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Abstract: Nowadays, improvement in power system performance is essential to obtaine economic and technical benifits.  To 

achieve this, optimize the large number of parameters in the system based on optimal power flow(OPF). For solving OPF 

problem efficiently, it needs robust and fast optimization techniques. This paper proposes the application of a newly developed 

hybrid Whale and Sine Cosine optimization algorithm to solve the OPF. It has been implemented for optimization of the control 

variables. The reduction of true power generation cost, emission, true power losses, and voltage deviation are considered as 

different objectives. The hybrid Whale and Sine Cosine optimization is validated by solving OPF problem with various 

intentions using IEEE30 bus system. To varidate the proposed technique, the results obtained from this are compared with other 

methods in the literature. The robustness achieved with the proposed algorithm has been analyzed for the considered OPF 

problem using statistical analysis and whisker plots. 

Keywords: Active power loss; Optimal power flow; Sine Cosine optimization; Voltage deviation; Whale optimization.  

1. Introduction 

As the usage of power is increasing, i.e., the 

demand of the power increasing, it causes the voltage 

instability, line overloaded and power system 

blackouts. It can be avoided by building new 

transmission lines and increase power generation, but 

it creates environmental problems and consume more 

time and cost. Therefore, many authors have 

developed an alternative solution as better utilization 

of generators from numerous sources in an electrical 

system that need optimally organized for the 

economical and effective operation of the system [1]–

[4]. This is called OPF, and this problem is expressed 

with generator outputs and explained successively to 

achieve the optimal settings.  

Traditional Economic Dispatch (ED) has a 

significant role in the power system for optimal 

operation problem to design the load sharing of all 

generating units to reduce fuel cost with several 

physical and operational restrictions to satisfy. But 

with the increase of public awareness, generating 

plants may not be in a position to use the 

environmental pollution caused fossil fuel in future 

[5], [6]. Therefore the traditional ED does not meet the 

requirements of present trend. Because which may not 

optimize the generation values, therefore, they may 

produce an excessive amount of emission pollutions 

[7]–[10]. Taking low emission fuel may decrease 

emissions. This modification can be followed through 

the long term option, such as price and availability of 

low emission fuel. 

To overcome this, an alternative solution is 

considered, i.e., OPF. It is more alluring for 

minimizing cost and emission concerns without fuel 

converting. But it is renowned as a difficult multi 

constrained problem. To solve the OPF problem, 

different methods have been used in literature. Warid 

[11] in 2020, proposes AMTPG-Jaya algorithm for 
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solving mono objective OPF. The population is dived 

into a number of teams which are used to find the 

proper search direction, and the results reveal that the 

proposed method has fast convergence. Saberi 

Hossein. et al. [12] in 2020, use the decomposition 

algorithm for security-constrained OPF to handle the 

transient stability, where it is minimized the 

generation cost and applied to the IEEE39 bus system. 

Recently Shuijia Li et al. [13] propose the adaptive 

differential evolutionary algorithm for solving OPF 

problem with constraint handling technique, and it is 

applied to IEEE30 bus system. Authors apply 

randomizing the parameters technique to improve the 

search efficiency.  Chen Gonggui et al. [14] apply the 

pigeon based algorithm for Multi Objective OPF 

(MOOPF) problem. This MPIO solve the MOOPF 

problem effectively and provides better results 

compared to NSGA-II. Biswas Partha P et al.[15] 

propose the differential evolution with constraints to 

solve OPF. Authors use the superiority of feasibly and 

self-adaptive penalty techniques with DE to optimize 

the control variables and applied to IEEE30, IEEE57 

and IEEE118 bus grids. 

Attia Abdel Fattah et al. [16] use the modified sine 

cosine algorithm for OPF. In this levy flights are 

auxiliary to the actual SCA, which increase the 

computation speed. This Modified Sine-Cosine 

Algorithm (MSCA) applied to IEEE30 and IEEE118 

bus grids to validate its effectiveness. Abdo Mostafa 

et al. [17] apply the developed GWO for reduction of 

fuel cost considering valve point effect, due to the 

incorporation of the adaptive operator in DGWO 

provides better search capabilities than GWO.  

Sakthivel S et al.[18] employ the bio-inspired fruit fly 

algorithm for SCOPF, due to less number of factors, it 

is easy to use and reduce the computation time. It is 

applied on IEEE30 bus grid. P Harish et al. [19] use 

the mixed cross over integrated enhanced 

self-adaptive DE for solving multi-objective OPF. 

Due to crossover incorporation, it provides the best 

solution compared to DE on IEEE57 and Algerian 59 

bus grid. Mohamed Al Attar Ali et al.[20] present the 

moth swarmalgorithm for solving OPF on IEEE30, 57, 

118 bus grids. The algorithm provides better results 

due to levy mutation.   

T. Niknam et al.[21] presented a better particle 

swarm optimization (IPSO) method to OPF problem 

through computing instructed set points, which fulfill 

the security, environment and economic conditions at 

the same time. A fuzzy assessment recognized tool is 

used for selecting the finest solution of the Pareto set 

is achieved using the suggested algorithm. Many 

author solving OPF problem using different 

optimization algorithms, e.g. backtracking search 

optimization algorithm [22], Colliding Bodies 

Optimization [23], real coded biogeography[24], 

Wrapper Genetic Programming [25], Bat 

Optimization Algorithm [26], 

Teaching-Learning-Based Optimization [27], 

Boosting Algorithm [28],  black-hole 

optimization[29], Differential Evolution [30], 

artificial bee colony [31], Improved Bagging 

Algorithm[32], Firefly Algorithm [33]. All said 

authors solve OPF with single optimization methods, 

where they can stuck at local optimal solution. It can 

be avoided by using a hybrid optimization method. In 

recent days, enhanced algorithms [34], [35], and 

hybridized algorithms [36], [37] are getting popular in 

solving numerous engineering problems. The 

graphical representation of the proposed hybrid 

optimization for OPF problem is shown in Fig.1. 

 
Fig 1. Graphical demonstration 

The depth of the literature review demonstrates that 

there is a very less amount of hybrid metaheuristic 

optimization tools to solve OPF problems. This gap 

was attended with the below listed contributions in 

this paper: 

a. An amalgamation of a recently developed 

population-based SCA with a swarm-intelligence 

based metaheuristic Whale Optimization 

Algorithm WOA to perform a strong and powerful 

Hybrid Whale and Sine Cosine Optimization 

Algorithm (HWSCOA) 

b. Performing OPF on IEEE 30 bussystem using the 

suggested methodology to minimize: 

• Power generation cost 

• Emission of toxic gases 

• True power losses 

• Voltage Deviation 



 

 

 

 

The paper is presented as follow: Section 2 presents 

the creation of OPF problem; Section 3 describes the 

considered optimization method; Results and 

discussion are showed in Section 4; Section 5 

analyzed the robustness study of the proposed method 

Section 6, and; Finally, Section 6 shows the 

Conclusion.  

2. Mathematical representation of OPF Problem 

The significant objective of OPF problem is to 

minimize the objective function based on the 

optimized control variables without sacrificing the 

equality and inequality restrictions.  This paper 

concerns in implementing a hybrid approach to 

perform OPF on IEEE test system to attain the 

following objectives: 

• Obj 1: Minimization of cost 

• Obj 2: Minimization of toxic gases in the 

atmosphere 

• Obj 3: Minimization of true power losses 

• Obj 4: Minimization of Voltage deviation. 

These four objective functions are formulated in the 

succeeding section. 

2.1 Objective function 
a) Minimization of cost  

Fuel cost function ( )1F  for thermal generating 

units is denoted by equation (1). 

2

1

1

( ) $ /
NTG

i i TGi i TGi

i

F P P Hr  
=

= + +
         

(1) 

b) Minimization of emission 

The thermal generator produces the emission of 

SOx, NOx with pollutes the environment, therefore, it 

is required to reduce the emission by taking this one as 

an objective. Emission of these gases is considered in 

ton/Hr using equation (2). 
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c) Minimization of true power Losses 

Power loss calculated by using equation (3). 

( )3

1
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N

i j ij ij i j

j

F V V Y   
=

= − +                     (3) 

d) Minimization of Voltage Deviation 

Enormous low voltages can lead to undesirable task of 

the system. Therefore, it is significant to control the 

voltage for the appropriate functioning of the 

equipment. The objective function for minimizing the 

voltage deviation is stated in equation (4). 
2
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2.2 Constraints  

a) Equality constraints: 
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b) Inequality constraints 
min max
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3. Proposed HWSCOA for OPF problem 

With an aim to perform OPF on IEEE test system, the 

superior, well-organized and noval time-consuming 

optimization method was a matter of concern to deal 

with. Extensive literature survey clearly demonstrates 

that the usage of hybrid optimization methods are not 

that highly used for OPF on the test power systems. 

WOA is amalgamated with a recently developed and 

well-established algorithm SCA, which have 

previously showed their advantages and strength in 

handling engineering problems of larger dimension. 

Where WOA is recognized for a rough exploration 

capability within its multi-dimensional search space 

(water bodies) moving up, down and sideward, SCA is 

retain the balance between exploitation and 

investigation because it is proficient in switching 

between cosine and sine functions. HWSCOA 

exhibits both the properties of WOA and SCA in 

delivering a fast and superior quality optimized 

output.             

3.1. The Whale Optimization Algorithm 

 Different methods are applied to find the best 

values for the variable for a particular function under 

constraints to maximize or minimize it, where WOA 

is one of them. The involvement of fewer control 

parameters makes the evolution process faster. This 



 

 

  

 

technique was inspired by bubble-net feeding. This 

technique starts with attacking the prey, then encircle 

them by forming bubble-net around them in a spiral 

manner (exploitation phase) and then search for the 

prey (exploration phase) [38]. 

In the encircling mechanism, the humpback whales 

locate the position of prey and circularly enclose 

them. WOA assumes the best location is to target prey 

in search space, and other agents try to modify their 

location concerning the best search agent. This 

mechanism is mathematically formulated by 

equations (7,8). 

.YrandG C Y= −
r r r r

            (7) 

*Y( 1) .iter Y AG+ = −
r rr r

         (8) 

where, iter is the existing iteration, Y
r

 is the 

location vector represents the current position, 
*Y
r

 is 

the location vector of finest position, G
r

is the 

difference vector, A and C are the coefficient vectors 

value of A is random value in [a, -a] and the value of 

‘a’ decreases as iteration increases. 

𝐴 = 2𝑎. 𝑟1 − 𝑎                               (9) 
𝐶 = 2. 𝑟 2                                 (10)                                                                         

where, r is a random vector in the interval [0,1] where 

a is linearly reduced from 2 to 0 given by (11).  

𝑎 = 2 − iter ∗ (
2

Max_iter
)                (11)            

The value of ‘a’ denotes the exploration and 

exploitation phase of the proposed algorithm with 

respect to the number of iterations.  

 

Fig. 2. Encircling mechanism of the whale [38]. 

In the bubble net attacking method, it is shown in Fig2 

and two approaches are designed and described as,  

a) Shrinking Mechanism:  

The value of a is reduced from 2 to 0 above the 

progress of iteration that sets the random value of A in 

the interval [-1, 1], which gives a new position of 

whale anywhere between the original and current 

location of the agent. 

b) Spiral Updating Mechanism:  

The difference in whale and prey position is given by 

* ( ) ( )pG C Y iter Y iter= −
r r r r

        (12) 

where G’ represents the best solution of the distance 

of ith whale and prey and then the spiral equation is 

created for helix-shaped movement  

Y( 1) . . (2 ) ( )bliter G e Cos l Y iter+ = +
rr r

(13) 

There is 50% probability to choose between shrinking 

mechanism and spiral model, therefore, it is obtained 

equation (14),  

( ) .G , 0.5
Y( 1)

G. . (2 ) ( ) , 0.5

P

bl

P

Y iter A p
iter

e Cos l Y iter p

 − 
+ = 

+ 

r rr
r

r r
 (14) 

where, p=Arbitrary number in [0,1].  

The last step involves the hunt for prey in which 

Whales randomly explores the position of prey with 

positions relative to each another, therefore, the 

location of hunt agent is modified with the value of A 

>1 or<1. 

 ( ) ( )pG Y iter Y iter= −
r r r

                     (15)                                                                                                                         

Y( ) .randiter Y AG= −
r rr r

             (16)                                                                                                       

3.2. Hybrid Whale and Sine Cosine Optimization 

Algorithm 

This section amalgamates the above-mentioned WOA 

with a fast and powerful SCA to yield a superior 

hybrid WOASCA for optimization. The distance 

mapping parameter G from WOA is modified in 

hybrid WOASCA using probabilistic based 

sine-cosine functions. This modification increases the 

exploration capability within the search space in a 

rigorous manner and eliminates even the slightest 

chance of the solution getting stuck in local minima. 

Hybrid WOASCA is limited to the following 

modifications as mentioned below. Therefore, 

equation (7) of WOA is modified into equation (17): 

1 2

1 2

*sin( )* .Y 0.5

*cos( )* .Y

rand

rand

G rand rand C Y if rand

G rand rand C Y otherwise

= − 

= −

r r r r

r r r r

                     (17) 

In hybrid WOASCA, equation (12) of WOA is 

modified into equation (18). 
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r r r r
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                         (18) 

Equation (15) of WOA is expressed as equation (19) 

in hybrid WOASCA: 

5 6

5 6

*sin( )* ( ) ( ) 0.5

*sin( )* ( ) ( )

p

p

G rand rand Y iter Y iter if rand

G rand rand Y iter Y iter otherwise

= − 

= −

r r r

r r r

                  (19) 

Rest of the equations remain unchanged and the 

algorithm follows as in WOA. 

3.3. Implementation of OPF using HWSCOA 

The steps for the implementation of OPF using 

HWSCOA are as follows: 

Step 1. Initialize the parameters. 

Step 2. Random control variables are generated in 

between the given limits. 

Step 3. Fitness function is calculated, and the present 

the distance mapping parameter G 

Step 4. G is modified using probabilistic based sine 

cosine functions.  

Step 5. By using equations (17)-(19), G values are 

calculated, and the corresponding position of 

the particle gets updated. 

Step 6.  Update the G value and repeat the steps 3 and 

5 till the iterations are satisfied. 

4. Results and Discussion: 

The projected algorithm trains all constraints of 

voltages at buses, transmission line flows, and 

restrictions on the active and reactive power output of 

generators. It has been well-designed to the IEEE30 

bus system. These systems have six generators 

individually. The total controllable variables are 24. 

Table 1 indicates the parameters of the algorithms. 

Table 1. Algorithm parameters 
 WOA HWSCOA 

Search Agents 20 20 

Max No. of Iterations 500 500 

No. of Evaluations 30 30 

Table 2 indicates the limits of power generating 

stations and their cost coefficients. Table 3 represents 

the emission coefficients of the generating stations.  

Table 2. Limits of Power plants and their Cost 

Coefficients 

Generating 

Unit No 

Limits of Real 

Power 

in MW 

Cost Coefficients 

Low High α β γ 

1 50 200 0 2 0.00375 

2 20 80 0 1.75 0.0175 

5 15 50 0 1 0.0625 

8 10 35 0 3.25 0.00834 

11 10 30 0 3 0.025 

13 12 40 0 3 0.025 

  
Fig. 3. Convergence characteristics of cost Fig. 4. Convergence characteristics of emission 



 

 

  

 

  

Fig. 5. Convergence characteristics of losses Fig. 6. Convergence characteristics of voltage deviation 

The analysis of the test system with the suggested 

algorithm has been presented with diverse objectives 

as presented in Section 2.1. Hence, the reduction of 

generation cost, emission, true power losses and 

voltage deviation are considered as case 1, 2, 3 and 4, 

correspondingly.  

Table 3. Generator Emission Coefficients 

 
Gen 

No 

Emission Coefficients 

a b c d e 

1 0.4091e -0.555e 0.649e 0.2e-3 0.2857e 

2 0.2543e -0.604e 0.5638e 0.5e-3 0.3333e 

5 0.4258e -0.509e 0.4586e 0.1e-5 0.8e 

8 0.5326e -0.355e 0.3380e 0.2e-2 0.2e 

11 0.4258e -0.509e 0.4586e 0.1e-5 0.8e 

13 0.6131e -0.555e 0.5151e 0.1e-4 0.6667e 

Fig 3 shows the convergence characteristics of a cost 

function using three different algorithms called SCA, 

WOA and proposed HWSCOA. From this, it is 

observed that cost is less in HWSCOA compared to 

other algorithms and converges quickly. It is also seen 

in Fig 4. 

Table 4 presents the total 24 control variables values 

and other power system parameters of case1 study 

with three different algorithms. In this case, 

optimization of the cost is the objective, therefore, it 

optimizes effectively, and the proposed hybrid 

method gives better results compared to the individual 

algorithms. The optimized generation cost with 

HWSCOA is 799.3822 $/hr.     

Table 4: Simulation results for optimal WOA, SCA 

and HWSCOA for Obj 1 of IEEE 30-bus system. 
Regulated 

Variables and  

parameters 

WOA SCA HWSCOA 

PTG1(MW) 175.4249 174.549 177.1746 

PTG2(MW) 47.4128 44.3807 48.8628 

PTG5(MW) 20.5296 23.2409 21.3055 

PTG8(MW) 23.8495 19.7169 20.7778 

PTG11(MW)  12.8645 15.5039 12.0058 

PTG13(MW) 12.1139 15.1141 12.00 

VTG1(pu) 1.1 1.10 1.10 

VTG2(pu) 1.0888 1.1000 1.0876 

VTG5(pu) 1.0658 1.1000 1.0614 

VTG8(pu) 1.0696 1.1000 1.0695 

VTG11(pu)  1.0269 1.0706 1.1000 

VTG13(pu) 1.1000 1.1000 1.1000 

QC10 (MVAR) 0.6817 0.38 0.1607 

QC12 (MVAR) 1.0859 1.03 4.6520 

QC15 (MVAR) 2.9190 2.05 3.5355 

QC17 (MVAR) 3.0013 4.67 2.3463 

QC20 (MVAR) 0.0206 0.23 1.7419 

QC21 (MVAR) 2.0222 2.3936 0.4167 

QC23 (MVAR) 2.7348 2.8 0.6750 

QC24 (MVAR) 1.4716 2.56 3.6975 

QC29 (MVAR) 0.6274 0.6909 0.0084 

T11 1.1000 0.9285 0.9651 

T12 0.9573 1.0869 1.0274 

T15 1.1000 1.1000 1.0509 

T36 1.0665 1.1000 0.9780 

Total Power Gen. 

PG(MW) 
292.1952 292.506 292.1265 

Total cost ($/h) 800.4309 803.384 799.3822 

Emission (t/h) 0.362 0.358 0.367 

Ploss (MW) 8.7952 9.1064 8.7265 

𝑉𝐷 (pu)  0.904 0.9354 0.9012 



 

 

 

 

Table 5: Simulation results for optimal WOA, SCA 

and HWSCOA for Obj 2 of IEEE 30-bussystem.  
Regulated Variables and  

parameters 
WOA SCA HWSCOA 

PTG1(MW) 63.9 71.9 63.8 

PTG2(MW) 67.6300 60.0786 67.5601 

PTG5(MW) 50 50 50 

PTG8(MW) 35 35 35 

PTG11(MW)  30 30 30 

PTG13(MW) 40 40 40 

VTG1(pu) 1.10 1.10 1.10 

VTG2(pu) 1.10 1.10 1.10 

VTG5(pu) 1.10 1.0519 1.0875 

VTG8(pu) 1.10 1.10 1.10 

VTG11(pu)  1.10 0.95 1.10 

VTG13(pu) 1.0769 0.9500 1.0562 

QC10 (MVAR) 3.2573 4.64 5.00 

QC12 (MVAR) 5.0000 5.000 5.00 

QC15 (MVAR) 5.0000 1.7431 4.8686 

QC17 (MVAR) 4.8738 0.5853 5.00 

QC20 (MVAR) 5.0000 5.00 5.00 

QC21 (MVAR) 4.8736 5.00 5.00 

QC23 (MVAR) 5.00 0.1446 5.00 

QC24 (MVAR) 5.00 5.0 5.00 

QC29 (MVAR) 5.00 5.0 5.00 

T11 1.0156 1.1000 1.10 

T12 1.10 1.0864 1.0853 

T15 1.10 1.10 1.10 

T36 1.10 0.90 1.0526 

Total Power Generation 

PG(MW) 
286.53 286.978 286.36 

Total cost ($/h) 944.2228 934.205 943.6872 

Emission (t/h) 0.2049 0.2066 0.2048 

𝑃𝑙𝑜𝑠𝑠 (MW) 3.13 3.5786 2.96 

𝑉𝐷 (p.u.)  0.8668 0.8721 0.8549 

Table 6: Simulation results for optimal WOA, SCA 

and HWSCOA for Obj 3 of IEEE 30-bus system.  

Regulated 

Variables and  

parameters 

WOA SCA HWSCOA 

PTG1(MW) 51.33 52.23 51.248 

PTG2(MW) 80.00 80.00 80.00 

PTG5(MW) 50.00 50.00 50.00 

PTG8(MW) 35.00 28.0927 35.00 

PTG11(MW)  30.00 27.7663 30.00 

PTG13(MW) 40.00 40.00 40.00 

VTG1(pu) 1.10 1.10 1.10 

VTG2(pu) 1.10 1.10 1.0976 

VTG5(pu) 1.10 1.0690 1.0799 

VTG8(pu) 1.0959 1.10 1.0871 

VTG11(pu)  1.0959 1.10 1.10 

VTG13(p.u) 1.1000 1.10 1.10 

QC10 (MVAR) 3.9265 4.4204 5.0000 

QC12 (MVAR) 5.0000 5.0 3.2781 

QC15 (MVAR) 5.0000 5.0 3.0878 

QC17 (MVAR) 5.0000 5.0 2.3394 

QC20 (MVAR) 2.6672 2.5255 5.0000 

QC21 (MVAR) 5.0000 4.5 4.1059 

QC23 (MVAR) 5.0000 5.0 3.2614 

QC24 (MVAR) 5.0000 4.8 4.8073 

QC29 (MVAR) 2.0302 0.0070 2.8772 

T11 1.1000 1.1000 1.0030 

T12 0.9000 0.9000 0.9551 

T15 0.9959 1.1000 0.9793 

T36 0.9835 1.1000 0.9753 

Total Power 

Generation 

PG(MW) 

286.33 287.23 286.248 

Total cost ($/h) 967.2568 969.406 967.0613 

Emission (t/h) 0.2083 0.2086 0.2082 

𝑃𝑙𝑜𝑠𝑠 (MW) 2.9331 3.835 2.8488 

𝑉𝐷 (p.u.)  0.8904 0.8967 0.8812 

Table7: Simulation results for optimal WOA, SCA 

and HWSCOA for Obj 4 of IEEE 30-bus system.  
Regulated 

Variables and  

parameters 

WOA SCA HWSCOA 

PTG1(MW) 128.248 145.248 158.448 

PTG2(MW)  41.3496 33.3052 31.8096 

PTG5(MW) 45.9007 36.1493 23.2271 

PTG8(MW) 20.1692 32.3087 32.0049 

PTG11(MW)  29.3868 11.4050 21.9145 

PTG13(MW) 25.4334 32.1647 22.6768 

VTG1(pu) 0.9773 1.0409 0.9977 

VTG2(pu) 0.9905 0.9500 1.0684 

VTG5(pu) 0.9739 1.0253 1.0245 

VTG8(pu) 1.0502 1.0238 0.9816 

VTG11(pu)  1.0528 0.9500 1.0728 

VTG13(pu) 1.0144 1.1000 0.9971 

QC10 (MVAR) 2.5615 4.7243 4.8977 

QC12 (MVAR) 3.8432 0.0000 1.8259 

QC15 (MVAR) 1.9596 2.9 4.0556 

QC17 (MVAR) 1.6486 2.8 1.0917 

QC20 (MVAR) 4.4622 4.3029 4.5925 

QC21 (MVAR) 3.2020 3.3 0.7914 

QC23 (MVAR) 2.8857 1.89 3.2279 

QC24 (MVAR) 0.6783 2.5 2.6185 

QC29 (MVAR) 0.0178 0.892 1.7676 

T11 0.9924 0.9609 0.9415 

T12 1.0087 0.9000 1.0324 

T15 0.9659 1.1000 0.9512 

T36 0.9590 0.9145 0.9486 

Total Power 

Generation 

PG(MW) 

290.4877 290.580 290.0809 



 

 

  

 

Total cost ($/h) 869.201 838.662 812.5572 

Emission (t/h) 0.259 0.2893 0.316 

𝑃𝑙𝑜𝑠𝑠 (MW) 7.087 7.1809 6.6809 

𝑉𝐷 (p.u.)  0.1888 0.2048 0.1534 

Table 5 presents the values with emission 

minimization. So, in this case, emission values less 

compared to other cases. It is observed that emission 

value reduces to 0.2048 ton/hr in HWSCOA 

compared to 0.2049 ton/hr in WOA. This reduction is 

obtained because of the hybridization. Table 6 and 

Table 7 indicate the control variables of other 

objectives losses and voltage deviation, respectively. 

Table 6 shows losses, being 2.8488 MW using 

HWSCOA. Table 7 shows the voltage deviation is 

0.1534 p.u. using the proposed method, being low 

values compared to individual algorithms. From all 

the tables, it is also observed that the optimized 

parameter value is less compared to other parameters 

in each case. The convergence characteristics of losses 

and voltage deviation are shown in Fig.5 and Fig.6. 

Fig7 shows the real power generation for various case 

studies. It is observed that in cases 1 and 4 the slack 

bus generation is more compared to other cases 

because of this in these two cases, generation cost is 

less compared to other cases. Table 8 presents the 

comparison of various case studies with different 

algorithm results available in literature. This table 

illustrates that in all the cases proposed HWSCOA 

algorithm gives better results. It indicates the 

usefulness of the suggested technique matched to 

other approaches. 

 

 

Fig. 7. Real Power Generation for Various case studies 

Table 8: Evaluation of solutions realized for different cases (IEEE 30-bus system). 
Method Case1 ($/h) Case2 (t/h) Case3 (MW) Case4 (p.u) 

MSA  [20]  800.5099 0.20482 3.1005 - 

GWO  [39] 801.41 - 3.41 - 

DE  [40] 801.23 - 3.38  

GBICA  [40] 801.1513 0.2049  - 

ABC  [41] 800.66 0.20483 3.1078 - 

ARCBBO [24] 800.5159 0.2048 3.1009 - 

ECHT-DE [15] 800.4148 0.20482 3.085 - 

SF-DE [15] 800.4131 0.20482 3.0845 - 

SP-DE [15] 800.4293 0.20482 3.0844 - 

PSO [10] 800.45 - 3.12 - 

AMTPG-Jaya [11] 800.1946 - 3.0802 - 

TLBO [11] 800.1946 - 3.1138 - 
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WOA 800.4309 0.2049 2.9331 0.1888 

SCA 803.3845 0.2066 3.835 0.2048 

HWSCOA 799.3822 0.2048 2.8488 0.1534 

Table 9: Numerical values achieved as thirty runs of HWSCOA and WOA for IEEE30-bus system 

Case 1 Case 2 

  

Algorithm 

Best value 

attained 

Worst value 

attained 

Mean 

value 
SD 

Algorithm 

Best 

value 

attained 

Worst 

value 

attained 

Mean 

value 
SD 

($/h) ($/h) ($/h)  (t/h) (t/h) (t/h)  

WOA 799.4907 801.5813 800.4153 0.4869 WOA 0.2048 0.2049 0.2049 3.5994e-05 

HWSCOA 799.0310 799.5786 799.2727 0.1333 HWSCOA 0.2048 0.2049 0.2048 3.3474e-05 

Case 3 Case 4 

  

Algorithm 

Best value 

attained 

Worst value 

attained 

Mean 

value 
SD 

Algorithm 

Best 

value 

attained 

Worst 

value 

attained 

Mean 

value 
SD 

(MW) (MW) (MW)  (p.u.) (p.u.) (p.u.)  

WOA 2.8765 3.1969 3.0122 0.0865 WOA 0.1478 0.2172 0.1807 0.0168 

HWSCOA 2.8343 2.8932 2.8647 0.0148 HWSCOA 0.1199 0.2028 0.1461 0.0175 



 

 

  

 

5. Robustness analysis on the proposed 

HWSCOA for the OPF problem: 

To calculate the robustness of the hybrid WOA and 

SCOA solver, a numerical study has been executed. 

The hybrid WOA and SCOA solver has been 

implemented with 30 times for random initial 

populations to all measured cases. Table 1 displays the 

parameters of the projected technique. In this paper, 4 

numerical pointers are used to shows the effectiveness 

of the HWSCOA. The attained optimum, poorest, 

mean & standard deviation values for the HWSCOA 

and WOA algorithms are disclosed in Table 9. These 

values are close after 30 runs in proposed HWSCOA 

compared to WOA, demonstrating the less value of 

standard deviation in HWSCOA. The results of the 

numerical test declare the toughness of HWSCOA 

method compared to WOA in terms of discovering the 

best value in each test. Box plots for various case 

studies shown in Table9. 

6. Conclusions 

In this paper, a newly suggested hybrid Whale and 

Sine Cosine optimization algorithm was stated and 

functional to resolve OPF problem. The hybrid Whale 

and Sine Cosine optimization algorithm approach was 

worthy and yield improved results related to other 

techniques on IEEE30 bus system. This approach was 

successfully executed to discover the optimal sites of 

the regulated variables of the assessment system.  

Finally, the advantages of bubble-net hunting strategy 

in this optimization algorithm are used to stretch the 

penetrating process to determine a new area, but 

sometimes there is a possibility to stuck at local 

optima. Therefore, the distance mapping parameter G 

from WOA is modified in hybrid WOASCA using 

probabilistic based sine-cosine functions. This 

modification increases the exploration capability 

within the search space in a rigorous manner and 

eliminates even the slightest chance of the solution 

getting stuck in local minima. The results display the 

robustness of the suggested HWSCOA method for 

answering the OPF problem.  

As future work, the novel proposed HWSCA can be 

used to perform OPF in larger systems like IEEE 57 

and 118 bussystems. It can be further extended to 

applications like the placement of FACTS devices and 

sizing and placing of shunt capacitor in distribution 

system.  
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Nomenclature: 

 

OPF -OptimalPowerFlow 

FACTS -FlexibleAlternatingCurrent 

Transmission System 

HWSCOA -Hybrid Whale & Sine Cosine 

Optimization Algorithm  

WOA -WhaleOptimizationAlgorithm  

SCA -SineCosine algorithm  

ED -Economic Dispatch  

MOOPF -Multi-Objective OPF  

AMTPG-Jaya -Adaptive Multiple teams 

perturbation guiding Jaya 

MPIO -Modified pigeon inspired 

optimization algorithm  

MSCA -Modified SineCosine algorithm  

MSA -Moth Swarm Algorithm  

DGWO -Developed Grey Wolf Optimizer  

GWO -GreyWolfOptimization  

DE -DifferentialEvolution  

SCOPF -Security-constrained optimal 

power flow  

ABC -Artificial Bee Colony  

ARCBBO -Adaptive real coded 

biogeography-based optimization 

PSO -ParticleSwarmOptimization  

TLBO -Teaching Learning Based 

Optimization 
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