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1

In the last decades, the Rank Aggregation Problem (RAP) [22, 23, 45] has
gained popularity in several fields as statistics and machine learning because
of its significant applications in many real-world problems [12, 15, 22, 25, 35],

Abstract

Encouraged by the success of applying metaheuristics algorithms
to other ranking-based problems (Kemeny ranking problem and pa-
rameter estimation for Mallows distributions), in this paper we deal
with the rank aggregation problem (RAP), which can be viewed as a
generalization of the Kemeny problem to arbitrary rankings. While in
the Kemeny problem the input is a set of permutations, the RAP con-
sists in obtaining the consensus permutation for a sample of arbitrary
rankings.

This is an NP-hard problem which can be approached by using
greedy heuristic algorithms (e.g. Borda). Such algorithms are fast
but the solutions so obtained are far to be optimal. In this paper
we propose the use of more complex search processes to deal with
the RAP. In particular, we perform a comparative study among some
local-based search metaheuristics: hill climbing (HC), iterated local
search (ILS), variable neighborhood search (VNS) and greedy ran-
domized adaptive search procedure (GRASP).

We provide a complete analysis of the experimental study regard-
ing accuracy and number of iterations required to reach the best solu-
tion. From the results we can conclude that the selection of a suitable
neighborhood plays a key role, and that depending on the available re-
sources (cpu time) a different algorithm (VNS, ILS or GRASP) could
be the proper choice.

Keywords: Ranking, Rank aggregation problem, Metaheuristic al-
gorithm, Kendall distance, Permutation, Partial ranking.

Introduction

including information retrieval and recommender systems.

Rankings represent preferences in a natural way. Given a set of items
n] ={1,2,...,n}, a ranking 7 is an ordering of (some of) these items. The
case when the rankings are permutations (complete rankings without ties)
has received a great attention in the literature 28, 34]. However, many real
world problems usually deal with incomplete rankings, that is, those where
only p items are ranked, 2 < p < n, and/or with rankings where some items

are equally preferred or tied (see Section 2).



Given a sample of arbitrary rankings, the solution to the RAP is the
consensus permutation, that is, the permutation which best summarizes the
rankings in the sample. When all the rankings in the sample are permuta-
tions, this problem is known as the Kemeny ranking problem [6, 37]. Both
are NP-hard problems when the number of rankings to aggregate is greater
than 3 [9, 10].

The RAP has been widely studied and several proposals have arisen in
the last years. For instance, Fagin et al [26, 27] proposed four new metrics
for comparing complete rankings with ties and developed an algorithm to
aggregate multiple rankings of this nature. On the other hand, Dwork et al
22, 23] focused on the framework of incomplete rankings without ties and
their aggregation. Another interesting familiy of rank aggregation problems
are those which produce a weak order as output by considering different
distances to define the objective function [5, 7, 18, 17, 31, 49]. Recently,
metaheuristics algorithms have been used to approach several ranking-based
problems [2, 4, 18, 40, 41].

In this paper we deal with problem instances of the RAP containing
any kind of rankings (complete, incomplete, with and without ties). In a
recent paper [3], the authors have developed a version of the greedy Borda
algorithm tailored to this problem, which clearly outperforms the standard
Borda method. Now, we go one step further, and with the goal of obtaining
better solutions (closer to the global optimum) we propose the use of more
complex search engines. Since local search-based metaheuristics have shown
a good trade-off between efficiency and accuracy in related problems (e.g.
the traveling salesman problem [42], the routing-packing problem [14], the
vertex separation problem [20], the linear ordering problem [13], etc.), in this
study we focus on this family of metaheuristics. Specifically, we perform a
comparative study among the following algorithms:

e Hill climbing (HC) algorithm [46]. It is a local search algorithm which
iteratively tries to improve a given solution by moving at each itera-
tion to the neighbor representing the biggest increase (decrease) in the
evaluation or objective function with respect to the current solution.

e [terated local search (ILS) method [39]. It is a multi-start local search
algorithm based on the HC algorithm, which tries to escape from the
local optimum by perturbing it, and use the resulting configuration to
seed a new HC iteration.



e Variable neighborhood search (VNS) [32]. It is also a multi-start local
search algorithm which, instead of modifying the starting point at each
iteration, changes to a different neighborhood.

o Greedy randomized adaptive search procedure (GRASP) [43]. It is a
multi-start local search algorithm which, at each iteration, constructs
a randomized informed solution and locally improves it.

Thus, the main contribution of this paper is to provide a comparative
study among the selected MHs. We consider different neighborhoods and
allowed resources (number of fitness evaluations). The results show the in-
fluence of the starting point (see Section 4.3) and the selected neighborhood
in the performance of the (local) search algorithms (see Section 4.4). Regard-
ing the trade-off between goodness of the solution and number of evaluations,
we get that the VNS is the best choice under limited resources, while the
GRASP performs better when more evaluations are allowed (Section 3.1).

2 Preliminaries

2.1 Rankings

Given a set [n] = {1,2,...,n} of items, a ranking m represents an order of
preference of (some of) these items.

Rankings can be classified as complete (the n items are ranked) or incom-
plete (only p items are ranked, 2 < p < n). Rankings can also be classified
as with-ties' or without-ties, depending on if they present lack of preference
information among some ranked items. The set of all the (complete or in-
complete, with or without ties) rankings of the elements 1,2,...,n will be
denoted as gn

Rankings will be written as lists of items, from most to least preferred,
separated by vertical bars. Items between two consecutive vertical bars con-
stitute a bucket. Items in the same bucket (separated by commas) are tied

regarding the preference criterion.
Thus, by

g = ([Ell,[ElQ ce ,Iljlll'gl,l'gg e 7$2j2| Ce |$k1,$k2 ce ,xkjk)

n the literature, rankings with ties are also known as partial or weak rankings [27].



with 1 < j;, 1 <k <nand2 < Zleji < n, we will denote a ranking
where the items x11,12..., 21 are in the first bucket, za1, 292 ..., x9;, are
tied in the second bucket and so on. In particular, we will denote by B;(c) =
{.Tﬂ, Tio. .. 7Iij¢} the i-th bucket of o.

Table 1 shows examples of the different types of rankings for n = 4.

Table 1: Example of different types of rankings (n = 4).

Rankings Complete Incomplete
Without-ties (3|2|4|1)  (2]4]1)
With-ties (3,2)4]1)  (3]4,1)

In particular, complete rankings without ties are permutations of the
items 1,2,...,n. As usual, we will denote by S,, the set of permutations of
n items, S, C S,. Given m € S,, we will denote by m(i) the i-th ranked
element in 7. Besides, for i,7 € [n], we will write i <, j to indicate that
1 precedes j in a ranking o € gn We will also use <,, when necessary, to
indicate preference order among buckets. Thus, according to our notation,
we have By(0) <, Ba(0) <4 -+ <, Bi(0).

2.2 The rank aggregation problem

Given a sample with N rankings ¥ = {oy,09,...,0n8} C S,, the Rank
Aggregation Problem (RAP) [22, 23, 45] consists in obtaining the consen-
sus permutation in S, (see Definition 3). Roughly speaking, the consensus
permutation is the one minimizing the differences regarding all the rankings
in the sample. The difference between two rankings is computed by using
a proper distance. The Kendall tau distance is usually considered for the
RAP [1, 22, 23]:

Definition 1 (Kendall distance [38]). The Kendall distance d(m,T) between
two permutations 7w, T € S,, is defined as the total number of pairwise dis-
agreements between 7 and 7. There is disagreement over an item pair (i, j),
i,j € [n], if the relative order of i and j is different in 7 and 7.

Although Kendall distance was originally defined to compare two permu-
tations, it has been adapted to cope with other types of rankings [1, 26, 22,
23].



Based on the classical idea of the Kendall distance d regarding to counting
pairwise disagreements, in [3] the following extension of d was introduced for
managing whichever pair of rankings:

Definition 2 (Extended Kendall distance). The extended Kendall distance
d'(0,7) between two rankings 0,7 € S, is defined as the total number of item
pairs over which they disagree, ignoring item pairs (i, j) non-ranked in both
o and @. More precisely, let B(c), B/(c), B () and B’(7) be the buckets?
containing ¢ and j in ¢ and & respectively. Then, there is disagreement over
an item pair (i, j) if:

i) Bi(c) # B’(c) and B'(7) # B’(7), and

ii) Bi(o) <, B/(c) A Bi(7) <5 B(7) or
Bi(o) <, Bi(c) A Bi(7) <5 B/(7).

In particular, when applied to permutations, d’ agrees with the Kendall
distance d. As commented in [3], although d' is not even a pseudomet-
ric, it can be used as a similarity measure to deal with rankings in gn In
fact, d’ is non-negative and symmetric, but the triangle inequality does not
hold. For instance, d'((1]2]3),(1,2(3)) = 0, d'((2|1|3),(1,2]3)) = 0 and
d'((1]2(3), (2[113)) = 1.

Definition 3 (Rank aggregation problem [23]). Given a sample with N

rankings ¥ = {01, 09, -+, 05} € S, the rank aggregation problem consists in
finding the permutation 7y that satisfies

N
1
o = argmmﬁegnﬁ E d (o, ) (1)
i1

where d' (0;,7) stands for the extended Kendall distance between o; and .
7o in (1) is the permutation that minimizes the sum of the total number of
disagreements with respect to the rankings in the sample, and is called the
aggregation or consensus ranking of the sample.

If the N rankings of the sample are permutations, the rank aggregation
problem becomes the well-known Kemeny ranking problem [6]. Since permu-
tations can be viewed as without-ties rankings of n buckets, each one formed
by a unique item, the RAP can be thought as a generalization of the Kemeny
ranking problem [3].

2Recall that a ranking without ties can be viewed as a ranking with ties where the size
of all the buckets is 1.



3 Local search-based Metaheuristic algorithms

Since solving the RAP is an NP-hard problem (N > 3) [45], heuristic algo-
rithms are usually considered to deal with it. In order to improve the quality
of the solutions obtained by standard greedy algorithms (e.g. Borda), we
propose to use metaheuristics (MH) algorithms [30]. Undoubtedly, there is
room for their application, because due to the their exploitation/exploration
trade-off when carrying out the search, they are expected to find good solu-
tions in complex problem instances.

The two main components of local search algorithms are the objective
function and the neighborhood used. As in this work we look for the permu-
tation that minimizes the total number of disagreements with the rankings
contained in the sample, given ¥ = {0y,09,...,08} C S, we define the
objective function as

1 N
f(m3) =+ Zd’ (0;,7),  ™ESn. (2)

Note that the function f so defined also makes sense when 7 is an arbitrary
ranking (not necessarily a permutation).

Regarding the neighborhood, we have selected the two most used ones in
the literature [16, 11]:

e The interchange neighborhood (Nx ). A permutation 7 is in the neigh-
borhood Nx () of 7 if T can be obtained from 7 by interchanging two
elements. For instance, (1 2 3 4 5) is a neighbor of (1 2 5 4 3), while
(1 2 3 4 5) is not a neighbor of (1 2 5 3 4). Formally:

T di,j€{l,...,n} with i # j s.t.
Nx(m) = T(j) = (1)

(i) = 7(J)
Vk#i,j w(k) = (k)

Notice that Nx () has ”22_ " members.

e The insert neighborhood (N7). A permutation 7 is in the neighborhood
Ni(7) of m if T can be obtained from 7 by removing an element and
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reinserting it in a different position. For instance, (1 2 3 4 5) is a
neighbor of (1 2 5 3 4), while (1 2 3 4 5) is not a neighbor of (1 2 5
4 3). Formally:

(7 J,5€{l,...,n} withi # jst. )

ifi<y
wk)=n(k),k<iNk>j
B Tk)y=nmk+1),i<k<j
Nilm) = 7(j) = (i)
ifi>7

T m(k),k<jNk>i
Tk)=nmk—-1),j<k<i
T T

\ (7) =

Notice that N7(m) has (n — 1)® members.

Finally, another important issue in local search is the solution selected to
seed the search process. It motivates our first experiment (Section 4.3).
In the next subsections we describe the selected approaches.

3.1 Hill Climbing

The simplest local-search method is the Hill Climbing (HC) algorithm [30,
46], which iteratively tries to improve the current solution by evaluating
its neighborhood and selecting the best neighbor regarding the objective
function. This type of algorithm guarantees finding a local optimum in the
search space defined by the neighborhood used. Figure 1 shows the pseudo-
code of the HC algorithm, particularized to the RAP:

HC is a fast algorithm that returns a local optima regarding the used
neighborhood. Because of this, several MHs are designed by using it as
building block, coupled with procedures to (try to) escape from local optima.

3.2 Iterated local search (ILS) [39]

ILS is a multi-start local search procedure which runs a HC algorithm at
each iteration. It takes as starting point for iteration ¢t + 1 a perturbation of



HC (7, X, N)
input: 7, the starting point or initial candidate solution.
input: X, the sample.
input: N, the neighborhood to be used.
fr— f(m, %) // evaluate 7
Repeat
Compute the neighborhood N ()
7 <= arg ming ez f(7', 2)
if f(7*,%) < fx then (7, fz) < (7%, f(7*,%))
until 7 does not change
0 return (7, fr)

= © 00 ~J O Uik W N =

Figure 1: HC pseudocode.

the local optimum returned by the HC at iteration ¢. The process is repeated
until the stopping criterion is satisfied.

Using a perturbed local optimum instead of a non-informed (randomly
generated) individual lets re-use previous knowledge in order to (re-)start
the search from promising points. The strength of the perturbation must be
carefully managed to avoid worsening the current good solution too much,
but to allow the algorithm to escape from the current local optimum basin
of attraction. The perturbation is carried out by means of a Shaking(w,k)
function which obtains the new individual by sequentially applying k random
interchanges to the input permutation .

Figure 2 shows the pseudocode of the ILS algorithm.

ILS has been profusely applied to solve problems in the space of permu-
tations [4, 36, 44, 47].

3.3 Variable neighborhood search (VNS) [32]

In contrast to ILS, VNS does not change the starting point after being
trapped in a local optimum, but the neighborhood instead. This allows
VNS to explore a different (usually wider) area in which better solutions
may be found. A set of neighborhoods of increasing complexity is usually
considered; then, once a better solution is tracked down in a neighborhood,
the VNS returns to the simplest one.

In the literature related to permutation problems, a particularly successful
instance of VNS is one that alternates AN'x and N; during the search process



ILS (m, %, k,N)
input: 7, the starting point or initial candidate solution.
input: ¥, the sample.
input: &, the number of interchanges for the Shaking function.
input: A, the neighborhood to be used.
fr < f(m, %) // evaluate 7
T~
While not stopping criterion do
(7*, fre) < HC(7*, %, N)
9 if fr« < fr then (7, fr) < (7%, fr+)
10 7" < Shaking(m* k)
11 end
12 return (m, fr)

0O 3 O T i W N

Figure 2: ILS pseudocode.

[11, 16]. In our study we apply this approach, which is outlined in Figure 3.

VNS (7, 3, N = {N1,Na})
input: 7, the starting point or initial candidate solution.
input: X, the sample.
input: N, the set of neighborhoods to be used.
fr — f(m, %) // evaluate 7
Repeat
(7, f=) < HC(m, X, N7)
(7, fr) < HC(m, X, N3)
until 7 does not change
return (7, fr)

© 00 O Ot W~

Figure 3: VNS pseudocode.

In our experiments N7 = Nx and Ny = N;.

3.4 Greedy randomized adaptive search procedure (GRASP)

GRASP is a multi-start MH algorithm whose popularity has increased in the
last years [21, 43]. Each GRASP iteration can be divided into two phases:
construction and improving. The construction phase consists in obtaining
a randomized informed solution, while the second phase is dedicated to the
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improvement of the constructed solution, usually by means of a local search
algorithm.

The construction phase must be suitably designed to assure good but
diverse starting points for the second phase. This procedure is usually car-
ried out by using a greedy randomized construction function which involves
the step-wise construction of a candidate solution using a randomized greedy
process. In practice, it works by creating at each step a candidate list (RCL)
containing only the most promising elements according to the objective func-
tion. Then, one of the elements in the RCL is randomly selected and incor-
porated to the current partial solution. This procedure is repeated until the
solution is completed.

This solution is then taken as the initial starting point for the improving
process, whose aim is to attain a local optimum.

Now, we particularize the GRASP procedure to our problem:

e (Construction phase. Given an incomplete without ties ranking 7 with
p elements, 0 < p < n, and an element j not ranked in 7, we define the
adding function A(m, 7) which returns the ranking with p + 1 elements
that ranks j after 7.

In this phase we start with the empty ranking (.) and iteratively use
the adding function to construct the solution.

At each step, the cost of adding each remaining element to the cur-
rent ranking is evaluated by using the objective function (2) and the
best 7% elements are introduced in the RCL. Then, one element is ran-
domly selected from the RCL and added to the ranking. The process
is repeated until all the n elements are ranked.

o Improving phase. We use the HC algorithm described in Section 3.1.

Figure 4 shows the pseudocode of the greedy randomized construction
function (GRCF), while Figure 5 shows the full pseudocode of the GRASP
algorithm:

Remark: Notice that in line 5 of algorithm GRCF we have abused of the no-
tation in the use of f(A(m, j),X) because, except in the last iteration, A(mw, j)
is not a permutation but an incomplete ranking without ties. However, this
is not a problem because, as pointed out after equation 2, f(.,.) uses the
extendend Kendall distance d'(.,.), which is defined for any type of rankings.

11



GRCF (r,X)

QU i W N+~

input: r, the percentage of elements for the RCL.
input: X, the sample.
T ()
For k=1 ton do
RCL ={j : j is not ranked in 7
and f(A(m,j),Y) is in the top r%}
Select an element j from RCL randomly.
<+ A(m,j)
end
return .

Figure 4: GRASP construction phase pseudocode.

GRASP (X, N, r,maxIt)

= © 00 O OO i Wi+

input: X, the sample.
input: N, the neighborhood to be used.
input: r, the percentage of elements for the RCL.
input: maxlt, the number of iterations.
(7, fa) < (), +00)
For k£ =1 to mazlt do

7 < GRCF(r, X)

(*, fax) < HC(m, X, N)

if fr« < fr then (7, fz) < (7%, fr+)
end
return (7, fr).

Figure 5: GRASP pseudocode.
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4 Experimental Evaluation

This section describes the experiments carried out in our study. We describe
here the datasets of rankings generated, the methodology employed and the
two experiments designed.

4.1 Datasets

We carried out the comparison among the described algorithms over a bench-
mark of 22 datasets previously used in [3]. As in [48], these datasets can
be classified in explicit, if rankings were available directly (Sushi, n = 100
and N = 5000); derived, if rankings were obtained from different preference
relations as item ratings (MovieLens, n = 207 and N = 3255 [48]); and
transformed, if rankings were changed from complete to incomplete with ties
ones (F1(pg,pp), n = 25 and N = 20; Tour(pg,py), n = 153 and N = 20;
ATP50(pg, pp), n = 50 and N = 52; ATP100(pg, py), n = 100 and N = 52;
and ATP200(pg, py), n = 200 and N = 52).

The transformed datasets were constructed following the next procedure:
for every single complete ranking in the dataset, from most to least pre-
ferred, each item u was deleted with probability p,. If the item was kept, it
was included in the current bucket with probability p, and placed in the first
place of a new bucket otherwise. The following combinations for (pg, py) were
used: F1(1/3,1/2), F1(1/3,3/4), F1(1/2,1/2), F1(1/2,3/4), Tour(1/3,3/4),
Tour(1/3,5/6), Tour(2/3,3/4), Tour(2/3,5/6), ATP50(1/3,3/4), ATP50(1/3,5/6),
ATP50(2/3,3/4), ATP50(2/3,5/6), ATP100(1/3,3/4), ATP100(1/3,5/6),
ATP100(2/3,3/4), ATP100(2/3,5/6), ATP200(1/3,3/4), ATP200(1/3,5/6),
ATP200(2/3,3/4) and ATP200(2/3,5/6). In order to avoid the sampling
bias, 20 different datasets were generated for each different transformed
dataset combination. The generated benchmark contains 402 datasets?.

3The Sushi datasets is available in http://www.preflib.org/data/election /sushi/ED-
00014-00000003.toi.
The MovieLens1M base datase is available in http://grouplens.org/datasets/movielens/1m/.
The base datasets for F1, Tour, ATP50, ATP100 and ATP200 are available in
http://simd.albacete.org/wp-content/media-ftp/sites/1/02_Datasets-GMM.rar
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4.2 Methodology.

The following algorithms and parameter settings were considered in the ex-
periments:

e HC and ILS. They take as neighborhoods Nx (algorithms HC(X) and
ILS(X)) or N} (algorithms HC(I) and ILS(I)) (see Section 3.1).

e VNS. The algorithm alternates between the neighborhoods Ny and
Nj, starting by Ny since it is more efficient in terms of number of
evaluations? (@ versus (n — 1)? neighbors). Once a good solution
(local optimum) is identified by using N, the search engine changes
to N7, which has a better performance but at a higher cost. Then,
the algorithm iterates between Nx and N7 until no improvement is
obtained.

e GRASP. Again both neighborhoods are used leading to GRASP(X)
and GRASP(I).

MH algorithms explore many potential solutions in order to learn from the
search space landscape. Because of this, we designed two different experimen-
tal configurations by varying the maximum number of allowed evaluations:

e Configuration 1. Algorithms could carry out a large number of evalu-
ations: 500n2. The aim is to study whether the algorithm is able to
obtain good solutions provided it has enough resources.

e Configuration 2. The maximum number of allowed evaluations is con-
siderably smaller: 100 n2. The aim is to test which algorithms are able
to arrive faster to good solutions. Faster algorithms are preferred in
anytime conditions, that is, when a fast response is needed. Further-
more, these algorithms scale better to problem instances with a large
dimension (n).

As local search methods strongly depend on the solution used to seed the
search, we started with a preliminary experimental study (Experiment 1) to
compare three possible ways of computing the starting point (see Section 4.3).
Once we selected the best way to seed the algorithms, we developed a broad

4In preliminary experiments we also tested the algorithm starting with A, obtaining
similar results in accuracy but worst in terms of number of evaluations.
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experimental comparison (Experiment 2) involving all the MH algorithms
(see Section 4.4). In both experiments Configurations 1 and 2 were tested.

As most of the metaheuristics used in our study are intrinsically stochas-
tic or get this behaviour because of the use of shaking, we carried out 10
independent runs of these algorithms for each dataset. Then, to avoid the
bias introduced by the randomness, the average of the results obtained in the
10 runs was used in the comparative analysis. We report accuracy (mean ex-
tended Kendall distance, Definition 2) and efficiency (number of evaluations
until the best solution of that run is found).

The code of all the algorithms was written in Java. Experiments were car-

ried out in computers running under Linux operating system and a maximum
of 20 GB of RAM memory.

4.3 Experiment 1

As local search methods strongly depend on the solution used to seed the
search, in this experiment we considered three different initialization pro-
cesses of establishing the starting point for the local search approaches:

e Random (RN). A permutation is selected at random.

e Borda (BO). A generalized version [3] of modified Borda count algo-
rithm [24] is used.

e Borda (EB). A Borda count-based algorithm which uses extension sets
to deal with the uncertainty introduced by ties and missing items. This
algorithm was introduced in [3].

In this experiment, to avoid the effect of randomness, we only considered
algorithms with a deterministic behaviour, i.e. HC and VNS.

4.3.1 Results

The algorithms HC(I), HC(X) and VNS were ran for all the datasets consid-
ering the three methods described above to generate the initial solution. In
the case of RN, the same randomly generated initial solution was considered
for the three algorithms.

The three possible initializations were studied for each algorithm inde-
pendently. First, we compared the accuracy of the obtained solution (mean

15



extended Kendall distance (2)) and, when necessary, the number of fitness
evaluations. The two configurations previously described were studied.

The statistical analysis was based on the Friedman Test + Holm’s Pro-
cedure [8, 19]. First, a Friedman ranks test (o = 0.05) [29] was carried out
to decide if all the tested algorithms were equivalent or not. Then, a Holm’s
post-hoc procedure (o = 0.05) [33] was performed by selecting as control the
algorithm having the best mean rank.

In our study, we first applied this statistical analysis to the accuracy
results and, for those algorithms which were not significantly different, the
same procedure was applied regarding the number of fitness evaluations.

Configuration 1 Table 2 shows the outcome of the statistical analysis
when 50072 fitness evaluations were allowed. For the RN case the average
of 10 independent runs was considered. The tables on the left part corre-
spond to the accuracy analysis, while the ones on the right part represent the
evaluations-based analysis for those algorithms having an equivalent perfor-
mance regarding accuracy. In each inner table, from left to right the columns
show the adjusted p-value using Holm’s procedure, the ranking computed for
the Friedman test, and the comparison of each algorithm (win/tie/loss) with
respect to the control. Boldfaced results correspond to non-rejected hypothe-
ses.

From the results we can observe that EB is the best choice for the three
algorithms. In the cases when other algorithms are equivalent regarding
accuracy, EB is the outstanding initializing method regarding number of
evaluations.

Configuration 2 Table 3 shows the outcome of the statistical analysis
when 10072 fitness evaluations were allowed. As in Configuration 1, again
EB is the outstanding initializing method.

4.4 Experiment 2

In this section we compare the MH algorithms HC, ILS, VNS and GRASP.
For HC, ILS and GRASP we consider both neighborhoods Ny and N7 leading
to six different algorithms: HC(X), HC(I), ILS(X), ILS(I), GRASP(X) and
GRASP(I).

16



Table 2: Statistical analysis for Experiment 1 - Configuration 1. Tables on
the left part correspond to the accuracy analysis. Tables on the right part
correspond to the evaluations-based analysis for those algorithms having an
equivalent performance regarding accuracy. Boldfaced results correspond to
non-rejected hypotheses.

method pvalue rank win tie loss method pvalie rank  win  fie Toss

HC(I)-EB - 15 - - -
HC(I)-EB - 100 -

HC(I)-BO 2.9129e¢-01 189 11 3 8

HO(DRN 23802003 255 19 0 3 HC(I)-BO 3.3841e-07 2.00 22 0 0

method pvalue rank win tie loss
HC(X)-EB - 1.27 -

HC(X)-RN  5.2556e-04  2.32 19 0 3
HC(X)-BO 3.2795e-04 241 19 0 3

method pvalue rank win tie loss method pvalue rank win tie loss
VNS-EB - 170 - - - VNS-EB - 1.00 - -
VNS-RN  2.6334e-01 2.14 14 8 VNS-BO 5.2556e-04  2.05 22 0 0
VNS-BO 2.6334e-01  2.16 14 1 7 VNS-RN  1.8044e-10  2.95 22 0 0

Table 3: Statistical analysis for Experiment 1 - Configuration 2. Tables on
the left part correspond to the accuracy analysis. The table on the right
part shows the evaluations-based analysis for those algorithms having an
equivalent performance regarding accuracy. Boldfaced results correspond to
non-rejected hypotheses.

method pvalue rank win tie loss
HC(I)-EB - 125 - -

HC(I)-BO  3.4808e-02  1.89 16 1 5
HC(I)-RN  1.7414e-07 2.86 22 0 0

method pvalue rank win tie loss
HC(X)-EB - 123 - -

HC(X)-BO 5.2556e-04 227 19 0 3
HC(X)-RN  4.8610e-05 250 20 0 2

=

method pvalue rank win tie loss - - —
method pvalue rank win tie loss
VNS-EB - 143 - - - VNS-EB 1.02
VNS-BO 9.7254e-02 193 16 : -
VNS-RN  1.2937¢-04 264 18 0 4 VNS-BO  47683e-07 198 21 1 0O

—_
ot
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In the light of Experiment 1, we chose EB to seed the search for trajectory-
based metaheuristics HC, ILS and VNS. As baseline we also considered the
results obtained by EB (Tables 4 and 5).

As stopping criteria we used the two configurations described in Section
4.2. As ILS and GRASP are iterative algorithms, they were ran until the
maximum number of fitness evaluations was achieved. HC algorithm may
stop before that maximum number of evaluations (if trapped in a local opti-
mum). To make a fair comparison between VNS and GRASP/ILS we allowed
VNS to achieve the maximum number of evaluations by using the shaking
function when it was trapped in a local optimum. Notice that, in essence,
this approach mimics the one of ILS with respect to HC.

Apart from the number of maximum iterations given by the selected con-
figuration, the following parameters need to be specified:

e The k parameter of the Shaking function is set to k = 0.15n.
e The r parameter of the GRCF function is set to r = 20%.

Tables 4 and 5 show the accuracy (mean extended Kendall distance) for
all the algorithms and datasets. The results are averaged over 10 independent
runs for the non-deterministic algorithms: GRASP, ILS and VNS. The best
result for each dataset is boldfaced.

By inspection, we can observe that GRASP(I) and ILS(I) are the al-
gorithms which obtained the best results. However, to be in a position of
extracting significant conclusions we carried out the same statistical study
described in Experiment 1. Table 6 shows the outcome of the statistical
analysis for both configurations.

According to the statistical analysis we can conclude that:

e The use of N7 is more suitable than Nx to deal with the RAP.

e The algorithms using randomness (ILS, GRASP and VNS) to escape
from local optima outperform the greedy HC.

e In Configuration 1, that is, when the algorithms can use a large num-
ber of fitness evaluations, ILS(I) is ranked as the best one, although
GRASP(I) and VNS(I) are not different in terms of accuracy when
considering statistical significance.
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Table 4: Accuracy (mean extended Kendall distance) for Configuration 1,
averaged over 10 independent runs. The best result for each dataset is bold-
faced.

problem EB GRASPI) GRASP(X) HCO  HCX) LSO  ILS(X) VNS
Sushil00 50437.0 47796.8 78738 477970 479210  47795.6 478202  47796.0
MovieLens 1640502.0  1612296.5  1612730.2 1612298.0 1612798.0 1612288.5 1612586.1 1612365.5
F1(1/3,1/2) 521.4 492.2 492.5 492.5 494.9 492.2 492.5 492.3
F1(1/3, 3/4) 376.3 356.1 356.3 356.5 358.9 356.1 356.3 356.3
F1(1/2, 1/2) 267.4 241.3 241.7 241.9 245.2 241.3 241.6 241.4
F1(1/2, 3/4) 182.2 163.8 163.9 164.1 166.5 163.8 163.8 163.8
Tour(1/3, 3/4) 27741.4 26904.2 26988.5  26911.6 270102  26893.3  26947.9  26896.3
Tour(1/3, 5/6) 26152.0 25373.0 25455.3  25380.5 254772 25365.3  25417.7  25368.7
Tour(2/3, 3/4) 6141.7 5554.2 5621.8 5560.5 5637.8 5544.4 5586.6 5546.2
Tour(2/3, 5/6) 5496.0 4934.5 4999.1 4941.3 5013.8 4924.0 4962.8 4926.4
ATP50(1/3, 3/4) 1903.5 1735.8 1736.7 1736.2 1742.3 1735.8 1736.6 1735.8
ATP50(1/3, 5/6) 1486.8 1360.3 1361.1 1360.8 1364.5 1360.4 1361.0 1360.5
ATP50(2/3, 3/4) 408.6 310.6 314.2 311.6 320.5 310.5 312.0 311.1
ATP50(2/3, 5/6) 302.2 218.0 221.4 219.2 225.9 217.9 219.1 218.2
ATP100(1/3, 3/4) 9804.1 9034.8 9056.7 9037.9 9073.0 9034.5 9048.2 9035.6
ATP100(1/3, 5/6) 8338.5 7699.8 77165 7702.0 7730.4 7699.3 7710.4 7701.0
ATP100(2/3, 3/4) 2184.4 1747.8 1769.3 1751.8 17774 1746.4 1756.5 1747.5
ATP100(2/3, 5/6) 1736.8 1376.0 1393.7 1380.1 1399.8 1374.3 1383.5 1375.3
ATP200(1/3, 3/4)  37481.9 33906.0 340148 339123 34047.2  33901.4 339835  33904.7
ATP200(1/3,5/6)  33425.1 30230.0 303182 30233.6 303337  30226.1 302905 302308
ATP200(2/3, 3/4) 8890.3 6968.4 7044.8 6973.4 7055.2 6962.0 7010.5 6964.5
ATP200(2/3, 5/6) 7460.8 5761.0 5827.5 5763.6 5842.9 5754.3 5798.4 5757.4

Table 5: Accuracy (mean extended Kendall distance) for Configuration 2,
averaged over 10 independent runs. The best result for each dataset is bold-
faced.

problem EB GRASPI) GRASP(X) OCH  HOX) ILSA  ILS(X) VNS
Sushil00 50437.0  47797.0 I7907.6  47797.0  47921.0  47797.0  47887.9 47835.0
MovieLens 1640502.0  1613767.0  1612798.0 1613767.0 1612798.0 1613767.0 1612798.0 1612718.0
F1(1/3,1/2) 521.4 492.3 493.1 14925 494.9 492.3 493.2 1492.6
F1(1/3, 3/4) 376.3 356.2 356.9 356.5 358.9 356.2 356.8 356.4
F1(1/2,1/2) 267.4 241.4 242.7 241.9 245.2 241.4 242.4 241.7
F1(1/2, 3/4) 182.2 163.8 164.6 164.1 166.5 163.8 164.3 164.0
Tour(1/3, 3/4) 277414 26923.8 270102 269238  27010.2  26923.8  26992.0  26906.4
Tour(1/3, 5/6) 261520  25394.0 254772 253940  25477.2 253940 254618  25380.1
Tour(2/3, 3/4) 6141.7 5580.6 5637.6 5580.6 5637.8 5580.6 5621.8 5561.2
Tour(2/3, 5/6) 5496.0 4958.9 5013.6 4958.9 5013.8 4958.9 4998.5 4940.7
ATP50(1/3, 3/4) 1903.5 1735.9 1738.6 1736.2 1742.3 1735.9 1739.2 1736.0
ATP50(1/3, 5/6) 1486.8 1360.4 1362.5 1360.8 1364.5 1360.5 1362.5 1360.6
ATP50(2/3, 3/4) 1408.6 311.1 316.7 3116 320.5 310.8 315.5 311.9
ATP50(2/3, 5/6) 302.2 218.7 223.0 219.2 225.9 218.4 221.9 218.8
ATP100(1/3, 3/4) 9804.1 9037.9 9066.9 9037.9 9073.0  9037.2 9064.6 9037.2
ATP100(1/3, 5/6) 8338.5 7702.0 7724.6 7702.0 77304 7701.4 7723.7 7702.6
ATP100(2/3, 3/4) 2184.4 1751.8 1774.4 1751.8 1777.4 1750.5 1770.0 1750.1
ATP100(2/3, 5/6) 1736.8 1380.1 1397.8 1380.1 1399.8 1378.7 1393.8 1377.8
ATP200(1/3, 3/4) 374819  34006.5 340472 340065  34047.2 340065 340427  33928.6
ATP200(1/3,5/6)  33425.1 30315.1 303337 303151  30333.7 303151  30330.0  30242.0
ATP200(2/3, 3/4) 8890.3 7062.2 7055.2 7062.2 7055.2 7062.2 7050.6 6985.3
ATP200(2/3, 5/6) 7460.8 5842.8 5842.9 5842.8 5842.9 5842.8 5837.1 5775.4
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Table 6: Statistical test (accuracy) for Configuration 1 (left) and Configura-
tion 2 (right). Boldfaced results correspond to non-rejected hypotheses.

method pvalue rank win tie loss method pvalue rank win tie loss
ILS(I) - 118 - - - VNS - 214 - - -
GRASP(I) 1.3965e-01 2.27 16 4 2 ILS(I) 9.2036e-01  2.55 11 0 11
VNS 1.1280e-01 2.59 22 0 0 GRASP(I) 9.2036e-01  2.68 12 0 10
HC(I) 6.5095e-05  4.32 22 0 0 HC(I) 1.4670e-01  3.59 18 0 4
ILS(X) 1.7975e-06  4.91 22 0 0 ILS(X) 1.4298e-03  4.77 22 0 0
GRASP(X) 3.7640e-09  5.73 22 0 0 GRASP(X) 5.8069¢-06  5.73 22 0 0
HC(X) 1.9983e-14 7.00 22 0 0 HC(X) 1.4241e-08  6.55 22 0 0
EB 1.8618e-19 8.00 22 0 0 EB 1.4221e-14  8.00 22 0 0

e Regarding Configuration 2, that is, when less evaluations (100n?) are
available, VNS becomes the best option in terms of accuracy, although
ILS(I), GRASP(I) and HC(I) are not different in terms of statistical
significance.

For both configurations and those algorithms non significantly different
regarding accuracy, we studied the number of evaluations needed to find its
best solution (Table 7). The statistical analysis is shown in Table 8. As
can be seen, for Configuration 1 (500n? evaluations) among the equivalent
accurate algorithms (ILS(I), GRASP(I) and VNS), GRASP(I) was the more
efficient one. On the other hand, the outstanding algorithm for Configuration
2 (100 n? evaluations) was VNS. Regarding Configuration 2, we can observe
that GRASP(I), ILS(I) and HC(I) achieved the maximum number of allowed
evaluations without reaching a local optimum. However, in the case of VNS
the alternation between Ny and N7 allowed the algorithm to progress faster.

5 Conclusions

In this paper we carried out a comparative study among different local search
based metaheuristics to deal with the Rank Aggregation Problem.

From the experiments and the posterior statistical analysis we can con-
clude that: (1) the selected neighborhood plays a key role, being the one
based on interchanging items (N;) the more suitable to deal with the RAP;
(2) the iterated version (by using shaking) of VNS is the best choice when
some sort of anytime behaviour is required, that is, when the number of avail-
able fitness evaluations is restricted; and (3) the GRASP(I) shows the best
tradeoff between accuracy and efficiency when the algorithms are allowed to
perform a large number of fitness evaluations.
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Table 7: Number of evaluations until the best solution was found by the
algorithm for Configuration 1 (left) and Configuration 2 (right). Best results
are boldfaced.

problem GRASP(I) ILS(I) VNS problem GRASP(I) HC(T) ILS(T) VNS
Sushil00 1249381.2 2795766.8 3748653.5 Sushil00 910801.0 910801.0 910801.0 746461.4
MovieLens 9278900.0 15611240.0  11822500.0 MovieLens 4284900.0 4284900.0 4284900.0 4284900.0
F1(1/3,1/2) 9358.5 115227 30970.5 F1(1/3, 1/2) 7699.3 5101.0 8350.8 8647.8
F1(1/3, 3/4) 16001.2 15928.1 30032.9 F1(1/3, 3/4) 10612.6 4351.0 9260.3 6336.9
F1(1/2,1/2) 12718.8 15123.6 28344.0 F1(1/2,1/2) 11224.6 5251.0 11018.5 8032.2
F1(1/2, 3/4) 7816.3 10178.4 25794.8 F1(1/2, 3/4) 7762.3 4981.0 8224.9 5964.6
Tour(1/3, 3/4) 5949467.0  9336942.0 8383229.5 Tour(1/3, 3/4) 2327803.5 2327803.5 2327803.5 2050307.6
Tour(1/3, 5/6) 5978073.0 9052289.0 8466278.0 Tour(1/3, 5/6) 2329364.0 2329364.0 2329364.0 2023523.4
Tour(2/3, 3/4) 5389928.5  9591481.0 9096342.0 Tour(2/3, 3/4) 2340900.0 2340900.0 2340900.0 2100519.0
Tour(2/3, 5/6) 5935165.5 9829655.0 9479393.0 Tour(2/3, 5/6) 2337442.2 2337442.2 2337442.2  2096351.2
ATP50(1/3, 3/4) 77041.6 81660.4 120583.5 ATP50(1/3, 3/4) 58090.6 46551.0 53472.4 39354.3
ATP50(1/3, 5/6) 80459.4 92636.8 82098.2 ATP50(1/3, 5/6) 68295.0 439785 593282 37149.5
ATP50(2/3, 3/4) 282500.8  234569.0 390315.3 ATP50(2/3, 3/4) 85175.6 56718.5 97989.9 77245.6
ATP50(2/3, 5/6) 291186.2 296421.2 298685.6 ATP50(2/3, 5/6) 94828.7 54391.0 111502.1 73099.0
ATP100(1/3, 3/4) 1725869.4 1776262.8 1874875.2 ATP100(1/3, 3/4) 531631.0 531631.0 609841.2 470696.8
ATP100(1/3, 5/6) 1752451.0  1746166.8 1428282.6 ATP100(1/3, 5/6) 523216.0 523216.0 607712.7  427458.5
ATP100(2/3, 3/4) 2283339.0 2972731.0 2352479.2 ATP100(2/3, 3/4) 599941.0 599941.0 742798.4 546679.8
ATP100(2/3, 5/6) 2223691.2  2971345.0 2658391.5 ATP100(2/3, 5/6) 584596.0 584596.0 731066.9 554550.6
ATP200(1/3, 3/4) 10391383.0 13789709.0 11192464.0 ATP200(1/3, 3/4) 4000000.0 4000000.0 4000000.0  3992970.5
ATP200(1/3, 5/6) 9261262.0 13608123.0 11409278.0 ATP200(1/3, 5/6) 4000000.0 4000000.0 4000000.0  3962115.5
ATP200(2/3, 3/4) 10145022.0 16245669.0 14916155.0 ATP200(2/3, 3/4) 4000000.0 4000000.0 4000000.0  3993945.2
ATP200(2/3, 5/6) 8906247.0 14644214.0  15030182.0 ATP200(2/3, 5/6) 4000000.0 4000000.0 4000000.0  3972045.2

Table 8: Statistical test (efficiency) for Configuration 1 (left) and Configura-
tion 2 (right). Boldfaced results correspond to non-rejected hypotheses.

method pvalue rank win tie loss method pvalue rank win tie loss
GRASP(I) - 1.8 - - - VNS ‘ - 143 - - N
VNS 0.3864c-05 2.41 21 0 1 HC(I) 3.5558e-02  2.25 15 1 6
ILS(I) 9.3864e-05 2.41 19 0 GRASP(I) 8.7352e-05 3.02 20 1 1

ILS(I) 5.0594e-06  3.30 20 1 1
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