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Recent MRI studies have shown that abnormal functional connections in schizophrenia coexist with subtle changes in the structure of 
axons in the brain. However, there is a discrepancy in the literature concerning the relationship between white matter abnormalities 
and the occurrence of negative psychopathological symptoms. In the present study, we investigate the relationship between the altered 
white matter structure and specific psychopathology symptoms, i.e., subscales of Positive and Negative Syndrome Scale (PANSS) and 
Brief Negative Symptoms Scale (BNSS) in a sample of schizophrenia outpatients. For investigation on white matter abnormalities in 
schizophrenia, the diffusion tensor imaging analysis of between‑group differences in main diffusion parameters by tract‑based spatial 
statistics was conducted on schizophrenia outpatients and healthy controls. Hence, the correlation of PANSS and BNSS psychopathology 
subscales in the clinical group with fractional anisotropy was analyzed in the 17 selected cortical regions of interest. Presented 
between‑group results revealed widespread loss of white matter integrity located across the brain in schizophrenia outpatients. Results 
on the white matter relationship with psychopathology revealed the negative correlation between fractional anisotropy in the left orbital 
prefrontal cortex, right Heschl’s gyrus, bilateral precuneus and posterior cingulate cortex and the severity of asociality, as assessed 
with the BNSS. In conclusion, the presented study confirms the previous evidence on the widespread white matter abnormalities 
in schizophrenia outpatients and indicates the existence of the subtle but specific association between fractional anisotropy in the 
fronto‑temporo‑parietal regions with the asociality.

Key words: schizophrenia, diffusion tensor imaging, white matter, negative symptoms, psychopathology

INTRODUCTION

The brain origins of psychotic symptoms, known as 
Kraepelin’s ‘dementia praecox’, were further indicated 
by Bleuer as an essential disintegration of mental pro‑
cesses in schizophrenia (Jablensky, 2010). Nowadays, it 
resonates with the disconnection theory (Friston, 2002; 

Friston et al., 2016), where neuropathology of schizo‑
phrenia points at abnormal functional connections as‑
sociated with subtle changes in the structure of axons 
located across the brain. 

Recent evidence implicates that altered white mat‑
ter (WM) structure in schizophrenia can be regarded 
as a long‑term effect of disturbed myelinogenesis, e.g. 
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lower levels of oligodendrocyte‑ and myelin‑related 
proteins (Cassoli et al., 2015; Schoonover et al., 2019), 
but also as a consequence of excitotoxicity, cytoskele‑
tal abnormalities (Uranova et al., 2004) or disturbanc‑
es in neurogenesis, e.g. weakened synaptic pruning 
(Alba‑Ferrara and de Erausquin, 2013; Klauser et al., 
2016). Finally, the abnormal structural connectivity 
and microstructural changes on synapses lead to the 
functional disturbances and manifestation of psycho‑
pathological symptoms related to schizophrenia (Fris‑
ton 2002; Friston et al., 2016). 

Apart from positive symptoms (e.g. hallucinations, 
delusions, paranoid thoughts) and various socio‑cog‑
nitive deficiencies, negative symptoms (i.e., alogia, 
apathy, avolition, anhedonia, asociality, blunted af‑
fect, and poverty of speech) remain as an extremely 
important hallmark of the diagnosis and considered 
a core feature of schizophrenia. Indeed, negative 
symptoms are believed to be the most stable char‑
acteristics for schizophrenia psychopathology (An‑
dreasen, 1982; Harrow and Jobe, 2018), and social an‑
hedonia is recognized as a predictor of later schizo‑
phrenia spectrum disorder development in young 
adults (Kwapil, 1998). 

However, despite long and extensive clinical re‑
search on negative symptoms, the effectiveness of its 
treatment remains at the pretty unsatisfactory level 
of low to moderate, while its neural basis remains 
largely unknown (Kaiser et al., 2011; Asami et al., 2014; 
Bijanki et al., 2015; Garcia‑Portilla et al., 2015; Shaffer 
et al., 2015; İnce and Üçok 2018; Strauss et al., 2018; 
Kochunov et al., 2019). 

Hence, the investigation on biomarkers of this phe‑
nomenon, including structural changes in brain con‑
nectivity, that affect various aspects of brain function‑
ing is of great importance, as the occurrence of nega‑
tive symptoms has a destructive impact on individual 
functioning in schizophrenia (e.g. occupational impair‑
ment, financial dependence, poor social relationships 
and worse quality of life) and remains one of the most 
important scientific and societal problems related to 
schizophrenic psychosis remediation (Kaiser et al., 
2011; Bijanki et al., 2015; Dollfus and Lyne 2017; Correll 
and Schooler, 2020).

Recently, analyses of WM alterations in the schizo‑
phrenic brain are performed using diffusion tensor 
imaging (DTI). DTI is based on the estimation of the 
diffusion of water molecules in tissues as this allows 
a reconstruction of images of brain fibers’ cytoarchi‑
tecture (Emsell et al., 2016). One of the most widely 
used DTI measurements is fractional anisotropy (FA), 
which is generally interpreted as a biomarker of the 
integrity of WM bundles (Assaf and Pasternak, 2008). 
Other commonly used parameters are axial diffusivity 

(AD), regarded as the index of axonal damage; radial 
diffusivity (RD), a measure of the level of myeliniza‑
tion (Karlsgodt, 2016); mean diffusivity (MD), consid‑
ered a complex measure of the surrounding cytoarchi‑
tecture (Emsell et al., 2016). 

Recent data undoubtedly indicate the existence of 
abnormal WM structure in schizophrenia (Kelly et al., 
2018; Koshiyama et al., 2020). In particular, a recent 
meta‑analysis of 29 DTI studies in schizophrenia, in‑
cluding 1963 patients, showed differences in the diffu‑
sion parameters between clinical and healthy subjects 
in 20 tracts in total, indicating the WM alterations in 
schizophrenia are widespread and affecting the ma‑
jority of fiber bundles in the brain, with the greatest 
effect size in the corpus callosum and the anterior co‑
rona radiate (Kelly et al., 2018). Other research consis‑
tently revealed that WM abnormalities were detected 
in different structures, in various groups of patients 
(e.g. medication naïve, after the first episode, chron‑
ic) and WM alteration has a potential to be a biomark‑
er used as a diagnostic criterion, even in a prodromal 
stage of the illness (Pettersson‑Yeo et al., 2011; Al‑
ba‑Ferrara and de Erausquin, 2013). 

Yet, regarding the existing DTI studies on the 
structural biomarkers of the negative symptoms in 
schizophrenia, the observed inconsistency of the re‑
sults could be due to the high heterogeneity of clin‑
ical images between schizophrenic individuals. The 
lack of application of detailed clinical assessment of 
specific negative symptoms is also one of the most 
important issues. 

First of all, two clinical tools were commonly 
used in a majority of DTI research in schizophrenia 
the Scale for the Assessment of Negative Symptoms 
(SANS, Andreasen 1982) or the negative subscale of 
the Positive and Negative Symptoms Scale (PANSS, 
Kay et al., 1987; van der Gaag et al., 2006; Liemburg 
et al., 2013; Stiekema et al., 2016). In brief, most of 
the studies involving these scales find no association 
between their scores and reduced WM integrity, i.e., 
lower FA values (Fujiwara et al., 2007; Skelly et al., 
2008; Abdul‑Rahman et al., 2011; Choi et al., 2011; Yan 
et al., 2012; Kelly et al., 2018), whereas some find neg‑
ative (Whitford et al., 2014; Balevich et al., 2015; Ochi 
et al., 2020) or positive associations (Camchong et al., 
2011; Bijanki et al., 2015). 

Furthermore, in some studies (Balevich et al., 2015; 
Sun et al., 2015) clinical assessment did not seem to be 
prioritized, as the calculated associations were provided 
only between a total score of each scale, instead of cor‑
relations between particular subscales. The specific 
investigations on the relationships between diffusion 
parameters and clinical subscales or even single items 
concerning negative symptoms are still scarce. 
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Pieces of evidence indicate that lower FA in the left 
frontal lobe were related with SANS anhedonia‑asoci‑
ality domain (Asami et al., 2014; Ohtani et al., 2014); 
SANS avolition were negatively correlated with FA in 
the corpus callosum (Nakamura et al., 2012); PANSS 
(N1)‑blunted affect was related with lower FA in un‑
cinate fasciculus (Luck et al., 2011); avolition‑apathy 
domain (The Schedule for the Deficit Syndrome (SDS); 
Kirkpatrick et al., 1989) negatively correlate with FA 
abnormalities in the reward system, i.e., amygdala‑in‑
sular connections (Amodio et al., 2017); deficit patients 
(SDS) revealed a greater reduction in WM integrity than 
non‑deficit patients in the corpus callosum and right 
posterior thalamic radiation (Tan et al., 2020); patients 
with persistent negative symptoms exhibit a different 
pattern of WM abnormalities as compared to patients 
without negative symptoms (Hovington et al., 2015); 
WM abnormalities related to the treatment resistance 
were also associated with the severity of the negative 
symptoms (Kochunov et al., 2019). 

Summarizing, although consistent results revealed 
the existence of diverse WM abnormalities in schizo‑
phrenia in comparison to healthy controls, the associ‑
ation of those changes with the occurrence of the neg‑
ative symptoms seems still to be not yet fully detected 
and understood. The above discrepancy of DTI results 
on negative symptomatology may be more specifical‑
ly considered as an effect of the inconsistency of the 
clinical assessments of the same symptoms by differ‑
ent scales. For example, anhedonia is not included in 
the PANSS, while in the SANS it is rated together with 
asociality, but with no discrimination on anticipatory 
and consummatory anhedonia, of which the first one 
is most characteristic for schizophrenia (Marder and 
Galderisi, 2017; Yan et al., 2019). 

Interestingly, on the contrary to the SANS and 
PANSS, the Brief Negative Symptom Scale (BNSS) (Kirk‑
patrick et al., 2011) rates avolition more precisely as 
based on both internal subject’s feeling and observed 
behavior, and evaluates both consummatory and antic‑
ipatory anhedonia (Marder and Galderisi, 2017). BNSS 
belongs to the second generation of the negative symp‑
toms scales and consists of 5 specific subdomains of 
negative symptoms: blunted affect, alogia, asociality, 
anhedonia, and avolition (Garcia‑Portilla et al., 2015; 
Kumari et al., 2017; Ahmed et al., 2019; Strauss et al., 
2019), which may have the potential to separate neu‑
robiological substrates and to become new therapeutic 
targets (Kirkpatrick et al., 2011). The concurrent valid‑
ity of both BNSS and PANSS is high and a recent study 
(Kaliuzhna et al., 2020) revealed that both amotivation 
factors reach a relatively high negative association 
with diminished left ventral striatal activation. Howev‑
er, the effect sizes for BNSS were much higher and the 

authors emphasize that the use of specialized scales 
like BNSS is crucial in MRI studies directly addressing 
negative symptoms (Kaliuzhna et al., 2020). 

Hence, the primal aim of this study is to investigate 
the association between WM abnormalities and the 
severity of specific subdomains of psychopathological 
symptoms measured by PANSS and BNSS in a sample of 
schizophrenia outpatients, with a special focus on the 
specific aspects of the negative symptomatology. 

First, we determined the differences in WM diffu‑
sivity parameters in the main tracts in the examined 
clinical group in comparison to healthy controls. Repli‑
cation of the alternations in WM in a group of patients 
consistent with those reported in the literature (Kelly 
et al., 2018; Koshiyama et al., 2020) serves as a rationale 
for the secondary correlation analysis of the altered 
DTI parameters with psychopathology. 

More specifically, in the present study, we investi‑
gate the severity of specific negative symptoms using 
the five‑factor BNSS (Ahmed et al., 2019) and five‑fac‑
tor PANSS (van der Gaag et al., 2006) models with addi‑
tional application of a 2‑factor PANSS negative symp‑
toms structure, i.e., social amotivation and diminished 
expression (Liemburg et al., 2013). However, BNSS may 
be regarded as a more specific clinical tool than PANSS, 
as relies on both clinical and subject internal experi‑
ence (Marder and Galderisi, 2017) and the 5 subdomains 
construct model of negative symptoms is clinically well 
settled (Ahmed et al., 2019, Strauss et al., 2018). On the 
other hand, since PANSS is one of the most widely used 
clinical tools in neuroimaging research the referential 
value of such measurement is indispensable. Therefore, 
we expect more pronounced BNSS subdomains associa‑
tions compared to PANSS factors. 

Next, based on the reported widespread alterna‑
tions of WM in schizophrenia (Kelly et al., 2018; Koshi‑
yama et al., 2020) we postulate that WM regions re‑
lated to the severity of the negative symptoms may 
be subtle, more diffuse and not restricted only to the 
main tracts, but expressed beneath the cortical regions 
with abnormal functional activation. This assumption 
is supported by studies on grey matter structure and 
its relation to negative symptoms, eg. blunted affect 
(Guessoum et al., 2020) or apathy (Bègue et al., 2020). 
Thus, in the present study, besides commonly used 
tract‑based spatial statistics (TBSS) analysis, we used 
a novel DTI approach more focused on smaller parts 
of the WM tracts localized beneath cortical regions 
of interest (ROI), which ROI‑FA values will serve as 
the basis for secondary analyses of the relationship 
between WM integrity and specific psychopathology 
subdomains.

Finally, concluding from available data (Shaffer et 
al., 2015; Abram et al., 2017; Walton et al., 2018; Li et al., 
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2018; Bègue et al., 2020; Brady et al., 2019, Guessoum et 
al., 2020, Kaliuzhna et al., 2020), we hypothesize, that 
the most robust association between avolition/anhe‑
donia/asociality symptoms (and/or social amotivation 
factor) and abnormal WM changes will be manifested 
within the fronto‑temporo‑parietal regions, such as 
orbitofrontal cortex, cingulate gyrus, middle and su‑
perior temporal gyrus, and precuneus.

METHODS

Subjects

The study included 30 schizophrenia outpatients 
(SCH) and 30 sex‑, age‑, and education‑matched healthy 
controls (CON). The clinical group consisted of people 
with schizophrenia (27 paranoid subtype, 2 undifferen‑
tiated, 1 schizoaffective) as diagnosed with the ICD‑10 
by an experienced psychiatrist based on clinical inter‑
views and medical documentation; recruited through 
the local network of outpatient clinics and rehabilita‑
tion centers in Krakow, Poland. 

The inclusion of patients with undifferentiated 
schizophrenia and schizoaffective disorder was based 
on a clinical premise, that diagnostic subtyping has 
no predictive validity and will be abandoned in future 
classifications, e.g. ICD‑11 (Reed et al., 2019) and that 
schizoaffective disorder shares similar WM pathologies 
with schizophrenia (Kaluser et al., 2016). 

All participants provided written informed con‑
sent for participation in the study. Procedures were 
designed following the ethical standards of the World 
Medical Association Declaration of Helsinki (2013) and 
approved by the Research Ethics Committee of the In‑
stitute of Psychology, Jagiellonian University in Kra‑
kow, Poland. 

All clinical subjects were in a stable psychopatho‑
logical condition for at least 8‑12 weeks before the as‑
sessment. The exclusion criterion was a history of head 
injuries, seizures, substance dependence, or any seri‑
ous current somatic illnesses. Before MRI data acqui‑
sition, the PANSS, Kay et al., 1987; Van der Gaag et al., 
2006; Liemburg et al., 2013 and the BNSS, Kirkpatrick 
et al., 2011; Ahmed et al., 2019 were assessed by expe‑
rienced psychiatrists. The mean dose of antipsychotics 
for each subject from the clinical group was calculat‑
ed as chlorpromazine equivalents (Atkins et al., 1997; 
Woods, 2003; Gardner et al., 2010).

The Polish adaptation of the Montreal Cognitive 
Assessment (MoCA, available at www.mocatest.org; 
Nasreddine et al., 2005) was used as a general mea‑
sure of basic cognitive skills for all of the subjects. The 
groups did not differ in terms of sex and age, but they 

did differ in years of education (CON > SCH), although 
this difference was not found at the educational level 
(Chi²=4.592; P=0.204). As expected, a difference in cogni‑
tive performance (MoCA result; CON > SCH) was found, 
with a lower total score in the SCH group, and revealed 
the cognitive impairments prominent and characteris‑
tic for schizophrenia (Adamczyk et al., 2016). 

Demographic and clinical data are presented in 
Table I. The data were normally distributed.

MRI data acquisition

Magnetic resonance imaging (MRI) was execut‑
ed using a 3T scanner (Magnetom Skyra, Siemens) at 
Malopolska Centre of Biotechnology, Krakow, Poland. 
The acquisition was performed with a 64‑channel head 
coil. The DTI‑MRI protocol included T1, T2 and the 
diffusion sequence. For T1 scans an optimized mag‑
netization‑prepared rapid acquisition gradient echo 
was used with following parameters: voxel size=1 × 1 
× 1 mm, FoV=25. 6 × 25.6 cm, TR=1800 ms, TE=2.26 ms. 
For T2 scans the parameters were: voxel size=1 × 1 × 
1 mm, FoV=25.6 × 25.6 cm, TR=3200 ms, TE=410 ms. For 
DTI scans the following parameters were used: b‑values 
0, 1000, 2500 s/mm2; in 94 directions, with anterior – 
posterior phase‑encoding direction, 4 b0 images, 100 × 
100 image matrix with an in‑plane voxel resolution of 
2.5 × 2.5 mm, 49 slices; FoV=24 × 24 cm (cerebellum not 
included); TR=8700 ms; TE=110 ms.

Preprocessing of diffusion data

For DTI data preprocessing and analysis, the FSL 
package (FMRIB Software Library v5.11) was used. An‑
atomical images were skull‑stripped with BET (Smith 
et al., 2006). Motion correction was performed using 
eddy (Andersson and Sotiropoulos, 2016) and distor‑
tion correction was performed with FLIRT (Jenkinson 
et al., 2002). After every step, the quality of data was 
checked manually by experienced researchers. Voxel‑
wise statistical analysis of the FA data was carried out 
using TBSS (Smith et al., 2006). First, the tensor mod‑
el was fitted to diffusion data using FDT, thus result‑
ing in the creation of brain FA images. All subjects’ 
FA data were then aligned into a common space with 
FNIRT. Next, based on the mean FA image from each 
subject, the mean FA skeleton was created, which rep‑
resents the centers of all tracts common to the group. 
Each subject’s aligned FA data were then projected 
onto this skeleton and used for voxelwise cross‑sub‑
ject statistics. RD (radial diffusivity), AD (axial dif‑
fusivity), and MD (mean diffusivity) data were also 
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Table I. Demographic and clinical data.

Demographic and clinical data
Schizophrenia outpatients (n=30) Healthy Controls (n=30) Between‑group 

differencesMean ± SD Min Max Mean ± SD Min Max

Demographic data

sex (male:female) 15:15 15:15 Chi²=0.00; ns

age 41.97 9.12 27 61 41.80 8.68 27 61 t=‑0.07; ns

years of education 14.13 2.61 9 21 16.30 2.91 12 23 t=‑3.03; P<0.01

MOCA total 23.17 3.91 21 29 27.03 1.95 23 30 t=‑4.84; P<0.01

Clinical data

years of illness 17.20 8.57 3 39

number of episodes 8.83 7.33 1 33

nr of hospitalizations 8.60 5.57 2 23

schizophrenia diagnosis (ICD‑10): n %

paranoid (F20.0) 27 91

undifferentiated (F20.3) 2 6

schizoaffective disorder (F25.0) 1 3

Type of pharmacotherapy: 

typical anipsychotics 1 3

atypical antipsychotics 27 91

typical‑atypical mixed 2 6

anxiolytics 11 37

antidepressants 4 14

mood stabilizers 6 20

chlorpromazine equiv. (mg/day) 425.33 277.74 100 1300

PANSS: 

total 61.23 16.01 33 96

positive symptoms 11.30 4.15 5 20

negative symptomps 16.90 6.40 8 31

disorganization 9.53 3.95 5 19

excitment 6.07 2.24 4 11

emotional distress 9.17 3.17 4 16

expressive deficits 10.20 7.40 0 25

social amotivation 11.83 7.60 0 26

BNSS: 

total 22.03 13.54 1 49

anhedonia 5.30 3.98 0 12

asociality 3.30 2.38 0 8

avolition 3.23 2.36 0 8

blunted effect 6.30 4.51 0 14

alogia 2.97 2.51 0 9

Subjects demographics and clinical data were presented as mean (±SD) for quantitative data. The significance level in all statistical analyses equaled P<0.05.
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warped, merged, and projected onto the original 
mean FA skeleton.

Additionally, since TBSS analysis is based on values 
extracted from voxels contained in the FA skeleton, 
which does not include the subject’s entire WM, it rep‑
resents only all tracts that are common to the whole 
group. Thus, besides standard TBSS between‑group 
analysis, we focused on selected regions of interest 
(ROI) containing cortex and adjacent WM, and extract‑
ed values from WM skeletons voxels within those areas 
(individually for each subject). We assume that correla‑
tions between these ROI‑FA values and psychopatholo‑
gy can provide more reliable results.

Therefore, to obtain cortical projections of WM re‑
sults, we decided to test between‑group differences in 
FA values within 17 selected cortical ROI‑FA. Regions 
were selected according to previously published data 
on brain abnormalities in schizophrenia and revealed 
as relevant attribution to negative symptom (Shaffer et 
al., 2015; Abram et al., 2017; Walton et al., 2018; Erp et 
al., 2018; Li et al., 2018; Brady et al., 2019; Bègue et al., 
2020; Guessoum et al., 2020).

The chosen ROIs were identified with the Human 
Harvard‑Oxford Atlas as follows: frontal pole (FP), or‑
bitofrontal cortex (oPFC), inferior frontal gyrus pars 
opercularis (oIFG), inferior frontal gyrus pars triangu‑
laris (tIFG), middle frontal gyrus (MFG), superior fron‑
tal gyrus (SFG), anterior cingulate gyrus (aCC), poste‑
rior cingulate gyrus (pCC), anterior inferior temporal 
gyrus (aITG), posterior inferior temporal gyrus (pITG), 
anterior middle temporal gyrus (aMTG), posterior mid‑
dle temporal gyrus (pMTG), anterior superior tempo‑
ral gyrus (aSTG), posterior superior temporal gyrus 
(pSTG), Heschl’s gyrus (HG), temporal pole (TP), ante‑
rior supramarginal gyrus (aSupG), posterior supramar‑
ginal gyrus (pSupG), angular gyrus (AngG) and precu‑
neus cortex (Prec).

The masks for each ROI were created separately and 
fitted to the common space. The shared voxels of each 
ROI mask and the respective mean FA skeleton were 
extracted individually for each subject. Namely, the 
FA values from each mask in each subject’s FA skeleton 
image were extracted, averaged, and used for statisti‑
cal ROI‑FA analysis. We decided to obtain only the FA 
measure from masks as this parameter is widely used in 
other publications concerning WM and psychopatholo‑
gy in schizophrenia, but not MD, RD, or AD.

Statistical analysis

Voxelwise DTI analyses were performed using non‑
parametric permutation‑based testing with the Ran‑
domise command (Winkler et al., 2014) controlling for 

sex, age and illness duration. The Threshold‑Free Clus‑
ter Enhancement (TFCE) method was used with Family‑
wise Error (FWE) correction; 10.000 permutations were 
calculated. P<0.001 were considered significant.

Between‑group comparison of ROI‑FA values 
(t‑tests) was performed using IBM SPSS Statistics for 
Windows (version 23). The effect size was calculated 
with Cohen’s d with small sample size correction. False 
discovery rate (FDR) (Benjamini and Hochberg, 1995) 
was used for multiple testing corrections for all ex‑
tracted ROIs threshold at α level P<0.05.

The relationships between PANSS, BNSS and ROI‑FA 
values were computed using partial Spearman rank‑or‑
der correlation, controlling for sex, age, illness dura‑
tion and medication (chlorpromazine equivalent). Be‑
sides the calculation with standard five factors PANSS 
(Kay et al., 1987; Van der Gaag et al., 2006) i.e., posi‑
tive symptoms, negative symptoms, disorganization 
symptoms, excitement and emotional distress, the 
additional analysis was conducted, where the nega‑
tive symptoms were divided into 2 subdomains – ex‑
pressive deficits and social amotivation (Liemburg et 
al., 2013). For BNSS 5‑factor model was applied, which 
includes blunted affect, alogy, anhedonia, avolition and 
asociality subdomains (Strauss et al., 2018; Mucci et al., 
2019). The FDR correction for multiple tests with α lev‑
el P<0.05 was used.

RESULTS

The DTI TBSS results of the between‑group compar‑
isons of FA, MD, RD and AD parameters showed wide‑
spread differences across most of the WM bundles in 
the brain (Fig. 1 left‑panel). In particular, the FA values 
were lower and MD, AD, RD were higher for the SCH 
group as compared to the CON group (P<0.001, TFCE, 
FWR corrected). The structures in which all the param‑
eters changed (FA, MD, RD, AD) were identified bilater‑
ally (i.e., the body and splenium of the corpus callosum, 
the medial lemniscus, the anterior, posterior and retro‑
lenticular limb of internal capsule, the superior corona 
radiata, the sagittal stratum, the external capsule, the 
fornix); they were also identified selectively in the left 
(i.e., the anterior corona radiata) and right hemisphere 
(i.e., the superior longitudinal fasciculus, the cortico‑
spinal tract, the posterior corona radiata).

Next, the between‑group differences on ROI‑FA 
values were detected bilaterally, with lower FA values 
in the SCH group in the left oPFC (t58=‑3.01, P=0.015), 
oIFG (t58=‑2.46, P=0.038), tIFG (t58=‑2.95, P=0.017), 
pCC (t58=‑3.46, P=0.004), pITG (t58=‑2.73, P=0.024), 
AngG (t58=‑2.54, P=0.036), Prec (t58=‑2.58, P=0.034), 
and right oPFC (t50.32=‑4.79, P<0.001), oIFG (t58=‑4.99, 
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P<0.001), pCC (t58=‑4.39, P<0.001), pITG (t58=‑3.7, 
P<0.001), HG (t58=‑3.78, P<0.001), pSupG (t58=‑3.37, 
P=0.004), AngG (t58=‑2.5, P=0.036), Prec (t58=‑4.1, 
P<0.001). The data were normally distributed. De‑
tailed data on ROI‑FA values are presented in Table II 
and Fig. 1 (right‑panel).

Finally, the correlation analysis of the ROI‑FA val‑
ues with psychopathology has been provided in the 
above ROIs in which significant between‑group differ‑

ences were found. The negative association between 
asociality BNSS subscale and several regions after FDR 
correction for multiple comparisons was revealed. In 
particular, increased asociality was associated with 
decreased FA in the left oPFC (r=‑0.46, P=0.043), pCC 
(r=‑0.56, P=0.016), Prec (r=‑0.49, P=0.035), and the right 
pCC (r=‑0.54, P=0.016), HG (r=‑0.54, P=0.016), and Prec 
(r=‑0.70, P<0.001). The detailed correlation results are 
presented in Table III and Fig. 2.

86 Acta Neurobiol Exp 2021, 81: 80–95

Fig. 1. Between‑group differences in DTI parameters and ROI‑FA values. Left panel: Differences between clinical (SCH) and control group (CON) in DTI 
parameters were shown using labels from the ICBM‑DTI‑81 white‑matter labels atlas (left‑top) on fractional anisotropy (FA), mean diffusivity (MD), axial 
diffusivity (AD) and radial diffusivity (RD). Images presented in neurological convention with background of mean FA skeleton – green color, and MNI 
152 brain. Red color – FA values lower in SCH compared to CON; blue, yellow, light gray – MD, AD, and RD values respectively higher in SCH compared 
to CON. MNI coordinates of the brain image profile: X, Y, Z=90, 108, 90. Abbreviations for ICBM‑DTI‑81atlas labels: a) splenium of corpus callosum, 
b)  cerebral peduncle, c) posterior limb on the internal capsule, d) retrorenticular part of the internal capsule, e) superior corona radiata, f) sagittal 
stratum, g) cingulum, h) fornix, i) body of corpus callosum, j) pontine crossing tract, k) external capsule, l) superior longitudinal fasciculus, m) body of 
corpus callosum, n) anterior limb of the internal capsule, o) posterior thalamic radiation. Right panel: Differences in ROI‑FA values were shown using the 
Harvard‑Oxford cortical atlas and labeled by color (right‑top). The clusters with lower FA values in SCH compared to CON (two left‑bottom images) are 
presented in neurological convention with MNI 152 brain background. The top‑down MNI coordinates of brain profile images: X, Y, Z=85, 128, 73; 90, 108, 
90; 85, 135, 73; 90, 108, 90, respectively.
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Table II. ROI‑FA between‑group differences.

ROIs Schizophrenia outpatients (n=30) Healthy controls (n=30) Between‑group differences

Mean ±SD Min. Max. Mean ±SD Min. Max. t‑test Cohen’s d FDR Q 

Left Hemisphere

LFP 0.39 0.02 0.35 0.43 0.40 0.02 0.35 0.44 ‑2.07 ‑0.53 P=0.077

LoPFC # 0.35 0.02 0.29 0.38 0.36 0.02 0.33 0.42 ‑3.01 ‑0.78 P=0.015

LoIFG # 0.44 0.03 0.39 0.51 0.46 0.02 0.42 0.50 ‑2.46 ‑0.63 P=0.038

LtIFG # 0.41 0.03 0.35 0.46 0.43 0.03 0.37 0.50 ‑2.95 ‑0.76 P=0.017

LMFG 0.47 0.03 0.42 0.53 0.48 0.03 0.41 0.54 ‑1.69 ‑0.44 P=0.132

LaCC 0.66 0.03 0.58 0.71 0.67 0.02 0.63 0.71 ‑1.91 ‑0.49 P=0.102

LpCC # 0.54 0.03 0.49 0.59 0.56 0.03 0.50 0.64 ‑3.46 ‑0.89 P=0.004

LpITG # 0.42 0.03 0.34 0.46 0.44 0.03 0.37 0.50 ‑2.73 ‑0.71 P=0.024

LaMTG 0.47 0.03 0.42 0.53 0.48 0.03 0.41 0.54 ‑1.69 ‑0.44 P=0.131

LpMTG 0.42 0.03 0.37 0.47 0.43 0.03 0.36 0.49 ‑1.74 ‑0.45 P= 0.129

LaSTG 0.37 0.03 0.30 0.43 0.37 0.04 0.32 0.46 ‑0.99 ‑0.26 P=0.359

LpSTG 0.33 0.03 0.26 0.40 0.34 0.04 0.27 0.44 ‑0.66 ‑0.17 P=0.542

LHG 0.42 0.03 0.36 0.47 0.43 0.03 0.36 0.50 ‑1.58 ‑0.41 P=0.156

LTP 0.32 0.02 0.27 0.37 0.34 0.03 0.28 0.37 ‑2.14 ‑0.55 P=0.074

LpSupG 0.40 0.03 0.35 0.45 0.41 0.02 0.37 0.45 ‑1.25 ‑0.32 P=0.252

LAngG # 0.42 0.02 0.34 0.46 0.43 0.02 0.38 0.47 ‑2.54 ‑0.66 P=0.036

LPrec # 0.44 0.02 0.40 0.48 0.45 0.03 0.40 0.50 ‑2.58 ‑0.67 P=0.034

Right Hemisphere

RFP 0.39 0.02 0.35 0.42 0.40 0.02 0.36 0.43 ‑1.96 ‑0.51 P=0.092

RoPFC # 0.33 0.02 0.29 0.35 0.35 0.02 0.32 0.41 ‑4.79 ‑1.24 P=0.001

RoIFG # 0.44 0.02 0.41 0.48 0.47 0.03 0.41 0.54 ‑4.99 ‑1.29 P=0.001

RtIFG 0.42 0.03 0.37 0.50 0.43 0.03 0.35 0.50 ‑1.45 ‑0.38 P=0.186

RMFG 0.47 0.02 0.43 0.51 0.49 0.02 0.42 0.53 ‑2.08 ‑0.54 P=0.077

RaCC 0.69 0.04 0.62 0.76 0.71 0.03 0.64 0.76 ‑1.78 ‑0.46 P=0.125

RpCC # 0.53 0.03 0.48 0.59 0.56 0.03 0.51 0.60 ‑4.39 ‑1.13 P=0.001

RpITG # 0.38 0.03 0.32 0.45 0.41 0.03 0.34 0.47 ‑3.70 ‑0.96 P=0.001

RaMTG 0.33 0.03 0.28 0.39 0.33 0.03 0.27 0.38 0.15 0.04 P=0.885

RpMTG 0.36 0.02 0.31 0.41 0.37 0.02 0.32 0.41 ‑1.45 ‑0.37 P=0.186

RaSTG 0.33 0.03 0.28 0.40 0.34 0.04 0.28 0.40 ‑1.20 ‑0.31 P=0.266

RpSTG 0.31 0.03 0.23 0.36 0.32 0.03 0.28 0.38 ‑0.42 ‑0.11 P=0.694

RHG # 0.43 0.03 0.37 0.50 0.46 0.03 0.39 0.51 ‑3.78 ‑0.98 P=0.001

RTP 0.33 0.02 0.28 0.37 0.34 0.02 0.30 0.38 ‑2.18 ‑0.56 P=0.07

RpSupG # 0.41 0.02 0.37 0.45 0.43 0.02 0.38 0.47 ‑3.37 ‑0.87 P=0.004

RAngG # 0.42 0.02 0.37 0.48 0.44 0.02 0.38 0.47 ‑2.50 ‑0.65 P=0.036

RPrec # 0.46 0.02 0.41 0.50 0.48 0.02 0.41 0.52 ‑4.10 ‑1.06 P=0.001

Cohen’s d was calculated using Hedge’s g. with small sample size correction and controlling for sex. age. illness duration and chlorpromazine equivalent. Results were considered 
significant with P<0.05 after FDR correction. Right hemisphere (R); left hemisphere (L); Used ROIs based on Harvard‑Oxford cortical atlas: frontal pole (FP); orbitofrontal cortex 
(oPFC); inferior frontal gyrus pars opercularis (oIFG); inferior frontal gyrus pars triangularis (tIFG); middle frontal gyrus (MFG); cingulated gyrus anterior (aCC); cingulated gyrus 
posterior (pCC); inferior temporal gyrus posterior (pITG); middle temporal gyrus anterior (aMTG); middle temporal gyrus posterior (pMTG); superior temporal gyrus anterior 
(aSTG); superior temporal gyrus posterior (pSTG); Heschl’s gyrus (HG); temporal pole (TP); supramarginal gyrus posterior (pSupG); angular gyrus (AngG); precuneus cortex (Prec).
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Fig. 2. Correlations between BNSS asociality subscale and fractional anisotropy in selected regions of interest (ROI‑FA). Scatter plots of the scores of Brief 
Negative Symptom Scale (BNSS) asociality in the schizophrenia subjects and its association with the fractional anisotropy (FA) in the selected regions of 
interest (ROI). The significant Spearman’s correlation after FDR correction for multiple comparisons.
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DISCUSSION

In the present study, we aimed at investigating the 
relationship between the WM integrity abnormalities 
and psychopathological symptoms in schizophrenia us‑
ing BNSS and PANSS scales. 

First of all, results of between‑group comparisons on 
DTI parameters and ROI‑FA values confirmed the exis‑
tence of essential bilateral and widespread disruptions 
of WM cytoarchitecture in schizophrenia in line with 
previous studies (Parnanzone et al., 2017; Kelly et al., 
2018; Koshiyama et al., 2020). Thus, the clinical group 
of outpatients investigated in our study may be regard‑
ed as representative, as sharing the abnormal patterns 
of WM changes similar to those revealed by big‑data 
study on a cohort of people with schizophrenia, e.g. 
these found in the major tracts of the corpus callosum 
and the corona radiata (Kelly et al., 2018). Moreover, 
the presented results on differences in all diffusivity 
parameters (FA, AD, MD, RD) with the most widespread 
RD WM alterations are in line with the recent study on 
696 schizophrenia patients (Koshiyama et al., 2020). In 
particular, we found widespread bilateral differences, 
which indicates a breached microstructural integrity 
in schizophrenia, i.e., FA values were lower and RD, AD 
and MD values were higher. Consistently, results from 
ROI‑FA values revealed various bilateral differences in 
the frontal, temporal and parietal lobes. Moreover, we 
found a higher general level of diffusivity (MD) in the 
schizophrenia group in the same regions as the FA‑re‑
lated findings described above, with additional chang‑
es in the cingulum and the uncinate fasciculus. Note‑
worthy, consistent with big‑sample studies (Kelly et 
al., 2018; Koshiyama et al., 2020) the RD changes were 
the most distributed DTI parameter, as compared to FA, 
AD, and MD measures. These findings support the evi‑
dence that the diffusivity changes in schizophrenia are 
most possibly a result of myelin disruptions (Cassoli et 
al., 2015; Mighdoll et al., 2015). The RD is considered 
a more sensitive measure to detect abnormalities re‑
lated to myelin disruptions than FA (Joo et al., 2020). 
This is especially evident in regions that demonstrate 
a significant number of coherently oriented axons, e.g. 
corpus callosum (Karlsgodt, 2016). Moreover, molecu‑
lar studies showed that the dysfunction of oligoden‑
drocytes has an impact on disrupted myelination pro‑
cesses in schizophrenia (Cassoli et al., 2015; Mighdoll 
et al., 2015). Although, further studies are needed to 
better determine this phenomenon. At last, the differ‑
ences that appeared along the axis (AD) indicate the 
impact of other factors that contribute to WM abnor‑
malities, e.g. an inappropriate neurodevelopmental en‑
vironment that results in an abnormal process of estab‑
lishing synapses and pruning axonal connections (Al‑

ba‑Ferrara and de Erausquin, 2013; Klauser et al., 2016) 
seemingly provided to the brain disconnection (Friston 
et al., 2016). 

Overall, it should be pointed that presented differ‑
entiated findings on the WM abnormalities distribution 
indicated by various measures (i.e., FA, MD, RD, AD) is 
seemingly related to the fact, that each of those DTI pa‑
rameters were concerned specifically sensitive to dif‑
ferent biological phenomena (e.g. FA ‑ WM integrity, RD 
‑ WM myelination level, AD ‑ WM axonal damage; MD 
‑ WM surrounding cytoarchitecture). Although, such 
an interpretation of the tissue properties based on the 
DTI parameters is still under debate (Wheeler‑King‑
shott and Cercignani, 2009). To investigate the exact 
mechanism underlying different alternations of WM 
in schizophrenia, further research is needed to better 
determine the biological characteristics of the brain 
tissues and their relation to the specific DTI measure 
(Kelly et al., 2018). 

Second, the significant effects on the specific asso‑
ciations of the BNSS asociality with a lower WM integ‑
rity was found in the left oPFC, right HG, and bilateral 
pCC and Prec. This indicates that the abnormal struc‑
ture of these regions may be concerned as a neurobio‑
logical substrate of functional disturbances crucial for 
the manifestation of specific psychopathological symp‑
toms, i.e., asociality. This is consistent with the previ‑
ous DTI study (Viher et al., 2016) which revealed that 
the negative symptoms (DSM‑V) were related to the 
disrupted WM structure in bilateral prefrontal cortices 
and the right temporal lobe.

However, to the best of our knowledge, apart from 
the presented findings, there is a lack of other re‑
search investigating the relationship between schizo‑
phrenia symptoms and abnormalities of WM beneath 
the specified cortical regions (e.g. ROI‑FA). Although, 
our results are supported by recent research that in‑
dicates that alterations of WM tracts may be consid‑
ered to represent neural underpinning of changes in 
structural properties of grey matter regions, which are 
inextricably interconnected at a cellular level. In par‑
ticular, reductions in cortical thinning were shown to 
be related to the increased FA in the intracortical WM 
(Di Biase et al., 2019), elevated RD in adjacent WM was 
associated with increased cortical folding in the dorso‑
lateral PFC (Schultz et al., 2017) and reduced volume of 
WM was shown to be related to the volume reduction 
in the neighboring regions of grey matter (Colibazzi et 
al., 2013). 

Considering abnormal brain structure in schizo‑
phrenia, some studies revealed pronounced fron‑
to‑temporo‑parietal cortical thinning (right STG/
TPJ, parahippocampal gyrus, and cingulate cortex) 
(Bodnar et al., 2014), or smaller volume of the right 
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parahippocampal gyrus and STG (Benoit et al., 2012) 
in schizophrenia patients with persistent negative 
symptoms. At last, the left medial‑oPFC cortex thin‑
ning was found to be selectively related to negative 
symptoms severity (Walton, 2018). Interestingly, in 
a longitudinal study involving at‑risk for psychosis 
adolescents, negative symptoms were found to be 
related to the increased grey matter loss in the left 
hemisphere, e.g, STG/SupG, pCC, cerebellum and lim‑
bic lobe (McKechanie et al., 2016). 

Furthermore, in the case of the functional MRI 
studies, hypoactivation of the Prec and the pCC was 
found to be related to the higher scores on the SANS 
anhedonia/asociality subscale (Shaffer et al., 2015; 
Guessoum et al., 2020) and avolition/apathy domain 
(Shaffer et al., 2015), and reduced resting‑state func‑
tional connectivity in the precuneus was found to be 
positively correlated with avolition‑apathy domains in 
schizophrenia patients (Forlim et al., 2020). Finally, the 
above‑mentioned disconnectivity between large scale 
networks, such as frontal‑cingulate‑parietal connec‑
tions within the default mode network (DMN) may be 
considered crucial for negative symptoms manifesta‑
tion in schizophrenia (Lefort‑Besnard et al., 2017).

Noteworthy, the medial PFC, temporal lobe, pCC 
and precuneus are considered as an essential part of 
DMN and a social network crucial for social cognition, 
which deficits partially overlap the asociality concept 
(Millan et al., 2014; Pelletier‑Baldelli and Holt, 2020). 
Interestingly, the neurobiological basis of the struc‑
tural and functional associations between precuneus 
and asociality is recognized to be dependent on the 
oxytocin level (Churchland and Winkielman, 2012; Ku‑
mar et al., 2015; 2019; Strauss et al., 2015). In particu‑
lar, previous studies showed that the decreased plasma 
oxytocin level is associated with increased asociality 
(Strauss et al., 2015) and administration of intranasal 
oxytocin can reduce asociality symptoms in patients 
(Churchland and Winkielman, 2012). Complementary, 
other studies showed that enhancement of the oxy‑
tocin transmission can affect functional connectivity 
between precuneus ‑ amygdala (Kumar et al., 2015) or 
precuneus ‑ left dorsolateral prefrontal cortex (Kumar 
et al., 2019) connections. The above findings support 
the theory on the contribution of the precuneus to the 
social cognition in schizophrenia, mediated by oxy‑
tocin level decrease, which is strongly related to one 
related deficit of social cognition ‑ the severity of aso‑
ciality (Guessoum et al., 2020). 

Yet, our results on altered WM structure beneath the 
left oPFC, right HG, bilateral precuneus and pCC seem 
to be complementary with findings on disturbed oxyto‑
cin‑related functional connectivity in the DMN, which 
may be regarded as a potential mechanism of the neu‑

ral substrate of social cognition deficits in schizophre‑
nia and/or manifestation of asociality‑related symp‑
tomatology. The pCC and precuneus are midline areas 
involved in higher‑order and social processing (Cavan‑
na and Trimble, 2006; Leech et al., 2012). Therefore, 
diminished WM connections in these regions might be 
responsible for disruption in social‑motivation pro‑
cesses and turn resulting in increased asociality. This 
is supported by previous findings on the specific rela‑
tionship of the anhedonia‑asociality domain (assessed 
with SANS) with disrupted WM integrity in the left su‑
perior fronto‑occipital fasciculus (Asami et al., 2014), 
the left posterior oPFC ‑ ACC connections (Ohtani et al., 
2014) or right cingulum bundle (Whitford et al., 2014). 
Finally, the results of the presented BNSS correlations 
indicate that alterations in the smaller parts of tracts 
located beneath grey matter (ROI‑FA) may be an effec‑
tive approach for the measurement of the specific asso‑
ciations of brain regions with negative symptoms. 

On the other hand, no significant correlation with 
the negative symptoms subscale of PANSS was found, 
neither within the five‑factor model of PANSS subscales 
(Van der Gaag et al., 2006), nor the analysis of the ad‑
ditional two specific subdomains of the PANSS negative 
symptoms, i.e., social amotivation and expressive defi‑
cits (Liemburg et al., 2013). The presented BNSS and 
PANSS results may indicate that the relation of WM dis‑
turbances with negative symptoms was indeed indirect 
and narrow down to specific deficits, e.g. BNSS asocial‑
ity subscale; supporting the previously mentioned dis‑
crepancies between clinical scales (Kumari et al., 2017; 
Marder and Galderisi, 2017). Importantly, regarding 
the concurrent validity for the BNSS, SANS or PANSS, 
it should be pointed out that these clinical scales are 
highly inconsistent and measure slightly different as‑
pects of the negative symptomatology (Kirkpatrick et 
al., 2011); e.g. asociality is often understood as social 
amotivation and therefore is treated by many research‑
ers as one of the elements of the avolition/apathy do‑
main (Kaiser et al., 2017). Interestingly to this issue, an 
exceptional DTI study on schizophrenia which applied 
BNSS (Stämpfli et al., 2019), despite revealed subtle be‑
tween‑group fiber density (FD) differences, reported 
no correlation between negative symptoms, neither for 
FA nor for FD parameters. Although, in contrast to the 
present study, in the study of Stämpfli and colleagues 
(2019), no commonly observed FA WM alterations were 
found (Kelly et al., 2018) and the BNSS analysis was 
limited to the two‑factor model, i.e., apathy and dimin‑
ished expression, beyond current five‑factor model of 
BNSS subdomains analysis (Ahmed et al., 2019).

Summarizing, due to some limitations of our study 
(e.g. limited sample size), the presented results should 
be interpreted with caution, especially the correlation 
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analysis. Nevertheless, the presented results may serve 
as a valuable input for a deeper understanding of WM 
structure changes and its relation to the specific psy‑
chopathology symptoms in schizophrenia. Noteworthy, 
in the present study on schizophrenia outpatients, we 
detected characteristic differences in WM parameters 
in schizophrenia, which served as a rationale for pro‑
vided correlation analysis of specific PANSS and BNSS 
symptoms subscales, as of great importance. The pre‑
sented results of the ROI‑FA calculation gave a deeper 
insight into the associations between WM structure 
abnormality and the manifestation of psychopathology 
symptoms. However, the used ROI‑FA approach, simi‑
lar to other methods (e.g. TBSS method focusing on the 
major WM tracts) is still affected by the problems with 
precise abnormal brain region alignment and localiza‑
tion accuracy. For a more profound understanding of 
the nature of WM abnormalities in schizophrenia and 
its relation with psychopathology, the more sophis‑
ticated methods need to be incorporated in further 
studies, e.g. ROI specified tractography and structural 
connectivity analysis. The more precise analysis of FA 
values on particular WM tracts may provide more pre‑
cise measures of WM abnormalities in schizophrenia. 
Although, the replication of presented results on a big‑
ger sample in the future is required. 

Furthermore, even in our analyses, we controlled 
the parameters that potentially affected WM integ‑
rity in schizophrenia, i.e., sex, age, illness duration, 
and dosage of antipsychotic medication, these issues 
require special attention, as still under scientific de‑
bate. On the one hand, some studies indicated that 
WM integrity may be affected by the type of medi‑
cation or illness duration (Ozcelik‑Eroglu et al., 2014; 
Samartzis et al., 2014). On the other hand, the recent 
studies on big‑sample sizes revealed that the dose of 
medication (calculated as the chlorpromazine equiv‑
alent) did not affect the diffusivity parameters of WM 
(Kelly et al., 2018; Koshiyama, 2020; Joo et al., 2020; 
Gurholt et al., 2020). 

Nevertheless, another problematic issue concerns 
nowadays the open‑source, big databases where usu‑
ally lack the full clinical information of patients, e.g. 
PANSS, BNSS results. Thus, our research strongly sug‑
gests the necessity of implementing consistent and 
more specific clinical scales, e.g. five‑factor BNSS, as 
standard for psychopathology measurement in clinical 
DTI investigations on schizophrenia. 

To summarize, further study on this topic is highly 
required. In particular, multidisciplinary studies com‑
bining functional and structural approaches in one in‑
vestigation may be an important prospect that allows 
analysis of the relations between WM abnormalities, al‑
tered synaptic transmission, genes, and associated my‑

elination disturbances and psychopathology in schizo‑
phrenia. The better organization of the recent knowl‑
edge on the relation between the negative symptoms 
and their biological underpinnings may contribute to 
the development of more effective neurotherapeutic 
interventions, i.e., state‑of‑the‑art neurostimulation 
methods aimed at psychopathological symptoms re‑
duction, e.g. TMS or tDCS, which methods potentially 
may effects in an improvement of social functioning.

CONCLUSIONS

In the present study, we revealed the association 
between disrupted WM integrity in the fronto‑tem‑
poro‑parietal regions (the left oPFC, right HG, bilat‑
eral Prec and pCC) and specific negative symptoms in 
schizophrenia, i.e., asociality. Further studies on this 
topic require big neuroimaging data set and implemen‑
tation of more specific, consistent and more homoge‑
nous clinical scales used in DTI studies on schizophre‑
nia, e.g. five‑factor BNSS symptoms scale.
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