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Abstract

Accurate and precise monitoring of species abundance is essential for determin-

ing population trends and responses to environmental change. However, tradi-

tional population survey methods can be unreliable and labour-intensive, which

complicates the effective conservation and management of many threatened

species. We developed a method of using drone-acquired thermal orthomosaics

to monitor the abundance of grey-headed flying-foxes (Pteropus poliocephalus)

within tree roosts, an IUCN Red Listed species of bat. We assessed the accuracy

and precision of this new method and evaluated the performance of four semi-

automated methods for counting flying-foxes in thermal orthomosaics, includ-

ing machine learning and Computer Vision (CV) methods. We found a high

concordance between the number of flying-foxes manually counted in drone-

acquired thermal imagery and the true abundance of flying-foxes in single roost

trees, as obtained from direct on-ground observation. This indicated that the

number of flying-foxes observed in thermal imagery accurately reflected the

true abundance of flying-foxes. In addition, for thermal orthomosaics of whole

roost sites, the number of flying-foxes manually counted was highly repeatable

between the same-day drone surveys and human counters, indicating that this

method produced highly precise abundance estimates independent of the iden-

tity/experience of human counters. Finally, the number of flying-foxes manually

counted in drone-acquired thermal orthomosaics was highly concordant with

the counts derived from CV and machine learning-enabled classification tech-

niques. This indicated that accurate and precise measures of colony abundance

can be obtained semi-automatically, thus greatly reducing the amount of

human effort involved for obtaining abundance estimates. Our method is thus

valuable for reliably monitoring the abundance of individuals in flying-fox

roosts and will aid in the conservation and management of this globally threat-

ened group of flying-mammals, as well as other homeothermic arboreal-roost-

ing species.

Introduction

Quantifying the size of animal populations is a funda-

mental activity in conservation biology (Gibbs, 2000;

Marsh & Trenham, 2008). Population surveys provide

information about the population status of a species,

while monitoring populations over time can elucidate

population trends (Woinarski, 2018) and determine the

effectiveness of management practices (Reddiex et al.,

2006). The validity of population surveys may be biased

by several factors (Seber, 1986) including changes in

population size (Manning et al., 1995), accessibility

(Reddy & D�avalos, 2003; Wagner, 1981) and observer

variability (Erwin, 1982). Critically, inaccurate and

imprecise population survey methods may lead to ill-in-

formed conclusions about species’ status and trends

(Goldsmith, 1991; Guschanski et al., 2009; Margalida

et al., 2011).
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Recent technological advances have made remotely

piloted aircraft systems (hereafter ‘drones’) more afford-

able and available for use as a remote sensing instrument

(Jim�enez L�opez and Mulero-P�azm�any, 2019). Drones are

used increasingly as tools for studying wildlife and tend

to be quieter, more manoeuvrable, and cause less distur-

bance than traditional, piloted aircraft (Christie et al.,

2016). Advances in drone technology have been paralleled

by improvements in sensor resolution, including thermal

imaging devices (Wich & Koh, 2018). Drones equipped

with thermal sensors are being used for an increasing

diversity of applications in wildlife conservation and man-

agement. Recent examples include: automatically identify-

ing and ageing populations of grey seals (Halichoerus

grypus) (Seymour et al., 2017); detecting and counting

arboreal mammals (Corcoran et al., 2019; Kays et al.,

2019; Spaan et al., 2019); and surveying common hip-

popotamus (Hippopotamus amphibius) (Lhoest et al.,

2015).

Maps derived from Structure from Motion photogram-

metry have allowed researchers to create high resolution

orthomosaics, and quantify a diverse range of species

spread over large spatial scales (Bycroft et al., 2019; Fran-

cis et al., 2020; Old et al., 2019). However, manually

counting animals in remotely sensed imagery is time con-

suming and often subject to human error (Erwin, 1982;

Harris & Lloyd, 1977). Furthermore, as the volume and

availability of aerial imagery increases, there is a real ben-

efit to developing automated methods for image analysis

(Terletzky & Ramsey, 2016). Machine learning-enabled

classification techniques are increasingly being applied in

ecology, including species population monitoring (Dell

et al., 2014; Tabak et al., 2019; Valletta et al., 2017; Yang

et al., 2015). Object-based image analysis (OBIA) is a

machine learning technique based upon segmentation of

an image into groups of spatially and spectrally connected

pixels, or image objects. OBIA machine learning classifica-

tion workflows have been used in ecological studies to

identify, classify and quantify populations of coral (Phinn

et al., 2012), vegetation (Dronova et al., 2012) and marine

birds (Groom et al., 2013). By contrast, Computer Vision

(CV) is a branch of computer science where classification

is user-driven. CV allows the user to define rules and

infer information about an image based on pixel charac-

teristics, such as intensity, shape and texture (Weinstein,

2018). CV has applications in automated species identifi-

cation, counting, tracking (Dell et al., 2014) and examina-

tion of morphological characteristics (Weinstein, 2018).

Flying-foxes or Old World fruit bats, of the family

Pteropodidae, are largely understudied (International

Union for Conservation of Nature & Natural Resources,

2020) and difficult to monitor due to their high mobility,

expansive distribution and the inaccessibility of roosting

sites (van Toor et al., 2019; Welbergen et al., 2020). They

are distributed throughout Africa, southeast Asia, Aus-

tralia and the Indo-Pacific, where they are considered

ecosystem engineers, performing pollination and seed dis-

persal (Cox et al., 1991; Fujita & Tuttle, 1991). Pteropodi-

dae are threatened throughout their range by habitat loss

(Mohd-Azlan et al., 2001), climate change (Welbergen

et al., 2008) and overhunting (Brooke & Tschapka, 2002).

According to the IUCN Red List, the populations of

82 species of Pteropodids are decreasing, while for a

further 59 species their population status is unknown

(International Union for Conservation of Nature &

Natural Resources, 2020). Effective monitoring of these

species is needed globally for more reliable conservation

management.

In mainland Australia, there are four Pteropus species,

of which the grey-headed flying-fox (Pteropus polio-

cephalus) is listed as Vulnerable and the spectacled flying-

fox (Pteropus conspicillatus) is listed as Endangered (Com-

monwealth of Australia Department of Environment &

Energy, 2019). During the day, these species are found in

roosts (or ‘camps’) where they form colonies of a few

hundred to many thousands of individuals in the cano-

pies of trees, in natural, agricultural, and urban bushland

areas (Eby et al., 1999; Markus & Hall, 2004; Tait et al.,

2014). Presently in Australia, the number of individuals

that comprise a colony at a roost (defined here as ‘colony

size’) is estimated by ground counts (also known as ‘static

counts’), where people count the number of individuals

present during the day, and fly-out counts, where people

count individuals as they emerge from the roost in

streams at dusk (Forsyth et al., 2006; Westcott &

McKeown, 2004). Accurate ground counts require coun-

ters to walk through a flying-fox roost, which can be

impractical with dense vegetation and can also cause a

high degree of disturbance, while fly-out counts have

been shown to be inaccurate and imprecise (Forsyth

et al., 2006; Westcott & McKeown, 2004). The develop-

ment of more accurate monitoring practices for assessing

flying-fox colony size would enhance the evidence base

for effective conservation and management of these spe-

cies (Westcott et al., 2015).

Here, we describe a drone-based methodology for pro-

ducing thermal orthomosaics of flying-fox colonies and

quantifying the local abundance (number of individuals

present in the colony) of flying-foxes. We assess the accu-

racy of counts from drone-acquired thermal imagery by

comparing them to the true abundance from exhaustive

ground counts, in 15 single trees across three colonies

throughout the Greater Sydney region, New South Wales.

We then determine the precision of counts derived from

the thermal orthomosaic method by examining the vari-

ability of flying-fox colony size counts between counters
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and between multiple orthomosaics captured on the same

day. Following this, four semi-automated approaches, CV

and OBIA machine learning involving Maximum Likeli-

hood, Random Forest and Support Vector Machines algo-

rithms, are used to quantify the number of individuals in

a series of orthomosaics of flying-fox colonies throughout

the Greater Sydney region to determine the most reliable

approach for semi-automated counting of flying-foxes in

their roosts.

Materials and Methods

Drone and sensor

A DJI Inspire 1 Version 2.0 drone equipped with Zen-

muse XT 19 mm radiometric thermal camera, with a

combined mass of 3.2 kg, was used to obtain thermal

imagery of flying-fox colonies. The FLIR longwave infra-

red thermal sensor in the Zenmuse XT has a sensitivity of

50 mK @nf/1.0 at a resolution of 640 9 520 pixels.

The Drone Observing tool (Burke et al., 2019) was

used to determine the optimal flight height for thermal

image acquisition (nadir) with an approximate resolution

of 0.02 m per pixel, corresponding to c. 5 9 5 pure pixels

per flying-fox. Flying-foxes appeared as circular objects in

aerial thermal imagery, with an estimated diameter of c.

0.10 m (based on measurements from Meade et al.,

2019). Accounting for mean estimated height of local

roost vegetation (27.3 � 0.6 m) (Timmiss, 2021) and the

size of roosting flying-foxes, the required flight height was

determined to be 23 m above roosting flying-foxes, and

hence the drone was set to fly at 50 m above ground level

(AGL) for all surveys (Eisenbeiss & Sauerbier, 2011).

Thermal orthomosaic construction

Thermal orthomosaics were obtained from drone surveys

conducted when wind speed was below 10 km h�1. All

flights were programmed in flight planning application

Pix4Dcapture 4.9.0 (Pix4D, 2017). Take-off and landing

were autonomous, and images were taken while the drone

was in cruising mode, flying at 2 m s�1 in a lawnmower

pattern, with 90% front and side overlap. Collecting

informative orthomosaic imagery for this study relied on

flying-fox external body temperature being sufficiently

different to ambient background temperature (Figure 1).

Therefore, all drone surveys were conducted during the

cooler part of the day (commencing 66–130 min after

sunrise) to maximize the difference between ambient tem-

perature and animal external body temperature (see

Burke et al., 2019). Roost surveys were conducted

between September 2019 and March 2020 (throughout

Spring, Summer and Autumn) where ambient tempera-

ture ranged from 5.0 to 22.6°C, with a mean temperature

of 18.3°C, recorded concurrently at the nearest weather

station (Bureau of Meteorology, 2020).

Following drone surveys, all survey images were saved

as radiometric JPEGs, with embedded EXIF data provid-

ing latitude, longitude, and altitude. Agisoft Metashape

Professional Version 1.5 was used to generate orthomo-

saics (Supplementary Material 1.1) (LLC Agisoft, 2019).

Accuracy assessment

To determine the accuracy of counting flying-foxes in

drone-acquired thermal imagery, we assessed the concor-

dance between the true abundance based on ground counts

of flying-foxes in single trees to counts obtained by drone-

acquired thermal imagery. In February 2020, direct visual

counts of flying-foxes roosting in a single tree were con-

ducted at Camellia Gardens at 1.5–2 h after sunrise, in air

temperature of 19.0°C, Centennial Park at 2.5–3 h after

sunrise, in air temperature of 23.9°C, and Macquarie Fields

at 7.5–8 h after sunrise, in air temperature of 24.4°C (con-

current air temperatures were obtained from the nearest

weather station (Bureau of Meteorology, 2020).

(A) (B)

Figure 1. Drone-acquired thermal image of flying-fox colony at Emu Plains, New South Wales, taken when air temperature was (A) 29°C and (B)

10°C. Flying-foxes in (B) are bright and easily distinguishable from dark (cooler) background, while in (A), there is markedly less spectral contrast

between the flying-foxes and the vegetation.
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The author EDM exhaustively counted the exact num-

ber of flying-foxes present in five trees at the three roosts

while standing directly underneath each tree. Upon com-

pletion of EDM’s count at a focal tree, a thermal image

of the tree was taken by the drone positioned at 50 m

AGL with its the camera aimed in nadir direction. Fol-

lowing image capture, the number of thermal signatures

of flying-foxes in each target tree was manually counted

in the image with the aid of the multi-point tool in Fiji

1.8.0_172 by author EDM (Schindelin et al., 2012) (Sup-

plementary Material 1.2).

Precision assessment

To determine the precision of manual counts derived

from drone-acquired thermal orthomosaics, we compared

manual point counts derived from repeated surveys, the

number of flying-foxes in each orthomosaic was counted

manually using the multi-point tool in Fiji 1.8.0_172

(Schindelin et al., 2012). Orthomosaics were generated

from repeated surveys on the same day at four roosts

(Supplementary Material 1.3, Supplementary Material 2).

For 10 of 11 orthomosaics, resolution was constant to

within �0.12 cm2/pixel for orthomosaics captured at the

same roost (Supplementary Material 1.3). However, for

the three orthomosaics generated for the Kareela roost,

the resolution of ‘Kareela 3’ was c. 1.8 cm2/pixel lower

than the resolution of ‘Kareela 1’ and ‘Kareela 2’.

To determine the extent of between-counter variability

in manual point counts, the set of three orthomosaics for

the Kareela roost was manually counted by author EDM

and four additional human counters. The additional

counters were selected on the basis that they were familiar

with the species and had visited a flying-fox colony. Each

counter was sent an email outlining the purpose of the

task, the three orthomosaics (Supplementary Material 2),

and a set of instructions for completing the task (Supple-

mentary Material 1.4). All orthomosaics were randomized

prior to sharing with counters, and the counters worked

independently from each other. The counters reported

that it took up to 1 h to conduct a manual point count

of an orthomosaic (for an average of 1983 flying-foxes

counted over an area of c. 2654 m2) (Supplementary

Material 1.3).

Performance of semi-automated methods

We compared the counts obtained by the four semi-

automated approaches to those from the manual point

counts of a series of 13 thermal orthomosaics of eight flying-

fox colonies throughout the Greater Sydney region. Two

orthomosaics were generated for five roosts and one ortho-

mosaic was generated for three roosts (Supplementary

Material 1.5). The average resolution of the colony orthomo-

saics varied from 2.53 to 8.24 cm2/pixel, with an average

orthomosaic resolution of 4.24 cm2/pixel. Lower orthomo-

saic resolutions resulted because photogrammetry software

was unable to successfully align some survey images in the

orthomosaic (Yang & Lee, 2019). This may have been due to

environmental factors such as wind-induced movement of

foliage in the image between successive images, or to changes

in solar radiation. The colony area of each orthomosaic was

measured by tracing around the spatial extent of the colony

in ArcGIS Pro, and varied between 1451 m2 at Camellia

Gardens to 21 112 m2 at Centennial Park.

For each thermal orthomosaic, author EDM conducted

a manual point count of the number of flying-foxes.

Manual point counts of flying-foxes in the orthomosaics

varied from 1126 to 12 131 individuals (Supplementary

Material 1.5), and these served as the baseline for com-

parisons with counts obtained from semi-automated

methods.

Following the manual point counts, the number of fly-

ing-foxes in the same orthomosaics were estimated using

four semi-automated approaches: CV and OBIA machine

learning (involving Maximum Likelihood, Random Forest

and Support Vector Machines algorithms) (thermal

orthomosaics and classified products are viewable in Sup-

plementary Material 2).

CV method

The 13 thermal orthomosaics were classified using CV-

driven image analysis, adapted from cell counting meth-

ods (Drury et al., 2011; Grishagin, 2015), and imple-

mented in Fiji 1.8.0_172 (Schindelin et al., 2012). The

optimum functions and parameters for this process were

determined by systematically adding one function or

varying one parameter at a time while keeping all others

constant. The classification proceeded according to the

steps outlined in Figure 2. For the final step, ‘Analyse

Particles’, the size range was set to 10–300 pixels and the

circularity to 0.3–100, with ‘Include Holes’ enabled. A

region of interest was generated for each segment of pix-

els representing a flying-fox. The macro for this process is

given in Supplementary Material 1.6.

OBIA method

The 13 orthomosaics were classified using ArcGIS Pro

2.5.0 (Environmental Systems Research Institute, 2020)

through an OBIA supervised classification machine learn-

ing approach. A 5% clip stretch was applied to increase

the contrast between flying-foxes and the background. A

‘segment mean shift’ approach was applied to each ortho-

mosaic (Comaniciu & Meer, 2002) where areas with
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homogenous intensity were grouped together (spectral

detail = 15, spatial detail = 15.5). The minimum segment

size was set to three pixels, to ensure that the smaller or

partially covered flying-foxes were represented in the seg-

mented product. Then, training samples were generated for

the classification scheme that was made up of flying-fox

and background classes. For each orthomosaic, 100 train-

ing samples were generated for each class using the segment

picker and freehand selection tools. Next, each orthomo-

saic was classified using Random Forest, Maximum Likeli-

hood and Support Vector Machines classifiers (parameters

provided in Supplementary Material 1.7). Each classified

orthomosaic was imported into Fiji 1.8.0_172 (Schindelin

et al., 2012) and the ‘Watershed’ function was applied to

separate individuals roosting close together in imagery.

Then, the ‘Analyze Particles’ tool was used to quantify the

number of segments classified as flying-foxes (this work-

flow is illustrated in Supplementary Material 1.8).

Pixel-based accuracy assessment

Pixel-based accuracy assessments were conducted for all

classified orthomosaics generated using the four semi-au-

tomated counting approaches. For each classified ortho-

mosaic, the classification accuracy of one-hundred pixels

classified as ‘flying-fox’, and one-hundred pixels classified

as ‘background’ was determined by visual comparison

with the original thermal orthomosaic (pixels were

selected through random stratified sampling). Results

were used to generate a confusion matrix for each classi-

fied orthomosaic (Supplementary Material 1.9). From

this, classification accuracy (%) was calculated.

Statistical analyses

All statistical analyses were two-tailed, employed an a
value of 0.05 and were conducted in R version 3.6.3 (R

Core Team, 2018). General linear mixed models

(GLMMs) were constructed using the nlme package (Pin-

heiro et al., 2016). All models had a Gaussian distribution

and were fitted with an identity link function. To analyse

the relationship between thermal image point count and

true abundance, derived from ground count for single

trees, we constructed a GLMM with thermal image point

count as the response variable, ground count as the fixed

effect and roost ID as a random effect. The effect of the

response variable was tested through a likelihood ratio

test (ANOVA). To determine the concordance between

ground counts and thermal image point counts of a single

tree, we calculated Lin’s concordance correlation

Figure 2. Flowchart outlining the steps taken to generate a semi-automated colony size estimate of the flying-fox colony at Yarramundi through

Computer Vision – implemented in Fiji 1.8.0_172 (Schindelin et al., 2012). Images depict the classification process for a small area of the colony.
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coefficient (qc) (Lawrence & Lin, 1989) using the package

DescTools (Signorell, 2016).

To test the effect of roost ID on the difference between

thermal image counts and ground counts, and thus the

effect of roost ID on thermal image point count accuracy,

we ran an ANOVA, with ‘thermal image point count –
ground count’ as the response variable, and roost ID as

the independent variable. Here, we used a Tukey’s test to

test for between-level effects post hoc.

To determine the extent of variability between manual

point counts of flying-foxes in thermal orthomosaics from

repeated surveys of colonies on the same day, and thus

the precision of manual point counts, we calculated rela-

tive standard error (RSE) for all counts of the orthomo-

saics, grouped by roost.

To test whether there was a significant difference

between the counts obtained from the Kareela roost ortho-

mosaics by different counters, a two-way ANOVA was run,

and a Tukey’s test was used to test for between-level effects

post-hoc. To test for homogeneity of variance between the

counts grouped by counter and by image, two Levene’s

tests were run using the package car (Fox et al., 2012).

To determine the relationship between flying-fox col-

ony abundance estimates, generated using the semi-auto-

mated counting methods and manual point counts, four

GLMMs were fitted using manual point count as the

response variable in the package nlme (Pinheiro et al.,

2016). For each GLMM, counts obtained through each of

the semi-automated methods, including CV, Support

Vector Machines, Maximum Likelihood and Random

Forest, were fitted as a fixed effect. Bayesian Information

Criterion (BIC) values for each of the four GLMMs were

compared. For all semi-automated counting methods,

models accounting for the effect of roost as a random

effect failed to improve fit, based on BIC, and roost was

excluded from the final models.

To determine the concordance between the counts

obtained from each of the semi-automated counting

methods and manual point counts, Lin’s concordance

correlation coefficient (qc) (Lawrence & Lin, 1989) was

calculated for each semi-automated method using the

package DescTools (Signorell, 2016).

A GLMM was constructed to determine the relation-

ship between the accuracy of each classified orthomosaic

(through pixel-based accuracy assessments) and the differ-

ence between the counts generated using the semi-auto-

mated methods and manual point counts. The GLMM

was fitted with accuracy as the response variable; absolute

value percent difference between the semi-automated and

manual point count (%), and semi-automated method

type as the fixed effects; and roost as a random effect. For

this GLMM, the significance of the fixed effects was tested

through likelihood ratio tests (ANOVAs), and Tukey’s

test was used to test for between level effects post-hoc. In

this analysis, the Maximum Likelihood classified product

for the Campbelltown orthomosaic was excluded as an

outlier as the manual point count differed 268% from the

Maximum Likelihood classified count.

Animal ethics statement

This research was approved by Western Sydney University

Animal Research Authority no. A12217 and NPWS scien-

tific licence SL102047.

Results

Accuracy assessment

For single trees, point counts derived from drone-ac-

quired thermal images were strongly positively related to

true abundance as derived from ground counts (GLMM:

F1,11 = 71.860, P < 0.001, marginal R2 = 0.88; Figure 3).

Furthermore, counts derived from thermal drone imagery

had a high level of concordance with ground counts

(qc = 0.89, 95% CI 0.73–0.96). Roost ID had a significant

effect on the accuracy of thermal image point counts

(ANOVA: F2,12 = 9.06, P = 0.004). The accuracy of ther-

mal image point counts was significantly lower for the

Macquarie Fields roost compared to the Centennial Park

roost (Tukey’s test: P = 0.003).

Precision assessment

The RSE between manual point counts of flying-foxes vis-

ible in orthomosaics for the three repeated surveys varied

from 0.92% for the three Campbelltown orthomosaics, to

6.91% for the three Kareela orthomosaics, with an average

of 2.22% for all orthomosaics, excluding the lower resolu-

tion Kareela 3 orthomosaic (Supplementary Material 1.3).

There was no significant effect of human counter on

the number of flying-foxes counted for three Kareela

orthomosaics (ANOVA: F4,9 = 1.06, P = 0.433; Supple-

mentary Material 1.10A). However, counts varied signifi-

cantly between the three orthomosaics of the colony at

Kareela (ANOVA: F1,9 = 23.53, P < 0.001), with the

counts of ‘Kareela 3’ being significantly different from

‘Kareela 1’ and ‘Kareela 2’ (Tukey’s test: P = 0.001 and

P < 0.001, respectively) (Supplementary Material 1.10B).

Semi-automated counts

Counts of thermal orthomosaics derived from semi-auto-

mated methods correlated strongly with those derived

from manual point counts (Figure 4; Supplementary

Material 1.5). The Random Forest classification semi-
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automated method had the strongest positive relationship

with manual point counts (GLMM: BIC = 56.09). The

subsequent rank of semi-automated methods was: CV

(GLMM: BIC = 57.12), Support Vector Machines

(GLMM: BIC = 58.06) and Maximum Likelihood

(GLMM: BIC = 67.15), compared to a BIC of 70.78 for

the model run without the fixed effect.

Counts resulting from the CV method had the highest

concordance with manual point counts (qc = 0.83, 95%

CI 0.57–0.94; Figure 5), followed by Support Vector

Machines (qc = 0.81, 95% CI = 0.53–0.93), Maximum

Likelihood (qc = 0.70, 95% CI = 0.28–0.89) and Random

Forest (qc = 0.70, 95% CI = 0.28–0.89).
From pixel-based accuracy assessments (Supplementary

Materials 1.9 and 1.11), the accuracy of semi-automatically

classified orthomosaics for all four classification methods,

ranged from 66.5% to 97.5%, with an average accuracy of

84.0%. There was no significant relationship between accu-

racy and the absolute value percent difference between the

count obtained through each semi-automated method and

manual point count (GLMM: F1,40 = 0.15, P = 0.705).

Accuracy differed significantly between the semi-auto-

mated methods (GLMM: F3,40 = 6.66, P < 0.001). There

was a significant difference in accuracy between the Maxi-

mum Likelihood and Support Vector Machines methods

(Tukey’s test: P = 0.008).

Discussion

We demonstrated that drone-acquired thermal imagery

can be used to accurately and precisely quantify the

abundance of flying-foxes in a roost. In addition, we

show that semi-automatic CV and OBIA workflows gen-

erate results that are comparable to manual point counts

of thermal orthomosaics of colonies, providing an effi-

cient alternative to manually assessing the number of fly-

ing-foxes in thermal orthomosaics. Drones equipped with

thermal cameras have previously been recommended as a

powerful tool for the remote detection of animals (Burke

et al., 2019) and have been used to help determine popu-

lation sizes of several species (Dunstan et al., 2020; Lhoest

et al., 2015; Seymour et al., 2017). Our results add to this

field of research, demonstrating that drone-acquired ther-

mal remote sensing can be used as an effective tool for

monitoring colonies of the Vulnerable grey-headed flying-

fox. Implementing this method to improve our under-

standing of the globally threatened Pteropus species,

including data-deficient species, would greatly enhance

our ability to inform conservation planning for this eco-

logically important genus throughout Africa, southeast

Asia, Australia and the Indo-Pacific.

It was critical for us to assess the ability of users to

detect roosting flying-foxes in drone-acquired thermal

imagery. Counts of the number of flying-foxes in single

trees derived from drone-acquired thermal imagery were

concordant, and strongly and linearly related to, the true

abundance of flying-foxes in those trees, indicating that

counts from drone-acquired thermal imagery was accu-

rate. However, for the Macquarie Fields roost, some fly-

ing-foxes were not visible in thermal imagery, and

consequently those counts were lower than ground counts

(Figure 3). This may have been due to higher ambient

Figure 3. Relationship between ground counts and counts obtained from thermal images for a single tree. Grey shaded area indicates � SE

(standard error).
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Figure 4. Relationship between manual point counts by author EDM and counts obtained through each of the semi-automated counting

methods: (A) Computer Vision, (B) Support Vector Machines, (C) Maximum Likelihood and (D) Random Forest. Grey shaded area indicates � 95

CI (confidence interval). Blue lines show fits from linear models. Black lines are lines of equality.

Figure 5. (A) Complete thermal orthomosaic of the flying-fox colony at Yarramundi on the 4th of September 2019. (B) Orthomosaic with red

points giving locations of flying-foxes manually counted by author EDM. (C) Orthomosaic with yellow points of flying-foxes detected using the

Computer Vision workflow, which delivered counts most concordant with manual point counts (Figure 4A; Supplementary Material 1.5). Points

represent locations of image segments classified as flying-foxes.
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temperature and higher sun elevation at Macquarie Fields,

as it was later in the day, warming the vegetation (see

Burke et al., 2019; Mulero-P�azm�any et al., 2014), making

flying-foxes thermal signature less distinguishable from

the background environment. Ambient temperature is

understood to affect the visibility of animals in thermal

imagery (Cilulko et al., 2013; Kays et al., 2019; Spaan

et al., 2019), and hence we recommend that thermal ima-

gery surveys of flying-fox colonies should be undertaken

early in the day, to avoid underestimating the number of

individuals present.

There was little variation between manual point counts

of thermal orthomosaics from repeated same-day surveys

at four roosts, indicating that thermal orthomosaics can

yield precise estimates of flying-fox abundance. Of the four

colonies, the variation between repeated counts was highest

for the Kareela colony, with the ‘Kareela 3’ orthomosaic

yielding significantly lower flying-fox abundance estimates

than the other two orthomosaics from earlier that day. This

may be explained by the fact that the resolution of the

‘Kareela 3’ orthomosaic was substantially lower than the

colony’s other two orthomosaics (Supplementary Material

1.3). Low orthomosaic resolution has previously been

noted as a potential source of error in visual spectrum ima-

gery (Bycroft et al., 2019). Formal assessments of the effects

of orthomosaic resolution on flying-fox abundance esti-

mates at a colony would further increase the precision and

accuracy of this method. Nonetheless, users should ensure

that orthomosaics are of a sufficiently high resolution (ide-

ally 2–3 cm2/pixel) to represent each flying-fox as 3–5 pix-

els (Meade et al., 2019).

No significant effect of human counter was found on

manual point counts of flying-fox colonies derived from

drone-acquired thermal orthomosaics, suggesting that

manually counting flying-foxes in drone-acquired thermal

orthomosaics does not require specialized skills. Between-

observer variability is often cited as a source of error in

animal population surveys that employ both ground-

based and aerial surveillance techniques (Bowler et al.,

2020; Stapleton et al., 2014). Results from ground-based

animal detection surveys have been shown to depend on

observer experience, when spotting koalas (Phascolarctos

cinereus) (Hanger et al., 2017) as well as for estimating

flying-fox colony size from fly-out counts (Forsyth et al.,

2006). Contrastingly, counts of rafting canvasbacks

(Aythya valisiner) from black-and-white aerial pho-

tographs did not vary significantly between counters with

different levels of training and experience (Erwin, 1982).

We suggest that manual point counts of thermal ortho-

mosaics of flying-fox colonies may be reliably conducted

by any individual, provided they are familiar with the

counting software and the appearance of flying-foxes in

drone-acquired thermal imagery. This will thus be

valuable for small organisations who may not have

knowledge of semi-automated counting techniques.

Flying-fox colony size estimates derived from the semi-

automated methods matched those from the manual point

counts well, indicating that semi-automated methods pro-

vide an efficient alternative to the time-consuming process

of manually assessing the number of flying-foxes in thermal

orthomosaics. Flying-fox colony size estimates derived

from the CV workflow had the highest concordance with

manual point counts (Figure 5) and the second highest

correlation with manual point counts. CV techniques are

commonly used in the life sciences to characterize and

quantify microorganisms under a microscope (Grishagin,

2015) but also have many applications in ecology (Seymour

et al., 2017; Weinstein, 2018). In most ecological studies

the target organisms are highly distinguishable against a

homogenous background; however, in this study, the back-

ground was often heterogenous and always three-dimen-

sional, and we had to subtract the background and

manually threshold each image. Critically, when threshold-

ing a thermal orthomosaic, the operator aims to visually

optimize the brightness in the image to the point where the

contrast between individual flying-foxes and surrounding

vegetation matrix is maximized (see Gonzalez et al., 2016).

Once optimized, the CV workflow presented here should

be easily implemented and provide time-efficient flying-fox

colony size estimates relative to manual counts of thermal

orthomosaics.

All four semi-automated classification methods tended

to result in lower counts of flying-foxes in orthomosaics

compared to manual point counts (Figure 4). The dis-

crepancy between manual point counts and semi-auto-

mated counts for all methods may be due to

misclassification of multiple close together flying-foxes as

a single flying-fox, or failure to detect flying-foxes in war-

mer vegetation. Pixels are often misclassified if they lie on

the boundary between two different land cover classes

where pixels are a mix of reflected energy (Burke et al.,

2019; Townshend et al., 2000), in this case heat from both

flying-foxes and the background. This makes the defini-

tion of discrete boundaries between land classes difficult,

such as in Supplementary Material 1.11, where bright veg-

etation (Bangalow palm, Archontophoenix cunninghami-

ana) was misclassified as flying-foxes in the top right

corner of the orthomosaic. This issue was also described

when discriminating glossy ibis (Plegadis falcinellus) from

background in visual spectrum imagery using the Ran-

dom Forest classifier (Af�an et al., 2018). Furthermore,

fewer flying-foxes were counted in ‘Kareela 3’, captured

3 h after sunrise, compared to ‘Kareela 1’ and ‘Kareela 2’

orthomosaics, captured earlier in the morning, by all

human counters. Two human counters noted that ‘Kar-

eela 3’ was more difficult to count due to a high amount
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of bright vegetation in the orthomosaic because of solar

glare, which made flying-foxes less distinguishable from

the background, something that has been noted previ-

ously for sighting riverine rabbits (Bunolagus monticularis)

in thermal imagery (Burke et al., 2019). Therefore, areas

of bright vegetation may be misclassified by all semi-auto-

mated classification methods, so results from these semi-

automated methods should be visually compared with the

original orthomosaic to ensure their accuracy.

From pixel-based accuracy assessments, counts derived

from thermal orthomosaics classified using the semi-auto-

mated classification methods were shown to have rela-

tively high accuracies (average 84%). This suggests that

the classification error lay in accurately quantifying and

discriminating between groups of flying-foxes. However,

using an object-based accuracy assessment method may

have more accurately represented this issue and the count

accuracy of each classified product (Terletzky & Ramsey,

2016). Nevertheless, in future studies improvements in

sensor resolution should allow for improved discrimina-

tion between individual flying-foxes by semi-automated

classification methods.

Conclusion

More accurate, precise and objective methods for moni-

toring the abundance of flying-foxes in a colony enhances

the evidence base for the conservation and management

of this globally threatened group of species (International

Union for Conservation of Nature & Natural Resources,

2020). The drone-based thermal remote sensing method

we demonstrate, enables reliable monitoring of popula-

tion changes over time using an objective method, free

from the biases associated with existing counting methods

(Forsyth et al., 2006; Westcott & McKeown, 2004). If the

method were implemented across whole species ranges, it

would enable a more precise understanding of the spatial

dynamics of flying-fox populations (Welbergen et al.,

2020), the impacts of extreme weather events (Shilton

et al., 2008; Welbergen et al., 2008), and the magnitude

of flying-fox ecosystem services in a given location (van

Toor et al., 2019). Understanding the drivers of flying-fox

abundance and redistribution, and movements between

roosts at the local and continental scales (Welbergen

et al., 2020), will in turn enable researchers to develop

predictive models for accurate and precise flying-fox pop-

ulation monitoring to inform conservation planning.
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