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Abstract

Crowdsourcing opens the door to solving a wide variety of problems that previously were
unfeasible in the field of machine learning, allowing us to obtain relatively low cost labeled
data in a small amount of time. However, due to the uncertain quality of labelers, the data
to deal with is sometimes unreliable, forcing practitioners to collect information
redundantly, which poses new challenges in the field. Despite these difficulties, many
applications of machine learning from crowdsourced data have recently been published that
achieve state of the art results in relevant problems. We have analyzed these applications
following a systematic methodology, classifying them into different fields of study,
highlighting several of their characteristics and showing the recent interest in the use of
crowdsourcing for machine learning. We also identify several exciting research lines based
on the problems that remain unsolved to foster future research in this field.
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1 Introduction

With the recent appearance of crowdsourcing platforms such as Amazon Mechanical Turk

a great number of machine learning practitioners have expressed interest in using them

to increment the efficiency and scope of their work. Several problems that would be too

expensive to deal with using traditional methods now become easier, while problems which

were not feasible are now tractable. Citing Howe, the term crowdsourcing can be defined as

(Howe, 2006):

“[...] the act of taking a job traditionally performed by a designated agent

(usually an employee) and outsourcing it to an undefined, generally large group

of people in the form of an open call.”

For Howe, the use of crowdsourcing involves two clearly defined elements: a generally

large group of people and an open call. Recently, though, in the area of machine learning this

term has been used to refer not only to humans but to other elements, such as sensors and

algorithms. Even the open call requisite has been relaxed, allowing the use of a small group

of people known a priori. In other words, when we talk about crowdsourcing problems in the

context of this paper we refer to problems that use a group of elements that provide noisy

data for a given example and whose quality we may, or may not, know much about. These

elements could be, for instance, a group of experts examining medical images of patients,

antivirus programs analyzing threats or Amazon Mechanical Turk workers analyzing facial

expressions. These groups share one characteristic: there is some kind of uncertainty in the

information provided by the members of the group, as some of them may be better at that

task while others may have misunderstood the problem (or be malicious). The result of this

annotation process is a dataset which is inherently noisy and that needs to be preprocessed

to be useful in a machine learning task.

There are several applications of machine learning that meet the above description. For

example, in the area of computer-aided diagnosis, we might want to determine whether a

tumour in a medical image is benign or malign. However, in most cases, obtaining an accurate

label to train is very costly, so normally a group of experts is asked to give their opinions about

the image. Unfortunately, these professionals will probably have a different background,

causing disagreements during the labeling process (Raykar et al., 2010). Another area of

study where these algorithms could be of great help is the aesthetic image classification, in

which one of the goals consists in creating a model able to distinguish between great and

average images. However, the subjectiveness of the task makes it difficult to determine the

ground truth necessary for standard models (Datta, Joshi, Li, & Wang, 2006). Despite of

this, we could use crowdsourcing platforms to collect several potentially noisy labels that

could allow us to build an accurate model taking into account this diversity of opinions.
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In this work, we analyze several applications dealing with crowdsourced data, in order to

show the growing interest in this field, as well as the techniques being used and the problems

being faced by researchers using crowdsourcing to develope state of the art machine learning

solutions. As proof of the interest in this topic, several reviews (e.g (J. Zhang, Wu, & Sheng,

2016) and (Zheng, Li, Li, Shan, & Cheng, 2017)) about machine learning techniques and

tools in this area have been published recently. However, these reviews do not include recent

applications of these techniques, leaving a gap that this work is intended to fill. This kind

of review, as can be found in other fields (Paliwal & Kumar, 2009; B. Chen & Cheng, 2010;

Rashid & Rehmani, 2016), can foster research, indicating challenges that could lead to new

developments in the future.

The paper is organized as follows. In Section 2 we describe the systematic methodology

followed, as well as the goals of this review. In Section 3 we analyze the research interest in

applications of learning from crowdsourced data. In Sections 4 and 5 we analyzed the type

of crowd and the machine learning techniques used in these applications, while in Section 6

we show the main areas of application of crowdsourced machine learning. In Section 7 we

discuss the main problems that remain unsolved and that could lead to future research in

the field. Finally, in Section 8 we present the conclusions of this work.

2 Methodology

This review follows the systematic procedure proposed in (Kitchenham, 2004). We start

from various questions that are of interest and perform several steps with the goal of finding

the relevant literature to augment our understanding of these questions, in a reproducible

way. In this section, we summarize the details of the followed procedure.

2.1 The need for a review

As seen in the introduction, learning from the wisdom of crowds is an interesting topic for

several reasons. First of all, it allows us to tackle problems without enough available ground

truth data, but in which the use of a group of people is possible. It also allows the collection

and use of labeled data for problems where there is not an objective ground truth, such

as affective behaviour recognition (Nicolaou, Pavlovic, & Pantic, 2014). Generally, it also

reduces the costs of the data gathering phase in supervised machine learning experiments

(J. Zhang et al., 2016).

To our knowledge, there has not been any attempt to explore the applications of the

techniques involved in learning from crowdsourced data. An effort in this direction could

reveal new branches for future research in this field, as well as ways to improve the results
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of applications through the use of more powerful algorithms. In fact, we can find several

reviews related to, but not exploring, this specific issue: two reviews of algorithms for solving

the problem of learning from crowdsourced labeled data (J. Zhang et al., 2016; Zheng et al.,

2017); the challenges of using crowdsourcing from a system design perspective (Garcia-

Molina, Joglekar, Marcus, Parameswaran, & Verroios, 2016); a taxonomy of crowdsourcing

tasks not necessarily from a machine learning perspective (Good & Su, 2013); a survey of data

management techniques with crowdsourced data (G. Li, Wang, Zheng, & Franklin, 2016);

projects related to applying crowdsourcing for climate and atmospheric sciences (Muller et

al., 2015); uses of crowdsourcing in the different phases of software engineering (Mao, Capra,

Harman, & Jia, 2017); incentives used in the crowdsourcing literature (Gao et al., 2015); the

concept of crowd intelligence, as well as the platforms and research problems associated with

it (W. Li et al., 2017); and techniques related to task design, assignment and quality control

(Chittilappilly, Chen, & Amer-Yahia, 2016). These publications show a great interest in

the topic, not only for the opportunities that it offers for data scientists, but also for the

practitioners in other areas of research which could benefit from these new techniques.

2.2 Review questions

In this review, we analyze applications of machine learning from data provided by crowds, in

the form of both labels and features. Specifically, we address the following research questions:

Q1 What has been the interest in the topic in the last decade? 1

Q2 Which areas are associated with the greatest interest in the topic?

Q3 How are the crowds used to achieve the goals of the application?

Q4 What are the most commonly used techniques for tackling the caveats of using crowd-

sourcing for machine learning?

Q5 What interesting future research lines follow from the applications?

We believe this information could be highly beneficial for machine learning practioners as

well as for researchers interested in gaining knowledge about how to learn from crowdsourced

data.

2.3 Search process

We used three methods to obtain the articles reviewed in this work:

1 Although there are algorithms related to learning from crowds previous to 2010, the applications found

date from 2010 on. Therefore, we have fixed 2010 as the first year of our study.
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• Database search, using search strings related to the goals of this review.

• Citation analysis of the main machine learning algorithms present in the literature

(J. Zhang et al., 2016; Zheng et al., 2017)

2.3.1 Database search

The following databases were used to gather articles containing applications of machine

learning from crowdsourced data: Scopus 2, Web Of Science 3, Google Scholar 4, DBLP 5,

ScienceDirect 6, ACM Digital Library 7, and IEEE Xplore Digital Library 8. In each of these

databases we used a search string which, in general, searched for the presence of two terms

in the title of publications:

• Machine learning related terms, such as learning or classification.

• Crowdsourcing related terms, such as crowds or annotators.

Where possible, we reduced the results from thee search by only looking for articles and

conference publications, and limiting the topics of both conferences and journals to those

related to machine learning. For the specific strings for each database, we refer the reader

to Appendix A.

As the search strings used were quite general (with the goal of obtaining a large number

of publications) we then refined the results by reading the titles and abstracts within the

articles, filtering out those that did not align with the topic of this paper. Specifically, all

papers had to be about applications of machine learning from crowdsourced labeled data.

2.3.2 Citation analysis

In this phase, we took the algorithms analyzed in (J. Zhang et al., 2016; Zheng et al., 2017)

and searched for their citations on the Scopus platform, carefully selecting the papers related

to the subject of this review.

2.4 Quality assessment

All the works analyzed in this review were published in peer reviewed journals or conferences

of recognized scientific value, which guarantees that they meet a certain standard of quality.

2https://www.scopus.com
3https://http://apps.webofknowledge.com
4https://scholar.google.es
5http://dblp.uni-trier.de
6http://www.sciencedirect.com
7http://dl.acm.org
8http://ieeexplore.ieee.org/Xplore/home.jsp
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2.5 Data extraction

Once we established the pool of articles related to the topic of this survey, we went through

them to answer the following questions:

Q1 What has been the interest in the topic in the last decade?

• Year of publication.

• Publication type: journal or conference.

• Author’s country.

• Publication citations.

Q2 Which areas are associated with the greatest interest in the topic?

• Area of knowledge of the application

Q3 How are the crowds used to achieve the goals of the application?

• Information provided by the annotator (for example, labels or features)

• Platform used for the annotation process

Q4 Which are the most commonly used techniques for tackling the caveats of using crowd-

sourcing for machine learning?

• Learning algorithm family.

Q5 What interesting problems arise from the analyzed applications?

• New problems arising from each publication, if any.

3 Research interest analysis

We have found a total of 116 publications, 51 of which are journal publications, while 65 are

published in conferences. To see the increasing interest in the research in this area, it can

be observed the yearly increase in the number of publications in Figure 1, which indicates a

rising interest in using crowdsourced data for machine learning applications.

It is also of interest to see how the publications are distributed geographically. For

this, we took the country of the publications’ authors9 of the publications and made two

graphs. The graph on the left (Figure 2a) shows the number of publications corresponding

9We counted the countries related to a publication once. For example, if a publication has three authors

from two different countries, each country was counted once
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Figure 1: Number of publications by year

to each country. The graph on the right (Figure 2b) takes into account the total number of

publications by country indexed by SJR (Elsevier, 2017) in the area of Artificial Intelligence,

dividing the number of publications found in this study by the total number of publications

for each country and then normalizing the results 10.
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Figure 2: Number of publications by country in comparison with the total for the country.

Compared to the total number of publications for each country, it seems that there is

a greater than expected number of publications in countries such as Switzerland or UK,

10We divide the publications by the total number given by SJR and then normalize, so that they all add

up to one. Although the data from SJR is for journals covering only the period from 2010 to 2016, it allows

us to compare countries with big differences in the total number of publications.
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while countries such as China have fewer publications related to the applications of machine

learning from crowdsourced data.

As another interest indicator, we analized the mean number citations for each work using

the total number of citations for a publication obtained through Scopus, as this platform

provides accurate citation information. The mean number of citations by year can be seen

in Table 1. It is significant the high mean number of citations for the papers published three

or more years ago.

2010 2011 2012 2013 2014 2015 2016 2017

22.5 19.75 23.26 28.25 14.62 4.56 4.89 1.73

Table 1: Mean number of citations by year of publication

4 Crowd use analysis

In this section we explore the way in which the crowd is used to tackle the different problems,

in terms of:

• Information obtained from the crowds (labels, features,...)

• Characterization of workers (experts, algorithms...)

• Used platforms (Amazon Mechanical Turk, CrowdFlower,...)

4.1 Information obtained from the crowds

In our research, we have identified 3 different types of information obtained using crowd-

sourcing: labels (e.g. for supervised machine learning), features, and a mixture of features

and labels (Both). The distribution of the results can be seen in Figure 3.

The predominant use of crowdsourcing for learning from crowdsourced data is the elici-

tation of labels for a dataset. This use is also the most studied in the literature and there

exist several algorithms designed to improve the results when learning from them. However,

there is also the need to obtain features, and also features and labels jointly, in order to

create new datasets which may lead to interesting future opportunities.

4.2 Characterization of workers

Although the term crowdsourcing usually refers to the use of a generally large group of

(possibly) unreliable people, we have identified other different types of groups used for the
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Figure 3: Distribution of type of crowd used in the publication

same purpose and using similar crowdsourcing techniques: experts, volunteers, algorithms,

etc. These other types of groups, albeit with characteristics distinguishing them from the

standard crowdsourcing definition, are usually treated with the same methods, and that is

why they are included in this study. The distribution of the number of publications for

each category can be seen in Figure 4. In this figure, by the term crowd we refer to the

use of (generally) non expert people, via platforms such as Amazon Mechanical Turk or

CrowdFlower, who may receive some incentive. This is the use case that is nearest to the

classic definition of crowdsourcing. This is also the most common use case. However, the use

of experts is also very important in this field, coming in second place 11. We also distinguish

between the above two categories and the one where the labeling process is performed by

volunteers, since normally the characteristics of the problems solved by them fall between

those of the two categories mentioned above. 12. Apart from the use of people, we have

also identified the use of other elements, such as algorithms or sensors. In the applications,

these elements are treated with methods similar to the ones used with people. However,

the number of publications using them is small with respect to the ones using people as

annotators.

11 As we show later, this is due to use cases where a group of experts is usually preferred, as in applications

related to medicine
12 In the applications reviewed, volunteers usually exhibit more willingness to work accurately than paid

crowd workers, although, in general, they are not as accurate as experts in dealing with some of the tasks
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Figure 4: Distribution of publications by worker type

4.3 Platforms used

In Figure 5, we show the crowdsourcing platform used in the publications from the Crowd

category in the above analysis, that is, the publications that use platforms available to the

general public.
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Figure 5: Distribution of crowd category publications by platform

As may be expected, Amazon Mechanical Turk 13 was the most commonly used platform

in the applications. Surprisingly, the second one was the author’s own custom solution for

13https://www.mturk.com

10

https://www.mturk.com


the problem, followed by CrowdFlower14, Microworkers15 and ChinaCrowds16.

5 Technique analysis

Normally, when learning from crowds, practitioners try to aggregate crowd responses so that

the data is more accurate. We have grouped the publications into 3 categories: those using

simple aggregation algorithms (Simple), such as the mean or majority voting of the anno-

tations (most frequent value), those using complex algorithms for aggregating (Complex),

such as algorithms learning annotators reliability iteratively17, and those applications where

no aggregation of data was used (No). Figure 6 shows the distribution of the publications

in these categories.
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Figure 6: Number of publications by aggregation type

As can be seen in Figure 6, although the use of complex aggregation is the most common

approach, the use of simple aggregation is also very popular. On the other hand, more

than 10 publications use the labels without any aggregation, as if they were the true labels

themselves.

Inside de Complex aggregation category, we find a great number of different algorithms,

most of them particularly designed to solve the task of aggregation of crowdsourced data

for the precise problem they are trying to solve. However, following the taxonomy from

14https://www.crowdflower.com
15https://microworkers.com
16http://www.chinacrowds.com
17For a recent comparison of these algorithms see (Zheng et al., 2017)
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(Zheng et al., 2017), we can further divide the algorithms regarding the technique used,

either optimization, i.e. algorithms capture the relations between workers and tasks using

an optimization function, or PGMs, i.e. algorithm designed using a probabilistic graphical

model. In Figure 7, one can see that, although optimization is also used in applications, the

majority of the algorithms use an approach based on PGMs.

0

20

40

PGM Optimization

Figure 7: Technique used in publications using complex aggregation

6 Publication areas

Figure 8 shows the distribution of applications by knowledge area18. Areas such as Bioin-

formatics, Computer Vision and Natural Language Processing are the areas where these

techniques are most frequently applied, as some of the tasks align perfectly with the prob-

lems that crowdsourcing is trying to solve.

In Figure 9a, we show the type of crowd (see Section 4) used in each area. Bioinformat-

ics is the field with the greatest number of publications related to crowdsourced machine

learning, a great number of them involve aggregating expert opinions in problems where the

ground truth is not known (or difficult to know) and in which the use of non experts may be

impossible due to the difficulty of the task. Other fields such as Natural Language Processing

or Computer Vision share a similar distribution, as the most common use of crowdsourcing

is through the crowdsourcing platforms. In the rest of applications the use of crowds is the

most common use case, although the other approaches are also used.

18 Only one area for publication was extracted, taking into account the topic of the article and the journal

in which it was published.
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Figure 9: Knowledge area by worker type and technique

We can also compare which kind of aggregation is performed by area (Figure 9b). In

this case, we find that areas such as Bioinformatics or Natural Language Processing seem

to prefer aggregating results using complex algorithms, while other areas, such as Computer

Vision, or Software tend to use a simpler approach.

Next we examine each publication, according to these areas of knowledge, in more detail.

6.1 Bioinformatics

There is a great interest in crowdsourcing techniques in the Bioinformatics community. Al-

though the majority of publications use a small group of experts as annotators, several

applications use platforms such as Amazon Mechanical Turk to obtain labels. Moreover,

some applications use a mixture of algorithms and experts, as well as volunteers. In Table

2 we show the references of the applications found, as well as information about the type of
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Type Application Aggregation Crowd Platform

Medical Images

(Kaster et al., 2010) Complex Experts Custom

(Luengo-Oroz et al., 2012) Simple Crowd Custom

(Mavandadi et al., 2012) Complex Experts Custom

(DeFelipe et al., 2013) Simple Experts Custom

(Mitry et al., 2013) Simple Crowd AMT

(Chatelain et al., 2013) Complex Expert Custom

(Mahapatra et al., 2014) Complex Experts Custom

(Mihaljević et al., 2015) Simple Experts Custom

(Kaya & Can, 2015) Simple Experts Custom

(Ataer-Cansizoglu et al., 2015) No Experts Custom

(Albarqouni et al., 2016) Complex Crowd CloudFlower

(Sameki et al., 2016) No Crowd AMT

(V. Chang et al., 2017) Simple Experts Custom

(Sharma et al., 2017) Simple Crowd CrowdFlower

(Brady et al., 2017) Complex Labels AMT

Biomedical Information

Extraction

(Greenwood et al., 2013) Simple Experts,Crowd AMT,Custom

(Tastan et al., 2014) Complex Experts Custom

(Khare et al., 2015) Complex Crowd AMT

(Jain et al., 2016) Complex Algorithms Custom

(de Herrera et al., 2016) No Crowd CrowdFlower

(Wallace et al., 2017) Simple Experts Custom

(Ma et al., 2017) Complex Volunteers Custom

Others

(Lu et al., 2011) Complex Algorithms,Experts Custom

(Silva et al., 2013) Complex Algorithms,Experts Custom

(Peng et al., 2013) Complex Experts Custom

(Zhu et al., 2014) Complex Experts Custom

(Zhu, Dunkley, et al., 2015) Complex Experts Custom

(Tan et al., 2015) Simple Volunteers Custom

(González et al., 2015) Complex Experts Custom

(Zhu, Pimentel, et al., 2015) Complex Algorithms Custom

(Lou et al., 2017) Complex Crowd AMT

Table 2: Publications in Bioinformatics

aggregation, the type of crowd and the platform used19 sorted by year.

Specifically, the area of medical images has recently expressed interest in this field as

numerous applications require a great effort for labelling images (de Bruijne, 2016; S. Wang

& Summers, 2012), such as image segmentation or cell classification. In this way, the ma-

jority of the applications of learning from crowdsourced data in this field take advantage of

these techniques for reducing the labelling effort as well as improving results in fields where

labelling is not trivial. In this sense, we have found applications about: tumor segmentation

(Kaster et al., 2010); remote malaria diagnosis (Mavandadi et al., 2012) and malaria parasite

quantification (Luengo-Oroz et al., 2012); classifying GABAergic interneurons (DeFelipe et

al., 2013; Mihaljević et al., 2015); midbrain 3D ultrasound image segmentation (Chatelain

et al., 2013); Crohn’s disease segmentation (Mahapatra et al., 2014); retinal fundus classifi-

19If in the application the authors do not use any public platform (as is the case, normally, when using a

group of experts) the term Custom is used in that column

14



cation (Mitry et al., 2013; Brady et al., 2017); predicting malignancy of pulmonary nodules

(Kaya & Can, 2015); prematurity diagnosis in retinopathy (Ataer-Cansizoglu et al., 2015);

mitosis detection in breast cancer (Albarqouni et al., 2016); melanoma cell segmentation

(Sameki et al., 2016); sperm analysis (V. Chang et al., 2017) and segmentation of chromo-

somes (Sharma et al., 2017).

There is also interest in the biomedical information extraction community, which becomes

clear from the fast growing of the number of related publications and experimental data.

Although there are several applications and techniques for extracting information (Fleuren

& Alkema, 2015), several problems do need information that only a human or even an expert

can provide as the reader can find in the following applications: extraction of patient’s

personal experiences (Greenwood et al., 2013); refining curated protein interactions (Tastan

et al., 2014); drug indication curation (Khare et al., 2015); extraction of information such as

phenotype or stage of an study (Jain et al., 2016); biomedical compound figure annotation

for publications (de Herrera et al., 2016); identifying reports of randomized controlled trials

(Wallace et al., 2017) and drug side-effects discovery (Ma et al., 2017).

Other interesting applications in this area include: estimation of respiratory rate from

the gene normalization (Lu et al., 2011); estimation of fetal heart rate, interbeat intervals

and fetal QT intervals with noninvasive ECG (Silva et al., 2013); protein folding (Peng et al.,

2013); ECG signal classification (Zhu et al., 2014; Zhu, Dunkley, et al., 2015); photoplethys-

mograms (Zhu, Pimentel, et al., 2015); sleep spindle detection (Tan et al., 2015); assessment

of voice pathologies (González et al., 2015) and learning for ICD-11 sanctioning rules (Lou

et al., 2017).

6.2 Computer vision

In computer vision, there is also a large number of publications covering different topics.

However, unlike Bioinformatics, in this case most of the applications use crowd platforms

such as Amazon Mechanical Turk. A summary of the applications seen for this area can be

found in Table 3.
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Type Application Aggregation Crowd Platform

Affective Interaction

(Wan & Aggarwal, 2014) Complex Experts Custom

(Nicolaou et al., 2014) Complex Experts Custom

(Katsimerou et al., 2016) No Crowd Microworkers

(Tavares et al., 2016) Complex Crowd AMT

Object recognition

(Su et al., 2012) No Crowd AMT

(Salek et al., 2013) Complex Crowd AMT

(Vijayanarasimhan & Grauman, 2014) Simple Crowd AMT

(Bernaschina et al., 2014) Simple Crowd Custom

(Cabezas et al., 2015) Simple Crowd Microworkers

Activity recognition

(Nguyen-Dinh et al., 2013) Simple Crowd AMT

(Nguyen-Dinh et al., 2014) Simple Crowd AMT

(Nazábal et al., 2016) Complex Sensors Custom

(Kratz & Wiese, 2016) No Crowd AMT

Others

(Chittaranjan et al., 2011) Complex Experts Custom

(Srivastava et al., 2013) Simple Volunteers Custom

(Rudinac et al., 2013) No Crowd AMT

(Wu et al., 2013) No Crowd AMT

(Oosterman et al., 2015) Simple Crowd CrowdFlower

(Baklanov et al., 2016) Complex Crowd Custom

(Y.-L. Fang et al., 2017) Complex Crowd Crowdflower

(Servajean et al., 2017) Complex Crowd AMT

Table 3: Publications in Computer Vision

In the area of affective interaction and emotion recognition (for an introduction to the

topic, see (Ko lakowska, Landowska, Szwoch, Szwoch, & Wrobel, 2014)) where there is a

certain subjective component, crowdsourcing has a special relevance, as several algorithms

allow to take into account the capabilities of an annotator for labeling certain types of

cases. In particular, we have found applications related to: spontaneous facial expression

recognition (Wan & Aggarwal, 2014); affective behaviour recognition (Nicolaou et al., 2014);

emotion and mood recognition (Katsimerou et al., 2016) and facial expression classification

for affective interaction (Tavares et al., 2016).

In the topic of object recognition (the reader may find an introduction in (X. Zhang,

Yang, Han, Wang, & Gao, 2013)), the crowd is used for segmenting and labelling images.

The goal here is not to solve problems with subjective components but taking advantage of

the crowd to quickly process images that would be used in a machine learning process. We

have found the following works related to this problem: obtaining regions of interest from an

image (Su et al., 2012; Cabezas et al., 2015); image object localization (Salek et al., 2013);

labeling crawled data for object detection (Vijayanarasimhan & Grauman, 2014) and using

games for segmenting images (Bernaschina et al., 2014).

The previous goal is also shared in the field of gestures (L. Chen, Hoey, Nugent, Cook,

& Yu, 2012) and activity recognition (Aggarwal & Ryoo, 2011), where crowdsourcing also

becomes a powerful tool: human activity tagging (Nguyen-Dinh et al., 2013); online gesture

recognition (Nguyen-Dinh et al., 2014); daily human activity recognition (Nazábal et al.,
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Application Aggregation Crowd Platform

(Costa et al., 2011) Simple Crowd Custom

(Ng & Kan, 2012) Simple Crowd CrowdFlower

(Passonneau et al., 2012) Complex Experts,Crowd AMT

(Jones, 2012) No Crowd AMT

(Machedon et al., 2013) Simple Crowd AMT

(Salter-Townshend & Murphy, 2013) Complex Crowd AMT

(Fornaciari & Poesio, 2014) Complex Crowd Custom

(Rodrigues et al., 2014) Complex Crowd AMT

(Hovy et al., 2014) Complex Crowd AMT

(Huang et al., 2015) Complex Crowd AMT

(Duan et al., 2015) Complex Crowd Custom

(R. Yan et al., 2015) Complex Crowd AMT

(Zhou et al., 2017) Complex Features AMT

(Q. V. H. Nguyen et al., 2017) Complex Crowd AMT

(Rodrigues et al., 2017) Complex Crowd AMT

(A. T. Nguyen et al., 2017) Complex Crowd AMT

(Z.-X. Li et al., 2017) Complex Crowd AMT

Table 4: Publications in Natural Language Processing

2016) and gesture segmentation (Kratz & Wiese, 2016).

Other interesting applications include: detecting the most dominant person of the group

with audiovisual features of group interaction (Chittaranjan et al., 2011); YouTube video

categorization (Srivastava et al., 2013); learning user preferences for visual summarization

(Rudinac et al., 2013); a framework for multimedia quality of experience evaluation (Wu et

al., 2013); labeling visual artworks (Oosterman et al., 2015); cropland image classification

(Baklanov et al., 2016); bumblebee image classification (Siddharthan et al., 2016); dog breed

recognition (Y.-L. Fang et al., 2017) and plant type classification (Servajean et al., 2017).

6.3 Natural Language Processing

As was the case with computer vision, most of the publications use crowd platforms such

as Amazon Mechanical Turk to obtain useful information for their problems. The list of

applications found in this area can be seen in Table 4.

The publications found are diverse, with both problems where subjectivity is involved

and problems where the main advantage of using crowdsourcing is the capability of providing

inexpensive data. For an introduction to some of the following topics, we refer the reader to

(Hirschberg & Manning, 2015). Especifically, we have found applications about: sentiment

analysis of online media (Salter-Townshend & Murphy, 2013; Brew, Greene, & Cunningham,

2010); joke’s humour classification (Costa et al., 2011); temporal relation classification (Ng

& Kan, 2012); word sense (Passonneau et al., 2012); marketing messaging classification on

Twitter (Machedon et al., 2013); POS tagging (Hovy et al., 2014); identifying fake Amazon

reviews (Fornaciari & Poesio, 2014); sequence labeling (Rodrigues et al., 2014; A. T. Nguyen
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et al., 2017); estimation of discourse segmentation (Huang et al., 2015); emotion estimation

from narratives (Duan et al., 2015); crowdsourced translation (R. Yan et al., 2015); entity

disambiguation (Zhou et al., 2017; Q. V. H. Nguyen et al., 2017; Z.-X. Li et al., 2017) and

topic models (Rodrigues et al., 2017).

6.4 Geoscience

We have also found several applications that use crowds to classify land images and detecting

events for geographical applications (Table 5): land image classification (Pistorius & Poona,

2014; Jia et al., 2016; Chesnokova, Nowak, & Purves, 2017); attribute mapping (Foody et

al., 2015); human settlement mapping (Gueguen et al., 2017) and detecting geographical

events (Garcia-Ulloa, Xiong, & Sunderam, 2017).

Type Application Aggregation Crowd Platform

Geoscience

(Pistorius & Poona, 2014) No Volunteers Custom

(Foody et al., 2015) Complex Crowd Custom

(Jia et al., 2016) Complex Experts Custom

(Gueguen et al., 2017) Complex Crowd Custom

(Chesnokova et al., 2017) No Crowd Custom

(Garcia-Ulloa et al., 2017) Complex Volunteers Custom

Audio Recognition

(Ni et al., 2013) Complex Experts Custom

(Hantke et al., 2016) Simple Crowd CrowdFlower

(Tu et al., 2016) Complex Experts Custom

(Hantke et al., 2017) Complex Labels Custom

(S. Zhang et al., 2017) Simple Labels AMT

(Chapaneri & Jayaswal, 2017) Complex Crowd AMT

Web

(Crescenzi et al., 2013) Complex Crowd AMT

(S. Chang et al., 2015) Simple Crowd AMT

(Min et al., 2017) Simple Crowd AMT

(Mok et al., 2017) Simple Crowd AMT,CrowdFlower

(Tacchini et al., 2017) Complex Crowd Custom

Software

(Kong et al., 2015) Complex Crowd Custom

(Davami & Sukthankar, 2015) Simple Crowd Custom

(Nazar et al., 2016) Simple Volunteers Custom

(J. Wang et al., 2017) No Both Custom

Table 5: Publications in geoscience, web, audio recognition and software

6.5 Audio Recognition

In the area of audio recognition (Table 5), we found publications looking for labeling databases

for several problems, not only for speech (Hantke et al., 2016; Tu et al., 2016) but for music

(Ni et al., 2013; Chapaneri & Jayaswal, 2017) and emotion recognition (Hantke et al., 2017).

There is also one application dealing with acoustic classification of animal species (S. Zhang

et al., 2017).
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6.6 Web

Different Web related problems (Table 5) can also benefit from using crowdsourcing tech-

niques, especially in processing social generated content, where we found applications dealing

with social media posts (S. Chang et al., 2015), fake content (Min et al., 2017; Tacchini et al.,

2017) or the quality of the reviews (Mok et al., 2017), and on wrapper generation (Crescenzi

et al., 2013).

6.7 Software

In the area of software development (Table 5), we found publications related to various

stages of the development process: improving performance of applications using crowdsourc-

ing (Davami & Sukthankar, 2015); understanding review-to-behavior fidelity in mobile appli-

cations (Kong et al., 2015); source code summarization (Nazar et al., 2016) and classification

of bug reports (J. Wang et al., 2017).

6.8 Education

Regarding education (Table 6), we found several methods trying to solve the problem of

grading in contexts where traditional grading is not possible, due, mainly, to problems of

scalability. We refer the reader to (Romero & Ventura, 2017), where different challenges of

online education are discussed. Specifically, we found applications about: test grading with-

out answers (Bachrach, Graepel, Minka, & Guiver, 2012); ordinal peer grading (Raman &

Joachims, 2014); English grading (Shashidhar, Pandey, & Aggarwal, 2015) and peer grading

taking into account both answers and grading (Labutov & Studer, 2017).

6.9 Information Retrieval

In the area of information retrieval (Table 6), there are applications related to learning

relevance of medical documents (Wilbur & Kim, 2011), circumlocution of queries (Stanton,

Ieong, & Mishra, 2014) and learning topic models (Rodrigues, Ribeiro, Lourenço, & Pereira,

2015).

6.10 Other applications

There are a great number of applications in other domains, such as security or energy, which

are also relevant for this study (Table 6): deduplication of digital libraries (Georgescu, Pham,

Firan, Nejdl, & Gaugaz, 2012); imitation learning (Chung, Forbes, Cakmak, & Rao, 2014);
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evaluation of procedural content generation (Roberts & Chen, 2015); action model acquisi-

tion (Zhuo, 2015); weighting antivirus labels (Kantchelian et al., 2015); aerosol optical depth

estimation (Djuric, Kansakar, & Vucetic, 2016); point of interest labeling (Hu et al., 2016);

detection of spatial events (Ouyang, Srivastava, Toniolo, & Norman, 2016); interstate con-

flict measurement (D’Orazio, Kenwick, Lane, Palmer, & Reitter, 2016); annotation of energy

data (Cao, Rauchenstein, Wijaya, Aberer, & Nunes, 2016); extracting semantic attributes

to describe concepts (Tian, Chen, & Zhu, 2017); category learning (Danileiko & Lee, 2017);

crowd databases (Robinson, Luo, Sponaugle, Guigand, & Cowen, 2017) and network quality

measurements (Y. Li et al., 2017).

Type Application Aggregation Crowd Platform

Education

(Bachrach et al., 2012) Complex Volunteers Custom

(Raman & Joachims, 2014) Complex Crowd Custom

(Shashidhar et al., 2015) No Crowd AMT

(Labutov & Studer, 2017) Complex Crowd AMT

Information Retrieval

(Wilbur & Kim, 2011) No Experts Custom

(Stanton et al., 2014) No Crowd CrowdFlower

(Rodrigues et al., 2015) Complex Crowd AMT

Others

(Georgescu et al., 2012) Complex Crowd AMT

(Chung et al., 2014) Simple Crowd AMT

(Roberts & Chen, 2015) Complex Experts Custom

(Zhuo, 2015) Complex Volunteers Custom

(Kantchelian et al., 2015) Complex Algorithms Custom

(Djuric et al., 2016) Complex Instruments Custom

(Hu et al., 2016) Complex Crowd ChinaCrowds

(Ouyang et al., 2016) Complex Volunteers Custom

(D’Orazio et al., 2016) Simple Crowd AMT

(Cao et al., 2016) Simple Crowd Custom

(Tian et al., 2017) Complex Features AMT

(Danileiko & Lee, 2017) Simple Labels Custom

(Robinson et al., 2017) Simple Both Custom

(G. Li et al., 2017) Complex Crowd CrowdFlower,ChinaCrowds

(Y. Li et al., 2017) Complex Volunteers Custom

Table 6: Publications about education, information retrieval and other topics

7 Future research in the field

In this section we comment on future lines of research found in the publications analyzed. To

perform this analysis we extracted unsolved problems from the applications and categorized

them into meaningful groups in order to facilitate the analysis of their recurrency, which can

be seen in Figure 10.

One of the most common needs revealed in the publications was to find some way to

model the instance difficulty for a task (Chung et al., 2014; Duan et al., 2015; Nguyen-Dinh

et al., 2013; Cao et al., 2016; Wan & Aggarwal, 2014; Ni et al., 2013). Some authors (Chung
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Figure 10: Distribution of publications by proposed problems

et al., 2014) emphasize that the difficulty for a task could be used to reduce the number

of annotations required, and hence the cost, for the correct coverage of an example, thus

using fewer annotators for easy examples, while collecting more labels for the most difficult

ones. Other authors highlight that estimating the difficulty of annotators could improve

the reliability of the annotator performance estimation, which could lead to more powerful

models (Duan et al., 2015; Nguyen-Dinh et al., 2013; Cao et al., 2016; Wan & Aggarwal,

2014; Ni et al., 2013). There are some classic crowdsourcing algorithms that can take into

account instance difficulty, such as (Whitehill, fan Wu, Bergsma, Movellan, & Ruvolo, 2009;

Welinder, Branson, Perona, & Belongie, 2010; Donmez, Carbonell, & Schneider, 2009), which

could be used directly or as a basis for the development of new algorithms that consider the

restrictions of the problem at hand, such as scalability to a large number of examples or the

time complexity of the algorithm.

The other most common necessity is the development of active learning techniques

(Nguyen-Dinh et al., 2014; S. Chang et al., 2015; Wilbur & Kim, 2011; Nguyen-Dinh et

al., 2013; Rodrigues et al., 2014; Salek et al., 2013). As highlighted by the authors, these

techniques would not only provide a way to reduce costs when selecting the next example

to be annotated, but they could also be used to select which annotator is best for labeling

each example, or if the example should be annotated by an expert, according to its difficulty.

There are some proposed algorithms (Y. Yan, Fung, Rosales, & Dy, 2011; Zhong, Tang, &

Zhou, 2015; J. Zhang, Wu, & Shengs, 2015; M. Fang, Zhu, Li, Ding, & Wu, 2012) that tackle

this problem and which may be adapted for particular problems.

The analysis of annotator interdependency is also of interest, as several authors point out
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(Kantchelian et al., 2015; Chatelain et al., 2013; Djuric et al., 2016; Ouyang et al., 2016; Zhu,

Dunkley, et al., 2015). Most of the models assume that annotators are independent of each

other, which is generally not true. The relaxation of these restrictions could be desirable

to obtain more powerful models, capable of learning relations between annotators, or even

communities within them (Chatelain et al., 2013).

Another necessity to be considered is the adaptation of standard approaches for leveraging

temporal relations. Several problems related to temporality have been highlighted by several

authors. In (Stanton et al., 2014), for the problem of diagnostic medical queries, the authors

propose the exploration of sessions, a sequence of queries about the same topic, although

with different search strings. This idea could be applied to annotations, grouping them into

sessions for each participant, and analyzing relations between sessions and within the same

session. In (D’Orazio et al., 2016), the authors propose the analysis of how the relations

between political actors and events change over time. This could also be applied directly

to the problem of crowdsourcing, analyzing how the relations between the data and the

annotators change with time. In addition, not only the relations between actors, but the

evolution of the accuracy and bias of an annotator as time increases could also be studied.

This might provide very interesting insights into the learning component of a task and even

the loss in accuracy related to boredom or fatigue (Cao et al., 2016; Zhu, Dunkley, et al.,

2015).

There is also an increasing need for more datasets with the goal of making the analysis

of the performance of new developments as general as possible (Huang et al., 2015; Mitry

et al., 2013; Hantke et al., 2016; Fornaciari & Poesio, 2014). As shown in (J. Zhang et al.,

2016), there are several public datasets for the problem of learning from crowdsourced data.

However, some of them may need non-trivial preprocessing and feature extraction prior to

their utilization in algorithm comparison.

Another very interesting proposal is the inclusion of contextual information in the es-

timation of the reliability of each annotator. Adding information about annotators, such

as for example, past experience or age, could be very beneficial when estimating annotator

performance (Zhu, Pimentel, et al., 2015). Even, as the authors of (Costa et al., 2011) state,

information of the country of origin or mother tongue could be very useful in some problems

in which culture plays an important role. Furthermore, other complex relations and informa-

tion about an annotator could be crowdsourced, capturing high level information that might

be of use (Luengo-Oroz et al., 2012). In addition, obtaining data about behaviours when

annotators perform a task, such as the time to complete it, could be leveraged to improve

annotations and annotator estimations (Cao et al., 2016).

There is also interest in analyzing the scalability of crowdsourcing (Shashidhar et al.,

2015) and in adapting algorithms to the MapReduce paradigm (Ouyang et al., 2016). Related
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to this, in (Shashidhar et al., 2015) the authors also express the need to develope real-

time crowdsourcing algorithms. There is also interest in using crowdsourcing with multi-

label (Mavandadi et al., 2012; González et al., 2015) and multi-instance (Tu et al., 2016)

problems. Some authors also mention the importance of exploring relations between features

and annotators (Ni et al., 2013; Rodrigues et al., 2014).

8 Conclusions

With the rapid growth of the crowdsourcing field, several machine learning applications have

appeared that are designed to solve problems that previously may have been unfeasible or to

improve the results for problems which use several annotation sources to estimate a ground

truth. Furthermore, the new era of big data opens the door to sources which may not be

as accurate as those required by traditional machine learning algorithms. This may be the

case of data coming from social networks or physical sensors. To tackle these, a different

approach, as seen in the applications studied, may be required.

In this paper we have analyzed applications related to learning from crowdsourced labels,

indicating the interest in the field as well as several features of these applications, from

perspectives such as the type of technique used or the type of crowd employed. We have

also analyzed some of the problems that remain unsolved in this field, which may open the

door to relevant new research. In particular, we would like to highlight three problems that

seem of particular interest and that are not completely solved:

• Instance difficulty. Several publications state the need for a way to accurately

estimate instance difficulty from crowdsourced data, which may reduce the annotation

cost and improve the results. Even though there are some approaches that address

this problem, the scalability of the algorithms could be the subject of future research.

• Annotator interdependency. Most of the machine learning models proposed for the

problem of learning from crowds assume that annotators are independent of each other,

which is not usually true. The relaxation of this restriction could lead to learning about

communities or groups among annotators with similar characteristics, which could be

of interest on its own or useful for improving the results obtained for a problem.

• Temporal relations. Another recurrent problem in the applications analyzed is the

inexistence of algorithms dealing with temporal relations. This relation could exist

between instances, with phenomena appearing such as concept drift or annotators,

who could be influenced learning or by getting tired during the process of annotation.
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Apart from these problems, we have identified several interesting machine learning prob-

lems problems that, when learning from crowds, have not been explored in the literature. In

our opinion, that could lead to future research:

• Supervised feature selection. There are many applications in which a previous

feature selection is of great importance to obtain an adequate machine learning model,

as well as to analyze the importance of different characteristics in a problem. To our

knowledge, there has not been any effort to adapt the classical algorithms for feature

selection to crowdsourced data, which could be very beneficial for the field.

• Supervised feature discretization. Several algorithms, as, for example, Bayesian

Networks, do not handle continuous features properly. Applying supervised discretiza-

tion algorithms could make the use of this kind of algorithms easier, as well as improve

the interpretability of the analysis.

• Visualization of crowdsourced data. In the field of data science, an important

task is the exploration and visualization of the data, so that the practitioner is able

to decide how to approach further analysis. We believe that, as this kind of data

collection is important both for researchers and data scientist alike, correct techniques

for visualizing crowsourced data will be undoubtedly helpful.
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A Search strings

A.1 Scopus

The search string used in Scopus was:

TITLE(

(learning or classification or model or

inference or supervised)

AND

(crowds or crowdsourced or crowdsourcing or

annotators or labelers))

AND

( LIMIT-TO(DOCTYPE,"cp" ) OR

LIMIT-TO(DOCTYPE,"ar" ) )

AND

(EXCLUDE(EXACTKEYWORD,"Crowd Simulation"))

AND

(EXCLUDE(SRCTYPE,"k" ) OR

EXCLUDE(SRCTYPE,"d"))

AND

(EXCLUDE(EXACTKEYWORD,"Computer Simulation"))

With this string, apart from searching for the terms related to machine learning and

crowdsourcing, we exclude some areas that are of no interest for our research, namely the

areas related to simulation. We also limit the search for publications to journals and confer-

ences.

A.2 Web Of Science

The search string used in Web Of Science was:

(TI=(learning OR classification OR

model OR inference OR supervised)

AND

TI=(crowds OR crowdsourced OR

crowdsourcing OR annotators OR

labellers))

NOT TI=(pedestrians OR dynamics OR

segregation OR lanes OR crowding)
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As in the previous case, we limit the search to the terms related to learning from crowd-

sourced data and exclude several terms related to crowd prediction or crowding.

A.3 Google Scholar

The search string used in Google Scholar was:

"(learning OR classification OR

inference OR supervised)

AND

(crowd OR crowdsourced OR

crowdsourcing OR annotations OR

labelers)"

The meaning of this string is similar to the one above. We search for at least one of the

terms inside the parenthesis. The title should have at least one term from each group.

A.4 DBLP

The search string used in DBLP was:

(learning|classification|

inference|supervised)

(crowds|crowdsourced|crowdsourcing|

annotators|labelers)

A.5 ScienceDirect

The search string used in ScienceDirect was:

ttl((learning or classification or

inference or supervised)

AND (crowds or crowdsourced or

crowdsourcing or annotators

or labelers))

A.6 ACM Digital Library

The search string used in the ACM Digital Library was:
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learning OR classification OR

inference OR supervised

AND crowds OR crowdsourced OR

crowdsourcing OR annotators OR

labelers

A.7 IEEE Xplore Digital Library

The search string used in the IEEE Xplore Digital Library was:

(("Document Title":"crowdsourcing" OR

"Document Title":"crowds" OR

"Document Title":"crowdsourced" OR

"Document Title":"annotators" OR

"Document Title":"labelers")

AND

(p_Title:"learning" OR

"Document Title":"classification" OR

"Document Title":"model" OR

"Document Title":"inference" OR

"Document Title":"supervised"))
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