreted to be the maximum rate of viral replication. δ can now be 

207 interpreted as overall viral elimination rate. This population model was then fitted to viral load data with time using the 

208 following form:

209 𝑦𝑖𝑗 = 𝑓(𝜑𝑖,𝑡𝑖𝑗) + 𝜀𝑖𝑗
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210 where yij was the viral load from subject i at time tij, f is the nonlinear model defined above with parameters φi, and εij the 

211 residual between the model prediction and the observed data.

212

213 Four parameters were estimated: the initial viral load at symptom onset (V0), β, δ and γ. Interindividual variability was 

214 estimated for V0, β and δ with each assumed to follow a log-normal distribution. Viral loads were log transformed and the 

215 residual error was assumed to follow a normal distribution. Parameter estimation by maximum likelihood was undertaken 

216 using the stochastic approximation expectation maximization (SAEM) in NONMEM version 7.420. Model evaluation was 

217 undertaken by analysis of normalised prediction distribution errors (NPDE) and visual predictive checks (VPC)21.  Viral 

218 loads below the limit of detection (LOD) were included by integrating the density function from minus infinity to the limit 

219 of detection to yield a probability of the data being below the LOD (“M3 Method”)22. 

220 In some participants, multiple samples were taken at the same time point (either different sampling site or the same sample 

221 assayed by more than one method). In this case a common residual error term was used to allow for modelling one-level 

222 nested random effects.

223

224 Descriptive analysis of viral shedding by sample site

225 The above model was fitted to data from each sampling site. The resulting parameters were then used to simulate the 

226 overall population viral load trajectories. For the respiratory sample sites viral area under the curve (AUC), peak viral load 

227 and half-life were derived from the model and plotted versus patient covariates.

228 Covariate analysis and antiviral drug effects modelling

229 The initial model used only data obtained in untreated patients. A covariate analysis was undertaken testing the influence 

230 of sampling site (nasal versus oral versus lower respiratory tract), sex, age and disease status on either V0, β or δ. 

231 Covariates were retained in the model based on the likelihood ratio test with a threshold level of significance of p<0.01, 

232 and if the same covariate addition to V0, β or δ all gave significant improvement to model fit then the model with the 

233 largest decrease in -2 log likelihood (NONMEM objective function value (OFV)) was chosen. For the final model viral 

234 area under the curve (AUC), peak viral load and half-life were derived and plotted versus patient covariates.

235

236 Using the final demographic model, data from patients undergoing antiviral treatment (antiviral drug quality 1) were 

237 added. A univariable analysis was performed, testing each drug’s ability to increase δ. Drugs showing significant 

238 improvement in model fit (p<0.01), according to the likelihood ratio test, were then included in the final multivariable 

239 model.A
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240

241 Simulations based on the antiviral pharmacology model 

242 Simulations were performed to explore the change in viral trajectories for different time points of therapy initiation: Day 1 

243 after symptom onset, Day 3, Day 7 and Day 10. Interferon and ribavirin monotherapy along with the combination therapy 

244 interferon plus ribavirin were explored this way. A dummy population of 5100 subjects with ages uniformly distributed 

245 across 50 to 100 years, consisting of an equal ratio of males and females was created. Each regimen was simulated using 

246 the entire population, assuming sampling from the upper respiratory tract or nose for a time window of 14 days. 

247 Comparisons of the sample size required to detect a significant difference in the proportion of undetectable virus between 

248 antiviral and no treatment were made after 7 days of treatment with a 90% power and alpha level of p<0.05 for antivirals 

249 starting at Days 1, 3 and 7 post symptom onset.
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250 RESULTS

251 Results of the systematic search are given in Figure 1, and details of included papers in Table 1. Individual patient-level 

252 data were extracted from 45 articles reporting viral loads and/or PCR Ct values with time since symptom onset. Of these 

253 32 papers either reported antiviral participant-level drug histories, or these were provided by the corresponding author. 

254 The full dataset contained 645 individuals contributing 6316 viral load samples. The majority of samples (n) were taken 

255 from the respiratory tract: nasopharyngeal (315 individuals, n=2208), oropharyngeal or saliva (381 individuals, n=2144) 

256 and lower respiratory tract (81 individuals, n=799). The other reported samples sites were stool/rectal swabs (99 

257 individuals, n=655), blood/plasma (42 individuals, n=258), urine (31 individuals, n=112), ocular (16 individuals, n=50), 

258 breastmilk (4 individuals, n=90). Metrics of the full data set are given in Supplementary Table S1.

259

260 Full details of the extracted patient-level covariates are given in Table 2. Recording of fever, days on ICU and days 

261 ventilated was largely unavailable. Therefore, no further analysis was performed on these variables. However, it was 

262 possible to categorise disease status in all drug quality 1 and 2 papers, either through reports in the manuscript or by 

263 contacting corresponding authors. Overall, most patients had mild disease 376 (66.8%), whereas 79 (14.0%) patients had 

264 moderate and 84 (14.9%) severe disease. In total 24 (4.3%) asymptomatic patients were reported. The distribution of 

265 recorded drug therapies, available for drug quality 1 data and respiratory site samples, is summarised in Supplementary 

266 Table S2. Sixty-seven of these patients did not receive antivirals.

267

268 The NLME model fits to the overall data, stratified by sampling site, are provided in Supplementary Table S3 and 

269 Supplementary Figure S1. Simulations from the models for each sampling site showing the expected viral load trajectory 

270 along with the predicted proportion of samples, that would be below the limit of detection are given in Figure 2. For 

271 respiratory sites model-derived AUC, peak viral load and half-life is given in Supplementary Figure S2

272

273 Data on a total of 354 patients with respiratory and/or stool/rectal sampling and drug quality 1 or 2 were available. A 

274 forest plot of the parameter estimates from the Cox proportional hazards regression model is provided in Figure 3. Viral 

275 clearance was fastest from upper respiratory tract samples and slowest from stool. More sensitive assays (with lower 

276 detection limits) were associated with longer time to viral clearance and viral clearance was faster in females, younger 

277 patients and those who were asymptomatic.

278

279 Regarding antiviral therapies, only remdesivir (adjusted hazard ratio (AHR) = 9.19, p<0.001) and interferons (AHR = 

280 2.20, p =0.015) were independently associated with faster viral clearance. The effect of interferon alpha and beta 

281 (Supplementary Figure S3) was similar and hence these were combined. Lopinavir/ritonavir, ribavirin and interferons A
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282 were most used and also most used in combination. Adding interaction terms for interferon plus lopinavir/ritonavir, 

283 interferon plus ribavirin and lopinavir/ritonavir plus ribavirin in the Cox proportional hazard regression analysis showed a 

284 trend towards synergy between interferons and ribavirin in the full dataset (AHR = 6.04, p=0.006 Figure 3), as well as in 

285 the additional analysis taking in quality assessments to account for potential bias: respiratory data limited to drug quality 

286 and in data limited to only viral load quality 1 data (Supplementary Figure S4 and Figure S5).  Median sampling 

287 frequency in the main survival dataset was 1 day but there was a skewed distribution of sampling frequencies with the 

288 mean being 1.9 days and 4.8% of sampling frequencies being greater than 3 days.  The main analysis was repeated 

289 excluding events with sampling frequencies over 3 days to check for potential bias caused by interval censoring, but the 

290 main effect sizes were similar (Figure S6). 

291  

292 Covariate relationships and drug effects were explored through NLME modelling with parameter estimates of the model 

293 given in Supplementary Table S4 along with visual predictive checks and NPDEs in Figure 4 and Supplementary Figure 

294 S7 and visualization of viral area under the curve, peak viral load and half-life derived from the final model in 

295 Supplementary Figure S8. Drug effects were estimated to increase δ. Drug regimens containing interferon (ΔOFV = -25.5, 

296 p<0.001), lopinavir/ritonavir (ΔOFV = 9.97, p=0.0016) and ribavirin (ΔOFV = -22.2, p<0.001) each improved model fit 

297 and so were taken forward to the final multivariable drug model. The estimated small lopinavir/ritonavir effect on delta, 

298 although showing significant model improvement in the likelihood ratio test, did not prove to be robustly detected in the 

299 bootstrap analysis, with the interval crossing the value consistent with no drug effect (Table S4). Implementing an 

300 additional synergy term, as detected in the Cox proportional hazard model, did not improve the NLME model.

301

302 The final model was then used to simulate expected viral trajectories from upper respiratory sampling sites for interferon, 

303 and ribavirin monotherapy as well as interferon plus ribavirin combination  started at 1, 3, 7 and 10 days post symptom 

304 onset (Figure 5). The sample sizes for hypothetical Phase II trials to detect significant differences in viral load versus no 

305 treatment after 7 days of therapy are given in Supplementary Table S5. 

306

307 DISCUSSION

308 This systematic review and individual level meta-analysis has identified viral load trajectories from 645 individuals aged 

309 from the first month of life to 100 years. Data from all major sampling sites showed, that: following symptom onset in 

310 most patients, upper respiratory tract viral load has peaked and is declining, whereas in the lower respiratory tract viral 

311 load peaks 2-3 days after symptom onset; virus is detectable in stool for at least 2 weeks in 75% of individuals, and virus 

312 is detected in low levels in blood, urine, ocular secretions and breast milk (Figure 2). In addition to simulating the 

313 expected trajectory of viral load at each site, we were able to simulate the percentage of samples expected to be below a 

314 typical detection limit of 10 copies/mL (Figure 2). From this it can be seen, that from day 10 post symptom onset over a A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

315 quarter of upper respiratory samples have undetectable viral load. This emphasises the importance of early antiviral 

316 therapy, and for Phase II trials using viral load as an endpoint to commence therapy in the first few days of symptom onset 

317 in order to reliably differentiate antiviral effects from natural viral decline (Figure 5, Supplementary Table S5).

318

319 Although we followed PRISMA guidelines on individual patient-level meta-analysis methods, registered our review with 

320 PROSPERO and prospectively published our analysis protocol prior to finalising our search, by including data from case 

321 reports, case series and clinical trials it could be argued that the heterogeneous inclusion criteria of these data may bias the 

322 treatment effects we estimated.  We therefore repeated the primary analysis on subsets of the data based on sampling site, 

323 data quality and sampling frequency (Supplementary Figures S4-6) finding that the main effects were consistent.  It should 

324 be noted that by far the largest drug quality 1 dataset was the clinical trial from Hung et al9 with 127 patients randomised 

325 to either lopinavir/ritonavir versus lopinavir/ritonavir plus ribavirin plus interferon β, and our second largest drug quality 1 

326 group was those confirmed to have received no antiviral drugs (67 patients).  In total our NLME dataset contained data on 

327 83 patients receiving interferons, 187 patients receiving lopinavir/ritonavir, and 99 patients receiving ribavirin either alone 

328 or in combination (Table S2).  Therefore, whilst consistency in results with various subgroup analyses indicate 

329 confounding related to heterogeneous data is unlikely to have biased our main findings, the heterogeneity in drug and drug 

330 combination studies meant modelling was required to tease out individual drug effects. 

331  

332 A heterogeneous range of antivirals, administered in different combinations, was observed in our data (Supplementary 

333 Table S2) meaning multivariable modelling of time to viral clearance was used to tease out individual drug effects. No 

334 antiviral activity was seen for chloroquine/hydroxychloroquine, azithromycin, lopinavir/ritonavir, umifenovir and 

335 thymalfasin.  However, remdesivir and interferons were both independently associated with shorter time to viral clearance 

336 (Figures 3, S4 and S5). Remdesivir did not however significantly decrease δ in the NLME model, but this is likely due to 

337 the low number of included patients.

338

339 Our most interesting finding is the promising antiviral activity of interferons, possibly due to low endogenous interferon 

340 levels induced by SARS-CoV-223, 24. Interferons (alpha and beta) have shown extensive in vitro activity against Severe 

341 acute respiratory syndrome-1 (SARS-CoV-1) and Middle East respiratory syndrome coronavirus (MERS-CoV)25, 

342 26.However, this has not translated into clinical effectiveness in MERS-CoV25, although results from one trial are still 

343 pending27. Although recent data suggests interferon beta may be more potent than alpha against SARS-CoV-2 in vitro28, 

344 possibly due to higher selective indices for interferon-beta 1b, upon finding similar effects of interferon alpha and beta in 

345 our primary analysis (Figure S3), we decided to combine the interferon effect to better explore drug combinations. In the 

346 Cox proportional hazard analysis, consistent across data qualities and sampling site combinations, we found either a 

347 significant or trend towards significant synergistic activity of interferon plus ribavirin (Figures 3, 4, S4). An extensive A
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348 body of literature exists to show both interferon alpha and beta are synergistic with ribavirin in vitro against both SARS-

349 CoV-1 and MERS-CoV25. This synergy, however, was not confirmed when tested in the NLME analysis, indicating that 

350 the detected synergistic effect from the time to viral clearance analysis might be confounded. Correlations in the timing for 

351 start of drug treatment could be one confounder that is corrected for in the NLME approach. The time-dependant analysis 

352 from the NLME model suggests and additive effect for interferon and ribavirin, rather than a synergistic effect. Thus, 

353 combining interferons with a nucleoside analogue, possibly remdesivir or favipiravir as less toxic alternatives to ribavirin, 

354 is a potentially promising combination for viral load suppression. In our secondary analysis, we included interferon plus 

355 ribavirin in the NLME model and simulations show that virus should be suppressed 2-3 days faster compared to no 

356 treatment (Figure 5).  However, it must be noted that recent evidence from the WHO SOLIDARITY trial shows that 

357 interferons were associated with a trend to increased mortality 29 whereas an unpublished press release reports inhaled 

358 interferon-β to be beneficial30.  There is a clear need for a well-designed Phase II trial on interferons in early disease to 

359 confirm or refute the signal seen in our data.

360

361 Another main finding of our work was the limited antiviral effect of lopinavir/ritonavir, in addition to its lack of 

362 significant synergistic effect with either ribavirin or interferons. The protease inhibitor lopinavir had a modest but 

363 consistent in vitro activity against the major coronaviruses, including SARS-CoV-2, although activity is confined to 

364 concentrations at the upper end of the clinically achievable range1.  Whilst lopinavir significantly improved model fit 

365 when increasing δ, the bootstrap lower boundary crossed the threshold of no drug effect (Table S4), and our simulations 

366 suggest monotherapy studies would require well over 500 participants per arm just to show antiviral activity. As recent 

367 Phase III trials have now conclusively shown, lopinavir/ritonavir is ineffective in monotherapy29, 31.   It remains to be seen 

368 whether lopinavir/ritonavir may be useful in combinations, however.  In SARS-CoV-1 lopinavir/ritonavir plus ribavirin 

369 was found to be synergistic in vitro and when initiated immediately upon diagnosis led to a significant decrease in 

370 mortality compared to historical controls32, 33. Early post-exposure prophylaxis against Middle East Respiratory Syndrome 

371 (MERS-CoV) in healthcare workers showed that lopinavir/ritonavir plus ribavirin reduced the incidence of infection from 

372 28% to 0%34. The lopinavir/ritonavir plus ribavirin combination has therefore been the basis for many clinical trials and 

373 treatment protocols, but our findings suggest that it may not be as useful in SARS-CoV-2 (Figure 3). 

374

375 The antiviral effects of remdesivir in vitro are well established and despite only being able to extract individual patient-

376 level data on six patients, it produced a significantly faster viral clearance in the primary analysis (Figure 3). Despite in 

377 some cases showing promising in vitro activity, we did not find significant antiviral effects of azithromycin, 

378 chloroquine/hydroxychloroquine, thymalfasin or umifenovir. In the case of hydroxychloroquine and azithromycin the raw 

379 viral load data from the heavily criticised study by Gautret et al35 was included, but contrary to the original analysis we 

380 found no clinical antiviral activity of either drug and, in the case of hydroxychloroquine, a trend towards slower viral 

381 clearance. The reason for this difference in interpretation appears to stem from using time since symptom onset as opposed A
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382 to time since starting drug and with untreated patients being monitored from an earlier day-post symptom onset. This 

383 example highlights the necessity of accounting for the time course of the infection when analysing viral loads.

384

385 In our secondary NLME analysis the simplified target cell limited model provided a good fit to data from each sampling 

386 site. In many cases this approximated a mono-exponential decay, but in others, particularly in lower respiratory tract, there 

387 was a pronounced peak in the first days following symptom onset. The model was stable with high inter-individual 

388 variability on V0 and β, reflecting the fact that relative changes in these parameters lead to the initial part of the curve 

389 either rising then falling (in situations when V0 ≈ -β) or approximately monoexponentially declining (when V(0) >> -β). In 

390 addition, we found the model to be less sensitive to changes in γ, meaning it can take a wide range of values with little 

391 influence on model fit, hence we did not estimate an inter-individual variability term on it.  Increasing age was associated 

392 with significantly slower δ, and there was a small effect of male sex also being associated with slower δ (Table S4).  The 

393 age effect translates to a 5-year-old having a viral decay terminal half-life of 1.0 day, a 47-year-old (median age in our 

394 population) 1.18 days and a 90-year-old 1.24 days.  Hence a child has an almost 15% faster viral clearance than a middle-

395 aged adult, and almost 20% faster than an elderly person.    

396

397 In contrast to authors who have estimated parameters for more mechanistic models36, we estimated all drug effects to 

398 increase δ, which implies a mode of action relating to inhibition of viral replication or stimulation of viral clearance 

399 mechanisms. Whilst for most of the drugs studied this may be reasonable, entry inhibitors may be more appropriately 

400 described by inhibition of γ, which may not be statistically identifiable with the data possible to collect in the clinical 

401 setting. Despite this potential limitation, we found similar agents (combinations including interferons and ribavirin) to 

402 those identified in the primary analysis of time-to viral clearance. 

403

404 The major limitation of our work is the lack of clinical trial data and lack of data on potentially important re-purposing 

405 agents such as favipiravir and nitazoxanide and that only one of the authors of a major clinical trial agreed to share their 

406 data9. Through applying quality assessment criteria on drug history and assay reporting, pre-specifying our analysis in our 

407 protocol and PROSPERO registration before undertaking Cox proportional hazards and NLME modelling we aimed to 

408 reduce possible bias in the heterogenous data available.  Whilst we were able to extract a limited common demographics 

409 set, particularly in the high-quality data subset (age, sex, disease severity, antiviral drug histories), our data may be limited 

410 by other non-antiviral medications that were not fully reported in the included papers.  Furthermore, as many of our 

411 included papers were on patients with mild or no symptoms and only contained data on one patient reported to have died, 

412 we were unable to study associations of viral load and mortality.  Viral load measured by PCR is not necessarily infectious 

413 virus, and recently it has been shown that only in samples above 107 copies/mL can SARS-CoV-2 be cultured29. 
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414 Therefore, our data should preferably be used to study viral trajectories in relation to antiviral therapy rather than to infer 

415 probability of transmission.     

416

417 The detection of viable virus might be overcome through whole genome sequencing and the detection of subgenomic 

418 RNA. This has however only been conducted in a single study, included in our review. Woelfel et al.37 showed through E 

419 gene subgenomic RNA quantification and relating it to the entire virus genome RNA, that presence of subgenomic RNA 

420 fragments can be a hint for active viral replication and thus active infection. More recent studies by Alexandersen et al38 

421 and van Kampen et al39 however detected subgenomic RNA up to 22 days after onset of symptoms. It is postulated this 

422 was related to subgenomic RNA being rather stable and associated with cellular membranes and thus detection of 

423 subgenomic RNAs in clinical samples does not necessarily indicate viral activity.  Future controlled studies of subgenomic 

424 RNA levels in patients on and off antiviral therapies are urgently required to better understand this potential biomarker of 

425 drug effect.

426

427 In conclusion, this individual patient level meta-analysis has yielded useful insights into SARS-CoV-2 viral dynamics. A 

428 model-based description of viral trajectories in different sampling sites has been elucidated, and we have found covariates 

429 such as increasing age, disease severity and male sex to be associated with slower viral clearance. Our review firmly 

430 establishes a role for early viral suppression in the management of SARS-CoV-2 and an important signal as to the possible 

431 benefits of interferons as a component of antiviral therapy has been found. It has been shown that viral dynamic models 

432 such as ours can increase the power to detect drug effects due to their utilisation of serial measures40 and our model should 

433 be useful to others in both the design and analysis of future Phase II trials, hence the model code and raw data from this 

434 analysis is made available.

435

436 DATA AVAILABILITY

437 The final dataset is available at: https://github.com/ucl-pharmacometrics/SARS-CoV-2-viral-dynamic-meta-analysis

438

439 CODE AVAILABILITY

440 Model code is available at: https://github.com/ucl-pharmacometrics/SARS-CoV-2-viral-dynamic-meta-analysis

441

442

443 FIGURE LEGENDSA
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444 Figure 1: PRISMA diagram detailing the systematic search results.

445

446 Figure 2: Model-predicted viral load trajectories at each sample site studied.

447 Black lines are the median predictions, with shaded areas representing the 95% prediction interval. The percentage of 

448 samples that are predicted to be below a typical limit of detection (10 copies/mL) are given in 2-daily time bins on each 

449 plot.

450

451 Figure 3: Multivariable Cox proportional hazard results on all drug quality 1 and drug quality 2 data from respiratory and 

452 stool/rectal sampling sites. Adjusted hazard ratios exceeding 1 indicate virus being more likely to become undetectable.

453

454 Figure 4: Visual predictive checks for the NLME model fitted to viral load data to each sampling

455 site. For each site a plot of model simulations compared with observations is given for both the continuous data (upper) 

456 and the fraction of samples below the limit of detection (lower). Black circles are observed viral loads, purple shaded area 

457 is the 95% prediction interval of the simulated 2.5th and 97.5th percentile for comparison with the observed 2.5 and 97.5th 

458 percentile (dashed lines). The blue shaded area is the 95% prediction interval of the 50th percentile to compare with the 

459 continuous black line. In the lower plot the observed proportion of samples below the lower limit of detection (LLOD) are 

460 shown as a black line and compared with the 95% prediction interval of the model predicted proportion of samples below 

461 the LLOD (green shaded area).

462

463 Figure 5: Simulated viral load trajectories.

464 Simulations with a dummy population equally distributed between 50 and 100 years, and equal male/female ratio were 

465 performed for each scenario. Drugs were started at day 1 (blue), day 3 (orange), day 7 (green) or day 10 (red) post 

466 symptom onset. Mean black line and error bars represent simulations of the dummy population without drug treatment. 

467 Coloured mean lines and error bars represent the respective drug regimen. Percentage values represent expected 

468 proportion of samples below the limit of detection for no drug (black) versus drug therapy (coloured) at each time point.
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Table 1 Individual papers included in the Meta-Analysis 

Study 

ID 

Country Sample Type Assay Gene No. of 

Patients  

Sampled 

Patients 

Samples per 

patient median 

[min -max] 

Treatment Symptom details Age, years  

median (IQR) {R} 

Sex 

M (F) 

Ref. 

1 SGP URT, Vn, Un, 

Re, Br 

N, Orf1ab 2 2 14,28 None Yes 0.5 1 (1) 41 

 

2 KOR URT, LRT, 

Vn, Un, Re 

RdRp, E 2 2 98,136 lpvr, other Yes 55/35 1 (1) 8 

 

3 HKG URT, LRT, 

Vn 

RdRp 23 23 3 [1-24] lpvr, riba, Ifn Yes*  

(not longitudinal) 

62 {37-75}* 13 

(10)* 

2 

 

4 CHN URT, LRT N, Orf1ab 12 5 2  riba, ifn, other Yes (not 

longitudinal) 

63 (47-65) [10-72] 8 (4) 42 

5 KOR URT RdRp 1 1 11 lpvr, azit, other Yes 54 1 (0) 43 

 

6 CHN URT, LRT N 80 (2) 2 30,50 - - - - 44 

 

7 CHN URT N, Orf1lab 17 17 8 [1-17] - Yes  

(not longitudinal) 

59 {26-78} 8 (9) 1 

 

8 CHN URT, Re, Vn S 16 16 1 [1-3] - - - - 45 

 

9 FRA URT RdRP, E 36 26 7 [3-7] cqhcq, azit - Mean 45 +/- 22 15 

(21) 

35 
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Study 

ID 

Country Sample Type Assay Gene No. of 

Patients  

Sampled 

Patients 

Samples per 

patient median 

[min -max] 

Treatment Symptom details Age, years  

median (IQR) {R} 

Sex 

M (F) 

Ref. 

10 CHN URT N, Orf1lab 51 50 4 [1-14] lpvr, Ifn, umif, 

thym, other 

Yes 43 (29-53) 25 

(26) 

46 

 

11 CHN URT, Vn, Re N, Orf1lab 6 6 9 [2-19] - - - 5(1) 47 

 

12 CHN URT N 94 94 3 [1-6] - - 46 (33-61)* 47 

(47)* 

3 

 

13 SGP URT N, S, and 

Orf1ab 

18 18 16 [7-25] lpvr Yes 47 {31-73}* 9 (9)* 48 

 

14 CHN URT - 5 5 6 lpvr, Ifn, other Yes {36-73}* 3 (2) 49 

 

15 CHN URT Orf1ab 2 2 7,9 lpvr, riba Yes 19/36 2 (0) 50 

 

16 FRA URT, Re RdRp, E, 

RdRp-IP1, 

GAPDH 

5 5 11 [5-13] remd Yes  

(not longitudinal) 

46 (31-48) 3 (2) 51 

 

17 GER URT, LRT, 

Re 

RdRP, E 9 9 47 [13-54] - Yes 40 (33-49) 8 (1) 37 

 

18 CHN URT, Re N, Orf1lab 10 9 11 [2-20] - Yes 7 (3-13) 6 (4) 52 

 

19 KOR URT, Vn, Re, E 2 2 18,33 None Yes 0.08, neonate 0 (2) 53 A
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Study 

ID 

Country Sample Type Assay Gene No. of 

Patients  

Sampled 

Patients 

Samples per 

patient median 

[min -max] 

Treatment Symptom details Age, years  

median (IQR) {R} 

Sex 

M (F) 

Ref. 

Un  

20 USA URT - 44 19 3 [2-8] - - {23-92}, 61 (mean)* 23 

(21)* 

54 

 

21 TWN URT, LRT RdRp1, 

RdRp2, E, N 

5 5 20 [17-24] lpvr, None Yes 52 (50-53) 2 (3) 55 

 

22 CHN URT, LRT - 213  13 7 [4-19] AVT Yes 52 (2-86) 108 

(105) 

56 

 

23 CHN URT - 1 1 9 inf, cqhcq, other Yes  

(not longitudinal) 

44 1 (0) 57 

 

24 USA URT - 12 12 25 [14-49] remd, other Yes  

(not longitudinal) 

53 {21-68} 8 (4) 58 

 

25 HKG URT, 

LRT,Vn, Re 

- 11 11 9 [2-22] lpvr, riba, ifn* Yes  

(not longitudinal) 

58 (42-70) 7 (4) 59 

 

26 CHN URT, Re Orf1ab, N  3 3 26 [26-52] ifn, cqhcq, other Yes 28 {25-32} 2 (1) 60 

 

27 SGP URT E 17 17 7 [4-14] - Yes* 37 {20-75}* 11 (6) 61 

 

28 TWN URT, LRT  N, RdRp, E 1 1 249 - Yes  

(not longitudinal) 

50 0 (1) 62 
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Study 

ID 

Country Sample Type Assay Gene No. of 

Patients  

Sampled 

Patients 

Samples per 

patient median 

[min -max] 

Treatment Symptom details Age, years  

median (IQR) {R} 

Sex 

M (F) 

Ref. 

29 CHN URT, Re - 3  1 35 Ifn and Riba Yes  

(not longitudinal) 

5 {1.5-6} 2 (1) 63 

 

30 CHN URT, Re N, RdRp, E 1 1 63 lpvr, umif, Ifn, 

other 

Yes 47 1 (0) 64 

 

31 KOR URT, LRT E 28  9 13 [8-33] lpvr, none Yes* 40 (28-54) {20-73} 15 

(13) 

65 

 

32 ITA URT - 1 1 28 - Yes 65 0 (1) 66 

 

33 GBR URT - 1 1 13 none Yes 51 1 (0) 67 

 

34 CHN URT, LRT, 

Co, Vn, Un, 

Re 

- 16 16 53 [27-106] - - 59.5 {26-79}* 13 

(3)* 

68 

 

35 HKG URT RdRp 127 127 8 [4-8] lpvr, riba, ifn - 51.5 {31.0-62.5} 68 

(59) 

9 

 

36 CHN URT N 31  19 2 [1-5] NA - 41 {28-60}* 10 

(21) 

69 

 

37 CHN URT Orf1ab 147  61 2 [1-6] AVT Yes 42.0 (35.0-54.0) {19-

81}* 

67 

(80) 

70 

 

38 CHN URT, Re Orf1ab 54  13 12 [7-20] NA Yes 6.8 {2.7-11.7}* 37 71 A
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d 
A
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Study 

ID 

Country Sample Type Assay Gene No. of 

Patients  

Sampled 

Patients 

Samples per 

patient median 

[min -max] 

Treatment Symptom details Age, years  

median (IQR) {R} 

Sex 

M (F) 

Ref. 

(17)  

39 CHN URT Orf1ab 308  10 9 [7-11] Lpvr, ifn, riba, 

cqhcq 

Yes 63.5 {45-81}* 151 

(157) 

72 

 

40 CHN URT - 1 1 5 other Yes 100 1 (0) 73 

 

41 AUS URT, Br E 2 2 24 [20-28] none Yes 0.7/40 1 (1) 74 

 

42 KOR URT, LRT, 

Un 

RdRp 2 2 25 lpvr, cqhcq Yes 46/65 0 (2) 75 

 

43 VNM URT RdRp 2 2 2,13 other Yes 65/27 2 (0) 76 

 

44 FRA URT, LRT, 

Vn, Re 

E 1 1 27 lpvr - - 1 (0) 77 

 

45 GER Br N, Orf1lab 2 2 32,50 NA Yes - 0 (2) 78 

 

br = breastmilk, Co = conjunctiva, LRT = lower respiratory tract, Re = faecal/rectal/anal, Un = urine, URT = upper respiratory tract,  Vn = venous (blood, plasma, serum), - = Not Reported. AVT = anti-viral therapy, 

cqhcq = chloroquine/ hydroxychloroquine, ifn = interferon, lpvr = lopinavir/ritonavir, remd = remsdesivir,  riba = ribavarin,  umif = umifenivir.  
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Table 2 Overview extracted variables across different analyses, median [range] (%missing data records). n, 

number of individuals included. 

Descriptive (%missing) All Data  

 

n=645  

Cox-PH - Full data 

set 

n=354 

NLME/ reduced 

Cox-PH 

n=317 

Age [years] 

 

46 [0.1 – 100] 

(31.3%) 

48 [0.1-100] 

(0%) 

46 [0.1-100] 

(0%) 

Sex [male/female] 

 

217/189  

(37%) 

215/139 

(0%) 

182/135 

(0%) 

ICU admission [yes/no]* 

 

36/371 

(36.9%) 

8/271 

(21.2%) 

8/257 

(16.4%) 

Invasive ventilation [yes/no]* 14/348 

(43.9%) 

9/262 

(23.4%) 

5/247 

(20.5%) 

Death [yes/no] 

 

1/455 

(29.3%) 

1/330 

(6.5%) 

1/293 

(7.3%) 

Disease severity* 

 

Asymptomatic 

Mild 

Moderate 

Severe 

 

 (12.7%) 

24  

376  

79  

84  

 

(0%) 

19 

258 

52 

25 

 

(0%) 

16 

239 

44 

18 

*There is discord between the reported ICU and mechanical ventilation and disease severity score due to incomplete reporting in some papers.  Disease severity 

was taken from individual reports of disease status in cases where ICU admission and invasive ventilation were not specifically mentioned, and only Disease 

severity was used in the analyses.  
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Records identified through
PubMed/EMBASE

search n = 3098

Records identified through
bioRxiv/medRxiv search n = 2874

Records retained after du-
plicates removed n = 2972

Abstract and title screened
for eligibility n = 2972

Full-text articles assessed
for eligibility n = 1297

Studies included for
viral load extraction

n = 45 (645 individuals)

Studies included in quantita-
tive synthesis (meta-analysis)

n = 32 (354 individuals)

Records excluded n = 1675

Records excluded
(not containing patient-

level viral load) n = 1252

Records excluded
(not containing antivi-

ral drug history) n = 13



1 % 3 % 9 % 16 % 22 % 30 % 38 %

68 % 75 % 79 % 82 % 85 % 87 % 89 %

38 % 46 % 60 % 70 % 77 % 83 % 88 %

1 % 3 % 9 % 16 % 22 % 30 % 35 %

6 % 6 % 9 % 12 % 16 % 20 % 24 %

38 % 61 % 78 % 88 % 93 % 95 % 97 %

0 % 3 % 7 % 13 % 19 % 25 % 30 %

47 % 69 % 82 % 89 % 95 % 97 % 98 %

ocular breast milk

blood stool/rectal urine

saliva/throat nasal lower respiratory
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Pattern of viral shedding in different sites



Sample site

Viral load quality

LOD log10 cp/mL
Age (y)

Sex

Disease status

Azithromycin

Chloroquine/hydroxychloroquine

Remdesivir

Umifenovir

Thymalfasin

Interferon

Lopinavir/ritonavir

Ribavirin

Lopinavir/ritonavir:Interferon

Interferon:Ribavirin

Lopinavir/ritonavir:Ribavirin

upper respiratory tract
lower respiratory tract
stool sample/ rectal swab
high
low

0−39
40−59
60−79
80+
female
male
asymptomatic
mild
moderate
severe
no
yes
no
yes
no
yes
no
yes
no
yes
no
yes
no
yes
no
yes
no
yes
no
yes
no
yes

315
23
16

197
157
354
138
131

72
13

139
215

19
258

52
25

335
19

331
23

348
6

333
21

343
11

249
105
147
207
236
118
288

66
287

67
245
109

Reference
0.66 (0.31, 1.40)
0.25 (0.09, 0.68)
Reference
0.72 (0.38, 1.35)
0.86 (0.61, 1.21)
Reference
0.97 (0.61, 1.53)
0.52 (0.28, 0.95)
0.16 (0.02, 1.65)
Reference
0.71 (0.49, 1.04)
Reference
0.14 (0.05, 0.35)
0.16 (0.05, 0.47)
0.05 (0.01, 0.20)
Reference
0.97 (0.34, 2.81)
Reference
0.26 (0.03, 2.11)
Reference
9.19 (2.74, 30.87)
Reference
1.11 (0.40, 3.04)
Reference
0.09 (0.01, 1.10)
Reference
2.20 (1.17, 4.16)
Reference
0.95 (0.52, 1.73)
Reference
0.36 (0.07, 1.83)
Reference
0.53 (0.15, 1.89)
Reference
6.04 (1.68, 21.71)
Reference
3.08 (0.65, 14.65)

0.278
0.007

0.305
0.398

0.885
0.034
0.125

0.081

<0.001
<0.001
<0.001

0.956

0.206

<0.001

0.842

0.060

0.015

0.871

0.219

0.328

0.006

0.157

Variable N Hazard ratio p

0.01 0.050.1 0.5 1 5 10

Favours faster viral clearanceFavours slower viral clearance
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0 % 1 % 2 % 6 % 11 % 18 % 25 %

0 % 4 % 13 % 24 % 36 % 47 % 56 %

0 % 1 % 2 % 6 % 11 % 18 % 25 %

0 % 2 % 8 % 17 % 27 % 36 % 46 %

0 % 1 % 2 % 6 % 11 % 18 % 25 %

1 % 12 % 30 % 46 % 58 % 68 % 74 %

0 % 1 % 2 % 6 % 11 % 18 % 25 %

0 % 1 % 8 % 20 % 32 % 44 % 54 %

0 % 1 % 2 % 6 % 11 % 18 % 25 %

0 % 1 % 5 % 13 % 23 % 33 % 43 %

0 % 1 % 2 % 6 % 11 % 18 % 25 %

0 % 3 % 17 % 35 % 51 % 63 % 71 %

0 % 1 % 2 % 6 % 11 % 18 % 25 %

0 % 1 % 2 % 9 % 20 % 33 % 44 %

0 % 1 % 2 % 6 % 11 % 18 % 25 %

0 % 1 % 2 % 8 % 18 % 28 % 37 %

0 % 1 % 2 % 6 % 11 % 18 % 25 %

0 % 1 % 2 % 13 % 31 % 47 % 60 %

0 % 1 % 2 % 6 % 11 % 18 % 25 %

0 % 1 % 2 % 6 % 12 % 25 % 37 %

0 % 1 % 2 % 6 % 11 % 18 % 25 %

0 % 1 % 2 % 6 % 13 % 22 % 32 %

0 % 1 % 2 % 6 % 11 % 18 % 25 %

0 % 1 % 2 % 6 % 15 % 33 % 49 %

interferon + ribavirin, day 1 interferon + ribavirin, day 3 interferon + ribavirin, day 7 interferon + ribavirin, day 10

ribavirin, day 1 ribavirin, day 3 ribavirin, day 7 ribavirin, day 10

interferon, day 1 interferon, day 3 interferon, day 7 interferon, day 10
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