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Abstract 

 

When listening to music, people across cultures tend to spontaneously perceive and move 

the body along a periodic pulse-like meter. Increasing evidence suggests that this ability is 

supported by neural mechanisms that selectively amplify periodicities corresponding to the 

perceived metric pulses. However, the nature of these neural mechanisms, i.e., the 

endogenous or exogenous factors that may selectively enhance meter periodicities in brain 

responses to rhythm, remains largely unknown. This question was investigated in a series of 

studies in which the electroencephalogram (EEG) of healthy participants was recorded while 

they listened to musical rhythm. From this EEG, selective contrast at meter periodicities in 

the elicited neural activity was captured using frequency-tagging, a method allowing direct 

comparison of this contrast between the sensory input, EEG response, biologically-plausible 

models of auditory subcortical processing, and behavioral output. The results show that the 

selective amplification of meter periodicities is shaped by a continuously updated 

combination of factors including sound spectral content, long-term training and recent 

context, irrespective of attentional focus and beyond auditory subcortical nonlinear 

processing. Together, these observations demonstrate that perception of rhythm involves a 

number of processes that transform the sensory input via fixed low-level nonlinearities, but 

also through flexible mappings shaped by prior experience at different timescales. These 

higher-level neural mechanisms could represent a neurobiological basis for the remarkable 

flexibility and stability of meter perception relative to the acoustic input, which is commonly 

observed within and across individuals. Fundamentally, the current results add to the 

evidence that evolution has endowed the human brain with an extraordinary capacity to 

organize, transform, and interact with rhythmic signals, to achieve adaptive behavior in a 

complex dynamic environment.  
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1 Introduction  
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1.1 Defining the phenomenon 

 

To investigate any perceptual phenomenon, the most important prerequisite is its 

definition. Defining the basic properties of a phenomenon can subsequently guide the ways 

we measure its correlates in behavior, or in neural activity. An illustrative example from a 

different perceptual domain could be defining visual categorization as a process that 

provides (i) different responses to different sensory inputs (discriminates) and (ii) provides 

identical response to physically different sensory inputs that contain same higher-level 

category (generalizes). Once such definition is established, a behavioral paradigm can be 

developed, or a certain measure of neural activity can be meaningfully interpreted as 

related (or not) to the perceptual phenomenon in question (Rossion et al., 2020).  

 

1.1.1 Musical meter as perception of a nested set of periodic pulses 

The aim of this thesis is to examine perceptual organization of musical rhythm. Rhythm in 

general is conveyed by dynamic changes in physical features of the sensory input, in other 

words modulation of a stimulus property over time (e.g. a steady pure tone does not 

provide any rhythmic information, whereas amplitude- or frequency-modulated tone does). 

While such modulations are by definition continuous, it is often useful to think about 

rhythm as temporal intervals between discrete sound events defined by transient feature 

changes, such as tone onsets (indeed, timing of such transient changes is well represented 

in the auditory system, Hamilton et al., 2018; Daube et al., 2019). The continuous and 

discrete descriptions of rhythmic structure are closely related, and one or the other will be 

used according to context. The discrete description is particularly useful to describe 

rhythmic stimuli as patterns and sequences (Honing and Bouwer, 2018). Rhythmic patterns 

correspond to ordered sets of time intervals defined by a series of sound events. In music, 

rhythmic structure is often based on repetition of the same pattern, or concatenation of 

different patterns into longer rhythmic sequences.  

Importantly, the temporal structure of musical rhythms is not random, but often contains a 

restricted set of time intervals (Desain and Honing, 2003; Jacoby and McDermott, 2017; 

Roeske et al., 2020). The way humans perceive and respond to rhythmic patterns is based 

on two fundamental higher-level phenomena. One of them is categorical perception of 
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intervals. That is, humans map the continuous space of time intervals in a rhythmic pattern 

onto a limited set of categories (including, but not restricted to, small integer ratios) (Jacoby 

and McDermott, 2017). At the same time, slight deviations from the perceptual categories 

are not lost (unlike in other perceptual domains, Goldstone and Hendrickson, 2009) but 

contribute to perception of expressive timing used by musicians to convey aesthetic 

information (Desain and Honing, 2003; Honing and Bouwer, 2018). As if the categorical 

prototype induced by the stimulus was then used as an internal reference point to judge the 

deviation of the sensory input from this prototype.   

The second phenomenon relevant to perceptual organization of musical rhythm constitutes 

the main topic of the current thesis. Even though rhythmic patterns in music are rarely 

isochronous, and often not exactly periodic, they typically induce perception of a nested set 

of periodic pulses (a pulse is defined as a series of regularly-spaced points in time). 

Importantly, these perceived pulses are time-locked onto the temporal structure of the 

rhythmic sequence (often in a non-trivial way, see below). Similarly to categorical 

perception of time intervals, while a pattern of intervals is mapped onto regular pulses, the 

information about the pattern is not lost, but perceptually organized with respect to the 

internal representation of these pulses (Povel and Essens, 1985; Honing and Bouwer, 2018). 

In musical terminology, this form of perceptual organization is referred to as musical meter 

(Yeston, 1976; Cohn, 2020).  

A particular perceived meter is described by two parameters (see Figure 1.1). One defines 

the periods for all pulses in the set. Because the set must be nested, the periods of longer 

pulses must be integer multiples of all shorter periods in the set. Another parameter is 

needed to define the phase, i.e. the alignment of the metric structure with the rhythmic 

pattern. The meter phase can be described by a single value due to the nesting restriction, 

which constrains the relative phases between individual pulses.  

In some cases, periods and phase of meter can be defined in absolute units of time, such as 

seconds. However, for patterns that are artificially constructed on a fast isochronous grid 

(where any interval in the pattern can be defined by an integer number of grid intervals), 

meter periods and phase can be defined by the number of grid points (in fact, such “grid” 

method to construct rhythmic patterns is commonly used in most modern music production 

software). Such relative representation is in line with recent developments of meter theory 
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(Cohn, 2015, 2020) and provides the required flexibility to classify meters across units and 

scales.   

 

 
Figure 1.1. Representation of the rhythmic stimulus and perceived meter. The audio waveform of the rhythmic 

stimulus is shown in grey. The time intervals between tone onsets can be taken to represent a discrete 

sequence of time intervals. An abstracted representation of the sequence is depicted on an isochronous grid 

(in black), as a series of equally-spaced points, which can be either sound events (“x”) or silent events (“.”). 

Such “grid representation” can only be used when all intervals in the sequence can be expressed as integer 

multiples of a fast “grid” interval. Note that the rhythmic sequence consists of a seamless repetition of the 

same rhythmic pattern. Importantly, the same rhythmic sequence is shown here with three different 

perceived meters. Meter is shown as yellow arches that mark discrete time points, thus defining periodic 

pulses (starting from the slowest pulse on the top, and embedded faster pulses towards the bottom). (A) The 

perceived meter consists of pulses with periods of 1, 2, 4, and 12 grid points, and relations between these 

pulse periods can be coded recursively as {2,2,3}. The alignment of the metric structure with the starting point 

of the repeating pattern (i.e. meter phase) can be coded as 0, because the slowest pulse in the meter starts 

exactly with the first pattern event. (B) The depicted meter has identical periods {2,2,3} as in A, but is shifted 

to the right by 3 events (i.e. phase = +3). Thus, the pulses are aligned with different events in the pattern. (C) 

The meter has different periods, corresponding to 1, 3, 6, and 12 grid events, i.e. pulse periods with relations 

{3,2,2} and phase 0.  
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Theoretically, a large number of possible pulses could be perceived for a given rhythmic 

sequence. However, certain stimulus-meter combinations are unlikely to occur. One reason 

are physiological constraints that determine absolute limits of possible perceived pulse 

periods. For instance, the fastest possible metric pulse has been determined to be around 

100 ms (see, e.g. London, 2004; Repp, 2005; Polak, 2018). Although a limit for the slowest 

pulse arguably exists, it is less sharply defined (for further discussion, see Repp and Su, 

2013). In addition, a number of authors have proposed that there exists a preferred pulse 

period peaking around 600 ms and this preference monotonically decreases towards the 

absolute limits (Parncutt, 1994; van Noorden and Moelants, 1999; London 2004). 

Acknowleding the existence of such constraints is crucial to distinguish meter from other 

perceptual phenomena such as pitch perception. However, it is also important to note that 

a number of studies addressing these constraints have not clearly dissociated temporal 

limits of internally represented pulses that are used as a time reference (i.e. meter, as 

defined in the current thesis) from biomechanical limits of movement and from stimulus 

properties (e.g. van Noorden and Moelants, 1999; Parncutt, 1994). In other words, one 

should keep in mind that metric pulse with a faster (or slower) period than the tapped one 

can still be internally represented (see e.g. Repp 2008). Similarly, even though an auditory 

metronome with a very slow period does not induce internal representation of a metric 

pulse with the same period (e.g. when tappping 1:1 with the metronome, Repp and 

Doggett, 2007), this does not imply that such a slow metric pulse cannot be induced by an 

auditory input with more temporal information (such as in 1:N tapping with a metronome, 

Repp 2010a). These issues are further discussed in section 1.2.2.6.   

 

Another source of bias towards perception of a particular meter may be the actual temporal 

structure of modulations (or intervals) in the rhythmic stimulus. To satisfy the time-locking 

constraint from the definition of meter, the pulse periods need to be related to the intervals 

within the rhythmic sequence. Even though this relation can be complex (Polak et al., 2016), 

here, the main focus is on a conventional case where the metric pulses and rhythmic 

intervals form integer ratios.  

Moreover, the modulations in the stimulus may contain periodic contrast at particular 

frequencies. As discussed further in section 1.2.2, periodic contrast is present in a signal 

when a particular feature repeats at time points precisely separated by a stable interval 
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(period) and is different from features at other time points. A number of studies tried to link 

acoustic periodicities in the stimulus to the periods and phase of the perceived metric 

structure (Longuet-Higgins and Lee, 1984; Povel and Essens, 1985; Palmer and Krumhansl, 

1990; Parncutt, 1994; McAuley and Semple, 1999; Eck, 2003; Toiviainen and Snyder, 2003; 

Hannon et al., 2004; Bouwer et al., 2018). These influential studies, along with ideas taken 

from research on interval timing (McAuley and Jones, 2003; Grube et al., 2010), have 

encouraged the (often implicit) assumption that meter is somehow an objective property of 

the stimulus that needs to be “extracted” by the brain (Kotz et al., 2018). However, the view 

of meter as a sound property is at odds with approaches emphasizing the subjective nature 

of meter (Agmon, 1990; Gabrielsson, 1993). Along this line, several authors have recently 

argued in favor of the subjective nature of meter, pointing out the flexibility in mapping 

between the rhythmic input and perceived meter across genres and cultures (London et al., 

2017; van der Weij et al., 2017). For instance, stereotypical patterns from afro-cuban music 

(e.g. tresillo, clave, cascara) readily induce perception of a specific meter in listeners familiar 

with the genre, despite the lack of unambiguous acoustic cues. Similarly, the phase of the 

induced meter can be flexibly aligned with the prominent sound events for some genres 

(e.g. techno), but not others (e.g. swing, ska, reggae, mazurka, or even backbeat in rock 

music) (Merchant et al., 2015a). 

These examples show that meter is arguably not an objective property of the acoustic 

stimulus, and is highly sensitive to top-down intention, learning and context (Penhune and 

Zatorre, 2019). While the acoustic structure of a rhythmic stimulus can constrain, bias, and 

even prevent induction of meter perception, the perceived meter cannot be determined 

solely on the basis of physical structure of the stimulus, rather, it is a higher-level perceptual 

phenomenon. Thus, the same rhythmic pattern can be mapped onto different metric pulses, 

while different patterns can be mapped onto the same set of pulses (Nozaradan et al., 

2017a). The problems of approaches that assume one-to-one mapping between acoustic 

structure of the stimulus and perceived meter are further discussed in the following section.   

 

1.1.2 Functions of musical meter 

The definition of meter as a nested set of pulses that are time-locked onto the rhythmic 

input is sufficient to develop measures of meter in the brain and behavior (as discussed in 
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section 1.2.2). However, an important additional question concerns the function of these 

pulses (what do they serve for?). Based on prior literature, three basic functions of musical 

meter can be proposed. Firstly, perception of meter has a phenomenological component; 

the same rhythmic pattern simply sounds different when a different meter is perceived 

even though the physical stimulus is identical (Garner and Gottwald, 1968; Repp, 2007; 

Honing and Bouwer, 2018). The second function is related to time perception; timings of 

sound events are not only perceived with respect to each other, but with respect to the 

internally generated time points, defined by the perceived metric pulses (Povel and Essens, 

1985; Large and Jones, 1999; McAuley and Jones, 2003). The third, and most important 

function is that meter perception drives movement (Toiviainen et al., 2010; Janata et al., 

2012; Burger et al., 2014, 2018). This movement can be 1:1 with one of the pulses in the 

perceived meter (e.g. head bobbing, foot tapping). But perceived meter also provides 

temporal scaffolding for much more complex forms of movement, enabling precise 

temporal coordination between an individual and a rhythmic stimulus (dance) and between 

individuals (music performance) even when the rhythmic patterns within the sensory input 

and behavioral output are not identical, nor periodic (Keller and Repp, 2005; Repp and Su, 

2013; Heggli et al., 2019). A simple example involves a string quartet, where each musician 

must produce a complex series of movements that rarely precisely repeat (i.e. are not 

strictly periodic). At the same time, these movements must be precisely coordinated in time 

with the acoustic input the musician receives, which comprises a complex (again, rarely 

strictly periodic) sound sequences of the whole ensemble.  

 

1.1.2.1 Does meter perception rely on dynamic attending, expectation, entrainment 

models or predictive coding? 

Over the last decades, a number of functional descriptions beyond those described above 

have been proposed as fundamental to meter perception, particularly dynamic attending 

and expectation (Jones and Boltz, 1989; Drake et al., 2000; Vuust et al., 2018). These have 

strongly influenced the neuroscientific methods and hypotheses developed to study the 

phenomenon (Cameron and Grahn, 2016; Honing and Bouwer, 2018). Contrary to these 

views, I argue that processes such as dynamic attention and expectation may not be 

fundamental to meter perception, even though they could be definitely related in certain 
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contexts (see e.g. van der Weij et al., 2017). Therefore, it is important to review the work 

that led to development and wide acceptance of these functional descriptions, and point 

out their weaknesses. 

An important finding of early investigations was that perception and reproduction of a 

single time interval (i.e. defined by two successive sound events) is often not equally 

accurate, but depends on context. For instance, the same interval is represented more 

accurately if it is directly preceded by multiple repetitions of the same interval (Drake and 

Botte, 1993; Miller and Auley, 2005). On the other hand, accuracy decreases when intervals 

in the preceding context are variable (Zeni and Holmes, 2018), and the estimate is biased 

towards the mean of the recently encountered intervals (Jazayeri and Shadlen, 2010; 

Cicchini et al., 2012). To explain these phenomena, two competing models were proposed, 

both assuming that time is measured with respect to an internal clock (Barnes and Jones, 

2000; Pashler, 2001; McAuley and Jones, 2003). For interval-based timing models, the 

internal clock would work like an hourglass, i.e. being able to re-start at any arbitrary time 

point (Keele et al., 1989; Ivry and Hazeltine, 1995). The time interval between two sensory 

events could then be compared to the reference interval stored in the timer. Because of 

sensory and internal noise, the reference interval could be considered a statistical estimate 

that can be biased, but also made more precise by integrating previously observed intervals 

(Drake and Botte, 1993; Jazayeri and Shadlen, 2010; Cicchini et al., 2012; van Rijn, 2016). On 

the other hand, beat-based timing models suggest that the internal timer works like an 

oscillator, with period and phase set by the context sequence of intervals (Schulze, 1978; 

Povel and Essens, 1985). The timing of events in the sensory input is then compared to the 

time points defined relative to the instantaneous phase of the oscillator. In fact, the two 

systems can be both conceptualized as oscillators, whereby timing is estimated according to 

the phase of the oscillator at which the sensory event arrives. The crucial distinction is that 

an interval timer resets its phase completely with each sensory event, but beat-based timer 

is assumed to keep oscillating without correcting the phase at all. This leads to dissociable 

predictions of the two models about effects of prior rhythmic context on perception of time 

intervals, which were tested in a number of behavioral studies that yielded mixed results 

(Schulze, 1978; Keele et al., 1989; McAuley and Kidd, 1998; Pashler, 2001). In an elegant 

study, McAuley and Jones (2003) fitted a continuous phase- and period-correction 

parameter directly to behavioral data, showing that neither pure interval nor beat-based 
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model can explain effect of isochronous context sequence on single interval perception. 

Rather, the most parsimonious internal clock was characterized by a partial phase and 

period correction (the so called “entrainment model”). Similar lack of clear dissociation in 

brain networks involved in interval and beat-based timing was found in neuropsychological 

studies (Cope et al., 2014) (but see Breska and Ivry, 2018 for recent evidence of dissociation 

between the two timing systems).  

These studies have shown that using oscillators to model perception of single intervals and 

isochronous sequences can be powerful. However, it involves significant challenges when 

modeling time processing in non-isochronous rhythmic patterns (see Figure 1.2). This is 

because a single oscillator with linear phase-response function would be constantly 

desynchronized by sound events separated by intervals different than integer multiples of 

its internal period. One way to solve this issue is to use a rigid oscillator (i.e. beat-based 

model with no phase or period correction) (Povel and Essens, 1985). However, the phase 

and period of such oscillator need to be set a priori, after first assessing its alignment with 

the acoustic structure of the whole rhythmic sequence. Moreover, such model fails when 

slight timing fluctuations typical for human performance are considered (Large and Palmer, 

2002). To avoid the a priori setting, a bank of oscillators (tuned to a range of frequencies) 

with amplitude dynamics and phase correction can be used. This way, only oscillators tuned 

to frequencies that yield high correlation with periodic contrasts given by modulations in 

the physical stimulus remain active (Large, 2000a; Tomic and Janata, 2008; Todd and Lee, 

2015a). These models have been influential in the field, leading to the assumption that 

meter perception is directly driven by the modulations in the sensory input, and is only 

induced when these modulations create prominent contrast at meter-related periodicities 

(Povel and Essens, 1985; Jones and Boltz, 1989). However, as noted above, these models 

cannot account for a range of genres where acoustic modulations in the stimulus cue 

different meter parameters than are readily perceived by the listeners (e.g. reggae, ska), or 

where the modulations are ambiguous (e.g. tresillo, clave).  
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Figure 1.2. Issues of an adaptive oscillator when tracking pulse in a rhythmic pattern. Oscillator with linear 

phase (50%) and period (10%) correction was modeled based on Obleser et al. (2017). The phase of the 

oscillator over time is plotted in magenta, and waveform of the oscillator (cosine of the phase) is plotted in 

blue. Grey vertical dashed lines represent sound onset times. Red triangles depict positions of the putative 

metric pulse. The extracted phases of the oscillator across the pulse positions are plotted on the right. The 

phase consistency across pulse positions (mean vector length r) is shown on the top of the circular plot. In case 

of perfect tracking of the pulse, the phase should be identical across all pulse positions, i.e. r=1. The response 

to the first 4 pattern cycles were discarded to remove the transient response of the oscillator. (A) Isochronous 

rhythmic input. The oscillator precisely synchronizes with the pulse positions, which coincide one-to-one with 

the isochronous stream of sound onsets. (B) Tresillo rhythm, typical for afro-cuban music and often used in 

popular music (Cohn, 2016). The pulse typically perceived for this pattern does not systematically coincide 

with the sound onsets. Still, the onsets elicit phase and period correction of the oscillator, resulting in poor 

tracking of the perceived pulse positions. This shows that a single adaptive linear oscillator cannot faithfully 

track metric pulse in a complex rhythmic pattern. (C) “Complex” rhythm, used in a number of previous studies 

(Nozaradan et al., 2016b, 2018; Lenc et al., 2018). Assuming a pulse period and phase typically tapped by 

human participants shows that the oscillator does not faithfully synchronize to the perceived pulse.   

 

A softer version of this view is that the perceived meter does not have to constantly align 

with the acoustic structure of the stimulus, but still needs to be first directly induced by this 

acoustic stimulus (Large and Palmer, 2002; Honing and Bouwer, 2018). In other words, once 

induced by a stimulus with regular acoustic structure, meter perception can persist over 

time even if the pattern of modulations in the stimulus temporarily changes towards cueing 

different meter periods (in musical terminology “hemiola”) or phase (in musical terminology 

“syncopation”). While this notion supports mechanistic oscillator models of meter 

perception and may hold in many cases, it is not a rule. In many genres the acoustic 
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modulations never clearly support the meter readily perceived by experienced listeners 

(London et al., 2017). Moreover, while models using a bank of oscillators with amplitude 

dynamics can be used to model selection of meter periods, the phase-resetting issue 

remains. A way around this is to use a nonlinear phase-response function (Large and Palmer, 

2002). This way, the oscillator can “ignore” events that do not occur within a narrow range 

on its cycle, but still correct to small timing deviations in the input. Such assumption is 

closely related to models implementing dynamic attending theory (DAT). DAT proposes that 

limited processing resources can be selectively allocated in time, thus resulting in enhanced 

processing of sensory input at some time points, and suppressed processing at other time 

points (Jones and Boltz, 1989; Jones et al., 2002). They suggest that such “expectations” 

about upcoming stimulus timing are induced through mechanistic entrainment of internal 

oscillators to acoustic modulations in the sensory input (thus providing a link to oscillator 

models of timing). An allocation of resources to such anticipated time points would lead to 

better stimulus processing and adaptive behavior including enhanced auditory and visual 

sensitivity (Jones et al., 2002; Hurley et al., 2018; Bouwer et al., 2020b), better 

discrimination, memory encoding (Johndro et al., 2019; Hickey et al., 2020), and faster 

reaction times (Escoffier et al., 2010; Bolger et al., 2013, 2014) to stimuli aligned with the 

pulses induced by prominent periodic modulations in the stimulus sequences. While DAT 

was originally introduced as a more general theory, it has significantly influenced theories of 

meter perception (Fitzroy and Sanders, 2015; Honing and Bouwer, 2018; Bouwer et al., 

2020b), to the point where some authors defined meter perception as “entrained 

attention” (London, 2004).  

There are multiple additional reasons why ideas from DAT have been adopted by so many 

researchers of meter perception. Firstly, research on musical rhythm has been 

predominantly focused on a subset of genres (Western classical and popular music), 

whereby periods and phase of the perceived meter are closely related to the acoustic 

structure of rhythmic patterns (for further discussion, see London et al., 2017). In such 

environment, metric pulses represent a reliable source of expectations, i.e. they statistically 

predict when subsequent sound events will occur (Palmer and Krumhansl, 1990). At the 

same time, mechanistic oscillator models commonly used in time-perception and DAT 

studies fit nicely to such stimuli, thus encouraging generalization of findings from simple 

rhythmic stimuli to meter perception in complex rhythmic patterns. Moreover, a number of 
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recent neurophysiological studies suggested that neural networks responding to acoustic 

stimulation could be described as self-sustaining weakly coupled oscillators that can entrain 

(i.e. systematically align their phase) to temporal modulations of the acoustic input (Doelling 

et al., 2019; Lakatos et al., 2019; Poeppel and Assaneo, 2020). This provides direct 

mechanistic link to functional interpretations of neural oscillations known from low-level 

neurophysiology, typically involving excitability fluctuations and information transfer 

between brain regions (Draguhn and Buzsaki, 2004; Lakatos et al., 2005).   

Thus, the picture emerging from the literature reviewed above could be summarized as 

follows: (i) if acoustic modulations in the stimulus contain prominent contrast at particular 

periodicities, this entrains neural oscillations such that their phases align to time points 

where acoustic modulations systematically (and periodically) occur. (ii) Because oscillations 

represent fluctuations in neural excitability, there should be enhanced processing of stimuli 

presented at these periodic time points, and suppressed processing of misaligned stimuli. 

(iii) Thus, the phases of neural oscillations can be thought of as embodying expectations of 

prominent acoustic events.  

The question is whether such a model can be generalized to the domain of musical rhythm 

and meter perception. On one hand, ideas of expectation are ubiquitous in music theory of 

meter, as illustrated in the work of Lerdahl and Jackendoff (1983): "The listener’s cognitive 

task is to match the given pattern of phenomenal accent as closely as possible to a 

permissible pattern of metrical accentuation” (p. 18). In their terminology, phenomenal 

accents represent modulation structure of the acoustic stimulus. Metrical accents are time 

points internally defined by the perceived metric pulses. The number of nested metric 

pulses that coincide at a particular time point determines (i) how strongly a prominent 

sound event is expected at that time point and also (ii) the amount of perceptual 

prominence of such event. On the other hand, most of these music-theoretic approaches do 

not capture the wealth of musical traditions and genres around the globe, as already 

suggested in the sections above (Polak et al., 2016; London et al., 2017). Indeed, applying 

ideas of DAT to swing, ska, reggae, chanson, mazurka, clave, tresillo, i.e. rhythmic stimuli 

where prominent sound events are typically not aligned with the perceived metric pulses, 

would mean that perception of most prominent sound events would be largely suppressed. 

Similarly, some empirical evidence about the distribution of resources across time points 

predicted by DAT entrainment models (Bolger et al., 2013, 2014; Kunert and Jongman, 
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2017) is not compatible with perceptual salience of different time points as defined by 

music-theoretic models of meter (Lerdahl and Jackendoff, 1983; Palmer and Krumhansl, 

1990; Large, 2000a; Large and Palmer, 2002). Consequently, taking dynamic attention as 

fundamental to meter perception can lead to contradictions. For instance, London (2004)  

proposes a definition of meter as entrained selective attention, but at a different point 

emphasizes that “we do not ignore the non-emphasized events, we organize them” (p. 14). 

Hence, using the term “attention” when referring to meter may be more misleading than 

useful.  

In musical contexts, rhythmic patterns with sound events aligned and misaligned from the 

perceived metric pulses are often cyclically repeated (Witek, 2017). Therefore if the 

behavioral goal is to align preferential processing to time points where sound events are 

expected, mechanistically relying on the perceived metric pulses would be statistically 

inefficient and disadvantageous. Instead, there is evidence that attention may be allocated 

in time based on memory of a repeating rhythmic pattern alone (Bouwer et al., 2020b; 

Schirmer et al., 2020). In light of these results, the current point is not to claim that meter 

perception cannot provide temporal reference for dynamic allocation of attention (see, e.g. 

Breska and Deouell, 2016; van der Weij et al., 2017). However, there may not be a one-to-

one relationship between the perceived meter and dynamic attentional fluctuations (Hurley 

et al., 2018). Therefore, dynamic attention and expectation may not be fundamental 

processes defining meter perception, contrary to what has been previously proposed 

(London, 2004). Perhaps refraining from using these terms, as is done in this thesis, would 

lead to a more parsimonious theory and hypotheses about meter processing.  

Similar reasoning can be used for conceptualization of meter in the framework of predictive 

coding. This framework has been previously used to explain how rhythmic stimuli can give 

rise to feeling of pleasure (Vuust and Witek, 2014; Vuust et al., 2014, 2018; Koelsch et al., 

2019; Matthews et al., 2020), and why certain rhythmic inputs elicit spontaneous 

movement, or urge to move (Witek et al., 2014b; Witek, 2017). Originally proposed by Karl 

Friston as a general theory of brain function, the predictive coding theory relies on the idea 

that the brain predicts the causes of sensations based on a comparison between the actual 

sensory input and previous knowledge (Friston, 2005). Previous experience would thus be 

the basis for the continuous generation of internal predictive models to be compared to the 

sensory input, and these models would be gradually updated to minimize prediction error. 
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Yet, when applied to meter perception, the predictive coding theory may show very similar 

issues as those already discussed for DAT, internal oscillators and expectations. Particularly, 

if the goal is error minimization, it is not clear why the system would consistently generate 

incorrect predictions when stimulated for example with a repeated pattern that contains 

consistent deviations from the metric pulse template (London et al., 2017; Witek, 2017). 

Instead, successful prediction could simply be achieved through memorizing the pattern of 

inter-onset intervals (Bouwer et al., 2020b; Schirmer et al., 2020). Indeed, it has been 

recently shown that high predictive accuracy can be achieved by formalizing meter as a 

learned generative model of rhythm while allowing high expectation of events to be formed 

at arbitrary positions with respect to the metric pulses (van der Weij et al., 2017). In other 

words, as for DAT, there may not be a one-to-one relationship between the perceived meter 

and high predictive accuracy. Nevertheless, in order for the system to calculate the 

prediction error of an event with respect to an internal pulse-like metric template at all, the 

pulses need to be internally represented in the first place. While the question of how the 

internal representation of pulses is used for prediction is definitely a topic worth 

investigating, the aim of the current thesis is more fundamental, as it investigates how the 

metric pulses are internally represented. For these reasons, the terminology of predictive 

coding is not adopted when discussing meter perception in the rest of this thesis.  

 

1.1.3 Primacy of one pulse (beat) in meter 

Until this point, the current discussion has been based on the definition of meter as a set of 

perceived pulses. However, it is important to note that music-theoretic and psychological 

literature often takes a different approach, where it is assumed that one pulse is somehow 

special to the listener (Lerdahl and Jackendoff, 1983; Drake et al., 2000; Toiviainen and 

Snyder, 2003; London, 2004; Honing and Bouwer, 2018). This special pulse has been 

referred to as the tactus, beat, referent (or simply pulse), and should correspond to the 

pulse that the listener spontaneously synchronizes to when asked to move along with the 

rhythmic pattern (e.g. by tapping their finger, or foot). The listener is assumed to determine 

the pulse as the periodicity that is most prominently cued by the acoustic modulations in 

the stimulus (Jones and Boltz, 1989; Drake et al., 2000). At the same time, characteristics of 
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the listeners such as their age (Drake et al., 2000) or cultural experience (Drake and El Heni, 

2003) can bias the choice of the beat.  

The fact that many authors have assumed a special status of one particular periodicity may 

be a result of multiple factors. Firstly, while the widespread use of finger-tapping to 

investigate rhythm processing provides simple means to assess induced pulses, it inherently 

limits the participant to synchronize only with one pulse at a time (van Noorden and 

Moelants, 1999; Drake et al., 2000; Snyder and Krumhansl, 2001; McKinney and Moelants, 

2006; Martens, 2011; Nozaradan et al., 2012; Large et al., 2015; Rajendran et al., 2020). In 

contrast, recent experiments capturing spontaneous movement of the whole body reveal 

that humans readily synchronize to multiple metric pulses simultaneously with distinct body 

parts (Toiviainen et al., 2010; Burger et al., 2013, 2014). Secondly, the focus on a single 

pulse also comes from psychology and neuroscience research, where a single oscillator is 

often used to model time perception (Povel and Essens, 1985; McAuley and Jones, 2003) or 

the response of a neural population (Doelling and Poeppel, 2015; Assaneo and Poeppel, 

2018; Zoefel et al., 2018; Doelling et al., 2019; Lakatos et al., 2019; Zalta et al., 2020). Yet, it 

is not clear what the selection of one pulse as the beat means functionally, besides the fact 

that the listener spontaneously taps that pulse. In other words, the status of other pulses is 

often not specified, i.e. whether they are still perceived, and if so, how they differ from the 

beat (Cohn, 2014).  

A related view is that perception of a single pulse is induced first, and other pulses in the 

meter are defined by mentally accenting every Nth pulse, thus creating groups of stronger 

and weaker time points. This view is closely related to the concept of “metrical accent” 

discussed in the section above, which assumes that metric pulses which coincide with one 

another elicit stronger expectation of prominent sound events (Lerdahl and Jackendoff, 

1983). Such a view is typical for music theory, mainly due to the use of a notational system 

developed in the 18th-century for music that was closely related to metered poetry 

(characterized by a stream of accented and unaccented syllables) (Cohn, 2015). This has led 

to the notion of meter as a “pattern of strong and weak beats”. This conceptualization may 

be driven by the fact that music conductors are restricted to conveying a single pulse 

(similar to finger tapping paradigms) and marking slower pulses through spatial 

accentuation of individual pulse elements. In the same way, a metronome can temporally 

deliver only a single pulse and slower metric pulses must be cued by changing a feature of 
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individual pulse sounds (e.g. pitch). The assumption of a single pulse with regular pattern of 

accents was readily adopted by cognitive scientists (Palmer and Krumhansl, 1990; Large and 

Snyder, 2009; Bouwer and Honing, 2015; Honing and Bouwer, 2018), allowing to make 

connections with metrical phonology where a stream of syllables is recursively grouped 

based on their accentuation (Cooper and Meyer, 1963; Fitch, 2013; Kotz et al., 2018). 

However, such a view is not parsimonious for multiple reasons. Firstly, if slower pulses in a 

meter emerge from accenting (grouping) the beat, the beat must be the fastest perceived 

pulse. This is not compatible with the definition of beat as the pulse people commonly tap, 

as the fastest pulse within a meter can be faster than biomechanical limits of finger tapping 

(Repp, 2005; Polak, 2018). Thus, an ad-hoc concept of “beat subdivision” must be used to 

retain the model, leading to qualitatively different nature of pulses in a meter, including (i) 

the beat, (ii) slower beat groupings, and (iii) faster beat subdivisions. However, to what 

extent such theoretical categorization is useful remains unclear. Because the slower pulses 

emerge as a byproduct of accentuation, when considering only one slower level, the listener 

can synchronize to strong (accented) as opposed to weak (unaccented) beat points to track 

the slower pulse. However, when additional hierarchical levels are present, it is not clear 

which points are weak and strong at the global level. Instead, there may be points with 

various amounts of accentuation. How to get from this “pattern of accents” to slower metric 

pulses is not straightforward. Instead, a reversed process may be more plausible, i.e. 

thinking of the accentuation of a time point as derived from the number of coinciding metric 

pulses (Cohn, 2020).  

To sum up, the terminology used to describe meter has become convoluted with terms such 

as accent, beat, tactus, bar, subdivision, grouping, pattern, strong, weak, contributing to 

conflations with distinct music-theoretic and perceptual phenomena. For instance, using the 

term “grouping” (Fitch, 2013; Kotz et al., 2018) is not appropriate, as meter should be 

clearly separated from other forms of musical grouping (Lerdahl and Jackendoff, 1983). 

Similarly, the term “accent” may be problematic, as it rigidly links expectations to time 

points defined by metric pulses, which may not hold across musical genres and traditions 

(see section 1.1.2.1) (London et al., 2017; van der Weij et al., 2017). Note that this confusion 

was also present in my early work, by using the terminology of “grouping” and 

“subdivision”, and by separating beat and meter processing (see Study 2, section 3).  
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Instead, new analytical approaches treat all the constituent pulses in a meter as equivalent 

(Cohn, 2020). While the number of pulses within the perceived meter can vary (and perhaps 

in certain cases, only one pulse can be perceived), conceptualizing such difference as more 

quantitative (one, two, or N pulses) than qualitative (beat-grouping-subdivision dichotomy) 

constitutes a better analytical tool to represent and categorize meters. This way, the focus 

can stay on the most important property of meter: the relations amongst the perceived 

pulses (meter periods) and their relation to the rhythmic stimulus (meter phase), as shown 

in Figure 1.1. It may seem that some distinctions discussed above primarily concern 

terminology. For example, grouping/subdivision vs. independent pulse can refer to the same 

psychological phenomenon without clear functional implications. Yet, establishing a clear 

way to describe, represent and classify meters facilitates development of coherent 

theoretical frameworks that can be used to design experimental paradigms and analysis 

methods within psychology and neuroscience.  

The following section first discusses paradigms and measures that have been previously 

used to assess meter processing in the brain and behavior, while pointing out their 

strengths and weaknesses. Subsequently, a new conceptualization of meter as 

transformation is introduced, showing its direct relationship with the fundamental 

definition of meter that has been developed so far. Then, implications of this new 

conceptualization of meter are discussed, especially in terms of development of new 

methods to appropriately capture the mapping from rhythmic sound input to perception 

and behavior.   
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1.2 Measuring the phenomenon  

 

Typically, two kinds of measures have been utilized to measure processes relevant for meter 

perception in behavior and brain activity. (1) Indirect methods rely on measures that should 

give different results when meter with particular parameters (pulse periods and phase) is 

induced, compared to when meter is not induced or has different parameters than 

assumed. These measures predominantly rely on functional definition of meter as discussed 

in section 1.1.2 (i.e. “what does meter do?”). (2) Direct measures are capable of directly 

tracking the representation of metric pulses in brain or behavior. They are based on a 

fundamental definition of the perceptual phenomenon. It is important to note that the term 

“direct” does not imply that we can directly measure meter perception in a 

phenomenological sense. Perception is by definition subjective, and thus can only be 

measured indirectly, e.g. through correlates in behavior or brain activity.  

 

1.2.1 Indirect measures  

1.2.1.1 Ratings 

The most straightforward way to assess meter perception would be to ask the participant: 

“Do you feel meter?”. Variations of this question have been used across studies, e.g. “How 

much did this sound have a beat?”,  “How easy was it to feel a beat?”, or “How clear was 

the beat?” (Grahn and Rowe, 2009; Matthews et al., 2020). Others have instructed 

participants to answer this question based on a subjective prediction of the difficulty to 

move along with a single metric pulse (beat) when listening to the rhythmic input (Henry et 

al., 2017; Bouwer et al., 2018). However, it is not clear what exactly such ratings measure. 

Firstly, the concepts of beat and meter are often quite difficult to explain to musically naïve 

participants, and extensive practice is required. Secondly, one could argue that the way 

these questions are formulated invites participants to rate properties of the rhythmic input 

instead of internal representation of meter. Indeed, some studies directly encouraged such 

strategies during instructions (Bouwer et al., 2018). Claiming that these ratings provide a 

good measure of beat (meter) perception because they correlate with syncopation-score 

models (Henry et al., 2017) is not convincing. Indeed, to calculate a syncopation score by 

assessing how well the sound events align with the metric pulses, the meter needs to be 



 20  

internally represented in the first place (Povel and Essens, 1985). A participant could easily 

learn to rate patterns that align less with her internal representation of meter as “having 

less beat”. Still, if asked to tap to these patterns, this participant may demonstrate robust 

internal representation of pulse (e.g. Tranchant et al., 2016 show some dissociation 

between ratings of “beat salience” and tapping performance). Importantly, rating measures 

do not reveal the periods and phase of the perceived meter, thus providing limited insights 

into the perceptual phenomenon and how it relates to input features, context and learning 

(Nozaradan et al., 2017a).  

Another way to assess perception of a metric pulse is to overlay an explicit sound 

representation of a pulse over the rhythmic pattern (Hannon et al., 2004). Participants then 

rate how well the overlaid pulse fits the rhythmic pattern for different pulse periods (and 

possibly also phases). The pulse parameters with greatest fit ratings are assumed to reflect 

the meter induced by the pattern when it is presented alone. This approach is superior to 

the rating method described above in the sense that it is informative about the periods and 

phase of the perceived meter. Thus, with appropriate instruction to the participants, it could 

yield important insights into meter perception. Yet, overlaying the pulse as another sound 

layer significantly changes the acoustic input to the participant, thus it remains unclear to 

what extent such fit-ratings are informative about meter perception when the rhythmic 

pattern is presented alone (Lenc et al., 2020). A similar approach that avoids this drawback 

may be to first present a rhythmic pattern in an encoding phase and then to test recognition 

memory for that pattern across different explicit metric contexts (i.e. with overlaid sound 

representation of different pulses). This procedure assumes that performance will be best 

when the overlaid pulse in the recognition phase matches the meter that was originally 

perceived during the encoding phase (Keller, 1999). Still, both approaches described above 

do not provide a measure of meter perception in real time. Moreover, to have a 

comprehensive test of meter perception, all plausible combinations of pulse periods and 

phases should be exhaustively tested, which may lead to an overly long procedure.  

Recently, this approach has been converted into a behavioral test of beat perception (BAT, 

beat alignment test), where an isochronous auditory pulse (click track) is superimposed over 

a musical excerpt (Iversen and Patel, 2008; Harrison and Müllensiefen, 2018). However, 

instead of examining the parameters of the perceived meter, the aim is to measure the 

general ability to perceive beat. Thus, the test adaptively measures how close the pulse has 
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to be to the assumed beat positions to be still rated as aligned to the beat. Thus, the test 

does not measure spontaneous induction of meter perception, and instead assumes that the 

“correct meter parameters” are known in advance (but see Parncutt, 1994; McKinney and 

Moelants, 2006 for evidence of interindividual variability in meter perception). 

Furthermore, it needs to be determined to what extent performance in BAT relies on other 

processes than meter perception, such as auditory stream segregation (Pressnitzer et al., 

2011) and integrative attending (Keller, 1999; Keller and Burnham, 2005). Additionally, the 

possibility of alternative strategies such as relying on asynchronies between the 

superimposed metronome clicks and prominent on-beat sounds in music (instead of 

internally generated pulse percept) must be eliminated.  

 

1.2.1.2 Other indirect behavioral measures 

Another type of indirect behavioral measures is based on the assumption that meter 

perception leads to better encoding of time intervals making up the rhythmic pattern. These 

tasks include detection of temporal distortions in rhythmic sequences (Trehub and Hannon, 

2009; Hannon et al., 2011), as well as discrimination, recognition, and reproduction of 

rhythmic patterns (Povel and Essens, 1985; Fitch and Rosenfeld, 2007; Grahn and Brett, 

2007). Similar to rating measures, these paradigms do not aim to measure parameters of 

the perceived meter (specifically, its periods and phase), but whether or not a meter is 

induced by certain patterns (Povel and Essens, 1985; Grahn and Brett, 2007; Grube and 

Griffiths, 2009) or in certain individuals (Grube et al., 2010; Dalla Bella et al., 2017; Vuvan et 

al., 2018).  

A similar measure used across a range of studies involves inserting a deviant sound event 

into a repeating rhythmic pattern after listening to it for a while (Hannon and Trehub, 

2005a, 2005b; Hannon et al., 2012b). Assuming prominent acoustic cues to metric pulses, 

the event can be added so that the whole rhythmic sequence from that point onwards 

becomes misaligned with the induced meter. If meter is perceived, a detection of such 

deviant should be better than detecting an added event that does not cause subsequent 

misalignment with the induced meter. However, such paradigm may not work with patterns 

that do not contain prominent cues to a specific meter, as the misalignment would not 
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produce tension between internal metric pulses and the acoustic input (Parncutt, 1994; 

Repp, 2007; Repp et al., 2008).  

As many processes contribute to performance on these indirect tasks (Tranchant and Vuvan, 

2015), the paradigms rely on comparisons with baseline (or across groups) to isolate meter 

perception. For instance, simply observing that a temporal deviation in a particular rhythmic 

pattern can be detected does not say anything about meter perception on its own. Indeed, 

in some cases (e.g. Grahn and Brett, 2007; Grube and Griffiths, 2009), the fact that a 

particular rhythmic pattern is poorly reproduced or recognized does not directly imply that 

it did not induce meter perception. Instead, internal encoding of the pattern may be less 

precise simply because it does not closely align with the induced meter (Povel and Essens, 

1985).  

 

1.2.1.3 Functional magnetic resonance imaging (fMRI) 

 The main assumption of prior neuroimaging studies has been that there is a network of 

regions involved specifically in meter perception (Merchant et al., 2015a). Generally, to 

isolate a network involved in a perceptual process, a typical neuroimaging paradigm 

contrasts brain activity when the process is presumably involved to baseline activity when 

the process is presumably absent. Importantly, all unrelated internal processes, as well as 

low-level features of the sensory input should be constant between the two conditions. 

However, a baseline condition with a strict control of low-level features has been difficult to 

achieve in studies of meter perception.  

For instance, there are a number of widely cited papers showing involvement of motor 

areas during meter perception without overt movement (Grahn, 2012; Cameron and Grahn, 

2016). However, closer inspection reveals that many of these results are based on 

contrasting listening to regular rhythms with rest (Chen et al., 2008a) or with listening to 

physically distinct stimuli such as isochronous sequences and patterns comprising non-

integer interval ratios (Bengtsson et al., 2009; Kung et al., 2013).  

Perhaps the best controlled baseline stimulus up to date has been developed in the seminal 

study of Grahn and Brett (2007), where regular rhythmic patterns (prominent acoustic cues 

to meter periodicities) were contrasted with complex patterns (little acoustic cues to 

meter), which were created by re-shuffling the constituent inter-onset intervals. Still, these 



 23  

two stimulus categories differ in their modulation spectra, with simple patterns having 

prominent energy at meter periodicities. Grahn and Brett showed increased responses in a 

“beat network” (typically including areas such as auditory cortices, basal ganglia, premotor 

cortex, and supplementary motor area) for regular rhythms in contrast to complex rhythms. 

However, their interpretation of these regions being selectively involved in beat perception 

is problematic, as beat (and meter) perception is often induced even for rhythms with little 

acoustic cues (see section 1.1) (Chapin et al., 2010; Witek et al., 2014b; Large et al., 2015). 

Yet, Grahn and Brett did not directly measure beat perception for their stimuli, e.g. in a 

tapping task. Moreover, they observed no difference between complex rhythms and 

completely scrambled rhythms (non-integer interval ratios) where meter perception is not 

induced. Yet, with somewhat similar stimuli, Matthews et al. (2020) showed discrepant 

results, i.e., larger activations across the same brain regions for complex than completely 

scrambled rhythms, while other studies did not report clear differences between regular 

and complex rhythms during listening (Chen et al., 2008a; Bengtsson et al., 2009; Kung et 

al., 2013). These inconsistencies may be related to slight differences in stimuli between 

these studies, but also the fact that many of them (e.g. Grahn and Brett, 2007; Chen et al., 

2008a; Kung et al., 2013) presented very short rhythmic stimuli where meter perception 

may not have time to develop (we do not dance to 5-s long songs).  

Overall, the main issue of fMRI studies may be directly related to the low temporal 

resolution of the blood-oxygen-level-dependent (BOLD) response and thus its poor ability to 

directly capture temporal contrasts at meter-relevant timescales, as discussed below in 

section 1.2.2. Instead, fMRI studies are inherently limited to indirect measures that struggle 

to directly link the recorded signal to the perceptual phenomenon. Therefore, temporally 

resolved methods such as intracerebral EEG (see e.g. Nozaradan et al., 2016a; Herff et al., 

2020) may provide more reliable insights into behaviorally-relevant transformations of 

rhythmic input across brain structures, and thus the functional anatomy of meter processing 

in humans.  

 

1.2.1.4 Mismatch negativity (MMN) studies 

Another prominent line of research utilized the high temporal resolution of noninvasive 

electrophysiological methods (EEG or MEG) to isolate human brain responses to regularity 
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violations in rhythmic patterns (for a review, see Honing et al., 2014). The most commonly 

used paradigm would aim to isolate the mismatch negativity ERP component (MMN) that 

has been extensively used in cognitive neuroscience (Näätänen et al., 2007; Sussman et al., 

2014). MMN is considered to reflect auditory change detection with respect to a regularity 

established by the preceding context. The component is typically isolated from a difference 

wave obtained by subtracting transient EEG response to a “standard” event from the EEG 

response to a “deviant” event (MMN typically peaks around 150-250 ms after event onset). 

Importantly, low-level physical features across the standard and deviant must be identical, 

thus making sure that any difference in the EEG response can be only explained by different 

contexts in which the two events occur (i.e. with respect to the established regularity). To 

study meter processing using MMN, participants would listen to a repeating rhythmic 

pattern and occasional changes would be introduced at different positions within the 

pattern (Geiser et al., 2009; Ladinig et al., 2009; Winkler et al., 2009; Geiser et al., 2010; 

Bouwer et al., 2014; Bouwer and Honing, 2015; Bouwer et al., 2016; Haumann et al., 2018). 

Assuming that (i) the violation is processed differently depending on its alignment with the 

perceived metric pulses, (ii) the period and phase of the perceived pulses are known, and 

(iii) the acoustic context across violations is equal, any difference in brain response to 

violation on vs. off the perceived metric pulse can be interpreted as evidence of pulse 

representation in the brain. Due to this list of assumptions, the method has several 

limitations. Firstly, it has been difficult to exclude confounds with low-level acoustic context 

(Vuust et al., 2005, 2009; Bouwer et al., 2014). Utilizing control sequences with repeated 

deviant stimuli typical for MMN studies (see e.g. Ladinig et al., 2009; Winkler et al., 2009) is 

also problematic as parameters of the induced meter can significantly differ for such stimuli 

(as already discussed in Honing et al., 2014). Another limitation arises because period and 

phase of the perceived meter may not be known, especially for stimuli providing less clear 

acoustic cues to the listener (Parncutt, 1994; McKinney and Moelants, 2006; Chemin et al., 

2014; Cameron et al., 2015). Finally, many types of violation can be possibly introduced in 

the sound input (e.g. sound omission or addition, change in timbre or timing, increase or 

decrease of intensity), however, their relevance for meter perception is not clear. If meter is 

linked with expectations (predictions) as reviewed in section 1.1.2, then a change that 

increases acoustic salience (e.g. intensity increment) would elicit greater response when 

misaligned from the perceived metric pulses (and the reverse would be true for violations 
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that decrease acoustic salience, e.g. tone omission) (Bouwer et al., 2014; Vuust et al., 2018). 

On the other hand, DAT would predict greater response to any type of change when 

coinciding with the perceived metric pulses. Studies aiming to dissociate between these 

hypotheses did not provide clear results (Bouwer and Honing, 2015), which is not surprising 

given that the links between meter and expectations (or attention) are not straightforward 

(see section 1.1.2.1).  

 

1.2.2 Direct measures 

To develop a direct measure of meter as a psychological phenomenon, I start from the 

definition of meter as a nested set of perceived pulses that are time-locked onto the 

temporal structure of the auditory input. Essentially, a pulse can be defined as a systematic 

contrast in time. In other words, a pulse emerges when (1) something consistently happens 

at periodically spaced time points, and (2) it is different from what happens otherwise. Time-

locking requires these periodically spaced time points to relate to the temporal intervals 

defined by the rhythmic pattern (typically to form integer ratios, but the issue is more 

complex, see e.g. Polak et al., 2016). I argue that once any measure of brain activity or 

behavior meets these criteria, it can be considered directly relevant to meter perception 

(even though it may not be a direct measure of meter perception in a phenomenological 

sense).  

The definition of a pulse as a systematic contrast in time is directly related to the 

mathematical concept of periodicity (a tendency of a function to recur at regular intervals). 

In other words, to represent a pulse with a particular period, a signal must repeat itself at 

intervals corresponding to the pulse period. Nevertheless, explicitly addressing the different 

signal properties that contribute to its periodicity (i.e. decomposing the term “periodicity” 

as I do in the following sections) is important when assessing the validity of different 

methods that aim to quantify how well a particular set of pulses (i.e. meter) is represented 

in a signal.  
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1.2.2.1 Meter as transformation  

Another important point for the direct measures is the conceptualization of meter 

perception as a transformation. That is, meter perception can be thought of as a mapping of 

the rhythmic sensory input onto an internal representation of pulses, which can drive 

behavior (Agmon, 1990; Parncutt, 1994; Nozaradan et al., 2017a). Crucially, various 

rhythmic inputs can give rise to internal representation of a meter with the same 

parameters, thus indicating a form of perceptual categorization. In other words, a set of 

physically different stimuli can elicit categorically equivalent types of behaviour (including 

perceptual experience). This form of many-to-one mapping can be illustrated with an 

example of ballroom dancing. In such scenarios, participants do not know in advance which 

dance will follow and need to determine this from the acoustic information in the musical 

stimulus. Particular dance styles are closely linked to meters with particular parameters (of 

course, the absolute tempo of the metric pulses, and certain timbres and rhythmic patterns 

specific to a particular style also play a role). For instance, waltz requires a meter where at 

least one pair of pulse periods has a {1,3} relationship. On the other hand, e.g. cha-cha 

requires a {1,2,2} relationship. Not only are the dancers capable of consistently mapping the 

acoustic stimulus onto the representation of meter so that they can all spontaneously start 

dancing the correct style. They are also able to map a range of different acoustic stimuli 

onto the same meter, e.g. dance waltz to Strauss' The Blue Danube, but also to Metallica's 

Nothing Else Matters. Another example of many-to-one mapping is when the listener 

perceives the same meter across different rhythmic patterns played by a musician at 

different time points during a solo performance (see e.g. Vulf, 2017 for a live performance 

where Joe Dart delivers a variety of rhythmic patterns that are mapped onto the same pulse 

by the audience, as expressed by their clapping).  

At the same time, the transformation from a rhythmic input to the perceived meter is 

flexible, often leading to one-to-many mapping. In other words, acoustically identical 

rhythmic stimuli can induce perception of different meters within an individual due to 

context and intention (Repp, 2007; Repp et al., 2008; Iversen et al., 2009; Nozaradan et al., 

2011), and across individuals due to prior experience (Parncutt, 1994; Phillips-Silver and 

Trainor, 2008; Chemin et al., 2014; Polak et al., 2018). For instance, the phase of the meter 

spontaneously induced by a particular rhythmic pattern may change after the listener has 
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been exposed to an auditory input where this specific pattern is paired with additional 

sound layers that prominently cue a metric phase different to the phase that would be 

induced by this pattern prior exposure (a phenomenon called “turning the beat around” in 

electronic dance music, see Butler, 2006).  

 

To summarize, the examples above emphasize three main points: (1) the perceived meter is 

induced by rhythmic patterns without one-to-one correspondence between acoustic 

modulations and perceived metric pulses (transformation), (2) a range of acoustically 

different inputs can elicit perception of the same meter (categorization, many-to-one 

mapping), and (3) identical acoustic stimulus can elicit perception of different meters (one-

to-many mapping). To gain understanding of the transformation fundamental to meter 

perception, one needs to use direct measures to estimate meter representation in (i) the 

acoustic input, (ii) the elicited behavior, typically movement, and (iii) the brain processes 

that take place in between the sensory input and behavior. In other words, when comparing 

sound input, brain activity, and behavior, a selective enhancement of contrast defining the 

perceived metric pulses is expected.  

It should be noted that the terms “transformation” and “mapping” are often used as 

synonyms in the current thesis. Yet, the term “mapping” implies a complete process, where 

a particular acoustic input induces internal representation of particular metric pulses. On 

the other hand, the term “transformation” emphasizes (i) the specific nature of the 

mapping, i.e. selective enhancement of metric periodicities, and (ii) that the process of 

mapping may be gradual, particularly when studying brain responses elicited by acoustic 

inputs.  

 

 

1.2.2.2 The need for a better method to capture periodic contrast 

The definition of a pulse as a systematic temporal contrast can be understood in terms of 

generalization (some feature of a signal takes on similar values at time points separated by 

a stable period), differentiation (these values are different from values of this feature at 

other time points), and time locking (the period with which the feature change repeats is 

precisely linked to the rhythmic input). A number of methods have been proposed to 
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measure the properties relevant for a contrast at meter periodicities within signals 

representing sound input, brain activity, and behavior. However, many of these methods 

solely focus on one signal property and abstract from others (e.g. focusing on time locking 

but neglecting differentiation, see section 1.2.2.6). Furthermore, many methods are too 

specific to be generalized across signals (e.g. syncopation scores developed for abstract 

representation of sound, see section 1.2.2.5).  

 

 
Figure 1.3. Multiple realizability of pulse representation. The example signals shown in the different panels all 

represent a pulse with the same period according to the criteria of generalization, differentiation, and time-

locking. (A) The cosine wave completes exactly one cycle every pulse period. (B) The impulse happens exactly 

separated by the pulse period and not otherwise. (C) The square wave switches from low to high state 

precisely at times separated by the pulse period and not otherwise. (D) The complex waveform repeats itself 

precisely every pulse period, but not otherwise. (E) A narrower bump in the waveform repeats exactly 

separated by pulse period and not otherwise. (F) An example system repeats its trajectory in the state space 

precisely every pulse period and not otherwise.  

 

A large family of methods that have been used to directly measure meter processing is 

based on time-domain representation of signals (Longuet-Higgins and Lee, 1984; Povel and 

Essens, 1985; Snyder and Large, 2005; Iversen et al., 2009; Fujioka et al., 2010, 2012; 

Schaefer et al., 2011; Witek et al., 2014b; Fitzroy and Sanders, 2015; Rajendran et al., 2017, 

2020). Here, I argue that these methods may entail important limitations for directly 

measuring meter processing in continuous signals such as brain or behavioral signals. To 
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illustrate these limitations, I take a recent influential study where the authors analyzed 

spiking rates or neurons in the subcortical auditory nuclei of ferrets as the animals were 

stimulated with rhythmic patterns (Rajendran et al., 2017). The patterns were constructed 

by arranging a set of sound events (short noise snippets) on a fast isochronous grid of time 

points. They employed an intuitive method to measure contrast in the neural recordings by 

measuring mean spiking rate within short windows aligned to each grid point in the 

rhythmic pattern. The idea was that larger spiking rate consistently appearing every Nth 

window (relative to the rest of the windows) would indicate greater contrast at a pulse with 

period N. While intuitive, this method illustrates several shortcomings of time-domain 

approaches (see Figure 1.4 for some examples using EEG signals). Firstly, it assumes that 

larger value of a signal feature (here firing rate) must occur at some specific latency with 

respect to the time points defined by the assumed pulse positions. This is not in line with 

the definition of a contrast that only requires a systematic change in a feature (it may as 

well be a consistently occurring “dip” in otherwise high firing rate). Similar assumptions 

have been taken for noninvasive studies of brain activity (Snyder and Large, 2005; Fitzroy 

and Sanders, 2015), even when “higher” or “lower” value of a feature has little direct 

physiological meaning, as can be the case with negative or positive values measured from 

negative or positive ERP deflections (Luck, 2014). Even when contrast is correctly measured 

as a relative difference (see e.g. Fujioka et al., 2010, 2012), there is an inherent tradeoff 

when setting the duration of the analysis windows. On one hand, the windows must be 

short enough such that the analysis is sensitive to transient changes and allows measuring 

stability of fine temporal locking onto the pulse period over time. On the other hand, the 

windows should be long enough to capture slower dynamics (note this is also the case for 

sounds, where slow modulations may be present). Furthermore, to measure the feature 

value within a window, one needs to establish a baseline, which is not straightforward for 

many types of relevant signals (particularly noninvasive brain recordings, see Figure 1.4).   
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Figure 1.4. Difficulties of time-domain approaches to measure contrast. EEG response of two example 

participants taken from a cluster of fronto-central channels (shown in blue). The response was captured as 

participants listened to a repeating rhythmic pattern (acoustic waveform of one pattern repetition is shown in 

grey). The EEG was averaged over 21 pattern repetitions and 10 trials. The signal in panel (A) illustrates 

multiple disadvantages of window-based analysis. An example analysis window aligned with one 0.2-s long 

sound event in the pattern is shown in red. Because the signal variations go above and below zero and do not 

return to baseline within the window, it is difficult to obtain a meaningful feature that could be used to define 

the contrast across different windows. A different possibility would be to measure the peak-to-peak variation 

within the window. However, the value of this feature would be much higher if the following negative peak 

(marked with the red arrow) was captured within the same window. Similar arguments stemming from the 

arbitrariness of window duration hold for measuring root-mean-square amplitude etc. (B) A slow signal 

variation (marked by the red arrow) is not captured when the signal is analyzed with small successive windows 

if only relative signal change within each window is considered.  

 

 

To overcome the limitations of time-domain methods, a new approach has been recently 

developed based on the frequency-domain representation of signals. I propose that this 

frequency-tagging approach offers a robust tool to capture all signal properties relevant for 

measuring pulse as a systematic contrast in time (i.e. generalization, differentiation, time-

locking). Moreover, because this approach can be used on a range of signals, including 

acoustic input, brain, and movement, it has a potential to provide important insights into 

the transformations fundamental for meter perception. In the next section, I introduce the 

frequency-tagging approach applied to a general form of signal. Along the way, I touch upon 
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specific applications of the approach on signals representing sound, brain activity, and 

movement. I highlight similarities and differences between frequency-tagging and other 

methods that have been widely used in the field to measure contrast at meter periodicities.   

 

1.2.2.3 Frequency-tagging approach to measure contrast at meter periodicities 

Frequency-tagging is a method originally developed to measure periodic contrast in brain 

activity (Regan, 1989; Norcia et al., 2015; Gao et al., 2018; Rossion et al., 2020). Here, the 

method is introduced with a general type of signal representing changes in a variable over 

time. This variable can represent sound input, brain activity, or movement data, and the 

specifics of each will be discussed where appropriate. The assumptions of the approach as 

well as its sensitivity to signal properties relevant for meter will be explored using 

simulations.  

Frequency-tagging is based on the fact that a contrast repeated systematically with a 

particular period can be identified in the frequency domain as narrow-band peaks of energy 

centred at the frequencies directly related to the contrast period (Nozaradan, 2014; 

Nozaradan et al., 2017a).  

 

 

1.2.2.4 Contrast affected by differentiation of events 

Let's assume that the shape of a signal is defined by a unitary waveform (hereafter “kernel”) 

that is periodically repeated every x seconds. Because the kernel represents a change of 

signal, and consistently appears at time points separated exactly by x seconds, and not 

otherwise, the resulting signal is a basic form of contrast defining a pulse with period x. 

Analyzing this signal with a Discrete Fourier Transform (DFT), or equivalently a Fast Fourier 

Transform implementation (FFT) yields a magnitude spectrum with distinct peaks centered 

at the frequency 1/x and harmonics. This contrast will be referred to as the “base”, and its 

prominence can be quantified by summing the FFT magnitudes across the harmonics. If 

every Nth kernel is systematically different in some way, another periodic contrast is 

created in the signal (hereafter “target”). An example difference used in Figure 1.5 is a 

simple multiplicative gain of the kernel. The magnitude of this target contrast can be 

measured at frequencies corresponding to the period at which the target contrast happens 
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1/(N*x) and harmonics (again by summing the FFT magnitudes). Increasing the systematic 

difference between the base kernel and target leads to a greater contrast at the target 

period, as shown in Figure 1.5E. There are different ways beyond changing kernel amplitude 

to create the target contrast. For instance, the contrast can be driven by systematically 

different shape of the kernel, as shown in Figure 1.6.  

Before summing the harmonics, it is important to apply a baseline correction, otherwise the 

measure will be biased. This is because magnitudes only take positive values, and therefore, 

even the smallest amount of noise (unavoidable in real-world signals) will lead to increased 

magnitudes across a broad range of frequencies due to spectral leakage and aliasing (even if 

the analyzed segment has a duration equal to an integer number of cycles for sine waves at 

the frequencies of interest). Figure 1.7 shows a simple example, where white noise with 

very small amplitude was added to the signal. Without applying the baseline correction, the 

summed magnitudes at target frequency and harmonics were positively biased, leading to a 

wrong conclusion that there was a significant response to the target contrast. The same 

situation could arise even when testing whether magnitude at a single frequency (i.e. 

without summing across harmonics) is significantly above zero across participants in an 

experiment. One commonly used way to prevent this is to subtract the mean magnitude at 

the neighboring frequency bins on both sides from each frequency bin in the spectrum (e.g. 

Xu et al., 2017). As shown in Figure 1.7, this procedure effectively centers the distribution 

around 0 in case there is no contrast at the target periodicity in the signal (i.e. no peak of 

energy at the frequencies of interest). Note that there are different alternatives to the 

subtraction method, for instance taking a ratio (e.g. Xiang et al., 2010; Riecke et al., 2014) or 

z-score (e.g. Lochy et al., 2018) of each frequency bin with respect to the neighboring bins. 

All these different methods are often used in a complementary way on the same set of data, 

as they offer distinct advantages (Jacques et al., 2016; Jonas et al., 2016). For instance z-

scoring is convenient to assess whether the response at a particular frequency is 

significantly above the noise level. On the other hand, using subtraction yields values in the 

original units (e.g. μV in case of EEG signals), which can be easily combined across 

harmonics to obtain an estimate of the overall raw magnitude of the periodic contrast (by 

summing across harmonics) or to quantify the relative prominence of particular harmonics 

relative to others in the spectra. Because the overall magnitude and relative prominence are 

the main estimates of interest in the current thesis, the subtraction method will be primarily 
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used for baseline correction. Two important things to keep in mind when performing the 

baseline correction are: (1) the bins right next to the frequency of interest should not be 

included in the baseline in case some spectral leakage occurs, and (2) the furthest bin 

included in the baseline should be closer than the closest neighboring frequency of interest 

(i.e. harmonic where a magnitude peak is expected).  

Importantly, the magnitudes at harmonics of the base contrast that overlap with the target 

are driven by both base and target contrasts, therefore cannot contribute to their 

differentiation (and must be excluded from the sum). However, if one is interested in the 

proportional contrast at the target period, the base magnitude can be used as a 

normalization factor (see Figure 1.5F). This is highly relevant, as sensory contrast is typically 

perceived proportionally (Halpern and Darwin, 1982; Gescheider, 1997), and normalization 

is a fundamental principle in the brain (Dean et al., 2005; Robinson and McAlpine, 2009; 

Rabinowitz et al., 2011; Lohse et al., 2020). 
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Figure 1.5. Using frequency-tagging to measure contrast in an isochronous sequence of events. The sequence 

(in black) is constructed as a series of isochronous events where every 3rd event is defined by the target kernel 

waveform (in red), and the rest of the events by the base kernel waveform (in blue) as shown on the left. 

Example target and base event onsets are marked by arrows on the top. FFT of the sequence is plotted on the 

right, with frequencies related to the base contrast shown in blue, and frequencies related to the target 

contrast shown in red. The summed magnitude at target frequency and harmonics (“target magn”) is plotted 

on the top of each spectrum, as well as the ratio of this value and the summed magnitudes at base-related 

frequencies (“target/base ratio”). (A) If there is no difference between target and base kernel, the signal only 

contains contrast at the base period. (B) If the amplitude of the base kernel is decreased, a contrast at the 

target period emerges. (C) If the difference between the target and base kernel increases so does the target 

contrast measured with frequency-tagging. (D) Contrast is always relative, thus decreasing the amplitude of 

the target kernel instead of the base kernel leads to the same result. (E) Systematically increasing the ratio 

between target and base kernel amplitude leads to proportional increase in the contrast measured as summed 

magnitudes at target-related frequencies. However, this measure is sensitive to the overall gain of the 

sequence (multiplying the whole signal with a constant, see example in the top part of the panel). (F) Dividing 



 35  

the summed magnitudes at target-related frequencies by the summed magnitudes at base-related frequencies 

gives a relative measure invariant to the overall gain.  

 

 

 

 

 
Figure 1.6. Contrast created by differences in kernel shape. Same as Figure 1.5, but instead of using kernel 

amplitude to create the contrast, kernel shape (width) is manipulated (A, B, C). The method is sensitive to the 

relative difference between the target and base kernel, yielding a monotonically increasing value as the 

difference in width increases (D, E).  

 

 

 

 
 

Figure 1.7. Illustration of the baseline subtraction method. Signal simulated in the same way as for Figure 1.5, 

except white noise was added in the time domain (see inset zooming onto the time domain signal, bottom 

left). Spectra of the signal are plotted with (green) or without (purple) baseline correction. The correction 
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involved subtracting the average magnitude at bins 2 to 5 taken from both sides of each frequency bin. Note 

that this subtraction results in negative values at bins near prominent peaks in the spectra. The signal was 

generated 20 times and the magnitudes at target frequencies were summed. The distribution of the summed 

magnitudes is shown on the right, indicating that the values are positively biased when baseline correction is 

not applied (*** significantly above 0), whereas applying the baseline correction centers the summed 

magnitudes around zero (n.s. not significant).  

 

 

However, musical rhythms go beyond isochronous series of onsets. To demonstrate the 

utility of the method, one can use a repeating non-isochronous rhythmic pattern with 

events constructed on a fast isochronous grid, as shown in Figure 1.8. The simulation 

assumes a metric pulse plausible for this pattern and shows that the contrast between pulse 

positions and the other positions in the pattern can be directly measured by frequency-

tagging. Moreover, normalizing by magnitude at frequencies unrelated to the target 

contrast makes the measure robust to overall multiplicative gain of the whole signal (see 

Figure 1.8D). Here, these “base” frequencies are chosen differently to a situation with 

isochronous series of base and target events as described above. Instead, one can use the 

fact that the spectrum of a repeated non-isochronous rhythmic pattern contains peaks at 

frequencies corresponding to the pattern repetition rate and harmonics. From this set of 

frequencies, a subset will correspond to the pulse rate and harmonics (target frequencies) 

and the rest is unrelated to the pulse (base frequencies). The relatively larger magnitude of 

target frequencies compared to base frequencies (calculated e.g. using z-scores as described 

in Figure 1.8) provides a robust relative measure of contrast at the pulse periodicity in the 

signal.  
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Figure 1.8. Contrast at one pulse periodicity in a rhythmic sequence consisting of a repeating rhythmic pattern.  

(A) Each row represents a sequence with gradually increasing relative contrast at pulse periodicity (defined by 

target events). The contrast is enhanced by decreasing the amplitude of the base kernel. The contrast can be 

measured by summing the magnitudes at target frequency and harmonics (“target magn”), however, this 

measure is sensitive to the overall multiplicative gain of the sequence (B, C). A measure robust to the overall 

gain is achieved by first converting magnitudes to z-scores across all frequencies (target- and base-related) 
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using the formula [(magnitude at the frequency)-(mean magnitude across all frequencies)]/[SD of magnitudes 

across all frequencies], and calculating the mean z-score across target-related frequencies (“target z”) (D).  

 

 

Figure 1.8 provides a straightforward illustration of how meter contrast can be created by 

changing the amplitude of events aligned vs. misaligned with the pulse positions. However, 

in the context of musical rhythms, a rhythmic pattern does not have to contain a sound 

event at all perceived pulse positions (see section 1.1). Moreover, periodic contrast can be 

created not only by amplitude differences between events, but also by the arrangement of 

identical events in time alone. In addition, there is often more than one perceived pulse, 

and instead a meter of multiple nested pulses is perceived.  

 

1.2.2.5 Meter contrast affected by arrangement of events  

A number of theoretical measures have been developed to quantify how temporal 

arrangement of events generates contrast at metric periodicities. These measures typically 

work with discrete representations that define rhythmic patterns by assigning a fast 

isochronous grid with sound events (see section 1.1 for a definition of sound event and grid 

representation). The grid positions without sound events are often referred to as silent 

events. While originally developed for sound, these methods could be used for any type of 

signal that can be represented as a series of identical discrete events arranged on an 

isochronous grid.  

A widely used method developed by Povel and Essens (PE, 1985) is summarized in Figure 

1.9B. This method assumes a single pulse with particular period and phase, and calculates a 

score based on how many silent and unaccented sound events coincide with the pulse 

positions. Because a sound event is considered unaccented when surrounded by other 

sound events (or first within a group of two sound event, see Povel and Okkerman, 1981), 

the score will be smallest when prominent contrast is present at pulse positions (i.e. when 

“accented” sound events are present on-the-pulse and not otherwise). Note that variants of 

this method were proposed where the algorithm searches for a contrast even more 

explicitly (e.g. the mixed model in McAuley and Semple 1999). 
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A similarly popular algorithm from Longuet-Higgins and Lee (LHL, 1984) takes into account 

multiple metric pulses with particular periods and phase (Figure 1.9C). Positions where the 

pulses coincide determine weights for each grid point. Higher weights occurring when 

multiple pulses coincide are based on the assumption that contrast at these points is more 

important, as it contributes to multiple metric periodicities simultaneously. If the pattern 

contains a contrast that does not align with these weights (i.e. with the assumed set of 

metric pulses), the resulting score is high (similar to PE). Both, PE and LHL require 

assumptions about periods and phases of the perceived meter. However, if one aims to find 

the amount of contrast present in a repeating rhythmic pattern for a particular pulse period, 

the phase assumption can be removed by taking the score for each circular rotation of the 

pattern, and taking the minimum across all calculated values (see Figure 1.9B and C). 

Calculating the minimum score across several phase shifts may also work for nonrepeating 

longer rhythmic sequences if a small number of shifts is considered (Lenc et al., 2020). 

Another way to assess contrast at multiple periodicities could be to define a vector with 

larger values corresponding to positions where multiple metric pulses coincide and cross-

correlate this vector with the rhythmic sequence represented as a vector of ones (sound 

events) and zeros (silent events). Taking the highest correlation across lags quantifies the 

contrast (defined by the metric pulses) in the rhythmic sequence. This approach is shown in 

Figure 1.9D.  

Finally, approaches based on the frequency-domain representation have been developed by 

multiple authors to analyze rhythmic patterns in musical contexts (Amiot, 2016; Chiu, 2018; 

Milne and Herff, 2020). Typically, a rhythmic pattern is represented as a vector of ones and 

zeros (same as for the cross-correlation method above), and transformed into the frequency 

domain using DFT. The DFT can be understood as taking a dot product of the sequence with 

a set of basis vectors that represent complex sinusoids with periods such that they complete 

{0, 1, 2, …, N-1} cycles within the span of the sequence (where N is the number of events in 

the sequence). Each dot product yields a complex coefficient, and its absolute value can be 

interpreted as spectral magnitude at the frequency defined by the sinusoid. Thus, 

magnitude represents the fit between the complex sinusoid and the rhythmic sequence. To 

search for contrast at particular pulse periods, one must measure the magnitudes for 

sinusoids with the number of cycles corresponding to the pulse period and its integer 
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multiples (i.e. harmonics). Focusing only on a single sinusoid would bias the measure, as the 

contrast can take different shape than a pure sine wave. 

Figure 1.9A shows an example where two metric pulses are considered, with periods 

corresponding to 2 and 4 events. The frequencies and harmonics corresponding to these 

two periods can be labeled as meter-related frequencies and in this case comprise the two 

frequency bins highlighted in red. Note that the second harmonic of the slower pulse 

overlaps with the first harmonic of the faster pulse. The rest of the valid frequencies in the 

DFT can be considered meter-unrelated. It is important to point out that the magnitudes at 

frequencies higher than half of the individual event rate cannot be measured in the current 

representation of the rhythmic signal due to aliasing. This is because the resolution of the 

vector representation is limited to one sample per event. To obtain a normalized measure, 

the magnitude at each frequency is first converted into a z-score using the formula: 

[(magnitude at the frequency)-(mean magnitude across all frequencies)]/[SD of magnitudes 

across all frequencies]. Mean z-score at meter-related frequencies quantifies a relative 

contrast in the sequence (already discussed in section 1.2.2.4, and further advantages of 

this measure are demonstrated in Figure 1.17, section 1.2.2.6). 

To assess whether the DFT method provides similar measurement of the contrast at metric 

periodicities compared to time domain approaches such as PE, LHL and cross-correlation 

with a template, a simple simulation was performed in which a set of 160 rhythmic patterns 

was created by assigning a 12-point isochronous grid with all possible permutations of 6, 7, 

and 8 sound events (and allowing maximum 4 successive silent events). Minimum LHL and 

PE syncopation scores across 12 phase shifts of each pattern were calculated to estimate 

contrast stemming solely from the arrangement of events in time. The goal was to measure 

the prominence of contrast locked onto metric pulses with periods 2 and 4 grid points. 

Therefore, metric pulses with periods 2, 4, and 12 grid points were assumed for LHL and a 

pulse with period 4 grid points was assumed for PE (recall that PE can only measure one 

pulse at a time). When tested across this pool of rhythmic patterns, all three time-domain 

approaches (LHL, PE, cross-correlation) give highly similar results to the DFT method, as 

shown in Figure 1.9. This indicates that the frequency-domain approach is sensitive to 

contrasts in rhythmic patterns that emerge solely from the arrangement of identical events 

in time. This DFT-based approach can therefore be considered a generalization of 

frequency-tagging to measure contrast in rhythmic sequences that are abstractly 
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represented on a fast isochronous grid. Because the original frequency-tagging terminology 

of target vs. base events is not quite appropriate for non-isochronous rhythmic signals in the 

context of meter perception, the terms “meter-related” and “meter-unrelated” frequencies 

are used hereafter. 

 

 

 

 
Figure 1.9. Different methods to assess contrast at metric periodicities using abstract representation of 

rhythmic sequences. (A) DFT approach used in music analysis. On the left, a rhythmic sequence is represented 

on a grid (see also Figure 1.1) as sound events (“x”) and silent events (“.”). Below is the same sequence 

represented as discrete series of ones (sound event) and zeros (silent event). Obtaining magnitude spectra 

using DFT involves taking the dot product of this series with complex sinusoids that complete 0 to N-1 periods 

within the span of the sequence (N is the number of events in the sequence). The absolute value of each dot 

product (spectral magnitude) is plotted on the right. For the complex sine wave with period 0, magnitude only 
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depends on the total number of sound events. Complex sine waves that complete 7 and more periods are 

aliased (mirror image of the first half of the spectrum) and can be ignored. Assuming meter with pulse periods 

2 and 4 events, one can select frequencies with corresponding periods (and harmonics) in the spectra as 

meter-related. Z-scoring the magnitude across frequencies and taking the mean z-score at meter-related 

frequencies estimates how prominently meter-related frequencies stand out in the spectra, and thus the 

strength of contrast at these periods in the sequence. (B) Syncopation scores proposed by Povel and Essens 

(1985). The algorithm is shown on the right. Positions of the assumed pulse with period of 4 grid points are 

depicted as black vertical lines on the top. The score increases when silent events (dark red) or unaccented 

sound events (bright red) overlap with the pulse. The score is taken for each circular rotation of the sequence, 

thus testing each possible pulse phase and taking the minimum. As shown on the left, z-scored magnitude at 

meter-related frequencies calculated with DFT strongly correlates with PE score (Spearman’s rho, *** 

p<0.001). The set of 160 rhythmic sequences to test the correlation was generated by assigning a 12-point grid 

with all possible permutations of 6, 7, and 8 sound events (while removing phase-shifted versions and only 

allowing maximum 4 successive silent events). (C) Syncopation scores proposed by Longuet-Higgins and Lee 

(1984). The algorithm is shown on the right, assuming pulse periods 2, 4, and 12 grid points (i.e. {2,2,3} meter). 

Each grid point receives a weight based on the number of coinciding pulses. If the sequence contains contrast 

in an opposite way as defined by the pulses (i.e. silent event preceded by sound event with lower weight, 

marked in red), the score increases. The minimum score is taken across all circular rotations of the sequence, 

thus testing each possible meter phase. (D) A template (top) that expresses the hypothesis about contrast at 

coinciding metric pulses with periods 2 and 4 is cross-correlated with the sequence represented as discrete 

series of ones (sound event) and zeros (silent event). Cross-correlation as a function of lag is shown in red, and 

the largest value is taken to represent how much the sequence fits the template, i.e. as a measure of contrast 

at meter periodicities. Again, the measure strongly correlates with meter-related z-scores obtained with DFT 

(shown on the left).  

 

 

Even though the frequency-domain method may seem less straightforward than the other 

three approaches introduced above (i.e. PE, LHL and cross-correlation), its strength 

becomes apparent when one moves beyond rhythmic sequences represented on an 

abstract grid towards continuous rhythmic signals, where PE, LHL or cross-correlation 

methods cannot be easily applied (without suffering from the limitations inherent to time-

domain approaches, see section 1.2.2.2). The main weakness of these methods is that they 

treat rhythms as discrete sequences of identical events (see section 1.1 for differentiation 

between continuous and discrete view of rhythm). Thus they abstract from the actual 

modulation waveforms that necessarily deliver the rhythmic information. However, real-
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world rhythmic signals are more complex than a discrete sequence of identical unit-

amplitude spikes.  

To illustrate the advantages of the frequency-tagging approach, I will build the connection 

between arrangement of discrete events and continuous rhythmic signals using examples of 

linear systems. Throughout this discussion, it is important to keep in mind that by no means 

do I claim that the generative mechanism of any system analyzed in the empirical part of 

this thesis is linear. Yet, linear systems may provide important insights into the 

phenomenon of interest and the methods that measure it (Zhou et al., 2016; Broderick et 

al., 2018, 2019; O’Sullivan et al., 2019; Di Liberto et al., 2020a). For similar reasons, I will 

restrict the discussion to rhythmic signals that can be thought of as transformations of 

patterns generated on a fast isochronous grid. This way, one can explore how contrast at 

metric periodicities can emerge in continuously modulated rhythmic signals from (i) 

arrangement of events in time, and (ii) shape of signal modulation aligned to these 

individual events.  

To transform a rhythmic pattern from an abstract representation as a sequence of ones and 

zeros (see Figure 1.9) to a real-world continuously modulated signal, one first needs to 

stretch it by inserting zeros (Figure 1.10 A vs. B). This operation results in exact repetition of 

the original spectra towards higher frequencies (“Stretch theorem” of the DFT, Smith, 2007). 

The resulting signal can be further convolved with a kernel that characterizes a particular 

system, and this can enhance or attenuate certain frequencies, as shown in Figure 1.10C, D 

and E. Indeed, characterizing the response of a system across the frequency gradient has 

important implications for the way it responds to signals with different temporal properties, 

and has been an important part of neuroscientific investigations (Nozaradan et al., 2012; 

Alonso-Prieto et al., 2013; Zhou et al., 2016). The shape of the kernel can have profound 

influence on contrast at particular periodicities. For instance, the kernel in Figure 1.10E 

completely zeros out magnitude at all harmonics of 5 Hz, effectively suppressing contrast at 

period 1/5 Hz = 0.2 s. This can be directly seen in the time domain where the fast 

modulation with period 0.2 s disappears. The example in Figure 1.10E is informative, as the 

kernel is very similar to the one used in Figure 1.10C where one can still intuitively observe 

contrast with period 0.2 s in the time domain. The crucial difference is the frequency-

domain representation of the kernel, as convolution in the time domain can be understood 

as multiplication in the frequency domain (Oppenheim and Schafer, 2009). The kernel in 
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Figure 1.10C has periodically appearing zeros in the frequency domain, but they do not 

repeat with a period of exactly 5 Hz, thus still preserving magnitudes at harmonics of 5 Hz 

(i.e. 10, 15, etc. Hz) in the “input” signal that represents the arrangement of events in time 

(shown in Figure 1.10B). On the other hand, the zeros of the kernel in Figure 1.10E are 

spaced by exactly 5 Hz, thus completely cancelling all the harmonics. This example 

emphasizes the importance of considering magnitudes at higher harmonics when assessing 

contrast at a particular periodicity in signals. In other words, contrast representing a pulse 

with a particular period may be driven by energy at higher harmonics, which correspond to 

integer multiples of the fundamental frequency (inverse of pulse period). Hence ignoring 

these higher harmonics may yield a biased measure of pulse representation in the signal.  
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Figure 1.10. From grid representation of a rhythmic sequence to continuous modulated signal. Time-domain 

representation of the signal (i.e. variations in amplitude over time) is shown on the left (in blue) and 

frequency-domain representation (i.e. variations in magnitude over frequency) is shown on the right (in red). 

Insets depict time-domain and frequency-domain representation of a kernel used to generate the signal by 

convolving with signal shown in panel B. Grey curves overlaid over spectra in B, C, D, and E represent 

magnitude spectra of the respective kernels. This illustrates how a kernel can attenuate particular frequencies. 

(A) Abstract representation of a rhythmic sequence similar to Figure 1.9. The sequence can be represented on 

a grid (top) as sound events (“x”) and silent events (“.”), or as a discrete series of ones and zeros (sound and 

silent events respectively, bottom). (B) Transforming the sequence in panel A to a physical time dimension 

requires “stretching”, resulting in repetition of magnitude spectra as shown on the right. (C) Convolving signal 

in panel B with a boxcar kernel shown in the inset changes the signal in both time and frequency domain. (D) 
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Example of a different kernel, reminiscent of an event-related potential (van Diepen and Mazaheri, 2018). (E) 

Same boxcar kernel as in panel C, but its duration is set to exactly 0.200 s. This way the kernel attenuates all 

harmonics of 5 Hz, effectively removing contrast at 0.200 s from the signal.  

 

 

This draws attention to an important point, i.e. how to select meter-related and meter-

unrelated frequencies in the spectra of continuously modulated rhythmic signals (such as 

the example signals in Figure 1.10), in order to obtain a robust and reliable measure of 

contrast at meter periodicities? Across previous studies using the frequency-tagging 

approach, the selection has often been heuristic. For instance, only frequencies with periods 

directly corresponding to the assumed metric pulses were considered as meter-related, 

while higher harmonics were not taken into account (Nozaradan et al., 2012, 2016b, 2016a, 

2017b, 2018; Bouwer et al., 2020a). This can be justified for EEG signals by the fact that the 

EEG (as well as MEG) response typically has a low-pass characteristic, i.e. higher frequencies 

are attenuated (Wang et al., 2012). Combined with prominent sources of noise related to 

alpha activity and tonic muscle artifacts, this may lead to biased estimates of magnitudes in 

the higher portions of the spectrum, therefore justifying the focus on lower harmonics, 

which elicit responses with high signal-to-noise ratio. Moreover, some studies interpreted 

magnitudes at individual frequencies separately, without considering harmonically related 

frequencies as a whole (Stupacher et al., 2017; Tal et al., 2017; Li et al., 2019; Hickey et al., 

2020). While the prominence of individual frequencies across the spectrum can provide 

important information about the system, a lower magnitude at a single frequency does not 

directly imply little contrast at the periodicity corresponding to that frequency. These 

heuristics have provoked criticism of the frequency-tagging method (Rajendran et al., 2017). 

To explore whether conclusions drawn from frequency-tagging depend on the selection of 

meter-related frequencies, a simple simulation was run based on the same pool of 160 

rhythmic patterns created above (see Figure 1.9, testing the correlation between DFT-based 

method and PE, LHL and cross-correlation methods to measure contrast at metric 

periodicities in rhythmic patterns). As before, minimum LHL and PE syncopation scores 

across 12 phase shifts of each pattern were calculated to estimate contrast stemming solely 

from the arrangement of events in time. Here, the goal was to measure the prominence of 

contrast locked onto metric pulses with periods 1, 2, 4, and 12 grid points. Therefore, the 
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assumed metric pulses had periods 2, 4, and 12 grid points for LHL (note that LHL cannot 

measure period of 1) and period 4 grid points for PE (recall that PE can only measure one 

pulse at a time). Next, the abstract pattern representations were stretched as described in 

Figure 1.10, such that the time between successive grid points became 0.2 s. This signal was 

convolved with three types of kernels with very different effects on the spectrum: a unit 

impulse, boxcar, or decaying sine wave (see Figure 1.11A for time- and frequency-domain 

representations of the kernels). For each type of kernel, the resulting signal was 

transformed into the frequency-domain using FFT and magnitudes at meter-related and 

meter-unrelated frequencies were extracted after noise subtraction (see section 1.2.2.4), z-

scored, and mean z-score at meter-related frequencies was calculated. Four different ways 

to select meter-related frequencies were used:  

(1) Taking frequencies corresponding exactly to the periods of pulses in the assumed meter, 

i.e. 1/(0.2 x [1, 2, 4, 12 grid points]) = [5, 2.5, 1.25, 0.416 Hz]. This selection has been used 

across a large number of studies (e.g. Nozaradan et al., 2012, 2018; Lenc et al., 2018). The 

upper limit of 5 Hz has been used in EEG studies, with the justification that response 

magnitudes are smaller at higher frequencies due to the low-pass characteristic of the EEG 

signal.  

(2) The second method included all harmonics of 1.25 Hz up to 5 Hz (i.e. 3.75 Hz was added 

to the set of meter-related frequencies). This selection therefore captured all harmonics (up 

to 5 Hz) related to pulses with periods of 1, 2, and 4 grid points (corresponding to 

frequencies 5, 2.5, and 1.25 Hz). The lowest frequency corresponding to the pulse period of 

12 grid points (i.e. 0.416 Hz) was not considered as meter-related, as a contrast at this 

period cannot be easily measured in this setting. This is because the spectrum of a stretched 

rhythmic pattern only contains energy at the harmonics of this frequency. Thus, all 

frequencies in the spectrum would have to be considered meter-related, removing the 

possibility to normalize magnitudes using relative measures (such as z-scoring).  

(3) The third selection method excluded 5 Hz, while keeping the rest of meter-related and 

meter-unrelated frequencies identical to method 1. This method has been used in EEG 

studies to make sure that changes in simple low-lass filter characteristics cannot explain 

putative contrast differences measured with method 1 (Nozaradan et al., 2018; Lenc et al., 

2020).  
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(4) Finally, all harmonics of 1.25 Hz (similar to method 2) up to 30 Hz were considered. Note 

that these frequencies capture harmonics related to the pulse with period 4 and all the 

faster pulses in the assumed meter.  

For each method, meter-unrelated frequencies were selected as all harmonics of 0.416 Hz 

(i.e. frequencies with non-zero magnitudes) that did not overlap with the meter-related 

frequencies and were in the frequency range of interest specified for each selection 

method.   

 

The results are shown in Figure 1.11. When analyzed separately for each kernel type, all 

selection methods yielded strong correlations with LHL and PE scores, indicating that 

contrast resulting from the distribution of events in time was captured irrespective of the 

way meter-related and meter-unrelated frequencies were selected. All methods were also 

sensitive to the effect of kernel on the signal. This can be observed on the right side of each 

panel in Figure 1.11, where the distribution of meter-related z-scores across the 160 

patterns shifts depending on the kernel used. Importantly, these differences between 

kernels were not consistent across the selection methods. For example in Figure 1.11D, 

generally larger meter-related z-scores for unit impulse kernel are only evident when high 

harmonics are included. These inconsistencies therefore raise question on the selection 

method to best capture the exact effect of kernel shape on the contrast at meter 

periodicities. 
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Figure 1.11. Response shape can attenuate or enhance contrast at specific periodicities. A set of 160 rhythmic 

patterns was used to synthesize rhythmic signals by convolving with different kernels displayed on the top of 

panel A (unit impulse shown in green, boxcar shown in magenta, decaying sine wave shown in yellow). 

Different methods to select meter-related frequencies are displayed across panels, using spectra of an 

example pattern. Meter-related frequencies are shown in red and meter-unrelated frequencies in blue. For 

each kernel and method, mean z-score at meter-related frequencies was correlated with LHL and PE 

syncopation score across the 160 patterns (Spearman’s rho, *** p<0.001), as shown on the bottom of each 

panel. The distribution of meter-related z-scores across the three kernels is shown on the right side of each 

panel (i.e. separately for each method, grey horizontal line represents zero). (A) Taking 0.416, 1.25, 2.5, 5 Hz as 

meter-related. (B) Taking 1.25, 2.5, 3.75, 5 Hz as meter-related. (C) Taking 0.416, 1.25, 2.5 Hz as meter-related 

and excluding 5 Hz altogether. (D) Taking harmonics of 1.25 Hz up to 30 Hz as meter-related.  
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As discussed above, kernel shape (representing frequency response of a system) can 

genuinely affect a periodic contrast (see Figure 1.10). Yet, there could also be situations 

where the response of a system affects the spectrum in a way that is not specific to the 

contrast at meter periodicities. An example of such a situation could be a change in the gain 

of the kernel, which results in a proportional magnitude increase across the whole spectrum 

(see Figure 1.5 and 1.8). Within the frequency-tagging approach, this is accounted for by 

normalizing the magnitudes (e.g. by using a z-score), and this should work irrespective of 

which frequencies are selected as meter-related (as long as there are any meter-unrelated 

frequencies to use for the normalization). Yet, the particular selection of meter-related 

frequencies may affect sensitivity to changes in the broad shape of the spectrum, such as 

low-pass filtering, that do not necessarily change contrast at meter periodicities. Therefore, 

it is important to determine which way of selecting meter-related frequencies is most 

sensitive to genuine changes in contrast, and most robust to biases from non-specific 

changes. To this end, another simulation was run, where contrast was directly manipulated 

in a controlled way using a similar method as in Figure 1.8. To make the simulation more 

relevant to studies measuring contrast at meter periodicities in EEG activity, the constructed 

signals had certain features reminiscent of EEG responses to auditory rhythmic stimuli 

(Nozaradan et al., 2012, 2018; Tal et al., 2017). The aim of the simulation was to explore 

how selection of meter-related and meter-unrelated frequencies affects sensitivity of 

frequency-tagging to genuine changes of contrast at meter periodicities, but also to noise 

and broad spectrum changes that are unrelated to the contrast at meter periodicities.  

A single rhythmic pattern was selected, seamlessly repeated 18 times to create a longer 

sequence, and stretched into a real-world time-domain signal in the same way as described 

for the simulation above. The main difference from the previous simulation was that 

another version of the signal was created before convolving with a kernel. This contrast-

enhanced version was characterized by additively increasing amplitude of an impulse at 

time points coinciding with metric pulses (see Figure 1.12A, and notice similarity to Figure 

1.8). The meter consisted of two metric pulses with periods of 2 and 4 grid points, thus 

equal to 0.4 and 0.8 s after stretching. Ten trials were simulated separately for two 

conditions, one with smaller and the other with greater contrast enhancement. For each 

condition, “EEG-like” responses from 15 participants were simulated by convolving with a 
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kernel consisting in a sum of two decaying sinusoidal components using the equation below 

(see also van Diepen and Mazaheri, 2018).  

𝑘𝑒𝑟𝑛𝑒𝑙(𝑡) = *𝐴!
𝑡
𝜏!
𝑒!"# $!⁄ 	sin 2𝜋𝑓!𝑡4 +	 *𝐴&

𝑡
𝜏&
𝑒!"# $"⁄ 	sin 2𝜋𝑓&𝑡4 

In the equation, t represents time from 0 to 0.5 s. The parameters were randomly selected 

for each participant (but fixed across conditions), as follows: A1 was uniformly distributed 

between 0.4 and 0.8, and A2 between 0.5 and 1. Next, τ1 was normally distributed around 

0.2 (SD = 0.05) and τ2 around 0.05 (SD = 0.01). Finally, f1 was normally distributed around 1 

(SD = 0.2), and f2 around 7 (SD = 1). This choice of parameters yielded a response somewhat 

similar to an ERP waveform observed from an actual EEG recording that seems to include 

sharp peaks (akin to P1, N1 components) but also a slow integrative component (see Figure 

1.4 and inset in Figure 1.12B). Moreover, such a kernel attenuates higher frequencies, thus 

simulating the low-pass characteristic of EEG responses (Wang et al., 2012). Because the 

kernel was longer than the shortest time between successive events in the pattern 

representation, the successive responses elicited by each event did not go back to baseline 

but interacted, yielding a complex waveform. Therefore this simulation showcases the 

advantages of using frequency-tagging approach instead of time-domain approaches that 

would have limited success when analyzing such signal. Pink noise (i.e. 1/f) was added to the 

resulting signal, either with very low power (yielding high SNR = 2), or with high power 

(yielding low SNR = 0.1). The simulated trials were averaged in the time domain and 

transformed into the frequency domain using FFT, separately for each participant, and 

baseline was subtracted from each frequency bin (mean magnitude at bins 2 to 5 on both 

sides). Subsequently, meter-related and meter-unrelated frequencies were selected using 

the four methods described above, and magnitudes at these frequencies were converted to 

z-scores as for the previous simulations. The mean z-score at meter-related frequencies was 

compared across the two conditions (as in a repeated-measures design), i.e. testing whether 

the value was larger for the contrast-enhanced condition. 100 experiments were simulated 

separately for the low and high SNR, and for small and large contrast enhancement. The 

resulting effect sizes (Hedge’s g) were calculated using the function cohen.d from package 

effsize (Torchiano, 2020), and aggregated over experiments by fitting a mixed model using 

the function rma from package metafor for R (Viechtbauer, 2010).  
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The results are shown in Figure 1.12D, suggesting greatest sensitivity when higher 

harmonics related to the metric pulse periods are taken into account. While other selection 

methods generally yielded effect sizes significantly different from 0, this was not the case 

with low SNR and small difference in contrast between conditions. Importantly, the 

direction of effect was the same across all selection methods. In other words, with genuine 

contrast differences between conditions the methods should give converging results. Figure 

1.13A shows that when no contrast enhancement was present between the conditions but 

the power of background 1/f noise differed (thus decreasing signal-to-noise ratio in one 

condition), the methods yielded diverging effects depending on whether the lowest 

frequency (0.416 Hz) was included as meter-related or meter-unrelated. This is because 1/f 

noise interferes most with low-frequency components (thus could be considered a form of 

high-pass filter). 
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Figure 1.12. Simulation of contrast enhancement in a continuously modulated signal. Condition with high SNR 

is shown on the left, and low SNR on the right side. (A) EEG-like signals were simulated by convolving the 

representation of a rhythmic pattern with a kernel shown in grey. Signal with enhanced contrast at meter 

periodicities was generated by increasing the amplitude in the pattern representation at time-points defined 

by the metric pulses and not otherwise (see the difference between signals shown in black vs. magenta). 

Metric pulses are shown as yellow arches. (B) Example time-domain response simulated for one participant. 

The simulated signal was chunked into successive windows of 2.4-s duration (length of one pattern repetition) 

and averaged across all chunks and trials. Event positions in the rhythmic pattern are marked with grey vertical 
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dashed lines. Note the similarity of the simulated signal with an empirically observed ERP response to the 

same rhythmic pattern (grand average taken from fronto-central channels from high-tone syncopated 

condition in Study 2, see section 3) (C) Example magnitude spectra obtained from one simulated participant 

showing different methods to select meter-related frequencies (each row is one method, meter-related 

frequencies shown in red, meter-unrelated frequencies in blue). Mean z-scored magnitude at meter-related 

frequencies is shown on top of each spectrum. There may be slight variability in the spectra across rows due to 

noise added to the signals to simulate experiments. (D) Results of meta-analysis across 100 simulated 

experiments. Effect sizes with 95% CIs estimated across experiments using a mixed model are shown on a 

horizontal axis. Different methods to select meter-related frequencies are shown on the vertical axis. Results 

for simulations with large contrast enhancement in the second condition are shown on the top, and for 

smaller contrast enhancement on the bottom. Overall, all considered selection methods are sensitive to the 

difference between conditions. The method that uses all harmonics of 1.25 Hz up to 30 Hz consistently yields 

larger effect sizes, even when enhancement is small and SNR is low (bottom right).   

 

 

Finally, the simulation was re-run, but instead of convolving with an “EEG-like” kernel, two 

different low-pass filters were applied (1st order Butterworth with cutoff at 10 vs. 20 Hz) in 

separate conditions without changing the contrast at meter periodicities. Note that this can 

be viewed as convolving the stretched representation of the rhythmic pattern (see Figure 

1.12A) with two slightly different kernels, each representing one low-pass filter. The results 

shown in Figure 1.13B reveal that low-pass filtering affected the z-score at meter-related 

frequencies most when a large number of harmonics was used. The other selection 

methods (only considering frequencies up to 5 Hz) were biased to a lesser extent. 

Importantly, the bias occurred in an opposite direction when the highest frequency (5 Hz) 

was not included.  
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Figure 1.13. Results of meta-analysis across 100 simulated experiments, testing for spurious effects. (A) Using 

the same dataset and method as in Figure 1.12, two conditions with different signal-to-noise ratio, but with 

identical contrast at meter periodicities were compared. Low SNR (i.e. greater power of the 1/f noise) 

attenuated predominantly low frequencies, thus leading to spurious enhancement of the mean z-score at 

meter-related frequencies when the selected set contained 0.416 Hz (the lowest analyzed frequency). For 

selections that did not include this frequency as meter-related, low SNR led to spurious effect in the opposite 

direction, i.e. a decrease of the mean z-score at meter-related frequencies. (B) Applying low-pass filter (i.e. 

attenuating predominantly higher frequencies) with different cutoff frequencies across conditions with 

otherwise identical contrast at meter periodicities. The frequency response of each filter is shown on the 

bottom, along with the effect of each filter demonstrated on an example spectrum. Filter 1 (green) had lower 

cutoff frequency compared to filter 2 (magenta).   

 

 

Together, these simulations can be summarized in the following way. When thinking of a 

rhythmic signal as a non-isochronous pattern of events arranged in time, frequency-tagging 

can capture systematic contrast locked onto metric pulses that emerges from this temporal 

structure (Figure 1.9). When generalizing towards continuously modulated signals, 

frequency-tagging is still sensitive to the temporal arrangement of events (Figure 1.11), as 
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well as contrast created by relative differences in the shape of signal modulation aligned to 

the individual events (Figure 1.8 and 1.12). However, when analyzing such signals, attention 

must be paid to the categorization of frequencies as related vs. unrelated to the periodic 

contrast in question. The different ways to select meter-related and meter-unrelated 

frequencies used in previous experiments (Nozaradan et al., 2012, 2016a, 2017b, 2018) 

seem all sensitive to changes in contrast at relevant periodicities (Figure 1.12). That is, if a 

change of contrast is present, the different methods should give converging results. 

However, the different methods are also prone to biases from non-specific signal changes 

such as low-pass filtering (Figure 1.13). Yet, the direction of these biases can differ when 

different subsets of frequencies are selected as meter-related. Thus, if a contrast change is 

absent but there is a broad change in signal’s spectrum, the different selection methods can 

give diverging results. Consequently, multiple selection methods could be used to analyze 

the same dataset, and in case of a genuine difference in periodic contrast between the 

tested signals, the methods should all converge towards the same conclusion. This practice 

has been used in most studies conducted in our lab, i.e. checking the robustness of the 

results with different methods to select meter-related and -unrelated frequencies.  

While thinking about any signal as a series of discrete events is good as an exercise, applying 

such a view to continuous signals would be an oversimplification. In fact, even a musical 

audio signal cannot be simply reduced into a series of discrete events without losing 

important information (yet, this is a common approach, see e.g. Lerdahl and Jackendoff, 

1983; Longuet-Higgins and Lee, 1984; Povel and Essens, 1985; Amiot, 2016; Milne et al., 

2017). For instance, slow gradual modulations of features (e.g. loudness, filter cut-off) are 

commonly used to create rhythms, yet there is no easy way to reduce these into discrete 

time points. Indeed, if a continuous signal is reduced into a series of discrete onsets, one 

may lose important information about the signal that is relevant for contrast. Even in a 

simple case when the signal could be explained by convolution of discrete onset series with 

a kernel representing the system’s impulse response (which is not possible for most non-

linear biological systems, see e.g. Pikovsky et al., 2003; Kuchibhotla and Bathellier, 2018), 

the shape of the kernel could lead to resonances and therefore must be taken into account 

when assessing periodic contrast generated by the system (Galambos et al., 1981; Ross et 

al., 2000; Alonso-Prieto et al., 2013; Teng et al., 2017; Arnal et al., 2019; Lozano-Soldevilla 

and VanRullen, 2019). To better investigate the contribution of such resonances to the 
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transformation relevant for meter processing, future empirical studies should systematically 

test rhythmic inputs containing contrasts at a range of tempi (thus extending the previous 

work, see e.g. van Noorden and Moelants, 1999; Nozaradan et al., 2012, 2017b, 2018). 

Specifically, slightly changing input tempo would shift and stretch its spectrum but preserve 

spectral magnitudes across the individual (shifted) frequency components. This way, in one 

condition a particular frequency (in Hz) may be considered meter-related and in another 

condition, the very same frequency (in Hz) may be considered meter-unrelated. If the 

system passively enhances contrast at meter periodicities due to resonances related to its 

impulse response, the same absolute frequencies (in Hz) would be systematically 

enhanced/suppressed according to the frequency-content of system’s kernel (see Figure 

1.10 and 1.11), irrespective of input tempo. If the system goes beyond passive resonances, 

it should be capable of selectively enhancing the shifted meter-related frequencies across a 

range of tempi.  

 

1.2.2.6 Contrast affected by fine time locking  

So far I have discussed arrangement of events in time only from the viewpoint of a discrete, 

isochronous grid. While this conceptualization is insightful, real-world signals contain much 

more subtle variations in the temporal arrangement of events. Importantly, small timing 

inconsistencies can lead to less systematic contrast in time (due to less precise 

“generalization”, i.e., values at time points separated by a stable period are less similar), and 

thus need to be accounted for when using direct measures of metric pulses in sound, brain, 

and movement. Different methods used to measure fine temporal consistency of contrast in 

signals are typically based on the expectation of coherent phase at time-spans defined by 

the period of a metric pulse. I first discuss these methods from the perspective of 

movement, and show that frequency-tagging can yield comparable results.  

While syncopation scores (e.g. LHL or PE introduced in the previous section) can be thought 

of as measuring representation of meter in the sound input, analyzing movement 

represents the other end of the perception-action processing loop: the behavioral output. A 

common way to assess meter perception is to ask the participant to tap (e.g. with their 

hand) along with a pulse they perceive in the rhythmic input (Handel and Oshinsky, 1981; 

van Noorden and Moelants, 1999; Drake et al., 2000; Snyder and Krumhansl, 2001; 
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Toiviainen and Snyder, 2003; Nozaradan et al., 2012; Large et al., 2015). This is an 

ecologically valid task, as humans spontaneously move along with a pulse when listening to 

music, e.g. by tapping their foot or bobbing their head. Importantly, most methods used to 

analyze spontaneous tapping data can be conceptualized as searching for a contrast at 

periodicities defined by metric pulses. In other words, to claim that the participant has an 

internal representation of a metric pulse, taps must (i) consistently occur at regularly spaced 

time points (ii) locked onto the temporal structure of the rhythm, and (iii) not otherwise.  

Traditionally, tapping data is analyzed as a discrete series of tap-onset times, i.e. identical 

events arranged in time (Repp, 2005; Repp and Su, 2013). Regular spacing of taps can be 

typically quantified as the variability of inter-tap intervals (ITIs) normalized by the mean ITI 

(i.e. a coefficient of variation). An equivalent circular measure represents each tap as a 

vector with length 1 on a unit circle where 2π represents the mean inter-tap interval and 0 

degrees is typically set to the beginning of the stimulus (or trial). The mean vector length is 

taken as a measure of regularity (Nozaradan et al., 2016b). However, these measures are 

not plausible as full measures of meter processing. While they are sensitive to the 

consistency of a periodic contrast in time, they do not implement the constraint of time-

locking from the definition of meter. In other words, tapping with a stable period would 

yield low variability even if no time-locking onto the rhythmic stimulus occurred. 

A better measure emerges from classic sensory-motor synchronization paradigms where 

subjects tap 1:1 with an isochronous metronome. These quantify time-locking as the 

variability of asynchronies between tap times and sound-event times (Repp, 2005). This is a 

measure of uni-directional entrainment, or synchronization between two systems, which 

can generally have more complex forms, e.g. 2:1, 3:1 etc. (Pikovsky et al., 2003; Zelic et al., 

2018). However, when synchronizing with the perceived pulse induced by a rhythmic 

sequence, the pacing acoustic signal is not isochronous, thus the synchronization is not 

easily expressed with one ratio (Repp and Su, 2013). Instead, it is assumed that the tapping 

is synchronized with an internal representation of one pulse from the perceived meter 

(Parncutt, 1994; van Noorden and Moelants, 1999; Nozaradan et al., 2012) (but see Study 3, 

section 4, and Figure 1.18 for a discussion of non-stationary tapping). Thus the first step in 

the analysis is typically to determine the period of this metric pulse. 

For highly controlled rhythmic patterns constructed on an isochronous grid without 

expressive timing and tempo changes, a common heuristic to determine the plausible 
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metric pulses is to take integer multiples of the grid interval. This constraint yields pulses 

with integer ratios to any interval in the rhythm. However, it is important to note that such 

mathematical derivation becomes increasingly difficult when naturalistic stimuli from 

different musical traditions are considered (Polak et al., 2016, 2018).  

After defining plausible pulses, the analysis must determine one of them that was likely 

tapped by the participant. This can be done heuristically by visually inspecting the 

distribution of ITIs, or selecting the plausible period with the smallest distance from the 

mean ITI (Kung et al., 2013; Cameron and Grahn, 2014; Nozaradan et al., 2016b). This period 

is used to define a pulse, with a starting point typically set to the beginning of the stimulus. 

The variability of signed time differences from each tap to the closest pulse position (i.e. 

asynchronies) can be taken as a measure of regular spacing of the taps, while controlling for 

time-locking with the metric pulse (Repp and Su, 2013). A circular equivalent of this 

measure helps to avoid spuriously high variability when the taps consistently occur halfway 

between successive pulse positions, as shown in Figure 1.15. The individual taps are 

mapped as unit vectors onto a circle where 2pi equals the selected pulse period and phase 0 

is typically set to the beginning of the stimulus, and the mean vector length is taken to 

quantify regularity. Indeed, it is not the actual distance, but rather consistency of the 

distance between the taps and positions of the pulse that matters. This is in line with the 

definition of a periodic contrast as a relative difference repeating at a particular rate (see 

section 1.2.2.2 and Figure 1.5). 

Based on this definition of a periodic contrast, it may be somewhat misleading that many 

researchers have been putting strong emphasis on the “predictive” nature of sensory-motor 

synchronization to the beat (i.e. a metric pulse) in music (Patel and Iversen, 2014; Ross et 

al., 2018b). This stems from classic sensory-motor synchronization studies where negative 

mean asynchrony with respect to the pacing stimulus is commonly observed (for reviews, 

see Repp, 2005; Repp and Su, 2013). Accordingly, considerable effort has been invested into 

training animals to synchronize with asynchronies shorter than typical reaction times (Yc et 

al., 2018). Indeed, it is important to ensure that consistent asynchronies cannot be 

explained by “passive” reactions to each pacing sensory event. However, in the case of 

synchronizing to a metric pulse in music, such explanation is impossible, as perceived pulses 

are not one-to-one with the acoustic events in the rhythmic stimulus. Therefore, even if 

individual taps were “reactions” to the perceived pulse, this would imply that the pulse is 
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perceived, which is the main point of the analysis in the first place. Consequently, an 

appropriate measure of a systematic contrast should be sensitive to jitter and period 

locking, but should not be affected by systematic misalignment.  

A related issue is that the phase of the perceived metric pulse that serves as an internal 

pacing signal is difficult to estimate from tapping data itself (see Figure 1.14). This is 

especially the case for patterns constructed on a fast isochronous grid (i.e. with tight spacing 

of the subsequent points). Even if the participant is targeting a particular time position, the 

executed taps can be systematically misaligned from this position (Repp and Su, 2013). The 

least subjective way to determine the “target times” from the data is to quantize each tap 

to the closest grid position and determine the tapped phase based on grid positions with 

the largest number of quantized taps. However, because of negative mean asynchrony 

common in human tapping, quantizing to the closest grid point irrespective of direction may 

provide a biased estimate. Thus, caution should be taken when making conclusions based 

on the phase of the perceived meter estimated from tapping data (Rajendran et al., 2017). 

However, the issues related to estimating meter phase do not apply to the measures of 

contrast at meter periodicities based on the variability of asynchronies, mean vector length, 

but also frequency-tagging.  

 

 
Figure 1.14. Example of uncertainty when assigning taps to individual events in a rhythmic pattern constructed 

on an isochronous grid. Data from one participant spontaneously tapping the pulse perceived in a rhythmic 

pattern cycled for 60 seconds. The audio waveform of one pattern cycle is shown in grey. Overlaid as blue 

points are the individual tap times, wrapped at cycle boundaries. The taps cluster around stable positions 

across pattern cycles, indicating time-locking. However, it is difficult to determine which exact event onset the 

taps are locked to.  
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Importantly for our discussion, frequency-tagging is sensitive to the fine-temporal 

consistency in signals. This is illustrated in Figure 1.15 and 1.16, which highlight the 

similarities between traditional robust measures of synchronization (such as circular mean 

vector length) and frequency-tagging. The reason FFT magnitudes decrease when the 

tapping is not stable is the stationarity assumption of the Fourier Transform. In other words, 

analyzing longer signals assumes stable phase of the signal, which is not the case if temporal 

variability is increased (particularly for higher harmonics). Similarly, if the contrast in tapping 

occurs at a period that is unrelated to the assumed meter, magnitude at meter-related 

frequencies will be near zero.  

 

 

 
Figure 1.15. Examples of tapping data. Tap times are shown as blue points. Time points defined by the 

assumed metric pulse with period 0.5 s are shown as grey vertical dashed lines. Three measures of time 

locking onto the pulse are shown on the right: standard deviation of asynchronies, FFT magnitudes summed 

across meter-related frequencies, and mean vector length. Standard deviation of asynchronies (SDasy) was 

calculated with respect to target positions, determined by quantizing each tap to the closest pulse position 

(grey circles). Magnitude spectra were calculated by applying FFT to time series where each tap is represented 

as an impulse with amplitude 1 (zero otherwise). Meter-related frequencies (in red) were selected as 

harmonics of the pulse period (i.e. 2, 4, 6, …, Hz) and magnitudes at these frequencies were summed (value 

displayed above each spectrum). For the circular method, each tap is displayed as a point on a unit circle. The 

mean vector is shown in red and its length r is displayed above each unit circle. (A) Inter-tap interval is exactly 

0.5 s (i.e. identical to the pulse period) and taps consistently occur 0.1 s before each pulse position. This yields 

low SDasy, high magnitude at meter-related frequencies, and high r. (B) Same as above, but jitter with 
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standard deviation 0.05 s added. This leads to increased SDasy, lower FFT magnitude at meter-related 

frequencies, and lower r. (C) No jitter, but taps systematically occur 0.25 s after each pulse (i.e. in the midpoint 

between successive pulse positions). This leads to high FFT magnitude at meter-related frequencies, high 

mean vector length, but artificially high SDasy because the quantization randomly assigns the target position 

to the previous or following pulse position. (D) No jitter, but inter-tap interval is 0.51 s, thus not locked to the 

assumed pulse period. This leads to high SDasy, and essentially zero FFT magnitude at meter-related 

frequencies and r.  

 

 

 

 

 
 

Figure 1.16. Sensitivity of different methods to systematic contrast locked onto a metric pulse. Same setup as 

for Figure 1.15, but two parameters of tapping were continuously manipulated: (1) the systematic 

misalignment from the assumed pulse shown on the x-axis, and (2) random jitter shown on the y-axis. 

Moreover, the top row shows tapping with period identical to the assumed metric pulse (0.5 s), whereas in the 

bottom row the tapping period 0.51 s is unrelated to the metric pulse. While a good measure of a systematic 

contrast should be sensitive to jitter, and period locking, it should not be affected by systematic misalignment. 

In addition to three analysis methods introduced in Figure 1.15, ITI absolute error (mean difference between 

inter-tap intervals and pulse period) and coefficient of variation of ITIs (standard deviation / mean) are 

included. These measures based on ITIs are sensitive to jitter and not systematic misalignment, but they give 

similar results even when tapping period is not locked onto the pulse, i.e. does not define contrast at the 

correct periodicity. Note that this is not exactly true for ITI absolute error, as this measure necessarily 

increases as the tapped intervals get further away from the target interval. However, the small change in the 

current simulation cannot be easily seen in the figure, despite the fact that the color scales are fixed across the 

top and bottom row for each measure. Standard deviation of asynchronies (SDasy), mean vector length (r), 

and frequency-tagging are all highly sensitive to period locking. Yet, SDasy is inflated when the systematic 

misalignment gets close to the midpoint between successive pulses. Frequency-tagging method seems more 

strict than r when jitter increases, yet both methods respond in qualitatively similar ways.  
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Because tapping data is typically abstracted into a series of tap times, the tapping force or 

other parameters of the movement are usually not taken into account (in other words, what 

matters is the phase, not amplitude, Pikovsky et al., 2003). However, when thinking of 

meter as a transformation towards a periodic contrast, tapping force is an important source 

of information (Keller, 2012). Examples of this are shown in Figure 1.17 (notice the principle 

is similar to Figure 1.8). This showcases the utility of the frequency-tagging method that is 

capable of capturing the difference between panel B and C, whereas these two signals 

would be treated identically by measures only considering tap timing and not force. These 

examples also show another advantage of using z-score normalization of the extracted 

magnitudes instead of other relative measures (such as proportion between mean 

magnitude at meter-related vs. -unrelated frequencies). As shown in Figure 1.17D and E, the 

z-score at meter-related frequencies is not affected when meter-unrelated frequencies have 

zero magnitudes and the magnitudes at meter-related frequencies change. This is a 

commonly encountered situation, where participants tap the pulse with extraordinary 

precision (yielding data similar to Figure 1.17D and E), yet, some of these participants may 

tap with a greater overall force. Thus, using z-scores ensures that the contrast at meter 

periodicities within the tapping of these participants is not overestimated when using 

frequency-tagging.  
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Figure 1.17. Importance of taking tapping force (i.e. amplitude) into account when assessing contrast at meter 

periodicities. The rhythmic stimulus sequence is plotted on the top in grey. Simulated tapping data are shown 

in magenta. The height of the peaks represents tapping force. FFT of the tapping signal is shown on the right. 

The contrast is quantified with respect to a metric pulse with period 0.8 s, thus harmonics of this frequency up 

to 5 Hz are considered meter-related (in red). Harmonics of the frequency corresponding to the pattern 

repetition rate that do not overlap with the meter-related frequencies are considered as meter-unrelated (in 

blue). Two measures are reported above each spectrum: (1) summed magnitude at meter-related frequencies, 

and (2) mean z-score at meter-related frequencies. (A-D) Gradually emerging contrast with period related to 

the metric pulse. While in panel A, the simulated participant taps with particular sound events in the rhythmic 

stimulus, the tapping does not define a periodic pulse. This pulse gradually emerges in panels B, C, and D as 

the amplitude of taps that disrupt the periodic contrast decreases. Both, summed magnitudes and z-scores are 

sensitive to these changes. (E) This signal has identical contrast as the signal in panel D, however the 

participant increases the overall tapping force. While summed magnitude at meter-related frequencies is 

sensitive to this change, the z-score remains constant.  

 

 

While tapping can provide rich information about the perceived meter, there are certain 

caveats to keep in mind. Even if we were able to determine which events within a rhythm 

represent target time points for the tapped pulse (which is quite problematic on its own as 

discussed above), the tapped pulse can differ from the perceived metric pulse that is 



 65  

internally used to organize the movement in time (Repp, 2007; Repp et al., 2008). A typical 

example is swing, where the phase of the tapped pulse is systematically misaligned from the 

perceived metric pulses (for a demonstration, see Lewis, 2018). Another issue, already 

mentioned in previous sections, is that only a single pulse can be tapped at once. Thus the 

whole set of pulses simultaneously perceived within the meter can remain concealed. 

Relatedly, if the participant frequently changes the tapped pulse from the perceived meter, 

specific issues arise during data analysis using FFT (see Figure 1.18 and Study 3, section 4). 

Moreover, while convenient to use within an experimental setup, tapping with the hand 

may not be the most natural form of movement when listening to musical rhythm (Janata et 

al., 2012; Burger et al., 2014). Finally, active movement can significantly change meter 

perception (Su and Pöppel, 2012).  

Nevertheless, movement is closely linked to rhythm perception in most ecological settings 

(Phillips-Silver et al., 2010; Maes et al., 2014), and it may not be plausible to artificially 

separate the two (see also Patel and Iversen, 2014). In addition, despite the limitation to tap 

a single pulse at a time, the whole nested set of perceived metric pulses can be estimated 

when taking into account variability across and within individuals (e.g. across participants 

and trials within an experiment). Indeed, participants often differ in terms of which pulse 

from the perceived meter they choose to tap (McKinney and Moelants, 2006; Martens, 

2011). Thus, if a particular meter is consistently perceived by participants when listening to 

a specific input, the distribution of tapped periods (individually estimated from the inter-tap 

intervals, see above) should converge towards a single plausible meter (i.e. satisfying the 

nesting constraint, see section 1.1). A similar approach has been used in the empirical 

studies presented in the current thesis.  
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Figure 1.18. Sensitivity of different methods to changes in systematic alignment and tapping period. Data were 

simulated and analyzed in the same way as for Figure 1.15, i.e. assuming metric pulse with period 0.5 s. In 

addition to Figure 1.15, ITI absolute error was measured as a mean difference between inter-tap intervals and 

assumed pulse period. Mean z-score at meter-related frequencies (in red) was calculated as well, using 

harmonics of 1 Hz that did not overlap with harmonics related to the pulse period as meter-unrelated 

frequencies (see also Figure 1.17). No jitter was applied in any condition. (A) Example of perfect tapping 

performance with inter-tap interval exactly 0.5 s (i.e. identical to the pulse period) and taps consistently 

occurring at assumed pulse positions. This yields zero ITI absolute error, high magnitude and z-score at meter-

related frequencies, and high r. (B) In approximately one third of the trial, the systematic alignment with 

respect to the assumed pulse positions changes from 0 to -0.25 s, and is kept constant for the rest of the trial. 

This does not strongly affect ITI absolute error, but magnitude and z-score at meter-related frequencies are 

decreased, as well as r. (C) In approximately one third of the trial, the tapped period changes from 0.5 to 0.25 

s, and is kept constant for the rest of the trial. That is, the simulated participant changes to a different pulse 

from the same perceived meter. This strongly increases ITI absolute error and decreases r, but magnitude and 

z-score at meter-related frequencies are more robust (i.e. more similar to the values in panel A).  

 

 

While this section mainly focused on signals originating from tapping, the conclusions about 

the frequency-tagging approach hold for any type of signals, including brain activity 

measured with EEG (Lenc et al., 2019). One important note concerns a measure of phase 

stability across trials (ITPC, inter-trial phase coherence). While this method is useful in 

certain paradigms, it has little potential to capture periodic contrast. Indeed, contrast is 

defined over time and not over trials, therefore stable phase across trials could arise even 

from a signal that has little contrast at meter periodicities (note that this may depend on 

how trial duration is defined). Therefore, the increasingly widespread use of this method to 
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measure signal properties relevant for meter processing is surprising (e.g. Cameron et al., 

2019; Hickey et al., 2020).  

 

To summarize, real-world rhythmic signals can create contrast at meter periodicities. The 

prominence of this contrast depends on generalization, differentiation and time locking. 

These factors can be affected by (i) arrangement of events in time, (ii) systematicity in time, 

in other words, temporal variance or jitter, (ii) shape of the modulations aligned to 

individual events (i.e. frequency response of the system), (iii) relative changes in the shape 

of modulations aligned to individual events. It is important to note that in real-world signals 

and systems these factors are related, and one cannot fully attribute contrast to a single 

one. For instance, the arrangement of identical events in time (Figure 1.9), and 

attenuation/enhancement of certain events (Figure 1.8) can be understood as the same 

kind of signal manipulation. The only difference is that for the former, attenuation of certain 

events is always all the way down to zero. Moreover, real-world rhythmic signals do not 

objectively consist of discrete “events”, and real-world systems are often nonlinear, i.e. 

cannot be characterized by a stable kernel (unlike the linear systems simulated in this 

section) (see e.g. Keshishian et al., 2020). Yet, such abstractions can be useful to gain deeper 

insights into the nature of contrast in rhythmic signals, and the methods used to measure it.   

It is important to emphasize that the method I have been developing here is a general 

method to measure contrast in a signal. It can be used for sound, brain, or movement 

signals, but it should not be interpreted as a perceptual measure of cues to meter 

periodicities in the sound (even though it correlates with measures such as PE or LHL that 

have been developed to directly model perceptual experience) (see e.g. Henry et al., 2017 

for such misinterpretation). The fact that when applied to rhythmic audio signals, the 

contrast measured with frequency-tagging does not map directly onto perceptual 

experience is not surprising. One could say it is almost trivial, considering the overwhelming 

evidence across perceptual domains that distinct sensory inputs can be mapped onto similar 

perceptual experiences (many-to-one mapping, see section 1.2.2.1). In fact, this is exactly 

the purpose of the method: providing a tool to describe mappings (i.e. transformation) 

between acoustic input, brain activity, and behavioral output, instead of directly offering a 

model of mapping between sensory input and perception.  
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In this section, I have demonstrated that frequency-tagging is a powerful approach to 

measure contrast at meter periodicities. The method is sensitive to all fundamental signal 

properties that are crucial to measure periodic contrast that defines metric pulses. In the 

following section, I briefly summarize previous studies that have addressed the 

transformation between sound input, brain response and behavioral output with regards to 

meter perception. Based on this review, I propose a set of fundamental questions that I 

aimed to address in a set of experiments constituting the empirical part of this thesis.  
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1.3 Nature of the phenomenon  

 

The central hypothesis of this thesis is that meter perception fundamentally involves a 

transformation of a rhythmic sensory input towards metric pulses. This transformation 

involves selective enhancement of contrast defining the perceived metric pulses and can be 

captured when comparing brain activity and movement to the sound input. Thus, one way 

to provide evidence for this hypothesis is to show that brain activity or movement with 

prominent contrast at periodicities corresponding to a particular meter can be elicited by a 

sound input with little contrast at those particular periodicities. Such observations have 

been reported across a large number of studies over the last decade.   

 

1.3.1 Transformation from sound to behavior 

One source of evidence comes from analyses of musical corpora, showing that meter 

typically perceived for a musical piece cannot be directly explained by the periodic contrasts 

emerging from its acoustic structure (London et al., 2017; van der Weij et al., 2017). 

However, these analyses do not directly measure contrast in the behavioral output, and 

instead rely on more or less anecdotal evidence of how the rhythmic stimuli are typically 

perceived by listeners (and dancers) familiar with the genre. Other studies provided clear 

evidence of transformation while directly measuring contrast at meter periodicities in both 

sound input and behavioral output in the form of movement (Chapin et al., 2010; 

Nozaradan et al., 2012, 2018; Large et al., 2015; Tal et al., 2017). This view may seem 

incompatible with a number of widely cited studies that claim to show decreased contrast 

at meter periodicities in tapping when this contrast decreases in the rhythmic stimulus (i.e. 

an argument against transformation). Yet, closer inspection of these latter studies reveals 

serious limitations. Firstly, a number of them measured how well participants were able to 

replicate the rhythmic pattern itself and therefore do not offer a direct measure of 

transformation (Povel and Essens, 1985; Grahn and Brett, 2007; Chen et al., 2008b; 

Cameron and Grahn, 2014). A different study instructed participants to tap a metric pulse 

they perceived in a rhythmic stimulus, however the stimuli were presented for very short 

durations (only ~5 s of rhythm followed by ~2-s long pause) (Kung et al., 2013). Such a 

protocol is not ecologically plausible, as meter perception may need time to develop, 
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especially when the input has little contrast at metric periodicities (i.e. when prominent 

transformation is required). In fact, studies using rhythmic stimuli with much longer 

durations report participants taking at least 5 s to start tapping the pulse (Chapin et al., 

2010; Tal et al., 2017), whereas 5 s was the approximate duration of entire stimuli used by 

Kung et al. (2013). Another study used longer rhythmic sequences (Fitch and Rosenfeld, 

2007), however, their results are difficult to interpret for two reasons. Firstly, they did not 

use a valid measure of relative contrast, and instead evaluated whether participants tapped 

with a specific alignment relative to a target pulse (without quantifying the consistency of 

this alignment, see section 1.2.2.6). Moreover, they averaged data over participants before 

assessing the relationship between the tapping and the stimulus. Therefore, the variability 

between participants was not taken into account, and the results could have been driven by 

a small number of outliers.  

Together, these considerations speak in favor of studies concluding that meter perception 

indeed involves a transformation from sound to behavior, such that the contrast at meter 

periodicities is selectively enhanced.  

 

1.3.2 Transformation in the brain 

Using frequency tagging combined with EEG, it has been shown that when humans listen to 

different rhythmic inputs that give rise to the perception of metric pulses, the elicited neural 

response is selectively enhanced at the frequencies related to the periods of these metric 

pulses (Nozaradan et al., 2012, 2016a, 2017b, 2018; Tal et al., 2017; Lenc et al., 2018). 

Importantly, this enhancement is observed even when meter-related frequencies are not 

prominent in the input, i.e. when the sound input has little acoustic contrast at meter 

periodicities. In other words, the rhythmic input is transformed within the brain towards the 

behaviourally-relevant category (Windsor, 1993). This transformation is sensitive to the 

temporal limits of pulse perception. When the rhythmic input is speeded up, frequencies 

related to slower metric pulses are selectively enhanced in the neural response, and this is 

linked to spontaneous behaviour as measured with tapping (Nozaradan et al., 2012, 2018).   

The enhancement of contrast at metric periodicities seems to emerge gradually along the 

auditory pathway, particularly for inputs that lack prominent contrast at meter periodicities 

in their acoustic structure. For such inputs, little contrast enhancement is observed in 
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responses elicited predominantly in early processing stages (including subcortical nuclei) 

(Nozaradan et al., 2018), however, a prominent transformation is evident already in the 

auditory cortex, as observed in human intracerebral recordings (Nozaradan et al., 2016a). 

While intracerebral recordings provide excellent spatial resolution, the response recorded 

from a particular location can often be considered a result of widespread interactions 

between regions connected within a functional network. Indeed, data from patients with 

focal brain damage indicate that subcortical regions such as basal ganglia and cerebellum 

specifically contribute to the transformation measured with surface EEG (Nozaradan et al., 

2017b).  

Besides investigating the functional anatomy of the transformation, another important 

aspect is its flexibility. One extreme view is that the mapping of rhythmic inputs onto an 

internally represented set of metric pulses is a result of biophysical constraints and more or 

less fixed neurophysiological mechanisms. This view is closely related to modeling efforts 

that aim to predict the mapping of an arbitrary acoustic input onto behavior by solely 

considering its acoustic features (Longuet-Higgins and Lee, 1984; Povel and Essens, 1985; 

Palmer and Krumhansl, 1990; Parncutt, 1994; van Noorden and Moelants, 1999; Large, 

2000a; Eck, 2003; Toiviainen and Snyder, 2003; Hannon et al., 2004; Todd and Lee, 2015a; 

Bouwer et al., 2018). Similar assumptions have been present in neuroscientific literature, 

aiming to describe the transformation in the neural response in terms of interaction 

between stimulus features and low-level physiological mechanisms (Large and Snyder, 2009; 

Large et al., 2015; Rajendran et al., 2017, 2020). This approach assumes that once the 

relevant mechanisms have been described, they can be generalized across rhythmic inputs, 

contexts, individuals, and cultures. In other words, the approach assumes universals. 

Accordingly, all we need to know is the physical features of the input, and we should be able 

to predict its mapping onto brain activity and behavior.  

 

On the other hand, the transformation involved in meter processing may be flexible, shaped 

by a number of factors including culture, context, exposure, training, and current internal 

state of the listener such as behavioral goals and attentional focus. There are multiple lines 

of evidence in favor of this view.   

Firstly, there seems to be flexibility due to long-term exposure and learning. This is 

showcased by observing that the same acoustic input can be transformed towards different 
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metric pulses across and within individuals depending on their long-term experience 

(Hannon and Trehub, 2005a; Hannon et al., 2011, 2012b; Cameron et al., 2015; London et 

al., 2017; van der Weij et al., 2017). This prior experience may be inherently multimodal, 

involving simultaneous auditory, visual, and vestibular stimulation (Phillips-Silver and 

Trainor, 2005, 2008). In particular, mappings between specific rhythmic inputs and internal 

representation of pulses may be learned via observing and actively participating in music 

making and dance, which is a common practice across cultures (Savage et al., 2015). Indeed, 

it has been shown using frequency-tagging that prior movement to a rhythmic input can 

significantly bias which periodic contrasts are enhanced in the neural response to the same 

input during subsequent listening (Chemin et al., 2014). These long-term exposure effects 

may be closely linked to associations between a musical idiom and meter with particular 

parameters. For instance, recognizing timbres, rhythmic patterns, or melodic motifs 

idiomatic for a particular genre may bias transformation of the input towards a specific 

metrical category (London et al., 2017; van der Weij et al., 2017). In fact, similar phenomena 

may be ubiquitous in music perception beyond rhythm-meter mapping (Honing and Ladinig, 

2009).  

At the same time humans seem to show flexibility on much shorter timescales. For instance, 

periods and phase parameters of the meter perceived in a rhythmic input can be changed 

voluntarily, and in fact, musicians often intentionally practice this flexibility through 

exercises (Greb, 2017; Guiliana, 2018). When a metric pulse with a specific period is 

intentionally perceived, this leads to increased contrast at the pulse periodicity in the neural 

response, and this observation has been replicated in a large number of studies using 

frequency-tagging (Nozaradan et al., 2011; Celma-Miralles et al., 2016; Okawa et al., 2017; 

Li et al., 2019), as well as time-domain approaches to measure contrast in brain responses 

(Iversen et al., 2009; Fujioka et al., 2010, 2015; Schaefer et al., 2011).  

Not only top-down intention, but also directly preceding acoustic context could influence 

the transformation of the rhythmic input. Theoretical writings commonly mention the idea 

that meter perception has a tendency to persist over time once induced by a particular 

rhythmic input with prominent contrast at meter periodicities (Lerdahl and Jackendoff, 

1983; Large and Palmer, 2002; London, 2004; Large and Snyder, 2009; Honing and Bouwer, 

2018). Yet, empirical evidence for this remains largely anecdotal, as most previous work has 
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focused on the short-term context effect in interval timing (Desain and Honing, 2003; 

McAuley and Jones, 2003).  

 

To summarize, there is mounting evidence that meter perception involves transformation of 

sound inputs towards periodic pulses in the brain and behavior. However, the nature of this 

transformation remains largely unknown. While there is evidence suggesting flexibility of 

the mapping between sound input and internal representation of meter, the role of specific 

endogenous or exogenous factors remains unclear. In the empirical part of this thesis, I used 

the frequency-tagging approach to shed light on the nature of this transformation. To this 

end, I conducted a series of experiments where I manipulated the attentional state of the 

listener, spectral content of the sound input, and recent acoustic context, to investigate 

whether these factors can bias the selective enhancement of contrast at meter periodicities 

in neural responses to rhythm. While the main goal was to explore the sound-brain 

mapping, the analyses did not simply abstract from behavior. Instead the transformation in 

the brain was always analyzed in the context of the transformation in behavior (captured in 

the form of finger tapping). Thus the current results contribute to the larger aim of 

comprehensively describing the nature of the transformation between sound, brain, and 

behavior, which takes place when humans listen and move along with complex rhythmic 

sounds. It is important to note that the main goal of the current thesis was not to build a 

comprehensive theory of meter perception, nor a formal or informal model of the 

phenomenon. Instead, I took a rudimentary position of only focusing on explanatory 

processes based on empirical evidence. Accordingly, the aim was to elucidate the internal 

processes underlying meter perception by addressing the nature of the phenomenon in a 

series of empirical studies.  
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2 Study 1: Attention affects overall gain but not selective contrast 

at meter frequencies in the neural processing of rhythm  
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In the first study, I investigated whether changing the internal state of the listener affects 

the selective contrast at meter periodicities in the neural response to rhythm. To this end, 

the attentional focus of participants was manipulated using demanding tasks, while they 

were presented with auditory rhythms. The results showed that meter periodicities are 

robustly enhanced even for rhythmic inputs that lack prominent contrast at these 

periodicities in their acoustic structure. Importantly, it was observed that this enhancement 

was present even when overall neural responsiveness to the sound was attenuated due to a 

distracting task. These results suggest that the neural mechanisms involved in transforming 

the rhythmic input towards a metric category might be, to a certain extent, engaged quite 

automatically in different behavioural contexts.  

 
2.1 Abstract  

When listening to music, humans spontaneously perceive and synchronize movement to 

periodic pulses of meter. A growing body of evidence suggests that this widespread ability is 

related to neural processes that selectively enhance meter periodicities. However, to what 

extent these neural processes are affected by the attentional state of the listener remains 

largely unknown. Here, we recorded EEG while participants listened to auditory rhythms 

and detected small changes in tempo or pitch of the stimulus, or performed a visual task. 

The overall neural response to the auditory input decreased when participants attended the 

visual modality, indicating generally lower sensitivity to acoustic information. However, the 

selective contrast at meter periodicities did not differ across the three tasks. Moreover, this 

selective contrast could be trivially accounted for by biologically-plausible models of 

subcortical auditory processing, but only when meter periodicities were already prominent 

in the acoustic input. However, when meter periodicities were not prominent in the 

auditory input, the EEG responses could not be explained by low-level processing. This was 

also confirmed by early auditory responses that originate predominantly in early auditory 

areas and were recorded in the same EEG. The contrast at meter periodicities in these early 

responses was consistently smaller than in the EEG responses originating mainly from 

higher-level processing stages. Together, these results demonstrate that selective contrast 

at meter periodicities involves higher-level neural processes that may be engaged 

automatically, irrespective of behavioral context. This robust shaping of the neural 
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representation of rhythm might thus contribute to spontaneous and effortless 

synchronization to musical meter in humans across cultures.  

 

2.2 Introduction 

Perception of rhythmic sound sequences involves much more than just a precise 

representation of constituent time intervals. Already perception of single intervals is not 

one-to-one with respect to the sensory input, but reflects a representation constructed with 

respect to prior individual experience (Desain and Honing, 2003; Jazayeri and Shadlen, 2010; 

Jacoby and McDermott, 2017). An even higher level of perceptual organization is arguably at 

stake when the rhythmic input induces perception of musical meter, i.e., a nested set of 

periodic pulses to which people tend to move or dance (Cohn, 2020). That is, the internal 

representation of meter guides perceptual organization of the incoming rhythmic sequence 

in time (Povel and Essens, 1985; McAuley and Jones, 2003) and drives body movement such 

as head bobbing or foot tapping (Toiviainen et al., 2010; Janata et al., 2012). Perception and 

sensory-motor synchronization to meter is a spontaneous human ability that has been 

widely observed across cultures and musical traditions (Nettl, 2000; Savage et al., 2015).  

In some cases, meter perception can be largely driven by the acoustic features of the 

sensory input, particularly when clear periodicities are present in the temporal structure of 

the stimulus (although even in such cases the alignment of the perceived pulses with the 

input is not trivial, see e.g. off-beat rhythm in reggae). However, meter perception is often 

induced by stimuli that lack unambiguous acoustic cues to meter periodicities (Chapin et al., 

2010; Nozaradan et al., 2012; Witek et al., 2014b; Large et al., 2015; London et al., 2017; 

Vuust et al., 2018; Matthews et al., 2020), and the same rhythmic sequence can be 

perceptually organized in different ways depending on prior experience at multiple 

timescales (Phillips-Silver and Trainor, 2005; Hannon et al., 2012a; Chemin et al., 2014; van 

der Weij et al., 2017). This shows that meter perception goes beyond the mere tracking of 

periodicities in the sensory input, and additionally involves higher-level processes that 

transform the input towards a particular metric category with a great degree of robustness 

and flexibility with respect to the input (Nozaradan et al., 2017a).  

This is in line with a number of recent neurophysiological studies based on the assumption 

that meter perception is related to neural processes that emphasize the contrast between 
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time points marked by the perceived metric pulses and other time points not marked by 

pulses. This contrast in the neural response can be driven already by the physical features of 

the sensory input along with a set of low-level nonlinear transformations throughout early 

auditory processing stages (Rajendran et al., 2017, 2020). Importantly there is also 

increasing evidence for higher-level neural processes that transform the input by selectively 

enhancing this contrast beyond physical features and low-level nonlinearities (Lenc et al., 

2018, 2020). These higher-level neural processes may thus play a key role in building 

internal representation of meter dissociated from the physical features of the sensory input 

(Nozaradan et al., 2011, 2012, 2017a, 2017b; Tal et al., 2017) .   

However, to what extent these processes are engaged automatically, and whether they 

depend on the behavioral goals of the listener remains largely unknown. Previous 

neurophysiological and neuroimaging studies of meter processing in humans have 

employed a wide range of behavioral tasks, some instructing participants to attend directly 

to the pulse-like metric structure of the stimuli (Grahn and Rowe, 2009, 2013; Lenc et al., 

2020; Matthews et al., 2020) or the temporal properties of the stimulus (Nozaradan et al., 

2017b; Lenc et al., 2018), while other studies used an orthogonal task such as attending to a 

non-temporal sound feature (e.g. pitch; Haumann et al., 2018) or attending to a different 

modality (e.g. visual; Chapin et al., 2010) or no task at all (Bengtsson et al., 2009). However, 

how neural processing of a rhythmic input changes across these different tasks has not been 

systematically explored using a consistent set of stimuli and analysis methods.  

Additionally, in a series of studies investigating putative “pre-attentive beat perception” 

using event-related brain response to regularity violations, participants were typically asked 

to perform a passive task, such as watching a silent movie, while listening to the rhythmic 

stimuli (Vuust et al., 2005; Ladinig et al., 2009; Geiser et al., 2010; Bouwer et al., 2014, 

2016). The lack of strict control of participant’s attentional focus combined with the low 

load of the task make the results of these studies difficult to interpret (Lavie and Dalton, 

2014; Sussman et al., 2014; Murphy et al., 2017). In addition, these studies mostly used 

stimuli with clear acoustic cues to meter periodicities. Therefore, it remains unknown 

whether these results would generalize to rhythmic inputs that lack such prominent sensory 

cues and may thus require higher-level processes to induce meter perception (Chapin et al., 

2010; Nozaradan et al., 2011).  
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In the current study, we aimed to address these issues by recording human brain 

electroencephalographic (EEG) activity in response to (i) a consistent set of rhythmic stimuli 

with varying amounts of sensory cues to meter periodicities, along with (ii) a set of three 

demanding behavioral tasks in the same sample of participants. We presented participants 

with two rhythmic sequences. One sequence contained prominent acoustic cues to meter 

periodicities, while the other sequence lacked such prominent periodic cues. This latter 

sequence enabled us to control for a low-level confound which could trivially explain 

enhanced neural response at meter periodicities. That is, if selective contrast at meter 

periodicities is observed in the EEG in response to a sequence lacking such prominent 

periodic cues, this selective contrast at meter periodicities cannot be explained easily by the 

stimulus structure or low-level processing of the stimulus. Importantly, the decision as to 

what frequencies would correspond to meter periodicities was informed by previous 

studies, which used tapping tasks to carefully test the metric pulses most consistently 

induced by these two rhythmic patterns across listeners (Nozaradan et al., 2012, 2018; Lenc 

et al., 2018). This ensured that these specific frequencies were relevant for meter 

perception, in contrast to other frequencies that are also elicited by the rhythms but are 

irrelevant to the perceived meter.  

Participants listened to the rhythms while performing three different demanding tasks. In 

the first task, participants were required to detect small changes in the speed of the 

rhythmic sequence. Because the sequence was non-isochronous, this task cannot be carried 

out by simply comparing successive inter-tone intervals and therefore encourages 

participants to build an internal representation of meter that aids tracking of the overall 

speed of the rhythm (Schulze, 1978; Grube and Griffiths, 2009; Grube et al., 2010). In the 

second task, participants were required to detect small changes in the pitch of a single tone 

among the rhythmic sequences, thus still focusing on the sound but not necessarily on its 

timing. Finally, in the third task, participants were required to mentally sum numbers 

sequentially presented on the screen while ignoring the sounds altogether.  

The EEG was recorded while participants were presented with the auditory sequences and 

carried out the behavioral tasks without any movement. From the EEG, we measured the 

difference in amplitude of the neural activity at meter-related frequencies vs. meter-

unrelated frequencies elicited by the rhythms, i.e., the contrast at perceptually-relevant 

timescales, using frequency tagging. This approach has proven to be a powerful tool for 
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capturing the contrast in brain responses between periodically spaced time points with high 

signal-to-noise ratio and without assumptions about the latency or the shape of the 

response (Nozaradan, 2014; Rossion, 2014; Norcia et al., 2015; Nozaradan et al., 2017a; 

Rossion et al., 2020). Moreover, the approach also allows the overall gain of the response 

(i.e. the general sensitivity to auditory stimulation) to be disentangled from the selective 

contrast at meter-relevant periodicities.  

We also examined whether the contrast at meter frequencies in the EEG activity elicited 

across behavioral tasks could be trivially accounted for by fixed nonlinear transformations 

along the early auditory pathway. To this end, we used biologically plausible models to 

simulate responses to the rhythmic stimuli in the auditory nerve, as well as inferior 

colliculus. To complement these simulations, we also directly captured responses presumed 

to be predominantly driven by brainstem auditory nuclei and primary auditory areas using 

the same frequency-tagging method as Nozaradan et al. (2016c, 2018). These early 

responses were observed at a faster timescale (> 150 Hz) due to neural tracking of the 

amplitude-modulated fine structure of the sound input. By comparing these early auditory 

responses to the higher-level responses observed at slower timescales (< 5Hz, 

corresponding to the amplitude envelope of the input), which mainly capture activity in 

higher-level cortical networks, we aimed to estimate the contribution of different 

processing stages to the selective contrast at meter frequencies across different attentional 

contexts.  

 

 

2.3 Materials and methods  

2.3.1 Participants 

Seventeen healthy volunteers (mean age = 23.3, SD = 6.7, 15 females) with various levels of 

formal musical training (mean = 2.5, SD = 4.6, range = 0-16 years) participated in the study 

after providing written informed consent. All participants reported normal hearing and no 

history of neurological or psychiatric disorder. The study was approved by the Research 

Ethics Committee of Western Sydney University.  
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2.3.2 Auditory stimuli 

The auditory stimuli were created in Matlab R2016b (The MathWorks, Natick, MA) and 

presented binaurally through insert earphones (ER-2; Etymotic Research, Elk Grove Village, 

IL) at a comfortable listening level (~ 75 dB SPL) using PsychToolbox, version 3.0.14 

(Brainard, 1997) running on a MacBook Pro laptop (mid-2015, OSX 10.12). Triggers were 

sent to the EEG system using LabJack U3 interface. The stimuli consisted of a 2.4-s long 

rhythmic pattern (made up of twelve 200-ms long events) continuously looped 14 times to 

create a 33.6-s long sequence. The rhythmic structure of the pattern was based on a specific 

arrangement of 8 sound events and 4 silent events (amplitude at 0). Each sound event 

corresponded to a complex tone consisting of three partials (f1 = 209 Hz, f2 = 398 Hz, f3 = 

566 Hz) with linear onset and offset ramp lasting 10% of the event duration (i.e. 20 ms).  

We used two different rhythmic patterns (depicted in Figure 2.1). These two patterns were 

selected based on previous evidence that they both induce a perception of musical meter, 

consistent across individuals, based on nested grouping of the individual event rate (200 ms) 

by 2 (2 x 200 ms = 400 ms), 2 (2 x 400 ms = 800 ms) and 3 (3 x 800 ms = 2400 ms) 

(Nozaradan et al., 2012, 2018; Lenc et al., 2018).  

Importantly, although the two rhythmic patterns induce perception of musical meter at 

consistent periods across individuals, they provide the listener with different amounts of 

direct sensory cues to this perceived metric structure. One way to quantify this is to 

examine the degree of mismatch between the perceived meter and the arrangement of 

sound events in the rhythm using syncopation scores. Even though different ways to 

calculate syncopation scores have been proposed, the main principle they share is 

quantifying to what extent the rhythmic stimulus creates a contrast between time points 

that coincide with the putative metric pulses, and the rest of the time points, i.e. a contrast 

at meter periodicities (Longuet-Higgins and Lee, 1984; Povel and Essens, 1985; Parncutt, 

1994; Eck, 2003). We calculated syncopation scores for the two rhythmic patterns using an 

algorithm originally proposed by Longuet-Higgins and Lee, which simultaneously takes into 

account the whole nested hierarchy of metric pulses (Longuet-Higgins and Lee, 1984; Witek 

et al., 2014b). Additionally, a C score (counterevidence) was calculated using the method 

and parameters proposed by Povel and Essens (1985). While C score calculates syncopation 

using only one pulse in the metric structure, it accounts for variable perceptual salience of 
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tones making up the pattern based on their relative temporal proximity (Povel and 

Okkerman, 1981).  

Even though the periods of the perceived metric pulses for the two rhythms are generally 

consistent across participants, the alignment of these pulses with respect to the rhythmic 

stimulus can vary (Nozaradan et al., 2012, 2018; Lenc et al., 2018). To avoid assumptions 

regarding particular pulse alignment, the minimum syncopation and C score across all 12 

possible positions of the slowest metric pulse with respect to the rhythm was taken (see 

also Lenc et al., 2020). This yielded smaller scores for one rhythm (syncopation = 1, C = 1), in 

comparison to the other rhythm (syncopation = 2, C = 2). In other words, both measures 

revealed a greater mismatch between the perceived meter and the arrangement of sound 

events for the second rhythm.  

This reflects the fact that the physical structure of the first rhythm provides clear and 

unambiguous information about the perceived meter. On the other hand, the second 

rhythm provides less sensory information about the metric periodicities (there is no 

plausible alignment of the perceived pulses that would lead to systematic match with the 

distribution of sound onsets in the pattern). For these reasons, the first and the second 

rhythm are further referred to as "high meter contrast" and "low meter contrast" rhythm, 

respectively (note that various terms have been previously used to describe these same 

rhythms, e.g. unsyncopated and syncopated, Nozaradan et al., 2016b, 2017b, 2018). Despite 

these differences, both rhythms consistently induce meter perception across listeners, as 

revealed by previous studies (Nozaradan et al., 2012, 2018; Lenc et al., 2018).  

 

2.3.3 Frequency-tagging analysis  

Another way to measure the amount contrast at meter periodicities is to directly analyze 

the modulation spectrum of the acoustic stimulus using Fourier transform. This allows 

quantification of the extent to which the continuous modulation of acoustic features of the 

input (here amplitude envelope) emphasizes particular periodicities.  

Because the stimulus sequence consisted of seamless repetitions of the same rhythmic 

pattern, the modulation spectra were expected to contain energy at frequencies 

corresponding to the repetition of the pattern (1/2.4 s = 0.416 Hz) and harmonics. The 

relative distribution of energy across these different harmonics reveals how much contrast 
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was present in the signal modulations at the corresponding frequencies. From the set of 

first 12 harmonics (up to 5 Hz, the frequency of individual event rate in the rhythms), four 

frequencies were considered meter-related (0.416, 1.25, 2.5, 5 Hz), as they corresponded to 

the frequencies of the perceived metric pulses (1/2.4 s, 1/0.8 s, 1/0.4 s, 1/0.2 s respectively). 

The remaining 8 frequencies in the set were considered meter-unrelated.  

To measure the relative prominence of meter frequencies, amplitudes at the 12 frequencies 

corresponding to the stimulus modulation spectrum were converted to z-scores as follows: 

([x] − [mean across the 12 frequencies])/[SD across the 12 frequencies]. A higher z-score at a 

specific frequency indicates that the response at that frequency stands out prominently 

relative to the whole set of frequencies in the modulation spectrum. The z-scores for meter-

related frequencies were averaged to obtain an index of their relative prominence in the 

modulation spectra.   

The main advantage of using FFT is that it can be applied to a variety of signals representing 

(i) modulations in the acoustic input, (ii) simulated responses of neurons in the subcortical 

auditory nuclei, (iii) surface EEG, and (iv) movement. Importantly, using the z-scoring 

standardization yields a measure invariant to differences in unit and scale, thus allowing for 

objective measurement of the relative distance between these different signals. In sum, this 

method represents a powerful tool to track the transformation of the input, i.e. the changes 

in contrast at meter periodicities across different processing stages from input to output.  

 

2.3.4 Models of subcortical auditory processing 

To estimate to what extent the neural transformation of a rhythmic acoustic stimulus could 

be driven by early stages of the auditory pathway, we simulated responses to the rhythmic 

stimuli using multiple biologically-plausible models of subcortical auditory processing, as 

described below. Comparing the EEG responses to these early representations thus helps to 

disentangle the contribution of higher-level transformations that cannot be trivially 

explained by early sound processing stages.   

(i) Broadband envelope. A number of previous EEG studies used broadband envelopes to 

represent modulations in the acoustic input (Aiken and Picton, 2008; Nozaradan et al., 2012, 

2018; Chemin et al., 2014; Cirelli et al., 2016; Tal et al., 2017; Broderick et al., 2019; Di 

Liberto et al., 2020b). To provide a point of comparison with these studies, the broadband 
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amplitude envelope of the 33.6-s auditory sequences (high and low meter contrast rhythm) 

was extracted using the Hilbert transform (as implemented in Matlab) and then 

transformed into the frequency domain using a fast Fourier transform (FFT, yielding a 

spectral resolution of 1/33.6 s, i.e. approximately 0.03 Hz).  

 (iia) UR-EAR-AN. The model of the auditory nerve developed by Bruce et al. (2018) as 

implemented in UR_EAR toolbox (version 2020a) was used to simulate responses from 128 

cochlear channels with characteristic frequencies logarithmically spaced between 130 and 

8000 Hz. The parameters used for cochlear tuning matched data available from human 

subjects (Shera et al., 2002). For each channel, 51 auditory nerve fibers were simulated with 

biologically plausible distribution of high, mid, and low-spontaneous-rate fibers (Liberman, 

1978). The model provides faithful simulation of physiological processes associated with 

cochlear nonlinearities, inner hair cell transduction process, the synapse between the hair 

cell and the auditory nerve, and the associated firing rate adaptation.  

(iib) UR-EAR-IC. The simulated auditory nerve firing rates were fed into the same-frequency 

inhibition and excitation model (SFIE) used to simulate enhanced onset synchrony and the 

decreased upper limit for phase-locking to stimulus envelope in the ventral cochlear nucleus 

(Nelson and Carney, 2004). The default parameters in the UR_EAR toolbox were used, which 

were based on Carney et al. (2015). A second SFIE model was then used to simulate band-

pass modulation filtering and enhanced onset responses of neurons in the inferior colliculus 

(IC). The parameters were set to simulate IC units with the best modulation frequencies 

separately at 2, 4, 8, 16, 32, and 64 Hz.  

For both the AN and IC stage of the UR_EAR model, the simulated instantaneous firing rates 

were summed across cochlear channels (Zuk et al., 2018; Rajendran et al., 2020), and 

transformed into the frequency domain using FFT. While averaging firing rates across 

channels might yield different results than averaging FFT magnitudes for spectrally complex 

inputs, the two methods should give very similar results for the stimuli in the current study, 

as the modulation waveform was identical across the whole spectrum. Subsequently, 

amplitudes at the 12 frequencies of interest were extracted from the obtained spectra and 

normalized by z-scoring separately for each model output (see section 2.3.3).  
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2.3.5 Early auditory responses 

The frequencies of the partials of the complex tones delivering the rhythm (f1 = 209 Hz, f2 = 

398 Hz, f3 = 566 Hz) were selected because sustained frequency-following responses at 

these frequencies are expected to originate predominantly from sub-cortical auditory nuclei 

due to low-pass characteristics of the ascending auditory pathway (Chandrasekaran and 

Kraus, 2010; Skoe and Kraus, 2010; but see Coffey et al., 2016, 2019, who show that a 

portion of this response could also be explained by activity from early cortical stages). Non-

harmonic spacing of the partials was used in the current study as it is expected to elicit 

responses at frequencies that are not physically present in the stimulus spectrum. These 

frequencies corresponded to distortion-product otoacoustic emissions generated by 

nonlinear processes at the cochlear level and transmitted along the ascending auditory 

pathway (Lee et al., 2009). Hence, any EEG response at these frequencies could not be 

explained by an electromagnetic artifact from the sound-delivery system. These responses 

were expected at frequencies corresponding to quadratic distortion products across the 

three partials, i.e. f2-f1 (168 Hz), f3-f2 (189 Hz), and f3-f1 (357 Hz). Due to the frequency-

shifting theorem, each of the distortion-product frequencies was expected to be 

symmetrically flanked by sidebands representing the amplitude modulation spectrum of the 

response (Oppenheim and Schafer, 2009). This allowed the contrast at meter frequencies to 

be quantified at earlier auditory processing stages with the same method as described 

above for the sound input (see section 2.3.3). Furthermore, this contrast at meter 

frequencies obtained from earlier auditory stages was also compared to the contrast at 

meter frequencies obtained from EEG responses measured in a much lower frequency 

range (here at 5 Hz and below) and assumed to predominantly originate from higher-level 

processing stages (further referred to as "higher-level" responses) (Nozaradan et al., 2018). 

Importantly, because the index of contrast at meter frequencies consists in a relative 

measure of the amplitude at meter frequencies vs. meter-unrelated frequencies obtained 

after z-scoring standardization, this measure is invariant to differences in unit and scale, 

thus providing valid estimation of the relative distance between signals as different as the 

early auditory responses and higher-level responses, irrespective of differences in overall 

gain. 
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2.3.6 Experimental design and procedure 

Participants were presented with the rhythmic auditory stimuli in separate blocks of 10 self-

paced trials. The polarity of the acoustic waveform was inverted on every other trial to 

prevent potential electromagnetic artifact at the frequencies of the sound input (Skoe and 

Kraus, 2010). In each block, participants were asked to perform a specific behavioral task.  

Tempo task. The block contained two additional randomly-placed trials where one rhythm 

cycle (at a random position after the first 3 cycles) contained a decrease in tempo. This was 

implemented by gradually increasing (and then decreasing) the inter-onset intervals of the 

individual constituent events within one rhythm cycle according to a cosine window from 

the standard inter-onset interval (200 ms) to the maximum interval determined individually 

for each participant. Participants were asked to focus on the tempo of the stimuli, while 

ignoring all other parameters, as well as any visually presented stimuli. They reported 

whether the change was present after the end of each trial.  

Pitch task. The block contained two additional trials with increased pitch of a single 

constituent tone (implemented as a proportional increase in the frequency of each partial). 

Participants were asked to report the presence of the pitch change at the end of each trial, 

while ignoring other sound parameters and visual stimuli.  

Visual stimuli and task. Throughout all trials and blocks, participants also viewed 

sequentially presented numbers in the center of the screen positioned in front of them 

(approximately one meter distance). The numbers were randomly sampled such that the 

first number for each trial was between 100 and 200, and all subsequent numbers were 

between 10 and 30. The time interval between the onset of each sequential number was 

individually determined for each participant, and a jitter of 10% of this time interval was 

then applied to avoid any strict periodicity in the visual presentation of the numbers, which 

could result in a narrow frequency peak elicited in the EEG spectrum at the frequency of the 

visual presentation. Each number stayed on the screen for 80% of the inter-onset interval 

(with 10% random jitter applied to this value). Participants were asked to fixate their eyes 

on the numbers in every trial across all blocks in order to prevent eye movements. During 

the Visual task, they were asked to mentally add these numbers and report the sum at the 

end of each trial, while ignoring the sound stimuli. Participants were instructed to keep 

adding the incoming numbers even in case they missed any. This was to make sure 
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participants did not “give up” in the middle of the trial, but kept continuously engaged with 

the visual task.  

Each task and rhythm were presented as a separate block, yielding 3 x 2 = 6 blocks in the 

whole EEG session (block order was counterbalanced across participants). Participants were 

seated in a comfortable chair and asked to avoid any unnecessary movement or muscle 

tension. For each block, the two trials containing tempo or pitch changes were excluded 

from the EEG analyses, thus leaving 10 trials per task and rhythm for subsequent analysis. 

Before the EEG session, the parameters for the three tasks were individually adjusted for 

each participant using a two-down, one-up staircase method, targeting 70.7% accuracy in all 

tasks (Leek, 2001), separately for the high meter contrast and low meter contrast rhythm. 

This individual adjustment aimed to make each block equally demanding for the EEG 

session. These additional trials performed before the EEG session to determine individual 

parameters also allowed participants to familiarize themselves with the nature of the tasks. 

For the Pitch and Tempo tasks, the staircase procedure contained a single run where the 

rhythmic pattern was seamlessly cycled and deviants appeared randomly, separated by at 

least one intact pattern cycle. Participants were instructed to press a button as soon as they 

detected a deviant. Button presses within 1 second were considered hits, otherwise the 

response was considered a miss. The procedure finished after 6 reversals. The threshold was 

determined as the average deviant magnitude at the last 4 reversals. For the Visual task, 

participants were asked to mentally sum 5 sequentially presented numbers with the same 

parameters as in the EEG session. This was done in discrete trials, and the mean inter-

stimulus interval for each trial was adjusted according to the correctness of participant’s 

response on the previous trial. The procedure finished after 6 reversals (threshold estimated 

as the average deviant magnitude at the last 4 reversals), or after 20 trials (threshold taken 

as the mean of any available reversals, or the value from the last trial).  

After the EEG session, participants rated the subjective difficulty of each task on a discrete 

scale from 1 (easy) to 7 (difficult).  
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Figure 2.1. Stimulus design and higher-level EEG responses. (Top) The sound waveform representing one cycle 

of the high meter contrast (Left) and low meter contrast (Right) rhythmic pattern is depicted in grey. The 

broadband envelope is overlaid as a black line. Above each pattern, the meter typically induced by these 

patterns is shown as red arches representing individual pulses in the metric structure. (Bottom) Spectra of 

higher-level EEG responses elicited for each rhythm and task (average across all participants and EEG 

channels). Mean z-scored amplitude elicited at meter-related (red) and meter-unrelated (blue) frequencies is 

shown next to the corresponding spectra (data points represent individual participants), along with the 

topographical distribution of mean EEG amplitude at these two subsets of frequencies (average across all 

participants).  
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Figure 2.2. Diagram showing dissociation between higher-level and early auditory EEG responses. Cochleogram 

on the left shows a response to one cycle of the low meter contrast rhythm across a population of cochlear 

channels tuned to different frequencies (obtained using the model of Bruce et al., 2018). Summing the 

peristimulus time histogram across all cochlear channels yields a composite response (shown in black in the 

middle). The FFT of this composite response (shown on the bottom) reveals how the whole population tracks 

amplitude envelope modulations (concentrated in the low frequency portion of the spectrum, i.e. at the exact 

amplitude modulation frequencies), but also phase-locks to the fine structure of the sound input (higher 

frequency range in the spectrum, at the actual frequencies of the partials and distortion products). Because 

the fine structure is itself amplitude modulated, the spectrum of the modulator (i.e. amplitude envelope) is 

reflected in symmetrical sidebands surrounding each partial and distortion product frequency, in line with the 

shifting theorem of the Fourier Transform (Oppenheim and Schafer, 2009). Thus, the two responses can be 

separated in the frequency domain by zooming onto the relevant portions of the spectrum, as depicted by the 

orange rectangle (for the higher-level response) and the green rectangle (for the early auditory response at 

168-Hz distortion product). To isolate the higher-level response in the time domain (orange waveform, top 

right), low-pass filter can be applied to the peristimulus time histogram, which is assumed to take place along 

the auditory pathway (Chandrasekaran and Kraus, 2010). The early auditory response (green waveform, 

bottom right) can be isolated in the time domain by high-pass filtering the peristimulus time histogram.  

 

 

2.3.7 EEG recording and preprocessing 

The EEG was recorded using a Biosemi Active-Two system (Biosemi, Amsterdam, 

Netherlands) with 64 Ag-AgCl electrodes placed on the scalp according to the international 

10/20 system, and two additional electrodes attached to the mastoids. Head movements 
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were monitored using an accelerometer with two axes (front-back and left-right) attached 

to the EEG cap and recorded as 2 additional channels. The signals were digitized at 8192-Hz 

sampling rate, which was high enough to capture distortion-product frequencies relevant 

for the early auditory responses (Skoe and Kraus, 2010). 

Analysis of higher-level EEG responses. Higher-level EEG responses refer to EEG activity 

measured in a low-frequency range (here, at 5 Hz and below), thus corresponding to the 

frequency range of the actual envelope modulations in the rhythmic inputs (see Figure 2.2). 

These responses were analyzed by first downsampling the EEG signals offline to 512 Hz. The 

continuous EEG signals were then high-pass filtered at 0.1 Hz (4th-order Butterworth filter) 

to remove slow drifts from the signals. Artifacts related to eye blinks and horizontal eye 

movements were identified and removed using independent component analysis (Bell and 

Sejnowski, 1995; Jung et al., 2000) based on visual inspection of their typical waveform 

shape and topographic distribution. One component was removed for 7 participants, two 

components for 9 participants, and 9 components for one participant (the eye-movement 

related activity was clearly distributed across a larger number of components for this 

participant). Channels containing excessive artifacts or noise were manually selected and 

linearly interpolated across all trials and conditions, separately for each participant (1 

channel for 3 participants, 2 channels for 1 participant). The data were then segmented into 

33.6-s long epochs, starting from the onset of the sound sequence in each trial and re-

referenced to the average of the 66 channels. The mastoid channels were included because 

they were expected to prominently capture the responses to auditory rhythms based on 

previous studies (Nozaradan et al., 2012, 2016b; Lenc et al., 2018, 2020, see also Figure 2.1). 

This was indeed the case, as revealed by the topographical distributions shown in Figure 2.1. 

Thus including the mastoid electrodes would enhance the overall signal-to-noise ratio (SNR) 

of the EEG spectra after averaging across all channels (see below).  

Analysis of early auditory EEG responses. Early auditory EEG responses refer to EEG activity 

measured in a much higher frequency range than the higher-level responses (> 150 Hz), thus 

corresponding to the frequency range of the actual partials conveying the envelope 

modulations of the rhythmic inputs (see Figure 2.2). Here, preprocessing did not include 

independent component analysis and channel interpolation. The data at the original 

sampling rate (8192 Hz) were re-referenced to the average of mastoid electrodes, and only 

signals from three fronto-central channels (Fz, FCz, Cz) were kept for further analyses. Based 
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on previous studies, this standard montage was expected to most strongly capture the 

auditory frequency-following responses (Skoe and Kraus, 2010; Nozaradan et al., 2016c, 

2018).  

The preprocessed data were averaged in the time domain across the 10 trials separately for 

each participant and condition. Time-domain averaging was performed to increase the 

signal-to-noise ratio by cancelling signals that were not time-locked to the stimulus, while 

preserving evoked responses elicited by the stimulus, as well as any ongoing activity 

entrained by the stimulus, which were both assumed to be stationary across trials.  

The averaged signals were transformed into the frequency domain using FFT. The obtained 

spectra were considered to consist of (i) activity elicited by the auditory stimulus, 

concentrated within narrow peaks and (ii) residual background noise smoothly distributed 

across a broad range of frequencies (Mouraux et al., 2011; Retter and Rossion, 2016). The 

contribution of broadband noise was therefore minimized by subtracting the average 

amplitude at neighboring bins on both sides relative to each frequency bin (bins 2-5 for the 

higher-level responses and 3-10 for the early auditory responses). A narrower range of bins 

used for the higher-level responses was to avoid bias in the noise estimate due to 

prominent 1/f in the lower part of the EEG spectrum. For the early auditory responses, two 

(instead of one) directly adjacent bins were excluded from the noise estimate due to 

potential FFT leakage of the response (as the tagged frequencies were not exactly centered 

on a single frequency bin).  

The noise-subtracted spectra were averaged across all channels (66 channels for higher-

level responses, 3 channels for early auditory responses) separately for each condition and 

participant. The magnitudes of higher-level responses were extracted from the bins 

centered at the 12 frequencies expected based on the stimulus modulation spectrum (see 

section 2.3.3). Magnitudes of the early auditory responses were estimated at the 

frequencies of the distortion products and their corresponding sideband frequencies (by 

taking the bin closest to the frequency of interest).  

 

2.3.8 Overall EEG response magnitude 

The overall magnitude of the higher-level responses was estimated as the summed 

amplitude across all 12 frequencies corresponding to the envelope modulation spectrum of 



 92  

the stimulus (see Figure 2.3A). The same measure was taken for the early auditory 

responses by summing across all sideband frequencies, separately for the three distortion-

product frequencies (see Figure 2.4A).  

To make sure the differences in the overall response magnitude were not due to increased 

noise floor obscuring the sound-evoked responses, we carried out a control analysis using 

amplitudes from frequency-bins at positions offset by +7 (i.e. ~0.21 Hz) relative to the bins 

centered at the frequencies of interest. These were extracted from the EEG spectra 

obtained without any noise subtraction, and therefore provided an estimate of the 

broadband noise level across conditions. This control analysis was only performed for the 

higher-level responses, as no significant differences in overall response magnitude were 

found in the early auditory responses (see Results section).  

Because the responses at sideband frequencies were generally small, particularly for the 

sidebands flanking higher distortion-product frequencies, the overall magnitude for the 

early auditory responses was first compared to zero separately for the sidebands flanking 

each distortion product to assess whether a significant response was elicited. The validity of 

this test relies on the fact that, because the spectra were noise-subtracted, an absence of 

response should result in magnitudes distributed around zero. Only responses at sidebands 

flanking the lowest distortion product at 168 Hz were consistently above zero (see Table 

2.S1 and Figure 2.4A) across all rhythms and tasks. Therefore, all further analyses of the 

early auditory responses were carried out only on this distortion-product frequency and 

corresponding sidebands.  

 

2.3.9 Relative EEG response at meter frequencies 

To assess the relative prominence of specific frequencies in the higher-level responses, 

amplitudes at the 12 frequencies corresponding to the stimulus modulation spectrum were 

converted to z-scores, in the same way as for the models of subcortical auditory processing 

(see section 2.3.3). For the early auditory responses, amplitudes corresponding to the same 

modulation frequency were first averaged across the symmetrical positive and negative 

sidebands and the resulting 12 values were converted to z-scores (only for 168-Hz 

distortion-product frequency, see Table 2.S1 and Figure 2.4A). Higher z-score at a specific 



 93  

frequency indicated that the response at that frequency stood out more prominently 

relative to the whole set of 12 frequencies elicited by the auditory stimulus.  

The z-scores were averaged separately for the meter-related frequencies (frequencies 

where metric pulses are consistently perceived for these rhythms across listeners, i.e. 0.416, 

1.25, 2.5, 5 Hz) and meter-unrelated frequencies (the remaining 8 frequencies in the 

stimulus modulation spectrum). The mean z-score at meter-related frequencies was taken 

as a measure of contrast at these frequencies in the neural response, and was compared 

across conditions.  

Comparison of EEG with models of subcortical auditory processing. To assess whether the 

observed EEG responses could be explained by nonlinearities at the early stages of the 

auditory pathway, the elicited higher-level responses were directly compared to the sound 

representation estimated by the auditory models. First, the relative prominence of meter 

frequencies was calculated separately for each model of subcortical auditory processing by 

taking the mean z-score at meter-related frequencies. Then, the mean meter-related z-

scores obtained from the higher-level EEG responses across participants were compared to 

the corresponding meter z-score from each auditory model, separately for each rhythm and 

task, using a one-sample t-test. The same analysis was performed for the early auditory 

responses to confirm that these responses could be largely explained by the auditory 

models.  

Comparison of higher-level and early auditory responses. To compare the contrast at meter-

related frequencies between early and later processing stages in the same participants, 

mean z-scored amplitude at these frequencies was compared between the higher-level and 

early auditory responses across tasks and rhythms. 

Moreover, because the highest meter-related frequency (5 Hz) seemed selectively 

attenuated in the early auditory responses (see Figure 2.4B), we carried out a control 

analysis to make sure the differences between higher-level and early auditory responses 

were not solely driven by differences in the low-pass characteristics of the two responses. 

The z-scores were re-calculated using only 11 frequencies of interest, i.e. after excluding the 

amplitude at 5 Hz from the set. Subsequently, only z-scores at 0.416, 1.25, and 2.5 Hz were 

considered meter-related, and their average was taken to estimate how prominent these 

frequencies were relative to the whole set of 11 frequencies in the control analysis. This 

control measure was then used to repeat the comparison between higher-level and early 
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auditory responses, as well as their respective comparisons to the models of subcortical 

auditory processing.  

 

2.3.10 Behavioral analyses 

Responses to the Tempo and Pitch task from the EEG session were transformed into the 

sensitivity index d-prime using the equation Z(hit rate) - Z(false alarm rate), where Z is the 

inverse of the normal cumulative distribution function (Stanislaw and Todorov, 1999). To 

avoid infinite values, hit rates and false alarm rates with values 1 and 0 were converted to 

1/(2N) and 1-1/(2N) respectively (where N is the number of trials on which the proportion is 

based, Macmillan and Creelman, 2005). The response accuracy on the Visual task was 

calculated by taking the root-mean-square deviation from the correct response (i.e. the sum 

of the sequentially-presented number) across trials and averaging across the two rhythm 

conditions.  

 

2.3.11 Statistical analyses 

The statistical analyses were performed in R (version 3.6.1). Comparisons of EEG measures 

across conditions were implemented using linear mixed models with lme4 package (version 

1.1-21, Bates et al., 2015). The main effects of Rhythm (high meter contrast, low meter 

contrast) and Task (Tempo, Pitch, Visual), and their interaction were included as fixed 

effects. For the comparison between the higher-level and early auditory responses, the 

factor Response (higher-level, early auditory) was also included in the model. Each 

participant was included as a random-effect intercept. Diagnostic plots of the residuals from 

all models were inspected for violations of the assumptions of normality and 

homoscedasticity. No substantial violations were detected. The model comparison was 

carried out with the Anova function from package car (version 3.0-3), using F-tests. Post-hoc 

comparisons on the fitted models were conducted using emmeans package (version 1.4). 

Degrees of freedom were approximated using the Kenward-Roger approach and Bonferroni 

correction was used to adjust the post-hoc test for multiple comparisons. Nonparametric 

Wilcoxon signed rank tests were used to compare the behavioural responses between 

conditions, and to assess the significance of the early auditory overall response magnitude 

against zero (FDR correction for multiple comparisons was used in the latter case). One-
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sample t-tests were used to compare the meter-related z-scores from the EEG data to the 

models of subcortical auditory processing (one-tailed, testing EEG > model; p-values were 

adjusted for multiple comparisons using FDR).  

In addition to the null-hypothesis significance tests, we calculated Bayes factors (BF10) to 

express the probability of data under alternative hypothesis (H1) relative to null hypothesis 

(H0), as implemented in BayesFactor package (version 0.9.12-4.2). We considered a BF10 > 3 

as evidence in favour of the alternative hypothesis and BF10 < 0.3 as evidence in favour of 

the null hypothesis (Jeffreys, 1998; Lee and Wagenmakers, 2014).  

 

 

2.4 Results 

2.4.1 Behavioral results 

Participants successfully detected the deviants during the EEG session for both the Pitch 

task (mean d’ [SD] for the high meter contrast rhythm = 1.23 [0.92], for the low meter 

contrast rhythm = 1.28 [0.55]), and the Tempo task (mean d’ [SD] for the high meter 

contrast rhythm = 1.28 [0.77], for the low meter contrast rhythm = 1.28 [1.10]). There was 

no difference in the sensitivity between the Pitch and Tempo task (Ps > 0.25, BFs10 < 0.6). In 

the Visual task, the root-mean-square error of the responses averaged across rhythms was 

87.1 (SD = 71.6), suggesting that the task was difficult and participants might have often 

missed some numbers in the sequence. This was in line with participants rating the Visual 

task as much more difficult than the Pitch task (Wilcoxon signed rank test, two-sided P = 

0.0007), or the Tempo task (Wilcoxon signed rank test, P = 0.0003). One participant’s data 

were excluded from the calculation of the error, due to the misunderstanding of the 

instructions - instead of summing, the participant was concatenating the presented 

numbers and memorizing the sequence. However, the EEG data of this participant were not 

excluded, as she reported similar difficulty for the Visual task as the rest of the participants.  
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Figure 2.3. Characteristics of the higher-level EEG responses. The example magnitude spectra on the right 

visualize how each measure was quantified. Individual participants are shown as lightly shaded data points. 

Error bars represent 95% CIs (Morey, 2008). (A) Overall response magnitude for the higher-level EEG 

responses. The amplitudes of the response at all 12 frequencies corresponding to the modulation spectrum of 

the sound were summed and compared across conditions. For both rhythms, the response was significantly 

lower during Visual task compared to the two other tasks involving attention to the auditory stimulus (marked 

by asterisks). (B) Prominence of meter frequencies (mean z-scored amplitude at meter-related frequencies) in 

the higher-level EEG responses. There was no difference across the three tasks for either rhythm (BF10 < 0.3). 

Moreover, the z-scores show prominent meter frequencies even in response to the rhythm with low contrast 

at meter frequencies in the acoustic input. The horizontal dashed line represents zero.  

 



 97  

 
 

Figure 2.4. Characteristics of the early auditory EEG responses. (A) Summed early auditory response amplitude 

averaged across all sidebands, separately for each distortion product frequency (DP1 = 168 Hz, DP2 = 189 Hz, 

DP3 = 357 Hz). The example magnitude spectrum on the top illustrates how the measure was quantified. 

Purple data points represent individual participants. Asterisks indicate the statistical significance level of the 

response when tested against zero (grey dashed line) across participants. * P < 0.05, ** P < 0.01, *** P < 0.001 

(Wilcoxon signed rank test, FDR corrected). (B) Spectra of early auditory responses (average across all 

participants) plotted for the 168 Hz distortion product (DP1) after the corresponding symmetrical sidebands 

elicited at stimulus modulation frequencies were averaged. The frequency axis is normalized by subtracting 

the distortion-product frequency for better comparison with the higher-level EEG responses. Hence, the plots 
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represent spectra of demodulated EEG responses that followed the 168 Hz distortion product frequency. 

Meter-related frequencies are shown in red, meter-unrelated frequencies in blue.  

 

 

2.4.2 Overall EEG response magnitude 

Figure 2.1 shows the spectra of the higher-level EEG responses elicited by the rhythmic 

stimuli across the three tasks. As shown in Figure 2.3A, the summed amplitude of the 

higher-level responses across all twelve frequencies was significantly different across the 

three tasks (F2,80 = 16.3, P < 0.0001, BF10 > 100). This was due to smaller overall amplitude in 

the Visual task relative to the Tempo task (β = -0.21, t82 = -5.61, P < 0.0001, 95% CI = [-0.31, -

0.12]), and the Pitch task (β = -0.15, t82 = -4, P = 0.0004, 95% CI = [-0.25, -0.06]). The 

corresponding analysis performed on the shifted frequency bins where no signal was 

expected indicated that broadband noise amplitude was comparable across conditions (no 

significant main effect of Task: P = 0.62, BF10 = 0.13, and no interaction Task x Rhythm: P = 

0.39, BF10 = 0.32). Thus, increased noise alone could not account for the observed overall 

response decrease in the Visual task.  

Figure 2.4B shows the spectra of the early auditory EEG responses. Unlike for the higher-

level responses, the summed amplitude across all sidebands for the early auditory 

responses did not differ across conditions (Ps > 0.22, BFs10 < 0.21). This suggested that 

attentional focus did not affect the putatively earlier stage of sound processing, and only 

emerged at later stages.  

 

2.4.3 Relative EEG response at meter frequencies 

The relative prominence of meter frequencies in the elicited higher-level EEG responses was 

significantly larger for the high than low meter contrast rhythm (F1,80 = 38.9, P < 0.0001, BF10 

> 100), as expected based on the physical structure of the rhythmic stimuli (see Methods 

section). However, as shown in Figure 2.3B, z-scores at meter frequencies were comparable 

across tasks (no significant main effect of Task: P = 0.32, BF10 = 0.24, and no interaction Task 

x Rhythm: P = 0.79, BF10 = 0.18). Similarly, meter-related frequencies were significantly 

more prominent in the early auditory responses to the high meter contrast rhythm (F1,80 = 

42.8, P < 0.0001, BF10 > 100), but there was no effect of task (Ps > 0.65, BFs10 < 0.13).  
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Table 2.1. Comparison of mean z-scored amplitude at meter-related frequencies between higher-level EEG 

responses and models of auditory subcortical processing using one-sample t-tests.  

 
EEG variable rhythm model task mean_model mean_eeg sd_eeg t df p  
higher-level 
response 

high meter 
contrast 
rhythm 

 
broadband 
 

pitch 0.81 0.71 0.19 -1.99 16 0 988   
tempo 0.81 0.64 0.31 -2.28 16 0 988   
visual 0.81 0.67 0.38 -1.47 16 0 988   

UREAR_AN 
pitch 0.52 0.71 0.19 4.15 16 0 0010 *** 
tempo 0.52 0.64 0.31 1.61 16 0.112   
visual 0.52 0.67 0.38 1.69 16 0.101   

UREAR_IC_BMF2 
pitch 0.83 0.71 0.19 -2.36 16 0 988   
tempo 0.83 0.64 0.31 -2.51 16 0 988   
visual 0.83 0.67 0.38 -1.65 16 0 988   

UREAR_IC_BMF4 
pitch 0.79 0.71 0.19 -1.58 16 0 988   
tempo 0.79 0.64 0.31 -2.01 16 0 988   
visual 0.79 0.67 0.38 -1.25 16 0 988   

 
UREAR_IC_BMF8 
 

pitch 0.75 0.71 0.19 -0.787 16 0 988   
tempo 0.75 0.64 0.31 -1.51 16 0 988   
visual 0.75 0.67 0.38 -0.846 16 0 988   

UREAR_IC_BMF16 
pitch 0.80 0.71 0.19 -1.76 16 0 988   
tempo 0.80 0.64 0.31 -2.13 16 0 988   
visual 0.80 0.67 0.38 -1.35 16 0 988   

UREAR_IC_BMF32 
pitch 0.81 0.71 0.19 -2.09 16 0 988   
tempo 0.81 0.64 0.31 -2.34 16 0 988   
visual 0.81 0.67 0.38 -1.51 16 0 988   

UREAR_IC_BMF64 
pitch 0.68 0.71 0.19 0.655 16 0.447   
tempo 0.68 0.64 0.31 -0.601 16 0 988   
visual 0.68 0.67 0.38 -0.105 16 0 896   

low meter 
contrast 
rhythm 

broadband 
pitch 0.06 0.43 0.33 4.66 16 0 0004 *** 
tempo 0.06 0 33 0.35 3.31 16 0 005 ** 
visual 0.06 0 30 0.35 2.88 16 0 010 * 

UREAR_AN 
pitch -0.13 0.43 0.33 6.96 16 <0.0001 *** 
tempo -0.13 0 33 0.35 5.48 16 0 0001 *** 
visual -0.13 0 30 0.35 5 16 0 0003 *** 

UREAR_IC_BMF2 
pitch -0.04 0.43 0.33 5.93 16 <0.0001 *** 
tempo -0.04 0 33 0.35 4.5 16 0 0005 *** 
visual -0.04 0 30 0.35 4.04 16 0 001 ** 

UREAR_IC_BMF4 
pitch -0.29 0.43 0.33 9.01 16 <0.0001 *** 
tempo -0.29 0 33 0.35 7.42 16 <0.0001 *** 
visual -0.29 0 30 0.35 6.89 16 <0.0001 *** 

UREAR_IC_BMF8 
pitch -0.27 0.43 0.33 8.76 16 <0.0001 *** 
tempo -0.27 0 33 0.35 7.18 16 <0.0001 *** 
visual -0.27 0 30 0.35 6.66 16 <0.0001 *** 

UREAR_IC_BMF16 
pitch -0.08 0.43 0.33 6.42 16 <0.0001 *** 
tempo -0.08 0 33 0.35 4.97 16 0 0003 *** 
visual -0.08 0 30 0.35 4.5 16 0 0005 *** 

UREAR_IC_BMF32 
pitch 0.05 0.43 0.33 4.73 16 0 0004 *** 
tempo 0.05 0 33 0.35 3.37 16 0 004 ** 
visual 0.05 0 30 0.35 2.94 16 0 010 ** 

UREAR_IC_BMF64 
pitch 0.01 0.43 0.33 5.28 16 0 0002 *** 
tempo 0.01 0 33 0.35 3.89 16 0 002 ** 
visual 0.01 0 30 0.35 3.45 16 0 004 ** 

. P < 0.1, * P < 0 05, ** P < 0.01, *** P < 0.001, FDR corrected 
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Figure 2.5. Comparison of higher-level EEG responses with models of auditory subcortical processing. Data for 

the high meter contrast rhythms are shown on the left, and data for the low meter contrast rhythm are shown 

on the right. The higher-level EEG response to one pattern cycle averaged across all pattern repetitions, trials, 

tasks, and participants is depicted on the top in yellow. This response was extracted after low-pass filtering at 

30 Hz, and averaging 9 frontocentral channels (F1, F2, Fz, C1, C2, Cz, FC1, FC2, FCz). Each row below the EEG 

response corresponds to the output of one model of subcortical auditory processing. The model labels are 

shown on the left (depending on the parameter settings, the IC cell simulated with UR_EAR had a specific best 

modulation frequency, which is listed in square brackets in Hz). In the center of the figure are the responses of 

the models to one cycle of the rhythmic pattern depicted as mean firing rate across time. The mean rate over 

time was transformed into the frequency domain using FFT, and the resulting spectra are shown next to the 

time-domain responses. Meter-related frequencies are shown in red, and meter-unrelated frequencies in blue. 

On the sides of the figure are the z-scored spectral amplitudes averaged separately across meter-related and 

meter-unrelated frequencies. The yellow data points represent EEG responses of individual participants (z-

scores averaged across the 3 tasks), and the black data points represent the auditory model. While the z-

scores at meter-related frequencies did not differ reliably between the models and the EEG responses for the 

high meter contrast rhythm on the left, the EEG response at these frequencies was selectively enhanced for 

the low meter contrast rhythm (right).  
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2.4.4 Comparison of EEG responses with models of subcortical auditory processing 

For the high meter contrast rhythm, the relative prominence of meter-related frequencies 

in the higher-level EEG responses was explained by all considered models of subcortical 

auditory processing (see Figure 2.5 and Table 2.1). The mean z-score at meter-related 

frequencies measured in the elicited EEG was not significantly different from either model, 

except there was a significantly greater z-score for the EEG responses in the pitch task when 

compared to the UR_EAR model of the auditory nerve response. However, for the low 

meter contrast rhythm, meter-related frequencies were consistently more prominent in the 

elicited EEG responses than predicted by all models of subcortical auditory processing. 

Importantly, this was the case even when participants were carrying out the visual task. 

These results were further corroborated by a control analysis showing that meter-related 

frequencies in the higher-level responses were robustly enhanced even when the highest 

meter frequency (5 Hz) was excluded from the analysis (see Table 2.S2).  

As expected, the same set of comparisons for the early auditory responses showed no clear 

differences from the models of subcortical auditory processing (see Table 2.S3). Even 

though the meter frequencies in the early auditory responses were significantly above some 

auditory models after excluding the highest meter-related frequency in the control analysis 

(UR-EAR-IC with best modulation frequencies 4, 8, 16 Hz, see Table 2.S4), this was not 

systematic (in contrast to the higher-level responses), and was related to a selective 

suppression of the lower meter frequencies in these models compared to the rest of the 

models (see Figure 2.5).  

Together, these results indicate that, as expected, the contrast at meter frequencies in the 

EEG response to the rhythmic input with prominent meter frequencies in its acoustic 

structure was mainly driven by low-level processing of this input. However, these early 

processing stages cannot fully explain the EEG response to the rhythmic input with less 

prominent meter frequencies in its acoustic structure. Most importantly, the processes 

responsible for the selective enhancement of meter frequencies for this latter rhythm 

seemed to be involved to a similar degree across the three attentional tasks.  
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Figure 2.6. Comparison of prominence of meter-related frequencies in the higher-level and early auditory EEG 

responses. The mean z-scored amplitude at meter-related frequencies is plotted separately for each task, 

rhythm, and EEG response type. Individual data points represent participants. Horizontal continuous grey lines 

correspond to the mean z-scores at meter frequencies taken from the broadband amplitude envelope of the 

corresponding acoustic stimulus. The horizontal dashed grey lines represent zero (i.e. equal relative 

prominence of meter-related and meter-unrelated frequencies). The meter-related frequencies were 

consistently more prominent in the higher-level EEG responses across all rhythms and task (main effect of 

response type, indicated by asterisks).  

 

 

2.4.5 Comparison of higher-level and early auditory EEG responses 

A mixed model with factors Rhythm, Task and Response revealed a main effect of Rhythm 

(F1,176 = 68.03, P < 0.0001, BF10 > 100), as expected from the separate analyses of the higher-

level and early auditory responses above, suggesting that both types of response were 

sensitive to the physical structure of the auditory input.  There was also a main effect of 

Response (F1,176 = 58.5, P < 0.0001, BF10 > 100). As shown in Figure 2.6, the relative 

prominence of meter frequencies was consistently larger in the higher-level responses 

across all tasks and both rhythms. Moreover, this could not be easily explained by 

differences in the low-pass characteristic of the responses, as the same results were 

obtained in a control analysis where the highest meter-related frequency (i.e. 5 Hz) was 

excluded (see Supplementary Materials). This suggests that there was a significant 
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enhancement of meter-related frequencies at the later processing stage indexed by the 

higher-level responses.  

 

 
2.5 Discussion 

Our results show that while attentional focus affects the overall sensitivity of the brain to 

auditory rhythmic inputs, it has little influence on the selective contrast at meter 

periodicities in the elicited neural response. Moreover, while the magnitude of this selective 

contrast in the EEG response was readily explained by low-level auditory processing for the 

rhythm with prominent meter frequencies in the acoustic input, this was not the case for 

the rhythm that lacked prominent contrast at meter periodicities in its physical structure. 

Together, these results suggest the critical engagement of high-level processes that shape 

the neural representation of a rhythmic input by selectively enhancing contrast at meter 

periodicities across behavioral contexts even in rhythms where this contrast is not 

prominent. These results add to the evidence that rhythm perception is shaped by a range 

of processes including higher-level cortical stages, with different degrees of flexibility and 

automaticity.  

 

2.5.1 Wide range of low-level and higher-level processes in meter perception  

 A number of studies have consistently shown that the brain can selectively enhance meter-

related frequencies, particularly for low meter contrast rhythms. However, the behavioral 

context varied across these studies. Some asked participants to report small occasional 

changes in the duration of a sound event making up the rhythm (Nozaradan et al., 2012, 

2017b; Lenc et al., 2018). While those small changes in duration of single time intervals are 

difficult to detect at a local scale, their detection is easier on a global scale, as the deviant 

interval results in a misalignment of the subsequent sequence with the perceived meter. 

Therefore, this task implicitly encourages participants to rely on an internal metric structure 

(Schulze, 1978; Jones and Yee, 1997; Grube and Griffiths, 2009). Similarly, some studies 

asked participants to focus on the tempo (overall perceived speed) of the sequences, either 

searching for local transient changes (Lenc et al., 2020), of for later comparison with a test 

sequence (Tal et al., 2017). Other studies have asked participants to report any temporal 
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irregularities in the stimuli while none were actually present (Nozaradan et al., 2018), or to 

simply attend to the sequences (Nozaradan et al., 2016a). Our results suggest that selective 

neural enhancement of meter frequencies can take place even without attention directly 

focused on the temporal properties of the stimulus (as observed during the pitch task). 

Interestingly, this enhancement was also observed when sound was ignored altogether 

(during the visual task), i.e., even when the overall signal-to-noise ratio (SNR) of the 

response was decreased. Nevertheless, our results inform future frequency-tagging studies, 

which may find it advantageous to employ behavioral tasks that encourage participants to 

focus on the auditory stimuli, even when the task-relevant dimension is orthogonal to 

rhythm processing, to increase the SNR and facilitate estimation of response properties.  

While our results suggest that neural responses to rhythmic input might involve processes 

largely independent on attentional focus, this does not imply that neural processing of 

rhythm is fixed and inflexible. A number of recent studies have shown that selective neural 

enhancement of meter periodicities reflects flexible processes, which are sensitive to 

mental imagery (Nozaradan et al., 2011; Li et al., 2019), non-temporal features of the 

acoustic input (Lenc et al., 2018), prior experience (Chemin et al., 2014), and recent context 

(Lenc et al., 2020). Importantly, our current findings show that the internal transformation 

of a rhythmic input towards a particular metric category can be flexibly enhanced, possibly 

changed, but it is difficult to suppress completely: it has an automatic component. Whether 

the robust component can be changed by long-term exposure remains to be seen in future 

studies (Hannon et al., 2012b, 2012a; London et al., 2017; van der Weij et al., 2017; Polak et 

al., 2018).  

These findings thus reveal similarities between meter processing and other higher-level 

auditory processes, such as auditory stream segregation or change detection (Sussman, 

2017). While automatic in some contexts (Woods et al., 1992; Alho et al., 1994; Dyson et al., 

2005; Teki et al., 2011, 2016; Masutomi et al., 2016), attention can boost or bias these 

processes (Haroush et al., 2010; Auksztulewicz and Friston, 2015; O’Sullivan et al., 2015; 

Costa-Faidella et al., 2017), particularly when the input provides ambiguous sensory cues to 

the system (Sussman et al., 2007; Gutschalk et al., 2015). Similarly, the brain response to 

isochronous auditory sequences might be spontaneously shaped by the intrinsic preference 

for binary structures (Brochard et al., 2003; Pablos Martin et al., 2007), but this can be 

biased towards different forms of organization by top-down processes dependent on 
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attentional resources (Nozaradan et al., 2011; Chemin et al., 2014; Celma-Miralles and Toro, 

2019). Importantly, some higher-level auditory processes can be largely suppressed 

(especially by high load) but not completely abolished (Woldorff et al., 1991; Alain and 

Izenberg, 2003; Chait et al., 2012; Billig and Carlyon, 2016; Molloy et al., 2019). Together, 

these studies suggest that when assessing effects of attention on a particular perceptual 

phenomenon, it is important to keep in mind that (i) multiple processes can be involved 

(Chait et al., 2012), (ii) these different processes may be differentially affected by different 

kinds of tasks (Bidet-Caulet et al., 2007; Yerkes et al., 2019), and (iii) the effect of task may 

also depend on the sensory information provided by the stimulus (Gutschalk et al., 2015). 

With respect to meter perception, identification of the underlying internal processes and 

the types of resources they rely on remains worthwhile goal for future investigations (Lenc 

et al., 2018).  

 

2.5.2 Dissociation between overall gain and selective contrast at meter periodicities 

An overall decrease is sensitivity to sound input while carrying out a visual task has been 

previously reported by a large number of studies measuring early event-related potentials 

(Woods et al., 1992; Alho et al., 1994; Okamoto et al., 2011), frequency tagged responses 

(Keitel et al., 2011, 2013; Riecke et al., 2014), or BOLD activations in sensory cortices (Petkov 

et al., 2004; Shomstein and Yantis, 2004; Johnson and Zatorre, 2005; Riecke et al., 2017). In 

line with these studies, we observed increased overall gain of the higher-level EEG 

responses during the auditory tasks in comparison to the visual task. In other words, there 

was a general increase in the amplitude of neural activity time-locked to the rhythmic 

auditory stimulus. However, this non-specific enhancement could simply represent a 

proportional increase of magnitude across the response spectrum, thus being equivalent to 

a multiplicative enhancement of the response in the time domain. In that case, the relative 

contrast in the response at meter periodicities should necessarily remain constant. 

As opposed to such non-specific enhanced gain of the whole response, a change in the 

selective contrast at meter periodicities would demonstrate selective increase at meter-

related frequencies. The important distinction between overall gain and selective contrast 

at meter frequencies has been often neglected in studies claiming to measure “neural 

entrainment to meter” (Tierney and Kraus, 2014; e.g. Hickey et al., 2020). Our results 
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provide a cautionary example, whereby non-specific increase in response to the sound 

trivially explained by attention could have been misinterpreted as an enhancement of meter 

periodicities in brain responses. Instead, our method allowed us to dissociate between 

these two accounts, exploiting the fact that energy in the modulation spectra of our 

complex rhythmic stimuli is not solely distributed across meter-related frequencies. For this 

reason, using non-isochronous rhythms, particularly rhythms with less energy at meter 

frequencies, is advantageous over strictly isochronous stimuli where changes in overall 

response gain and selective contrast enhancement cannot be differentiated. In addition, 

using z-score normalization instead of the difference in raw spectral magnitude makes the 

measure robust to multiplicative gain (which would yield greatest raw magnitude increase 

at frequencies already prominent in the spectra).  

 

2.5.3 Robust responses at meter periodicities even with low meter contrast in the input 

Despite the significant differences in the gain of the higher-level EEG responses, the 

selective contrast at meter frequencies was not affected by task. However, this finding could 

be trivially explained by passive matching of stimulus modulation structure in the neural 

response. While faithful tracking of stimulus envelope is fundamental for auditory 

perception (Peelle et al., 2013; Di Liberto et al., 2018; Etard and Reichenbach, 2019; Ghinst 

et al., 2019), the brain must go beyond one-to-one representation of the sensory input to 

achieve adaptive behavior (Kuchibhotla and Bathellier, 2018). Thus, the sensory input is 

continuously transformed within the brain towards higher-level categories (Ley et al., 2014; 

Brodbeck et al., 2018; Rossion et al., 2020; Sankaran et al., 2020; Yin et al., 2020). Such 

transformations are critical for timing perception already at the level of single intervals 

(Desain and Honing, 2003; Jacoby and McDermott, 2017), but also patterns of intervals 

(Notter et al., 2018), and for meter perception, where a range of physically different 

acoustic inputs can be mapped onto the same set of periodic pulses (Nozaradan et al., 

2017a). To assess whether the internal processes involved in this transformation were 

engaged even when attention was withdrawn from the auditory input, we compared the 

higher-level EEG responses to simulated representation of the auditory input across 

different auditory subcortical stages. While keeping in mind that absence of evidence is not 

evidence of absence, our results suggests that well-described low-level nonlinearities in 
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early auditory pathway cannot fully account for the cortical brain response to the low meter 

contrast rhythm.    

This was further confirmed by the early sensory responses measured in the same EEG as the 

high-level responses. Even though the tagged frequencies used to identify the early sensory 

responses in the current study were most likely not in a high enough frequency range to 

strictly isolate brainstem responses from cortical responses (Coffey et al., 2016; Holmes et 

al., 2018), these responses may have preferentially captured contributions from primary 

auditory fields, as well as subcortical nuclei (Chandrasekaran and Kraus, 2010; Nourski and 

Brugge, 2011). Therefore, comparing EEG responses tagged at low frequencies (higher-level 

responses) vs. high frequencies (early auditory responses) may still be a useful way to 

separate sound representation in early auditory cortices from responses originating in a 

wide network of structures involved in rhythm processing (Patel and Iversen, 2014; 

Merchant et al., 2015a). 

Our results are in line with Nozaradan et al. (2018) who observed a similar enhancement of 

meter-related frequencies in the higher-level EEG responses compared to the early auditory 

EEG responses. While they only observed higher-level response enhancement for the low 

meter contrast rhythm, this was the case for both rhythms in the current study. However, if 

our current results were related to low SNR for early auditory responses resulting in 

attenuation of the most prominent peaks in the spectra, one would expect to find opposite 

effects on meter-related frequencies for the two rhythms due to the differences in their 

physical structure. Moreover, non-selective attenuation of high frequencies in the early 

auditory responses alone did not fully explain the smaller prominence of meter frequencies 

when compared to the higher-level EEG responses. Finally, the prominence of meter 

frequencies in the early auditory responses was strongly modulated by the type of rhythm, 

showing sensitivity to the acoustic structure of the input. Therefore, together with the 

output of subcortical auditory processing models, our results provide evidence that (i) 

higher-level processes further enhance contrast at meter frequencies, especially when these 

meter frequencies are not prominent in the auditory input, and (ii) these processes remain 

active even when overall responsiveness to sound input is decreased (e.g. during a 

demanding visual task).  

Recently, it has been proposed that low-level nonlinearities such as adaptation, amplitude-

modulation tuning, and heightened sensitivity to contrast in early stages of the auditory 
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pathway could predict whether and what metric structure is perceived in a rhythmic 

stimulus (Rajendran et al., 2017; Zuk et al., 2018), and the consistency of perceived meter 

across individual listeners (Rajendran et al., 2020). While these low-level phenomena are 

definitely important in shaping rhythm perception, such models are inherently limited to 

enhancement of sensitivity to contrast that is already present in the physical input. Indeed, 

these models are based on the long-standing assumption in psychology and neuroscience 

(likely driven by over-emphasis on Western classical and popular music) that meter 

perception is driven by temporal contrasts defined by acoustic properties of the sound input 

(Longuet Higgins and Lee, 1982; Povel and Essens, 1985; Jones and Boltz, 1989; Palmer and 

Krumhansl, 1990; Drake et al., 2000; Toiviainen and Snyder, 2003). Strong arguments 

against these assumptions have been recently raised by a number of authors (see, e.g. 

London et al., 2017; van der Weij et al., 2017). Indeed, such models will unlikely explain 

perception of musical genres where the phase (e.g. reggae, ska, swing, mazurka) or period 

(e.g. tresillo, cascara, or rumba clave in afro-cuban music) of the perceived metric structure 

is weakly cued in the temporal distribution of features in the physical sound. Instead, over-

constrained views may in the end lose explanatory power by ignoring diversity and flexibility 

in the cognitive phenomenon across cultures in pursuit of a reductionist mechanistic 

explanation.  

The weak explanatory power of biologically plausible models of subcortical auditory 

processing to account for our EEG results adds to the evidence that meter perception 

involves higher-level transformations of the input, providing flexibility within (Repp, 2007; 

Repp et al., 2008; Chemin et al., 2014; Lenc et al., 2020) and across individuals (McKinney 

and Moelants, 2006; Martens, 2011; Hannon et al., 2012a; Kalender et al., 2013; Polak et al., 

2018; Witek et al., 2020). Instead of offering a mechanistic explanation for the current EEG 

results, we emphasize the need for more data and powerful designs, in order to thoroughly 

describe the perceptual phenomenon in question, and how it is shaped by input features, 

behavioral goals, context, exposure, and learning. Similarly, we do not claim that the 

contrast at meter frequencies measured in EEG responses is one-to-one with meter 

perception in a phenomenological sense. At the same time, it is important to note that all 

measures of perception are indirect (including behavioral measures), and critically depend 

on the definition of the perceptual phenomenon (see also Rossion et al., 2020). If meter is 

defined as the perception of pulses that are time-locked to the temporal structure of the 
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stimulus, and if pulse is understood as something that consistently occurs at regularly-

spaced time points and not otherwise (thus creating a temporal contrast), our EEG measure 

is directly relevant for meter processing. Moreover, our analysis was directly informed by 

tapping data from previous studies, thus constraining the set of behaviorally relevant 

periodicities based on an additional measure of meter perception.  

The fact that we observed significantly enhanced responses at meter frequencies in the low 

meter contrast rhythm irrespective of attentional focus may seem inconsistent with the 

fMRI study of Chapin et al. (Chapin et al., 2010). In that study, participants listened to 

rhythms that had few acoustic cues to meter periodicities but still elicited stable meter 

perception. The authors observed larger BOLD responses within a network of structures 

typically associated with meter perception when participants were actively listening 

(memorizing the rhythm for subsequent reproduction) than when they were memorizing a 

visual array of letters. However, this result could potentially be explained by non-specific 

changes in the BOLD response due to auditory stimulation interacting with attention, or 

task-related motor preparation. Based on the current results, we suggest that the 

processing of low meter contrast rhythms may not be inherently different from high meter 

contrast rhythms. Indeed, rhythms with little acoustic cues to meter are ubiquitous across 

cultures (Cohn, 2016; London et al., 2017; Witek, 2017; Câmara and Danielsen, 2018). 

Hence, such rhythmic inputs may help to reveal the transformations that take place within 

the brain when the sensory input is mapped onto an internal metric representation, and 

eventually behavioral output, while controlling for acoustic or low-level confounds.  

 

2.5.4 Evidence for robust meter processing complementary to MMN studies of passive 

listening 

Our observation that processes related to meter perception are engaged robustly across 

behavioral contexts is consistent with previous studies using the mismatch-negativity event-

related potential, or MMN (Ladinig et al., 2009; Winkler et al., 2009; Bouwer et al., 2014, 

2016). Complementary to these studies, we observed task-independent neural 

enhancement of meter frequencies even for the low meter contrast rhythm, while MMN 

responses have only been assessed for rhythms with very prominent acoustic cues to meter 

periodicities. Because MMN paradigms rely on assumptions about predictions and regularity 
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violations, which are not well-defined for meter perception (see e.g. London et al., 2017), 

MMN studies involve uncertainty about the type of deviation that may elicit differential 

responses depending on its timing relative to the perceived pulse (Bouwer and Honing, 

2015). MMN studies therefore rely on statistically linking the perceived pulse with salient 

sound events, and hence limit themselves to study of high meter contrast rhythms. 

Moreover, typical MMN studies employ passive listening with low cognitive load and no 

control of participant’s attentional focus (Sussman et al., 2014), whereas we directly 

manipulated the attentional state of the listener with active demanding tasks that 

significantly affected the overall magnitude of the EEG responses and also parieto-occipital 

alpha power (see Supplementary Materials), which is an established index of crossmodal 

attentional engagement (Fu et al., 2001; Jensen and Mazaheri, 2010; Mo et al., 2011; 

Mazaheri et al., 2014). Our results thus represent an important step towards describing 

whether processes involved in meter perception depend on limited resources, which may 

be shared across modalities and cognitive domains (Marois and Ivanoff, 2005; Chait et al., 

2012; Murphy et al., 2017; Molloy et al., 2020).  

 

2.5.5 Conclusions 

The human auditory system possesses a remarkable capacity to carry out high-level 

processes with limited attentional resources (Murphy et al., 2017). The current study 

provides evidence that this may also be the case for processes involved in meter perception 

in the context of musical rhythm. Our results indicate that the brain selectively emphasizes 

perceptually relevant periodicities even when overall sensitivity to sound is decreased due 

to a distracting task. Moreover, such perceptual emphasis occurs when the periodicities are 

not prominent in the sensory input, and their enhancement is not readily accounted for by 

low-level auditory processing. Therefore, these robust neural processes to auditory rhythms 

may support the spontaneity of meter perception when listening to a variety of musical 

inputs, while still allowing for flexibility and context dependence in meter perception within 

and across individuals.   
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2.6 Supplementary Material  

2.6.1 Control analysis of higher-level and early auditory EEG responses excluding the 

highest (5 Hz) frequency 

To make sure that the differences in the prominence of meter-related frequencies between 

higher-level and early auditory EEG responses were not solely driven by low-pass biases, we 

re-calculated the relative prominence of meter frequencies after excluding the highest 

frequency of interest (5 Hz) from the set. This frequency corresponded to rate of individual 

events in the rhythms, but captured also harmonics of the slower perceived metric pulses. 

Yet, the amplitude at this frequency would be affected most prominently if higher 

frequencies in the response were broadly attenuated irrespective of their contribution to 

the contrast at meter periodicities (e.g. within a neural network behaving like a simple low-

pass filter). A mixed model with factors Rhythm, Task and Response still revealed a main 

effect of Rhythm (F1,176 = 53.4, P < 0.0001, BF10 > 100) and Response (F1,176 = 35.0, P < 

0.0001, BF10 > 100), thus replicating the results from the main analysis. This indicates that 

the enhanced selective contrast at meter periodicities in the higher-level responses cannot 

be fully explained by non-selective enhancement of higher frequencies (i.e. without 

considering their relevance for the perceived meter).  
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Table 2.S1. Comparison of mean early auditory response amplitude averaged across all sidebands against zero 

using non-parametric Wilcoxon signed rank tests.  

 

distortion product 
frequency 

rhythm task mean p  

168 high meter 
contrast 
rhythm 

pitch 0.048039 0.007 ** 
tempo 0.044929 0.007 ** 
visual 0.056336 0.057 . 

low meter 
contrast 
rhythm 

pitch 0.056919 0.003 ** 
tempo 0.053233 0.007 ** 
visual 0.068828 0.0003 *** 

189 high meter 
contrast 
rhythm 

pitch 0.008148 0.057 . 
tempo -0.000029 0.463   
visual 0.015129 0.007 ** 

low meter 
contrast 
rhythm 

pitch 0.007007 0.156   
tempo 0.007147 0.155   
visual 0.011202 0.243   

357 high meter 
contrast 
rhythm 

pitch 0.002491 0.057 . 
tempo 0.004959 0.019 * 
visual 0.001892 0.329   

low meter 
contrast 
rhythm 

pitch 0.000452 0.452   
tempo 0.001185 0.089 . 
visual 0.000780 0.440   

. P < 0.1, * P < 0.05, ** P < 0.01, *** P < 0.001, FDR corrected 
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Table 2.S2. Control analysis of mean z-scored amplitude at meter-related frequencies without taking the 

highest frequency (5 Hz) into account. Comparison between higher-level EEG responses and models of 

auditory subcortical processing using one-sample t-tests.  

 
EEG variable rhythm model task mean_model mean_eeg sd_eeg t df p  
higher-level 
response 

high meter 
contrast 
rhythm 

broadband pitch 1.06 0.84 0.23 -4.03 16 1.000   
tempo 1.06 0.78 0.39 -2.98 16 1.000   
visual 1.06 0.76 0.48 -2.63 16 1.000   

UREAR_AN pitch 0.97 0.84 0.23 -2.27 16 1.000   
tempo 0.97 0.78 0.39 -1.96 16 1.000   
visual 0.97 0.76 0.48 -1.79 16 1.000   

UREAR_IC_BMF2 pitch 1.06 0.84 0.23 -4.02 16 1.000   
tempo 1.06 0.78 0.39 -2.97 16 1.000   
visual 1.06 0.76 0.48 -2.62 16 1.000   

UREAR_IC_BMF4 pitch 0.90 0.84 0.23 -1.08 16 1.000   
tempo 0.90 0.78 0.39 -1.28 16 1.000   
visual 0.90 0.76 0.48 -1.23 16 1.000   

UREAR_IC_BMF8 pitch 0.76 0.84 0.23 1.48 16 0.171   
tempo 0.76 0.78 0.39 0 20 16 0.748   
visual 0.76 0.76 0.48 -0.01 16 0.865   

UREAR_IC_BMF16 pitch 0.79 0.84 0.23 0 94 16 0.338   
tempo 0.79 0.78 0.39 -0.11 16 0.899   
visual 0.79 0.76 0.48 -0.27 16 0.967   

UREAR_IC_BMF32 pitch 0.91 0.84 0.23 -1.20 16 1.000   
tempo 0.91 0.78 0.39 -1.35 16 1.000   
visual 0.91 0.76 0.48 -1.29 16 1.000   

UREAR_IC_BMF64 pitch 0.94 0.84 0.23 -1.80 16 1.000   
tempo 0.94 0.78 0.39 -1.69 16 1.000   
visual 0.94 0.76 0.48 -1.57 16 1.000   

low meter 
contrast 
rhythm 

broadband pitch 0.13 0.51 0.40 4 01 16 0.002 ** 
tempo 0.13 0.40 0.39 2 85 16 0.015 * 
visual 0.13 0.25 0.48 1 05 16 0.317   

UREAR_AN pitch 0.14 0.51 0.40 3 86 16 0.002 ** 
tempo 0.14 0.40 0.39 2.70 16 0.019 * 
visual 0.14 0.25 0.48 0 93 16 0.338   

UREAR_IC_BMF2 pitch 0.02 0.51 0.40 5.11 16 0.0002 *** 
tempo 0.02 0.40 0.39 3 95 16 0.002 ** 
visual 0.02 0.25 0.48 1 96 16 0.077 . 

UREAR_IC_BMF4 pitch -0.46 0.51 0.40 10.16 16 <0.0001 *** 
tempo -0.46 0.40 0.39 9 03 16 <0.0001 *** 
visual -0.46 0.25 0.48 6.14 16 <0.0001 *** 

UREAR_IC_BMF8 pitch -0.65 0.51 0.40 12.05 16 <0.0001 *** 
tempo -0.65 0.40 0.39 10.94 16 <0.0001 *** 
visual -0.65 0.25 0.48 7.71 16 <0.0001 *** 

UREAR_IC_BMF16 pitch -0.49 0.51 0.40 10.46 16 <0.0001 *** 
tempo -0.49 0.40 0.39 9 33 16 <0.0001 *** 
visual -0.49 0.25 0.48 6 38 16 <0.0001 *** 

UREAR_IC_BMF32 pitch -0.08 0.51 0.40 6.18 16 <0.0001 *** 
tempo -0.08 0.40 0.39 5 04 16 0.0002 *** 
visual -0.08 0.25 0.48 2 85 16 0.015 * 

UREAR_IC_BMF64 pitch 0.13 0.51 0.40 3 98 16 0.002 ** 
tempo 0.13 0.40 0.39 2 82 16 0.015 * 
visual 0.13 0.25 0.48 1 03 16 0.317   

. P < 0.1, * P < 0 05, ** P < 0.01, *** P < 0.001, FDR corrected 
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Table 2.S3. Comparison of mean z-scored amplitude at meter-related frequencies between early auditory EEG 

responses and models of auditory subcortical processing using one-sample t-tests.  

 
EEG variable rhythm model task mean_model mean_eeg sd_eeg t df p  
early auditory 
response 

high meter 
contrast 
rhythm 

broadband pitch 0.81 0.41 0.39 -4.20 16 1.0   
tempo 0.81 0.42 0.42 -3.80 16 1.0   
visual 0.81 0.32 0.41 -5.00 16 1.0   

UREAR_AN pitch 0.52 0.41 0.39 -1.15 16 1.0   
tempo 0.52 0.42 0.42 -0.93 16 1.0   
visual 0.52 0.32 0.41 -2.04 16 1.0   

UREAR_IC_BMF2 pitch 0.83 0.41 0.39 -4.38 16 1.0   
tempo 0.83 0.42 0.42 -3.98 16 1.0   
visual 0.83 0.32 0.41 -5.17 16 1.0   

UREAR_IC_BMF4 pitch 0.79 0.41 0.39 -4.00 16 1.0   
tempo 0.79 0.42 0.42 -3.61 16 1.0   
visual 0.79 0.32 0.41 -4.80 16 1.0   

UREAR_IC_BMF8 pitch 0.75 0.41 0.39 -3.60 16 1.0   
tempo 0.75 0.42 0.42 -3.24 16 1.0   
visual 0.75 0.32 0.41 -4.42 16 1.0   

UREAR_IC_BMF16 pitch 0.80 0.41 0.39 -4.09 16 1.0   
tempo 0.80 0.42 0.42 -3.69 16 1.0   
visual 0.80 0.32 0.41 -4.89 16 1.0   

UREAR_IC_BMF32 pitch 0.81 0.41 0.39 -4.25 16 1.0   
tempo 0.81 0.42 0.42 -3.85 16 1.0   
visual 0.81 0.32 0.41 -5.04 16 1.0   

UREAR_IC_BMF64 pitch 0.68 0.41 0.39 -2.89 16 1.0   
tempo 0.68 0.42 0.42 -2.56 16 1.0   
visual 0.68 0.32 0.41 -3.73 16 1.0   

low meter 
contrast 
rhythm 

broadband pitch 0.06 -0.10 0.40 -1.58 16 1.0   
tempo 0.06 -0.04 0.38 -1.03 16 1.0   
visual 0.06 -0.09 0.33 -1.84 16 1.0   

UREAR_AN pitch -0.13 -0.10 0.40 0.31 16 1.0   
tempo -0.13 -0.04 0.38 0.95 16 1.0   
visual -0.13 -0.09 0.33 0.45 16 1.0   

UREAR_IC_BMF2 pitch -0 04 -0.10 0.40 -0.54 16 1.0   
tempo -0 04 -0.04 0.38 0.06 16 1.0   
visual -0 04 -0.09 0.33 -0.58 16 1.0   

UREAR_IC_BMF4 pitch -0 29 -0.10 0.40 2.00 16 0.3   
tempo -0 29 -0.04 0.38 2.72 16 0.2   
visual -0 29 -0.09 0.33 2.49 16 0.2   

UREAR_IC_BMF8 pitch -0 27 -0.10 0.40 1.79 16 0.4   
tempo -0 27 -0.04 0.38 2.50 16 0.2   
visual -0 27 -0.09 0.33 2.24 16 0.2   

UREAR_IC_BMF16 pitch -0 08 -0.10 0.40 -0.13 16 1.0   
tempo -0 08 -0.04 0.38 0.48 16 1.0   
visual -0 08 -0.09 0.33 -0.09 16 1.0   

UREAR_IC_BMF32 pitch 0.05 -0.10 0.40 -1.53 16 1.0   
tempo 0.05 -0.04 0.38 -0.98 16 1.0   
visual 0.05 -0.09 0.33 -1.77 16 1.0   

UREAR_IC_BMF64 pitch 0.01 -0.10 0.40 -1.07 16 1.0   
tempo 0.01 -0.04 0.38 -0.50 16 1.0   
visual 0.01 -0.09 0.33 -1.22 16 1.0   

. P < 0.1, * P < 0 05, ** P < 0.01, *** P < 0.001, FDR corrected 
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Table 2.S4. Control analysis of mean z-scored amplitude at meter-related frequencies without taking the 

highest frequency (5 Hz) into account. Comparison between early auditory EEG responses and models of 

auditory subcortical processing using one-sample t-tests.  

 
EEG variable rhythm model task mean_model mean_eeg sd_eeg t df p  
early auditory 
response 

high meter 
contrast 
rhythm 

broadband pitch 1.06 0 51 0.45 -5.07 16 1.000   
tempo 1.06 0.60 0.47 -4.07 16 1.000   
visual 1.06 0 31 0.68 -4.52 16 1.000   

UREAR_AN pitch 0.97 0 51 0.45 -4.18 16 1.000   
tempo 0.97 0.60 0.47 -3.23 16 1.000   
visual 0.97 0 31 0.68 -3.93 16 1.000   

UREAR_IC_BMF2 pitch 1.06 0 51 0.45 -5.06 16 1.000   
tempo 1.06 0.60 0.47 -4.06 16 1.000   
visual 1.06 0 31 0.68 -4.51 16 1.000   

UREAR_IC_BMF4 pitch 0.90 0 51 0.45 -3.58 16 1.000   
tempo 0.90 0.60 0.47 -2.66 16 1.000   
visual 0.90 0 31 0.68 -3.54 16 1.000   

UREAR_IC_BMF8 pitch 0.76 0 51 0.45 -2.29 16 1.000   
tempo 0.76 0.60 0.47 -1.42 16 1.000   
visual 0.76 0 31 0.68 -2.68 16 1.000   

UREAR_IC_BMF16 pitch 0.79 0 51 0.45 -2.57 16 1.000   
tempo 0.79 0.60 0.47 -1.68 16 1.000   
visual 0.79 0 31 0.68 -2.86 16 1.000   

UREAR_IC_BMF32 pitch 0.91 0 51 0.45 -3.64 16 1.000   
tempo 0.91 0.60 0.47 -2.71 16 1.000   
visual 0.91 0 31 0.68 -3.58 16 1.000   

UREAR_IC_BMF64 pitch 0.94 0 51 0.45 -3.95 16 1.000   
tempo 0.94 0.60 0.47 -3.00 16 1.000   
visual 0.94 0 31 0.68 -3.78 16 1.000   

low meter 
contrast 
rhythm 

broadband pitch 0.13 -0.03 0.48 -1.39 16 1.000   
tempo 0.13 0 02 0.45 -0.99 16 1.000   
visual 0.13 -0.06 0.39 -1.94 16 1.000   

UREAR_AN pitch 0.14 -0.03 0.48 -1.51 16 1.000   
tempo 0.14 0 02 0.45 -1.11 16 1.000   
visual 0.14 -0.06 0.39 -2.08 16 1.000   

UREAR_IC_BMF2 pitch 0.02 -0.03 0.48 -0.48 16 1.000   
tempo 0.02 0 02 0.45 -0.03 16 1.000   
visual 0.02 -0.06 0.39 -0.82 16 1.000   

UREAR_IC_BMF4 pitch -0.46 -0.03 0.48 3.71 16 0.005 ** 
tempo -0.46 0 02 0.45 4.38 16 0.002 ** 
visual -0.46 -0.06 0.39 4.29 16 0.002 ** 

UREAR_IC_BMF8 pitch -0.65 -0.03 0.48 5.28 16 0.0006 *** 
tempo -0.65 0 02 0.45 6.04 16 0.0002 *** 
visual -0.65 -0.06 0.39 6.21 16 0.0002 *** 

UREAR_IC_BMF16 pitch -0.49 -0.03 0.48 3.95 16 0.003 ** 
tempo -0.49 0 02 0.45 4.64 16 0.001 ** 
visual -0.49 -0.06 0.39 4.59 16 0.001 ** 

UREAR_IC_BMF32 pitch -0.08 -0.03 0.48 0.41 16 1.000   
tempo -0.08 0 02 0.45 0.91 16 0.901   
visual -0.08 -0.06 0.39 0.27 16 1.000   

UREAR_IC_BMF64 pitch 0.13 -0.03 0.48 -1.41 16 1.000   
tempo 0.13 0 02 0.45 -1.01 16 1.000   
visual 0.13 -0.06 0.39 -1.96 16 1.000   

. P < 0.1, * P < 0 05, ** P < 0.01, *** P < 0.001, FDR corrected 
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2.6.2 EEG oscillatory alpha activity 

Parieto-occipital alpha power was measured as an independent index of attentional 

engagement during the visual task, compared to the two auditory tasks. To separate the 

oscillatory activity from the 1/f background, the time-domain preprocessed data were 

subjected to irregular-resampling auto-spectral analysis (IRASA) (Wen and Liu, 2016). This 

method utilizes the fact that irregular resampling with non-integer factors results in shifts of 

the oscillatory component along the frequency axis, whereas the 1/f component remains 

constant. The procedure was carried out separately for each channel, condition, and 

participant. The data from each trial were segmented into 15 overlapping windows that 

were equally spaced throughout the trial. The number of samples in each window 

corresponded to the largest power of 2 that did not exceed 90% of trial duration. For each 

window, the auto-power spectrum was estimated using FFT after multiplication with a Hann 

function. This was performed for the original sampling rate, and also after resampling using 

pairs of resampling factors f and 1/f (where f was taken from 0.1 to 0.9 in steps of 0.05). The 

geometric mean of the auto-power spectra was taken across each pair of resampling 

factors. The power spectrum of the fractal component was estimated as the median-

average spectrum across all values of f, separately for each window. The power spectrum of 

the fractal component was then averaged across the 15 windows and subtracted from the 

average power spectrum of the original signal (without any resampling), to obtain an 

estimate of the oscillatory component.  

In the resulting oscillatory power spectra, all frequencies that were expected to contain 

neural activity elicited by the acoustic stimulus (i.e. harmonics of the pattern repetition rate, 

0.416 Hz) were set to zero. Subsequently, the power in the alpha range was quantified by 

taking the mean power between 8 and 12 Hz (Iemi et al., 2017; van Diepen and Mazaheri, 

2017; Van Diepen et al., 2019), separately for each condition. Alpha power was averaged 

across 18 parieto-occipital channels (Iz, O1, Oz, O2, PO7, PO3, POz, PO4, PO8, P9, P7, P3, P1, 

Pz, P2, P4, P8, P10) that were expected to show largest effects of cross-modal attention 

based on previous studies (Fu et al., 2001; Mazaheri et al., 2014; van Diepen and Mazaheri, 

2017).  

The power of alpha oscillatory activity from the parieto-occipital electrodes was significantly 

modulated by task (F2,80 = 10, P = 0.0001, BF10 > 100). As shown in Figure 2.S1, the power 
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significantly decreased during the Visual task compared to the Tempo task (β = -0.03, t82 = -

4.39, P = 0.0001, 95% CI = [-0.05, -0.01]) and Pitch task (β = -0.02, t82 = -3.08, P = 0.008, 95% 

CI = [-0.04, -0.005]).  

Visual inspection of the data suggested that the effect might have been only present for 

participants who had higher baseline alpha power. This was supported by a significant 

improvement of the model after adding the interaction between Task and alpha power in 

the Visual task as a continuous predictor (F3,72.5 = 11.72, P < 0.0001). Across participants, 

higher power in the Visual-task condition was related to greater power increase in the 

Tempo task (β = 1.41, t45.3 = 5.41, P < 0.0001, 95% CI = [0.73, 1.98]) and in the Pitch task (β = 

1.16, t45.3 = 4.47, P < 0.0001, 95% CI = [0.49, 1.73]).  

 
 

Figure 2.S1. EEG power at the alpha frequency elicited across the different tasks at posterior channels. Alpha 

power was significantly smaller (p < 0.01, marked by asterisks) during the visual task, and the magnitude of the 

effect depended on the baseline alpha response across participants.  
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3 Study 2: Neural tracking of the musical beat is enhanced by low-

frequency sounds 

 
 
 
This study has been published in the Proceedings of the National Academy of Sciences 
in 2018.   
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The results of Study 1 raised the question of whether there are factors that could further 

boost the enhancement of contrast at meter periodicities in the brain response. To this end, 

Study 2 explored the role of spectral content of the sounds delivering the rhythmic 

information. This was inspired by the observation that music composers and performers 

often preferentially use bass sounds to carry rhythmic foundations of music and make 

people dance. The results showed that a rhythmic input conveyed by bass sounds leads to 

enhanced contrast at meter periodicities in the neural response, compared to an identical 

input delivered by high-pitched sounds. The fact that this enhanced transformation was 

observed only when the sound input lacked prominent contrast at meter periodicities 

suggested that the results cannot be simply explained by fixed low-level physiological 

mechanisms that passively enhance specific modulation frequencies in the input. Instead, 

these results suggest that bass sounds engage higher-level mechanisms that flexibly 

transform the input when it lacks prominent contrast at meter periodicities.  

The reader may notice subtle differences in the way the terms “beat” and “meter” are used 

in Study 2 and their definitions proposed in section 1.1. Particularly, Study 2 defines beat as 

the primary pulse whereas meter is defined as resulting from subdivisions and groupings of 

the beat. Moreover, part of the analysis treats the “beat pulse” separately from the whole 

meter, and does not include harmonics of this pulse when measuring its representation in 

different signals. The reason for these inconsistencies is that my thinking about meter has 

evolved over time, and the manuscript for Study 2 was written up and published early in my 

candidature. However, importantly, the main part of the analysis (where all meter-related 

frequencies are taken into account) is consistent with the way frequency-tagging approach 

is described in section 1.2.2, and the discussion and conclusions of the study are in line with 

the concepts developed in section 1 of the current thesis.  

 

 
3.1 Abstract 

Music makes us move, and using bass instruments to build the rhythmic foundations of 

music is especially effective at inducing people to dance to periodic pulse-like beats. Here, 

we show that this culturally widespread practice may exploit a neurophysiological 

mechanism whereby low-frequency sounds shape the neural representations of rhythmic 

input by boosting selective locking to the beat. Cortical activity was captured using 
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electroencephalography while participants listened to a regular rhythm or a relatively 

complex syncopated rhythm conveyed either by low tones (130 Hz) or high tones (1236.8 

Hz). We found that cortical activity at the frequency of the perceived beat is selectively 

enhanced compared to other frequencies in the EEG spectrum when rhythms are conveyed 

by bass sounds. This effect is unlikely to arise from early cochlear processes, as revealed by 

auditory physiological modeling, and was particularly pronounced for the complex rhythm 

requiring endogenous generation of the beat. The effect is likewise not attributable to 

differences in perceived loudness between low and high tones, as a control experiment 

manipulating sound intensity alone did not yield similar results. Finally, the privileged role of 

bass sounds is contingent on allocation of attentional resources to the temporal properties 

of the stimulus, as revealed by a further control experiment examining the role of 

behavioral task. Together, our results provide a neurobiological basis for the convention of 

using bass instruments to carry the rhythmic foundations of music and drive people to move 

to the beat.  

 

3.2 Significance Statement 

Bass sounds play a special role in conveying the rhythm and stimulating motor entrainment 

to the beat of music. However, the biological roots of this culturally widespread musical 

practice remain mysterious, despite its fundamental relevance in the sciences and arts, and 

also for music-assisted clinical rehabilitation of motor disorders. Here, we show that this 

musical convention may exploit a neurophysiological mechanism whereby low-frequency 

sounds shape neural representations of rhythmic input at the cortical level by boosting 

selective neural locking to the beat, thus explaining the privileged role of bass sounds in 

driving people move along with the musical beat.  
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3.3 Introduction 

Music powerfully compels humans to move, showcasing our remarkable ability to perceive 

and produce rhythmic signals (Phillips-Silver et al., 2010). Rhythm is often considered the 

most basic aspect of music, and is increasingly regarded as a fundamental organizing 

principle of brain function. Yet, the neurobiological mechanisms underlying entrainment to 

musical rhythm remain unclear, despite the broad relevance of the question in the sciences 

and arts. Clarifying these mechanisms is also timely given the growing interest in music-

assisted practices for the clinical rehabilitation of cognitive and motor disorders caused by 

brain damage (Thaut et al., 2015). 

Typically, people are attracted to move to music in time with a periodic pulse-like beat, for 

example by bobbing the head or tapping the foot to the beat of the music. The perceived 

beat and meter (i.e., hierarchically nested periodicities corresponding to grouping or sub-

division of the beat period) are thus used to organize and predict the timing of incoming 

rhythmic input (Essens and Povel, 1985) and to guide synchronous movement (Toiviainen et 

al., 2010). Notably, the perceived beats sometimes coincide with silent intervals instead of 

accented acoustic events, as in syncopated rhythms (a hallmark of jazz), revealing 

remarkable flexibility with respect to the incoming rhythmic input in human perceptual-

motor coupling (Large et al., 2015). However, specific acoustic features such as bass sounds 

seem particularly well suited to convey the rhythm of music and support rhythmic motor 

entrainment (Hove et al., 2007; Burger et al., 2018). Indeed, in musical practice, bass 

instruments are conventionally used as a rhythmic foundation, whereas high-pitched 

instruments carry the melodic content (Lerdahl and Jackendoff, 1983; Trainor et al., 2014). 

Bass sounds are also crucial in music that encourages listeners to move (Pressing, 2002; 

Stupacher et al., 2016).  

There has been a recent debate as to whether evolutionarily shaped properties of the 

auditory system lead to superior temporal encoding for bass sounds (Hove et al., 2014; 

Wojtczak et al., 2017). One study using electroencephalography (EEG) recorded brain 

responses elicited by misaligned tone onsets in an isochronous sequence of simultaneous 

low- and high-pitched tones (Hove et al., 2014). Greater sensitivity to the temporal 

misalignment of low tones was observed when they were presented earlier than expected, 

which suggested better time encoding for low sounds. These results were replicated and 
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extended by Wojtczak et al. (2017), who showed that the effect was related to greater 

tolerance for low-frequency sounds lagging high-frequency sounds than vice versa. 

However, these studies only provide indirect evidence for the effect of low sounds on 

internal entrainment to rhythm, inferred from brain responses to deviant sounds. 

Moreover, they stop short of resolving the issue because, as noted by Wojtczak et al. (2017), 

these brain responses are not necessarily informative about the processing of the global 

temporal structure of rhythmic inputs.  

A promising approach to capture the internal representations of rhythm more directly 

involves the combination of EEG with frequency-tagging. This approach involves measuring 

brain activity elicited at frequencies corresponding to the temporal structure of the 

rhythmic input (Regan, 1989; Picton et al., 2003; Nozaradan, 2014; Nozaradan et al., 2017a). 

In a number of studies using this technique, an increase in brain activity has been observed 

at specific frequencies corresponding to the perceived beat and meter of musical rhythms 

(Nozaradan et al., 2011, 2012, 2016a; Stupacher et al., 2017; Tal et al., 2017). Evidence for 

the functional significance of this neural selectivity comes from work showing that the 

magnitude of beat- and meter-related brain responses correlates with individual differences 

in rhythmic motor behavior and is modulated by contextual factors influencing beat and 

meter perception (Chemin et al., 2014; Cirelli et al., 2016; Nozaradan et al., 2016b, 2017b).  

The current study aimed to use this approach to provide first evidence for a privileged effect 

of bass sounds in the neural processing of rhythm, especially in boosting cortical activity at 

beat- and meter-related frequencies. The EEG was recorded from human participants while 

they listened to isochronous and non-isochronous rhythms conveyed either by low (130 Hz) 

or high (1236.8 Hz) pure tones. The isochronous rhythm provided a baseline test of neural 

entrainment. The non-isochronous rhythms, which included a regular unsyncopated and a 

relatively complex syncopated rhythm, contained combinations of tones and silent intervals 

positioned to imply hierarchical metric structure. The unsyncopated rhythm was expected 

to induce the perception of a periodic beat that corresponded closely to the physical 

arrangement of sound onsets and silent intervals making up the rhythm, whereas the 

syncopated rhythm was expected to induce the perception of a beat that matched physical 

cues to a lesser extent, thus requiring more endogenous generation of the beat and meter 

(Nozaradan et al., 2012, 2016b, 2016a, 2017b). Theoretical beat periods were confirmed in a 

tapping session conducted after the EEG session, in which participants were asked to tap 
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along with the beat that they perceived in the rhythms, as a behavioral index of 

entrainment to the beat. Importantly, these different rhythms allowed us to test the low 

tone benefit on cortical activity at the beat and meter frequencies even when the input 

lacked prominent acoustic energy at these frequencies. Frequency-domain analysis of the 

EEG was performed to obtain a direct fine-grained characterization of the mapping between 

rhythmic stimulus and EEG response. Additional analyses including auditory physiological 

modeling were performed to examine the degree to which the effect of bass sounds may be 

explained by cochlear properties.  
 

 

3.4 Results 

Sound analysis. The isochronous rhythm and the two non-isochronous (unsyncopated and 

syncopated) rhythms carried by low or high tones were analyzed using a cochlear model to 

(i) determine frequencies that could be expected in the EEG response, and (ii) estimate an 

early representation of the sound input. This model consisted of a gammatone auditory 

filterbank that converted acoustic input into a multi-channel representation of basilar 

membrane motion (Patterson and Holdsworth, 1996), followed by a simulation of hair cell 

dynamics. The model yields an estimate of spiking responses in the auditory nerve with rate 

intensity functions and adaptation closely following neurophysiological data (Meddis, 1986).   

The envelope modulation spectrum obtained for the isochronous rhythms consisted of a 

peak at the frequency of single events (5 Hz) and its harmonics. For the unsyncopated and 

syncopated rhythms, the obtained envelope spectra contained 12 distinct peaks, 

corresponding to the repetition frequency of the whole pattern (0.416 Hz) and its harmonics 

up to the frequency of repetitions of single events (5 Hz) (see Fig. 3.1). The magnitudes of 

responses at these 12 frequencies were converted into z-scores (see Materials and 

Methods). This standardization procedure allowed the magnitude at each frequency to be 

assessed relative to the other frequencies, and, thereby, allowed us to determine how much 

one (here, the beat frequency at 1.25 Hz) or a subgroup of frequencies (meter-related 

frequencies at 1.25, 1.25/3, 1.25x2, 1.25x4 Hz; see Materials and Methods) stood out 

prominently relative to the entire set of frequencies (see, e.g., 18). This procedure has the 

further advantage of offering the possibility to objectively measure the degree of relative 
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transformation, i.e., the distance between an input (corresponding to the cochlear model) 

and an output (corresponding to the obtained EEG responses), irrespective of the difference 

in their unit and scale (Nozaradan et al., 2012, 2017a, 2017b, 2018).  

 

Behavioral tasks. During the EEG session, participants were asked to detect and identify 

deviant tones with duration lengthened or shortened by 20% (40 ms), to encourage 

attentive listening specifically to the temporal structure of the auditory stimuli. While 

participants were generally able to identify the temporal deviants (see SI Appendix, Table 

3.S1), there was a significant interaction between rhythm and tone frequency [F(2,26) = 

3.55, P = 0.04, 𝜂'& 	= 0.04]. Post-hoc t-tests revealed significantly lower performance in the 

low-tone compared to high-tone syncopated rhythm [t(13) = 2.97, P = 0.03, d = 0.79], 

suggesting higher task difficulty especially for the syncopated rhythm delivered with low 

tones (Moore et al., 1993; Grube and Griffiths, 2009).  

The beat-tapping task performed after the EEG session (SI Appendix) generally confirmed 

the theoretical assumption about entrainment to the beat based on preferential grouping 

by four events (Povel and Essens, 1985; Nozaradan et al., 2012, 2016b). Moreover, there 

were no statistically significant differences in the mean inter-tap interval and its variability 

between conditions (SI Appendix).  

 

 

 
 

Figure 3.1. Spectra of the acoustic stimuli (processed through the cochlear model) and EEG responses 

(averaged across all channels and participants; n = 14; shaded regions indicate SEMs; see Morey, 2008). The 

waveform of one cycle for each rhythm (2.4-s duration) is depicted in black (Left) with the beat period 

indicated. The rhythms were continuously repeated to form 60-s sequences, and these sequences were 

presented eight times per condition. The cochlear model spectrum contains peaks at frequencies related to 
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the beat (1.25 Hz; dark-gray vertical stripes) and meter (1.25 Hz/3, ×2, ×4; light-gray vertical stripes), and also 

at frequencies unrelated to the beat and meter. The EEG response includes peaks at the frequencies contained 

in the cochlear model output; however, the difference between the average amplitude of peaks at frequencies 

related vs. unrelated to the beat and meter is increased in the low-tone compared with high-tone conditions 

(see Relative Enhancement at Beat and Meter Frequencies and Fig. 3.2). Note the scaling difference in plots of 

EEG responses for unsyncopated and syncopated rhythms.  

 

 

Frequency-domain analysis of EEG. As shown in Figure 3.1, the rhythmic stimuli elicited 

frequency-tagged EEG responses at the 12 frequencies expected based on the results of 

sound analysis with the cochlear model, with topographies similar to previous work 

(Nozaradan et al., 2012, 2016b; see Fig. 3.2).  

Overall magnitude of the EEG response. We first evaluated whether the overall magnitude 

(μV) of the EEG responses differed between low- and high-tone conditions for the three 

different rhythms (SI Appendix, Table 3.S1). Overall magnitude was computed for each 

participant and condition by summing the amplitude of the frequency-tagged responses 

across the frequencies that we expected to be elicited based on the sound analysis of the 

rhythms. The resultant measure of overall response magnitude provides an index of the 

general capacity of the central nervous system to respond to the rhythms and the 

modulation of this capacity by tone frequency, regardless of the relevance of frequency-

tagged components related to the beat and meter. For the isochronous rhythm, there was a 

significantly larger overall response in the low-tone condition [t(13) = 3.68, P = 0.008, d = 

0.98], in line with previous work using isochronous trains of tones or sinusoidally amplitude-

modulated tones (Wunderlich and Cone-Wesson, 2001; Ross et al., 2003). In contrast, there 

were no significant differences between the high-tone and low-tone condition for the 

unsyncopated and syncopated rhythm (Ps > 0.34). This suggests that the global 

enhancement of the responses by low tones might only be present for isochronous rhythms.  

Relative enhancement at beat and meter frequencies. The main goal of the study was to 

examine the relative amplitude at specific beat- and meter-relevant frequency components 

for the unsyncopated and syncopated rhythms conveyed by high or low tones. A 2x2 

repeated-measures ANOVA revealed greater relative amplitude at the beat frequency (z-

score of the amplitude at 1.25 Hz) in the low-tone condition for both types of rhythm (main 

effect of tone frequency, Fig. 3.3 top) [F(1,13) = 9.46, P = 0.009, 𝜂'&  = 0.11] (see Materials 
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and Methods and SI Appendix for tests of the validity of this standardization procedure). 

Furthermore, when all meter frequencies were taken into account (mean z-scored 

amplitude at 1.25, 1.25/3, 1.25x2 and 1.25x4 Hz), the 2x2 ANOVA revealed a significant 

interaction between tone frequency and rhythm [F(1,13) = 5.23, P = 0.04, 𝜂'&  = 0.05], 

indicating greater relative amplitude at meter frequencies (Fig. 3.3 bottom) in the low-tone 

condition for the syncopated rhythm [t(13) = 3.79, P = 0.004, d = 1.01], but not for the 

unsyncopated rhythm (P = 0.24, d = 0.45).  

Finally, we evaluated the extent to which early cochlear processes could potentially explain 

the relative enhancement of EEG response at the beat and meter frequencies elicited by low 

tones. The difference in z-scored EEG response amplitudes between the low- and high-tone 

conditions was compared with the corresponding difference in the z-scored cochlear model 

output. For the response at the beat frequency, difference scores were significantly larger in 

the EEG response compared with the cochlear model for the syncopated rhythm [t(13) = 

1.4, P = 0.04, d = 0.8], but not for the unsyncopated rhythm (P = 0.73, d = 0.38). A similar 

pattern was revealed for the mean response at meter-related frequencies, with a 

significantly greater difference score for the syncopated rhythm [t(13) = 4.17, P = 0.004, d = 

1.11], but not for the unsyncopated rhythm (P = 0.28, d = 0.53).  
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Figure 3.2. Grand average topographies (n = 14) of neural activity measured at meter-related (left column) and 

meter-unrelated (right column) frequencies for the unsyncopated and syncopated rhythm conveyed by low or 

high tones.  
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Figure 3.3. Effect of tone frequency on the selective enhancement of EEG activity at beat- and meter-related 

frequencies. Shown separately are z-scores for the beat frequency (top) and mean z-scores for meter-related 

frequencies (bottom) averaged across participants are shown separately for the unsyncopated (left) and 

syncopated (right) rhythm. Error bars indicate SEM (Morey, 2008). Asterisks indicate significant differences (P 

< 0.05). Responses from individual participants are shown as grey points linked by lines. The horizontal lines 

represent z-score values obtained from the cochlear model. The low tone led to significant neural 

enhancement of the beat frequency in both rhythms. The low tone also elicited enhanced EEG response at 

meter frequencies, but only in the syncopated rhythm. There was no significant modulation of meter-related 

responses by tone frequency for the unsyncopated rhythm. 

 

 

3.5 Discussion 

The results show that rhythmic stimulation by bass sounds leads to enhanced neural 

representation of the beat and meter. EEG and behavioral responses were collected from 

participants presented with auditory rhythms conveyed either by low- or high-frequency 

tones. As hypothesized, we observed a selective enhancement of neural activity at the beat 

frequency for rhythms conveyed by low tones compared to high tones. When taking into 

consideration all meter frequencies, this low tone benefit was only significant for the 

syncopated rhythm requiring relatively more endogenous generation of meter. Moreover, 
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the low tone benefit was not attributable to differences in perceived loudness between low 

and high tones, as a control experiment manipulating sound intensity alone did not yield 

similar results (SI Appendix, Control Experiment 1 Control Experiment 1: Effect of Sound 

Intensity). Finally, the low tone benefit appears to require the allocation of attention to 

temporal features of the stimulus, as the effect did not occur in a control experiment where 

attention was directed to non-temporal features (SI Appendix, Control Experiment 2: Effect 

of Behavioral Task).  

It has been proposed that the preference for low-register instruments in conveying the 

rhythm within multi-voiced music derives from more precise temporal encoding of low-

pitched sounds due to masking effects in the auditory periphery (Hove et al., 2014). An 

alternative account holds that lower-pitched sounds are not necessarily subject to more 

precise temporal encoding but to greater tolerance for perception of simultaneity when low 

sounds lag behind higher-pitched sounds (Wojtczak et al., 2017). Here we demonstrate that 

the privileged status of rhythmic bass sounds is not exclusively dependent on multi-voice 

factors, such as masking or perceptual simultaneity, as it can be observed even without the 

presence of other instrumental voices.   

Analysis of our stimuli with a physiologically plausible cochlear model (Meddis, 1986; 

Patterson and Holdsworth, 1996) indicated that nonlinear processes at the early stages of 

the auditory pathway are unlikely to account for the observed low tone benefit and the 

interaction with syncopation. Moreover, the effect is not explained by greater activation of 

auditory neurons due to greater loudness, as the intensity of low and high tones was 

adjusted to evoke similar loudness percepts (Moore et al., 2016). Possible residual loudness 

differences between low and high tones are also unlikely to account for the observed effect 

of tone frequency. This was confirmed in a control experiment (SI Appendix, Control 

Experiment 1: Effect of Sound Intensity) showing that manipulating sound intensity alone 

(70 vs. 80 dB sound pressure level) did not influence the neural representation of the beat 

and meter.  

Instead, the low tone benefit observed here could be explained by a greater recruitment of 

brain structures involved in movement planning and control, including motor cortical 

regions (Kung et al., 2013; Patel and Iversen, 2014; Merchant et al., 2015a; Todd and Lee, 

2015b; Burunat et al., 2017; Morillon and Baillet, 2017), the cerebellum, and basal ganglia 

(Nozaradan et al., 2017b). These structures may be recruited via functional interconnections 
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between the ascending auditory pathway and a vestibular sensory-motor network 

(including a striatal circuit involved in beat-based processing) that is particularly responsive 

to bass acoustic frequencies (Trainor and Unrau, 2009; Trainor et al., 2009; Todd and Lee, 

2015a). The involvement of these sensory-motor areas thus constitutes a plausible 

mechanism for the observed low tone benefit, as these areas have been shown to be 

critically involved in predictive beat perception (Patel and Iversen, 2014), to contribute to 

the selective enhancement of EEG responses at the beat frequency (Nozaradan et al., 

2017b), and to be activated by vestibular input (Trainor et al., 2009; Todd and Lee, 2015a).  

It should be noted that direct activation of the human vestibular organ by bass sounds 

occurs only at higher intensities (above ~95 dB sound pressure level) than those employed 

in the current study (Todd et al., 2000). However, functional interactions between auditory 

and vestibular sensory-motor networks in response to low-frequency rhythms can arise 

centrally (Trainor and Unrau, 2009). These neural connections presumably develop from the 

onset of hearing in the fetus through the continuous experience of correlated auditory and 

vestibular sensory-motor input (e.g., the sound of the mother’s footsteps coupled with 

walking motion) (Trainor and Unrau, 2009).  

 

3.5.1 Low-tone benefit in syncopated rhythm 

In accordance with previous studies (Wunderlich and Cone-Wesson, 2001; Ross et al., 2003), 

overall larger magnitudes of EEG response were obtained with low tones compared with 

high tones in the isochronous rhythm. This general effect was not observed in non-

isochronous rhythms, suggesting that as the stimulus becomes temporally more complex 

there is no longer a simple relationship between the overall response magnitude and tone 

frequency. Therefore, to fully capture the effect of tone frequency on the neural activity to 

complex rhythms, higher-level properties of the stimulus such as onset structure, which 

plays a role in inducing the perception of beat and meter (Povel and Essens, 1985), need to 

be taken into account. This was achieved here through a finer-grained frequency analysis 

focused on neural activity elicited at beat- and meter-related frequencies. Enhanced activity 

at the beat frequency was observed with low tones, irrespective of the rhythmic complexity 

of the stimulus. However, when taking into consideration all meter frequencies, neural 
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activity was enhanced with low tones only in the syncopated rhythm, whose envelope did 

not contain prominent peaks of energy at meter-related frequencies.  

These findings corroborate the hypothesis that bass sounds stimulate greater involvement 

of top-down, endogenous processes, possibly via stronger engagement of motor brain 

structures (Kung et al., 2013; Patel and Iversen, 2014; Todd and Lee, 2015b, 2015a). 

Activation of a widely distributed sensory-motor network may thus have facilitated the 

selective neural enhancement of meter relevant frequencies in the current study, especially 

when listening to the low-tone syncopated rhythm, which relies heavily on endogenous 

processes. This association between rhythmic syncopation, low-frequency tones, and 

recruitment of a sensory-motor network, could explain why musical genres specifically 

tailored to induce a strong urge to move to the beat (i.e., groove-based music such as funk) 

often contain a syncopated bass line (e.g. Witek, 2017). Accordingly, syncopation is 

perceived as more prominent when produced by a bass drum than a hihat cymbal (Witek et 

al., 2014a), and rhythmically complex bass lines are rated as increasingly likely to make 

people dance (Wesolowski and Hofmann, 2016).  

 

3.5.2 Critical role of temporal attention 

The greater involvement of endogenous processes in the syncopated rhythm carried by low 

tone could be driven by an increase in endogenously generated predictions or attention to 

stimulus timing necessitated by carrying out the temporal deviant identification task. An 

internally generated periodic beat constitutes a reference used to encode temporal 

intervals in the incoming rhythmic stimulus (Essens and Povel, 1985; Povel and Essens, 

1985; Large and Jones, 1999), and therefore contributes to successful identification of 

changes in tone duration (Bergeson and Trehub, 2006; Grube and Griffiths, 2009). In the 

current study, such an endogenous mechanism might have been especially utilized in the 

condition where the rhythmic structure of the input matched the beat and meter percept to 

a lesser extent (Povel and Essens, 1985; Grube and Griffiths, 2009), and where low tones 

made the identification of fine duration changes more difficult due to lower temporal 

resolution of the auditory system with low-frequency tones (Moore et al., 1993). The 

relative contribution of these endogenous temporal processes to the low tone benefit 

observed here was addressed in SI Appendix Control Experiment 2: Effect of Behavioral 
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Task, where participants were instructed to detect and identify any changes in broadly 

defined sound properties (pitch, tempo and loudness) when in fact none were present. This 

experiment yielded no effect of tone frequency, suggesting that the low tone benefit only 

occurred when the behavioral task required attention to be focused on temporal properties 

of the stimulus. Hence, even though a widespread sensory-motor network supporting 

endogenous meter generation can be directly activated by bass sounds when the intensities 

exceed the vestibular threshold (Todd and Lee, 2015), attending to temporal features of the 

sound is critical to the low tone benefit at intensities beneath the vestibular threshold. 

Similarly, the association between temporal attention and vestibular sensory-motor 

activation may occur in music and dance contexts aimed at encouraging people to move to 

music. Indeed, the intention to move along with a stimulus is likely to direct attention to 

stimulus timing, and the resulting body movement, in turn, enhances vestibular activation. 

 

3.5.3 Conclusion 

The present study provides direct evidence for selective brain processing of musical rhythm 

conveyed by bass sounds, thus furthering our understanding of the neurobiological bases of 

rhythmic entrainment. We propose that the selective increase in cortical activity at beat- 

and meter-related frequencies elicited by low tones may explain the special role of bass 

instruments for delivering rhythmic information and inducing sensory-motor entrainment in 

widespread musical traditions. Our findings also pave the way for future investigations of 

how acoustic frequency content, combined with other features such as timbre and intensity, 

may efficiently entrain neural populations by increasing functional coupling in a distributed 

auditory-motor network. A fruitful avenue for probing this network further is through 

techniques with greater spatial resolution, such as human intracerebral recordings 

(Nozaradan et al., 2016a). Ultimately, identifying sound properties that enhance neural 

tracking of the musical beat is timely, given the growing use of rhythmic auditory 

stimulation for the clinical rehabilitation of cognitive and motor neurological disorders 

(Hove and Keller, 2015).  
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3.6 Materials and methods 

Participants. Fourteen healthy individuals (mean age = 28.4, SD = 6.1; 10 females) with 

various levels of musical training (mean = 6.9, SD = 5.6, range 0-14 years) participated in the 

study after providing written informed consent. All participants reported normal hearing 

and no history of neurological or psychiatric disease. The study was approved by the 

Research Ethics Committee of Western Sydney University.  

Auditory stimuli. The auditory stimuli were created in Matlab R2016b (MathWorks, USA) 

and presented binaurally through insert earphones with an approximately flat frequency 

response over the range of frequencies included in the stimuli (ER-2, Etymotic Research). 

The stimuli consisted of three different rhythms of 2.4 s duration looped continuously for 60 

s. All rhythms comprised 12 events, each individual event lasting 200 ms. The structure of 

each rhythm was based on a specific patterning of sound (pure tones; 10 ms rise and 50 ms 

fall linear ramps) and silent events (amplitude at 0), as depicted in Figure 3.1. The carrier 

frequency of the pure tone was either 130 Hz (low-tone frequency) or 1236.8 Hz (high-tone 

frequency; 39 semitones higher than the low-tone frequency). These two frequencies were 

chosen to fall within spectral bands where rhythmic fluctuations either correlate (100-200 

Hz) or do not correlate (800-1600 Hz) with sensory-motor entrainment to music, as 

indicated by previous research (Burger et al., 2012, 2018). To take into account the 

differential sensitivity of the human auditory system across the frequency range, the 

loudness of low and high tones was equalized to 70 phons using the time-varying loudness 

model of Glasberg and Moore (2016; by matching the maximum short-term loudness of a 

single 200-ms high-tone and low-tone sound), and held constant across participants.  

 One stimulus rhythm consisted of an isochronous train of tones with no silent events. The 

two other rhythms were selected based on previous evidence that they induce a periodic 

beat based on grouping by 4 events (i.e., 4 x 200 ms = 800 ms = 1.25 Hz beat frequency) 

(Nozaradan et al., 2012, 2016b, 2018). Related metric levels corresponded to subdivisions of 

the beat period by 2 (2.5 Hz) and 4 (i.e., 200-ms single event = 5 Hz), and grouping of the 

beat period by 3 (i.e., 2.4-s rhythm = 0.416 Hz). One rhythm was designed to be 

unsyncopated, as a sound event coincided with every beat in almost all possible beat 

positions (syncopation score = 1; calculated as in Longuet-Higgins and Lee, 1984). The 

internal representation of beat and meter should thus match physical cues in this rhythm. 
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The other rhythm was syncopated, as it involved some beat positions coinciding with silent 

events rather than sound events (syncopation score = 4). The internal representation of 

beat and meter should thus match external cues to a lesser extent than in the unsyncopated 

rhythm.  

Experimental design and procedure. Crossing tone frequency (low, high) and rhythm 

(isochronous, unsyncopated, syncopated) yielded six conditions that were presented in 

separate blocks. The order of the 6 blocks was randomized, with the restriction that at least 

one high-tone and one low-tone block occurred within the first three blocks. These blocks 

were presented in an EEG session followed by a tapping session, with the same block order 

for the two sessions. Each block consisted of 8 trials in the EEG session (2-4 s silence, 

followed by the 60-s stimulus), and 2 trials in the tapping session.  

EEG session and behavioral task. In each trial of the EEG session, the duration of the 

steady-state portion of one randomly chosen sound event was either increased or 

decreased by 20% (40 ms), yielding 4 “longer” and 4 “shorter” deviant tones in each block. 

Participants were asked to detect the deviant tone and report after each trial whether it 

was longer or shorter than other tones comprising the rhythm. These deviants could appear 

only in the 3 repetitions of the rhythm prior to the last repetition, and were restricted to 3 

possible positions within each rhythm. In the unsyncopated and syncopated rhythms, these 

positions corresponded to sound events directly followed by a silent event. This was done to 

minimize the differences in task difficulty between unsyncopated and syncopated rhythms, 

as the perception of duration might differ according to the context in which a deviant tone 

appears (i.e. whether it is preceded and followed by tones or silences). For the isochronous 

rhythm, 3 random positions were chosen. The last 4 repetitions of the rhythms of all trials 

were excluded from further EEG analyses. The primary purpose of the deviant identification 

task was to ensure that participants were attending to the temporal properties of the 

auditory stimuli. To test whether the difficulty of deviant identification varied across 

conditions, percent-correct responses were compared using a repeated-measures ANOVA 

with factors tone frequency (low, high) and rhythm (isochronous, unsyncopated, 

syncopated).  

Participants were seated in a comfortable chair and asked to avoid any unnecessary 

movement or muscle contraction, and to keep their eyes fixated on a marker displayed on 
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the wall ~1 m in front of them. Examples of the “longer” and “shorter” deviant tones were 

provided before the session to ensure that all participants understood the task.  

Stimulus sound analysis with cochlear model. The cochlear model used to analyze the 

stimuli applied a Patterson-Holdsworth ERB filter bank with 128 channels (Patterson and 

Holdsworth, 1996), followed by Meddis’ inner hair-cell model (Meddis, 1986), as 

implemented in the Auditory Toolbox for Matlab (Slaney, 1998). The output of the cochlear 

model was subsequently transformed into the frequency-domain using the fast Fourier 

transform (FFT) and averaged across channels. For the unsyncopated and syncopated 

rhythms, the magnitudes obtained from the resultant modulation spectrum were then 

expressed as z-scores, as follows: (x – mean across the 12 frequencies)/SD across the 12 

frequencies (Nozaradan et al., 2012, 2017b, 2018; Chemin et al., 2014; Cirelli et al., 2016).  

EEG acquisition and preprocessing. The EEG was recorded using a Biosemi Active-Two 

system (Biosemi, Amsterdam, Netherlands) with 64 Ag-AgCl electrodes placed on the scalp 

according to the international 10/20 system. The signals were referenced to the CMS 

(Common Mode Sense) electrode and digitized at 2048 Hz sampling rate. Details of EEG data 

preprocessing are in SI Appendix. The cleaned EEG data were segmented from 0 to 50.4 s 

relative to the trial onset (i.e., exactly 21 repetitions of the rhythm, thus excluding 

repetitions of the rhythm where the deviant tones could appear), re-referenced to the 

common average, and averaged across trials in the time-domain separately for each 

condition and participant (Nozaradan et al., 2011, 2017b). The EEG preprocessing was 

carried out using Letswave6 (http://www.nocions.org/letswave) and Matlab. Further 

statistical analyses were carried out using R (version 3.4.1, https://www.R-project.org), with 

Greenhouse-Geisser correction applied when the assumption of sphericity was violated and 

Bonferroni-corrected post-hoc tests to further examine significant effects.  

Frequency-domain analysis of EEG responses. For each condition and participant, the 

obtained averaged waveforms were transformed into the frequency-domain using FFT, 

yielding a spectrum of signal amplitudes (in μV) ranging from 0 to 1024 Hz, with a frequency 

resolution of 0.0198 Hz. Within the obtained frequency spectra, the signal amplitude can be 

expected to correspond to the sum of (i) EEG responses elicited by the stimulus, and (ii) 

unrelated residual background noise. To obtain valid estimates of the responses, the 

contribution of noise was minimized by subtracting, at each frequency bin, the average 

amplitude at the neighboring bins (2nd to 5th on both sides) (Mouraux et al., 2011; 
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Nozaradan et al., 2012). For each condition and participant, noise-subtracted spectra were 

then averaged across all channels to avoid electrode-selection bias (as the response may 

originate from a widespread cortical network), and to account for individual differences in 

response topography (Tierney and Kraus, 2014; Nozaradan et al., 2016b). The noise-

subtracted, channel-averaged amplitudes at the expected frequencies (based on sound 

analysis with the cochlear model) in response to each stimulus were then measured for 

each condition and participant at the exact frequency bin of each expected response (note 

that the length of the analyzed epochs contained an integer number of rhythm cycles, so 

that the frequency bins were centered exactly at the frequencies of the expected 

responses).  

Overall magnitude of the EEG response. The overall magnitude of the EEG response in each 

condition was measured as the sum of amplitudes at the 12 frequencies expected in 

response to the unsyncopated and syncopated rhythms, and at 5 Hz and harmonics for the 

isochronous rhythm (only harmonics up to 45 Hz with amplitude significantly above 0 μV in 

the noise-subtracted EEG spectra were considered for each condition). Significance of the 

harmonics was assessed using the non-subtracted amplitude spectra, averaged over all 

electrodes and participants (Rossion et al., 2015). Responses were tested by z-scoring the 

amplitude at each harmonic with a baseline defined as 20 neighboring bins (second - 11th 

on each side), using the formula z(x) = (x - baseline mean)/baseline SD. Using this test, eight 

successive harmonics were considered significant for the low-tone and nine for the high-

tone isochronous condition, as they had z-scores greater than 2.32 (i.e. p<0.01, one-sample 

one-tailed t-test, testing signal>noise). To test whether the overall response was enhanced 

when the same rhythm was conveyed by low vs. high tones, three separate paired-samples 

t-tests were conducted on the isochronous, unsyncopated and syncopated rhythm.  

Relative amplitude at beat and meter frequencies. To assess the relative prominence of the 

specific frequencies in the EEG response to the unsyncopated and syncopated rhythm, 

amplitudes at the 12 expected frequencies elicited by each rhythm were converted into z-

scores, similarly to the analysis using the cochlear model (Nozaradan et al., 2012; Chemin et 

al., 2014; Cirelli et al., 2016) (see also SI Appendix for a control analysis using different 

normalization method). The z-score at the beat frequency (1.25 Hz) was taken as a measure 

of relative amplitude at the beat frequency. The greater this value, the more the beat 

frequency stood out relative to the entire set of frequency components elicited by the 
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rhythm (Nozaradan et al., 2016b). Additionally, the z-scores were averaged across 

frequencies that were related (0.416, 1.25, 2.5, 5 Hz) or unrelated (the remaining 8 

frequencies) to the theoretically expected beat and meter for these rhythms (Nozaradan et 

al., 2012). The greater the average z-score across meter frequencies, the more prominent 

was the response at meter frequencies relative to all elicited frequencies. Z-score values at 

beat and meter frequencies were compared across conditions using a 2x2 repeated-

measures ANOVAs with factors tone frequency (low, high) and rhythm (unsyncopated, 

syncopated). 

Finally, the z-scored EEG response at the beat frequency in the high-tone condition was 

subtracted from the response in the low-tone condition, separately for the unsyncopated 

and syncopated rhythm. These difference scores were compared with the corresponding 

difference scores calculated from the z-scored magnitudes of the cochlear model output 

using one-sample t-tests. The same comparison was conducted with the averaged response 

at the meter-related frequencies. These comparisons between cochlear model output and 

EEG responses are based on the assumption that if the EEG response is driven solely by 

early cochlear processes, the change in relative prominence between the low- and high-

tone conditions should be similar in the cochlear model output and in the EEG response. 

 

 

3.7 Supplementary Information 

3.7.1 Main Experiment  

EEG acquisition and preprocessing. The continuous EEG recordings were high-pass filtered 

offline at 0.1 Hz (4th order Butterworth filter) to remove very slow drifts from the signals. 

Artifacts produced by eye blinks were identified and removed participant-wise with 

independent component analysis (Jung et al., 2000) using the Runica algorithm (Bell and 

Sejnowski, 1995; Makeig, 2002) applied to the concatenated epochs from all blocks 

segmented from 0 to 60 s relative to the trial onset. A single independent component 

related to eye blinks was selected and removed for each participant based on visual 

inspection of its waveform and topography. If the amount of variance explained by the 

component was less than at least 10 other components, then it was not removed from the 



 139  

signal (1 participant). Channels containing excessive artifacts or noise were linearly 

interpolated using the 3 closest channels (1 channel interpolated in 3 participants).  

 

Beat tapping session. The main goal of the beat-tapping task performed after the EEG 

session was to confirm theoretical assumptions about entrainment to the beat based on a 

preferential grouping by four events (i.e. beat period of 800 ms) for the present rhythmic 

sequences and tempo (Nozaradan et al., 2012, 2016b, 2018), and to examine possible 

differences in this preferential grouping between low- and high-tone conditions. 

Participants were asked to tap the index finger of their preferred hand in time with the 

regular, isochronous, pulse-like beat that they perceived in the rhythm. The experimenter 

provided a short pop-music example of a beat and then short examples of tapping to the 

unsyncopated and syncopated rhythm (according to theoretical beat frequency). It was 

emphasized that there were multiple plausible pulses and starting positions, and 

participants were encouraged to keep the beat as naturally as possible throughout the 

trials. The tapping was performed on a custom-built response box containing a piezoelectric 

sensor that registered taps, which were recorded as an audio file using PsychToolbox, 

version 3.0.14 (Brainard, 1997).  

Tap-times were extracted by locating the peaks in the signal recorded from the response 

box. The first and last taps of each trial were discarded from further analyses. The mean and 

coefficient of variation (SD/mean) of inter-tap intervals (ITIs) were calculated for each trial 

and averaged for each condition and participant. Mean ITI provides an index of the 

perceived beat period while the coefficient of variation is a measure of beat tapping 

variability throughout the trial. Repeated-measures ANOVAs were performed for the mean 

ITI and the coefficient of variation, with factors tone frequency (low, high) and rhythm 

(isochronous, unsyncopated, syncopated).  

The mean ITI for all three types of rhythm was predominantly 800 ms (as expected based on 

previous work; see Nozaradan et al., 2012, 2016b) which corresponds to grouping by four 

events (see Table 3.S1 and Fig. 3.S1). For the isochronous rhythm, a number of participants 

also tapped at a faster period of 400 ms (grouping by two events). No differences in the 

perceived beat period or its variability were observed between the high- and low-tone 

conditions for each type of rhythm, as revealed by non-significant effects involving the 

factor tone frequency in the ANOVAs on mean ITI and the coefficient of variation (Ps > 0.11).  
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Validity of the z-score standardization. Z-scoring the amplitudes at the 12 frequencies 

elicited by each rhythm (unsyncopated and syncopated) allows the relative enhancement of 

a particular subset of frequencies across different units, scales, and inputs to be compared. 

Nevertheless, z-scoring might be prone to biases to the extent that the absolute magnitudes 

of participants’ responses are dependent on the degree of amplitude variation they exhibit 

across the frequency components included in the calculation. Accordingly, larger z-scores 

might be assigned to participants with less variability in their responses, leading to unequal 

weighting of participants in the group statistics independently of the experimentally 

manipulated factors. To ensure that this was not the case in the current study, the 

variability of EEG response amplitudes across the 12 peaks was subjected to a 2 x 2 ANOVA 

with factors tone frequency (low, high) and rhythm (unsyncopated, syncopated). There was 

no significant effect of tone frequency [F(1,13) = 0.24, P = 0.64,	𝜂'&  < 0.01) and no 

interaction [F(1,13) = 1.26, P = 0.28, 𝜂'&  < 0.01], suggesting that the observed effect of low 

tone in the main analysis was not due to z-scoring of the EEG amplitudes.  

To address this issue further, we tested an alternative normalization method that was not 

dependent on the variability of EEG response amplitudes. In this method, response 

amplitudes were normalized by the maximum amplitude value across the 12 peaks elicited 

by each rhythm separately for each participant, thus rescaling the amplitudes to 1. A 2x2 

ANOVA with factors tone frequency (low, high) and rhythm (unsyncopated, syncopated) 

revealed greater relative amplitude at the beat frequency (main effect of tone frequency) 

[F(1,13) = 7.76, P = 0.015, 𝜂'&  = 0.11] and a significant interaction between the factors 

rhythm and tone frequency when taking the mean across meter frequencies [F(1,13) = 7.69, 

P = 0.016, 𝜂'&  = 0.06]). Similarly, the magnitudes of the cochlear model output were rescaled 

to 1 and difference scores between the low- and high-tone conditions were calculated 

separately for the beat and meter frequencies, and the unsyncopated and syncopated 

rhythm. The comparison to the corresponding difference scores calculated from the EEG 

response amplitudes rescaled to 1 revealed significantly larger difference score in the 

syncopated rhythm for the beat frequency [t(13) = 3.11, P = 0.03, d = 0.83] and mean meter 

frequencies [t(13) = 3.82, P = 0.009, d = 1.02]. For the unsyncopated rhythm, there was no 

significant effect for the beat frequency nor for meter frequencies (Ps = 1).  The similar 



 141  

outcome of this alternative analysis to the main analysis indicates that the z-score 

procedure did not artificially bias the results of the current study.  

 
 
 

 
 
Figure 3.S1. Tapping responses. Mean inter-tap interval (ITI) for each participant in each condition, depicted as 

single data points. One data point was removed for display purposes from the low-tone syncopated condition 

(the participant tapped with period 2.4 s, i.e. repetition of the whole rhythmic pattern). Coefficient of ITI 

variation is shown as error bars for each condition and participant. Meter frequencies are shown as horizontal 

lines at 400 ms (grouping by 2 events) and 800 ms (grouping by 4 events). Participants' tapping predominantly 

converged toward grouping by 4 events, with some participants tapping a faster beat (grouping by 2) for the 

isochronous rhythm. No significant differences in the mean ITI or the coefficient of variation were observed 

between low-tone (red) and high-tone (blue) conditions.  
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Table 3.S1. Descriptive statistics for the main experiment.  

 

Mean ± SD; ITI, inter-tap interval; IQR, interquartile range.  

  

  

Isochronous rhythm Unsyncopated rhythm Syncopated rhythm 

Low-tone  High-tone  Low-tone  High-tone  Low-tone  High-tone  

Temporal deviant 

identification task  

(mean % correct) 

83.92 ± 24.23 79.46 ± 27.12 78.57 ± 16.57 83.93 ± 15.83 69.64 ± 20.04 84.82 ± 15.64 

Tapping tempo 

(median ITI  ± IQR in ms) 

800.05 ± 

145.0 

800.17 ± 

314.8 
800.56 ± 10.51 801.83 ± 6.41 

800.48 ± 

92.46 

805.92 ± 

96.57 

Tapping variability 

(mean coefficient  

of variation) 

8.9 ± 8.67 6.64 ± 5.05 6.24 ± 3.60 6.55 ± 3.32 7.89 ± 4.67 10.75 ± 9.58 

EEG 

overall response 

magnitude (in μV) 

0.25 ± 0.12 0.18 ± 0.09 0.49 ± 0.20 0.43 ± 0.18 0.56 ± 0.21 0.54 ± 0.25 

EEG 

beat frequency (z-score) 
- - 1.88 ± 0.98 1.42 ± 0.99 1.07 ± 0.88 0.23 ± 0.94 

EEG 

mean meter frequencies 

(z-score) 

- - 0.9 ± 0.22 0.76 ± 0.19 0.75 ± 0.23 0.38 ± 0.40 
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3.7.2 Control Experiment 1: Effect of sound intensity 

In the main experiment, low-tone and high-tone carrier frequencies were equalized in 

loudness to account for the differential sensitivity of the human auditory system across the 

frequency range. It is, nevertheless, possible that residual loudness differences, with low-

tone rhythms being perceived as louder than high-tone rhythms due to possible over-

correction by the psychoacoustic model, could partly account for the effects observed in the 

main experiment. However, to our knowledge, there is no evidence as to whether louder 

rhythmic sequences induce overall larger responses or a selective enhancement at specific 

frequencies coinciding with perceived beat and meter. Control Experiment 1 addressed 

these questions by directly manipulating sound intensity.  

 

3.7.2.1 Materials and Methods 

All materials and methods were the same as in the main experiment, except as indicated 

below.  

Participants. Thirteen individuals were recruited (mean age = 26.8, SD = 8.4, 8 females), 

three of whom had participated in the main experiment. The amount of formal musical 

training ranged from 0 (5 participants) to 17 years.  

Auditory stimuli. The auditory rhythms were conveyed by a pure tone at 400.1 Hz (i.e. the 

geometric mean between high and low tone of the main experiment). Instead of 

manipulating tone frequency, we manipulated sound intensity by delivering each rhythm at 

either 80 dB SPL (“loud condition”) or at 70 dB SPL (“soft condition”). The 10 dB difference 

(corresponding approximately to doubling of the perceived loudness (see e.g. Hartmann, 

1997) was thus expected to be much larger than any possible residual loudness difference 

between low-tone and high-tone conditions in the main experiment. Importantly, the 

intensities were kept below the vestibular threshold (90-95 dB), as was the case in the main 

experiment.  

Data analysis. During preprocessing, an independent component containing eyeblink-

related artifacts was not removed for four participants. One channel was interpolated in 

three participants.  
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3.7.2.2 Results 

The mean percentages of correct responses in the behavioral task (Table 3.S2) were 

comparable to the main experiment. However, the ANOVA comparing behavioral responses 

across conditions did not show a significant main effect or interactions involving tone 

intensity (Ps > 0.62), although some participants reported the task to be more demanding in 

the soft condition.  

The overall magnitude of the EEG response (in μV) was not significantly different between 

the loud and soft conditions in either rhythm (Ps > 0.63). Importantly, the EEG response at 

the beat frequency was not significantly different in loud and soft conditions (no main effect 

of tone intensity, P = 0.77), and there was no interaction between the factors tone intensity 

and rhythm (P = 0.95). Similar results were obtained for the EEG responses at meter-related 

frequencies (Ps > 0.51). Together, these results do not support the alternative hypothesis 

that sound intensity might have been a confounding factor driving the effects observed in 

the main experiment. Conversely, these results suggest that, at sound intensities well above 

the detection threshold (but below the vestibular threshold), the global response magnitude 

and the EEG responses at beat and meter frequencies are not affected by differences in 

sound pressure level.  
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Table 3.S2. Descriptive statistics for Control Experiment 1. 

 

Mean ± SD.    

  

Isochronous rhythm Unsyncopated rhythm Syncopated rhythm 

Loud  Soft  Loud  Soft  Loud  Soft  

Temporal deviant 

identification task  

(mean % correct) 

83.33 ± 15.39 84.38 ± 16.1 81.25 ± 22.3 80.21 ± 21.62 86.46 ± 17.24 81.83 ± 24.25 

EEG 

overall response 

magnitude (in μV) 

0.2 ± 0.08 0.19 ± 0.08 0.44 ± 0.17 0.39 ± 0.15 0.53 ± 0.18 0.48 ± 0.19 

EEG 

beat frequency (z-score) 
- - 2.1 ± 0.59 2 ± 0.69 0.98 ± 0.98 0.92 ± 1.2 

EEG 

mean meter frequencies 

(z-score) 

- - 0.83 ± 0.16 0.76 ± 0.24 0.58 ± 0.22 0.61 ± 0.24 
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3.7.3 Control Experiment 2: Effect of behavioral task 

Control Experiment 2 was conducted to address the relative contribution of endogenously 

generated beat-based predictions associated with the temporal deviant identification task 

on the effect of tone frequency observed in the main experiment. In the main experiment, 

the nature of the deviant identification task required focusing attention on fine-grained 

timing in the stimulus rhythm. It has been shown that detection performance of temporal 

perturbations is better in highly metrical rhythms (such as unsyncopated rhythms) 

compared to weakly metrical rhythms (such as syncopated rhythms, e.g. Bergeson and 

Trehub, 2006; Grube and Griffiths, 2009). This is because highly metrical rhythms induce 

stronger representation of metric structure, where periodic beats are utilized to precisely 

encode temporal properties of the stimulus (Povel and Essens, 1985). Furthermore, the fine 

temporal resolution of the auditory system is slightly lower for low-frequency sounds 

compared to high-frequency sounds (Moore et al., 1993). These two factors in combination 

might have resulted in greater demands for endogenous generation of the meter in order to 

carry out the task in the low-tone syncopated condition of the main experiment.  

In the present control experiment, the behavioral task was adapted so that participants 

focused their attention on broadly defined properties of the auditory stimulus (pitch, 

tempo, and loudness), and not on the fine temporal properties as in the main experiment. 

That is, whereas instructions in the main experiment encouraged focus on fine-grained 

event timing relative to the perceived beat (to identify shorter vs. longer deviants), 

instructions in the current experiment encouraged general vigilance rather than attention 

specifically to temporal structure. These task instructions, combined with the fact that no 

actual changes were present in any of the trials, were assumed to guarantee similar 

demands for endogenous meter generation across conditions.  

 

3.7.3.1 Materials and Methods 

Materials and methods were the same as in the main experiment, except as indicated 

below.  

Participants. Fifteen individuals were recruited (9 females, mean age = 27.5, SD = 8.7), none 

of whom had participated in the main experiment. The number of years of formal musical 

training ranged from 0 to 17 years (mean = 2.6, SD = 5.3).  
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Behavioral task. The rhythmic sequences did not contain any shorter or longer sound 

events, in contrast with the main experiment. However, to ensure that participants were 

generally attentive, they were asked to listen carefully to the stimuli and report after each 

trial any change in pitch, loudness, or tempo that was perceived. There were in fact no 

actual changes in any of the trials (and therefore quantitative assessment of ‘identification’ 

performance was not conducted). However, it can be noted that, possibly due to the 

repetitive nature and long duration of the stimuli, participants reported hearing very subtle 

(apparently illusory) changes in most trials.  

Data analysis. During preprocessing, an independent component containing eyeblink-

related artifacts was not removed for four participants, because the variance explained by 

the component was smaller than at least for 10 other components. One to three channels 

were interpolated in six participants.  

 

3.7.3.2 Results 

The overall magnitude of the EEG response was commensurate in the low-tone and high-

tone conditions for all rhythms types, as revealed by the paired-samples t-tests (Ps = 1, 

Bonferroni-corrected). As for the relative amplitude at beat frequency, there were no 

significant differences between conditions (Ps > 0.52). Similarly, the ANOVA on meter-

related frequencies revealed no significant main effects or interactions (Ps > 0.29). These 

results suggest that the effect of tone frequency is dependent on the attentional focus of 

the listener. Together, results of the main experiment and Control Experiment 2 suggest 

that the EEG response at beat and meter frequencies is boosted when the behavioral task 

requires focusing attention on temporal properties of the stimulus, particularly in 

syncopated rhythms conveyed by bass sounds. Note that these results do not imply that 

attention exclusively to tone duration per se is necessary for the low tone benefit. In 

everyday contexts, attention is also directed to temporal properties of rhythm when 

listening to expressively timed performances, where micro-timing variations are a key 

determinant of performance quality (Repp, 1992; Gabrielsson, 2003; Istók et al., 2013), 

coordinating body movements with music while dancing (Burger et al., 2014), or 

synchronizing with others during group music making (Keller et al., 2014).  
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Table 3.S3. Descriptive statistics for Control Experiment 2. 

 

Mean ± SD.   

 

  

  

Isochronous rhythm Unsyncopated rhythm Syncopated rhythm 

Low-tone  High-tone  Low-tone  High-tone  Low-tone  High-tone  

EEG 

overall response 

magnitude (in μV) 

0.15 ± 0.07 0.15 ± 0.05 0.35 ± 0.16 0.37 ± 0.19 0.43 ± 0.17 0.42 ± 0.14 

EEG 

beat frequency (z-score) 
- - 0.11 ± 0.96 0.05 ± 1.05 0.02 ± 0.91 -0.15 ± 0.92 

EEG 

mean meter frequencies 

(z-score) 

- - 0.01 ± 0.55 0.03 ± 0.5 -0.04 ± 0.47 -0.04 ± 0.4 
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4 Study 3: Neural and behavioral evidence for frequency-selective 

context effects in rhythm processing in humans  

 

 

 

This study has been published in Cerebral Cortex Communications in 2020.   
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To further examine the flexibility of the transformation, Study 3 investigated the role of 

directly preceding auditory input by presenting participants with acoustic sequences that 

gradually changed from high to low contrast at meter periodicities or the other way around. 

The results showed that the enhancement of meter periodicities in the neural response and 

movement can be boosted when the directly preceding input contains high contrast at 

these periodicities, and this context effect depends on the musical training of the listener. 

Thus, this study demonstrated that the transformation relevant for meter perception 

cannot be predicted solely from the current acoustic input, but depends on recent past, and 

this effect may be flexibly modulated based on long-term experience.  

 
4.1 Abstract 

When listening to music, people often perceive and move along with a periodic meter. 

However, the dynamics of mapping between meter perception and the acoustic cues to 

meter periodicities in the sensory input remain largely unknown. To capture these 

dynamics, we recorded the EEG while non-musician and musician participants listened to 

nonrepeating rhythmic sequences where acoustic cues to meter frequencies either 

gradually decreased (from regular to degraded) or increased (from degraded to regular). 

The results revealed greater neural activity selectively elicited at meter frequencies when 

the sequence gradually changed from regular to degraded compared to the opposite. 

Importantly, this effect was unlikely to arise from overall gain, or low-level auditory 

processing, as revealed by physiological modeling. Moreover, the context effect was more 

pronounced in non-musicians, who also demonstrated facilitated sensory-motor 

synchronization with the meter for sequences that started as regular. In contrast, musicians 

showed weaker effects of recent context in their neural responses and robust ability to 

move along with the meter irrespective of stimulus degradation. Together, our results 

demonstrate that brain activity elicited by rhythm does not only reflect passive tracking of 

stimulus features, but represents continuous integration of sensory input with recent 

context. 
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4.2 Introduction 

One of the biggest challenges in understanding brain function is to explain how stable 

perception is experienced from continuously changing, ambiguous sensory input. To achieve 

such robustness, it has been proposed that the brain uses prior experience to instantiate 

expectations, which dynamically interact with the incoming input to shape perception 

(Dolan et al., 1997; Ahissar and Hochstein, 2004; Eger et al., 2007; Esterman and Yantis, 

2010; Melloni et al., 2011; Holdgraf et al., 2016; de Lange et al., 2018). In particular, 

stimulus history, that is, recent context, plays a key role in supporting stable perception, 

especially in the face of degraded sensory input (Snyder et al., 2015). Effects of recent 

context involve a form of attraction whereby the perception of the current sensory input is 

biased towards recently encountered stimuli (Liberman et al., 2016; Cicchini et al., 2018). 

Such effects have been reported in perception of simple features (Raviv et al., 2012; Fischer 

and Whitney, 2014; Arzounian et al., 2017; Chambers et al., 2017), but also higher level 

attributes (Cicchini et al., 2014; Liberman et al., 2014; Suárez-Pinilla et al., 2018; Xia et al., 

2018), scene perception (Snyder and Weintraub, 2013; Manassi et al., 2017), and 

reproduction of single temporal intervals (Jazayeri and Shadlen, 2010; Cicchini et al., 2012).  

Similar robustness to input degradation seems to be present in perception of rhythms 

(sequences of events in time). When listening to rhythms, particularly in musical contexts, 

humans often spontaneously organize the incoming sounds in time according to a perceived 

nested set of periodic pulses, usually referred to as meter (Cohn, 2020). Meter perception is 

considered a cornerstone of temporal prediction and sensory-motor synchronization with 

rhythm (Toiviainen et al., 2010; Vuust et al., 2018). Traditionally, it has been assumed that 

whether (and what) metric structure is perceived depends on the acoustic cues in the 

stimulus, namely distribution of salient acoustic events with respect to the putative pulse 

positions (Essens and Povel, 1985; Parncutt, 1994; Toiviainen and Snyder, 2003; Tomic and 

Janata, 2008; Large and Snyder, 2009). In other words, the more “pulse-like” the physical 

structure of the sensory input (i.e. the more salient acoustic events are preferentially 

concentrated at pulse positions), the more likely a meter is perceived. However, recent 

evidence shows that meter perception is quite robust to input deviations from a pulse-like 

template (Repp et al., 2008; Sioros et al., 2014; Witek et al., 2014b; Câmara and Danielsen, 

2018), and mapping between the sensory input and perceptual experience is not 
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straightforward (London et al., 2017; van der Weij et al., 2017). This indicates that meter 

constitutes a high-level perceptual phenomenon that shows a degree of flexibility and 

stability with respect to the physical stimulus.  

In line with this view, a growing body of evidence suggests that meter perception is related 

to fluctuations of neural activity time-locked to the perceived metric pulses (Nozaradan et 

al., 2018, 2011, 2012, 2016a, 2016b, 2017a, 2017b; Chemin et al., 2014; Tierney and Kraus, 

2014; Tal et al., 2017; Lenc et al., 2018; Hickey et al., 2020; Kaneshiro et al., 2020). 

Importantly, instead of passively tracking the rhythmic structure of the acoustic input, the 

elicited neural activity is transformed towards selectively tracking the perceived meter, 

particularly when input deviates from the pulse-like template (Nozaradan et al., 2017a). This 

is manifested as selective enhancement of brain activity elicited at frequencies 

corresponding to the rates of the perceived metric pulses, relative to activity at other 

frequencies that are unrelated to the perceived meter but can be nonetheless prominent in 

the acoustic input (Nozaradan et al., 2011, 2012; Tal et al., 2017). This transformation has 

been observed already in the human auditory cortex (Nozaradan et al., 2016a, 2018), and 

possibly involves functional connections within an extended cortico-subcortico-cortical 

network (Nozaradan et al., 2017b). However, how sensory and endogenous signals are 

continuously weighted to build this neural representation of rhythm remains unknown. The 

current study addresses this question by directly testing the influence of recent history of 

auditory stimulation on the selective neural tracking of the perceived meter.  

Similarly to other perceptual domains, effects of recent context are arguably at play during 

meter perception (London, 2004). It has been proposed by a number of music theorists that 

once a stable meter has been established, it tends to withstand ambiguities produced by the 

continuously changing rhythmic surface of music (Cooper and Meyer, 1963; Lerdahl and 

Jackendoff, 1983). While there is evidence suggesting that meter induced by a recent input 

can affect perception of subsequent time intervals (Desain and Honing, 2003; McAuley and 

Jones, 2003), the persistence of meter in the face of a degraded sensory input remains 

unclear (the general term "degradation" refers here to an input deviation from a template, 

i.e. how much sensory cues support a particular perceptual interpretation).  

In the current study, we tested the impact of recent context on meter processing by 

creating auditory sequences gradually changing from a regular rhythm (onset structure 
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matching the pulse-like template of a given meter) to a degraded rhythm (irregular onset 

structure completely ambiguous with respect to the given meter). We also created flipped 

versions of these sequences, yielding sequences gradually changing from degraded to 

regular. EEG activity was recorded from participants while listening to these sequences 

without overt movement. After the EEG session, participants were asked to tap with the 

hand in time with the perceived pulse of an additional set of sequences constructed with 

the same algorithm as those used in the EEG session. This behavioral measure therefore 

indicated the induced metric periodicities across both sets of sequences. Because the 

envelope spectra of the stimuli were strictly identical across the original and flipped 

sequences, different EEG spectra across the two sequence directions would provide direct 

evidence for context-dependent neural representations of rhythm. This context effect 

would be informative about how the relative contribution of sensory and endogenous 

signals continuously shape neural representation of dynamic input, particularly when the 

sensory information is degraded. We compared groups of musicians and non-musicians, 

with the hypothesis that formal musical training would provide the listener with robust 

ability to perceive meter irrespective of sensory input degradation, thus decreasing 

sensitivity to recent context (Cicchini et al., 2012).  

 

 

4.3 Materials and Methods 

4.3.1 Participants 

Thirty-two healthy volunteers participated in the study after providing written informed 

consent. The sample consisted of a group of individuals with no formal musical training (N = 

16, mean age = 21.1 y, SD = 5.1 y, 9 females), and a group of musically trained participants 

(N = 16, mean age = 24.1 y, SD = 5.4 y, 13 females) with various levels of musical training 

(mean = 7.2 y, SD = 4.9 y). All participants reported normal hearing and no history of 

neurological or psychiatric disease. The study was approved by the Research Ethics 

Committee of Western Sydney University.  
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4.3.2 Data and code availability 

Experimental stimuli and data are publicly available online (Lenc et al., 2020) at 

https://doi.org/10.6084/m9.figshare.11366120.  

 

4.3.3 Auditory stimulation 

We created rhythmic patterns by assigning a grid of twelve 200-ms events, wherein 8 events 

were filled with sounds (440 Hz pure tone, 10 ms linear onset and offset ramp) and 4 events 

with silence in all possible permutations. After removing phase-shifted versions of the same 

pattern, this resulted in 43 unique patterns. To quantify how well the arrangement of sound 

events matched a pulse-like metric template, each pattern was analyzed with a model of 

syncopation proposed by Longuet-Higgins and Lee (1984), as implemented in the synpy 

package (Song et al., 2015). The syncopation scores were calculated assuming metrical 

structure comprising nested pulses with rates corresponding to 2, 4, and 12 events 

respectively (such as in a 3/4 meter). Given these particular pulse rates (i.e. meter 

frequencies), there were 12 possible ways to align the metric template with each analyzed 

rhythmic pattern (i.e. 12 meter phases, starting on either of the 12 events constituting the 

rhythmic patterns). For patterns with highly regular arrangements of sound intervals, the 

close match of the rhythmic structure and metric template for certain alignments would 

necessarily result in poor match for other alignments. In contrast, for patterns with highly 

ambiguous structure, there would be no single alignment resulting in close match between 

the rhythmic structure and the metric template. Therefore, we used the range of 

syncopation scores across the 12 possible meter phases (the highest minus the lowest 

score) as a measure of the regularity of each rhythmic pattern. This value also describes the 

degree of phase-stability of the meter induced by each pattern. While patterns with large 

ranges of syncopation strongly encourage perception of particular meter phases over 

others, there is no such preference for patterns with small syncopation ranges (Povel and 

Essens, 1985; Fitch and Rosenfeld, 2007). Based on this analysis, the 43 patterns were then 

categorized into 8 groups (syncopation ranges {8,7,6,5,4,3,2,1}, omitting the single rhythm 

with range of 9), i.e., from large syncopation range (regular patterns) to small syncopation 

range (ambiguous patterns).  
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Next, we created 57.6-sec long sequences, by concatenating 24 patterns randomly chosen 

(with repetition) from the 43 patterns in such a way that the range of syncopation 

decreased continuously throughout the sequence. To do so, three different patterns were 

chosen in each of the eight syncopation range groups from range value 8 to 1. This yielded 3 

x 8 = 24 patterns per sequence in total, with gradually decreasing meter phase stability. 

After randomly choosing a pattern within the desired syncopation-range group, its 

particular phase was chosen so that the syncopation score continuously increased 

throughout the sequence, i.e. increasing degradation with respect to the meter induced by 

the patterns (syncopation scores {-1,-1,0,1,2,3,4,4} for the eight syncopation range groups). 

This resulted in a sequence that gradually transformed from regular to degraded without 

structural changes likely to trigger mental phase-shifts that would markedly reduce the 

perceived syncopation (e.g. Fitch and Rosenfeld, 2007).  

In order to construct sequences with a gradual change in the opposite direction (from 

degraded to regular), we created a time-inverted version of each 57.6-s sequence, so that 

the first event became the last event. We also added 2 sound events at the beginning and 

end of the sequence, which were excluded from the analyses (see Figure 4.1). This 

prevented spurious differences in the neural response between sequence directions, which 

could otherwise arise due to increased transient responses to sound events at the beginning 

of each sequence.  

Fifteen unique sequences and their respective inverted versions were generated, forming 

stimuli for two experimental conditions: the original sequences that evolved from low to 

high syncopation (regular-to-degraded condition) and their inverted versions that 

progressed from high to low syncopation (degraded-to-regular condition). Five additional 

sequences and their inverted versions were constructed for the tapping session. The 

auditory stimuli were created in Matlab R2016b (The MathWorks, Natick, MA) and 

presented binaurally through insert earphones (ER-2; Etymotic Research, Elk Grove Village, 

IL) at 75 dB SPL using PsychToolbox, version 3.0.14 (Brainard, 1997).  
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Figure 4.1. Illustration of the sequence generation method. A. Examples of individual constituent patterns used 

to construct the sequences. Each pattern contains 8 sounds (depicted as “x”), and 4 silences (depicted as “.”). 

The patterns were categorized based on the range of syncopation across all 12 possible meter phases 

(calculated separately for each pattern). Sequences were constructed by randomly sampling patterns 

according to their range of syncopation. After a pattern was selected, its particular phase (i.e. starting point) 

was sampled according to the particular syncopation score required. Bottom part of the panel depicts an 

example of a beginning and an end (padded with two sounds) of a single sequence. B. Top panel. Schematic of 

the experimental design. In the first session, participants listened to 15 sequences and their inverted versions 

without overt movement, and the EEG was recorded. This was followed by the second session, where 

participants tapped to five additional sequences and their inverted versions. B. Bottom panel. Examples of 

different signals (in the time domain) analyzed in the current study.  

 

 

4.3.4 Stimulus analysis 

Syncopation score. To calculate the evolution of syncopation scores across the generated 

sequences, the sequences were divided into 14.4-sec-long segments (72 events per 

segment) with 50% overlap, yielding 7 distinct segments per sequence. To evaluate whether 

the corresponding segments in the original and inverted sequences differed in their degree 
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of degradation with respect to the metric template, syncopation scores proposed by 

Longuet-Higgins and Lee (1984) were calculated for each segment, assuming meter with 

nested pulses at the rates of 2 and 4 events. This corresponded to the meter used during 

sequence construction without the slowest pulse, as the individual constituent patterns 

were not repetitively looped in the sequence. Importantly, syncopation scores are 

dependent on the particular alignment of the metric template with the analyzed rhythmic 

pattern (i.e. meter phase). However, the phase of the perceived metric structure was 

unknown in the current experimental design. Therefore, syncopation scores for each 

segment were calculated separately after moving the analysis window by -2 to 2 events 

relative to the first event of the segment (thus including the padding sounds for the first and 

last segment of each sequence). The minimum syncopation score across the phase shifts 

was taken, assuming that listeners have a tendency to align their perceptual metric 

organization in a way that yields the lowest syncopation (Povel and Essens, 1985; Fitch and 

Rosenfeld, 2007). Syncopation scores were compared across conditions using a linear mixed 

model with Direction (regular-to-degraded vs. degraded-to-regular) and Segment (1-7) as 

fixed effects. In this test and further statistical tests, for all models including the factor 

Segment as a fixed effect, the order of segments from the degraded-to-regular condition 

was always reversed in order to compare responses to the exact inverted versions of the 

same rhythmic stimulus.  

The analysis of the syncopation scores calculated for the 15 stimulus sequences used in the 

EEG session (Figure 4.S1) yielded a significant interaction between the factor Direction and 

Segment (F6,182 = 10.06, P < 0.0001, BF10 > 100), suggesting that across trials, inversion of the 

sequences affected only certain segments. Post-hoc contrasts revealed that the syncopation 

score was significantly higher for the degraded-to-regular condition in segment 2 (β = -2.33, 

t182 = -4.7, P < 0.0001, 95% CI = [-3.31, -1.35]) and 3 (β = -2.67, t182 = -5.37, P < 0.0001, 95% 

CI = [-3.65, -1.69]), and for the regular-to-degraded condition in segment 4 (β = 1.60, t182 = 

3.22, P = 0.01, 95% CI = [0.62, 2.58]). Even though these results suggest that the inversion 

procedure did not perfectly preserve the theoretically expected amount of syncopation in 

the sequences, the direction of the effect was opposite to the effect of context we expected 

to find in the EEG responses. In other words, according to the syncopation scores, there 

should be slightly better match between the input and metric template in the middle 

segment in the degraded-to-regular condition.  
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The procedure used to construct the auditory stimuli in the current study was based on 

variations in syncopation that assumed a specific metrical interpretation ({2,4} meter with 

nested pulses at rates of 2 and 4 events). However, there are other possible metrical 

interpretations of the sequences, which were not considered during stimulus construction. 

To ensure that the stimulus sequences did indeed change, in theory, from an unambiguous 

{2,4} meter into highly syncopated sequences instead of converging onto a different meter, 

we calculated the evolution of syncopation scores across the sequence for two other 

possible metrical interpretations ({3,6} meter with nested pulses at rates of 3 and 6 events; 

{2,6} meter with rates of 2 and 6 events). These three different metrical interpretations, 

({2,4}, {3,6} and {2,6}) constitute the simplest nested groupings of the events based on 

grouping by two or three events. If the sequences modulated into a different meter, then 

we would expect to find monotonically decreasing syncopation scores for that meter as the 

sequence progressed from regular to degraded. As shown in Figure 4.S2, this was not the 

case for the two other tested meters, further validating the stimulus construction method 

that was used.  

 

Cochlear model. The main motivation for using the exact inversions of the regular-to-

degraded sequences to generate the degraded-to-regular sequences was to ensure that the 

envelope magnitude spectra of the original and inverted sequence were identical (due to 

the properties of the Discrete Fourier Transform). This way, differences between the 

original and inverted sequences in the EEG response across corresponding segments can 

only be explained by recent stimulus history. To ensure that other nonlinearities in the 

auditory system (such as adaptation) were not likely to explain the differences between the 

original and inverted sequences in the EEG response, the stimuli were analysed with a 

cochlear model. The model consisted of a Patterson-Holdsworth ERB filter bank with 100 

channels (Patterson and Holdsworth, 1996), followed by Meddis’ hair-cell model (Meddis, 

1986), as implemented in the Auditory Toolbox for Matlab (Slaney, 1998). The output of this 

model is designed to approximate sound representation in the auditory nerve, after 

narrowband filtering at the level of cochlea and nonlinearities introduced at the hair-cell 

level (adaptation, compression). The output of the cochlear model for each trial and 

sequence direction was segmented into seven 14.4-sec-long segments with 50% overlap (as 

for calculation of the syncopation scores). The obtained time-domain signals were averaged 



 160  

across trials separately for each 14.4-s segment and sequence direction, and transformed 

into the frequency-domain using fast Fourier transform (FFT, yielding a spectral resolution 

of 1/14.4 s, i.e. approximately 0.069 Hz). The resulting magnitude spectra were then 

averaged across cochlear channels.  

As depicted in Figure 4.2, none of the obtained spectra showed clear peaks emerging from 

the spectral background, except at the frequency of individual events (5 Hz), and half this 

rate (2.5 Hz). This was due to the fact that none of the patterns making up the sequences 

were consistently repeated within the sequence, thus yielding no prominent periodicities in 

the sequences except those related to individual events and successions of two events. As 

the sequences gradually transformed from regular to degraded, the prominence of the peak 

at 2.5 Hz decreased over the segments, and the spectral energy spread across other 

frequencies, thus indicating, as intended, the absence of prominent cues to any particular 

higher-order structure beyond the event rate.  

To make sure that the output of the cochlear model was not significantly different between 

sequence directions, especially at the frequencies related to the induced meter, we 

measured the amplitude at specific frequencies in the obtained spectra. These frequencies 

corresponded to different possible groupings of the events comprising the sequence, i.e., 

considering cycles of 12 events (0.416 Hz) and 16 events (0.312 Hz) and their harmonics up 

to 5 Hz (individual event frequency). From this set (N = 21 frequencies), a subset of 

frequencies was categorized as related to the induced meter (1.25, 2.5 and 5 Hz, as 

confirmed by the tapping session; see section 4.3.8). These meter-related frequencies 

represent nested grouping of the individual event rate (5 Hz) by 2 (2.5 Hz) and 2 (1.25 Hz), 

thus corresponding to the meter used to construct the sequences (as for the syncopation 

score calculation). All other frequencies were considered meter-unrelated. The amplitude at 

each frequency was extracted either at the exact frequency, if a bin was centred at that 

frequency (14 frequencies), or otherwise as a maximum value from the two closest bins. 

The 21 extracted amplitudes were z-scored as follows: (x − mean across the 21 

frequencies)/SD across the 21 frequencies. This standardization evaluated the magnitude at 

each frequency relative to the other frequencies, and therefore allowed us to quantify how 

much a particular subset of frequencies (here meter-related frequencies) stood out relative 

to the whole set of frequencies. Because this measure is invariant to differences in unit and 

scale, it also enabled us to objectively measure the relative distance between stimulus 



 161  

representation at the earliest stages of the auditory pathway (estimated with the cochlear 

model) and the elicited EEG response.  

The relative prominence of meter-related frequencies in the cochlear model output 

(considering the whole set of 21 extracted frequencies) was calculated as a mean z score at 

1.25, 2.5 and 5 Hz. These meter-related z scores were compared between the two sequence 

directions across segments to ensure that the inversion of the stimulus was unlikely to 

introduce significant differences in the prominence of meter frequencies at the earliest 

stages of the auditory pathway. For this comparison, the z-scored amplitudes were 

extracted in the way described above but separately for each trial (i.e. without first 

averaging across trials in the time domain), and fitted with a mixed model (fixed effects 

Direction and Segment). There were no significant differences between the original and 

inverted condition (main effect of Direction, F1,182 = 0.01, P = 0.92, BF10 = 0.15; interaction of 

Direction and Segment, F6,182 = 0.64, P = 0.7, BF10 = 0.07). This result suggests that 

nonlinearities at the early stages of the auditory pathway are unlikely to account for any 

effects of context in the EEG responses.  

The same analyses performed on the 5 sequences used in the tapping session suggested 

similar differences in syncopation scores, including higher syncopation score for degraded-

to-regular condition in segment 2 (β = -2.8, t52 = -2.96, P = 0.03, 95% CI = [-4.7, -0.9]) and 3 

(β = -3, t52 = -3.17, P = 0.02, 95% CI = [-4.9, -1.1]), and no significant effects involving the 

factor Direction for the analysis with cochlear model (Ps > 0.82, BFs10 < 0.25).  

 

4.3.5 Experimental design and procedure 

The experiment consisted of an EEG and a tapping session directly following each other. In 

the EEG session, participants were presented with the 15 sequences and their inverted 

versions in random order with regular-to-degraded and degraded-to-regular trials 

alternating (counterbalanced across participants). Participants were seated in a comfortable 

chair with their head resting on a support, and asked to avoid any unnecessary movement. 

The support made contact with the head just below the most inferiorly positioned 

electrodes in order to prevent artifacts in the recorded EEG signals. Participants were asked 

to focus on the regular pulse in the auditory stimuli, and after each trial, to rate (on a scale 

from 1 to 5) how difficult on average they thought it would be to tap along the pulse in that 
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trial. To further encourage attention to the temporal properties of the stimuli, participants 

were also asked to detect slight transient decrease of tempo randomly inserted in two 

additional trials that were not included in the analyses. Before the EEG session, the 

experimenter provided examples of pulse in popular music and artificially constructed 

rhythms, to make sure participants understood the task.  

After the EEG session, participants were presented with five additional sequences and the 

respective inverted versions (as for the EEG session, with random order, sequence direction 

alternating, counterbalanced across participants), and were asked to tap the regular pulse 

they perceived in the sequences using the index finger of the preferred hand. Participants 

were instructed to tap any pulse they perceived in the rhythmic sequence, as long as the 

pulse they tapped was (i) isochronous and (ii) synchronized to the stimulus sequence. They 

were allowed to start and stop tapping within a trial depending on whether they perceived a 

periodic pulse or not, and change the period or phase of the pulse at any point.  Tapping 

was performed on a custom-built response box containing a piezoelectric sensor that 

converted the mechanical vibrations of the box due to the impact of the finger into 

electrical signals, which were recorded as audio files.  

 

4.3.6 EEG recording and preprocessing 

The EEG was recorded using a Biosemi Active-Two system (Biosemi, Amsterdam, 

Netherlands) with 64 Ag-AgCl electrodes placed on the scalp according to the international 

10/20 system, and two additional electrodes attached to the mastoids. Head movements 

were monitored using an accelerometer with two axes (front-back and left-right) attached 

to the EEG cap and recorded as 2 additional channels. The signals were digitized at a 2048-

Hz sampling rate and downsampled to 512 Hz offline.  

The continuous EEG signals were high-pass filtered at 0.1 Hz (4th order Butterworth filter) to 

remove slow drifts from the signal. Independent component analysis (Bell and Sejnowski, 

1995; Jung et al., 2000) was used to identify and remove artifacts related to eye blinks and 

horizontal eye movements based on visual inspection of their typical waveform shape and 

topographic distribution (2 components removed for 14 participants, 1 component for 18 

participants). Channels containing excessive artifacts or noise were linearly interpolated 

using the 3 closest channels (1 channel interpolated for 2 participants, 4 channels for 1 
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participant). The cleaned EEG data were segmented into 57.6-s long epochs, starting from 

0.4 s relative to trial onset (i.e. discarding the two padding sound events, see above section 

4.3.3 and Figure 4.1). If an epoch contained excessive artifacts it was discarded from further 

analyses (1 epoch for 1 participant), as well as the epoch for the trial with inverted version 

of the corresponding stimulus sequence. The epochs were then further segmented into 

seven 14.4-sec long segments with 50% overlap (as for the auditory stimulus analysis), re-

referenced to the common average, and averaged across trials in the time domain 

separately for each sequence direction, segment, and participant. Time-domain averaging 

was performed to increase the signal-to-noise ratio of the neural response by cancelling 

signals that were not time-locked to the stimulus (Mouraux et al., 2011; Nozaradan et al., 

2011, 2012). The EEG preprocessing was carried out using Letswave6 (www.letswave.org) 

and Matlab.  
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Figure 4.2. Cochlear model, EEG, and tapping spectra. The data are averaged across trials and plotted 

separately for each segment and sequence direction. The segments from the degraded-to-regular condition 

are displayed in reverse order to facilitate comparison across conditions (this way the segments with the same 

stimulus envelope spectra are aligned). The cochlear model output (Left) shows highly similar spectra across 

sequence directions, with decreasing prominence of meter-related frequencies (green) and increasing 

prominence of meter-unrelated frequencies (purple) as the sequence changes from regular to degraded. The 

EEG response (Middle) averaged across all channels and participants contains peaks at the frequencies present 

in the cochlear model output, with decreasing prominence of meter-related frequencies in the degraded 

segments. The tapping response (Right) averaged across participants shows prominent peaks at meter-related 

frequencies even in the degraded segments.  

 

 

4.3.7 Frequency-domain analysis of EEG response 

For each participant, sequence direction, and segment, the EEG signals were transformed 

into the frequency domain using FFT. The obtained EEG spectra can be assumed to consist 
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of a superposition of (i) responses to the stimulus concentrated into narrow peaks and (ii) 

residual background noise smoothly spread across the entire frequency range. To obtain 

valid estimates of the responses, the contribution of noise was minimized by subtracting, at 

each frequency bin, the average amplitude in the 2nd neighboring bin either side of it 

(Mouraux et al., 2011; Xu et al., 2017).  

Because the meter-unrelated frequencies did not form prominent narrow peaks in the 

output of the cochlear model, it was important to ensure that the noise subtraction would 

not selectively suppress meter-unrelated frequencies in the EEG spectra (which could lead 

to spurious increase in the relative prominence of meter frequencies if there was an overall 

increase in response gain). A control analysis conducted on the EEG spectra obtained 

without noise subtraction yielded similar results to the analysis incorporating noise 

subtraction (see Supplementary Results), showing that this processing step alone could not 

explain our results. The noise-subtracted spectra were averaged across all channels to avoid 

electrode-selection bias and to account for individual differences in response topography.  

To assess the relative prominence of the specific frequencies in the EEG responses elicited 

by the auditory stimuli, amplitudes at the 21 frequencies corresponding to different possible 

metric interpretations were then extracted from the spectra and z-scored in the same way 

as for the auditory stimulus analysis. A higher z score at a specific frequency indicates more 

prominent amplitude at that frequency relative to the whole set of 21 frequencies in the 

EEG response. Mean z-scored amplitude at frequencies related to the induced meter (5 Hz, 

2.5 Hz and 1.25 Hz, as theoretically expected based on the sequence generation algorithm 

and as indicated by tapping analysis) was taken as a relative measure of selective neural 

tracking of the meter periodicities (control analysis with raw EEG amplitudes yielded similar 

results to the analysis with z scores, see Supplementary Results). The mean meter-related z-

scored amplitudes were compared across sequence directions and segments, by fitting a 

mixed model (fixed effects Direction, Segment, and Musical Training). We expected to find a 

decrease in the prominence of meter-related frequencies in the segments with higher 

degradation, as in the auditory stimulus. Importantly, we used additional post-hoc contrasts 

to test whether the EEG response was affected by the direction of the sequence, by 

comparing the prominence of meter frequencies in segment one (most regular rhythm) to 

all subsequent segments, separately for each sequence direction. We hypothesized that in 

the regular-to-degraded condition, the decrease would take place in segments with higher 
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amounts of degradation compared to the degraded-to-regular condition. We also directly 

compared segments that had identical sound envelope spectra across sequence directions, 

to assess whether the EEG response at meter-related frequencies would be enhanced for 

particular segments in the regular-to-degraded condition.  

To further show that cochlear processing was unlikely to explain the effect of context in the 

EEG responses, the two signals were directly compared after standardization (z-scoring). In 

order to use the same processing pipeline for the EEG and cochlear model (see section 

4.3.4), the cochlear model spectra were noise-subtracted (2nd bin on each side) before z-

scoring the magnitudes across the meter-related and meter-unrelated frequencies. 

Subsequently, the difference in meter-related z scores between the cochlear model and the 

EEG response was calculated separately for each sequence direction, segment, and 

participant. The difference scores were compared between sequence directions, segments, 

and levels of musical training with a mixed model, and post-hoc contrasts compared the 

difference score between directions separately for each segment. Hence, if the EEG 

responses were fully explained by cochlear processing, the obtained scores should not 

significantly differ between the two sequence directions.  

 

4.3.8 Tapping analysis 

Tap times were extracted by locating points in the continuous signal from the tapping 

sensor where the (i) amplitude was increasing, (ii) amplitude exceeded a threshold set 

manually for each participant, and (iii) the amount of time from the previous detected point 

was larger than a constant set manually for each participant. These points corresponded to 

the tap onsets, i.e. the times where the finger hit the response box.  

To quantitatively evaluate the meter periodicities participants synchronized to, the median 

inter-tap interval (ITI) was calculated separately for each sequence direction and participant. 

The value was then compared to three possible meters each consisting of 3 nested 

periodicities (nested pulses at rates of {2,4}, {2,6}, and {3,6} events, corresponding to 

periods {200, 400, 800} ms; {200, 400, 1200} ms; and {200, 600, 1200} ms, respectively) by 

taking the minimum percent difference between the median ITI and the three possible 

periodicities comprising each meter. This minimum difference score was compared across 

meters and sequence directions using a mixed model. The meter that yielded the smallest 
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difference score was considered to be the meter predominantly induced by the stimulus 

construction method.  

To assess how well participants synchronized to the meter periodicities, it was important to 

consider the challenges stemming from the nature of the tapping task, whereby participants 

were free to tap any periodic pulse they perceived and could start and stop tapping at 

different points within a trial. Therefore there was no a priori information about the 

particular period and phase they were tapping, and the number of executed taps could 

differ between trials. Additionally, the tapped period and phase could change between and 

within individual analysis windows, without necessarily implying poor synchronization to the 

meter.  

To provide a measure of synchronization insensitive to infrequent changes in tapping phase 

within the analysis windows, an ITI-error index was calculated separately for each 

participant, sequence direction, segment, and trial. This was done by first removing ITIs 

longer than 2 seconds and finding the minimum percent difference between the median ITI 

and the three periodicities within the predominantly induced meter (i.e. 200, 400, 800 ms, 

see Results section). The period closest to the median ITI was considered the pulse chosen 

by the participant for the analyzed window, and ITI-error was calculated as percent 

difference between this period and each individual ITI. The ITI-errors were averaged across 

trials and analyzed using a mixed model with Direction, Segment, and Musical Training as 

fixed effects. If the participant tapped with a fixed period corresponding to one of the 

metric pulses, but changed the alignment of this pulse with respect to the rhythmic stimulus 

at some point in the analysis window, ITI-error would remain low. Hence, the main 

advantage of this measure was its robustness to changes in tapping phase. However, if the 

participant changed the tapping period within the analysis window to another metric pulse, 

the ITI-error would become high.  

Thus, in order to account for this, the tapping was also analyzed in the frequency domain. 

This evaluated synchronization at meter-related frequencies at the level of behavioral 

output with a method directly comparable to the auditory stimuli and EEG responses. The 

main advantage this frequency-domain analysis was its robustness to changes in tapping 

period within the analysis window, as tapping either metrical pulse would result in energy 

distributed solely across meter-related frequencies. However, the method was sensitive to 

phase changes, as changes in tapping phase within the analysis window would lead to 
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decreased Fourier magnitude at the tapping frequency. This is in contrast with ITI-error, 

which was robust to phase changes but sensitive to changes in tapping period. Moreover, 

continuous signals from the tapping box contained information about tapping intensity 

(amount of accentuation of each tap), thus potentially revealing periodicities in the 

behavioral response that would remain hidden when analyzing ITIs. Continuous signals from 

the response box recorded during the tapping session were segmented the same way as the 

EEG signals, averaged across trials in the time domain, and transformed into the frequency-

domain using FFT. The contribution of background noise was minimized, as for the EEG, by 

subtracting the average magnitude in the 2nd neighboring bin either side of each frequency-

bin. The resulting magnitude spectra were averaged across trials, and magnitudes at meter-

related and meter-unrelated frequencies were extracted and z-scored as for the EEG 

analysis. Mean z-scored amplitudes at meter-related frequencies were compared across 

segments, sequence directions, and levels of musical training, by fitting a mixed model. The 

persistence of the tapping synchronization across different amounts of syncopation was 

assessed using post-hoc contrasts that compared the prominence of meter-related 

frequencies in the first segment to all subsequent segments. To further understand the 

evolution of the tapping response over segments, the prominence of meter frequencies was 

also compared across all pairs of successive segments.   

 

4.3.9 Head movement analysis 

To evaluate the extent to which unintentional head movement artifacts could explain the 

observed EEG results, the data from the accelerometer were segmented the same way as 

EEG signals and transformed into the frequency-domain separately for each movement axis. 

The resulting spectra were averaged across the two axes, and mean magnitudes at meter-

related frequencies were extracted and further analyzed as for the EEG responses. This 

control analysis confirmed that the observed EEG effects were unlikely to be explained by 

head movement artifacts (see Supplementary Results).  

 

4.3.10 Statistical analyses 

The statistical analyses were performed using linear mixed models with lme4 package in R 

(Bates et al., 2014). Each participant was included as a random-effect intercept (in case of 
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stimulus analyses, the intercept was modeled as a random variable across trials). For models 

including the factor Segment as a fixed effect, the order of segments from the degraded-to-

regular condition was always reversed in order to compare responses to the inverted 

version of the same acoustic stimulus. Post-hoc multiple comparisons were computed using 

emmeans package (Lenth, 2018). The Kenward-Roger approach was used to approximate 

degrees of freedom and Bonferroni correction was used to adjust for multiple comparisons. 

Complementary to the null-hypothesis significance tests with mixed models, we also 

calculated Bayes factors to quantify the evidence in favor of the alternative hypothesis over 

the null hypothesis (BF10), as implemented in the package BayesFactor for R (Morey and 

Rouder, 2014).   

 

 

4.4 Results 

4.4.1 Tapping 

Median ITI analysis. The tapping task confirmed theoretical expectations about the meter 

periodicities induced by the auditory stimulus sequences. The difference between the 

median ITI and possible meter periodicities varied significantly across the different possible 

meters (F2,155 = 19.65, P < 0.0001, BF10 > 100). Post-hoc comparisons showed that the 

median ITI was significantly closer to the {2,2} meter than the {3,6} meter (β = -13.22, t157 = -

5.39, P < 0.0001, 95% CI = [-19.15, -7.28]) and {2,6} meter (β = -13.54, t157 = -5.52, P < 

0.0001, 95% CI = [-19.47, -7.61]). These results further justify the selection of meter-related 

frequencies (5Hz, 5 Hz/2 and 5 Hz/4, corresponding to the rates of one, two, and four 

individual events respectively) for the frequency-domain analyses.  

Frequency-domain analysis. The spectra of continuous signals from the tapping sensor 

exhibited prominent peaks at meter-related frequencies (Figure 4.2). As depicted in Figure 

4.3, the prominence of these frequencies in the tapping spectra evolved across segments 

differently for musicians and non-musicians (F6,390 = 5.53, P < 0.0001, BF10 > 100). When 

comparing the two groups separately for each segment, meter frequencies were more 

prominent for musicians in segments 5 (β = 0.62, t55.83 = 3.39, P = 0.009, 95% CI = [0.25, 

0.99]), 6 (β = 0.77, t55.83 = 4.2, P = 0.001, 95% CI = [0.4, 1.14]) and 7 (β = 0.91, t55.83 = 4.94, P < 

0.0001, 95% CI = [0.54, 1.28]). This was due to the fact that for non-musicians, meter 
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frequencies significantly decreased in segments 5 (β = -0.44, t396 = -4.29, P = 0.001, 95% CI = 

[-0.65,	 -0.24]), 6 (β = -0.79, t396 = -7.61, P < 0.0001, 95% CI = [-0.99, -0.58]) and 7 (β = -0.9, 

t396 = -8.66, P < 0.0001, 95% CI = [-1.1, -0.69]) when compared to segment 1, while for 

musicians there was only a trend towards a decrease in segment 6 (β = -0.31, t396 = -2.97, P 

= 0.04, 95% CI = [-0.51, -0.10]). This indicates that the ability of non-musicians to 

synchronize their tapping at meter frequencies deteriorated significantly once the 

degradation in the sensory input exceeded a critical level.  

There was also a significant interaction between musical training and condition (F1,390 = 6.25, 

P = 0.01, BF10 = 2.4). While the overall prominence of meter frequencies was larger in the 

tapping of musicians for both sequence directions, this difference was more pronounced in 

the degraded-to-regular condition (β = 0.63, t33.82 = 3.87, P = 0.001, 95% CI = [0.3, 0.96]) 

than the regular-to-degraded condition (β = 0.43, t34.11 = 2.66, P = 0.02, 95% CI = [0.1, 0.76]). 

This was due to the fact that non-musicians showed overall smaller prominence of meter 

frequencies in the degraded-to-regular condition compared to the regular-to-degraded 

condition (β = 0.16, t396 = 2.95, P = 0.01, 95% CI = [0.05, 0.27]). 

ITI-error analysis. ITI-error index values further confirmed the results from the frequency 

domain analysis (interaction between Direction and Musical Training, F1,390 = 10.97, P = 

0.001, BF10 = 28.31), by revealing significantly less tapping error in the regular-to-degraded 

condition compared to the degraded-to-regular condition for non-musicians (β = -0.04, t396 = 

-4.66, P < 0.0001, 95% CI = [-0.05, -0.02]) (Figure 4.S3). Interestingly, there was no effect of 

Segment in the analysis of ITI-error (Ps > 0.25, BFs10 < 0.09). This suggests that the fast 

deterioration of non-musicians’ tapping in the degraded segments, as observed in the 

frequency-domain analysis of tapping, was partly related to frequent changes in tapping 

phase. Taken together, these results suggest that non-musicians’ tapping to the meter 

generally improved when the rhythm evolved from regular to degraded compared to the 

opposite direction, whereas musicians showed precise and stable tapping synchronization 

across all levels of degradation.  

 

4.4.2 Frequency-domain analysis of EEG 

EEG responses were elicited at frequencies that were expected on the basis of the auditory 

stimulus analysis (Figure 4.2), with typical fronto-central topographies (Figure 4.4), as 
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previously observed for responses to repeating auditory rhythms (Nozaradan et al., 2012; 

Lenc et al., 2018). 

The main aim of the current study was to examine the effect of context on the relative 

amplitude of EEG responses at meter-related frequencies (Figure 4.3). The direction of the 

sequence affected the prominence of meter-related frequencies (mean z-scored 

amplitudes) in the EEG response (interaction between Direction and Segment, F6,390 = 4.26, 

P = 0.0004, BF10 = 33.70). Directly contrasting the corresponding segments between the two 

sequence directions revealed significantly larger meter frequencies for segment 4 (β = 0.37, 

t396 = 4.16, P = 0.0002, 95% CI = [0.20, 0.55]) in the regular-to-degraded condition compared 

to the opposite sequence direction. This was due to greater persistence of the response in 

the regular-to-degraded condition, as degradation increased. Table 4.1 shows the response 

across segments compared to the first segment, separately for musicians and non-

musicians. For non-musicians, the response significantly decreased in segment 5, 6, and 7 in 

the regular-to-degraded condition. However, for the degraded-to-regular condition, there 

was a significant decrease already in segment 4, followed by segment 5, 6, and 7. In other 

words, in the segment with medium amount of degradation, the meter-related frequencies 

were more prominent in the EEG when regular, as opposed to degraded, input preceded 

this segment. Similar, although less pronounced, pattern of results was observed for 

musicians (decrease in segments 5 and 6 for regular-to-degraded and segments 4, 5, and 6 

in the opposite direction). However, despite this apparent difference between musicians 

and non-musicians, the three-way interaction between sequence direction, segment, and 

musical training was not significant (F6,390 = 0.71, P = 0.64, BF10 = 0.07), suggesting that 

context affected the neural response similarly across groups.  

Furthermore, there was an interaction between musical training and segment (F6,390 = 4.35, 

P = 0.0003, BF10 = 41.70). However, this effect seemed primarily driven by greater selective 

response at meter-related frequencies in segment 7 for musicians, which did not reach 

significance in the post hoc contrasts (β = 0.30, t109.06 = 2.57, P = 0.08, 95% CI = [0.07, 0.54]). 

Finally, musical training interacted with sequence direction (F1,390 = 9.03, P = 0.003, BF10 = 

6.51). However, post hoc contrasts did not reveal significant differences between musicians 

and non-musicians in either condition (Ps > 0.13).  

A number of control analyses were done to confirm that the sequence direction effects 

observed here were not spurious (see Supplementary Results). Specifically, these control 
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analyses showed that the context effect (i) could not be explained by head movement 

artifact or (ii) low-level nonlinear auditory processing of the inputs, and (iii) was not a 

spurious effect of the standardization, or (iv) noise subtraction procedure applied to the EEG 

data. 

 

 

Table 4.1. Prominence of meter-related frequencies in the EEG response compared between the first and all 

subsequent segments, separately for the two sequence directions, and for musicians (N = 16) and non-

musicians (N = 16).  

 

musical	
training	 direction	

contrast	
segments	 estimate	 df	 t		 lower	CI	 upper	CI	 p-value	 	

	

egu a o deg aded	

2	 	 	 0. 5	 390	 . 9	 0.49	 0. 9	 .00	 	

	 3	 	 	 0.2 	 390	 .63	 0.54	 0. 3	 .00	 	

	 4	 	 	 0. 7	 390	 .36	 0.5 	 0. 6	 .00	 	

	 5	 	 	 0.43	 390	 3.40	 0.77	 0.09	 0.02	 *	

	 6	 	 	 0.79	 390	 6.2 	 . 2	 0.45	 <0.000 	 ***	

	 7	 	 	 0.84	 390	 6.62	 . 8	 0.50	 <0.000 	 ***	

non-musicians	 	 	 	 	 	 	 	 	 	

	

deg aded o egu a 	

2	 	 	 0. 2	 390	 0.9 	 0.45	 0.22	 .00	 	

	 3	 	 	 0.09	 390	 0.69	 0.42	 0.25	 .00	 	

	 4	 	 	 0.55	 390	 4.33	 0.89	 0.2 	 0.0004	 ***	

	 5	 	 	 0.76	 390	 5.95	 .09	 0.42	 <0.000 	 ***	

	 6	 	 	 0.63	 390	 4.98	 0.97	 0.30	 <0.000 	 ***	

	 7	 	 	 0.74	 390	 5.8 	 .07	 0.40	 <0.000 	 ***	
	

	

egu a o deg aded	

2	 	 	 0. 2	 390	 0.94	 0.46	 0.22	 .00	 	

	 3	 	 	 0.06	 390	 0.50	 0.40	 0.27	 .00	 	

	 4	 	 	 0.0 	 390	 0.06	 0.34	 0.33	 .00	 	

	 5	 	 	 0.57	 390	 4.45	 0.90	 0.23	 0.0003	 ***	

	 6	 	 	 0.55	 390	 4.35	 0.89	 0.22	 0.0004	 ***	

	 7	 	 	 0.34	 390	 2.68	 0.68	 0.00	 0. 8	 	

musicians	 	 	 	 	 	 	 	 	 	

	

deg aded o egu a 	

2	 	 	 0. 8	 390	 .4 	 0.52	 0. 6	 .00	 	

	 3	 	 	 0.03	 390	 0.2 	 0.36	 0.3 	 .00	 	

	 4	 	 	 0.38	 390	 3.0 	 0.72	 0.05	 0.07	 .	

	 5	 	 	 0.53	 390	 4.2 	 0.87	 0.20	 0.0008	 ***	

	 6	 	 	 0.39	 390	 3.09	 0.73	 0.06	 0.05	 .	

	 7	 	 	 0. 9	 390	 .52	 0.53	 0. 4	 .00	 	

CIs represent 95% confidence intervals. (. P < 0.1, * P < 0.05, ** P < 0.01, *** P < 0.001) 
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Figure 4.3. Mean z-scored amplitudes at meter-related frequencies in the cochlear model, EEG, and tapping 

response. The order of segments in the degraded-to-regular condition (red) is reversed to aid the comparison 

of segments with identical stimulus envelope spectra across conditions. Arrows indicate the direction of time 

for each condition. Mean values are shown as points, and error bars represent 95% confidence interval 

(Morey, 2008). (Top) Cochlear model output. As intended, the prominence of meter frequencies decreased as 

the degradation of the sequence increased. (Middle) EEG responses plotted separately for non-musicians (Left) 

and musicians (Right). Non-musicians showed enhanced EEG responses at meter frequencies in the middle 

segments of the regular-to-degraded condition (blue), The EEG responses of musicians were more similar 

across conditions. (Bottom) Tapping responses. For non-musicians (Left) the prominence of meter frequencies 

in the tapping decreased rapidly with increasing degradation. Musicians (Right) showed prominent meter 

frequencies in their tapping even in the degraded segments.   
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Figure 4.4. Topographies of the mean EEG amplitude at meter-related frequencies. Scalp distributions of 

responses across conditions and segments are shown separately for non-musicians (Left) and musicians 

(Right).  

 

 

4.5 Discussion 

Our results show direct evidence for sensitivity to recent auditory context in neural 

responses to rhythmic inputs. In the EEG, we observed a selective enhancement of meter-

related frequencies that persisted when the acoustic cues guiding meter perception were 

gradually degraded in the stimulus. Conversely, these meter-related frequencies were less 

prominent in the neural response when the preceding input lacked acoustic cues to guide 

meter perception. Moreover, this context effect seemed stronger in participants with no 

formal musical training, who (i) demonstrated sensitivity to context in their ability to tap 

along with the meter, and (ii) whose tapping deteriorated when it was not supported by 

acoustic cues in the stimulus. In contrast, the context effect appeared weaker in musicians’ 

EEG, and their tapping indicated a robust ability to maintain a meter despite stimulus 

degradation and independently of context. Together, these results demonstrate that 

perceptual organization of a rhythmic stimulus is not solely determined by low-level 
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features of the sensory input but also involves integration of prior experience, as reflected 

in the elicited neural activity.  

Importantly, our stimulus design ensured that low-level input properties such as envelope 

spectra could not fully account for the observed neural responses. Moreover, the context 

effect observed here was unlikely to be explained by nonlinearities at the early stages of the 

auditory pathway (as indicated by the analysis of our stimuli with a biologically plausible 

model of the auditory periphery), or the overall gain (as we used a relative measure of 

response prominence). Instead, the context effect could be explained by selective neural 

enhancement of meter-related frequencies as a function of prior prominence of these 

frequencies in the sensory input.   

 

4.5.1 No one-to-one mapping between sensory input and perception  

Robust perception. Human perception shows remarkable robustness to degraded sensory 

input across domains (Shannon et al., 1995; Schwiedrzik et al., 2018). For instance, while 

under certain conditions the perception of a visual object or a speech utterance can be 

largely determined by the physical features of the sensory input, in real-world noisy 

situations the mapping between the input and perceptual experience is far from trivial. Our 

results show that similar processes may be at work in perceptual organization of rhythm, 

especially for individuals with musical training. We found that musicians were able to 

precisely synchronize their tapping to the perceived meter even when this meter could not 

be clearly determined from the stimulus features alone. This is in line with previous 

evidence that musical training generally leads to superior precision of meter representation 

(Rüsseler et al., 2002; Brochard et al., 2003; Geiser et al., 2010; Lappe et al., 2011), with a 

high degree of invariance with respect to the rhythmic stimulus (Repp, 2007, 2010; Repp et 

al., 2008; Su and Pöppel, 2012). 

 

Sensitivity to context. Further evidence against a one-to-one mapping between acoustic 

input and perceptual output is provided by the effect of recent context we observed in the 

tapping and in the EEG response. These results suggest that perception of meter in 

degraded rhythmic input can be facilitated when the directly preceding input provides clear 

sensory cues to the meter periodicities. While effects of recent context have been 
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investigated in single-interval timing (Drake and Botte, 1993; Large, 2000b; McAuley and 

Jones, 2003; Jazayeri and Shadlen, 2010; Cicchini et al., 2012) and rhythmic pattern 

perception (Desain and Honing, 2003), they remain under-explored with respect to 

perceptual organization of rhythmic patterns (Cameron and Grahn, 2016). The current 

results thus constitute a step forward in our understanding of how the brain dynamically 

builds representation of complex patterns of time intervals.  

The fact that these context effects were stronger in participants with no musical training is 

consistent with the hypothesis that influence of prior context increases as the uncertainty of 

the current representation increases (Cicchini and Burr, 2018; Cicchini et al., 2018). Non-

musicians, whose meter perception was overall less robust to input degradation, would rely 

more on the recent context to make better sense of the degraded input (see Cicchini et al., 

2012 for similar findings in single time interval reproduction). The context effect observed 

here is also similar to widely studied phenomena in visual object recognition and language 

domains, where perception of objects from impoverished inputs can be enhanced by prior 

exposure to the intact version of the stimulus (Bruner and Potter, 1964; Dolan et al., 1997; 

Kleinschmidt et al., 2002; Ahissar and Hochstein, 2004; Melloni et al., 2011; Teufel et al., 

2015), or even through higher-level semantic context (Eger et al., 2007; Hervais-Adelman et 

al., 2008; Esterman and Yantis, 2010; Sohoglu et al., 2014; Stein and Peelen, 2015). Both 

types of perceptual enhancements have been linked to neural responses across a 

widespread network, involving sensory and frontal cortices (Kleinschmidt et al., 2002; 

Hegdé and Kersten, 2010; Sohoglu et al., 2012; Sohoglu and Davis, 2016). Moreover, there is 

evidence suggesting that the underlying mechanism might involve top-down modulations 

biasing processing of input features in sensory areas towards greater similarity with the 

expected category (Hsieh et al., 2010; Holdgraf et al., 2016; Leonard et al., 2016; St. John-

Saaltink et al., 2016). While our method does not address the neural network mediating the 

context effects observed here, our results provide a new critical piece of knowledge on the 

integration of sensory input with context. That is, brain activity elicited at behaviorally-

relevant frequencies is significantly modulated by the prominence of these frequencies in 

recent input. These findings may thus provide a basis to further investigations of the nature 

of neural representations of rhythmic input, using a similar design combined with a range of 

neuroimaging methods including intracerebral EEG (Grahn and Rowe, 2013; Chemin et al., 
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2014; Rajendran et al., 2017; Mendoza et al., 2018; Narain et al., 2018; Gámez et al., 2019; 

Sohn et al., 2019). 

 

4.5.2 Evidence against evoked responses passively tracking low-level acoustic features of 

the rhythmic input 

Increasing evidence converges toward the view that during meter perception, the brain 

transforms the sensory input (a sequence of events in time) towards the metrical category 

(a nested set of periodic pulses), and this transformation can be observed as a selective 

increase of brain response at meter-related frequencies (Nozaradan et al., 2012, 2016a, 

2017a, 2018). Importantly, this transformation is not fixed or mechanistic, but can be 

flexibly shaped by the spectral acoustic context (Lenc et al., 2018), prior body movement 

(Chemin et al., 2014), or behavioral goals (Nozaradan et al., 2011). Here we add to this 

evidence by showing that this transformation can be dynamically shaped by preceding input 

and even without overt movement. Together, these results thus provide strong evidence 

against the view that this selective increase of brain response at meter-related frequencies 

reflects passive tracking of low-level features of the rhythm (Large et al., 2015; Daube et al., 

2019; Rimmele et al., 2020). Instead, the data suggest that this measure is (i) behaviorally 

relevant, and (ii) reflects transformation from acoustic features towards higher-level 

categories, in line with recent work on speech (Ding and Simon, 2012; Mesgarani and 

Chang, 2012; Di Liberto et al., 2015, 2019; Brodbeck et al., 2018; Broderick et al., 2018) and 

melody perception (Di Liberto et al., 2020a; Sankaran et al., 2020). 

Moreover, the approach used in the current study goes beyond the common assumption 

that better alignment of neural response with stimulus envelope necessarily reflects better 

processing (Park et al., 2015; Etard and Reichenbach, 2019; Harding et al., 2019; Fiveash et 

al., 2020; Herff et al., 2020; Wollman et al., 2020). Specifically, instead of looking for precise 

reconstruction of low-level features such as envelope periodicity using e.g. input-output 

coherence or regression analysis, the current study aimed to investigate dynamic processes 

that continuously transform sensory input towards invariant perceptual categories (Ley et 

al., 2014; Kuchibhotla and Bathellier, 2018; Broderick et al., 2019; Yi et al., 2019). The input-

output mapping approach used here allowed us to uncover these processes while ensuring 
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that the results are not driven by (i) acoustic confounds, (ii) overall gain of the response, or 

(iii) low-level nonlinear auditory processes.  

 

4.5.3 Context effect is short-lived in neural activity but long-lasting in behavior  

In the current study, the contextual enhancement of meter-related frequencies in the EEG 

was relatively short-lived, i.e. lasting around one 14-seconds long segment. These 

observations demonstrate that the influence of prior acoustic context on EEG responses 

might have a short time constant, only affecting the processing of directly following 

rhythmic material. Such short-lived integrative mechanism would thus make the system 

both robust to momentary changes in the sensory input (e.g. syncopation, Sioros et al., 

2014) and flexible enough to adjust meter perception under persisting counterevidence 

from the sensory input (London, 2004; Fitch and Rosenfeld, 2007).  

The short time constant observed here could also be due to the stimulus sequence design 

combined with a context effect restricted to inputs up to a certain level of input 

degradation. Indeed, while perception across domains is remarkably robust to sensory 

degradation, the perceptual system is limited in terms of the minimal amount of sensory 

cues required to elicit a percept (for evidence of these limits in meter perception see e.g. 

Nozaradan et al., 2012; Witek et al., 2014b; Vuust et al., 2018; Matthews et al., 2020). Even 

though prior context may significantly shift this limit, perceptual organization may be lost 

once the cues in the sensory input are too degraded. Consequently, the effects of prior 

context would be confined to inputs with medium amounts of degradation, thus explaining 

why we did not observe selective enhancement of meter frequencies in response to the 

most degraded sections of the sequences. 

In contrast to the neural response, the effect of recent context in sensory-motor 

synchronization was spread across all segments. This difference between neural response 

and sensory-motor synchronization is in line with recent studies showing that synchronized 

movement can directly (Nozaradan et al., 2013, 2016c; Morillon and Baillet, 2017; Yon et al., 

2018) and prospectively (Lahav et al., 2007; Chemin et al., 2014) affect sound processing in 

the brain. While it has been previously shown that overt movement can facilitate extraction 

of a periodic pulse from complex rhythmic sequences (Su and Pöppel, 2012), our results 

suggest that in certain situations, overt movement may impede extraction of a periodic 



 179  

meter. This could be specific to situations similar to the current study, where the preceding 

movement is desynchronized, possibly preventing extraction of regularities gradually 

emerging in the sensory input. Alternatively, it could be that the location of the prior-

context benefit within the sequences was variable across trials, yielding generally improved 

performance in the regular-to-degraded sequence after averaging. These possibilities 

remain to be investigated with larger samples allowing for more detailed tapping analyses.  

 

4.5.4 Conclusion 

Together, our results demonstrate that, similar to high-level perceptual organization in 

other domains, meter can emerge from highly complex and degraded sensory inputs. At the 

same time, the robustness to input degradation is limited (Witek et al., 2014b; Vuust et al., 

2018) and these limits depend on context and prior experience. These observations 

highlight the predictive nature of perceptual processing and the importance of endogenous 

information (such as prior knowledge and expectations) in shaping the processing of 

sensory signals across domains (de Lange et al., 2018; Demarchi et al., 2019; Koelsch et al., 

2019).  

A common assumption in the neuroscientific literature is that meter perception can be 

predicted from the acoustic features of the rhythmic stimulus. In other words, rhythms with 

a good fit between the distribution of acoustic events and hypothetical pulses comprising 

meter (i.e. regular rhythms) are assumed to induce “strong” meter perception, whereas 

degraded rhythms are expected to induce “weak” or no meter perception (Povel and 

Essens, 1985; Grahn and Brett, 2007; Bengtsson et al., 2009; Grube and Griffiths, 2009; Kung 

et al., 2013). Together, our findings caution against a too strict stimulus-centered view, 

suggesting that prior experience at short and long timescales is critical to understand the 

mapping between sensory input and perception of rhythm. Indeed, internal processes 

dependent on prior experience provide a basis for cultural embeddedness of perception, 

which is fundamental for human musical behaviors (London et al., 2017; van der Weij et al., 

2017).  
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4.6 Supplementary Materials  

4.6.1 Supplementary Results: Control analyses of EEG data 

Contribution of low-level nonlinear auditory processes. Direct comparison between the 

cochlear model and EEG data indicated that the results are unlikely to be fully explained by 

nonlinearities in the early stages of the auditory pathway. The difference in prominence of 

meter-related frequencies between EEG and cochlear model significantly depended on the 

direction of the sequence (interaction between Direction and Segment, F6,838 = 8.42, P < 

0.0001, BF10 > 100) for segment 4 (β = 0.36, t844 = 5.91, P < 0.0001, 95% CI = [0.24, 0.48]). 

Similar to the main analysis, there was an interaction of musical training and segment (F6,838 

= 9.34, P < 0.0001, BF10 > 100), driven by greater response at meter frequencies for 

musicians in segment 7 (β = 0.30, t63.22 = 2.99, P = 0.03, 95% CI = [0.10, 0.51]). Additionally, 

there was an interaction between musical training and sequence direction (F1,838 = 19.4, P < 

0.0001, BF10 > 100). Again, directly contrasting musicians and non-musicians for each 

condition did not yield significant differences (Ps > 0.12).  

Together, these results indicate that even after accounting for the response variability 

explained by the cochlear model, EEG responses at meter-related frequencies were 

significantly affected by sequence direction.  

 

Raw amplitudes. Z-scoring EEG amplitude values across a set of frequencies was used to 

assess the selective variations in the amplitudes at meter-related frequencies in a manner 

that minimized the contribution of the overall gain. However, to demonstrate that this 

standardization procedure was not responsible for the context effect observed in the 

current study, we carried out a control analysis of the EEG response without any 

normalization, i.e. using raw amplitude values from the EEG spectra averaged over meter-

related frequencies as the dependent measure. The amplitude at meter-related frequencies 

was affected by sequence direction (interaction between Direction and Segment, F6,390 = 

6.97, P < 0001, BF10 > 100), and this was due to significantly larger amplitude at meter 

frequencies in the regular-to-degraded condition for segment 4 (β = 0.37, t396 = 4.16, P = 

0.0003, 95% CI = [0.20, 0.55]). There was also a significant interaction between musical 

training and segment (F6,390 = 4.44, P = 0.0002, BF10 = 39.56), due to the marginally higher 

prominence of meter frequencies in segment 7 for musicians (β = 0.30, t109.06 = 2.57, P = 
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0.08, 95% CI = [0.07, 0.54]). These results suggest that z-scoring EEG amplitudes alone is not 

likely to explain the current results. 

 

Without noise subtraction. The prominence of meter-related frequencies extracted from 

EEG spectra without noise subtraction was affected by sequence direction (interaction 

between Direction and Segment, F6,390 = 5.30, P < 0.0001, BF10 > 100), due to greater meter 

z score in segment 4 (β = 0.22, t396 = 3.30, P = 0.007, 95% CI = [0.09, 0.35]). Interaction 

between musical training and segment also reached significance (F1,390 = 2.72, P = 0.01, BF10 

= 1.45), but there was no significant difference for either segment separately (Ps > 0.47). 

These results suggest that noise subtraction alone is not likely to explain the current results.  

 

Head movement analysis. The prominence of meter-related frequencies in the head 

movement data was not significantly affected by sequence direction (Ps > 0.44, BFs10 < 

0.32). There was a weak but significant main effect of Segment (F6,390 = 2.32, P = 0.03, BF10 = 

0.35). A significant linear trend (β = -1.04, t409 = -3.26, P = 0.001, 95% CI = [-1.67, -0.41]) 

suggested that participants had a tendency to synchronize subtle head movements with the 

meter when the stimulus was more regular. Together, this control analysis suggests that the 

observed EEG effects are unlikely to be explained by head movement artifacts.  

 

 

 
 

Figure 4.S1. Analysis of the stimulus sequences used in the EEG session. Syncopation scores are averaged 

across the 15 trials separately for each condition, with arrows indicating the direction of time for each 

condition. Error bars represent 95% confidence interval (Morey, 2008). 
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Figure 4.S2. Evolution of syncopation scores across segments, assuming different metrical interpretations of 

the sequences (nested pulses at rates of {2,4}, {3,6}, and {2,6} events). Syncopation scores for {2,6}-meter 

remained high throughout the sequence, whereas syncopation scores for {3,6}-meter increased monotonically 

along with the {2,4}-meter used in the main analysis. This suggests that the sequences did not change between 

different meters, but gradually changed from providing clear cues to a {2,4} meter to containing little cues to 

any regular meter.  

  

 

 

 

Figure 4.S3. Analysis of inter-tap interval (ITI) error across sequence directions and segments.  The order of 

segments in the degraded-to-regular condition (red) is reversed in time (indicated by arrows) to aid the 

comparison of segments with equivalent amount of degradation. Mean values are shown as points, and error 

bars represent 95% confidence interval (Morey, 2008). (Left) Non-musicians performed worse (larger error 
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between their ITIs and meter periodicities) in the degraded-to-regular condition. (Right) Musicians’ ITI error 

was low and stable over segments, suggesting that they produced ITIs close to the meter periodicities 

irrespective of stimulus degradation and context.    
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5 Discussion and Perspectives 
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In this thesis I explored meter as a higher-level perceptual organization of auditory rhythmic 

inputs in human listeners. In the first part, I aimed to provide a clear definition of the 

perceptual phenomenon, crucial for development of methods to measure the phenomenon 

in the brain and behavior. I proposed a way to approach meter perception from the 

viewpoint of transformation, or mapping between rhythmic inputs and internal 

representation of metric pulses. Based on this definition and approach to meter, I discussed 

direct methods to measure properties of signals relevant for meter perception. I introduced 

the frequency-tagging approach as a unique method to directly measure these properties in 

a range of complex signals, offering a number of important advantages over different direct 

methods. Using the frequency-tagging approach in a series of empirical studies, I aimed to 

contribute to the debate regarding the nature of the transformation between sound input 

and neural response relevant for meter perception.  

Together, the current results provide evidence that multiple mechanisms are involved 

during meter processing. On one hand, the brain enhances periodic pulses in the input 

largely automatically, irrespective of attentional focus. This indicates that the mapping 

between rhythmic input and internal metric pulses must at least partially rely on a neural 

system efficient enough to support rapid transformation with little reliance on cognitive 

resources. This is in line with the fact that humans can often map rhythmic inputs onto 

metric categories within an extraordinarily short exposure time (which is not easily achieved 

in current computational models of meter processing, see e.g. Merchant et al., 2015a). 

Indeed, categorization and invariance with respect to the input seem to be supported by 

efficient neural systems across domains (Grootswagers et al., 2020; Rossion and Retter, 

2020; Sankaran et al., 2020). In the case of meter perception, different robust processes 

may be engaged depending on the nature of the input. When the input lacks prominent 

contrast that can directly drive perception of metric pulses with moderate period durations, 

these pulses may be internally bootstrapped from slower or faster periodicities if these are 

available in the acoustic input. Firstly, the fundamental ability to subdivide slower pulses 

may be exploited when the input consists of a repeating pattern (as in Study 1 and 2) 

(Parncutt, 1994; Repp and Doggett, 2007; Repp, 2008). Secondly, the ability to interpolate 

and subsequently chunk fast pulses could be used to induce slower metric pulses if the input 

contains acoustic contrast marking a fast periodicity (Brochard et al., 2003; Repp et al. 2008; 

Nozaradan et al., 2011) (this was the case for the “syncopated” or “low-meter contrast” 
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rhythm in Study 1 and 2, and even in the most “degraded” parts of rhythmic sequences in 

Study 3). The specific periods of the endogenously generated metric pulses may be a result 

of interactions amongst intrinsic biases of the system such as preference for binary grouping 

and subdivision (Repp and Su, 2013), as well as preferred pulse period around 600 ms 

(Parncutt, 1994). These processes may be robustly engaged irrespective of attentional 

resources (see Study 1), and even when acoustic contrast marking pulses with intermediate 

period durations is completely absent in the input (Brochard et al., 2003; Bouwer and 

Honing, 2015).  

 

On the other hand, the current results demonstrate that the enhancement of meter 

periodicities can be further boosted by bass sounds and depends on recent context and 

training. Therefore, besides robustness, the neural system seems to involve mechanisms 

that allow for considerable flexibility of the transformation from sound input towards 

internal representation of metric pulses. These results highlight the fact that there is no 

one-to-one relationship between the rhythmic input and the elicited neural or behavioral 

response (Nozaradan et al., 2017a). Instead, a range of endogenous and exogenous factors 

may shape the mapping of a rhythmic input onto metric pulses. Such neural mechanisms 

are crucial to support one-to-many mapping, that is, perception of different meters elicited 

by the same acoustic input depending on short- and long-term context (Repp, 2007; Phillips-

Silver and Trainor, 2008; Chemin et al., 2014; Polak et al., 2018). Determining to what extent 

these mechanisms may be a result of long-term exposure and training (London et al., 2017; 

van der Weij et al., 2017), and whether their engagement critically depends on attention 

(see Study 2) remains an exciting avenue for future research.  

 

Across the current experiments, I made sure that the results cannot be trivially explained by 

a number of confounds. Firstly, the overall gain of the response was accounted for by 

consistently using relative measures (z-scores) within the frequency-tagging approach. 

Secondly, by checking that the conclusions robustly hold for different ways to select meter-

related and -unrelated frequencies (see section 1.2.2.5), I provided further support for the 

claim that the results were driven by changes in periodic contrast instead of non-specific 

broadband changes in the shape of the spectrum. In addition, across the studies, I ensured 
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that low-level nonlinearities in the auditory pathway cannot trivially account for the results 

by explicitly modeling them using state-of-art biophysical models.  

One point that should be highlighted is that throughout the experiments I have strongly 

relied on the use of rhythmic stimuli with low acoustic contrast at meter periodicities (i.e., 

rhythmic stimuli with no prominent acoustic cues to metric pulses). This approach is not 

new, as ambiguous and degraded stimuli are ubiquitously used to study perception across 

domains, revealing important insights into the higher-level nature of the perceptual system 

that cannot always be obtained using simple and unambiguous sensory inputs (Dolan et al., 

1997; Burton et al., 1999; Esterman and Yantis, 2010; Hsieh et al., 2010; Sohoglu et al., 

2012; Mesgarani et al., 2014; Holdgraf et al., 2016). Thus, it is surprising to observe that 

rhythmic stimuli with low contrast at meter periodicities have been often neglected, or 

considered to induce less stable percept, or no percept at all (e.g. Povel and Essens, 1985; 

Grahn and Brett, 2007). I have hopefully provided good arguments against this view 

throughout this thesis. Indeed, while such inputs might be more difficult to perceptually 

organize, this does not mean the organization does not take place (Grootswagers et al., 

2019). Instead, I believe that using such rhythms can provide crucial insights into the nature 

of transformation taking place during meter perception while preventing from low-level 

confound, as exemplified in the empirical part of this thesis. It is also important to 

acknowledge that there likely exists a minimum threshold in terms of the amount of sensory 

cues the system needs to map an acoustic input onto a stable meter. However, as shown in 

Study 3, it might not be possible to precisely quantify such threshold, as it likely differs 

across individuals. For skilled listeners, it may be enough if a single periodicity is weakly 

cued in the modulations of the acoustic input and these individuals may be able to 

bootstrap additional metric periodicities as discussed in the paragraphs above (see also 

Nozaradan et al., 2011; Tal et al., 2017). Furthermore, besides this general ability to map the 

input onto a stable meter, there might be additional processes that support fast and flexible 

contextual mapping of specific acoustic inputs onto specific meters based on enculturation 

and learning (London et al., 2017; van der Weij et al., 2017). This ability would allow 

individuals to share the same internal representation of time (i.e. meter) when moving to 

music that lacks unambiguous acoustic cues to a specific meter (e.g. music based on African 

time-line patterns), or even music that prominently cues meters with different parameters 

than the ones consistently perceived by enculturated listeners (e.g. ska, reggae). These 
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processes remain to be thoroughly investigated in future research, as discussed in section 

5.1.2.  

 

The current results also corroborate several advantages of the frequency-tagging approach 

in comparison to other methods that have been previously used to investigate meter 

perception. Firstly, the approach allows to directly asses the phenomenon, instead of relying 

on indirect measures that may be subject to a range of confounds. Moreover, the method is 

sensitive to all properties of the signal that are crucial to estimate contrast relevant for 

metric pulses (i.e. generalization, differentiation, time-locking). This represents a 

considerable advantage over other direct methods that may be sensitive only to a subset of 

these relevant properties (as reviewed in section 1.2.2). The approach also is free from overt 

behavioral response, that is, can be used to asses meter processing directly from the neural 

response. This is advantageous, as behavioral responses are often (i) confounded with 

decisional and cognitive factors, (ii) often limited to measure only one pulse at a time, and 

(iii) can significantly affect the percept (making it somewhat similar to the infamous 

Schrödinger’s cat) (Su and Pöppel, 2012; Manning and Schutz, 2013). This also allows for 

generalization of the approach towards infants (Cirelli et al., 2016), as well as nonhuman 

animals that may show rudiments of meter processing, yet are not able (or motivated) to 

move along with the pulses (Merchant and Honing, 2014). At the same time, the approach is 

informed by behavior, as the main goal in cognitive neuroscience is to describe the links 

between sensory input, brain activity, and overt behavior. In fact, the approach offers an 

excellent opportunity to provide such links, and this is due to the fact that it can be used to 

assess contrast at meter periodicities in a wide range of different signals (e.g. sound 

envelopes, output of cochlear models, spiking neurons, local field potentials, high-gamma 

power fluctuations, discrete tapping data, continuous movement data from accelerometers, 

etc.). When used carefully, the frequency-tagging approach allows for direct comparison 

between these different signals, thus providing critical insights into the transformation 

relevant to meter perception.  

At the same time, the approach is not without a few limitations, which I have discussed 

throughout the thesis, particularly in section 1.2.2 (e.g. sensitivity to certain non-specific 

signal changes that do not directly affect periodic contrast, or sensitivity to infrequent shifts 

in response phase within the analysis windows). Along with several critical points addressed 
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in section 5.1, these provide future directions for a comprehensive research program 

incorporating modeling and empirical work that will hopefully offer further insights into the 

strengths and potential pitfalls of frequency-tagging.   

It is important to emphasize that the view of meter as transformation is distinct from 

approaches that quantify how well the elicited neural activity tracks changes in a stimulus 

feature, such as amplitude envelope (Harding et al., 2019; Fiveash et al., 2020). These 

approaches can only provide limited insights into the perceptual transformation towards 

higher-level categories. While recent developments in linear modeling offer interesting 

opportunities to estimate contrasts in brain activity induced by more abstract perceptual 

variables, i.e. going beyond the physical features of the sensory input (Brodbeck et al., 2018; 

Broderick et al., 2018; Di Liberto et al., 2020a), yet I expect serious limitations of such 

methods when applied to rhythmic phenomena in musical contexts due to the high 

autocorrelation inherently present in the relevant signals.  

 

To describe mapping between sensory input and neural response (but also behavioral 

response) the researcher must decide on the way to represent the two signals. In other 

words, certain features of the stimulus and certain features of the brain activity must be 

chosen to describe how the first is mapped and transformed within second. This choice is 

not trivial and can lead to important insights into brain function (Nourski et al., 2015; 

Brodbeck et al., 2018; Wang, 2018; Batista and Kording, 2019; Daube et al., 2019). 

Nevertheless, even if the chosen representation of input and response is not optimal, 

comprehensively describing the mapping using a large range of inputs can still lead to valid 

insights into the system (Nozaradan et al., 2017a). Indeed, if we knew the optimal 

representation in advance, there would be no work left to do, the system would be 

described (Kriegeskorte and Douglas, 2019). Accordingly, contrast in audio signals can be 

created in many ways, from simple changes in basic parameters (e.g. amplitude or 

frequency modulation) to changes in abstract properties (Escera and Malmierca, 2014; 

Nelken, 2014). Consequently, all these parameters can generate periodic contrast in time, 

and may be potentially relevant for meter processing. In the current thesis, I chose to focus 

on simple amplitude modulations, and kept all other sound parameters fixed. Nevertheless, 

an exciting avenue for future research is to explore how other features contribute to 

contrast at meter periodicities, and whether they are relevant for mapping the rhythmic 
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input onto internal metric pulses. An important tool to facilitate the next steps of this 

enquiry may be models of subcortical auditory processing, whereby the mapping between 

contrast in different input features and contrast in neural responses has been already well 

described (Nelson and Carney, 2004; Zilany et al., 2014; Verhulst et al., 2018). Therefore, 

these models may be used to preprocess more complex auditory inputs, to estimate the 

contrasts relevant for the system at lower processing levels. This would help researchers to 

focus on exploring those parts of the input space where the neural transformation cannot 

be trivially explained by low-level mechanisms, i.e. to focus on what is yet to be discovered 

about higher-level functions of the brain.   

Similarly, in the current thesis, I chose to focus on slow voltage changes in the brain 

response, as captured with surface EEG. However, there are many features of brain activity 

that vary over time, and thus could represent contrast at meter periodicities. These include 

changes in power of band-limited activity, such as beta (Iversen et al., 2009; Fujioka et al., 

2015; Merchant and Bartolo, 2018) or high-gamma (Herff et al., 2020), but also multiunit 

activity from invasive recordings (Chang, 2015). As discussed above, frequency-tagging is 

not limited to either choice when representing the sensory input or the elicited brain 

response and thus opens a number of possibilities to explore how brain transforms rhythmic 

sensory input to build an internal representation of meter.  

 

 

5.1 Future perspectives  

Despite the fact that meter perception has been studied for a couple of decades, we still 

know very little about the phenomenon. This can be related to multiple factors, for instance 

predominant focus on Western classical and popular music (as discussed in London et al., 

2017; Polak et al., 2018; Jacoby et al., 2020, see also section 1.1.2.1), the lack of definition in 

music theory and resulting terminological chaos (as discussed in Cohn, 2014, 2015, 2020), or 

forceful linking of the phenomenon with  other domains, such as language (e.g. Fitch, 2013; 

Kotz et al., 2018). At the same time, progress in understanding has been impeded by the 

lack of powerful methods to measure the phenomenon in behavior and brain (as disussed in 

Tranchant and Vuvan, 2015; Lenc et al., 2019; Rajendran and Schnupp, 2019). Hopefully, the 
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ideas and methods developed in the current thesis will help to overcome some of these 

issues.  

Considering the above, it is surprising to observe recent efforts to create mechanistic 

models of the phenomenon, particularly at the neural level (Large and Palmer, 2002; Large 

et al., 2015; Rajendran et al., 2017; Cannon and Patel, 2020). While these models may turn 

out being good approximations of reality, the main issue, in my opinion, is that the 

plausibility of these models with respect to the phenomenon cannot be easily assessed 

simply because we do not know enough about the phenomenon itself. For this reason, I do 

not explain my results in terms of any particular model. While the empirical results of the 

current thesis are not sufficient to build a comprehensive theory or model (and this was not 

the aim of the thesis), they can be used to constrain and test existing models of processes 

underlying meter perception. The current empirical results indicate that in humans, these 

processes (i) do not passively track the input but selectively enhance metric periodicities 

even when little attentional resources are available and even when little periodic cues are 

present in the acoustic input, (ii) are enhanced by non-temporal sound features such as bass 

sounds, (iii) can be boosted by recent stimulus history, (iv) can be enhanced by long-term 

training.  

 

While the frequency-tagging method used in the current thesis does not directly measure 

dynamic attention or prediction, the empirical results further highlight some logical 

shortcomings of DAT and predictive coding approaches to meter perception (discussed in 

section 1.1.2.1). Namely, across the three studies, I have shown that human listeners can 

perceive meter when stimulated with acoustic inputs where a large number of salient 

acoustic events are misaligned from the perceived metric pulses. Moreover, neural 

responses elicited by these inputs show selective enhancement of metric periodicities. DAT 

would typically explain this by enhancement/suppression of responses evoked by acoustic 

events that are aligned/misaligned from the internally represented metric pulses (Fitzroy 

and Sanders, 2015; Bouwer et al., 2020). This mechanism could explain enhancement of 

meter periodicities in the response to inputs where majority of acoustic events are aligned 

with the metric pulses. However, the mechanism cannot be easily applied to inputs where 

most events are misaligned from the metric pulses (but note that a large number of 

participants in Study 2 perceived the “syncopated” rhythm in such a way, as indicated by 
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their tapping). Hence, to explain the current results, the DAT model would need to include a 

source of endogenously generated activity alongside with the attentional modulation of 

sound-evoked responses, which would decrease its parsimony.  

Similarly, explaining the current results in terms of predictive coding is not quite 

straightforward. Specifically, it is not clear how the selective enhancement of meter 

periodicities in the neural responses could be explained by sharpening or prediction errors 

(two representational schemes proposed to implement Bayesian inference in the brain, see 

Sohoglu and Davis, 2020), if the internal representation of metric pulses directly 

corresponds to the prediction of the sensory input (Vuust et al., 2018).  

Instead of reflecting responses evoked by the acoustic stimulus that are dynamically 

modulated by attentional fluctuations (DAT), prediction errors or posteriors (predictive 

coding), I submit a more parsimonious view, where the EEG responses partly reflect a 

gradual (Nozaradan et al., 2016) transformation of the auditory input towards periodic 

neural activity that directly represents the perceived metric pulses (Gámez et al., 2019). This 

activity can be used as a timing reference signal to flexibly time (i) movement (Repp et al., 

2008), (ii) allocation of dynamic attention (Breska and Deouell, 2016), and (iii) temporal 

expectations of specific features in the sensory input (van der Weij et al., 2017). Hence, the 

most fundamental part of the research on meter perception is to characterize the nature of 

processes that are involved in this transformation (the aim of the current thesis). Directly 

following this endeavor is a line of research aiming to clarify whether and how additional 

cognitive processes (e.g. attention or expectations) utilize this internal timing signal to 

support adaptive behavior.  

 

To sum up, I believe that the time to develop comprehensive and powerful models is yet to 

come, but extensive empirical work must be done beforehand. Therefore, I propose a 

number of critical points I believe should be addressed in empirical studies to move the field 

a step forward.  

 

5.1.1 Functional anatomy of the transformation  

A number of authors have proposed that meter perception emerges from reverberant 

information flow within a large network of regions involving conventionally auditory and 
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motor-control structures. While some authors emphasize cortico-cortical connectivity 

within the dorsal auditory stream (Patel and Iversen, 2014), others have argued that cortico-

subcortical connections are crucial for the phenomenon (Merchant et al., 2015a). While 

these frameworks are not mutually exclusive, it is important to note that neither of them 

has been extensively tested using direct measures of meter processing. Indeed, the 

evidence for brain networks involved in meter perception is typically based on invasive 

recordings from monkeys that do not show qualitatively similar expertise in meter 

processing as humans (see below), or indirect methods such as fMRI (Grahn and Brett, 2007; 

Chen et al., 2008a; Bengtsson et al., 2009; Chapin et al., 2010; Kung et al., 2013; Li et al., 

2019; Toiviainen et al., 2019; Matthews et al., 2020). 

As discussed in section 1.2.1.3, the BOLD response cannot be used to directly estimate 

contrast at meter periodicities due to its low temporal resolution, and therefore provides 

limited insights into the transformation fundamental for meter perception. Instead, a 

promising line of research constitutes direct recordings of neural activity using electrodes 

implanted in the neural tissue, thus providing excellent temporal, as well as spatial 

resolution. This method has been widely used in animal models, particularly monkeys, 

yielding crucial insights into the functional network involved in sensory-motor timing 

(Merchant et al., 2014; Merchant and Bartolo, 2018) and mapping between sensory input 

and internal representation of single time intervals (Mendoza et al., 2018). While work with 

monkeys has been an invaluable source of information about rudimental mechanisms 

critically involved in meter perception (Merchant and Honing, 2014), non-human primates 

show limited capability to transform a non-isochronous rhythmic input towards invariant, 

internal representation of metric pulses (Merchant and Honing, 2014; Honing et al., 2018). 

In other words, while these animals may be capable of internalizing the timing of a rhythmic 

input in a one-to-one fashion and internally generating such timing in an absence of 

rhythmic input (Merchant et al., 2015b; García-Garibay et al., 2016; Cadena-Valencia et al., 

2018; Yc et al., 2018; Gámez et al., 2019), they seem incapable of going beyond the physical 

structure of the stimulus. In fact, it is far from trivial to train nonhuman primates to 

synchronize movement even with an isochronous metronome (Yc et al., 2018). In contrast 

to non-human primates, mapping of complex rhythmic inputs onto periodic metric pulses 

seems to be a spontaneous human ability widespread across cultures and musical traditions 

(Nettl, 2000; Savage et al., 2015). This indicates that studying neural responses in monkeys 
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may not provide a complete insight into the transformations relevant for meter as a higher-

level perceptual phenomenon. Recent evidence has suggested that perhaps other species 

may serve as better models of meter processing. In particular, Patel et al. (2009) reported a 

case of a cockatoo exhibiting the ability to map a range of naturalistic musical stimuli onto a 

series of repetitive movement patterns that could be characterized by periodic contrast 

locked onto a metric pulse (beat). Moreover, the bird had never been trained via operant 

conditioning, and showed spontaneous generalization towards a large repertoire of 

movements (Joanne et al., 2019). However, to what extent these behaviors could occur in 

response to rhythmic stimuli that lack prominent contrast at meter periodicities (and 

therefore require significant transformation) has not been systematically investigated. 

Nevertheless, while non-human primates or certain bird species may help to provide 

important insights into the neurophysiology of meter processing, a fundamental part of the 

work needs to be done in humans first. Without thoroughly characterizing the nature of the 

perceptual phenomenon in humans, we cannot easily design experiments to search for 

correlates of the phenomenon in non-human species.  

For these reasons, combining frequency-tagging with data from human patients implanted 

with intracranial electrodes for clinical purposes may offer an invaluable opportunity to gain 

insights into the functional brain networks involved in meter processing (Nozaradan et al., 

2016a; Herff et al., 2020). Firstly, this approach could be used to map the transformation of 

a rhythmic input across the network of brain regions implicated in meter processing, 

including the dorsal auditory stream and supplementary motor areas (Patel and Iversen, 

2014; Merchant et al., 2015a). Moreover, observations from intracerebral recordings could 

be complemented with studies combining surface EEG and noninvasive brain stimulation 

methods such as TMS and tDCS, thus assessing the causal contribution of individual regions 

in the network to the transformation relevant for meter perception (see e.g. Ross et al., 

2018b, 2018a). On the other hand, non-invasive stimulation of the vestibular system cold be 

used to address questions relevant to the results of Study 2 (see e.g. Trainor et al., 2009). 

Finally, using intracerebral recordings, as well as surface EEG combined with methods 

similar to Study 1 (see also Nozaradan et al., 2018), the contribution of active movement to 

the transformation across the network could be assessed.  
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5.1.2 Role of learning and training 

While it is widely assumed that meter perception is a spontaneously developed human 

ability, this claim needs further empirical support. The issue is that “meter perception” is 

often taken as a unitary phenomenon, yet multiple processes may be involved in the 

mapping of rhythmic inputs onto internal metric pulses, as indicated by the set of studies 

presented in the current thesis. A particularly interesting may be the distinction between 

processing of rhythmic inputs that already contain high contrast at particular metric 

periodicities in their acoustic structure (i.e. requiring little transformation), and inputs that 

lack such prominent contrast (i.e. where metric pulses must be internally enhanced). 

Indeed, as observed e.g. in Study 3, most human listeners (perhaps except of beat-deaf 

individuals, see e.g. Phillips-Silver et al., 2011) have no issue with tapping the pulse in high 

meter contrast rhythms, yet some individuals show great difficulties to do so with low meter 

contrast rhythms (and this cannot be explained by lack of understanding). However, this 

distinction has not been addressed at all in previous studies of individual differences in 

meter processing (Tranchant et al., 2016), nor is part of current testing batteries (Fujii and 

Schlaug, 2013; Dalla Bella et al., 2017; Vuvan et al., 2018). If the transformation of low 

meter contrast inputs towards high meter contrast outputs can be understood as a general 

skill, this could be revealed in a longitudinal training study where the skill is directly 

enhanced through targeted exercises (developed with experienced music teachers). High 

experimental control of the training parameters, as opposed to ad-hoc comparisons of 

musicians and non-musicians, could hopefully provide important insights into the different 

processes involved in meter processing (Paton and Buonomano, 2018). Similar training 

paradigms may be used to investigate whether particular metric interpretations can be 

associated with specific parameters of the auditory input through learning, as suggested by 

recent analyses of music corpora (London et al., 2017; van der Weij et al., 2017). Such 

experiments would be highly relevant for the question of long-term flexibility in the 

mapping between sound input and internal meter with specific parameters (i.e. periods and 

phase), as further discussed in section 1.3. Similarly, testing whether such associations can 

be formed specifically with bass sounds would be informative with respect to the results of 

Study 2.  
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5.1.3 Further examining short-term context effects 

In meter processing, the effect of recent context can be understood in two ways. One was 

explored in Study 3 of the current thesis, and the contextual variable could be characterized 

as input degradation. In other words, the sensory input was manipulated such that at some 

instances it delivered prominent cues to a specific perceptual organization (in our case 

acoustic contrast emphasizing particular metric pulses), whereas at other instances the 

input was akin to noise (containing little periodic contrast at all). Hence, two states of the 

system were of interest: perceptual organization (a meter internally represented) vs. no 

perceptual organization (no meter internally represented). Note that the conclusions hold 

even if these two states are not exactly discrete. This design is similar to a visual experiment 

where stimulus features important to elicit a higher-level percept (e.g. face or object) are 

gradually distorted (e.g. by scrambling, or adding noise) (Kleinschmidt et al., 2002; Esterman 

and Yantis, 2010; Melloni et al., 2011; Liu-Shuang et al., 2015). Yet, a complementary way to 

understand context effects is in terms of switching between two different perceptual 

organizations, and research using bi-stable inputs has yielded key insights into context 

effects in visual and auditory perception (Gepshtein and Kubovy, 2005; Snyder et al., 2008, 

2015; Kogo et al., 2015; Silva et al., 2016; Chambers et al., 2017; Brascamp et al., 2018). 

Indeed, for any rhythmic input, there are always multiple plausible meters, i.e. different 

ways of perceptual organization (Repp, 2007; Repp et al., 2008; Chemin et al., 2014). This is 

similar to perceptual organization of the auditory scene into objects and streams 

(Pressnitzer et al., 2011; Denham et al., 2013; Sussman, 2017). Thus, the follow-up of Study 

3 should explore the effect of recent context on switching between two states of the 

system, corresponding to perception of two different meters (e.g. a {2,2,3} and {3,2,2} 

meter, see Figure 1.1). To this end, the stimulus could start from creating high periodic 

contrast cueing one particular meter that gradually decreases as periodic contrast cueing 

another meter increases. In another condition, the sweep could be presented in an opposite 

direction, thus obtaining brain and tapping responses to physically identical segments of the 

input that are preceded by different contexts. The study of short-term context effects could 

be further extended beyond sweep designs, inspired by the large amount of prior studies on 

contextual effects in other perceptual domains (Snyder et al., 2009; Snyder and Weintraub, 

2011; Klampfl et al., 2012; Schwiedrzik et al., 2014; St. John-Saaltink et al., 2016). Such non-
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sweep designs may be better suited to assess whether the context effect translates over 

various parameters of the input, such as spatial location, pitch, or timbre and tempo. This 

could elucidate the processing level at which the context effect takes place (Snyder et al., 

2015; Fritsche et al., 2017). Replicating Study 3 under different attentional conditions may 

be also informative in this regard.  

A considerable issue when measuring effects of context on meter processing using EEG is 

that short segments of the signal must be analyzed, thus often leading to low signal-to-noise 

ratio. One way to mitigate this is by using spatial filtering optimized to suppress noise in the 

recordings (Cohen and Gulbinaite, 2017; Kaneshiro et al., 2020). However, one needs to be 

careful when optimizing spatial filters to prevent over-fitting and various biases that could 

be introduced to the data. For this reason, data from intracerebral EEG could be an 

invaluable source of insight due to their extraordinarily high signal-to-noise ratio without 

the need to apply complex preprocessing pipelines.  

 

5.1.4 Meter phase  

Throughout this thesis, I focused mainly on meter periods, while meter phase (i.e. the 

alignment of the perceived pulses with the rhythmic input) was addressed to a lesser 

extent. There are two reasons for this: (i) meter phase is extremely difficult to estimate from 

either movement or brain responses and (ii) estimating phase is not critical to quantify a 

periodic contrast that defines a metric pulse (see section 1.2 for discussion). Therefore, the 

fact that phase was not central to the current approach does not weaken the conclusions of 

this thesis. At the same time, I do not claim that meter phase is irrelevant to the perceptual 

phenomenon. Instead, phase is integral to perception of meter, and it contributes to the 

unique experience of genres such as ska, reggae, swing etc. In saying that, frequency-

tagging is not insensitive to phase (Appelbaum et al., 2008; Cottereau et al., 2011; Rossion 

et al., 2012), especially when compared across conditions or brain regions. Therefore, 

insights into the internal representation of meter phase could be achieved using frequency-

tagging. However, multiple caveats must be kept in mind. First, even though magnitude and 

phase are independent mathematically, in noisy signals the two are critically linked (van 

Diepen and Mazaheri, 2018). Therefore, when comparing phases across two conditions, 

amplitude differences may confound the results. Second, phase analysis may be less 
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powerful, as phase estimates cannot be easily pooled across harmonics in the same way as 

magnitudes. As a good starting point, flexibility of meter perception, i.e. one-to-many 

mapping, could be used to explore the phase of the neural response across conditions with 

physically identical sensory input, but different phase of the perceived meter. In such 

design, the phase of the perceived meter could be manipulated either through top-down 

intention (similarly to the design of Nozaradan et al., 2011, previously used to investigate 

meter period), or through recent context (similar to Study 3 in the current thesis).  

 

5.2 Conclusions 

This thesis builds on recent advances in music theory (Cohn, 2020) and psychology (London 

et al., 2017) to provide a coherent framework where meter is defined as a set of pulses that 

can be directly measured as periodic contrast in a range of signals. This definition is used as 

a basis to get insights into meter perception, a process of transformation from auditory 

rhythmic input to internally represented metric pulses that temporally organize perception 

and behavior (Agmon, 1990). The thesis presents a method based on frequency-tagging, 

which (i) allows appropriate measurement of signal properties relevant for periodic contrast 

in sound input, brain activity, and movement, and (ii) captures the mapping across these 

different signals. This work paves the way for future research investigating the nature of the 

phenomenon fundamental to our experience of listening, making, and moving to music 

(Honing, 2012). Furthermore, this work constitutes a unique approach to gain insight into 

more general higher-level perceptual processes that support temporal coordination of an 

individual with a complex dynamic environment. Further clarifying these processes is timely 

given the growing use of rhythmic auditory stimulation for the clinical rehabilitation of 

cognitive and motor neurological disorders (Hove and Keller, 2015) 
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