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Abstract

Dust is ubiquitous throughout the Solar System and beyond. In the main rings of Saturn, dust

becomes electrically charged through interactions with sunlight and the plasma environment,

leading to complex phenomena for which many questions still remain to be answered. Key issues

are introduced in Chapter 1, through examples of the elusive spokes of the B ring, streaming

particles from the outer rings, and ring rain.

The dynamics of dust in the presence of planetary magnetic and gravitational fields is studied

using numerical simulations of grain trajectories in Chapter 2; electromagnetic forces are added

to an existing N-body code and novel adaptive integration methods are implemented. In Chapter

3, a constant charge-to-mass ratio is assumed, in order to test the numerical method and inde-

pendently verify the theoretical and simulation results of older and more recent literature. The

planet is treated as spherical, with an aligned and centred magnetic dipole, so that analytical

boundaries for stability can be derived for the radial, azimuthal and vertical motions of dust.

Depending on the launch location and their positive or negative surface potential, grains can re-

main in orbit, collide with the planet at low latitudes, climb up magnetic field lines to collide at

higher latitudes, or escape the ring system. The full extent of radial distances from the innermost

to the outermost parts of the ring system are considered, for both positive and negative grain po-

tentials, covering a wide range of charge-to-mass ratios that encompass the gravitationally- and

electromagnetically-dominated regimes.

The effects of random discrete charging events on nanodust dynamics are of paramount impor-

tance. In Chapter 4, with the numerical method verified, the assumption of constant grain surface

potential is relaxed and a novel stochastic charging algorithm is developed so that the dynamics

of nanograins can be studied. The periodic modulating effect on the grain’s charge as it transits

the planetary shadow is included as this can have a significant destabilising effect.

In Chapter 5, attention is then directed back to ring rain, the precipitation of dusty material from

the rings onto the planet’s ionosphere. Results are presented that corroborate the hypothesis that

ring rain may not be a cleaning mechanism, whereby the rings preferentially rain out pollutants,

leaving the young age of Saturn’s rings a possibility. The need for a systematic sensitivity anal-

ysis to fully explore the chaotic nature of grain trajectories under the full range of environmental

and grain parameters is described in Chapter 6.
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ton & Krüger (2008). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.23 Continuous charging example with Saturn’s shadow. . . . . . . . . . . . . . . 160

4.24 Stochastic charging example with Saturn’s shadow. . . . . . . . . . . . . . . . 160

4.25 As Figure 4.24, but using a different random seed. . . . . . . . . . . . . . . . . 161

xix



4.26 As Figure 4.24, but using a different random seed. . . . . . . . . . . . . . . . . 161

4.27 As Figure 4.24, but using a different random seed. . . . . . . . . . . . . . . . . 162

4.28 As Figure 4.24, but using a different random seed. . . . . . . . . . . . . . . . . 162

5.1 Radial structure of Saturn’s main rings. . . . . . . . . . . . . . . . . . . . . . 167

5.2 Latitudinal deposition angle as a function of charge-to-mass ratio and launch

position, Fig. 5 of Liu & Ip (2014). . . . . . . . . . . . . . . . . . . . . . . . . 171

5.3 Example trajectories of positive grains with an initial vertical velocity boost, Fig.

2 of Ip et al. (2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.4 Latitudinal deposition of 10 nm grains as a function of plasma density, Fig. 2 of

Hsu et al. (2018a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.5 Plasma model used by Hsu et al. (2018b). . . . . . . . . . . . . . . . . . . . . 175

5.6 Modelled grain number density in (r, z) space, Fig. 1B of Hsu et al. (2018b). . 176

5.7 Latitudinal deposition of 20 nm dust ejecta compared to H+
3 emission, Fig. S6

of Hsu et al. (2018b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.8 Grain trajectory example, launched outside the instability region at local noon:

collision with ring plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.9 Grain trajectory example, launched outside the instability region at local mid-

night: collision with ring plane. . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.10 Grain trajectory example, launched outside the instability region at local mid-

night: eventual collision with planet at mid-southern latitude. . . . . . . . . . . 184

5.11 Grain trajectory example, launched outside the instability region at local mid-

night: collision with planet at low latitude. . . . . . . . . . . . . . . . . . . . . 185

5.12 Grain trajectory example, launched outside the instability region at local noon:

collision with planet at mid-southern latitude. . . . . . . . . . . . . . . . . . . 186

5.13 Grain trajectory example, launched within the instability region at local mid-

night: collision with the main rings. . . . . . . . . . . . . . . . . . . . . . . . 187

5.14 Grain trajectory example, launched within the instability region at local noon:

collision with planet’s equatorial region. . . . . . . . . . . . . . . . . . . . . . 188

5.15 Grain trajectory example, launched within the instability region at local noon:

eventual collision with the planet at mid-southern latitude. . . . . . . . . . . . 189

5.16 Grain trajectory example, launched within the instability region at local mid-

night: collision with the planet at mid-southern latitude. . . . . . . . . . . . . . 190

xx



5.17 Grain trajectory example, launched inside of the instability region at local noon:

collision with main rings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.18 Grain trajectory example, launched inside of the instability region at local noon:

rapid collision near planet’s equator. . . . . . . . . . . . . . . . . . . . . . . . 192

5.19 Grain trajectory example, launched inside of the instability region at local mid-

night: collision with planet at mid-southern latitude. . . . . . . . . . . . . . . . 193

5.20 Grain trajectory example, launched inside of the instability region at local mid-

night: collision with planet at mid-southern latitude. . . . . . . . . . . . . . . . 194

5.21 Grain trajectory example, launched inside of the instability region at local noon

with larger vertical boost: collision with planet at mid-northern latitude. . . . . 195

xxi



xxii



List of Tables

1.1 Planetary parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 Properties of streaming particles, Table 1 of Hamilton & Burns (1993). . . . . . 26

1.3 Legendre polynomials up to degree-3. . . . . . . . . . . . . . . . . . . . . . . 44

1.4 Older literature Gauss-Schmidt quasi-normalised spherical harmonic coefficients 48

1.5 Cassini Gauss-Schmidt quasi-normalised spherical harmonic coefficients. . . . 49

2.1 Butcher tableau for RKDP method. . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Reproducing charging coefficients of Cui & Goree (1994). . . . . . . . . . . . 132

5.1 Ring rain simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

xxiii



xxiv



List of Acronyms and Symbols

The following list describes acronyms and symbols that will be widely used within the body of

the document.

Acronyms for Cassini instruments

CAPS CAssini Plasma Spectrometer

CDA Cosmic Dust Analyzer

CIRS Composite InfraRed Spectrometer

HRD CDA’s High Rate Detector

IMS Ion Mass Spectrometer

INCA Ion and Neutral CAmera

INMS Ion and Neutral Mass Spectrometer

ISS Imaging Science Subsystem

MAG MAGnometer

MAPS Magnetospheric And Plasma Science

MA Mass Analyzer, a linear impact time-of-flight mass spectrometer: a subsystem of the

CDA.

MIMI Magnetosphere IMaging Instrument

NAC Narrow Angle Camera, part of ISS

RPWS Radio and Plasma Wave Science

xxv



UVIS UltraViolet Imaging Spectrograph

VIMS Visible and Infrared Mapping Spectrometer

WAC Wide Angle Camera, part of ISS

Greek Symbols

ε Accuracy tolerance for RKDP method

κν Photoelectric efficiency factor

κc Epicyclic Frequency

λ Expected rate for Poisson distribution

λmfp Collisional mean free path

λD Debye length

µ Magnetic moment of grain (first adiabatic invariant)

ΩK Keplerian angular frequency

ΩS Spin frequency of Saturn 1.622× 10−4 rads−1

ωc Angular velocity of guiding centre

Ωgc Gyrofrequency evaluated at guiding centre

ΩgL Gyrofrequency evaluated at launch location

Ωg Gyrofrequency

Ωp Spin frequency of planet

φ Azimuth coordinate

φeq Equilibrium dust grain surface electric potential

ΦB Magnetic scalar potential

Φg Gravitational scalar potential

φd Dust grain surface potential

Ψ Electric potential

xxvi



ρ Cylindrical coordinate, ρ =
√
x2 + y2

ρc Distance from planet to guiding centre

ρd Mass density of dust grain

Σ Surface mass density of planetary rings

σ Electrical conductivity

τ Optical depth of planetary rings

τc Characteristic charging timescale

θ Colatitude coordinate

Latin Symbols

~̈rn Acceleration of a particle on the nth integration timestep

~̇rn Velocity of a particle on the nth integration timestep

Ue Effective potential

~A Magnetic vector potential

~B Magnetic field

~E Electric field

~g Gravitational field

~j Current density

~m Dipole magnetic moment of planet

~rn Position of a particle on the nth integration timestep

~v∇ ~∇B drift velocity

~vE ~E × ~B drift velocity

~vG Gravitational drift velocity

~vp Plasma velocity

a Distance of shearing patch to planet

xxvii



ad Dust grain radius

gmn , h
m
n Normalised Gauss-Schmidt coefficients

H Hamiltonian, noteH = H/md

h Numerical integration timestep

Iα Plasma current of type α = {e, i}

Isec Secondary electron emission current

J2 Planetary gravity oblateness coefficient JS2 = 0.0163

Kφ Electric grain surface potential coefficient

Kτc Charging timescale coefficient

Kq Charge coefficient

L Distance of ~B field line from centre of planet measured in Rp

L∗ Dimensionless charge-to-mass ratio

MJ Mass of Jupiter 1.898× 1027 kg

MS Mass of Saturn 5.685× 1026 kg

md Mass of dust grain

mi Mass of plasma ion

Mp Mass of planet

N Number of particles in an N-body simulation

n Number density

Neq Equilibrium charge number

nc Keplerian angular frequency evaluated at the guiding centre

ne, ni Plasma number density of electron and ion species, respectively

nL Keplerian angular velocity at launch location

pρ, pφ, pz Canonical conjugate momenta

xxviii



Pn Legendre polynomials

Pmn Associated Legendre polynomials

q Power law slope

qd Charge of dust grain

qi Plasma ion charge

r Radial position, r =
√
x2 + y2 + z2

RB Random number drawn from a uniform distribution: RB ∼ U(0, 1], to be compared to

the binomial distribution to randomly assign charging events across substeps

RJ Radius of Jupiter 71, 372 km

RαP Random number drawn from a uniform distribution: RαP ∼ U(0, 1], to be compared to

the Poisson distribution for each α current type

Rsyn Synchronous orbit position, where ΩK = Ωp

RS Radius of Saturn 60, 268 km

rg Gyroradius

rL Launch position

Rp Planetary radius

Tν Characteristic temperature of photoelectron current

TK Keplerian time period

Te, Ti Plasma electron and ion temperatures, respectively

U Scalar potential

v‖, v⊥ Velocity parallel and perpendicular to the magnetic field direction, respectively

vesc Escape velocity

vK Keplerian velocity

vc Velocity of guiding centre

xxix



X(t) Integrated solution to equations of motion: position and velocity

Y m
n Spherical harmonics

Zi Electronic charge number of positive ions

Miscellaneous Acronyms

GBS Gragg-Bulirsch-Stoer, extrapolates solution for timestep H

IVP Initial Value Problem

PKDGRAV Parallel k-Dimensional Tree Gravity Integrator

RKDP Runge-Kutta with Dormand Prince coefficients

SED Saturn Electrostatic Discharge

SKR Saturn Kilometric Radiation

Physical Constants

ε0 Vacuum permittivity 8.8541878128× 10−12 F m−1

e (Roman) Euler’s constant 2.71828 . . .

c Speed of light 299, 792, 458 m s−1

e (Italicised) Charge of electron 1.602176634× 10−19 C

G Universal gravitational constant 6.67430× 10−11 N m2 kg−2

kB Boltzmann constant 1.380649× 10−23 J K−1

me Mass of electron 9.1093837015× 10−31 kg

amu Atomic mass unit 1.66053906660× 10−27 kg



1
Introduction

Charged dust is ubiquitous throughout the universe and, more locally, in our Solar System:

present in planetary rings, the surface of the Moon and other bodies, the atmospheres of planets,

comets, and the space in between. The interaction of charged dust with its varying environments

results in beautiful displays, including the spokes of Saturn (Smith et al. 1981), lunar horizon

glow and streamers (Rennilson & Criswell 1974; McCoy & Criswell 1974), and striated features

in comet tails (Price et al. 2019). Ringed planets provide a local analogy for other cosmic sys-

tems, like planet-forming disks and galaxies. The particles’ modest size (nm− µm) makes dust

subject to a complex interplay of different forces, not solely contingent on gravity. Given the

prevalence of dust in regions around young stars, a greater understanding of the charging con-

ditions and dynamics of dust could provide fresh insights into planet formation (e.g. Okuzumi

2009; Steinpilz et al. 2020).

The focus of this thesis is charged dust in planetary rings, principally Saturn’s, whose ring

system is arguably the most striking and beautiful of all. The Saturnian system is complex and

involves dynamical and chemical connections between the planet, its rings, numerous satellites

and various dust, neutral and plasma populations (André et al. 2008). The components of these

relevant to the study of charged dust dynamics and the physical properties of the main inner rings
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1. Introduction

and their environment are presented in §1.1. The variety of phenomena are demonstrated through

key examples of charged dust in planetary ring systems (§1.2), which motivate the importance

of understanding their dynamics and developing a model for which the most relevant forces are

considered in §1.3. It will become apparent how modelling the fate of circumplanetary dust

leads to greater understanding of the complexities surrounding the age of Saturn’s rings (Crida

et al. 2019), which is described in the Chapter 5.

(a) Trajectories of electrons causing aurora borealis, solved
by numerical integration and presented as a thread model
(Størmer 1930). The γ labels are constants of integration.

(b) Regions of forbidden toroidal
space (Birkeland 1913), theorised
by Størmer (1930).

(c) Birkeland currents generat-
ing auroral-like displays (Birkeland
1913).

Figure 1.1: Early experimental and theoretical work on charged particle dynamics. Ter-
rella experiments (b,c) involved firing cathode rays at a sphere containing an electromagnet
inside a vacuum chamber, representing the Earth and its magnetic field in space.

The study of charged particles in planetary magnetic fields began in earnest in the late nineteenth

century with various physicists and meteorologists studying the Earth’s aurorae. Following the

discovery of X-rays (Röntgen 1895), Birkeland was inspired to study the influence of magnets

on cathode rays inside vacuum chambers. At the turn of that century, the Norwegian Polar Expe-

dition, organised by Birkeland, established a network of observatories to collect magnetic field

data in high-latitude regions in order to study the electric current pattern in such polar regions
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(Birkeland 1913). Størmer became interested in Birkeland’s theory of the polar aurorae and

they began collaborating in 1903, with Størmer constructing numerical methods to determine

the trajectories of high-energy charged particles, pictured in Figure 1.1a. It was through terrella

experiments, shown in Figure 1.1b and 1.1c, that Birkeland developed his theory for aurorae –

high-energy electrons ejected from sunspots travel towards Earth, where they are guided to polar

regions by the geomagnetic field.

Measurements of magnetic field perturbations during polar expeditions, led Birkeland (1913) to

propose that currents were flowing along geomagnetic field lines, shown in Figure 1.1c. These

field-aligned currents, which came to be known as Birkeland currents, are explained further in

§1.1.2 where the electromagnetic environment of Saturn is described. The early work on aurorae

and charged particle dynamics has relevance for the study of charged particles interacting with

planetary atmospheres, besides aurorae in other planets (e.g. Stallard et al. 2008), such as the

ring rain of Saturn (e.g. O’Donoghue et al. 2013) described in §1.2.3. The ring-planet connection

works both ways, with Jones et al. (2006) hypothesising that the spokes of Saturn (§1.2.1) are

formed by lightning-induced electron beams originating in the atmosphere. Indeed, the spokes

of Saturn and ring rain could be different manifestations of the same dust population, with the

Collisional Cascade model presented in Jontof-Hutter (2012) raising some interesting questions

about whether spoke particles could rain from the rings onto Saturn.

3



1. Introduction

1.1 Saturnian Ring System

Saturn’s rings are a rich and complex system, and to establish the broader context of charged

dust, their structure is described in §1.1.1, and the wider electromagnetic environment in which

they are situated is described in §1.1.2, which provides an overview of the key regions of Saturn’s

magnetosphere, plasma, and radiation belts in relation to the main rings. A brief description

is provided in the following sections; for further detailed descriptions refer to the reviews of

e.g. Graps & Grün (2002), André et al. (2008), Gombosi et al. (2009), Gombosi & Ingersoll

(2010), Dougherty et al. (2009), Esposito (2014), Baines et al. (2018), Tiscareno & Murray

(2018).

1.1.1 The Rings of Saturn

a) Structure of Rings and History of Observations

Figure 1.2: A page (adapted to fit horizontally) from Christiaan Huygens’ work Systema
Saturnium, explaining the changing appearance of Saturn’s rings.

Galileo first observed Saturn using a telescope in 1610. He spoke of the rings as ‘ears’ of Saturn

and drew three separate bodies to represent the Saturnian system, stating they are ‘arranged in a

row along the zodiac, the middle one being three times larger than the lateral ones, and they are

situated in this form: oOo’. Half a century later, Huygens used his telescope’s improved resolv-

ing power to discern that Saturn was surrounded by a ring, Figure 1.2. Then in 1675, Cassini

observed that the singular ring was actually composed of smaller rings with gaps between them,

corroborated by Laplace’s calculation that a uniform solid ring would be unstable and therefore

the system could instead be comprised of a number of solid ringlets (Laplace 1966). Maxwell
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1.1. Saturnian Ring System

(1859) deduced that this ringlet structure would be unstable, as would a continuous fluid ring.

Kovalevskaya worked with Laplace’s assumption, and presented her work as part of three papers

for her dissertation (Kovalevskaya 1948; Polyakhova 2004), becoming the first woman to gain a

doctorate in mathematics in 1874. Spectroscopic analysis of the rings confirmed that the rings

were not orbiting as a solid uniform body but comprised of a multitude of orbiting particles

(Keeler 1895), Figure 1.3.

Figure 1.3: Sketch by Keeler (1895) shows the spectroscopic method of using Doppler
shifts to determine how the planet rotates as a solid body while the rings of Saturn obey
Kepler’s Third Law, indicated by the dashed curve.

Following these Earth-bound observations, Saturn’s rings have to date been observed from the

vicinity of the planet by four spacecraft. The first to do so was Pioneer 11 in 1979, see Figure

1.4a, which imaged several moons and discovered the F ring. In the early 1980s Voyager 1 and

2 studied the atmosphere of Saturn, aurorae and giant moon Titan, which was known to have

an atmosphere of its own. Radial bicycle spoke-like features in the rings were also observed,

Figure 1.4b; these are describe in greater detail in §1.2.1. Then Cassini-Huygens entered into

orbit around Saturn in 2004, with Huygens landing on Titan in early 2005. The huge volume

of scientific discoveries made about the Saturnian system using Cassini data is reviewed in

Dougherty et al. (2009) and the Cassini Final Mission Report (NASA/JPL 2019), with the latest

Grand Finale results covered by special issues of Science (Smith 2018) and Geophysical Review

Letters (Spilker 2019).
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(a) Pioneer image of Saturn, the satellite Rhea
can be seen to the lower right of the planet. Im-
age credit: NASA/JPL.

(b) Voyager 2 image of spokes in the
B ring, 22 August 1981. Image credit:
NASA/JPL/CICLOPS.

Figure 1.4: Early images of Saturn and its rings from space. Spokes are described further
in §1.2.1.

The rings of Saturn, Figure 1.5, can be divided broadly into two categories: the dense A, B,

C rings (detailed in Figure 1.6, and which will be referred to as the main rings throughout this

work, with optical depths τ > 0.1), and the tenuous D, E, G rings ( τ < 10−3). The F ring is

more difficult to categorise being very narrow with kinks and knots, a dense core enveloped in a

broad sheet of dust (Colwell et al. 2009b), shown in Figure 1.7. The size distribution of particles

in the main rings follows a power law distribution in radius, ad, and can be expressed in terms

of the particle number density, n, as

n(ad, ad + dad) = n0a
−q
d dad, (1.1)

where the slope q and maximum and minimum radius limits vary with ring location, but gener-

ally q ∼ 3 and amin
d ∼ 1−30 cm, amax

d ∼ 2−20 m (Cuzzi et al. 2009). The main rings extend out

to just within the F ring’s orbit at ∼ 140, 000 km, but are only metres thick based on the bright-

ness asymmetry of dynamical models of self gravity wakes (French et al. 2007), spiral wave

dispersion (Colwell et al. 2009a) and thermal model fitting to Cassini CIRS1 data (Reffet et al.

2015). These dense rings lie inside the Roche limit, where tidal forces overcome an orbiting

1Composite InfraRed Spectrometer. Refer to the List of Acronyms and Symbols for subsequent acronyms of other
instruments on-board Cassini.
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1.1. Saturnian Ring System

body’s self-gravity, with dusty rings and Saturn’s larger moons orbiting further out.

Figure 1.5: Artist’s concept of Saturn’s rings and major moons. Orbital dynamics of dust
grains originating from the main A, B and C rings will be the focus of this work. Image
credit: NASA/JPL (PIA03550).

Smaller irregular moons clear gaps within the rings, and yet smaller moonlets produce distur-

bances in the ring material dubbed ‘propellers’ due to their morphology (Tiscareno et al. 2006).

Orbiting outside of the main dense rings, the moon Mimas is in a 2:1 orbital resonance with ring

particles to generate the Cassini Division (Hamilton & Burns 1993; Hedman et al. 2009), which

separates the A and B rings, and other resonances with that moon generate waves in the rings,

such as the 5:3 bending wave. Numerous density and bending waves are caused by satellites

exciting ring particles.

Figure 1.8 shows the dense rings, the most massive of which is the B ring, with the highest

opacity and greatest variation in its brightness and density (Colwell et al. 2009b). The A ring,

the outermost of the main rings, has intermediate opacity, with waves excited by moons. Lying

interior to the B ring, the C ring has lower opacity with several gaps and narrow ringlets. Stellar

occultations, where starlight passing through the rings is measured, enable the ring structure and

opacity to be analysed as shown by the Cassini UVIS data in Figure 1.8.

During its Grand Finale phase, Cassini passed between the rings and the planet, measuring the

gravity of the rings so that their mass could be determined: 0.41±0.13MMimas (Iess et al. 2019).

This relatively low mass, a fraction of the 400 km wide moon, has consequences for the age of

the rings, discussed further in Chapter 5.
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Figure 1.6: Natural colour mosaic of the unilluminated side of the main rings taken by Cassini’s NAC. Image credit: NASA/JPL/Space Science Institute (PIA08389).

Figure 1.7: The F ring unfurled, covering 255◦ longitude. Mosaic of images taken by Cassini’s NAC. Image credit: NASA/JPL/Space Science Institute (PIA08412).

Figure 1.8: Cassini imaging of the main rings (the faint F ring is also visible outside of the A ring): UVIS stellar occultation data (top panel) and ISS mosaic (lower panel). Optically
thick regions, such as those in the B ring, appear brighter than thinner regions due to the viewing geometry.
Image credit: Colwell et al. (2009b) and NASA/JPL/Space Science Institute.
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b) Composition of Rings

Since before the first spacecraft visited Saturn, it has been known that the rings are comprised

principally of water-ice, measured through near-infrared and microwave spectra (Pilcher et al.

1970; Clark & McCord 1980; Epstein et al. 1984; Poulet & Cuzzi 2002). In fact, water was the

only molecule detected, although subsequently measured spectral characteristics, including red-

dening between 0.3 and 0.7 µm, indicate that other substances are also present, and additionally,

the albedos of the A, B and C rings are not high enough to be consistent with a composition

of pure water-ice (Poulet & Cuzzi 2002). More recent work, using Cassini VIMS’ UV, visible

and near-infrared reflectance spectra, confirms that the main rings are mostly water-ice with a

small fraction of non-icy material (Ciarniello et al. 2019), and a similar composition would be

expected for charged dust in the rings. However, there is a difference in the observed fraction of

non-icy charged dust that rains out of the rings along magnetic field lines onto Saturn compared

to the main rings (Hsu et al. 2018b); this ring rain is described in greater detail in §1.2.3, and

the questions it raises with regard to broader open subjects, such as the age of Saturn’s rings, is

discussed in Chapter 5.

The non-icy constituent could be organic solids acting as a strong UV and blue wavelength

absorber (Cuzzi & Estrada 1998; Poulet et al. 2003; Cuzzi et al. 2018) or nanophase particles of

iron oxides (Clark et al. 2012), as well as a spectrally neutral absorber component assumed to

be carbon (Cuzzi & Estrada 1998). Poulet & Cuzzi (2002), through analysing Clark & McCord

(1980)’s reference spectrum of Saturn’s rings and applying scattering theory (Shkuratov et al.

1999), conclude that the icy ring particles contain tholins2, and that there is a small fraction of

coarse amorphous carbon separated from the bulk water-ice material.

Based on VIMS data, an example shown in Figure 1.9, the UV absorber seems to take the form

of inclusions within the individual water-ice grains with the abundance increasing as distance

to Saturn decreases (Nicholson et al. 2008; Hedman et al. 2013; Filacchione et al. 2014). The

neutral absorber is thought to present as separate particles in close proximity to the icy grains,

described as a ‘salt and pepper’ mixture with the highest abundance in the C ring and Cassini

Division (Hedman et al. 2013). This is also shown by the Grand Finale data of Cassini (Tis-

careno et al. 2019), which shows that the ice-bands were deepest in the outer regions of the A

2Tholins are reddish brown compounds formed by UV or cosmic ray irradiation of cosmically abundant material
such as methane, carbon dioxide, ethane, nitrogen and water.
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Figure 1.9: Cassini VIMS imaging of the A ring, radial distance from Saturn increases
vertically downward. The infrared reflectance (leftmost) shows the brightness of scattered
light transmitted through the rings: thinner parts appear brighter. Water-ice appears to
peak in the outer A ring, with dirty material being most prevalent in the most tenuous
parts of the ring such as the Cassini Division. The colour composite (rightmost) uses three
colours to represent different compositions: blue is water-ice, red is organic material, and
yellow/green indicates a mixture. Image credit: NASA/JPL (PIA06350).

and B rings, and thinnest in the Cassini Division and inner C ring.

Extrinsic meteoritic pollutants are transported radially through the ballistic transport mecha-

nism, and can explain certain structural and compositional properties of the main rings (Durisen

et al. 1989; Cuzzi & Estrada 1998; Estrada et al. 2015). The composition of the rings has deep

implications for their formation and evolution, as it is thought that the organic UV absorbing

material is primordial, whilst the silicate/iron neutral absorber may be due to bombardment by

interplanetary debris polluting the almost pure water-ice rings. This is explored further in Chap-

ter 5.
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1.1. Saturnian Ring System

1.1.2 Inner Magnetosphere and Plasma Environment

The existence of a magnetic field around Saturn was discovered by the Pioneer 11 flyby in 1979,

which first explored the magnetosphere and trapped radiation belts (Van Allen et al. 1980; Fillius

et al. 1980). This was followed in the early 1980s by the two Voyager flybys, which enabled

the magnetosphere to be investigated in more detail (Krimigis et al. 1981, 1982), found auroral

activity at mid- to high-latitudes (Broadfoot et al. 1981; Sandel et al. 1982), and observed spokes

in the B ring (Smith et al. 1981, §1.2.1). Saturn’s magnetosphere has since been studied in

greater detail by Cassini-Huygens, which entered into orbit around the planet in 2004, eventually

plunging into the atmosphere in 2017 after its Grand Finale, a series of proximal orbits diving

between the inner D ring and planetary surface.

Saturn’s magnetic moment is ∼ 30 times weaker than Jupiter’s and ∼ 580 times stronger than

Earth’s (Russell 1993). The shape of the inner magnetic field is dipolar and its axis almost

perfectly aligned with Saturn’s rotational axis. At 6 < r < 15RS, the ring current distorts

the field and it becomes quasi-dipolar, and beyond 15RS, it describes a warped magnetodisk

(e.g. Baines et al. 2018). The nature of Saturn’s internal magnetic field, including its negligible

tilt and northward offset, will be described in greater detail for the main ring region in §1.3.1.

Saturn’s dynamo-generated internal field deflects the solar wind, creating a region composed

of plasma around the planet called the magnetosphere, shown in Figure 1.10 to demonstrate

the scale of the main planetary rings to the magnetospheric components. The plasma within

the magnetosphere differs significantly from the solar wind’s stream of ionised particles, with

several possible plasma sources at Saturn, including the ionosphere, Titan, the rings, and inner

icy moons (Gombosi et al. 2009), with Enceladus being the dominant mass source of magneto-

spheric plasma (Waite et al. 2006). The planetary magnetic field traps the plasma generated by

these internal sources and it becomes entrained around the planet by its rapid rotation, with the

centrifugal force confining the plasma towards the equatorial plane as a thin disc (André et al.

2008).

The size of the magnetosphere is governed by the balance between the magnetic field pressure

and the solar wind, which in turn depends on solar activity. The magnetopause, the boundary

separating the plasma of the solar wind from that within the magnetosphere (Figure 1.10), can

extend anywhere from 22− 27RS (Arridge et al. 2006). The corotation electric field, described

in §1.3.1, dominates inside a few tens of RS (Gombosi et al. 2009) and therefore for the main
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Figure 1.10: Illustration of Saturn’s magnetosphere. The main ring system, shown in
beige, lies well within the ring current and hot plasma region, figure reproduced from
Cassini MIMI team.

rings, extending out to only ∼ 2.3RS and lying well within the magnetopause, the plasma can

be treated as corotating with the planet.

Birkeland currents, introduced at the beginning of this chapter, which are field-aligned cur-

rents that arise due to plasma heating caused by magnetic reconnection of the solar wind’s and

planet’s magnetic fields, drive accelerated electrons into the upper atmosphere, exciting atoms

there, which radiate as they drop energy levels and results in the observed aurorae. Saturn Kilo-

metric Radiation (SKR, Figure 1.10), powerful low frequency radio emission originating from

the planet, is related to aurorae as it is considered to be generated by the Cyclotron Maser Insta-

bility of electrons in auroral regions. It was thought that SKR was modulated by Saturn’s true

rotation period, and that the spokes in Saturn’s rings, charged dust levitating away from the ring

plane in approximately radial clouds (§1.2.1), shared the same periodicity (Porco & Danielson

1982); however, later a small but significant drift was observed in the SKR period over time (de-

tails in Kurth et al. 2009). This countered Porco & Danielson (1982)’s theory that spoke activity
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was associated with a particular magnetic field sector.

Figure 1.11: Measurements by CAPS (at a spacecraft altitude Z) of oxygen ions taken
north of the ring plane, while the Sun was 23.6◦ south of the ring plane. (a) O+ (solid) and
O+

2 (dashed) plasma densities versus equatorial distance. (b) Measured ion temperatures
for O+ (squares) and O+

2 (dots) versus equatorial distance. Lines are model temperatures
described in Tokar et al. (2005). Image credit: Johnson et al. (2006, Fig. 1), adapted from
Tokar et al. (2005).

During the Cassini mission, the existence of a tenuous plasma layer close to the main rings was

discovered by INMS and CAPS measurements (Waite et al. 2005; Young et al. 2005) and RPWS

electron density measurements (Gurnett et al. 2005). Water-related ions originating from icy ring

material creates this ring ionosphere. Taking measurements over the A and B rings, Tokar et al.

(2005), Waite et al. (2005) and Young et al. (2005) found that this tenuous plasma layer consists

of O+ and O+
2 , Figure 1.11. These oxygen ions are likely produced by UV photo-sputtering

of the icy surfaces, then subsequent photoionisation of the molecular oxygen produced by the

decomposition of water, a process modelled by Johnson et al. (2006). Hydrogen is also produced

by the decomposition of water in the rings but more readily escapes the system. The contribution

of energetic particles to the decomposition of ice in the main rings appears to be low (Johnson

et al. 2006). Outside of the A ring, charged-particle sputtering from the magnetospheric plasma

dominates over photo-sputtering, which is discussed below in relation to the radiation belts. Such

collisions between an ion and an icy surface tends to lead to the liberation of water molecules

and a small fraction of dissociation products, including O+
2 and H+

2 , although such ions can be

produced directly.

André et al. (2008) used the suite of magnetospheric instruments during Cassini’s Saturn orbit
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insertion of 2004 to give a unified description of the structure of the magnetosphere, identifying

different regions. They summarise the single-instrument findings of previous studies, including

the work of Tokar et al. (2005), Waite et al. (2005) and Young et al. (2005) described above:

MIMI, MAG, CAPS, and RPWS (refer to the List of Acronyms, p. xxv). From a comparison

of the regions observed by the the full suite of MAPS instruments (refer ibid.), they divide the

magnetosphere into four regions; the first of these lies within 3RS and is of most relevance,

containing the main rings. These rings block the radiation belts (described below), so that neutral

particles and plasma can be produced only via other mechanisms: UV and low-energy particle

irradiation or micrometeorite bombardment of the rings. This neutral population forms a ring

exosphere, while the plasma forms a tenuous ring ionosphere. André et al. (2008) find that the

ring system region is characterised by strong coupling between plasma, gas, and ring particles,

and is essentially void of energetic particles due to absorption by main ring particles.

A planet’s dipole magnetic field can trap charged particles to form radiation belts. Like the Van

Allen belts around Earth, Saturn is surrounded by radiation belts of high energy protons and

electrons in the keV - MeV range (Baines et al. 2018). However, there are key differences: they

develop independently of the solar wind, instead originating from the moons (Kollmann et al.

2017); and the main ion radiation belts of Saturn (located outside of the F-ring) are clearly sepa-

rated from each other and the rest of the magnetosphere by the moons Janus, Mimas, Enceladus

and Tethys, which orbit outside of the F-ring. These moons are efficient at sweeping up charged

particles in their orbital paths. The electron radiation belts on the other hand, are only weakly

depleted at the moon orbits due to their magnetic drift being directed in the opposite sense of

the corotational drift, such that their azimuthal velocity relative to the moons is lower and hence

they are not absorbed as readily. Since the moons and main rings block sources of charged mag-

netospheric particles that would be radially transported inward, the dominant source is the decay

of secondary neutrons produced by cosmic ray impacts onto the rings (Cooper 1983). During

Cassini’s Saturn Orbit Insertion, MIMI and INCA measured energetic neutral atoms originating

between the D ring and Saturn’s atmosphere, evidence of a narrow inner radiation belt (Roussos

et al. 2008, 2018). This inner belt extends across the D ring and is comprised of protons pro-

duced through the same cosmic ray albedo neutron decay mechanism of the outer radiation belts

(Fillius et al. 1980).

As well as a ring ionosphere, there is also a ring exosphere: a layer of neutral molecules around
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1.1. Saturnian Ring System

the main ring plane (Ip 2005). Since the Voyager flybys, the possibility of a ring atmosphere

has been investigated (Ip 1984, 1995). The ring system, offering a large surface area, receives

a high influx of interplanetary meteoroids, interstellar dust, and grains originating from satel-

lites. These high-velocity impacts create water vapour (Ip 1997) alongside particulate ejecta,

which dissociates (through either solar photons or electron impacts) into H2 and O2 molecules

(Ip 2005). The measurements by the Cassini CAPS and INMS instruments of a population of

O+ and O+
2 above the main rings (Tokar et al. 2005; Waite et al. 2005; Young et al. 2005),

is consistent with the prediction of a ring atmosphere of O2 molecules (Ip 1995). HST and

Cassini have observed a neutral atmosphere of water molecules and their dissociation products

that fill an extended region (Shemansky et al. 1993; Esposito et al. 2005), and it is the ionisation

of this material by solar photons or electrons that is the primary source of plasma in Saturn’s

magnetosphere (Gombosi et al. 2009).

Another key element of the Saturnian system to consider is the planet’s ionosphere – cold

dense plasma (Wahlund et al. 2018) – which is produced by solar radiation photodissocia-

tion/photoionization or energetic electron impacts on the otherwise neutral atmosphere (McEl-

roy 1973; Nagy et al. 2009). The solar extreme ultra-violet radiation acts across the dayside,

while electron impact ionisation acts in auroral regions (O’Donoghue et al. 2016). Models pre-

dict that H+ and H+
3 dominate (Nagy et al. 2009), with H+ dominating at higher altitudes and H+

3

at lower altitudes between 900 and 3000 km altitude (O’Donoghue et al. 2016). Observations

of H+
3 emission, which was initially observed concentrated near the poles of the planet (Stallard

et al. 1999) and later at low/mid-latitudes (Stallard et al. 2012; O’Donoghue et al. 2013), yields

valuable insights into the ring-planet connection, described further in §1.2.3.
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1.2 Charged Dust in Planetary Rings

To introduce physical and dynamical concepts relating to circumplanetary charged dust, it is

useful to consider a few specific examples and relate them back to the environment of Saturn’s

rings: the spokes of the B ring (§1.2.1), streaming particles (§1.2.2), and ring rain (§1.2.3).

1.2.1 Spokes of Saturn

Spokes remain enigmatic, and a variety of approaches have been proposed to explain their forma-

tion and transient appearance, Figures 1.4b and 1.12. Spokes are filamentary structures, orbiting

for hours at a time, appearing against Saturn’s B ring. A journey through the literature brings up

several properties of spokes that must be explained in a successful theory and which can be used

to critically evaluate a theory’s efficacy:

• Morphology – radially extended, generally with dimensions of 2000 by 10 000 km2 (e.g.

Carbary et al. 1982), with a characteristic wedge shape that has the narrowest portion at

synchronous orbit.

• Rapid formation – a 6000 km spoke was observed to form within at least a short duration of

5 minutes (Smith et al. 1982). Spoke complexes develop over a couple of hours and usually

fade within a planetary rotation.

• Active radial edge – most spokes are near-radial or tilting away from radial in a Keplerian

sense (Smith et al. 1981), that is, spokes appear to form radially in a reference frame coro-

tating with the planetary magnetic field (Terrile et al. 1981); the radial edge was thought to

corotate with Saturn, surviving Keplerian shear (Hill & Mendis 1981). Porco & Danielson

(1982) suggest that the observed shear < 50◦ indicates that either spoke particles’ orbital

motion departs from Keplerian, or spokes are refreshed each rotation so that any large shear-

ing is overprinted.

• Most spoke activity occurs in the outer B ring, with spokes appearing to originate near to

synchronous orbit (e.g. Tagger et al. 1991; Graps et al. 2008).

• Longitudinal asymmetry in activity – there is a preponderance of spoke activity in the dawn

(east) ansa (Porco & Danielson 1982; McGhee et al. 2005).

• Seasonal variation – spokes fade when the ring opening angle increases (Mitchell et al.

2006).
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1.2. Charged Dust in Planetary Rings

It is established that spokes are comprised of charged dust grains levitated tens of kilometres

away from the ring plane (e.g. Graps et al. 2008), their phase angle dependence betraying their

sub-micron size, as shown in Figure 1.12. However, initial ideas proposed that spokes were

an optical brightness effect caused by the orientation of grains within the ring plane. These

different paradigms share a commonality – both rely on electromagnetic effects to position the

grains: one proposing that the spokes are changes in the albedo of material within the ring due to

the polarisation and alignment of grains, the other proposing spokes are distinct structures from

the main rings, lofted by electromagnetic forces.

(a) A group of bright spokes appear in the upper
left of this image of the B ring on 28 Septem-
ber 2006; the direction towards Saturn is down-
ward, orbital motion to the left. Image credit:
NASA/JPL/Space Science Institute (PIA08288).

(b) The morning ansa of Saturn shows a group of
dark spokes emerging from the planetary shadow
on 2 November 2008.
Image credit: NASA/JPL/Space Science Institute
(PIA10539).

Figure 1.12: Spokes appear bright at high phase angles and dark at low phase angles.
Images taken by Cassini’s NAC show spokes in (a) forward-scattered light taken when the
phase angle (between Sun-Saturn-Cassini) was 147◦ and (b) back-scattered light at a phase
angle of 37◦.

Grain orientation theories rely on non-spherical grains being aligned by radial electric fields,

resulting in a change in brightness within the ring plane, which are observed as spokes. An

advantage of such theories is that no mass motion of grains on the large scales of spoke-lengths

is invoked, thus requiring no rapid transport mechanisms for the dust (Grün et al. 1983, ≥
20 km s−1), which can be problematic. It is not the dust itself which propagates, but rather its
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optical properties. This idea of a velocity of something less tangible than the observed micron-

sized dust, which drives the rapid formation timescales of the observed spokes, also occurs in the

Collisional Cascade model presented in Jontof-Hutter (2012), which is discussed towards the end

of this sub-section. In a short letter, Bastin (1981) argues that no physical electromagnetic field

could evacuate and replenish dusty material over the observed distances in such a short time, and

proposes the albedo changes are due to a local electromagnetic field anomaly, and parenthetically

mentions an alternative theory of electrostatically induced clustering and dispersal of grains.

However, that model does not explain the wedge-shaped spoke morphology, or why spokes have

a radial active edge, and it does not develop a theory for the origin of such a required local

electromagnetic field.

Carbary et al. (1982) developed a theory for local radial electric fields, which could polarise dust

grains, altering their light scattering properties and resulting in spokes. These fields are distinct

from the global corotational electric field. Such an azimuthally uniform global electric field, de-

rived in §1.3.1 and described by Eq. 1.37, could not explain the localised structure of spokes, nor

their variability and confinement to the B ring. Instead, Carbary et al. (1982) suggest that a po-

larising radial potential across the B ring is generated from zonal ionospheric winds establishing

electric fields which drive Birkeland currents that flow along magnetic field lines from the planet

to the ring plane, where they align grains. Carbary et al. (1982) associate spokes with Saturn’s

electrostatic discharges (SEDs), which are powerful episodic bursts of radio emission (Warwick

et al. 1981), a notion proposed by Smith et al. (1981). SEDs have a periodicity close to that of

Saturn Kilometric Radiation, §1.1.2 and described further below. Carbary et al. (1982) calcu-

lated that the power released by such SED bursts was comparable to that resulting from their

model current flowing radially through the B ring. The uncertainty in SED periodicity allowed

for tentative corroboration. However, several findings subsequently disputed this. Weinheimer

& Few (1982) argued that water-ice did not have the ferroelectric properties to result in the nec-

essary torque to polarise the grains, and, moreover, the poor conductivity of ice grains could not

explain the short spoke formation timescales.

Handel & James (1983) attempted to recover the grain alignment model by suggesting that

some grains are able to transition to a ferroelectric state by exploiting the properties of ice at B

ring temperatures in the shadow of the planet. These grains become polarised, which increases

the local electric field strength (since the grains’ electric dipole moments align with the electric
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field), leading to the polarisation of more grains, which in turn increase the electric field strength,

thus creating a polarisation catastrophe, which Handel & James (1983) argue is the mechanism

responsible for the SEDs. However, this attempt to link spoke activity with the SEDs via a

polarisation catastophe has since fallen out of favour as the electric discharges are now thought

to originate in Saturn’s atmosphere rather than the rings (Warwick 1989). Moreover, Porco &

Danielson (1982) found that spoke activity peaked at the same longitude as Saturn Kilometric

Radiation (SKR), intense auroral radio emission generated by accelerated electron beams via the

cyclotron maser instability (Lamy et al. 2008), and more recently the periodicity of spoke activity

matches more closely the Cassini measurements of SKR periodicities than SED periodicities

(Mitchell et al. 2011).

Grain orientation theories for spoke formation have been abandoned in favour of grain levitation

models, in which spokes are formed from clouds of charged dust, which are lofted away from

the ring plane by electromagnetic forces. However, it should be noted that Meyer-Vernet (1984)

states some caveats, taking into account physical processes that were previously ignored by

other authors. When the dielectric properties of ice are included, the (attractive) polarisation

force can overcome the electrostatic ejection of grains, and the constraint on grain size based

on electrostatic disruption alone is modified by accounting for the grains’ centrifugal disruption

because of their spin.

Hill & Mendis (1981) propose a model for spoke formation where loosely bound regolithic dust

on ring boulders is charged by Birkeland currents flowing from the magnetotail into auroral

regions to generate electric fields in the ionosphere driving currents into the ring plane. Such

electron beams charge up both the ring bodies and dust negatively on the night side and the grains

become electrostatically repulsed and lofted away from the ring plane. Their model can explain

the increased spoke activity in the dawn ansa, as the dust discharges as it orbits in sunlight (refer

to §4.2) and therefore the spokes shear out and dissipate as the day progresses and the grains

orbit closer to Keplerian velocities. In order to explain the discrete nature of spokes, the model

of Hill & Mendis (1981) relies on the electron currents being localised, which Tagger et al.

(1991) argues is difficult to explain, stating that the electron beams’ source in the magnetosphere

would need to be unphysically confined in longitude and extended in latitude. Moreover, the

active spoke region is magnetically-connected to lower latitudes on Saturn than those that are

connected to the magnetotail, which is the supposed source of dust-charging electron beams
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(Graps et al. 2008).

Instead, Tagger et al. (1991) suggest that spokes are magnetosonic (compressional) waves driven

by, for example, electron beam impacts (cf. Hill & Mendis 1981) or meteor impacts (cf. Goertz

& Morfill 1983), that yield large-scale, long-wavelength spiral instabilities with a pattern speed

equal to the corotational frequency of the magnetic field. Although this model can explain the

rapid radial extension of spokes, it relies on extremely high charge-to-mass ratios to explain

a spoke’s persistent radial active edge. Another challenge to Hill & Mendis (1981)’s model,

which was initially levelled at Carbary et al. (1982), is that of the poor conductivity of ice as this

requires high electrostatic potentials to levitate grains and to sustain corotational motion of the

spokes’ radial edge.

A popular grain levitation theory for spoke formation, proposed by Goertz & Morfill (1983),

involves a dense plasma cloud, generated by meteor impacts on the B ring, that charges up dust

on the ring bodies so they escape the gravity of the ring. Goertz & Morfill (1983) argue that

the rapid radial motion of dust grains is energetically problematic and the spokes are actually a

manifestation of radially perturbed plasma. As in the work of Hill & Mendis (1981) and Thom-

sen et al. (1982), Goertz & Morfill (1983) argue that the spokes consist of negatively-charged

dust, based on the observed spoke shapes. The negatively-charged plasma moves radially due to

an ~E × ~B drift, described by Eq. 3.20 . The azimuthal electric field is generated by the relative

motion of the corotating plasma and the negatively-charged dust orbiting at close-to-Keplerian

velocities, which flows via field-aligned currents to the ionosphere and sets up an azimuthal elec-

tric field that maps back onto the ring plane. The peak in spoke activity at dawn can be explained

by the meteor impact model, as Cuzzi & Durisen (1990) find that meteor impact speeds peak

around solar midnight, thus generating more dust which can be seen as it orbits into sunlight.

However, in the Hill & Mendis (1981) model the formation of spokes is suppressed in sunlight as

the solar photoelectron current discharges the negatively-charged grains (§4.2). Farmer & Gol-

dreich (2005) argue that the relatively high velocity of the plasma invoked by Goertz & Morfill

(1983) to explain the rapid spoke formation timescales is not within the range expected by the

difference between the corotational and Kepler velocities. Morfill & Thomas (2005) review the

physics of the meteor impact model in light of more recent dusty plasma research and argue that

a complex structured plasma cloud can easily reach the required 20 km s−1 radial drift (Grün

et al. 1983).
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Jones et al. (2006) propose a model of spoke formation in which currents arising in Saturn’s

atmosphere travel down magnetic field lines into the ring plane, a theory not dissimilar to that

of Carbary et al. (1982), who suggested zonal winds in the ionosphere generate currents flowing

into the rings. In the model of Jones et al. (2006), an electron avalanche is triggered by cosmic

rays above thunderclouds and beamed along magnetic field lines which map onto the B ring.

The induced negative charging causes large ring particles to electrostatically repel dust. Saturn’s

ionospheric density reaches a minimum close to dawn, so that electron beams can more easily

propagate to the rings, explaining the longitudinal asymmetry of spoke activity. Spokes form

almost instantly along the outline of the magnetic field lines that cross the ring, and it is the

shape of the electron beam in the atmosphere and how it maps onto the midplane that determines

the shape of the spokes (Horányi et al. 2010). They state that a meridional arc at the top of the

atmosphere will map onto a radial segment in the ring plane magnified by a factor of 2(L−1)
1
2L,

while an azimuthal arc gets magnified by a factor L
3
2 , where L is the distance from the magnetic

field line in question to the centre of Saturn in units of RS. This results in a requirement that the

electron beams have to be very elongated along the direction of lines of longitude to produce

the thin radial spokes (a circular electron beam results in a elliptical footprint with aspect ratio

1.4), as well as there being no positive correlation of thunderstorms at suitable planetocentric

latitudes and spokes yet confirmed.

The Collisional Cascade model proposed by Hamilton (2006) and studied by Jontof-Hutter

(2012) bears certain similarities to the Goertz & Morfill (1983) model as it involves meteor

impacts, but in this case it is the dynamics of the ejected dust that trigger spoke formation, rather

than dense plasma. And the spokes are not electrostatically levitated grains but rather the visible

evidence of a cascade of unseen high velocity impacts of smaller dust. The grains are rapidly

accelerated to high velocities by the magnetic field and are transported both vertically and ra-

dially. Upon returning to the ring plane after being mirrored up magnetic field lines (§3.6.1),

the grains strike larger bodies there, generating new debris particles at different radial locations

and micron-sized ones become visible as spokes, while smaller faster grains continue the col-

lisional cascade. This theory, like Goertz & Morfill (1983)’s, can explain the greater spoke

activity near dawn by the highest rate of meteor impacts occurring near solar midnight (Cuzzi

& Durisen 1990), although Jontof-Hutter & Hamilton (2012a) think it could be due to Saturn’s

shadow casting an azimuthal asymmetry onto the plasma density. There are some issues with the

Collisional Cascade model, such as requiring < nm-sized grains in their cascades, given their
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choice of plasma parameters, which prohibits the production of micron-sized spoke particles, as

well as their acknowledgement of the plasma’s seasonal variation having a significant effect on

the progression of a cascade chain. An update on the status of the Collisional Cascade model

(Hamilton et al. 2020) was unfortunately postponed due to the COVID-19 pandemic.

Figure 1.13: The ring plane opening angle (solar elevation angle) is approximately sinu-
soidal over time as Saturn orbits the Sun every ∼ 30 years. Solar activity, indicated by
the F10.7 index in solar flux units, is generally higher for periods of no spokes. Spokes
were seen during the Voyager flybys in the 1980s even though it appears that solar activ-
ity was quite high, probably due to the rings being almost edge-on at that time. Using
F10.7 data from the National Geophysical Data Center (now part of the National Centers
for Environmental Information) and spoke seasonality data from Horányi et al. (2009, Fig.
16.8).

Although the triggering mechanism for spokes is still open to debate, the seasonal variability

of spokes after they have formed is better understood. HST data showed periods when spoke

activity disappeared. Scattering calculations, taking into account viewing geometry, predicted

that spoke contrast decreased with increasing ring plane opening angles (McGhee et al. 2005).

This suggested that spokes could still be forming, but the viewing geometry was such that it was
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just not possible to see them. However, when Cassini arrived at Saturn in 2004 and was in a

position to observe good spoke contrast, spokes were still not seen. Therefore, it is thought that

the angle between the Sun and the ring plane must play an important role in the charging of the

background plasma environment and whether the dust can be charged and overcome cohesive

and gravitational forces (Nitter et al. 1998; Mitchell et al. 2006). Figure 1.13 shows the ring

plane opening angle and solar activity over periods of spoke activity.

Figure 1.14: Comparing the ring electric configuration in the early 1980s (Voyager Era)
and 2000s (Cassini Era). Image credit: Farrell et al. (2006, Fig. 2).

An idea put forward by Farrell et al. (2006) to explain the seasonality of spokes relies on the

changing electrical nature of the rings. The background plasma density above the rings is de-

pendent on the angle that the ring plane makes to the incoming solar wind and insolation, as

shown in Figure 1.14. When the Sun is at a lower angle so that fewer photons impinge on the

rings, then the plasma electron current (§4.1.1) dominates and the disk is charged to a negative

potential thus repelling the grains (assumed to be negatively charged) leading to the production

of spokes. When the rings are more open to the Sun, the increased photon flux kicks out elec-

trons and the exposed side of the ring plane becomes positively charged and hence spokes do not

form, as indicated by the grey shading on Figure 1.13. There is also a link between the photoe-

mission current and the diurnal variability of spoke activity – more spokes are seen on the dawn

ansa, emerging out of the nightside (Smith et al. 1981; Porco & Danielson 1982; Mitchell et al.

2013). The planetary shadow effect on grain charging is explored in greater detail in §4.3.

There are several models for spoke formation, and it remains an open question. One promis-

ing avenue is Hamilton et al. (2020)’s Collisional Cascade model, which shares elements with

models of ring rain (§1.2.3), namely the high-velocity dust ejecta produced by micro-meteoroid

bombardment of the main rings.
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1.2.2 Dust Streams

Charged dust ejected from the ring systems of Saturn and Jupiter has been detected. A de-

scription of these so-called dust streams is included as they allow various useful concepts to

be introduced, and are of interest for several reasons outlined in Hsu et al. (2010), including

being the fastest solid bodies known in the Solar System. Although hypothesised in the 1980s

(e.g. Johnson et al. 1980), it was not until about a decade later that direct observations were

made. First observed in the Jovian system by the DUST instrument sensitive to submicrometre-

and multimicrometre-sized particles aboard Ulysses (Grün et al. 1992, 1993), these periodic,

high-velocity bursts of submicron-sized dust were subsequently detected by Galileo (Grün et al.

1996) and Cassini (Graps et al. 2001), and later also found in the Saturnian system (Kempf et al.

2005).

Grains become positively charged within Jupiter’s plasma environment, and the corotational

electric field (§1.3.1) accelerates these grains radially outward (Horányi et al. 1993a,b). Initially

the origin of the dust streams was unknown, and Io (Horányi et al. 1993b), the Gossamer ring

(Hamilton & Burns 1993), or Shoemaker-Levy 9 (Grün et al. 1994) were considered as sources.

Following the analysis of Hamilton & Burns (1993) for Jupiter, the velocity of escaping particles

from a ring system can be calculated from energy considerations, restricting orbits to the equa-

torial plane and considering only the dominant components of the magnetic and gravitational

fields for a grain with constant charge qd and mass md.

The escape velocity of a grain can be calculated in the following manner – the kinetic energy of

an escaped grain from a planet of mass Mp will equal the total energy of a grain on an initially

circular orbit of radius r, such that

vesc =

√
2GMp

r

(
L∗ −

1

2

)
, (1.2)

as the total energy is the kinetic energy of a grain orbiting at Keplerian velocity
(

1
2
GMpmd

r

)
plus

the gravitational and electric potential energy of such a grain
(
−GMpmd

r (1− L∗)
)

. L∗ is the

ratio of the Lorentz force due to the corotational electric field, explained in §1.3.1 (Eq. 1.37), to

gravity,
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L∗ =
qdΩpg

0
1R

3
p

mdGMp
, (1.3)

following Hamilton & Burns (1993); Jontof-Hutter (2012), assuming a magnetic dipole B =

g0
1

(
Rp
r

)3
, for a general planet denoted by subscript p and dust grain by subscript d. Equation

1.3 is used in place of a charge-to-mass ratio qd
md

(§3.1).

Planet Saturn Jupiter

Mp/kg 5.685× 1026 (Hsu et al. 2018b) 1.898× 1027 (NASA/JPL 2020)
Rp/km 60, 268 (Cao et al. 2012) 71, 372 (Acuña et al. 1983)
g0

1/ T 2.1191× 10−5 (Cao et al. 2012) 4.218× 10−4 (Acuña et al. 1983)
Ωp/s

−1 1.622× 10−4 (Ye et al. 2016) 1.758× 10−4 (Archinal et al. 2018)

Table 1.1: Planetary parameters.

Substituting in Jupiter’s values (Table 1.1) and using the expressions for surface grain potential

φd = qd
4πε0ad

and grain mass density ρd = md
4
3
πa3d

, and then converting to more useful units

gives

LJ∗ = 0.21
qd
md

= 0.0057

(
µm

ad

)2(φd
V

)(
g cm−3

ρd

)
, (1.4)

where superscript J refers to Jupiter. In order to enforce the realness of vesc in Eq. 1.2, L∗ > 1
2 .

Thus the escaping grains are positively charged. Substituting this condition into Eq. 1.4 with ref-

erence values φd = 3V, ρd = 1 g cm−3, limits on the spherical grain properties can be obtained:

aJd < aJ,max
d ∼ 0.2 µm, mJ

d
<∼ 3 × 10−14 g. Any grains larger than aJ,max

d are gravitation-

ally dominated and hence remain in orbit around Jupiter. Electromagnetically dominated grains,

those with the highest charge-to-mass ratios (smallest in size), also remain in orbit around Jupiter

because they gyrate tightly around the planet’s field lines. Intermediate-sized grains, satisfying

aJd > aJ,min
d , exhibit larger gyro-orbits, refer to Eq. 3.26, because the electromagnetic forces

are weaker; when the gravitational force is relatively weak at larger orbital distances so that

the forces do not balance, positively-charged grains are accelerated away by the radial electric

field.
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Hamilton & Burns (1993) ran numerical simulations of grains with initial launch locations cho-

sen to represent potential sources of dust in Jupiter’s magnetosphere: the gossamer ring and Io.

Their critical (dimensionless) charge-to-mass ratio, Lcrit, which can yield the size of the smallest

escaping grains via Eq. 1.4, was found by determining the stability boundary from simulations

with different L∗ for the orbital locations of interest. Their results are given in Table 1.2:

Table 1.2: Properties of particles escaping from Jupiter, from Hamilton & Burns (1993,

Tab. 1).

The size of the smallest escaping grains amin
d is determined from substituting Lcrit into Eq. 1.4,

with φd = 3V, ρd = 1 g cm−3, and the corresponding grain mass is found assuming a sphere of

constant density. Similarly, the mass of the largest escaping grain is found by setting L∗ = 1
2 , so

that the ratio of the masses of the largest to smallest escaping grains can be determined. Their

numerically determined escape speeds agree well with Eq. 1.2.

Hamilton & Burns (1993) tried to explain the 1992 Ulysses measurements by proposing an origin

for the dust particles in Jupiter’s gossamer ring, suggesting that the periodicity in the signal was

due to the periodicity of the grains’ vertical acceleration, causing their paths to intersect with the

spacecraft trajectory at specific intervals. However, further measurements of the dust streams by

Galileo, Cassini, and Ulysses corroborated Horányi et al. (1993b)’s hypothesis of Io as the source

of dust. Periodicities in the dust impact signal, compatible with Io’s orbital period, confirmed

this origin (Krüger et al. 1998, 2003). Furthermore, the quantity, composition and size of the
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dust grains are consistent with particles that can escape from a typical Io volcanic plume and rule

out impact ejecta (Graps et al. 2000; Postberg et al. 2006). Time-frequency analysis by Graps

et al. (2001) demonstrated that Io is a localised source of the dust streams.

Detailed analysis through numerical simulations found that the dust stream particles move faster

and are smaller in size than was previously suggested. Theoretical analysis by Zook et al.

(1996) gave a size distribution of 5 ≤ aJd ≤ 15 nm, mJ
d ∼ 10−18 g and escape speeds vJesc ≥

100 km s−1, which differed from quantities previously obtained by Grün et al. (1993) from the

measured impact data: 20 ≤ vJesc ≤ 56 km s−1 and 1.6 × 10−16 ≤ mJ
d ≤ 1.1 × 10−14 g (as-

suming the average density of water-ice: 0.03 ≤ aJd ≤ 0.1 µm). Due to a lack of calibration

for that parameter range, the estimates of Grün et al. (1993) remained uncertain. Observations

from Galileo (Horányi 2000) fell within the ranges for the dust particles derived by Zook et al.

(1996).

A similar mechanism for dust streams was suggested for Saturn (Horányi 2000) and indeed

high-velocity bursts of dust particles escaping from the Saturnian system have been detected by

Cassini’s CDA (Kempf et al. 2005; Hsu et al. 2010). Potential sources for the dust streams are

the dense A ring outside synchronous orbit, the E ring, and dust clouds around Dione and Rhea

(Kempf et al. 2005). There is evidence from the CAPS instrument to suggest the cryovolcanic

plumes from Enceladus (Jones et al. 2009), which also feed the E ring, in an analogous setup to

that of Io for the Jovian system. There are key differences between the magnetic fields of Jupiter

and Saturn, namely the strength and alignment. As described in §1.1.2, Saturn’s magnetic mo-

ment is ∼ 30 times weaker than Jupiter’s, and whilst Jupiter’s magnetic dipole is tilted relative

to its rotational axis at just under 10◦, the magnetic and rotational axes of Saturn are closely

aligned and therefore dust particles will remain closely confined to the equatorial plane, as there

is no radial component of ~B to cross with ~v to provide vertical motion.

Saturn’s weaker magnetic field results in differing escape velocities and grain sizes for the stream

particle populations. Following a similar approach to Hamilton & Burns (1993), the ratio of the

corotational electric field to gravity can be expressed for Saturn (denoted by superscript S) using

parameters from Table 1.1 as

LS∗ = 0.020
qd
md

= 0.00053

(
µm

ad

)2(φd
V

)(
g cm−3

ρd

)
. (1.5)
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Taking the ratio of Equations 1.4 and 1.5, it can be seen that the grains in Jupiter’s rings have

higher charge-to-mass ratios than Saturn’s, for a fixed grain type, size and charging environment,

largely due to its higher field strength. As was the case for Jupiter, the charge-to-mass ratio has

to be sufficiently large to overcome the planet’s gravity. This sets an upper limit on the radius for

an escaping grain, such a maximum grain size for Saturn can be estimated following the method

of Hamilton & Burns (1993), based on Equations 1.2 and 1.5: aSd < aS,max
d ∼ 0.06 µm, that

is, grains no larger than about 60 nm would be expected to be ejected from Saturn, under the

simplifying assumptions noted above.

Considerations of the various charging processes, described in greater detail in Chapter 4, in-

cluding the collection of plasma ions and electrons, and the emission of photo- and secondary

electrons by the grains, allows the equilibrium surface potential of grains to be calculated based

on a model of the magnetosphere of Saturn’s plasma parameters (Kempf et al. 2005). It was

found that there are only two regions where the surface potential is expected to be positive,

a necessary prerequisite for ejection from the system by the corotational electric field: on the

outskirts of the A ring and beyond the orbit of Dione.

The escape velocity of grains leaving the Saturnian system can be estimated and compared to

those of Jupiter. Following the analysis of Horányi et al. (2009) and equating the work done by

the corotating electric field on positively charged grains to the kinetic energy of the ejected grain

(ignoring the initial gravitational binding energy) gives

∫ resc

r0

qdEdr =
1

2
mdv

2
esc, (1.6)

which can be re-arranged for the escape velocities of the respective planets:

vesc =

√
6ε0φdΩpg0

1R
3
p

ρda
2
d

∫ resc

r0

r−2dr. (1.7)

Substituting values into Eq. 1.7, assuming that Jovian dust particles are accelerated out from Io

and Saturnian dust particles start at Dione’s orbit until they reach the edge of their respective
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magnetospheres:

vJesc = 3

(
µm

ad

)
km s−1, (1.8a)

vSesc = 0.6

(
µm

ad

)
km s−1. (1.8b)

The faster velocities at Jupiter are largely due to its stronger magnetic field strength.

Kempf et al. (2005) inferred that the mass and impact speed of Saturnian stream particles are

at least comparable to those of Jovian particles because of the similarity in both the rise time

and amplitude of their impact signals. However, they noted that the measurements were well

outside the calibrated range, and referred to theoretical considerations of Zook et al. (1996) to

conclude that the Saturnian grains had vesc ≥ 100 km s−1 and ad <∼ 6 nm. Based on CDA

observations, Hsu et al. (2010) constrain the size of grains to 2− 9 nm and their ejection speed

to ∼ 70 km s−1.

1.2.3 Ring Rain

This section describes the relevant background theory and observations relating to ring rain,

an important pathway of interaction between the rings and planet. In Chapter 5, this leads

onto discussing the complexities involved in determining the age of Saturn’s rings, through

considering the water-ice to non-icy ratio of ring rain and the effect of the low mass of the rings

on their evolution.

Ring rain is the precipitation of particles from the main rings of Saturn onto the planet. Moore

et al. (2015) make the distinction between a flux of neutrals (e.g. H2O) and ions (e.g. O+
2 ). The

neutral source is interpreted as water plumes ejected from Enceladus, whilst the ion source is

thought to arise from a series of chemical reactions in the rings. When referring to ring rain,

Moore et al. (2015) refer to the ionised source; in contrast, Miller et al. (2020) uses the term to

refer to all material flowing from the rings onto Saturn. In this thesis, ring rain refers to charged

dust grains precipitating from the ring plane onto the planet, with a focus on physical dynamics

rather than chemistry.
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Theory predicted a lower temperature and higher peak electron density for Saturn’s ionosphere

than is observed, reviewed by Nagy et al. (2009). The ionospheric electron density profiles

(Atreya & Waite 1981; Atreya et al. 1984) observed by Pioneer (Kliore et al. 1980) and Voyager

(Tyler et al. 1981, 1982) radio occultation observations were an order of magnitude smaller

than early predictions. In order to reduce the modelled electron densities, two mechanisms

were proposed, which share in common the conversion of long-lived atomic H+ into short-lived

molecular ions. Radiative recombination with H+ is a very slow process and therefore electrons

must be removed from the ionosphere via other faster recombination and quenching events.

The removal of H+, which would survive many planetary rotations, is also required to account

for the large diurnal variation of ionospheric electron density (Kaiser et al. 1984). McElroy

(1973) suggested that H+ can be lost, via charge exchange, to vibrationally excited H2, which is

produced from collisions with electrons or via H+
3 recombination, and is subsequently quenched

via collisions with (thermal or photo-) electrons and H, H2 and H+ (Nagy et al. 2009). Chen

(1983) calculated that vibrational temperatures of thousands of degrees would be required to

ensure H2 was excited to its fourth or higher vibrational level so that the reaction was exothermic,

which was unlikely outside of the auroral zone since there are lower rates of high energy particle

bombardments.

The other mechanism to convert H+ into short-lived molecular ions was proposed by Shimizu

(1980), who suggested that oxygen-hydrogen compounds could be sputtered from ring particles

and reach the upper atmosphere of Saturn, where, through a series of reactions the H+ ions

produce water ions, whose rapid recombination rate subsequently lowers the electron density

in the ionosphere. The interaction between rings and ionosphere had been considered earlier

by Atreya & Donahue (1975), but lack of knowledge of the presence of a strong magnetic field

stymied anything beyond speculation at that point. Chen (1983) argued for the theory proposed

by Shimizu (1980), noting that by comparison with Jupiter, whose measured peak electron den-

sities are of the same order as those predicted by theoretical calculations using the same fun-

damental physical and chemical processes as those for Saturn, there must be some difference

operating in Saturn’s system. Such a difference is readily available through the unique presence

of many potential sources of ice, including small moons or the rings themselves.

Connerney & Waite (1984) built upon this model in which water plays a major role. Their series

of chemical reactions differ to those suggested by Shimizu (1980), and are largely based on
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work on comet models (Giguere & Huebner 1978; Huebner & Carpenter 1979). The same idea

persists though: removal of H+ ions via charge exchange with oxygen-hydrogen compounds

and subsequent electron recombination. Emission of the H+
3 ion is a proxy for water influx

onto Saturn, Eqs. 1.9a – 1.9h. The full table of chemical reactions along with rates in Saturn’s

ionosphere can be found in Connerney & Waite (1984), of which the most important are stated

below:

H2 + hν → H + H+ + e (1.9a)

→ H+
2 + e (1.9b)

H2O + H+ → H2O+ + H (1.9c)

H2O+ + H2 → H3O+ + H (1.9d)

H3O+ + e→ H2O + H (1.9e)

→ H2 + OH (1.9f)

→ H + H + OH (1.9g)

H+
2 + H2 → H+

3 + H. (1.9h)

The major constituent of the ionosphere is H+, resulting principally from photodissociation of

H2 (1.9a), which is lost via charge exchange with water (1.9c). The H2O+ ion reacts with H2

to produce H3O+ (1.9d), which is rapidly removed via electron recombination (1.9e) - (1.9g),

leading to the observed lower electron densities. H+
3 is produced from the reaction of H+

2 ions,

present through photoionisation of H2 (1.9b), with H2 via (1.9h). H+
3 is observed primarily

from discrete ro-vibrational emission lines in the infrared (O’Donoghue et al. 2013, 2014). It

is a useful probe of upper atmosphere/ionospheric conditions (e.g. Stallard et al. 2012), being

approximately in local thermodynamic equilibrium with its surroundings, although the focus in

this work is on the connection between H+
3 and the ring system.

Wilson & Waite (1989) used a time independent kinetic plasma to determine the densities, drift

velocities and temperatures for two ion species; the ionospheric H+ and ring-originating O+,

refer to §1.1.2 and see Figure 1.15, with the caveat that O+, OH+ and H2O+ can all result from

reactions of H2O + hν (refer to Table 1 of Connerney & Waite (1984)) and choosing any such

ring ions does not greatly change the results. Their model results showed that the influx of
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water-derived ions from the rings could be > 2 × 107 cm−2 s−1, in keeping with the required

∼ 4×107 cm−2 s−1 calculated by Connerney & Waite (1984), to reduce the ionospheric electron

densities for latitudes magnetically connected to the B ring.

Figure 1.15: Meridian plane diagram illustrating the ring-ionosphere connection. H+ ions
originate in the ionosphere, while O+ (or likewise, OH+ or H2O+) ions originate from the
rings. Image credit: Wilson & Waite (1989, Fig. 1).

Alongside the higher than expected electron densities at Saturn, a further unexpected observation

was the north-south variation in peak electron densities. The production mechanism is extreme

ultraviolet radiation from the Sun and therefore a maximum should be observed close to the

equator. However, the highest density was found at a latitude of 73◦S, and the lowest at 36◦N

(Atreya et al. 1984). The work of Connerney & Waite (1984) on chemical reactions and water

influx rates was developed by Connerney (1986), who mapped features observed in Voyager

images at specific ionospheric latitudes to their counterpart ring locations, via magnetic field

lines. They proposed that the latitudinal asymmetry was due to the north-south asymmetry of

Saturn’s vertically offset dipole magnetic field (§1.3.1). Measurements of spatially resolved

methane absorption band reflectivity (West et al. 1982) showed dark bands indicating a removal

of haze, revealing several atmospheric features mapping to particular boundaries within the rings

(Connerney 1986). In Figure 1.16, a double band near 50◦N, indicated by arrows labelled (1) and

(2), maps to two instability boundaries (1.525RS and 1.62RS) in the B ring, which is discussed

further below, observed in numerical results presented in Chapter 3, and explored further in

Chapter 5. Prangé et al. (2006) use spatially-resolved ultraviolet spectra to study hydrocarbon

abundances and find results consistent with water flowing into Saturn’s ionosphere at latitudes

magnetically connected to the main rings.
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Figure 1.16: Voyager 2 high contrast image of Saturn’s northern hemisphere. From left to
right, a latitude scale, the corresponding ring plane conjugates, and a ring plane distance
scale are shown. Image credit: Connerney (1986, Fig. 1).

The first direct measures of H+
3 emission from Saturn’s ionosphere, indicative of ring rain, were

made by O’Donoghue et al. (2013) in the form of near-infrared spectral data obtained by the 10-

m W. M. Keck II telescope using the NIRSPEC (Near InfraRed Spectrograph) instrument. They

found that a majority of H+
3 emission peaks map via planetary magnetic field lines to gaps in the

rings, and troughs in emission map to dense ring sections. O’Donoghue et al. (2013) proposed

that charged material from the water-product atmosphere surrounding the rings must be stream-

ing along field lines into Saturn’s ionosphere, producing the modulation in H+
3 emissions.

O’Donoghue et al. (2013) initially thought that a greater depletion of H+
3 emission would be

observed at latitudes with higher water influx, based on charge-exchange reactions with water

ions, but by considering the various loss channels for H+
3 , described in Moore et al. (2015)

which states that the dominant loss channel for H+
3 is dissociative recombination with electrons,

O’Donoghue et al. (2017) found that a greater depletion of H+
3 emission is observed at latitudes

with lower water influx. Indeed, O’Donoghue et al. (2013) report an ‘anomalous’ peak in H+
3

emission for the instability region 1.52− 1.62RS, where they had expected higher water influx

and therefore greater depletion of H+
3 through charge-exchange, but this can be readily explained

by how H+
3 is lost to electrons more readily than to water ions, that is, an influx of (positive)

water ions decreases electron densities thereby decreasing the dominant loss channel for H+
3 .

Any theory to explain an increase in H+
3 emission must involve some alternative quenching
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channel in order to remove electrons and reduce H+
3 loss rates.

Following orbital insertion, Cassini detected a ring ionosphere comprised of O+ and O+
2 (Tokar

et al. 2005; Waite et al. 2005), produced by the photoionisation of the O2 ring atmosphere,

itself a product of solar UV-decomposed water-ice (Johnson et al. 2006), §1.1.2. These ring-

derived O+
2 and O+ ions are the most likely to precipitate into the planet’s atmosphere, being the

dominant species (Moore et al. 2015). Oxygen-bearing molecules charge-exchange with H+,

then those resulting charge-exchange products subsequently rapidly recombine, which leads to

the observed reduction in electron densities. As a result there is an increase in H+
3 emission due

to a decrease in H+
3 loss rates.

Figure 1.17: A highly charged dust grain is constrained to move along a magnetic field line,
illustrated by the solid white curve, like a bead on a wire. It responds to the gravitational
force, ~Fg , centrifugal force, ~Fc, and magnetic mirror force, ~Fm, with components parallel
to ~B, indicated by small solid arrows, causing the grain to slide up and down the field
line. The perpendicular-to- ~B components of ~Fg and ~Fc, indicated by dashed vectors, are
responsible for gyromotion (§§3.4.1 and 3.6.1). Image credit: Connerney (2013, Fig. 1).

As described in Connerney (2013) and Figure 1.17, the motion of charged grains in planetary

rings is a problem of classical mechanics. Charged grains gyrate around magnetic field lines

due to the perpendicular Lorentz force, and slide along the field lines in response to the parallel

components of the gravitational and centrifugal forces and the magnetic mirror force, which

points towards the magnetic equator (towards weaker field strength), §3.6.1. In the case of a

planet with a tilted dipole magnetic field, such forces would disperse charged grains. However,

Saturn has highly aligned magnetic and rotation axes, and so there are unique pairs of conjugate
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north and south latitudes that map to specific radial distances in the rings. The northward-

offset of the magnetic dipole relative to the geographic equator means there is an asymmetry to

the north/south latitudes for a given radial distance mapping, hence observations show features

occurring at higher latitudes in the north than in the south (e.g. Connerney 1986; O’Donoghue

et al. 2013).

One such latitude region showing a suppression in electron emission (and a peak in H+
3 emission)

corresponds to the inner region of the B ring (1.525 − 1.625RS). A theory of charged particle

motion in the ring plane, developed by Northrop & Hill (1982, 1983), which explains regions

of instability (§§3.5.2, 3.5.3 and 3.6.2), can explain the inner edge of the B ring at 1.525RS

and the major increase in optical depth beginning at 1.625RS, refer to Figure 1.8 which shows

an increase in optical depth at ∼ 98, 000 km. Consider the forces on a charged grain shown in

Figure 1.17. Grains with zero magnetic moment are unstable for r < 1.625RS, as gravity over-

whelms the centrifugal force resolved along ~B and such grains fall onto Saturn, while outside

of 1.625RS, the centrifugal force overcomes gravity and returns grains to the ring plane (for the

bead on a wire picture imagine the bead travelling along the magnetic field line to the point of

largest radial extent).

Northrop & Hill (1982)’s method of deriving an expression for the marginal stability radius

is described in §3.6.2, where Eq. 3.55 predicts a vertical instability boundary for Saturn at

about 1.625RS. Kepler launched grains will also experience an outward magnetic mirror force,

which is directed towards the ring plane as this where the magnetic field strength is weaker

for a given B field line, so that the force balance location is moved inward to 1.525RS, as

gravity increases with decreasing distance to match the centrifugal and magnetic mirror forces;

the nonzero gyroradius and magnetic moment has a stabilising effect (Northrop & Hill 1983;

Northrop & Connerney 1987). This so-called marginal stability boundary is observed in Figure

3.5 and described further in §3.6.2 and §5.1.2. Plotting the potential in which highly charged

grains move along a magnetic field line showed that any grains inside of the inner B ring fall onto

Saturn along magnetic field lines, as particles at r < 1.525RS have no potential well to reside

in and therefore no stable orbit (Northrop & Connerney 1987), §3.6.2. Such an electromagnetic

erosion mechanism could explain the relative scarcity of material in the C ring observed through

its low optical thickness and also provide a physical basis for making an estimate of the age of

the rings, a question that will be addressed in Chapter 5. The increase in optical depth outward of
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1.625RS, refer to Figure 1.8, occurs at the stability limit of grains (Northrop & Hill 1982) so that

any orbits of highly charged grains outside of this radial distance are stable and therefore increase

the observed opacity of the rings, whilst decreasing the precipitation onto the planet.

Figure 1.18: Saturn and its ring system shown above the northern hemisphere. Both axes
indicate radial distances from the planet’s centre. H+

3 intensities from spectral line mea-
surements (cut-off at 9 nW m−2 sr−1) are mapped via the magnetic field to their conjugate
radial distances in the ring plane on the upper left of the rings (over an arbitrary longitude
range). On the top right, opacity measured by the Voyager 2 Ultraviolet Spectrometer is
shown (Lillie et al. 1977; Lane et al. 1982), with a value of 0 indicating rings are suffi-
ciently dense enough to block all light, while a value of 1 indicates light passes through
unattenuated. At the bottom, the main rings observed in reflected light are shown. Image
credit: O’Donoghue et al. (2017, Fig. 4).

The statement by Connerney (2013), that gaps in the rings are weak sources of ring rain, as there

is little material therein to be eroded, does not quite tell the whole story. It is such scarcity of ring

material, which is indicative of unstable orbits propelling grains onto the planet, that corresponds

to higher levels of ring rain, provided that there is a supply of grains to that region. At 1.525RS,

there is both a supply of grains from the optically thick B ring and an unstable potential, such

that there can be a high flux of water grains from the rings onto the planet (O’Donoghue et al.
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2017).

The initial observations of Saturn’s midlatitude ionospheric H+
3 emissions recorded in 2011

(O’Donoghue et al. 2013) were followed up and confirmed by higher resolution observations

recorded in 2013 by O’Donoghue et al. (2017). The more recent emissions were dimmer across

latitudes, probably due to lower upper-atmospheric temperatures as measured by (Koskinen et al.

2015). The ring plane opening angle, which varies according to season (Figures 1.13 and 1.14),

was larger in 2013 compared to 2011 and therefore the rings were subject to higher levels of solar

radiation. This was thought to explain the larger contrast between bright and dim features in H+
3

emission, as the production of charged grains would be larger and increase water precipitation

onto Saturn. O’Donoghue et al. (2017) provide a clear visualisation of the relationship between

H+
3 and ring structures, Figure 1.18, which will be explored further in Chapter 5.

Mitchell et al. (2018) note that ring rain, precipitating onto the planet at the feet of magnetic

field lines cannot access equatorial regions, yet these are the same regions where ionospheric

electron densities are observed to be lowest (Kliore et al. 2014; Wahlund et al. 2018). In order

to reconcile this, Mitchell et al. (2018) invoke atmospheric drag to de-orbit dust and model

grains precipitating into Saturn’s equatorial atmosphere from the inner edge of the D-ring. They

used MIMI onboard Cassini to detect and characterise neutral grains and find a dust population

tightly confined near the equator. Hsu et al. (2018b) observe a latitudinal variation in nanograin

impact rate, Figure 1.19, with a high fraction around the ring plane, which can be explained by

the time-variable stochastic charging of such small grains sometimes resulting in low charge-

to-mass ratios such that they are are not confined to move along magnetic field lines, refer to

Chapters 4 and 5.

Water is the dominant constituent for the main rings, §1.1.1b), (Pilcher et al. 1970; Clark &

McCord 1980), with the remaining material in the form of either organics (tholins), metallic

iron or hematite (Miller et al. 2020), or inorganics such as silicate (Hsu et al. 2018b). Miller

et al. (2020) use INMS to analyse the composition of material flowing from the D ring into

Saturn’s atmosphere, identifying various organic compounds, water and ammonia. They use

the term ring rain to refer to all material flowing into Saturn’s rings (rather than only material

flowing along magnetic field lines). These compounds are also found in Serigano et al. (2020)’s

INMS results. Hsu et al. (2018b) used CDA measurements obtained during Cassini’s Grand

Finale mission to collect material between the planet and the D ring. They found that the region
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Figure 1.19: Latitudinal profiles. (A) Plotting fraction of water-ice spectra against lati-
tude. There is a dependence on latitude with a peak around the ring plane. Horizontal
bars indicate the latitude range of contributing spectra, with squares indicating the dead-
time–corrected water-ice fractions for 50 consecutive spectra. (B) Nanograin impact rate
(blue histogram) and H+

3 observations (curves). The green curves show the H+
3 infrared

emission from Saturn’s atmosphere described in the work of O’Donoghue et al. (2013)
and O’Donoghue et al. (2017). The gold curve shows the corresponding column density
(Moore et al. 2015). Image credit: Hsu et al. (2018b), further details are described in the
original caption of their Fig. 4.

within the innermost ring is largely free of micron-sized grains and populated principally by

grains with radii of a few tens of nanometres.

This dust population is assumed to be the ejecta generated by hypervelocity collisions between

interplanetary dust particles and the main rings. The CDA Dust Analyzer recorded nearly 3000

impact mass spectra, of which 78% were too faint or showed only the target or its known con-

taminant spectra. Hsu et al. (2018b) allow for the possibility of organic molecules by noting

that due to the high impact velocities onto the CDA, there could be overlaps in signals between

organic fragments and known carbon contamination. From the spectra with sufficient signal-to-

noise for an analysis, Hsu et al. (2018b) identified two types: water-ice and silicate, all within

±50◦ latitude of the ring plane.

Hsu et al. (2018b) report an ice-to-silicate number ratio of 2:1 based on their identified 422

water-ice-type and 214 silicate-type spectra. They explain in their supplementary material how
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Figure 1.20: Vertical density profiles measured by the CDA. The Mass Analyzer, a linear
impact time-of-flight mass spectrometer, impact rate is plotted (lines) as a function of the
distance from the ring plane during (A) Kepler ram and (B) plasma ram orbits. The green
histograms are results of model calculations for 20 nm grains. Image credit: Hsu et al.
(2018b), Fig. 3A & B – the figure has been rotated to display the distance to the ring plane
horizontally.

they convert this into a mass ratio of between 2:1 and 11:1 (30% and 8% silicate respectively)

– the number fraction is taken to be the upper limit of the silicate mass fraction, while a lower

bound to the silicate mass fraction can be estimated from the number of impact events measured

by the sum of the QI signal of silicate grains compared to all grains, compositionally identified or

not, given in Table S2 of Hsu et al. (2018b): 208
2651 ≈ 8%→ water-ice: silicate ≈ 11 : 1.

The CDA dust impacts can be classified into Kepler ram or plasma ram directions, where the

impact direction is of grains moving in circular prograde orbits or the direction of plasma co-

rotating with the magnetic field respectively. The profiles depend on the instrument’s orientation

relative to dust flow, as shown by the difference between the subplots of Figure 1.20: the impact

rate peaks at 0RS for all orbits with Kepler ram orientation (A), whereas the plasma ram orien-

tation shows two broader peaks either side of the ring plane peak and centred at similar north

and south magnetic latitudes (B). This is the ring rain signature of charged grains funnelled from

the main rings along magnetic field lines onto the planet. The southern dust peak is stronger and
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broader than the northern dust peak in Figure 1.20 (B), which can be attributed to the northward

offset of Saturn’s dipole – the radial component of ~B at the ring plane crossed with a velocity in

the azimuthal direction generates a vertical Lorentz force acceleration.

Due to the high impact speeds of the nanograins, which lie outside the CDA calibration range,

the mass cannot be obtained directly from the impact waveforms. Instead, a proxy for the grain

mass is used, in the form of the number of charges produced in an impact (under the assump-

tion that each grain impinges on the detector with the same speed), which is measured by the

CDA Ion Grid QI signal (Srama et al. 2004). Hsu et al. (2018b) plot the charge distributions

for water-ice and silicates, described by power laws with very similar slopes, indicating that

the grain types have similar mass distributions. The grain mass is expected to be linearly pro-

portional to the impact charge amplitude (Göller & Grün 1989), yet the impact charge yield

varies with grain composition – silicate grains are more efficient in impact charge production

than water-ice (Koschny & Grün 2001); and therefore similar impact charge distributions could

mean that the water-ice grains are more massive than the silicate grains to achieve the same

yield, rather than similar mass distributions between the two types based on the similar power

slopes. However, Hsu et al. (2018b) note that due to sodium contamination from the E ring

and Enceladus plumes on the CDA target, which acts as a signal amplifier regardless of grain

composition, there could be tiny ice grains whose signals are boosted to levels similar to that of

tiny silicate grains so that the effect of a less efficient charge yield for water-ice is countered by

sodium amplification.

Hsu et al. (2018b) find a variation in water-ice fraction with latitude, Figure 1.19. They show

a peak of 70 − 90% close to the ring plane dropping to ∼ 40% at 30◦ latitude, and a similarity

between the nanograin density profile and H+
3 emission. Such variation in latitude of water-ice

deposition onto the planet could indicate that the water-ice grains are more massive or larger and

therefore are less affected by the Lorentz force so that they are concentrated close to the ring

plane. However, Hsu et al. (2018b) argue that their results are consistent with silicate and water-

ice having similar masses/sizes, and this means that the ice-to-silicate ratio of ring rain and the

latitudinal profiles are not due to grain dynamics, but rather arise from material processes during

ejection and transportation. For example, the photo-evaporation of ice grains could explain the

high silicate fraction in ring rain (compared to bulk rings), and as grains take a longer time to

reach higher latitudes (Hsu 2020) this could also explain the higher ice fraction close to the ring
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plane, Figure 1.19.

Hsu et al. (2018b) argue that there is no dynamical selection effect for the ring rain material,

finding that the ratio between the dust originating from the B ring and that from the C ring

measured by the CDA is almost constant, and therefore the variation in latitude of the water-

ice fraction cannot be explained by the difference between the main rings’ composition (the B

ring has a higher water-ice fraction than the C ring). So it appears to not be the case that more

material from the C ring is deposited at higher latitudes, which might have explained the lower

ice fraction away from the ring plane observed in Figure 1.19. And in fact the bulk C ring

has a higher ice fraction, up to ∼ 90% (Zhang et al. 2017b), than the 2
3 observed by the CDA

for the nanograins so that the ring rain material is somehow sorted, either physically through

ejection mechanisms or chemically, in the process of travelling from the rings to the planet and

is therefore different from the main ring composition.

In Chapter 5, this question of why the overall silicate mass fraction in ring rain is higher than the

concentration of non-ice components in the main rings is returned to, alongside the question of

the varying latitudinal water-ice deposition. Chapter 5 also discusses the structure of the rings

themselves and the effect that ring rain could have on the interpretation of their age.

1.3 Physical Processes Acting on Dust in Planetary Rings

Before commencing a description of the forces that act on dust grains in planetary rings, it

is necessary to acknowledge the importance of their electric charge and how that affects their

motion through the Lorentz force. The various charging processes and how they vary in time are

discussed in detail in Chapter 4. For the purposes of this section, the grains are assumed to hold

a representative constant charge (depending on their size and an assumed potential) so that the

respective strengths of electromagnetic forces on a grain can be compared to radiation pressure,

gravity and various drag forces, to quantify more directly the varying effects of the different

forces and their relative strengths.
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1.3.1 Gravitational and Magnetic Planetary Fields

The dynamics of a charged grain in planetary rings is significantly affected by the presence of

the planetary gravitational and magnetic fields. The gravitational field can be expressed as the

gradient of a scalar potential,

~g = −~∇Φg, (1.10)

and provided there is an absence of local currents (∇ × B = 0), the magnetic field can be

expressed as

~B = −~∇ΦB. (1.11)

Laplace’s equation is applied to find the gravitational and magnetic potentials at a point outside

the central body’s surface (that is, outside of the mass and dynamo core sources). Spherical

harmonics, Eq. 1.12, which are solutions to Laplace’s equation in spherical coordinates are

a useful tool to describe these fields, and are essentially an adaptation of Fourier analysis to

a spherical surface. The plasma environment (§1.1.2) around a rotating planet gives rise to a

corotational electric field term, which will be discussed following the description of the magnetic

field.

The Laplace equation in spherical polar coordinates is

1

r2

∂

∂r

(
r2∂Φ

∂r

)
+

1

r2sin θ
∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2sin2 θ

∂2Φ

∂φ2
= 0. (1.12)

Any function Φ which satisfies Laplace’s equation is a harmonic function. If there is a rotational

asymmetry, like in the case of non-spheroidal planets and tilted magnetic dipoles, the solution

to Eq. 1.12 varies with azimuth φ, as well as radius r and colatitude θ. The radial and angular

dependence are separable, and the full solution is given by a summation over all possible degree

n and orderm. For grains orbiting in the rings around a central mass, contributions from external

sources can be disregarded. Therefore only terms in inverse powers of r of the gravitational and

magnetic potentials due to the internal sources of the mass and planetary dynamo are required

(e.g. Connerney 1993; Wieczorek 2015):
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Φg = −GMp

Rp

∞∑
n=0

(
Rp
r

)n+1 n∑
m=0

Y m
n (θ, φ)g, (1.13)

ΦB = Rp

∞∑
n=1

(
Rp
r

)n+1 n∑
m=0

Y m
n (θ, φ)B. (1.14)

The spherical harmonic functions for each of the fields are

Y m
n (θ, φ)g = [c̄mn cosmφ+ s̄mn sinmφ]P̄mn (cos θ), (1.15)

Y m
n (θ, φ)B = [ḡmn cosmφ+ h̄mn sinmφ]P̄mn (cos θ), (1.16)

and are expressed in terms of the associated Legendre polynomials, Pmn (cos θ), and the cmn , s
m
n , g

m
n , h

m
n

coefficients which characterise the respective fields and have different normalisations, with a bar

above a given variable referring to its normalised form. The first few spherical harmonics are

illustrated in Figure 1.21. The geomagnetic convention, used here, is to apply Schmidt quasi-

normalisation:

P̄mn (cos θ) =

√
(2− δ0

m)
(n−m)!

(n+m)!
Pmn (cos θ), (1.17)

which leaves the sum
∑n

m=0[(ḡmn )2+(h̄mn )2] invariant under an arbitrary rotation of the magnetic

field. Table 1.3 gives the first few values of the Schmidt quasi-normalised associated Legendre

functions and the unassociated functions.
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Pn(cos θ) P̄mn (cos θ)

P0 = 1 P 0
0 = 1

P1 = cos θ
P 0

1 = cos θ

P 1
1 = sin θ

P2 = 3
2(cos2 θ − 1

3)

P 0
2 = 3

2(cos2 θ − 1
3)

P 1
2 =
√

3cos θsin θ

P 2
2 =

√
3

2 sin2 θ

P3 = 5
2cos θ(cos2 θ − 9

15)

P 0
3 = 5

2cos θ(cos2 θ − 9
15)

P 1
3 = 5

√
3

2
√

2
sin θ(cos2 θ − 3

15)

P 2
3 =

√
15
2 cos θsin2 θ

P 3
3 =

√
5

2
√

2
sin3 θ

Table 1.3: Legendre polynomials up to degree-3.

Figure 1.21:
Spherical

harmonics

are displayed

column-wise from

left in increasing degree

n, and row-wise from top

in increasing order m, up to

degree 5. Red denotes positive

values, blue denotes negative values

and white null values. Zonal harmonics

with m = 0 and no variation with azimuth

are given in the top row, sectoral harmonics

with n = m are shown along the diagonal, and

the remaining harmonics are tesseral. The Condon-

Shortley phase (−1)m has been omitted, following

the geomagnetism and geodesy literature convention.
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Substituting the spherical harmonic functions, Eq. 1.15, into the potential, Eq. 1.13, and re-

stricting attention to rotationally symmetric cases, such as fast rotating planets, yields

Φg = −GMp

r

∞∑
n=0

(
Rp
r

)n
Pn(cos θ)c̄0

n, (1.18)

where the gravitational potential is expressed solely using zonal terms, as illustrated by the

top row of Figure 1.21. Note for m = 0 that the associated Legendre functions reduce to the

unassociated polynomials P 0
n , Pn). Furthermore, there is no physical difference between

northern and southern hemispheres (Pn(cos θ) is an odd function for odd n, as can be seen in

the top row of Figure 1.21), and so only even n are included, so that

Φg = −GMp

r

[
1−

∞∑
n=1

J2n

(
Rp
r

)2n

P2n(cos θ)

]
, (1.19)

where the so-called gravitational moments Jn , −c̄0
n. For Saturn, the higher order J2n are not

significant, e.g. J4
J2
≈ 0.05, and therefore the acceleration (gr = −∂Φg

∂r , gθ = −1
r
∂Φg
∂θ , gφ =

− 1
rsin θ

∂Φg
∂φ ) can be written as

gr = −GMp

r2

[
1− 3

2

J2R
2
p

r2
(3cos2 θ − 1)

]

gθ =
3GMpJ2R

2
p

r4
cos θsin θ

gφ = 0. (1.20)

The J2 coefficient, known as the dynamical form factor or ellipticity coefficient, describes the

oblateness of the planet. Including it in the planet’s gravitational field accounts for the effect of

the equatorial bulge, so that for a grain in orbit around the planet there is a reduced gravitational

acceleration over the poles (θ = 0, π) compared to the equator (θ = π
2 ). Saturn is the most

oblate planet in our solar system, with a flattening (the ratio of the difference between the polar

and equatorial radii to the equatorial radius) of 9.8% (Cao et al. 2019).

The components of gravity in spherical coordinates, Eq. 1.20, can be expressed in the planet-

centred inertial frame using
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
gx

gy

gz

 =


sin θcosφ cos θcosφ −sinφ

sin θsinφ cos θsinφ cosφ

cos θ −sin θ 0



gr

gθ

gφ

 , (1.21)

so that

~g = −GMp

r3

[
xx̂+ yŷ + zẑ +

3

2
J2

(
Rp
r

)2 [(
1− 5

z2

r2

)
(xx̂+ yŷ) +

(
3− 5

z2

r2

)
zẑ

]]
.

(1.22)

Substituting the spherical harmonic functions from Eq. 1.16 into Eq. 1.14 yields the magnetic

potential:

ΦB = Rp

∞∑
n=1

(
Rp
r

)n+1 n∑
m=0

[ḡmn cosmφ+ h̄mn sinmφ]P̄mn (cos θ). (1.23)

The magnetic field terms are obtained by applying Eq. 1.11, so that

Br = − ∂ΦB

∂r
=
∞∑
n=1

(n+ 1)

(
Rp
r

)n+2 n∑
m=0

[gmn cosmφ+ hmn sinmφ]P̄mn (cos θ),

Bθ = − 1

r

∂ΦB

∂θ
= −

∞∑
n=1

(
Rp
r

)n+2 n∑
m=0

[gmn cosmφ+ hmn sinmφ]
dP̄mn (cos θ)

dθ
, (1.24)

Bφ =− 1

rsin θ
∂ΦB

∂φ
=

1

sin θ

∞∑
n=1

(
Rp
r

)n+2 n∑
m=0

m[gmn sinmφ− hmn cosmφ]P̄mn (cos θ).

Pioneer 11 measurements of Saturn’s intrinsic field found it to be very nearly aligned with its

rotational axis (Smith et al. 1980; Acuña & Ness 1980), subsequent measurements by Voyager

1 and 2 found similar close alignment (Ness et al. 1981, 1982), and more recently this has been

attested by Cassini data (Dougherty et al. 2018). An aligned centred dipole (n = 1) is the

simplest physical case for a planetary magnetic field. This can be expressed (e.g. Connerney

1993; Jontof-Hutter 2012) as

~B(~r) = − ~m
r3

+
3(~m · ~r)~r

r5
≡ 3(~m · r̂)r̂ − ~m

r3
(1.25)
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where |~m| = g0
1R

3 is the scalar strength of the planetary dipole moment at the equator. The

magnetic field components are obtained using Eq. 1.24:

Br = 2
|~m|
r3

cos θ, (1.26)

Bθ =
|~m|
r3

sin θ, (1.27)

Bφ = 0. (1.28)

The change-of-basis matrix can be used to convert to Cartesian coordinates for simulation pur-

poses, so that

Bx =
3|~m|xz
r5

,

By =
3|~m|yz
r5

,

Bz =
|~m|(3z2 − r2)

r5
,

(1.29)

Connerney et al. (1982) found that the so-called Z3 model – zonal harmonic model of degree 3

– was sufficient to describe Saturn’s field as measured by Voyager 1 and 2. The components of

such a field, with axisymmetric dipole, quadrupole and octupole magnetic moment contributions

(g0
1, g

0
2 & g0

3 respectively) derived from Eq. 1.24 and transformed into Cartesian coordinates

are

Bx = 3g0
1

R3
p

r5
xz + g0

2

R4
p

r4

[
15z2x

2r3
− 3x

2r

]
+ g0

3

R5
p

r5

[
35z3x

2r4
− 15xz

2r2

]
,

By = 3g0
1

R3
p

r5
yz + g0

2

R4
p

r4

[
15z2y

2r3
− 3y

2r

]
+ g0

3

R5
p

r5

[
35z3y

2r4
− 15yz

2r2

]
,

Bz = g0
1

R3
p

r5
(3z2 − r2) + g0

2

R4
p

r4

[
15z3y

2r3
− 9z

2r

]
+ g0

3

R5
p

r5

[
35z4

r4
− 15z2

r2
+

3

2

]
.

(1.30)

The dipole field described by Eq. 1.30 has a small but non-negligible vertical offset. This

distance can be calculated by finding the location where ~B points solely along the ẑ direction in
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the equatorial plane, that is setting Eq. 1.30’s Bx = By = 0:

z

Rp
=

g0
2

2g0
1

, (1.31)

where the weaker g0
3 coefficient has been ignored in the analytic calculation. Dougherty et al.

(2018) find the northward offset of Saturn’s magnetic equator from the planetary equator is

2808 km. The relevant Legendre functions of the offset dipole model can be found in Table 1.3,

with n = 1, 2, 3,m = 0. More recent work since have refined the coefficients, and a comparison

is presented in Tables 1.4 and 1.5.

Connerney et al.
(1982)

Cao et al.
(2011)

Rp (km) 60, 000 60, 268 60, 268

g0
1 21535 21248 21191

g0
2 1642 1613 1586

g0
3 2743 2683 2374

Table 1.4: Some literature values of Gauss-Schmidt quasi-normalised spherical harmonic
coefficients in nT for Saturn’s Z3 model. The fits of Connerney et al. (1982) originally
used Rp = 60, 000 km (left column) and were transformed by Cao et al. (2011) to use
Rp = 60, 268 km for direct comparison (middle column). The h0

n coefficients do not exist,
because in those cases sinmφ = 0 in Eq. 1.24 and those terms do not contribute.

For Saturn, there is a measurable vertical offset in the field, but negligible tilt (with an upper limit

of ∼ 0.007◦, as revealed by the Cassini Grand Finale measurements (Cao et al. 2019)). The

nearly-perfect axisymmetry of Saturn’s dipole is disconcerting because Cowling’s antidynamo

theorem states that no axisymmetric magnetic field can be sustained by a dynamo (Cowling

1933). Stevenson (1982) proposed a mechanism that can resolve this conflict and axisymmetrise

the observed field outside Saturn’s dynamo region. 3D numerical models based on this theory

have resulted in more symmetric fields (Christensen & Wicht 2008; Stanley 2010; Stanley &

Bloxham 2016). In order to reproduce the stability maps of Jontof-Hutter (2012)’s Figures 3.13

and 4.12 for Saturn’s aligned dipole and Z3 magnetic fields, the values of g0
1,2,3 of Connerney

et al. (1982) with Rp = 60, 000 km were used (given in Table 1.4). The more recent Cassini

measurement of g0
1 = 0.21141 Gauss obtained from its Grand Finale data (Cao et al. 2019) does

not differ significantly to the value used by Jontof-Hutter (2012).

Another field term of significance to consider is the corotational electric field due to the rotating
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Dougherty
et al. (2018)

Cao et al.
(2019)

g0
1 21140 21141

g0
2 1581 1583

g0
3 2260 2262

g0
4 91 95

g0
5 12.6 10.3

g0
6 17.2 17.4

g0
7 −59.6 −68.8

g0
8 −10.5 −15.5

g0
9 −12.9 −24.2

g0
10 15 9.0

g0
11 18 11.3

g0
12 − −2.8

g0
13 − −2.4

g0
14 − −0.8

Table 1.5: As Table 1.4, but the latest Cassini results which include Gauss coefficients up
to degree 11 and 14 (RS = 60, 268 km). Reproduced from Cao et al. (2019).

magnetic field in the plasma environment. This has been observed via the charged dust streams

reported in e.g. Horányi (2000). Bunce et al. (2003) state that the Voyager plasma data at Saturn

suggests that the plasma angular velocity at inner radii declines from almost rigid corotation

with the planet to sub-corotation values in outer regions. As the main ring region is the focus

here, it can be assumed that the plasma is corotating with the planet and any difference from Ωp

can be neglected. It should be noted that there is no electric field directly induced by a ‘moving’

uniform magnetic field, but there is an electric field associated with a moving plasma. Therefore,

even in Saturn’s case with its dipole aligned along its spin axis, there is a corotational electric

field.

Beginning with the generalised form of Ohm’s law,

~j = σ( ~E + ~vp × ~B), (1.32)

where ~j is the current density, and ~vp is the velocity of the plasma. Given that the conductivity,
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σ, is high in a plasma, then Eq. 1.32 states

~E = −(~vp × ~B). (1.33)

That is, in a frame where the plasma is moving, there is an electric field. In the corotating frame

(denoted by ′), the electric field vanishes, as can be seen by the (non-relativistic limit of) the

transformation equation:

~E′ = E + ~vp × ~B, (1.34)

and substituting Eq. 1.37 into Eq. 1.34 gives ~E′ = 0 (noting that a frame rotating about the

planet-centred frame can be treated as two instantaneously inertial frames and therefore the

Lorentz transformation of the field can be applied). This is consistent with the plasma moving

at the ~E × ~B drift velocity (§3.4.2):

~vE =
~E × ~B

B2
, (1.35)

as substituting Eq. 1.35 into Eq. 1.34 and using the vector triple product gives

~E′ = ~E +
1

B2
[−B2 ~E + ( ~B · ~E) ~B] = 0. (1.36)

The result of Eq. 1.36 holds as ~E · ~B = 0: the conductivity along magnetic field lines is

large as charges flow easily in that direction, so that ~B field lines can be considered as electric

equipotentials. In the frame corotating with the plasma, which is rotating rigidly with the planet,

the corotational electric can thus be written as

~E = −(~Ωp × ~r)× ~B, (1.37)

and is directed radially outward. Equation 1.37 encapsulates the equivalence of a rotating mag-

netic field in an inertial frame with a radial electric field and stationary magnetic field in the

rotating frame.
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1.3.2 Comparison to Other Forces on Circumplanetary Dust

In addition to the planetary gravitational and electromagnetic forces described in §1.3.1, by

Equations 1.22, 1.30 and 1.37, there are several other forces acting on the grain to consider in

turn: gravity of satellites, radiation forces (pressure and Poynting-Robertson drag), and plasma

drag (e.g. Grün et al. 2006). The gravitational forces exerted by the moons on dust grains has

been excluded from this work, on the basis that the region of study is restricted to the main rings,

and only small moons orbit within the Roche Limit.

Dust in circumplanetary space is affected by forces due to incident solar radiation; having large

surface-area-to-mass ratios means that the absorption, emission or scattering of photons by the

grains can be significant. Grains are repelled from the Sun by radiation pressure due to the

momentum carried by solar photons (e.g. Burns et al. 1979). The radiation pressure force can be

written as

~FRP = −βGM�
rsp

ŝ, (1.38)

where rsp is the Sun-planet distance, ŝ is a unit vector pointing from the planet to the Sun and β

is the dimensionless ratio of the radiation force to the gravitational force of the Sun (with mass

M� and luminosity L�), which can be written as

β =
3L�

16πGM�c

Qpr

ρdad
, (1.39)

where Qpr is a dimensionless coefficient representing the radiation pressure efficiency factor,

and ρd, ad are the grain’s density and radius respectively (Burns et al. 1979; Mignard 1984).

The radiation pressure force exerted is radial with an intensity that goes according to the solar

flux, which drops off quadratically with distance. Therefore, in the vicinity of a planet, the solar

radiation pressure is approximately constant in magnitude, but the direction varies slowly during

the planet’s orbit around the Sun (Burns et al. 2001). The forces described thus far are plotted in

Figure 1.22.

Given that Saturn’s orbital period is about thirty years, but the relevant dynamical timescales

are < 0.1 years (Jontof-Hutter 2012), the solar radiation pressure has been omitted as it is a
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Figure 1.22: Following the example of Burns et al. (2001), a comparison of the relevant
forces around Saturn for a dust grain charged to −5 V are plotted: the gravitational pull of
Saturn (both spherical and oblate terms), the Lorentz force for different-sized grains, and
the radiation pressure force. The radiation pressure force is plotted for a totally absorbing
(β = 1) grain. The radial distance over which the forces are calculated has been restricted
to the main rings, which extend out to ∼ 2.3RS and the range of grain sizes has been
expanded to include sub-micron dust (nanograins are subject to stochastic charging and
therefore have been omitted, refer to Chapter 4 for further details). The synchronous orbit
location, Rsyn, is shown by the vertical dash-dot line.

relatively slowly varying modulation on top of the other stronger forces on the grain. The dust

particles’ orbital periods are much shorter than that of the planet and so the solar direction can

be assumed to be constant. Moreover, for grains less than a tenth of a micron, the ratio of the

solar radiation force to the solar gravitational force, β, drops sharply (Mignard 1984) as shown

by the Mie scattering calculations of Burns et al. (1979), Figure 1.23.

Poynting - Robertson drag, which arises from a drop in the grain’s angular momentum due to

the subsequent anisotropic re-radiation of the incident solar energy when viewed from the solar

frame of reference, acts tangentially and causes dust particles to fall inward (Burns et al. 1979,

2014). Hamilton (1993) states that it is small compared to the radiation pressure and can usually

be neglected in a first approximation. This is the approach taken here, noting also that the
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Figure 1.23: The ratio of solar radiation pressure force to gravitational force, β, as a func-
tion of particle radius, ad for six cosmically significant substances and an ideal material.
Very small grains are unaffected by the solar radiation pressure because the relatively long
wavelength cannot cause much absorption or scattering, due to its low energy. Image credit:
Burns et al. (1979, Fig. 7b)

timescale for a 1-micron grain orbiting at 1.8RS around Saturn is ∼ 105 years , which is much

larger than the orbital timescales considered here.

As dust travels through a plasma (refer to Chapter 4), the grains exchange momentum with the

ions and electrons and a drag is exerted on the dust (e.g. Grün 1984). As with any drag force,

it is a function of velocity; here, the relative velocity of the grain with respect to the corotating

plasma: ∼
√

GMp

r −rΩp. The effects of plasma drag on the orbital elements of grains have been

studied in detail by, for example, Grün et al. (1984), Northrop & Birmingham (1990) and Havnes

et al. (1992b). Essentially, the eccentricities and inclinations are damped and the grains take on

the circular and uninclined orbits of the impacting plasma particles. Grains inside synchronous

distance orbit faster than the plasma, and lose energy via collisions with the slower particles and

therefore spiral into the planet, whereas grains outside synchronous distance orbit slower than

the plasma, gaining energy via collisions and therefore drift away from the planet. The orbital

evolution timescale, which is approximately proportional to grain radius, for a 1-micron grain at
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1.8Rp from Saturn is ∼ 105±1 years (Burns et al. 2001). As in the case of Poynting-Robertson

drag, this is orders of magnitude longer than the timescales over which the dust grains are studied

here (refer to Chapters 3, 4, 5) and therefore the effects of plasma drag are ignored. Hamilton

& Krivov (1996) also ignore slowly acting forces such as plasma drag and Poynting-Robertson

drag, stating that their typical grain lifetimes are <∼ 1000 years. Outside of the main rings of

study in this work, plasma drag has been instrumental in outward dust transport from Enceladus

(e.g. Havnes et al. 1992b; Horányi et al. 2008), pictured in Figure 1.24.

Figure 1.24: Geysers on the geologically active south polar region (lower left) of Enceladus
provide most of the dusty E ring’s material. Plasma drag is responsible for grains reaching
the outskirts of Saturn’s magnetosphere, as modelled by Horányi et al. (2008). (A) Clear-
filter image of Enceladus’ plumes, and (B) a colour-coded version to enhance visibility of
fainter components. Image credit: Porco et al. (2006, Fig. 6).

As well as the plasma drag caused by direct collisions between plasma particles and dust grains,

there is also a Coulomb drag due to the electrostatic forces exerted between the charged particles.

Northrop & Birmingham (1990) studied Coulomb drag in detail, noting that it had previously

been calculated for a test charge moving in a plasma (ignoring collective effects) by analogy

to Chandrasekhar’s gravitational dynamical friction on a star moving though a Maxwellian dis-

tribution of background stars (Spitzer 1962; Draine & Salpeter 1979), which they generalise

to include large scattering angles and collective effects. Grün et al. (1984) and Morfill et al.

(1980) find that distant Coulomb interactions increase the plasma drag force for subsonic grains

in charge equilibrium with the plasma by a factor in the range∼ 10−100 (depending on plasma

conditions for sub-micron – micron-sized grains), and therefore the momentum loss time due to

plasma drag is decreased by an order or two in magnitude, which is still much larger than the

orbital timescales of study in this work.
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The drag forces described above, cause slow monotonic changes in the orbital semimajor axes,

eccentricities and inclinations of dust (Burns 1991) through secular changes in the orbital energy

and angular momentum of the grains, but can be largely ignored because of their weaker strength

and longer timescales (Burns et al. 2001) than the gravitational and electromagnetic forces due

to the planet. For times of less than tens of years considered here, it is legitimate to follow the

approach of Hamilton (1993) and ignore these weak forces.

Atmospheric drag arises in an analogous fashion to plasma drag, but instead of collisions with

plasma particles, the atmospheric drag of grains is due to collisions with neutral molecules or

atoms in the atmosphere and exosphere of the planet. As with plasma drag, atmospheric drag

is approximately proportional to grain radius but also depends strongly on the distance from the

planet as the density and temperature profile varies with altitude (Burns et al. 2001). Broadfoot

et al. (1986) studied the exosphere of Uranus and found that atmospheric drag plays an important

role in rapidly depleting the inner Uranian ring system of small particles. Due to Broadfoot et al.

(1986, 1989)’s findings of high temperatures in the outer atmospheres of Uranus and Neptune, it

was thought that atmospheric gases could extend to significant altitudes for all giant planets and

therefore gas drag may be relevant for the inner parts of their ring systems, including Saturn’s.

However, Uranus has an unusually bloated exosphere, extending several Uranian radii (Herbert

& Sandel 1999). Perry et al. (2018) note that Saturn’s tenuous exosphere only extends to the

inner edge of the D ring, with Mitchell et al. (2018) showing, through simulations of collisions

between dust and the H, H2 exospheric populations and in situ measurements with MIMI during

Cassini’s Grand Finale orbits, that dust is precipitating onto Saturn from the inner D ring through

atmospheric drag. In this thesis, a full atmospheric model (Koskinen et al. 2015; Mitchell et al.

2018) will not be employed, as the resulting chemical reactions are beyond the scope of this

work.

As Hamilton & Krivov (1996) state, in many applications a single perturbation dominates and

the orbital dynamics can be well approximated by neglecting the weaker forces, an approach

taken here by neglecting radiation pressure, plasma drag, Coulomb drag, Poynting-Robertson

drag, and atmospheric drag. In addition to the simplifications with regard to forces described

above, the question arises of whether collective effects, in the sense both of inter-grain collisions

and of the dusty plasma, need to be considered. In regions of significant dust density, the charge

on a dust grain can be reduced compared to an isolated grain in the same plasma environment
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(e.g Goertz & Ip 1984; Havnes et al. 1984). As described in Chapter 4, an orbital motion theory

approach is taken in this work, in which the dust in plasma can be treated as isolated grains

because their radius, ad, is much smaller than the Debye length, λD, which is smaller than the

average intergrain distance:

ad � λD < λmfp, (1.40)

where λmfp is the collisional mean free path of the dust grains. The Debye length for an electron

plasma with number density ne and temperature Te is

λD =

√
ε0kBTe
e2ne

, (1.41)

where e = 1.602 · · · × 10−19C, ε0 = 8.854 · · · × 10−12 C2 N−1 m−2 and kB = 1.380 · · · ×
10−23 J K−1. Substituting in some example values for the plasma parameters in the vicinity

of the main rings from Hsu et al. (2018b) gives λD ∼ 10 m. If a representative value (or at

least an upper or lower bound) for the collisional mean free path of the dust grains present in

the main rings can be taken from the F ring’s population of submicron – micron grains, which

Mendis et al. (1982) estimates to be ∼ 103 m, based on optical depth observations, then the

condition for isolated dust grains (1.40) holds. More recently, Hsu et al. (2018b) have made in

situ measurements of dust between the D ring and Saturn’s atmosphere using the MA instrument

and the HRD foil detector (p. xxv) on-board Cassini. These gave a nanograin number density

of 3.5− 8.5× 10−2 m−3 and a submicron-grain number density of (2± 1)× 10−4 m−3, which

corresponds to λmfp ∼ 1
nπa2d

≈ 1015 − 1017 m, which readily upholds the condition of Eq. 1.40.

So following the orbital evolutions of single test grains, as they do not interact but are effectively

shielded from each other, seems to be a legitimate approach, and in fact one used by numerous

authors (e.g. Mendis et al. 1982; Northrop & Morfill 1984; Hsu et al. 2011; Jontof-Hutter &

Hamilton 2012b).

The dynamics of dust in a planetary ring system embedded in a magnetosphere, subject to the

solar wind, impacts and varying plasma conditions (temperature, composition and density), is

complex. Each grain will be sensitively influenced by its material composition, (irregular) shape,

density, strength, conductivity, reflectivity etc., characteristics which are not constant in time but

subject to change by sublimation, sputtering and shattering. Although certainly important for
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1.3. Physical Processes Acting on Dust in Planetary Rings

dust, the direct interaction with a spatially- and temporally-variable plasma environment will not

be investigated because a detailed plasma model is beyond the scope of this project. In addition,

the plasma environment affects the charging of the grain and therefore sensitively affects the

grain’s dynamics (Chapters 4, 5), and so rather than enforcing a set of finely-tuned assumptions

onto the plasma environment, instead a focus in this work is on the forces which dominate over

the timescales of interest based on representative plasma values.

Having described physical processes of importance for dust in the main rings of Saturn and

the circumplanetary environment, and introduced concepts of relevance through the example of

charged dust phenomena and identified several open questions, work can proceed in the fol-

lowing manner. In the next chapter, the numerical method used to integrate the equations of

motion is described and tested, then in Chapter 3 the characteristic motions of charged grains

are described and the stability of circumplanetary dust with constant charge is studied, both

numerically and analytically. In Chapter 4, the assumption of constant charge is relaxed and

time-variable charging algorithms are described and analysed. Chapter 5 returns to the ques-

tions raised by ring rain.
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Numerical Methods

In order to follow the trajectories of charged dust grains in a planet’s gravitational and magnetic

fields, the equations of motion are solved numerically, as even for a dipole field the problem is

not analytically integrable and the epicyclic approximation (§3.4.1) does not hold for all qd/md,

namely grains exhibiting large radial excursions (§3.5.1). This requires solving an initial value

problem (IVP):

~̇X(t) = f(t, ~X), ~X0 =
(
~r(t0)

~̇r(t0)

)
, (2.1)

where ~X =
(
~r(t)

~̇r(t)

)
is the solution sought, given some function f and the initial conditions

~X0.

Initially an approach using an existing N-body code, PKDGRAV, is described. The symplectic

nature of this leapfrog integrator is broken through the addition of a velocity-dependant force and

therefore a higher-order approach is adopted in the form of adaptive Runge-Kutta and Bulirsch-

Stoer methods.
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2.1 Parallel k-Dimensional Tree Gravity Integrator

The Parallel k-Dimensional Tree Gravity code (PKDGRAV) is an N-body code that is used in

multiple astrophysical situations, including planet formation, granular dynamics and rubble-pile

disruptions. PKDGRAV is a parallelised N-body code (Richardson et al. 2000; Stadel 2001),

which uses a second order leapfrog integrator for temporal evolution and a binary tree parti-

tioning method with multipole expansion, similar to the oct-tree in the Barnes-Hut algorithm

(Barnes & Hut 1986), to calculate inter-particle gravity.

The leapfrog integrator updates the positions and velocities by employing an operator splitting

technique that permits the construction of a symplectic integrator (Saha & Tremaine 1992), that

is, an integrator which enforces certain conservation laws characteristic of Hamiltonian dynam-

ics (Sanz-Serna 1992). It uses the Kick Drift Kick formalism (which is more efficient than the

equivalent Drift Kick Drift method within a multistepping code) that kicks the velocities for-

ward for a half-step
(
h
2

)
while the positions are fixed under the potential energy component of

the Hamiltonian, drifts the positions forward for a step (h) while the velocities are held constant

under the kinetic energy component of the Hamiltonian, then kicks the velocities forward for a

half-step. More formally, the kick operator (that evolves the system under the potential generat-

ing the accelerations), K, and the drift operator (that evolves the system under kinetic energy),

D, are combined K(h2 )D(h)K(h2 ) to advance the system by a full step:

~̇rn+ 1
2

= ~̇rn +
h

2
~̈r(~rn), (2.2a)

~rn+1 = ~rn + h~̇rn+ 1
2
, (2.2b)

~̇rn+1 = ~̇rn+ 1
2

+
h

2
~̈r(~rn+1). (2.2c)

For a grain on its nth timestep, the initial half-step kick of 2.2a updates the velocity given the

acceleration evaluated at the start of the step, using ~rn. This is followed by evolving the grain’s

position according to the updated velocity, expressed in 2.2b. The velocity is then evolved to the

end of the timestep, that is the start of the next step, n + 1, using the just-updated velocity and

acceleration, ~̇rn+ 1
2

and ~̈r(~rn+1) by 2.2c.
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2. Numerical Methods

The hierarchical tree algorithm used in PKDGRAV reduces computational expense by approx-

imating the gravitational forces that N particles exert on each other in a system. A naı̈ve di-

rect summation force approach is O(N2). The k-D tree algorithm approach, described in de-

tail in Richardson (1993b) and Stadel (2001), which is similar to the Barnes-Hut algorithm of

O(N logN), places particles in a tree-like hierarchy of cells and replaces the direct forces with

a multipole expansion (up to hexadecapole order) about the centre of mass for those cells which

are small enough or far enough away from the particle in question. A simplified 2-D quad-tree

example is sketched in Figure 2.1.

23

4

1 10 6 6

1 1 71

1 4 1

00 4 1

1

1 1 1 3 1

0 1 1 11 1 1 1

1 1 11

Figure 2.1: Sketch of a simple system of particles for illustrative purposes: a distribution of
23 particles in a box on the left, with its 2D quad-tree representation on the right. The full
domain is divided and the number of particles in each quadrant is placed at the next level
(the tree is populated starting from the left upper quadrant and proceeding clockwise). This
process advances for each quadrant: it is divided into subquadrants if there is more than
one particle contained, and force calculations are carried out according to the prescription
detailed in the main text of this section. The dashed arrows indicate direct particle-particle
force calculations, the solid arrows indicate centre-of-mass approximations. The yellow
cell is opened whilst the blue is not (the larger arrows indicate the force calculations that
are carried out based on whether or not the cell is opened).

In order to estimate the interparticle gravitational forces, PKDGRAV traverses the tree of parti-

cles in cells and checks whether each cell needs to be opened or not, if the cell is opened then

the cell’s children are added to the interaction list. This is illustrated in the simplified example of

Figure 2.1: during the force calculation of the red particle (the source of the arrows), the tree al-

gorithm will check whether the yellow cell’s centre of gravity (open yellow circle) is sufficiently

far away. As it is not, the code proceeds to look at all subcells and performs the individual force

calculations marked by the (larger) dashed yellow arrows. When the algorithm considers the

blue cell, however, it finds that this cell is far enough away and will therefore only perform one
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2.1. Parallel k-Dimensional Tree Gravity Integrator

centre-of-mass force calculation (larger solid blue arrow) and will not calculate deeper into this

cell (dashed blue arrows). I later use an analogous tree-like structure, although temporal rather

than spatial, when designing an algorithm for time-variable charging (Chapter 4).

2.1.1 Local Shearing Patch Simulations

To use PKDGRAV to study inter-particle forces in ring systems, it is necessary to restrict the

computational volume to a smaller region (patch), where realistic surface densities can be mod-

elled within a tractable timeframe. The local patch code was developed separately, based on

the local planetary ring simulations by Wisdom & Tremaine (1988), and known as box tree

(Richardson 1993a, 1994), before being integrated into PKDGRAV, which was originally a cos-

mological code. box tree incorporates a fourth-order force polynomial integration method

with individual time-steps for close encounters based on a technique by Aarseth et al. (1985)

and a full hierarchical tree algorithm (cf. Barnes & Hut 1986) to deal with inter-particle gravita-

tional interactions.

The local shearing patch model is built upon the premise that a ring is self-similar azimuthally

and the patch size is much smaller than the orbital distance (so that there is no curvature) but

much larger than the radial mean free path of the particles (so that collisional dynamics can be

followed). In the following, the discussion is restricted to Saturn and therefore Ωp → ΩS. For

Saturn’s rings there is no risk of violating these assumptions, since typical particle sizes are in

the range 1cm − 1m (Marouf et al. 1983) compared to an average orbital distance of 108 m for

the main rings and the particles are densely packed (optical depth & 1 in B ring), so the radial

mean free path is small, . particle size (Schmidt et al. 2009), and the largest box sizes are just

a few km on a side.

A natural coordinate system to use in such a case is one centred on the patch and rotating with

it, with v pointing in the direction of motion and u pointing radially outward from Saturn (w in

the sense according to the RH rule). It was developed by Julian & Toomre (1966) in the context

of disk galaxies and first applied to rings by Wisdom & Tremaine (1988). To avoid unphysical

edge–effects the patch is surrounded by replicas, so-called ghost patches, to account for the

boundary conditions, as illustrated in Figure 2.2.

Particles that leave the patch wrap around to reappear on the other side with the same physical
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v

u

Figure 2.2: Sketch of the shearing patch model. The patch is orbiting the centre of Saturn
with an angular velocity of ΩK. The spin of Saturn, ΩS , and the vertical axis, w, are
parallel. Eight ghost patches surround the patch in question.

properties (total number of particles is conserved). If a particle passes through a radial bound-

ary, then it is given an adjusted v-velocity to account for Keplerian shear. Under the conditions

just described, it is valid to linearise the equations of motion (as first derived by Hill (1878)

in the context of the Earth-Sun-Moon problem), and shown below for completeness, follow-

ing Richardson (1993b) who provides a derivation in the context of planetesimals orbiting the

Sun.

Let ~Ri denote the relative position vector of a particle expressed in the Saturn-centred inertial

frame. Seen in the rotating patch frame (denoted with subscript r), the relative position vector is

the same ~Rr = ~Ri = ~R at any given time. A particle will feel the gravitational pull of Saturn,

and also the gravitational pull of all the other particles in the patch ~∇Φ = −(Fu,Fv,Fw), which

is handled by the tree part of PKDGRAV described above:

~̈Ri =
−GMS

R3
~R− ~∇Φ. (2.3)

The acceleration expressed in the patch frame, ~̈Rr, will have additional non-inertial terms. In

order to obtain ~̈Rr, apply an operator (Goldstein et al. 2014):
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2.1. Parallel k-Dimensional Tree Gravity Integrator

(
d

dt

)
i

=

(
d

dt

)
r

+ ~ΩK× , (2.4)

which relates the time rate of change of a quantity in an inertial frame to its counterpart in the

rotating frame, twice to ~Ri. Then, assuming a constant ~ΩK = ΩKŵ, and re-arranging:

~̈Rr = ~̈Ri − 2(~ΩK × ~̇Rr)− ~ΩK × (~ΩK × ~R), (2.5)

with the additional terms being due to the Coriolis and centrifugal forces. Since it is assumed

that the patch is orbiting at a fixed distance ~a (so that ΩK =
√

GMS
a3

) and that calculations are

going to be done in the rotating patch, it follows to write ~Rr = ~a + ~d, where ~d = (u, v, w) is

relative to the origin of the rotating frame. Standing inside the rotating frame, ~a does not look to

change with time and so ~̇Rr = ~̇d and ~̈Rr = ~̈d. Substituting in for ~̈Ri from Eq. 2.3 yields:

~̈d =
−GMS(~a+ ~d)

|~a+ ~d|3
− ~∇Φ− 2(~ΩK × ~̇d)− ~ΩK × [~ΩK × (~a+ ~d)] (2.6)

Considering each component in turn, expanding out the cubic term in the denominator using

the binomial approximation, and dropping all terms smaller than d
a , yields the complete set of

linearised equations of motion in the rotating patch frame:

ü = Fu + 3Ω2
Ku+ 2ΩKv̇,

v̈ = Fv − 2ΩKu̇, (2.7)

ẅ = Fw − Ω2
Kw.

The velocity-dependant terms can be recognised as Coriolis accelerations and the Ω2
K terms as

centrifugal accelerations.

The presence of the velocity-dependent terms in Eq. 2.7 requires a modification to PKDGRAV’s

leapfrog method such that a predicted velocity is used to estimate the acceleration at the end

of the step (Quinn et al. 2010). This would not be time reversible and would therefore destroy

the symplectic nature of leapfrog. However, Quinn et al. (2010) derives a symplectic integrator

for this system by separating the Hamiltonian into a position-independent (i.e. free particle, in
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the sense of not acting under a potential), momentum-independent, and mixed term. The first

two terms of the separated Hamiltonian can be straightforwardly solved, and the latter mixed

term gives equations of motion that can be solved exactly. Quinn et al. (2010) thereby con-

struct a second-order symplectic integrator. This method is executed in PKDGRAV as external

forces, involving the Coriolis and centrifugal forces, in a separate function that is called at the

appropriate point in the Kick-Drift-Kick procedure.

Figure 2.3: Snapshot of an ∼ 300 × 700 × 20 m patch after approximately 7.4 hours,
each semi-transparent point represents a single particle. Ticks indicate 50 m intervals in the
radial u-direction (vertically down the page), 100 m in the azimuthal v-direction (horizontal
along the page). The wakes are tilted to the orbital direction in the trailing sense, due to the
differential shear rate across the patch. The following simulation parameters were used:
N ∼ 60, 000; h = 45 s; a = 100, 000 km; (TK ∼ 9 h); Σ ∼ 1000 kg/m2; τ ∼ 1.

An example snapshot of a patch is shown in Figure 2.3, with simulation parameters specified in

the caption. The coefficient of restitution for particle collisions within the patch was set to be a

function of impact velocity, following Borderies et al. (1984). The particles’ mutual gravitational

attraction and dissipation of energy during collisions leads to clumps which shear out to form

transient trailing structures called self-gravity wakes. The typical radial separation between

wakes can be estimated from Toomre (1964)’s critical wavelength λcrit = 4π2GΣ
Ω2

K
(∼ 70m for the

run shown in Figure 2.3).

2.1.2 Modifying Code to Include Planetary Magnetic Field

In order to study charged dust in Saturn’s rings, the gravitational code must be modified to in-

clude the effect of the planetary magnetic field, ~B. A grain of massmd and charge qd experiences
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2.1. Parallel k-Dimensional Tree Gravity Integrator

an acceleration due to the Lorentz force:

~̈dLorentz =
qd
md

( ~E + ~̇d× ~B). (2.8)

The rotation of the planet induces an electric field in the plasmasphere (§1.3.1); the plasma is

coupled to the planetary magnetic field lines and thus corotates with the planet at ~ΩS, producing

a plasma polarisation electric field, ~E. In the synchronously rotating frame where the plasma is

at rest, the magnetically-induced electric field is zero. The electric field term in Eq. 2.8 is:

~E = [(~ΩK − ~ΩS)× ~d]× ~B, (2.9)

recalling ~d is relative to the origin of the rotating frame orbiting at ΩK. So the Lorentz accelera-

tion in the rotating patch frame can be written:

~̈dLorentz =
q

m
[(~ΩK − ~ΩS)× ~d+ ~̇d]× ~B, (2.10)

where, as you would expect, away from synchronous location, it is the relative motion of the

charged grains to the rigidly rotating magnetic field lines that is important, plus any additional

motion within the patch frame, ~̇d. Straightforwardly performing the cross products yields (under

the assumption that the spin vector is about the vertical w-axis):

üLorentz =
qd
md

[(ΩK − ΩS)(a+ u)Bw + (v̇Bw − ẇBv)]

v̈Lorentz =
qd
md

[(ΩK − ΩS)vBw + (ẇBu − u̇Bw)]

ẅLorentz =
qd
md

[−(ΩK − ΩS)(vBv + (a+ u)Bu) + (u̇Bv − v̇Bu)],

(2.11)

where a is the radial distance to the patch as before. This agrees with Matthews (1998)’s Equa-

tion 4.25 under the assumption that (a + u)Bw → a(1 + u
a )Bw ' aBw, and (a + u)Bu →

a(1 + u
a )Bu ' aBu, which is realistic as the patch is small so u� a. However, Eq. 2.11 differs

slightly from the results as given in Matthews & Hyde (2003, 2004):
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üLorentz =
qd
md

[(ΩK − ΩS)aBw + v̇Bw − ẇBv],

v̈Lorentz =
qd
md

[ẇBu − u̇Bw],

ẅLorentz =
qd
md

[−(ΩK − ΩS)aBu + u̇Bv − v̇Bu].

(2.12)

The differences between Eq. 2.11 terms and Matthews & Hyde (2003, 2004)’s Equation 2.12

arise due to the differences in patch size that are used. They were studying the F ring and thus

the patch size could be larger: 2000 km versus the few hundred metres of a B ring patch illus-

trated in Figure 2.3 (Matthews divides up the F ring into ∼ 400 patches). As a particle travels

through their large F ring patch from one end to the other it would experience a change in the

v-component of acceleration it feels, however by symmetry the magnitude of the polarisation

electric field (-(~ΩS × ~d) × ~B) should be approximately constant around a ring in the azimuthal

direction. Therefore, they appear to drop the troublesome (ΩK−ΩS)vBw and −(ΩK−ΩS)vBv

terms that would otherwise cause the magnitude of the induced electric field to change unphysi-

cally through the patch as v increases. There would not be such an issue with the smaller B ring

patch.

The magnetic field components for Saturn’s northward offset dipole as found in (§1.3.1), were

substituted into the Lorentz force expression of Eq. 2.11 and implemented in PKDGRAV’s

shearing patch code as external forces in a separate function call. In order to match Connerney

(1993)’s best-fit for the g0
1, g

0
2 , RS = 60 000 km. As shown in Figure 2.4, there is good agree-

ment with Matthews & Hyde (2004), except vertical displacements are inverted relative to their

labelled qd
md

: given that ΩK < ΩS in Saturn’s F Ring and that Bu < 0 (due to the dominating

−3
2g

0
2

(
Rp
r

)4
factor of Br in Eq. 1.24), then ẅLorentz < 0 for qd

md
> 0 (substituting into Eq.

2.11). In Figure 2.4, the azimuthal values are adjusted for the mean motion of the guiding centre

(§ 3.4.1) and unfurled across boundaries - i.e. for negatively charged grains, the equilibrium

point is displaced inward so that ωc > ΩK and grains pass through the positive azimuthal (+v)

boundary, and vice versa for positively charged grains.
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(a) Results reproducing Matthews & Hyde (2004). (b) Matthews & Hyde (2004)’s Figure 2.

(c) Results reproducing Matthews & Hyde (2004).

Using timestep as a proxy for longitude y.

(d) Matthews & Hyde (2004)’s Figure 3.

Figure 2.4: (a), (b): Epicyclic orbits in the (horizontal) uv-plane of charged grains over

10 orbital periods in a dv (azimuthally) periodic patch – with no u nor w ghost patches

due to the thinness of the F ring, orbiting the planet at ΩK = 1.168 × 10−4 rad s−1. (c),
(d): Vertical (w) lofting of charged grains, caused by the radial (quadrupole) component of

Saturn’s magnetic field. Labels indicate the charge-to-mass ratio of a grain in C kg−1.

67



2. Numerical Methods

2.1.3 Global Simulations

As well as the local shearing patch frame mode, PKDGRAV can be used in a global non-rotating

frame with the origin at the central body and coordinate system denoted (x, y, z). The Lorentz

force due to the planetary magnetic field for charged grains for such a reference frame can be

written (under the assumption that the planet is spinning about the z axis):

ẍLorentz =
qd
md

[(ẏ − xΩS)Bz − żBy],

ÿLorentz =
qd
md

[żBx − (ẋ+ yΩS)Bz],

z̈Lorentz =
qd
md

[(ẋ+ yΩS)By − (ẏ − xΩS)Bx].

(2.13)

Due to the presence of the velocity-dependent terms in the Lorentz force, it was necessary to use

a predicted velocity so that the accelerations due to the Lorentz force and due to gravity were

aligned in the step according to the Kick-Drift-Kick scheme. This involved a modification to the

code that breaks the symplectic nature of the leapfrog.
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(a) Epicyclic orbits of charged grains.
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(b) Vertical motion of charged grains.

Figure 2.5: Reproducing the results of Matthews & Hyde (2003, 2004) for orbits in the
F ring using PKDGRAV’s global simulations with the Lorentz force modification. Labels
indicate the charge-to-mass ratio of a grain in C kg−1.

Similar tests for the global code modifications were run to reproduce Matthews & Hyde (2003,

2004), and these results, Figure 2.5, agree with Figure 2.4. The global and patch methods
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2.2. Adaptive Runge-Kutta

are consistent. The x and y coordinates have been adjusted to match the rotating patch frame

(u, v, w), i.e. the radial displacement relative to the centre of the F ring and the azimuthal po-

sitions adjusted for the mean motion of the guiding centre, respectively. The grains undergo

out-of-plane motion due to the cross product of the in-plane magnetic field components of Sat-

urn’s northward offset dipole with the grains’ velocities.

2.2 Adaptive Runge-Kutta

It is clear that in adapting the PKDGRAV local and global codes to include the Lorentz force,

the symplectic nature of the leapfrog integrator is broken due to the introduction of predicted

velocities. Due to the higher accuracy of the Runge-Kutta method and the low-N requirements

for the simulations of interest (test grain trajectories will be investigated, rather than ring sys-

tems), an adaptive Runge-Kutta method was chosen over modifying the existing PKDGRAV

code to include the velocity-dependent Lorentz force, which would have involved following a

Hamiltonian splitting technique such as that used by Quinn et al. (2010) in the context of a local

shearing patch.

To apply a higher order integrator to dust grain trajectories first meant solving a well-known

problem in numerical integration – that the choice of step size must be optimised in order to

avoid both truncation errors and wasting computational resources. A given step size may be

appropriate for the start of an integration, however later prove to be unsuitable. A simple grav-

itational example to illustrate this would be a grain that is launched on a distant orbit that later

destabilises and causes the grain to plunge into the planet: initially a larger step size, say a few

hundredth of a Keplerian period, would be suitable as the gravitational force is weaker and the

orbital curvature is smaller, however as the grain approaches the planet, such a step size would

cause the grain to over-step where it should be leading to an erroneous drift.

Adaptive Runge-Kutta methods estimate the truncation error at each step and use this to adjust

the step size so that the solution remains within prescribed limits. This enables a range of phys-

ical parameters to be studied (e.g. different charge-to-mass ratios and varying orbital distances).

The Runge-Kutta formulae and Dormand-Prince method are well-documented (e.g. Press et al.

2007; Dormand & Prince 1980), but for completeness a description of the formulae implemented

in the code is included.
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It is widely accepted that the Runge-Kutta embedding technique is an efficient method for the

solution of non-stiff initial value problems (stiff problems occur if some terms in the solution

vector vary more rapidly than others and these require special care beyond the scope of this

section). In the embedding technique for Dormand-Prince (RKDP), formulae are obtained which

share the same function evaluations, i.e. they share the same coefficients (Dormand & Prince

1980). The Runge-Kutta formulae of order five for the initial value problem (2.1) with a timestep

h are:

~k0 = h~f(t, ~X),

~ki = h~f

t+Aih, ~X +
i−1∑
j=0

Bij~kj

 , i = 1, 2, . . . , 6
(2.14)

~X5(t+ h) = ~X(t) +
6∑
i=0

Ci~ki, (2.15)

and the embedded fourth-order formula is:

~X4(t+ h) = ~X(t) +

6∑
i=0

Di
~ki. (2.16)

The coefficients Ai, Bij , Ci, Di of Equations 2.15 and 2.16, given in Table 2.1, are not unique

– Dormand & Prince (1980) chose the coefficients of their method to minimise the error of the

fifth-order solution, ~X5, in contrast to Fehlberg (1969) who minimised the error in the fourth-

order solution, ~X4.

RKDP has seven stages, but it has only six function evaluations per step due to its property of

First Same As Last, where the last stage for the nth step is evaluated at the same point as the first

stage of the n+ 1th step. The solution is advanced using the fifth-order formula of 2.15.

The difference between the fourth- and fifth-order formulae (2.15 – 2.16) estimates the error of

the solution:

~E(h) =

6∑
i=0

(Ci −Di)~ki (2.17)
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2.2. Adaptive Runge-Kutta

i Ai Bij Ci Di

0 — — — — — — — 35
384

5179
57600

1 1
5

1
5 — — — — — 0 0

2 3
10

3
40

9
40 — — — — 500

1113
7571
16695

3 4
5

44
45 −56

15
32
9 — — — 125

92
393
640

4 8
9

19372
6561 −25360

2187
64448
6561 −212

729 — — −2187
6784 − 92097

339200

5 1 9017
3168 −355

33
46732
5247

49
176 − 5103

18656 — 11
84

187
2100

6 1 35
384 0 500

1113
125
192 −2187

6784
11
84 0 1

40

Table 2.1: Butcher tableau for RKDP method. Ai are the nodes, Bij is the Runge-Kutta
matrix, and Ci, Di are the weights.

Noting that the error ~E(h) is a vector, with components representing the errors in the dependent

variables ~X =
(
~r
~̇r

)
= (x, y, z; ẋ, ẏ, ż), a choice is made to use the root-mean-square error for

the error measure:

Ē(h) =

√√√√ 1

n

n−1∑
i=0

E2
i (h), n = number of first-order equations. (2.18)

Error control is achieved in the following manner by adjusting h, so that the error-per-step is

approximately equal to some prescribed tolerance ε: suppose an integration step with h′ that

resulted in an error Ē(h′) is performed, the step size h′′ that ought to be used to obtain a tolerance

can be estimated, noting that the truncation error is O(h5) so that,

h′′ ≈ 0.9h′
[

ε

Ē(h′)

] 1
5

, (2.19)

where a 0.9 factor has been introduced as a safety measure to account for the crude approxima-

tions. If h′′ ≥ h′, the step is accepted as the error is below the tolerance, however if h′′ < h′,

the step is rejected and re-attempted with h′′. Once a particle moves away from a region of rapid

change, the step size is increased according to the tolerance of Eq. 2.19 because the value in

the denominator, Ē(h), decreases. Whilst adjustments to the step size are necessary to accu-

rately resolve the motion, in, for example, regions of strong magnetic field close to the planet,

excessive changes in step size are avoided by constraining 1
10 ≤

h′′

h′ ≤ 10.
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2. Numerical Methods

A caveat to note with regard to the error control measures discussed above is that Ē(h) is the

error in a single integration step. The global truncation error is the accumulation of these per-

step errors, however it is usually satisfactory to use these errors interchangeably as Ē(h) is a

conservative estimate, unless the number of integration steps is very large.

2.3 Gragg-Bulirsch-Stoer

In order to verify the RKDP solutions, an independent adaptive integrator method was used.

The Gragg-Bulirsch-Stoer (GBS) method (Gragg 1964; Bulirsch & Stoer 1966) was chosen as

it provides high-accuracy solutions (e.g. Press et al. 2007) to smooth IVPs, Eq. 2.1, and as

Chambers (1999) notes, it is generally robust for N-body problems. The GBS method relies

on the use of the modified midpoint method to advance the solution, together with Richardson

extrapolation. These concepts are explained in greater detail in Press et al. (2007); Stoer &

Bulirsch (2013) but for completeness, the method is outlined below.

Figure 2.6: Mesh used in the Gragg-Bulirsch-Stoer method. The interval of integration is
divided into n steps of length h = H

n . The solution is advanced in stages of lengthH , using
the modified-midpoint method with Richardson extrapolation (described in Figure 2.7) to
perform the integration in each stage.

A numerical solution becomes increasingly accurate as the stepsize used in the approximation

decreases. In the GBS method, this property is exploited by solving the IVP, Eq. 2.1, sev-

eral times with the modified midpoint method, each time using more sub-steps as described in

Figure 2.6. As the solutions with increasingly fine stepsizes asymptote to the true value, an an-

alytic function can be fitted. It turns out that rational function fits remain good approximations

to analytic functions even for large H (Stoer & Bulirsch 2013). Deuflhard (1983) found that

straightforward polynomial extrapolation is slightly more efficient than rational function extrap-

olation provided there are no rapid variations in the function. This act of taking the limit as

h → 0 in order to asymptote to the result with infinitely small steps is known as Richardson

extrapolation, illustrated in Figure 2.7. Richardson extrapolation considers the solution to the
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2.4. Testing the Numerical Integrators

initial value problem as being an analytic function of the adjustable stepsize parameter, h.

Figure 2.7: Richardson extrapolation. The large interval H is spanned by different
sequences of substeps, with the numerical integrations done by the modified midpoint
method. The polynomials fitted to those datapoints are a function of h and the solution
for which h→ 0 is extrapolated (indicated by the ⊗). From Press et al. (2007) with minor
adjustments.

The modified mid-point method is chosen as the integration method within the GBS algorithm

as it has the property that its error function is strictly even, which allows the rational function

(or polynomial function) of the Richardson extrapolation method to be expressed in terms of h2

rather than h (Gragg 1964, 1965). The accuracy increases two orders at a time, by combining

steps from separate attempts to traverse H with increasing numbers of substeps h, to eliminate

higher order error terms.

2.4 Testing the Numerical Integrators

The numerical integrators described previously, PKDGRAV (§2.1), RKDP (§2.2), and GBS

(§2.3), were tested in the context of the dynamics of charged grains in planetary gravitational

and magnetic fields. The fractional energy error should be close to zero for effective integrators.

It is known that over long integration periods, the leapfrog method, which is used by PKD-

GRAV, behaves better than Runge-Kutta methods for gravitational problems (Springel 2016)

due to conserving phase space volume over time (Liouville’s Theorem). However, in the context

of this work other issues must be considered. The inclusion of electromagnetic forces intro-

duces other characteristic timescales, namely the gyroperiod, mirror bounce period, and guiding

73



2. Numerical Methods

centre orbital period, so that the behaviour of the integrators on these timescales as well as the

Kepler timescale must be examined. These periods are described in greater detail in §§3.5.1 and

3.6.2.

As described in §2.1, the addition of the Lorentz force to PKDGRAV’s source code via a naı̈ve

approach broke the time reversible symmetry of the leapfrog method. Although it could be pos-

sible to construct a system of equations that enables a time-reversible invocation of the Lorentz

force within the Kick Drift Kick formalism by splitting the Hamiltonian in a similar manner as

performed by Quinn et al. (2010) in the context of the shearing patch (§2.1.1), this approach

was not pursued due to there being multiple timescales of interest requiring an adaptive integra-

tor. Moreover, variations in a dust grain’s charge (Chapter 4) can alter its trajectory over rapid

timescales (Jontof-Hutter 2012) and therefore the ability to decrease and increase the step size

is a necessity. In addition, Jontof-Hutter (2012), studying the stability of charged grain orbits,

notes that all relevant dynamical timescales are < 0.1 years, therefore the benefit of no secu-

lar energy drift over very long time periods for the leapfrog method is no longer of paramount

importance.

It is necessary to check that the fractional energy error of the adaptive methods (RKDP and

GBS) do not grow over the timescales of interest for the problem of a charged grain in planetary

gravitational and magnetic fields. The GBS method was implemented alongside to give an

independent verification of the RKDP solutions. The orbital energy includes the gravitational

potential and kinetic energy terms, plus an additional term due to the corotational electric field.

Of course, the magnetic field does no work on the charged grain and so there is no magnetic

energy term. The corotational energy term can be expressed as the work done on the grain by

the electric field: qd
∫ ~r
~rL
~Ed~r, so that the total energy can be written

E =
1

2
mdv

2 − GMpmd

r
−
qdΩpg10R

3
p

r
. (2.20)

Fractional energy errors for the three integrators are plotted in Figure 2.8. The RKDP method

performs better than PKDGRAV, which is to be expected as it is a fifth order method compared

to a second order method. Likewise, the GBS method performs better than PKDGRAV as the

stepsize varies such that the error remains within prescribed boundaries. The maximum energy

error for the adaptive methods, RKDP and GBS, remain constant. The tolerance for the RKDP
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2.4. Testing the Numerical Integrators

method example illustrated in Figure 2.8 was chosen to define an average stepsize large enough

to illustrate energy drift in the broken-symplectic fixed-timestep PKDGRAV method (§2.1). The

RKDP and GBS methods are able to achieve ε = 1 × 10−10, with the coarser tolerance shown

here to illustrate the behaviour of the methods. In order to make a direct comparison between

the three integration methods, the same (average) stepsize was used: h̄ ≈ h ≈ 250 s, which

corresponds to ∼ 0.0009 TK, or about 0.05% of the gyroperiod, at the launch position.
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2.4. Testing the Numerical Integrators

In addition to energy, there is another important conserved quantity to consider when testing

the accuracy and stability of the numerical integrators in the context of charged grain motion

in planetary magnetic fields: the first adiabatic invariant or magnetic moment (Eq. 3.47), µ =
mdv

2
⊥

2| ~B|
, which is derived in §3.6.1. As the case for using adaptive integrators has been argued

previously in this section, only the RKDP and GBS methods are tested with this µ parameter,

and the fixed-timestep PKDGRAV method is relinquished.

More highly charged grains were analysed as these test the integrators are able to resolve gyro-

motion where the Guiding Centre Approximation (§3.4.1) holds. The trajectory of such a grain,

with L∗ = 10 (the Lorentz force dominates the gravitational) and rL = 1.5Rp, is illustrated in

Figure 2.9. The grain’s magnetic moment is plotted in Figure 2.10, which shows that the frac-

tional error in µ remains bounded and therefore the integrators perform well for highly charged

grains with rapid gyromotion, that is, the epicyclic motion is resolved.

As can be seen from Figure 2.9, the test grain exhibits bounce motion which takes it from

regions of weaker magnetic field strength in the equatorial plane, to regions of stronger field

strength nearer to the poles (§3.6). Note also how the gyroradius decreases in size as the grain

moves closer to the planet in Figure 2.9. Since the gyrofrequency varies with time as the grain

encounters varying field strength, by Eq. 3.7, it is not possible to average over an integer number

of gyrations when plotting out the first adiabatic invariant and therefore some fluctuations occur.

However, in order to minimise this effect, the average was taken over a bounce period so that

the full range of gyrofrequencies were sampled as the grain completed a full vertical oscillation.

As explained in §2.3, the GBS method advances the solution by a large step H , where H is

held constant as the number of substeps h varies to achieve the prescribed accuracy. This means

that the output of the GBS method is sparser and therefore fewer gyrations were averaged over,

resulting in larger fluctuations, as can be seen in Figure 2.10b.

Having demonstrated that the adaptive methods of integration are stable to their stated accuracy,

the GBS and RKDP methods can be applied to the study of charged dust.
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Figure 2.9: The first 60 hours of a stable grain’s trajectory around Jupiter, with grain

parameters equal to those shown in Figure 2.10: L∗ = 10.0, rL = 1.5Rp.
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3
Orbital Motions of Charged Dust

This chapter lays out the relevant background and theory from literature to explain the dynam-

ics of charged grains in planetary gravitational and magnetic fields. It develops the theory, in

particular following Jontof-Hutter (2012), to find analytical expressions for the motions that can

be compared to numerical results using the codes developed in Chapter 2, to further test the

numerical methods and to extend the work of investigating regions of stability around Saturn.

The work of Jontof-Hutter (2012) has been published in two papers: Jontof-Hutter & Hamilton

(2012a) and Jontof-Hutter & Hamilton (2012b), but for the purposes of this chapter, reference

will primarily be made to Jontof-Hutter (2012).

In order to elucidate the relevant physical concepts, the planetary magnetic field is modelled as

an aligned dipole, the gravitational field includes only first order terms (n = 0, cf. Figure 1.21)

and the grain charge is held constant. Later, these simplifying assumptions will be relaxed: in

Chapter 4, the grain’s charge will vary in time according to the various currents it encounters in

Saturn’s environment as well as the planet’s shadowing effect, and in Chapter 5, a more realistic

Saturnian magnetic and gravitational field model will be applied.

The sections have been structured to consider the orbits of dust grains through analysis in the

principal directions: azimuthal (§3.4), radial (§3.5), and vertical (§3.6), introducing the relevant
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3.1. Background

physical concepts of drifts, gyro-orbits and mirror motion. The vertical and radial motions of a

charged grain launched near the equatorial plane are initially decoupled and may be considered

independently (e.g. Northrop & Hill 1982). The physical parameter L∗, which describes the

ratio of the gravitational to electromagnetic force is introduced in §3.1 (previously referenced in

§1.2.2). The results of the simulations enable sets of trajectories to be characterised in §3.2.1, so

that stable and unstable regions in (L∗, rL) parameter space can be mapped out in §3.2.2.

There are several regions of instability within the parameter space that are studied in §§3.5.2,

3.5.3 and 3.6.2. The grain could escape the system, strike the planet at low or high latitude, or

remain in orbit. Such orbital outcomes can be studied through a local or global stability analy-

sis, depending on the distance to an equilibrium point. Stability boundaries can be determined

(semi–) analytically by working out for which parameters there exists an energetic barrier that

prevents the grain from colliding with the planet or escaping the system thus maintaining the

grain in orbit. Therefore, prior to describing the radial and vertical stability boundaries, the

potential in which the grain moves is described in §3.3. Following the study of the physical

parameters associated with the grain motions, the timescales of relevance are presented in §3.7

followed by a summary of the stability regions in §3.8.

Throughout this chapter, subscript g refers to gyromotion, c to guiding centre motion, L to

launch location and p to planet.

3.1 Background

Alfvén (1940, 1950) developed a perturbation theory describing guiding centre motion. For

highly charged grains, the essential features of motion can be described by a circular epicycle

superimposed on the drift of a guiding centre (e.g. Lehnert 1964). This theory is described in

§3.4.1.

Alongside a description of the relevant motions and physical quantities in the guiding centre

approximation, this chapter studies the stability of orbits of charged dust grains launched from

parent bodies in planetary ring systems. The act of seeking to compare the analytic and numer-

ical results necessitates the following simplifications: the dust grain charge qd is constant, the

magnetic fieldB is an aligned dipole, and only motion close to the equatorial plane is considered

for stability analysis. Once the simulation code (Chapter 2) has been verified by semi-analytical
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3. Orbital Motions of Charged Dust

solutions, more complicated physical scenarios for which there are no analytical solutions, for

example stochastic charging (Chapter 4), can be studied numerically.

The orbital outcomes of various dust populations will be studied numerically using the approach

of Jontof-Hutter (2012), by varying the parameters affecting the relative strengths of the grav-

itational and electromagnetic forces: the launch distance of the dust grain from the planet, rL,

and the charge-to-mass ratio, qd/md, of the dust grain. In this way, the behaviour of a dust grain

can be tracked systematically from a gravity-dominated regime through to an electromagnetic-

dominated regime. Interesting behaviour emerges in the intermediate regime, where limiting

cases do not apply and the guiding centre approximation breaks down (§3.4.1).

Before proceeding, a key physical parameter to consider is the ratio of the electromagnetic and

gravitational forces, this can be expressed in a variety of units. A straightforward choice is

C/kg, used by Northrop & Hill (1982). However, this can be unwieldy as the charge-to-mass

ratio varies with grain size, ad, for a given grain potential, φd (Eqs. 1.4, 1.5). Other authors

make this distinction and assume some constant grain potential across a range of different-sized

grains, for example (Howard et al. 1999; Mitchell et al. 2003):

qd
md

=
106φd

4πρda
2
d

esu g−1,

and, Schaffer & Burns (1994):

qdB

mdc
= 2.6× 10−6 (φd/V)(B/Gauss)

(ad/µm)2(ρd/g cm−3)
,

where ρd is the density of the grain. Alternatively, the frequencies associated with the principal

motions of a charged grain can be used in the discussion of the transition from gravitionally dom-

inated to electromagnetically dominated motion (Mendis et al. 1982), namely the gyrofrequency

Ωg, guiding centre frequency ωc, and planetary spin frequency Ωp (at which the magnetic field

lines are assumed to rigidly rotate).

In this work, an approach following Hamilton & Burns (1993) and Jontof-Hutter (2012) is cho-

sen, taking the ratio of the electric and gravitational forces as described in Eq. 1.3 and repeated

here,
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3.1. Background

L∗ =
qdg

1
0R

3
pΩp

mdGMp
,

which is dimensionless1 and independent of distance. Choosing a value for L∗ is equivalent to

choosing an electric potential, φd, grain size, ad, and grain density, ρd.

1As it is the ratio of two forces, it is dimensionless, noting that a Tesla (the unit for g10) can be expressed in
SI-derived units as kg A−1 s−2.
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3.2 Numerical Simulation Results

In order to give the analytical discussion of this work some context, it is helpful to initially

present numerical results, which were produced using the codes described in Chapter 2. In

this chapter, the L∗ of the grains were held constant, although time-variable charging will be

considered in Chapter 4. In order to study the long-term behaviour of charged dust grains acting

under planetary gravitational and magnetic fields, their trajectories were integrated for up to 0.1

years. Even in the simplest case of a constant-charge spherical grain in orbit around a spherical

homogeneous central planet with a centred aligned dipole magnetic field there are complex

regions of instability. Therefore, the simulation results are presented first in §§3.2.1 and 3.2.2,

which can be compared directly to the analytical/semi-analytical solutions, derived in §§3.5.2,

3.5.3 and 3.6.2.

3.2.1 Some Example Trajectories

To map out the behaviour of grains across a range of charge-to-mass ratios, L∗ (Eq. 1.3), and

launch positions, rL, it is helpful to first characterise some grain trajectories. The dynamics of

grains around Jupiter have also been included here, in addition to Saturn, for two reasons. Firstly,

so that any observed differences and similarities can serve to elucidate the important physical

processes at work, and secondly, so that the numerical method is checked against the literature

as Jupiter was the primary focus of Jontof-Hutter (2012)’s study. Figures 3.1 - 3.4 show some

illustrative trajectories for both Saturn and Jupiter, and for which their L∗, rL values have been

marked onto the stability maps of Figure 3.5 for reference. Figure 3.1 shows a reasonably highly

charged grain which remains in stable orbit close to the ring plane. An interesting resonance is

shown in Figure 3.2, where both the vertical and radial frequencies display beats. There are also

conditions which are unstable. Figure 3.3 shows a grain that collides with the planet at high

latitude, due to its high L∗ causing it to spiral up magnetic field lines. It is also possible for a

grain to be excited to high latitudes and remain in stable orbit, an example of which is shown in

Figure 3.4.
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Figure 3.1: Trajectory of a stable grain around Saturn, with charge-to-mass ratio of L∗ =

4.01, and initial launch position of rL = 1.43Rp. The grain’s bounce period is just under

twenty times longer than the gyroperiod.
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Figure 3.2: Trajectory of grain around Saturn, with charge-to-mass ratio of L∗ = −2.05,

and initial launch position of rL = 3Rp. This grain experiences a resonance between its

radial and vertical frequencies, |κc| = 2Ωb, described in §§3.5.2, 3.5.3 and 3.6.2.
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Figure 3.3: Trajectory of vertically unstable grain around Jupiter, with charge-to-mass ratio

of L∗ = 9.32, and initial launch position of rL = 1.88Rp. The grain’s vertical oscillations

grow until it collides with the planet.
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Figure 3.4: Trajectory of stable grain around Jupiter, with charge-to-mass ratio of L∗ =

0.42, and initial launch position of rL = 2.78Rp. Large radial oscillations excite large

vertical oscillations after about 10 days.



3.2. Numerical Simulation Results

3.2.2 Stability Maps of Saturn and Jupiter

In order to further test the numerical code (§2.4) and cover the parameter space in a system-

atic way following Jontof-Hutter (2012), 8000 simulations were run, for positive and negative

charges respectively, over a grid of 80 values of L∗ (Eq. 1.3) and 100 values of rL (launch posi-

tion), sampling a range of charge-to-mass ratios from gravity-dominated to electromagnetically-

dominated (L∗ = 0.01 - 100 on a log10-scale), and sampling launch positions from the planetary

surface to beyond the main ring system (rL = 1 - 3Rp on a linear scale). The dust grains were

initialised with the circular Kepler velocity of vK =
√

GMp

r , appropriate for icy regolith removed

from the parent ring bodies, and their trajectories followed for 0.1 years, as Jontof-Hutter (2012)

determined that all relevant dynamical timescales are < 0.1 years, and that the appearance of

the stability maps did not change appreciably over longer integration times. The results of these

16, 000 simulations for both Saturn and Jupiter are shown in Figure 3.5. The launch positions

of the grains were chosen to span the full extent of the main rings, and sample positions both

inside and outside synchronous orbit, Rsyn, the location where a grain orbiting at its Keplerian

velocity matches the rate at which the planet is spinning.

There are four orbital outcomes awaiting the dust grain; for reference, the designated colour key

in Figure 3.5 is included in parentheses:

- Stable (yellow).

The grain remains in orbit close to the ring-plane. An example of this is shown in Figure

3.1.

- Stable with large vertical excursions (light grey).

The grain remains in orbit and reaches latitudes exceeding λm. Examples of this are shown

in Figures 3.2 and 3.4.

- Radially unstable (black).

The grain either collides with the planet (r ≤ Rp) or escapes the system (r > 30Rp).

- Vertically unstable (dark grey).

The grain strikes the planet above a latitude threshold of λm = 5◦. An example of this is

shown in Figure 3.3.
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3.3. Hamiltonian and Potential

The stability boundaries derived by Northrop & Hill (1982), Horányi et al. (1993a), and Hamil-

ton & Burns (1993) are overplotted on the simulation results in Figure 3.5, and indicate that

further analysis is necessary to understand the rich and varied behaviour across the parameter

space, which is provided by the work of Jontof-Hutter & Hamilton (2012a), and described in

more detail in §§3.5.2, 3.5.3 and 3.6.2 .

The curves labelled NH82 were obtained by converting Northrop & Hill (1982)’s equation (10)

for the marginal stability radius, ρc, into the parameters of this work:

ρ3
c =

2

3

GMp(
Ωp − Ωp

3L∗

) . (3.1)

The L∗ = 1
2 radial stability boundary labelled HB93 is obtained by considering when the escape

velocity of Eq. 1.2, described in Hamilton & Burns (1993), is real-valued. Horányi et al. (1993a)

modelled the largest grain sizes that will remain tied to magnetic field lines as a function of

distance from Jupiter, and data from their Figure 2 is digitised and presented as curve H93 on

Figure 3.5.

In order to understand the various orbital outcomes observed in Figure 3.5, an analysis follow-

ing Jontof-Hutter (2012) is performed, and necessitates an understanding of the Hamiltonian

of the system, presented in §3.3. After the analysis in §§3.5.2, 3.5.3 and 3.6.2, a discussion of

the similarities/differences between the stable/unstable regions of Saturn and Jupiter follows.

The stability boundaries are summarised in Figure 3.20, and are overplotted on top of the nu-

merical results of Figure 3.5 in Figure 3.21 following a description of the theory in the next

sections.

3.3 Hamiltonian and Potential

The Hamiltonian for a dust grain of mass md and charge qd in orbit around a rotating magnetic

planet of mass Mp and radius Rp can be expressed (e.g. Iñarrea et al. 2004) as

H =
1

2md

(
~p− qd ~A

)2
+ U(~r), (3.2)
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3. Orbital Motions of Charged Dust

where ~r = (x, y, z) and ~p is the conjugate momentum of ~r. The scalar potential U(~r) contains

terms describing the gravitational and electric interactions, while the vector potential ~A describes

the magnetic forces.

For a magnetic dipole with strength |~m| = g0
1R

3
p aligned with the spin axis of the planet, the

vector field is:

~A =
~m× ~r
r3

, (3.3)

and as ~B = ~∇× ~A:

~B =
3(~m · ~r)~r

r5
− ~m

r3
. (3.4)

Under the assumption that the planet is surrounded by a conducting plasma, which rigidly rotates

with the planet at Ωp, there is a corotational electric field (e.g. Birmingham & Northrop 1979,

refer to §1.3.1), Eq. 1.37 repeated here for reference:

~E = −(~Ωp × ~r)× ~B.

If ~Ωp and ~m are aligned along z, then ~E = −|~m|Ωp(
x
r3
, y
r3
, 0) using Eq. 1.37. Further restricting

attention to motion in the equatorial plane, so that r2 = x2 + y2 := ρ2 (cylindrical radius), the

scalar electric potential can be found using qd ~E = −~∇Ψ:

∂

∂x

(
x2 + y2

r3

)
=

∂

∂x

(
1√

x2 + y2

)
= − x

r3
,

∂

∂y

(
x2 + y2

r3

)
=

∂

∂y

(
1√

x2 + y2

)
= − y

r3
,

∂

∂z

(
x2 + y2

r3

)
= 0,

so that Ψ = qd|~m|Ωp

(
x2+y2

r3

)
= qd|~m|Ωpψ. Using the expressions for the magnetic dipole

vector potential of Eq. 3.3 and dimensionless electric potential, | ~A| = Aφ = |~m|ρ
r3

and ψ = ρ2

r3
,

in cylindrical coordinates (ρ, φ, z), the Hamiltonian of Eq. 3.2 can be expressed as
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3.3. Hamiltonian and Potential

H =
1

2md
(p2
ρ + p2

z) +
1

2mdρ2
(pφ − qdρAφ)2 + U(r), (3.5)

where the canonical conjugate momentum is

pφ
md

= ρ2(φ̇+ Ωg), (3.6)

substituting in for the gyrofrequency,

Ωg =
qdB

md
=
qd|~m|
mdr3

. (3.7)

The potential, U(r) in Eq. 3.5, contains terms relating to the gravitational and corotational

electric field of the planet:

U(r) = −GMpmd

r
+
qd ~mΩpρ

2

r3
. (3.8)

Equation 3.5 can be expressed as

H =
p2
ρ + p2

z

2md
+ U(ρ, z), (3.9)

where the potential in terms of the cylindrical radius and vertical displacement is

U(ρ, z) =
1

2mdρ2

(
pφ − qd|~m|

ρ2

r3

)2

− GMpmd

r
+
qd|~m|Ωpρ

2

r3
. (3.10)

Equations 3.9 and 3.10 are directly equivalent to expressions 3 and 4 in Howard et al. (1999),

dividing through by md:

H =
H

md
=
ρ̇2 + ż2

2
+

1

2ρ2

(
pφ
md
− q|~m|ρ2

mdr3

)2

− GMp

r
+
q|~m|Ωpρ

2

mdr3

=⇒ H =
ρ̇2 + ż2

2
+

1

2ρ2

(
pφ
md
− Ωgρ

2

)2

− GMp

r
+ ΩgΩpρ

2. (3.11)

Then substituting for L∗ using the expression of 1.3, Eq. 3.11 can be written as
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3. Orbital Motions of Charged Dust

H =
ρ̇2 + ż2

2
+ Ue, (3.12)

where

Ue =
1

2ρ2

(
pφ
md
− L∗

GMpρ
2

Ωpr3

)2

+
GMp

r

(
L∗
ρ2

r2
− 1

)
, (3.13)

as stated in Jontof-Hutter (2012)’s equations (3.3) and (3.4).

Although some orbits are locally unstable, the grain could enter a region of parameter space

where its orbit is globally stable. With a global analysis in mind, the potential of Eq. 3.13 can

be manipulated into a more useful form, as given in §3.5.1.
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3.4. Azimuthal Motion

3.4 Azimuthal Motion

3.4.1 Guiding Centre Approximation

As introduced in §3.1, Alfvén (1940, 1950) developed a first order perturbation theory for the

motion of a charged particle in a magnetic field. This treats the motion as a superposition of

a relatively fast circular epicycle superposed around an equilibrium point, the guiding centre,

which itself drifts. This is illustrated in Figure 3.6. Highly charged grains are almost ‘tied’ to

magnetic field lines, that is, they gyrate in tight fast orbits around the field lines which orbit at

Ωp (e.g. Mendis et al. 1982).

Figure 3.6: The guiding centre model. The charged grain (yellow point) gyrates in an

epicycle of size rg at frequency Ωg around the guiding centre (small black point), which

is located at a distance of ρc from the central planet (large black point) and drifts with

frequency ωc. The planet itself rotates at Ωp, and the magnetic field lines are assumed to

rotate rigidly at this rate. Snapshots for some past instances are indicated by progressively

fainter drawings.
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3. Orbital Motions of Charged Dust

The planet’s magnetic field defines a direction. It is constructive to consider the motion of the

grain parallel and perpendicular to ~B, which is :

~F‖ = md

d~v‖

dt
(3.14a)

qd(~v⊥ × ~B) + ~F⊥ = md
d~v⊥
dt

, (3.14b)

where ~F is any external force field which interacts with the grain, with longitudinal component
~F‖ =

~F · ~B
B and transverse component ~F⊥ =

~F× ~B
B . The overall motion of the grain is composed

of a constant velocity in the ‖ direction and a circular motion in the ⊥ direction, resulting in a

spiral in the non-rotating frame. In Figure 3.6, a relatively slow Ωg has been sketched for clarity

and therefore a loose spiral would be traced out by the grain.

Equation 3.14b can be further separated into gyratory motion about the field line (subscript g)

and motion relative to the field line about a guiding centre (subscript c), as ~v⊥ = ~vg +~vc, so that

the Lorentz accelerations perpendicular to ~B can be written as

md
d~vg
dt

= qd(~vg × ~B), (3.15a)

md
d~vc
dt

= qd(~vc × ~B) + ~F⊥. (3.15b)

Since the magnetic dipole will be aligned with z for the sake of analysis (pointing out of the page

in Figure 3.6), the ⊥ direction is synonymous with azimuthal gyromotion, v⊥ → vg. Equating

the magnitude of the Lorentz force to the centripetal force in Eq. 3.15a results in a expression

for vg =
qdrgB
md

and an expression for the gyrofrequency:

Ωg =
qdB

md
. (3.16)

The perturbation theory of Alfvén (1940, 1950) holds under the assumption that the magnetic

field variations in space, ∂xj , and time, dt, are small within a gyroradius and a gyroperiod, that
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3.4. Azimuthal Motion

is

rg �
∂Bj
∂Bj
∂xk

, (3.17a)

1

Ωg
� ∂Bj

dBj
dt

. (3.17b)

3.4.2 Drifts

Equation 3.15a describes the Larmor motion of the epicycle, while Eq. 3.15b describes the

motion of the guiding centre, which can be described as

~vc =
~F⊥ × ~B

qdB2
, (3.18)

assuming that the drift velocity is constant in time.

Figure 3.7: The guiding centre, indicated by the black point, drifts due to the variation in
gyroradius over the course of a gyration: rg → rg

′
. The magnetic field, ~B, points into

the page. The regions of the gyration labelled rg (below the dashed line) have reduced
gyroradius (and slower velocities) compared to those labelled rg

′
.

The presence of an additional force, ~F⊥, causes the grain to undergo variations in velocity as it

executes gyrations. At some points in the grain’s orbit, ~F⊥ will act in the same direction as the

Lorentz force, causing a larger gyroradius and acceleration, whilst at other points in the gyro-

orbit ~F⊥ will oppose the Lorentz force, causing a smaller gyroradius and deceleration. Once

the periodic variation in gyroradius is averaged over, a net drift remains because the gyro-orbit
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3. Orbital Motions of Charged Dust

does not quite close. This is illustrated in Figure 3.7, showing how the velocity vector has a

leftward component, ~F × ~B, during the half of the gyro-orbit where velocity is fastest (labelled

rg
′
).

For a charged grain in a planetary gravitational and magnetic field, the sources of ~F⊥ to consider

are the gravitational attraction of the planet, ~F⊥ = md~g, and the corotational electric field of Eq.

1.37, ~F⊥ = qd ~E:

~vG =
md~g × ~B

qdB2
, (3.19)

~vE =
~E × ~B

B2
. (3.20)

In the case of Saturn and Jupiter, ~E points radially outward, and explains the observations of

dust streams (§1.2.2).

Analogously, a variation in the strength of the magnetic field causes a drift in a direction perpen-

dicular to both the field and the direction in which the field increases (Lehnert 1964):

~v∇ =
1

2B2

v2
⊥

Ωg
( ~B × ~∇B), (3.21)

as regions of stronger magnetic field strength cause the grain to exhibit smaller gyro-orbits and

vice versa, and causing the gyro-orbit to not quite close, as illustrated in Figure 3.7.

In addition, vertical motion along the curved magnetic field lines results in centrifugal forces

(Jontof-Hutter 2012) and causes a drift perpendicular to both the centrifugal force and the mag-

netic field. This effect is weak close to the equatorial plane and will not be considered here in

detail. The drifts of Equations 3.19, 3.20 and 3.21 are illustrated in Figure 3.8.
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3.4. Azimuthal Motion

Figure 3.8: Various types of drifts for positively and negatively charged grains: (a) in
the absence of a perturbing force, the grain exhibits gyromotion alone – the Ωg motion
described in Figure 3.6; (b) ~E × ~B drift of Eq. 3.20; (c) ~g × ~B drift of Eq. 3.19; (d) ~∇B
drift of Eq. 3.21, from Alfvén (1950) with minor alteration of symbol H → B.
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3. Orbital Motions of Charged Dust

3.4.3 Orbital Velocity of the Guiding Centre

The guiding centre’s orbital frequency, ωc, is the result of the net effect of the drifts described

in §3.4.2. The equilibrium point is the guiding centre of epicyclic motion and an expression can

be derived from considering the stationary points of the potential. Beginning with the potential

of Eq. 3.13, substituting for pφ
md

= ρ2
c(ωc + Ωgc), the canonical conjugate momenta for grains at

the guiding centre, and evaluating in the equatorial plane (r → ρ), gives the potential in a more

useful form:

Ue =
1

2

ρ4
cω

2
c

ρ2
+
ρ4
cω

3
cL∗

Ωpρ2
− ρ2

cωcGMpL∗
Ωpρ3

+
ρ4
cω

4
cL

2
∗

2ρ2Ω2
p

− ω2
cρ

2
cL

2
∗GMp

ρ3Ω2
p

+
G2M2

pL
2
∗

2Ω2
pρ

4
+
GMpL∗

ρ
− GMp

ρ
.

(3.22)

The derivative of the potential, Eq. 3.22, is

∂Ue

∂ρ
= −ρ

2
cω

2
c

ρ3

(
ρ2
c + 2

ρ2
cωcL∗
Ωp

+
ρ2
cω

2
cL

2
∗

Ω2
p

)
− GMp

ρ2

(
L∗ − 1− 3

ρ2
cωcL∗
ρ2Ωp

− 3
ρ2
cω

2
cL

2
∗

ρ2Ω2
p

+ 2
GMpL

2
∗

Ω2
pρ

3

)
,

(3.23)

and making substitutions of ∂U
e

∂ρ

∣∣
ρ=ρc,z=0

= 0 and ωc =
√

GMp

ρ3c
, so that at equilibrium,

ρcω
2
c +

GMpL∗
ρ2
c

(
1− ωc

Ωp

)
− GMp

ρ2
c

= 0, (3.24)

which is in agreement with Jontof-Hutter & Hamilton (2012a).
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Figure 3.9: Drift rates for highly charged grains launched inside, and close to, synchronous

orbit (rL = 0.98Rsyn) around Saturn, expressed in the corotating frame, reproducing

Jontof-Hutter (2012)’s Figure 3.12. The analytical solutions for azimuthal motion are plot-

ted as curves: the lowermost red dot-dashed shows ~g × ~B drift, Eq. 3.19; the uppermost

yellow dotted curve shows ~∇B drift, Eq. 3.21; the dashed blue curve is a superposition of

the ~∇B and gravity drifts; and the solid black curve shows the guiding centre’s motion in a

gravitational and rotating magnetic field, ωc, Eq. 3.24. Numerical simulations are indicated

by markers, with open symbols indicating no planetary rotation. Circles indicate that only
~B terms were included, squares that only ~g field terms were included, triangles that both ~g

and ~B terms were included. The filled diamonds indicate simulation runs performed with

gravitational and magnetic field terms for a rotating planet.

Twenty simulations were run to check numerical results against the drift equations 3.19, 3.20,

3.21, and 3.24. Figure 3.9 shows good agreement between the numerical and analytical results,

and confirms Jontof-Hutter (2012)’s results. The drift rates in Figure 3.9 are relative to the
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3. Orbital Motions of Charged Dust

magnetic field, this can be seen in how the very highly charged grains’ drift rates in Figure 3.9

tend to zero, as those grains are ‘tied’ to the field lines. The expressions given by Equations

3.21 and 3.19 are relative to the magnetic field lines, whereas the simulations were performed

in an inertial frame centred on the planet, and therefore a correction of (−Ωpt) was necessary

to transform the azimuthal angular displacement of the grains to the magnetic field’s corotating

frame. The−Ωpt correction was unnecessary for the simulations with only ~∇B and ~g× ~B drifts,

as those contain no rotating field terms. Note that Figure 3.9 does not include an ~E × ~B drift of

Eq. 3.20 as there is no electric field in the corotating frame (§1.3.1).
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Figure 3.10: As for Figure 3.9, but for grains launched further away from synchronous

orbit with rL = 0.7Rsyn.

As it will be described in §3.5.1, the gyroradii are small near synchronous orbit: as rL →
Rsyn, nL → Ωp =⇒ rg → 0, Eq. 3.26, and therefore the epicyclic approximation of §3.4.1

holds. However, further from Rsyn the conditions of 3.17 no longer hold, as the gyro-orbits
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3.5. Radial Motion

of the grains are larger than the characteristic scales for variations in the magnetic field (3.17).

This leads to poorer agreement between ωc curve of Eq. 3.30 and the simulated results, as

demonstrated in Figure 3.10.

3.5 Radial Motion

3.5.1 Gyroradius

Following Jontof-Hutter (2012)’s method, the potential of Eq. 3.13 can be written as a polyno-

mial by straightforward algebraic manipulations, substituting in for the gyrofrequency evaluated

at the launch position, ΩgL =
L∗n2

L
Ωp

, and the Keplerian orbital frequency at the launch position,

n2
L =

GMp

r3L
:

Ue(r, L∗) =
GMp

rL

(
A
r4
L

r4
+B

r3
L

r3
+ C

r2
L

r2
+D

rL
r

)
. (3.25)

The dimensionless coefficients of Eq. 3.25 are

A =
n2
LL

2
∗

2Ω2
p

, B = −nLL∗
Ωp

(
nLL∗

Ωp
+ 1

)
, C =

1

2

(
nLL∗

Ωp
+ 1

)2

, D = L∗ − 1.

Expressed in this manner, Ue is in a more useful form for stability analysis, refer to §§3.5.2,

3.5.3 and 3.6.2.

The size of the epicycles can be approximated by solving, to first-order, the distance to the

minimum ∂U
∂r

∣∣∣
ρ=ρc,z=0

= 0. Differentiating Eq. 3.25 with respect to r, taking r → ρc, drop-

ping higher order terms since the gyroradius is much smaller than the launch radius, rg � rL,

substituting for ΩgL (using Equations 1.3 and 3.16) and eliminating L∗ =
ΩpΩgL
n2
L

results in an

expression for the gyroradius:

rg =
rL(Ωp − nL)ΩgL

Ω2
gL − ΩgL(3Ωp + nL) + n2

L

, (3.26)

which is a signed quantity, and only depends on parameters known at launch, denoted by sub-

script L (Jontof-Hutter 2012). Note the gyrofrequency of Eq. 3.16 evaluated at the launch
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3. Orbital Motions of Charged Dust

distance rL can be expressed in terms of the Kepler orbital frequency, nL:

ΩgL =
n2
LL∗
Ωp

. (3.27)

(a) Negative (top) and positive (bottom)
grains launched at rL = 1.6RS.

(b) Negative (top) and positive (bottom)
grains launched at rL = 2.2RS.

Figure 3.11: Total radial range of grains launched at rL, with Keplerian velocity vK =√
GMp

rL
around Saturn; the left hand plot shows results for grains launched inside Rsyn, the

right hand plot for outside Rsyn. Analytical results, Eq. 3.26, are shown as solid curves,
numerical simulation results are given by points. The blue cross indicates the location of
the maximum radial excursion given by Eq. 3.28. Synchronous orbit is denoted by dashed
line.

The assumptions under which Eq. 3.26 was derived hold in the Lorentz and Kepler limits, where

the gyroradius is small, but not for intermediate L∗. The validity of the epicyclic approximation

(3.17) does not hold far away from Rsyn. The work of Mendis et al. (1982) and Mitchell et al.

(2003) found that positive grains with intermediate-sized charge-to-mass ratios exhibited large

non-circular epicycles. Therefore, it is anticipated that the first-order expression of Eq. 3.26

will not recover the true behaviour of such grains, and this is explored further in §3.5.3. This is

illustrated in Figure 3.11, plotting the radial range of motion 2rg over a range of charge-to-mass

ratios both inside and outside synchronous orbit.

The turning points of Eq. 3.26 can found by solving drg
dL∗

= 0, and are indicated in Figure

3.11,
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For L∗ < 0: L∗ = −Ωp

nL
, r−g =

rL
3

(
nL − Ωp

nL + Ωp

)
(3.28)

For L∗ > 0: L∗ = +
Ωp

nL
, r+
g =

rL(Ωp − nL)

nL − 3Ωp
. (3.29)

Given the ellipticity of epicycles for positive grains, although Eq. 3.28 does a good job of

describing a negatively-charged grain’s maximum excursion, Eq. 3.29 does not describe a

positively-charged grain’s radial range well.

3.5.2 Local Radial Stability

For a grain to be radially stable, it must exhibit epicyclic motion about the guiding centre

(§3.4.1). That is, it must gyrate about an equilibrium point (guiding centre, §3.4) determined

by taking the derivative of the potential: ∂U
∂ρ = 0. The epicyclic frequency, κc, is that at which

the grain oscillates radially.

The grains under study are those launched from parent main ring bodies, and therefore the equa-

torial equilibrium points are considered. The stability is determined by considering the nature

of the equilibria: if ∂2U
∂ρ∂z

∣∣∣∣
ρ=ρc,z=0

= 0, r → ρ, then stability against radial or vertical per-

turbations depends on the signs of ∂2U
∂ρ2

and ∂2U
∂z2

, respectively (Northrop & Hill 1982). As the

parent ring bodies themselves are unaffected by electromagnetic forces and hence the grains

will be launched with an initial Keplerian velocity, it is important to distinguish between physi-

cal quantities evaluated at the Kepler launch position and those at the guiding centre, following

Jontof-Hutter (2012): subscript c denotes the guiding centre, and subscript L denotes the launch

position. As in the previous sections, the magnetic field of the planet is treated as an aligned

centred dipole. Cases where the oscillations about the equilibria remain small are locally sta-

ble, the case which will be presented in this section, but there are also cases where the grain

experiences large radial excursions (§3.5.1), and for those a global stability analysis is necessary

(§3.5.3).

Stability requires the existence of an equilibrium point. Local stability of the guiding centre

is determined using ∂2U
∂ρ2

∣∣∣∣
ρ=ρc,z=0

= 0. Equation 3.24 in §3.4.3 can be solved straightfor-

wardly:
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ωc± =
1

2ρc

GMpL∗
ρ2
cΩp

±

√(
GMpL∗

Ωpρ2
c

)2

− 4GMp

ρc
(L∗ − 1)

 . (3.30)

The number of solutions is determined in the usual manner; when the discriminant of the

quadratic in ωc given by Eq. 3.24 is positive there are two real roots:

(
GMpL∗

Ωpρ2
c

)2

− 4GMp

ρc
(L∗ − 1) > 0. (3.31)

A condition which satisfies the inequality of 3.31 is L∗ < 1. Therefore there are no local radially

unstable orbits for negatively charged grains. To consider the stability criteria for positive grains,

if L∗ > 1 then there are only two real roots (that is, two equilibrium points) if the condition of

3.31 holds, namely,

(
ρc
Rsyn

)3

<
L2
∗

4(L∗ − 1)
, (3.32)

where Ωp =
√

GMp

R3
syn

.

Inside synchronous orbit, Rsyn, the left hand side of Eq. 3.32 < 1 and so two equilibria always

exist. As ρc increases to greater distance from the planet away from Rsyn, there are fewer L∗

values for which the inequality of 3.32 holds and so the region of local instability extends upward

from Rsyn to include an larger range of charge-to-mass values, Figure 3.5.

For a local radial stability analysis, large oscillations are neglected and only small amplitude

motion near the guiding centre are considered,

ρ̈+
∂2U

∂ρ2
ρ = 0. (3.33)

Small radial motions are stable when the second derivative is positive: ∂2U
∂ρ2

∣∣∣∣
ρ=ρc,z=0

= κ2
c > 0.

An expression for the epicyclic frequency,

κ2
c = ω2

c − 4ωcΩgc + Ω2
gc, (3.34)
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is given in Mendis et al. (1982), noting that they use the opposite sign convention for the gy-

rofrequency, which is evaluated at the guiding centre, similarly to Eq. 3.27:

Ωgc =
n2
cL∗
Ωp

=
qdB

md
. (3.35)

In the Kepler limit, κc → nc, the expected behaviour of the grain’s frequencies converging to

the gravitational limit and the epicyclic ellipse has a minor to major axis ratio of 1
2 (Mendis

et al. 1982). In the Lorentz limit, κc → Ωgc and ωc → Ωp, and the general elliptical epicycle

reduces to a circle, the well-known behaviour of gyrating ions and electrons about a magnetic

field line. In both these limiting cases, the radial excursions are small and, because κ2
c > 0,

radially stable.

A local stability analysis is also applicable where a grain’s gyrations are small near synchronous

orbit. This occurs because electromagnetic forces are small, due to the relative velocity of the

grain to the magnetic field being small near Rsyn. Substituting ωc = nc = Ωp into Eq. 3.35

gives

κ2
c = Ω2

p(1− 4L∗ + L2
∗) for ρc = Rsyn. (3.36)

Setting expression 3.36 equal to zero and solving the quadratic shows that grains with 2−
√

3 <

L∗ < 2 +
√

3 close to Rsyn are locally unstable.

3.5.3 Global Radial Stability

As discussed by Mendis et al. (1982), positive grains with an intermediate charge-to-mass ratio

exhibit large radial excursions. This can be seen in Figure 3.11. Therefore, there are regions in

the (L∗, rL) parameter space, in-between the Lorentz and Kepler limiting cases, for which the

small radial amplitude oscillations of Eq. 3.33 does not hold and hence a local radial stability

analysis (§3.5.2) is not valid.

In order to perform a more comprehensive stability analysis, it is necessary to return to the quar-

tic potential expression of 3.25 to determine globally stable equilibria. There are two possible

unstable outcomes: either the dust grain escapes the system (part a) of this section) or collides

with the planet (part b) of this section). The A coefficient term of Eq. 3.25, which goes as r4L
r4

,

dominates as the distance to the planet decreases (the grain is, of course, launched outside of
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the planet making rL
r > 1). Close to the planet, U(r → 0, L∗) → +∞, and for distant grains,

U(r →∞, L∗) → 0. Therefore, the potential can have at most two local minima and one local

maximum (recalling its quartic form), and this overall shape of the potential curve is useful to

bear in mind when considering the stability of orbits and which state is energetically favourable.

Orbital stability is determined by whether or not there exists a potential barrier preventing the

grain from either colliding with the planet or from escaping the system.

Escape or collision with the planet is the unstable outcome when the launch location is outside

or inside of synchronous orbit respectively, as this determines the direction in which the Lorentz

force acts (positive grains’ radial ranges are displaced away from Rsyn, while negative grains’

radial ranges are relatively small and cannot reach Rsyn, Figure 3.11). The potential prohibits

grains launched with Kepler initial conditions from crossing synchronous orbit. Each of the

radially unstable outcomes will be considered in turn.

a) Global Radial Instability: Escape the System

A system seeks the lowest energy state. Substituting in r = rL in Eq. 3.25 gives the launch

potential:

U(rL, L∗) =
GMp

rL

(
L∗ −

1

2

)
. (3.37)

If the launch potential is greater than the potential as it approaches infinity then it is energetically

favourable for the grain to escape; the instability criterion is U(rL, L∗) > U(r → ∞, L∗). By

Eq. 3.37, with L∗ > 1
2 the grain is able to escape. This agrees with what was described in §1.2.2,

considering when the escape velocity, Eq. 1.2, is real-valued. That is to say, all the escaping

grains are positively-charged.

For moderately-charged grains outside synchronous orbit, the potential given by Eq. 3.25 de-

creases monotonically (due to the dominant B coefficient term, which is negative) for L∗ & 1
2 ,

and therefore L∗ = 1
2 is a globally stable boundary, as for any higher charge-to-mass ratio it is

not energetically favourable for the grain to escape.

Things are slightly more complicated for more highly-charged grains (larger L∗, smaller grains)

as the potential U(r, L∗) has local extrema which can be larger in magnitude than the height of
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the launch potential. Stability is determined by the relative height of the local maximum. For

L∗ ∼ 1, there is no maximum, but as L∗ increases, the potential does exhibit such a curve, refer

to Figure 3.12.

Whether escape actually occurs depends on the shape of the potential; if there exists a potential

maximum outside of the planet which is larger than the launch potential, then the grain will

remain in stable orbit because it is prevented from leaving the system, as shown by the blue dot-

ted curve of Figure 3.12. An example of an escaping grain, where the launch potential exceeds

the grain’s potential at its orbital distance, is shown in the green dashed curve of Figure 3.12.

The orange solid curve of Figure 3.12 illustrates a critical case, where the grain’s potential at its

orbital distance equals the launch potential, Eq. 3.37, and provides the stability boundary.

Figure 3.12: Three example potential wells for a launch position outside of synchronous
orbit, rL = 2.4Rp (indicated by black point). The grains’ potentials are scaled by the
launch potential. The location of the stationary point, U(rstat, L∗), for each potential is
indicated by the coloured crosses. The green dashed curve (L∗ = 7.58) illustrates an
escaping grain with U(rstat, L∗) < U(rL, L∗); the orange solid curve (L∗ = 7.65) shows
the critical case of U(rstat, L∗) = U(rL, L∗); the blue dotted curve (L∗ = 7.72) shows a
stable bound orbit with U(rstat, L∗) > U(rL, L∗).

Following Jontof-Hutter (2012)’s procedure, and forcing the potential to have a root at r = rL

by taking

U(r, L∗)− U(rL, L∗) = 0, (3.38)
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it is possible to determine the (rL, L∗) values for which U(r, L∗) = U(rL, L∗). The remaining

roots can be found from the cubic expression

U(r, L∗)− U(rL, L∗)

(r − rL)
. (3.39)

The critical quartic of U(r, L∗), an example given by the orange solid curve in Figure 3.12,

where the turning point is a local maximum and equals U(rL, L∗), is found in a semi-analytical

fashion.

The bisection method is used to search for where the peaks of the cubic functions, given by

expression 3.39, are zero, refer to Figure 3.13. For a given launch location, rL, the bisec-

tion method divides up the L∗ parameter space, looking for where the peak of expression 3.39

changes sign within a small enough tolerance, so that the root can be approximated. The local

peaks are themselves obtained numerically, using a method which searches for rising or falling

values either side of the r value in question. This process is repeated for all launch locations so

that a curve delineating the stability boundary of radial escape in (rL, L∗) space can be deter-

mined.

Figure 3.13: Some illustrative curves describing the method used to determine the crit-
ical quartic (described in the main text) for a grain launched outside synchronous orbit
at rL = 2.4Rp; the colour/line-style key is the same as in Figure 3.12 and refers to
L∗ = 7.58, 7.65, 7.72, although the method tries other L∗ values in refining its search.
The critical L∗ = 7.65 (solid orange curve) has a stationary point (denoted by cross) lo-
cated at the launch potential, indicated by the dashed lines, U(rstat, L∗) = U(rL, L∗) at
rstat = 2.82Rp.
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b) Global Radial Instability: Collide With Planet

The other radially unstable possibility is that the grain crashes into the planet. Although the

potential, given by Eq. 3.13, varies with latitude, for simplicity only motion close to the equa-

torial plane is considered. A similar approach to §3.5.3a) is used, essentially using energy con-

siderations to determine which parameters create a state that causes grains to move inward of

r = Rp.

Figure 3.14: Potential wells for grains launched inside of synchronous orbit (rL = 1.6Rp
indicated by black point), with notional peaks occurring inside the planet. The value of
the potential at the planetary surface is indicated by the corresponding coloured cross. The
blue dotted curve (L∗ = 0.0983) shows a stable orbit, for which U(Rp, L∗) > U(rL, L∗).
The green dashed curve (L∗ = 0.0995) shows an unstable orbit, where it is energetically
favourable for the grain to fall onto the planet, U(Rp, L∗) < U(rL, L∗). The orange solid
curve (L∗ = 0.0988) shows the critical stability boundary, where U(Rp, L∗) = U(rL, L∗)

Recalling that grains withL∗ < 1
2 remain in orbit, the radial instability analysis needs to consider

positively charged grains. The potential of Eq. 3.25 for positively-charged grains decreases in

strength as r decreases inward away from rL. This is due to the
(
rL
r

)
term in Eq. 3.25 being

greater than unity, so that the negative cubic B coefficient term causes the potential to decline

as r → Rp. The potential does not increase in this radial range [Rp, rL] and therefore there is at

most one local potential maximum inside of the launch location. Thus, there are two scenarios

in which a potential barrier exists that prevents the grain from crashing into the planet. The first

is illustrated by Figure 3.14, with U(Rp, L∗) ≥ U(rL, L∗), this is where the grain can remain in

stable orbit in an energy state that is lower than that at the planet’s surface. The second scenario
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is illustrated by Figure 3.15 , with U(rstat, L∗) ≥ U(rL, L∗), this is where there exists a local

maximum exterior to the planet inside of the launch location which is greater than the launch

potential.

Figure 3.15: Potential wells for grains launched inside of synchronous orbit (rL = 1.8Rp
indicated by black point), with peaks occurring outside the planet. The value of the
potential peak is indicated by the corresponding coloured point marking the stationary
point at rstat. The blue dotted curve (L∗ = 0.1255) shows a stable orbit, for which
U(rstat, L∗) > U(rL, L∗). The green dashed curve (L∗ = 0.1275) shows an unstable
orbit, where it energetically favourable for the grain to fall onto the planet, U(rstat, L∗) <
U(rL, L∗). The orange solid curve (L∗ = 0.1266) shows the critical stability boundary,
where U(rstat, L∗) = U(rL, L∗).

For the first case (an example illustrated by Figure 3.14), for which the stability criterion is

U(Rp, L∗) = U(rL, L∗), given by the solid orange curve, it is possible to write a quadratic

expression in L∗ by substituting r = Rp, rL into Eq. 3.25 and setting those expressions

equal:

n2
Lr

2
L

2Ω2
pR

2
p

(
rL
Rp
− 1

)
L2
∗ +

(
1−

nLr
2
L

ΩpR2
p

)
L∗ +

1

2

(
rL
Rp
− 1

)
= 0. (3.40)

Given that Eq. 3.40 is quadratic and there are certain charge-to-mass ratios for which the dis-

criminant is greater than 0, there are two stability boundaries which can be obtained analyti-

cally:
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L± =
Ωp

(
Rp
(
R2
pΩp − nLr2

L

)
±
√
R3
p (RpΩp − nLrL)

(
R2
pΩp +RpnLrL − 2nLr2

L

))
n2
Lr

2
L (Rp − rL)

.

(3.41)

It should be noted that the stability boundaries given by Eq. 3.41 have only taken into account the

cases where the potential peak occurs within the planet. Figure 3.15 illustrates cases where the

potential peak occurs between the planet and launch location. In such cases, radial instability

can occur where U(rstat, L∗) < U(rL, L∗), as indicated by the green dashed curve in Figure

3.15. This additional condition for instability can be solved in a similar fashion to that described

for escape in §3.5.3a).

Figure 3.16: Some illustrative curves describing the method used to determine the critical
quartic (described in the main text of this section) for a grain launched inside synchronous
orbit at rL = 1.8Rp; the colour/line-style key is the same as in Figure 3.15 and refers
to L∗ = 0.1255, 0.1266, 0.1275, although the method tries other L∗ values in refining its
search. The critical L∗ = 0.1266 (solid orange curve) has a stationary point (denoted by
cross) located at the launch potential, indicated by the dashed horizontal line U(rstat, L∗) =
U(rL, L∗) at rstat = 1.11Rp.

As before, define a quartic expression for the potential which has a root at r = rL by design

using expression 3.38. By factoring out (r − rL), the remaining roots can be located using the

cubic function 3.39. The critical quartic of U(r, L∗), an example given by the orange curve in

Figure 3.15, occurs where the stationary point is a local maximum and equals U(rL, L∗). This

critical quartic is found in a semi-analytic manner, by using the bisection method to search for

where the minima of the cubic functions (3.39) are zero, refer to Figure 3.16. For a given launch
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location, rL, the bisection method divides up the L∗ parameter space, looking for where the

minimum of the cubic 3.39 changes sign within a small enough tolerance of zero.

The local minima are themselves obtained numerically, using a method which searches for rising

or falling values either side of the r value in question. This process is repeated for all launch

locations so that a curve delineating the stability boundary of radial escape in (rL, L∗) space

can be determined. However, Jontof-Hutter (2012) note that corrections to the expressions of

3.41 are actually only necessary near Rsyn, close to where the potential maximum is located at

the planetary surface, U(Rp, L∗) = U(rL, L∗), intermediate between the two cases illustrated

by Figures 3.14 and 3.15. This correction is shown by the black dotted curve of Figure 3.20 for

qd > 0.

3.6 Vertical Motion

3.6.1 Mirror Motion

The configuration of a centred aligned magnetic dipole is azimuthally symmetric and varies

in field strength from weakest at the equatorial plane to strongest at the poles. Cylindrical

coordinates (r, φ, z) are a natural choice as the symmetry can be exploited: ∂Bφ
∂φ = 0, when

z points along the axis of symmetry. Taking the divergence (Gauss’s law),

1

r

∂

∂r
(rBr) +

∂Bz
∂z

= 0. (3.42)

Integrating Eq. 3.42 enables the radial component of the magnetic field to be obtained:

Br = −1

2
r
∂Bz
∂z

, (3.43)

valid so long as Bz is not a function of r (not the case everywhere, but a reasonable approxima-

tion in some small regions).

The z component of the Lorentz force for a grain gyrating with a gyroradius rg around a field line

is −qdvφBr. Substituting for Br using Eq. 3.43, and noting that the φ-velocity for ± charged

grains is in the ∓ φ-direction so that vφ = ∓v⊥ gives
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FLz = ∓qd
2
v⊥rg

∂Bz
∂z

. (3.44)

Then substituting for the gyroradius, rg = mdv⊥
qdB

:

FLz = ∓
1
2mdv

2
⊥

B

∂Bz
∂z

, (3.45)

and using v⊥ = rgΩg and Ωg = qdB
md

gives

FLz = ∓qd
2
r2
gΩg

∂Bz
∂z

. (3.46)

The magnetic moment, µ, of the gyrating grain is the current multiplied by the area encircled; by

introducing factors of π, the constant term of expression 3.46 can be written in a more elucidating

manner,

± qd
Ωg

2π
πr2

g =: µ. (3.47)

From Eq. 3.46, the z component of the motion of the charged grain, Eq. 3.14a, can be ex-

pressed

FLz = md

dv‖

dt
= −µ∂Bz

∂z
, (3.48)

taking the same definition of ‖ along the B field, which is assumed to be a centred aligned

dipole so that in the equatorial plane it points along z. The rate of change of the kinetic energy

associated with the longitudinal motion is

d

dt
(
1

2
mdv

2
‖) = md

dv‖

dt
v‖ = −µdB

dt
, (3.49)

by using the chain rule and Eq. 3.48.

The kinetic energy of a charged grain cannot change in a static magnetic field (or equivalently

in an azimuthally symmetric field rotating about its axis), that is, the sum of the kinetic energies

associated with the longitudinal and transverse motions remains constant:
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d

dt
(
1

2
mdv

2
‖) +

d

dt
(
1

2
mdv

2
⊥) = 0. (3.50)

Manipulating expressions 3.45, 3.48 and 3.49, leads to

− µdB
dt

+
d

dt
(µB) = 0, (3.51)

and therefore

dµ

dt
= 0. (3.52)

The magnetic moment is conserved during the motion of the guiding centre, and is known as

the first adiabatic invariant. This conservation result of Eq. 3.52 was used as a test for the

numerical integrators (§2.4). From Equations 3.45 and 3.48, µ =
1
2
mdv

2
⊥

B , so that in order for

µ to be constant when the grain moves into regions of stronger B, the transverse kinetic energy

has to increase. However, the transverse kinetic energy can never exceed the total kinetic energy

and therefore when the grain travels into a region of sufficiently strong B such that the kinetic

energy is totally associated with its transverse motion, the grain cannot continue in the same

direction and is reflected back. Hence the term magnetic mirror. When encountering stronger

fields towards the poles of the planet, charged grains are reflected back towards the equatorial

plane, this can initiate an oscillation between the poles, with a characteristic bounce period,

which is discussed in §3.6.2.

3.6.2 Local Vertical Stability

For a grain to be vertically stable, it must exhibit bounce motion without colliding with the planet

(§3.6.1). That is, it must move about an equilibrium point determined by taking the derivative

of the potential: ∂U
∂z = 0. Northrop & Hill (1982) first studied the vertical stability of grains,

and their work was developed by Jontof-Hutter (2012). Equation (9) of Northrop & Hill (1982)

describes the square of the bounce frequency,

Ω2
b =

∂2U

∂z2

∣∣∣∣
ρ=ρc,z=0

= 3ω2
c − 2n2

c , (3.53)
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where the substitutions n2
c =

GMp

ρ3
, v = ρωc have been used to convert to the notation of this

thesis. In an similar analysis to the radial stability sections, §§3.5.2, 3.5.3, by considering the

sign of the second derivative of the potential, when Eq. 3.53 is positive then the grain is stable

against vertical perturbations. Global vertical stability analysis, involving larger oscillations and

non-circular gyro-orbits is beyond the scope of this work.

When Ω2
b < 0, the grain is unstable. The first term of Eq. 3.53 is centrifugal, the second term is

gravitational. The gravitational term is negative and therefore acts to destabilise the grain. This

can be understood intuitively by considering the curvature of the dipole magnetic field lines of

the planet, explained in Figure 3.17.

Figure 3.17: A grain moving away from the equatorial plane along a magnetic field
line moves closer to the planet due to its curvature, and therefore the grain experiences
a stronger gravitational force due to the inverse square law. Since the gravitational term in
Eq. 3.53 is negative, this shifts Ω2

b towards negativity and hence instability.

Northrop & Hill (1982) derive an expression for the marginal stability radius (by setting Ω2
b = 0)

for negative grains,

ρ3
crit =

2

3

GMp(
Ωp − GMp

3
mc
qµ

)2

=
2

3

GMp(
Ωp − Ωp

3L∗

)2 , (3.54)
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where the first line of Eq. 3.54 uses the notation and units of Northrop & Hill (1982), so there

is an additional factor of c. The work of Northrop & Hill (1982) enables an understanding

of vertical instability for high charge-to-mass ratios in the absence of magnetic mirror forces,

whilst the work of Jontof-Hutter (2012) develops an understanding for all charge-to-mass ratios

with additional terms accounting for more complicated forces, these scenarios are discussed in

turn.

a) Vertical Instability: Highly Charged Grains

In the Lorentz limit, ωc → Ωp so that Eq. 3.53 becomes, using the Kepler frequency formula,

3
GMp

R3
syn

= 2
GMp

ρ3crit
for the case of marginal stability, and can be expressed as

ρcrit

Rsyn
= (2/3)

1
3 , (3.55)

which predicts a vertical instability boundary for Saturn at about 1.625RS (§1.2.3).

An important distinction to note is that in Northrop & Hill (1982)’s model, a grain is launched

on a circular orbit at ωc (so no gyromotion around field lines). However, in this work, with

grains launched at Kepler velocities, there is gyromotion to consider because there is motion

relative to the guiding centre. As discussed in §§1.2.3 and 3.6.1, this gyromotion leads to a

magnetic mirror force, which causes the grain to ‘bounce’ away from regions of high magnetic

field strength.

b) Vertical Instability: Any Charge

Jontof-Hutter & Hamilton (2012a) derive an expression for the bounce frequency, by averaging

the restoring acceleration over a gyro-orbit, Ω2
b =

〈z ∂
2U
∂z2
〉

〈z〉 , and adding a magnetic mirroring term

following Lew (1961) and Thomsen & Van Allen (1980):

Ω2
b = 3ω2

c − 2n2
c +

r2
g

ρ2
c

(
9

2
Ωgc(Ωgc − ωc + Ωp)−

3

2
n2
c

)
. (3.56)

Certain assumptions have been made in Eq. 3.56, namely that that the temporal and spatial

scales of the epicycles (gyro-orbits) are relatively small, rg � rL and κc � Ωb. Given Figure
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3.11, there is expected to be poor agreement for positively charged grains, which collide with

the planet or escape the system (radially unstable) for intermediate L∗, where the Lorentz force

and gravity are comparable in strength.

In order to plot out the stability boundary in (L∗, rL) space, it is necessary to solve the equation

Ω2
b = 0. This is a numerical root-finding exercise, and due to Eq. 3.56 being expressed implicitly

in terms of L∗ it is more straightforward to use the secant method over the Newton-Raphson

method, as it does not require a derivative. The secant method is able to locate all roots, provided

the initial guesses cover an appropriate range of the parameter space. Some example plots

showing the root-finding for Eq. 3.56 are given in Figure 3.18.

Figure 3.18: Ω2
b for various launch locations around Saturn plotted against−L∗, with roots

indicated by points. Close to the planet there is a small region of double roots, as shown
by the rL = 1.03Rp solid orange curve, and moving further out there are single roots, as
shown by the rL = 1.2Rp dotted blue curve. Beyond approximately 1.55Rp there are no
roots, indicating the transition from vertical instability to stability (Northrop & Hill 1982),
and illustrated by the rL = 1.55Rp dashed green and rL = 1.65Rp dot-dashed yellow
curves.

This procedure of locating roots for a given rL, is then repeated for all relevant launch locations

so that a stability boundary can traced out in (L∗, rL) space. The double root example shown in

Figure 3.18 for Eq. 3.56, which was derived by Jontof-Hutter (2012), indicates there is a second

solution that the curve described by Northrop & Hill (1982) and given in Eq. 3.54 does not

find.
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3. Orbital Motions of Charged Dust

3.7 Timescales

The guiding centre approximation (§3.4.1) with the method outlined in Jontof-Hutter (2012),

described in the preceding sections, provides expressions for the radial, vertical and azimuthal

motions in the inertial frame. More highly charged grains exhibit motion on these three char-

acteristic timescales, κc,Ωb, ωc, as the grain gyrates about the orbiting guiding centre and is

mirrored up and down field lines, which is shown by the divergence of the three curves in Figure

3.19 as |L∗| increases.

Figure 3.19a agrees well with Jontof-Hutter (2012), noting that the azimuthal and radial curves

were mislabelled in that work. In the Keplerian limit, where gravity dominates, the three fre-

quencies all converge to the Kepler orbital frequency: κc,Ωb, ωc → nc, as shown by the dot-

dashed grey line in Figure 3.19. In the Lorentz limit, κc → Ωgc, ωc → Ωp.

Figure 3.19b shows that slightly further out from synchronous orbit, the guiding centre approxi-

mation does not provide such a good approximation as the gyroradii grow in size (Figure 3.11),

indicated by the minor discrepancy between numerical and theoretical results.
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3.7. Timescales

(a) Jupiter

(b) Saturn

Figure 3.19: Time periods for negatively-charged grains launched around (a) Jupiter near
to synchronous orbit (1.12Rsyn) at rL = 2.5RJ and (b) Saturn quite near to synchronous
orbit (1.34Rsyn) at rL = 2.5RS, extending the work of Fig. 3.11 of Jontof-Hutter (2012).
The dash-dotted grey curve shows the Keplerian time period at that orbital distance. The
black curves show the theoretical solutions: the dotted curve shows the radial period 2π

κc
of

Eq. 3.34; the dashed curve shows the vertical period, 2π
Ωb

of Eq. 3.56; the solid curve shows
the azimuthal period 2π

ωc
of Eq. 3.30. The filled circles show numerically integrated results.
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3. Orbital Motions of Charged Dust

3.8 Summary and Discussion of Stability Boundaries

The previous sections have outlined the methods used to determine the solutions for the stabil-

ity boundaries, in an analytical/semi-analytical fashion, derived from the literature. These are

summarised in Figure 3.20 and outlined below:

• Local radial stability L∗ = 2±
√

3, Eq. 3.36 of §3.5.2, following Jontof-Hutter (2012)

• Global radial stability: escape the system, §3.5.3a), following Hamilton & Burns (1993),

Horányi et al. (1993b) and Jontof-Hutter (2012)

• Global radial stability: collide with the planet, §3.5.3b), following Jontof-Hutter (2012)

• Local vertical stability (§3.6.2), following Northrop & Hill (1982) and Jontof-Hutter (2012)

In addition to the stability boundary curves, the resonant feature |κc| = 2Ωb is plotted in Figure

3.20 for negative charges. For these grains their radial and vertical motions are coupled, energy is

transferred from radial modes to vertical modes repeatedly, resulting in large vertical excursions

(denoted by pale grey datapoints in Figure 3.21); an example of an individual grain experiencing

this is shown in Figure 3.2.
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(a) Jupiter (b) Saturn

Figure 3.20: Analytical and semi-analytical solutions for stability boundaries derived in

this chapter. Results for positively charged grains (bottom) and negatively charged grains

(top) are shown for Jupiter on the left hand side and for Saturn on the right hand side.

The curves enclose unstable regions; stable regions lie outside those. The grey dashed

curves indicate older results from Northrop & Hill (1982), Hamilton & Burns (1993) and

Horányi et al. (1993b). Black curves are results obtained by following the theory of Jontof-

Hutter (2012): the vertically unstable region is obtained from a local vertical stability anal-

ysis (§3.6.2), and the radially unstable regions are obtained by considering both a local

(§3.5.2) and global (§3.5.3) stability analysis. The solid/dotted black curves delineating

the global radially unstable positive stability boundary for grains striking the planet show

the quadratic solutions described on page 113, Eq. 3.41. The dotted curve (qd > 0)

indicates that the right-most curve requires a semi-analytical approach to obtain the sta-

bility boundary near Rsyn, when the potential’s stationary point is located at the plane-

tary surface, a case intermediate between those illustrated in Figures 3.14 and 3.15, where

U(rstat, L∗) = U(Rp, L∗). The feature labelled |κc| = 2Ωb (red dotted curve) shows a

resonance between radial epicyclic and vertical bounce frequencies, where energy transfer

from radial to vertical modes results in stable large vertical excursions.



3. Orbital Motions of Charged Dust

Generally, there is good agreement between the numerical results and the analytical/semi-analytical

solutions as shown in Figure 3.21, verifying the work of Jontof-Hutter (2012). The radial sta-

bility theory match the numerical results very well, as shown in Figure 3.21 by the solid black

curves tracing the black numerical datapoints’ boundaries in the lower plots, qd > 0. However,

due to the assumption that grains remain close to the equatorial plane in the derivation of Eq.

3.40, the high latitude collisions with the planet are missed (dark grey datapoints in qd > 0 sub-

plots of Figure 3.21 around L∗ = +2, rL = 2). The stable region near synchronous orbit around

L∗ = +0.2, indicated by the yellow datapoints lying in the region between the dotted and solid

curves for qd > 0 in Figure 3.21, are grains which have launch potentials that are lower than the

potential at the planet’s surface, U(rL, L∗) < U(Rp, L∗), and which also have their potential

peak being greater than their launch potential, U(rstat, L∗) > U(rL, L∗), so that it is energet-

ically favourable for them to remain in orbit as illustrated by the dotted blue curve in Figure

3.15. The global radial stability curves meet the local stability results of L∗ = 2 ±
√

3 at Rsyn,

described by the roots of Eq. 3.36, for grains with small gyroradii close to synchronous orbit. A

local radial stability analysis holds where the gyroradius is small, that is, close to synchronous

orbit (Eq. 3.26).

The vertical stability boundary for negative grains predicted by Northrop & Hill (1982) and de-

scribed by the dashed grey curve in the upper plot of Figure 3.20 misses the second solution

close to the planet. The theory of Jontof-Hutter (2012) does find a second solution (solid black

curves in Figure 3.20 for qd < 0, upper plots), although that inner stability boundary for mod-

erate L∗ does not describe the numerical results very well (shown in Figure 3.21). This is for

the same reason that the gyroradii of Figure 3.11 show poor agreement between theoretical and

numerical results for moderate L∗: the epicyclic theory of the Guiding Centre approximation

(§3.4.1) breaks down when the epicycles become large and non-circular due to the grain expe-

riencing large variations in magnetic field strength as it orbits, so that the assumptions for that

approximation do not hold (3.17). For the same reason, of the epicyclic model breaking down,

the vertical stability boundary for positive grains also departs from the numerical results where

L∗ < 10 (Figure 3.21, lower plots with qd > 0).

The vertical stability boundary bends towards the planet with decreasing |L∗| for negative grains

and away from the planet for positive grains (Figure 3.20). This can be explained by considering

the 3ω2
c − 2n2

c term of Equations 3.53 and 3.56. For negative grains within Rsyn (where nc >
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3.8. Summary and Discussion of Stability Boundaries

ωc, recalling the Kepler frequency being inversely proportional to the radial distance to the
3
2 power), the guiding centre frequency increases as the outward Lorentz force weakens with

decreasing |L∗|. This can be understood by considering that the guiding centre is therefore

displaced outward to a lesser extent, so that |ωc| is not reduced as much. The root, where

3ω2
c − 2n2

c changes sign, requires a larger nc for smaller |L∗|, that is, a smaller launch position.

Conversely, for positive grains inside synchronous orbit (where nc > ωc, recalling the Kepler

frequency being inversely proportional to the radial distance to the 3
2 power), the guiding centre

frequency decreases as the inward Lorentz force weakens with decreasing |L∗|. This can be

understood by considering that the guiding centre is therefore displaced inward to a lesser extent,

so that |ωc| is not increased as much. Therefore, the root, where 3ω2
c−2n2

c changes sign, requires

a smaller nc for smaller |L∗|, that is, a larger launch position.
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3.8. Summary and Discussion of Stability Boundaries

Comparing Jupiter and Saturn, in Figure 3.21, it can be seen that Saturn’s vertical instability

region is translated inward, due to its lower synchronous orbit (Rsyn = 1.86RS compared to

Rsyn = 2.24RJ). Most of the grains experiencing large vertical excursions collide with Saturn,

unlike the case at Jupiter where there is a substantial stable population shown by the light grey

datapoints in Figure 3.21. This is due to the curvature of Saturn’s surface being that much closer

to the region of large vertical oscillations. Both Saturn and Jupiter display grains with L∗ <∼ 1
2

which exhibit large radial displacements but do not have sufficient energy to escape (Eq. 3.37),

instead the radial motion excites vertical motions as indicated by the pale grey datapoints outside

synchronous orbit in Figure 3.21 (lower plot, qd > 0) denoting stable orbits with large vertical

excursions; an example of such a trajectory is shown in Figure 3.4.

Having explored and verified the numerical and (semi-) analytical expressions for the motions

of constant-charge grains orbiting in dipole aligned planetary magnetic and gravitational fields

(Jontof-Hutter & Hamilton 2012a), attention will next be paid to the effects of time-variable

charging, including planetary shadowing effects, and more complex fields involving the J2

oblate gravity term, and the higher order gmn coefficients describing Saturn’s northward-offset

magnetic dipole.
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Time-Variable Charging of Dust

Before proceeding to the description of the algorithms used to control the charging of the grains,

it is necessary to include background theory on the charging environment in planetary rings. The

planetary ring environment in which dust grains are immersed is dynamic, and the charge of a

dust grain fluctuates based on the currents it encounters. The grain’s charge is a dominant factor

in influencing its motion in planetary magnetospheres, therefore how the charge varies over time

is highly significant. Considering all temporally- and spatially-varying currents incident on the

grain as well its back-influence on the environment is a complex endeavour, and progress will be

attempted by building up the charging model through piecing together parts under simplifying

but realistic assumptions, described in the following sections.

There are four main charging currents to consider: the electron and ion currents of the plasma,

the photoelectron current due to solar radiation, and the secondary electron emission current due

to ionisation of the grain and ejection of electrons. Each of these currents dominate in certain

regimes, so that for the problem in question, there may be certain currents that are negligible.

There are several review articles detailing these processes and aspects of dust in plasmas, with

Horányi (1996) and Graps et al. (2008) being particularly relevant for planetary magnetospheres

and for planetary rings environments. A distinction between dust in plasmas and dusty plasmas
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4.1. An Approach to Modelling Time-Variable Charging

should be noted (§1.3.2). For an intergrain distance of λmfp (the grain’s collisional mean free

path), a grain size of ad and a plasma Debye length of λD, the ‘dust-in-plasma’ regime when

ad � λD < λmfp (1.40) is a plasma containing isolated screened grains and a particle dynamics

approach can be used, as is the case here. For dusty plasmas, reviewed by Goertz (1989),

Northrop (1992), and Mendis & Rosenberg (1994), the collective effects of charged dust become

relevant (Verheest 2000): when ad � λmfp < λD.

The first currents considered here are the plasma currents (§4.1.1), and an initial starting point

is to reproduce the work of Cui & Goree (1994), which considers dust in plasma (§4.1.5). A

continuous charging model is described (§4.1.2) before the need for a discrete charging model

is explained (§4.1.3), as this provides useful confirmation that the discrete charging algorithms

(§§4.1.4 and 4.2) are behaving accurately, as the continuous and discrete models should converge

over time.

4.1 An Approach to Modelling Time-Variable Charging

In order to work towards a time-variable charging model, the work of Cui & Goree (1994) was

followed as a particular instance to introduce and illustrate various principles relevant to variable

charging in planetary magnetospheres, including continuous (§4.1.2) versus discrete charging

(§4.1.3). They do not include photo– and secondary–electron emission, only plasma currents

(§4.1.1), although these will be considered in §4.2, when an approach to stochastic charging that

can be integrated alongside the equations of motion (Chapter 2) is described and tested. Cui &

Goree (1994) model dust in plasma by assigning probabilities to the amount of time between

charging events (§4.1.4a)) and the sequence of electrons and ions collected by grains (§4.1.4b)).

Simulation results are presented in §4.1.5.

4.1.1 Plasma Currents

Initially the plasma currents incident on the grain are treated as continuous in time, despite

the discrete nature of the charge carriers, in order to provide estimates of equilibrium physical

quantities with which to check the discrete model (§§4.1.4 and 4.2). The dust grain with a

surface potential φd (relative to the plasma potential) is assumed to be spherical with radius ad,
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4. Time-Variable Charging of Dust

immersed in a uniform and steady-state plasma with Debye length λD. Orbital motion limited

theory (OML), dating back to the work of Mott-Smith & Langmuir (1926), under the assumption

of Eq. 1.40, is used to describe the currents collected by the grain:

Ie = I0
e exp

(
eφd
kBTe

)
Ii = I0

i

(
1− Zieφd

kBTi

)
 φd < 0,

Ie = I0
e

(
1 + eφd

kBTe

)
Ii = I0

i exp
(
−Zieφd

kBTi

)
 φd ≥ 0. (4.1)

Here, the positive charge ions and electrons, denoted with a subscript i and e respectively, follow

a Maxwellian distribution characterized by plasma temperatures Ti, Te. Henceforth, ions refer

to positively charged ions. The charge of the ions is qi = Zie (where e = +1.602176634 ×
10−19 C, so that qe = −e). Since the drift velocity between the plasma and dust grains is much

smaller than the thermal velocities (discussed further in §4.1.2b)), the coefficients take the form

of

I0
α = 4πa2

dnαqα

√
kBTα
2πmα

, (4.2)

where qα, nα,mα denote the charge, number density, mass of the plasma species α = {e, i}
respectively (Horányi 1996). Equations 4.1 and 4.2 can be written in a more succinct form

following Graps et al. (2008, §2.1), but the separate expressions, depending on the sign of φd,

have been included here for clarity.

4.1.2 Continuous Charging Model

a) A Grain at Rest in a Plasma

Before embarking on a description of stochastic charging algorithms (§§4.1.4 and 4.2), that will

be argued to be more realistic, it is necessary to explain the continuous charging model, which

will provide a useful verification for the discrete stochastic model. A grain immersed in a plasma

will charge up by collecting electrons and ions, according to the differential equation
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4.1. An Approach to Modelling Time-Variable Charging

dqd
dt

=
∑
α=e,i

Iα, (4.3)

which can be solved for qd(t) by substituting in for Iα using Equations 4.1 and 4.2, which relate

the currents to the surface potential, φd. The grain’s charge is related to its surface potential

through

qd = 4πε0adφd. (4.4)

Therefore, it can be seen that the differential equation of 4.3 takes the form of some non-linear

function of qd, and, for small qαφd/kBTα, is linear.

The equilibrium potential φeq, which occurs when the electron and ion currents incident on the

grain have equal magnitude, is obtained by setting Eq. 4.3 equal to zero, assuming plasma quasi-

neutrality (ne ≈ ni), and using the φd < 0 expressions of Eq. 4.1, as the electrons are ∼ 43

times more mobile than protons when φd = 0 initially (Graps et al. 2008) and hence collide

more frequently with the grains:

√
Ti
Te

(
1−

eφeq

kBTi

)
exp

(
−
eφeq

kBTe

)
−
√
mi

me
= 0. (4.5)

The root of the transcendental equation 4.5 can be found numerically; this was done using the

Newton-Raphson method, where Eq. 4.5 was written as f(X) = 0 and the required derivative

was found using the substitution of X =
eφeq
kBTi

. This yields

φeq =
kBTe
e

Ti
Te
X = Kφ

kB

e
Te (4.6)

with the constantKφ introduced to match Cui & Goree (1994)’s units. Results are given in Table

4.1, and compared to Cui & Goree (1994). Highlighting the case where Ti = Te, Zi = 1, an

equilibrium potential of −2.5kBTe
e is obtained, as first calculated by Spitzer (1941).
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4. Time-Variable Charging of Dust

mi Ti/Te Kφ Kq Kτc

(amu) (V eV−1) (µm−1 eV−1) (s µm cm−3 eV−
1
2 )

Present

work

Cui &

Goree

(1994)

Present

work

Cui &

Goree

(1994)

Present

work

Cui &

Goree

(1994)

1 0.05 −1.698 −1.698 −1179 −1179 7.66×102 7.66×102

1 1 −2.501 −2.501 −1737 −1737 1.51×103 1.51×103

40 0.05 −2.989 −2.989 −2076 −2073 2.06×103 2.05×103

40 1 −3.991 −3.952 −2772 −2631 4.11×103 3.29×103

Table 4.1: Coefficients of Equations 4.6 - 4.8 solved numerically for Hydrogen (mi = 1

amu) and Argon (mi = 40 amu) and compared to Cui & Goree (1994).

The equilibrium charge number Neq =
qeq
e can be found by substituting Eq. 4.6 into Eq.

4.4:

Neq =
4πε0Kφ

e

kBTe
e

(
ad × 10−6

µm

)
= Kq

(
ad
µm

)
kBTe
e

, (4.7)

where the grain’s radius is expressed in micrometres and a factor of e is absorbed into the energy

to match Cui & Goree (1994)’s choice of units (see Table 4.1).

Another useful quantity to find is the timescale τc during which a grain charges up in a plasma.

Cui & Goree (1994) define τc as the time taken for an initially uncharged grain to approach

its equilibrium charge within one e-fold, that is, the time taken for the grain to charge up to(
1− 1

e

)
≈ 63% of its equilibrium value, illustrated in Figure 4.1. Cui & Goree (1994) introduce

a coefficient Kτc so that

τc = Kτc

√
kBTe
adnα

, (4.8)
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4.1. An Approach to Modelling Time-Variable Charging

Figure 4.1: Continuous charging of a grain in a Hydrogen plasma with Ti = Te (second
row of Table 4.1). The equilibrium charge is indicated by the dotted grey horizontal line.
The e-folding charge value is indicated by the horizontal dashed blue line, which shows
(1− 1

e )qeq and the vertical blue dashed line indicates the charging timescale, τc.

indicating that charging rates are faster for higher plasma densities and larger grains, as makes

physical sense given that larger grains provide a larger collecting area. The value of τc was

estimated by locating the point of intersection of the exponentially decaying qd(t), obtained

by numerically integrating Eq. 4.3, with the horizontal line qd = (1 − 1
e )qeq, as described in

Figure 4.1. Electrons are collected more quickly, due to their higher mobility, resulting in an

exponentially growing negative potential; as the negative charges collect, Coulomb repulsion

results in the electron and ion currents saturating (Figure 4.2).

Substituting that graphically-determined charging timescale, τc, into Eq. 4.8 and re-arranging

for Kτc (multiplying by a factor of e
1
2 to convert energy units) yields the rightmost column of

Table 4.1. In order to verify the continuous charging model, as there were some discrepancies

with Cui & Goree (1994), as shown by the Argon results in Table 4.1, the model was used to

reproduce Shohet (2017)’s example for an Argon plasma. There is good agreement with Shohet

(2017), Figure 4.2, with equilibrium reached within a few tenths of a millisecond: φeq ≈ −6 V,

qeq = −3.4× 10−16 C.

As described in §1.2.3, the CDA instrument onboard Cassini observed grains on the scale of
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4. Time-Variable Charging of Dust

Figure 4.2: Continuous charging of a grain in an Argon plasma (mi = 40 amu) with Te =
100Ti = 2.5 eV, ni = ne = 1014 m−3 and dust grain of radius ad = 0.5 µm. The grain
potential is shown by the solid black exponential curve. The dash-dotted blue and dashed
grey curves show Ii, Ie, the plasma ion and electron currents respectively. The equilibrium
potential is indicated by the dotted black horizontal line. The e-folding potential value is
indicated by the horizontal dashed grey line, which shows (1− 1

e )qeq and the vertical grey
dashed line indicates the corresponding time at which that occurs, τc. A scaling factor of
0.25 has been introduced for the currents to avoid crossing the potential curve, hence the
arbitrary units on the right hand vertical axis. The equilibrium charge value is −3.4 ×
10−16 C.

nanometres. For such small grains, the discrete nature of the electrons and ions present in the

plasma and solar photoemission becomes important to consider as the grain carries only a small

number of charges so any individual charging event changes the grain’s potential significantly.

Burns et al. (2001) quantify the number of excess charges on an isolated grain:

Nex ≈ 700

(
φd
V

)(
ad
µm

)
. (4.9)

For the example given in Figure 4.2 for a 0.5 µm grain, Eq. 4.9 estimates 2100e, which is in

agreement with the result from the continuous charging model, which gives 3.4× 10−16 C/e ≈
2100. However, for grains on nanoscales, the numbers are 1000 times smaller, for a given

potential, and therefore a discrete model must be developed (§4.1.3).
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The work of Cui & Goree (1994) was included in the review by Goree (1994), with equilibrium

charge number and charging times plotted as a function of grain size for combinations of plasma

temperature ratios and ion masses. Their results were compared to the implementation of the

continuous charging model, with good agreement found for both Argon and Hydrogen plasmas

(Figure 4.3).

Figure 4.3: Comparing results calculated in this present work (right) with results of Goree
(1994, left) . The top row, labelled (i), shows the mean charge number, and the bottom row,
labelled (ii), shows the charging time, as a function of grain radius for the combinations of
temperature ratios and ion masses described in Table 4.1 and labelled in the legend. Marker
symbols have been chosen to match Fig. 1 of Goree (1994).

b) A Grain in Motion Relative to the Plasma

Including the relative motion of the grain through the plasma complicates the current expressions

(Eq. 4.1), which were derived assuming a Maxwellian velocity distribution, that is, there were

no direction-dependent properties included. However, in the reference frame of the orbiting dust

grain, the plasma appears to have a net streaming velocity (Whipple 1981). This anisotropy is

more pronounced for the ions, whose thermal speeds are lower than those of the electrons – most
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4. Time-Variable Charging of Dust

of the ions are collected on the front of the grain. Kanal (1962) derived an expression for the

plasma currents incident on a moving sphere, refer to Whipple (1981, Eq. 4.1), which is also

described in the works of e.g. Havnes et al. (1992a); Horányi (1996); Graps et al. (2008).

The terms in such current expressions for a moving grain in a plasma depend on the Mach num-

ber (Graps et al. 2008), which is the ratio of the dust-to-plasma relative velocity to the plasma

ion/electron thermal speed: M = vrel/
√

2kBTα/mα. In the limitM → 0, the plasma current

expressions become identical to Eq. 4.1. This is a reasonable approximation for dust grains

in planetary magnetospheres, as argued by Jontof-Hutter (2012). Any difference in velocity

between a Kepler-launched grain in the main rings and the velocity of the plasma (rotating

at RsynΩp) is vrel <∼ 10 km s−1. The plasma temperatures required to exceed 10 km s−1 are

Te >∼ 3 K, Ti >∼ 6000 K, by
√

2kBTα/mα. By comparison, the plasma of the main rings is

∼ 1 − 10 eV (Krupp et al. 2018), corresponding to a temperature of ∼ 104 − 105 K, thereby

exceeding that of the grain’s motion relative to the plasma. Jontof-Hutter (2012) examines the

limiting case of a grain with velocity much larger than the sound speed, and also find that the

current expressions reduce to Eq. 4.1. However, they caution the reader, noting the assump-

tions that were used to derive the current expressions for the moving grains in plasma may not

be applicable for sub-micron grains with small numbers of individual charges. Jontof-Hutter

(2012) did not consider the stochastic nature of dust charging for such small grains and this has

significant consequences that are explored in §§4.1.3, 4.1.4 and 4.2.

4.1.3 Discrete Charging Model

In studying the random perturbations of the planetary magnetic field on the dust dynamics,

Spahn et al. (2003) argue that stochastic charging variations can dominate the dynamics of sub-

micron grains. The importance of the discretisation of the charging process is highlighted by

an example in Hsu et al. (2011): an isolated grain carries ∼ 0.7
(
φd
V

) (
ad
nm

)
charges, by Eq.

4.9, and therefore a 5 nm grain with a −2 V potential has only 7 additional electrons, and a

single electron represents a ∼ 14% change in the Lorentz force. Therefore, a more realistic

charging model needs to take account of the discrete nature of charge carriers in plasma and the

stochasticity of their absorption by small dust grains. That is, it is necessary to take into account

the probabilities of these events occurring. Cui & Goree (1994) modelled the random nature

of both the time interval between absorption events and the absorbed plasma particle type (i.e.
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4.1. An Approach to Modelling Time-Variable Charging

whether it is an electron or ion that is collected by the grain). In §4.2 a novel approach to discrete

stochastic charging, building upon the work of Hsu et al. (2011), is implemented and compared

to the work of Cui & Goree (1994).

Although there is a random element to the charging events, as the grain is immersed in a mixture

of electrons and ions that are at varying distances (and hence varying absorption times), they

are not uniformly random – through Coulomb attraction the grain is more likely to collect the

opposite charge. The events follow probability distributions which depend on the grain’s surface

potential. Cui & Goree (1994) encapsulate the effect of the changing grain potential on the

probability of absorbing an electron or ion through defining:

pα =
Iα(φd)

qα
, (4.10)

which are probabilities per unit time of absorbing a plasma particle of species α (that is, electrons

or ions). More ions are attracted and more electrons are repelled as the grain potential becomes

increasingly negative. Equation 4.10 has this sought-after behaviour of pi increasing and pe

decreasing with increasing |φd| for φd < 0, and pi decreasing and pe increasing with increasing

|φd| for φd > 0, as can be seen from Equations 4.1 and 4.2. Thus, the OML currents of the

continuous charging model are converted into probabilities for the discrete charging model. The

time at which the plasma particle arrives at the grain is randomised and consistent with the

probabilities per unit time defined in Eq. 4.10. The nature of the plasma particle, whether it is an

ion or electron, is determined by the second step of the algorithm described in §4.1.4b).

4.1.4 Stochastic Charging Algorithm: Randomising Timestep and Particle Type

The physical model outlined above was implemented as described in Figure 4.4, following Cui &

Goree (1994). The grain is initialised with zero charge. The model evolves in time by repeating

two computation steps until the maximum integration time is reached, which is defined to ensure

that a suitably large number of charging timescales has been spanned. Referring to Figure 4.4,

these two steps (enclosed in separate dashed boxes), are more fully explained in the following

§§4.1.4a) and b).
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4. Time-Variable Charging of Dust

a) Time Update

The time interval ∆tn during which a plasma particle is absorbed by the grain for the nth

timestep is random, with probabilities that depend on the grain’s surface potential. The total

probability per unit time of absorbing a plasma particle is

ptot =
∑
α

pα, (4.11)

the sum of the individual probabilities per unit time, given by Eq. 4.10, which depends on the

currents and hence the grain’s surface potential by Eq. 4.1. Numerous authors assume that

quantised grain charging corresponds to a Poisson process (Morfill et al. 1980; Khrapak et al.

1999; Hsu et al. 2011; Dzhanoev et al. 2016). If the number of events in a certain time period is

Poissonian (events occurring independently at a constant rate over time), then the time interval

between events follows an exponential distribution.

The result that an exponential probability density function can be used to model the waiting

times between any two successive Poisson events can be derived in the following manner. Let

Xn denote the time interval between the (n − 1)th and nth charging events. The first charging

event occurs after a time ∆t1, if and only if no events of the Poisson process (with average rate

λ) occur in the preceding interval [0, t1], that is

P (X1 > ∆t1) = P (N(∆t1) = 0) = exp(−λ∆t1), (4.12)

where the number of events in any time interval ∆t has a Poisson distribution:

P (N(∆t) = k) = exp(−λ∆t)
(λ∆t)k

k!
, k = 0, 1, . . . . (4.13)

The distribution Xn also takes the exponential form of Eq. 4.12, under the assumptions that (i)

the number of events by time tn−1 is independent of the number of events occurring between

tn−1 and tn, that is the number of charging events that occur in disjoint time intervals are inde-

pendent; and (ii) the probability distribution of N(∆tn−1 + ∆tn) −N(∆tn−1) is the same for

all ∆tn, that is the distribution of charging events that occur in a given time interval does not

depend on its location (Ross 2014).
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4.1. An Approach to Modelling Time-Variable Charging

Using Eq. 4.12 for any general time,

P (Xn > ∆tn) = exp(−λ∆tn), (4.14)

the cumulative probability distribution function can be written

P (Xn ≤ ∆tn) = 1− P (Xn > ∆tn) = 1− exp(−λ∆tn). (4.15)

The plasma particles arrive at a rate of ptot given by Eq. 4.11, which is constant for a given grain

surface potential, i.e. a given time interval. So during a time interval ∆tn, the probability for a

grain to collect a plasma particle is

P = 1− exp(−ptot∆tn). (4.16)

A random number R1 is generated from the uniform distribution U(0, 1] and equated with the

probability of Eq. 4.16, then re-arranging for the time interval of that step gives

∆tn = − ln(1−R1)

ptot
. (4.17)

Figure 4.4 shows how this step fits into the charging algorithm.
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4.1. An Approach to Modelling Time-Variable Charging

b) Charge Update

The probability that the nth particle is species α is obtained by dividing Eq. 4.10 by Eq. 4.11:
pα
ptot

. A second random number R2 is generated to compare to that probability to determine

whether the next plasma particle is an electron or an ion. This is then used to increment the total

charge of the grain:

qn = qn−1 − e ifR2 <
pe
ptot

,

qn = qn−1 + Zie ifR2 >
pe
ptot

.
(4.18)

Once the charge is updated, the grain’s surface potential must be advanced, and then the loop

continues as pα depends on φd, Figure 4.4.

4.1.5 Simulation Results

Simulations were carried out using the method outlined in §4.1.4. The discrete model’s charge

values oscillate about the curve predicted by the continuous charging model, and both tend

towards the equilibrium value calculated numerically, described by Eq. 4.7.

A comparison between a 10 nm and 100 nm grain is given in Figures 4.5 and 4.6. Both have

an initial transient period where the charge on the grain grows rapidly negative. This is because

initially the grain is positively charged relative to its equilibrium value and therefore is more

likely to accumulate negative charges, and the electron flux is greater (me < mi, electrons are

more mobile). A comparison of the charging timescale, labelled on the upper horizontal axes of

Figures 4.5 and 4.6, shows that for a given set of plasma parameters, the larger grain charges up

more rapidly than the smaller grain, as described by Eq. 4.8. It is also apparent that the larger

grain has smaller fractional charge fluctuations, as the fluctuations in Figure 4.6 appear smoother

compared to Figure 4.5.
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4. Time-Variable Charging of Dust

Figure 4.5: Time series of the charge number, N = qd/e, for a grain of radius 10 nm
with plasma parameters: mi = 1 amu, Zi = 1, n = 1015 m−3, Te = 1 eV, Ti

Te
= 0.05.

The smooth dashed black curve is the continuous charging model, described in §4.1.2, the
stepped series is the discrete charging model of §4.1.4, and the dotted grey horizontal line
indicates the equilibrium charge number, Neq ≈ 12, corresponding to φeq ≈ −1.7 V. The
charging time is ∼ 77 µs.

Figure 4.6: Time series of the charge number, N = qd/e, for a grain of radius 100 nm
with plasma parameters as in Figure 4.5, with the same linestyles for the respective con-
tinuous charging model, the discrete charging model and equilibrium value. Neq ≈ 118,
corresponding to φeq ≈ −1.7 V, and the charging time is ∼ 7.7 µs.
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4.1. An Approach to Modelling Time-Variable Charging

Figure 4.7: Power spectrum of charge fluctuations, with the same plasma and grain param-
eters as those used in Figure 4.6. Present work shown on the right, with reference values of
fτc = 0.024 and spectral power = 0.5 drawn as grey dashed lines, and compared to Cui &
Goree (1994) with the power law f−2 shown by a solid black line. Frequencies have been
scaled by the inverse of the charging time.

The nature of the charge fluctuations can be studied using the standard method of computing the

power spectral density (PSD) for the time series qd(t), in order to ascertain which frequencies

contain the signal’s power and to see whether charge fluctuations tend to be dominated by high

or low frequencies. The PSD was calculated using Welch’s method: the time series is split into

overlapping segments, a window is applied to the segments, then the discrete Fourier transform

is used to compute the modified periodogram for each segment, which are then averaged (Welch

1967), using the SciPy implementation (Virtanen et al. 2020). The plasma and grain parameters

of Figure 4.7 are the same as those used in Figure 4.6 with the solution evolved for longer in order

to study the charge fluctuations over 100τc. The initial transient decay period shown in Figure

4.6 is not included in the analysis, so that 5τc < t < 105τc. In order to allow a direct comparison

with Cui & Goree (1994, Fig. 6), the frequencies of Figure 4.7 are normalised by the inverse

of the charging time. The power spectrum result of Cui & Goree (1994) is verified, with Figure

4.7 showing that the charge fluctuations are dominated by low frequencies and that at higher

frequencies the power drops off as approximately the inverse second power of frequency.

Cui & Goree (1994) also study the charge distribution function for grains, in order to quantify

at a given time the fraction of grains holding a certain charge (assuming they are isolated, Eq.

1.40). This is something that could be useful for ring rain (§1.2.3) study, to see how long water-

ice versus silicate dust spends at a certain charge level, although the manner in which to model
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4. Time-Variable Charging of Dust

the differing compositions is beyond the scope of this work.

The algorithm described in this section (Figure 4.4) determines how long a time interval is be-

tween successive stochastic charging events. However, flipping the problem by asking how

many charging events occur within a given time interval allows the charging updates to be im-

plemented alongside the equations of motion in the adaptive integration method (§2.2).

4.2 Charging Algorithm Using Poisson Processes

An approach based on but different to that described in §4.1 for the discrete charging of a grain

is motivated by the need to simultaneously solve the charging equation alongside the orbital

equations of motion. The adaptive integrator (§2.2) outputs the orbital motion solution for the

grain at each timestep. As described in §4.1.3, the grain’s charge varies stochastically with

time and therefore in each timestep the number of electrons/ions collected by the grain must be

estimated. Instead of modelling the inter-arrival times of plasma particles using an exponential

distribution, the Poisson distribution can be used to model the number of charged particles being

collected by the grain in a given timestep. The type of particle is handled by the algorithm

as described below, involving Poisson and binomial probability distributions and weighting the

various currents appropriately.

A novel stochastic charging algorithm based on the work of Hsu et al. (2011) was developed,

which models the photoelectron current, Iν , given below in Eq. 4.19, in addition to the plasma

currents considered in Cui & Goree (1994)’s model (§4.1.4). The photoelectron current depends

on the grain’s material properties, with an efficiency coefficient κν , which enters the factor

f = 2.5× 1014κν
(
AU
r

)2
m−2 s−1, effective area πa2

d, and potential φd:

Iν =

πa
2
def if φd < 0,

πa2
defexp

(
− eφd
kBTν

)
if φd ≥ 0,

(4.19)

where the mean energy of the photoelectrons ∼ 2.7kBTν (e.g. Horányi 1996).

There is another current that needs to be considered, before preceding to a description of the

stochastic charging algorithm. Plasma particles incident upon the dust grain can be energetic
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4.2. Charging Algorithm Using Poisson Processes

Figure 4.8: Schematic sketch of dust charging currents in Saturn’s environment, based on
Hsu (2010, Fig. 1.7).

enough to ionise the material and produce the emission of secondary electrons. Like the pho-

toelectron current, Eq. 4.19, and ion current, Ii of Eq. 4.1, this flux of escaping electrons

represents a positive grain-charging current, Isec. These various currents are summarised in Fig-

ure 4.8. The secondary electron emission depends on the primary incident particle’s energy as

well as the material and surface properties of the dust (Dionne 1975). Low energy incident

particles have a low yield, as to be expected since these will be unable to sufficiently excite

secondary electrons, but high energy particles too have a low yield, as they can pass through

the grain losing little energy. Between these two extrema, there is a characteristic primary in-

cident particle energy that results in a maximum yield of secondary electrons (Dionne 1975).

Meyer-Vernet (1982); Horányi (1996); Hsu et al. (2011), amongst others, provide expressions

for the secondary emitted electron flux, with Chow et al. (1993) accounting for the increase in

secondary emission yield with decreasing grain size.

Inside of ∼ 5RS, charge equilibrium is reached principally by the balance between plasma

currents, Eq. 4.1, and it is only further out, as the electron temperature increases with distance

from Saturn, that the secondary electron current becomes the major positive current, superseding
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4. Time-Variable Charging of Dust

Ii and Iν (Hsu et al. 2011). Indeed, Jontof-Hutter (2012, Fig. 5.1) plot charging contributions

for a 10 nm grain in Jupiter’s main ring and find that Isec is orders of magnitude smaller than

Ii, Iν at lower temperatures (Te . 1 eV), which is a reasonable analogy to Saturn having a

tenuous plasma density of n ∼ 1 cm−3 in the vicinity of the main rings (Johnson et al. 2006).

Therefore, for the purposes of the study of the dust dynamics in the main rings, the secondary

electron emission current will be omitted.

Returning to the problem of stochastically generating the number of charging events within a

timestep, Hsu et al. (2011) introduce a Poisson process approach, which is further developed in

the work of Hsu et al. (2018a). They developed their procedure independently of Cui & Goree

(1994) but reach a similar approach. Their method can be summarised as (i) Generate a random

number to determine how many events occur during the timestep using a Poisson probability

distribution, and (ii) Decide the type of charging events that occurs according to the relative

strengths of the various currents.

For the plasma and photoemission currents, the expected number of charging events occurring

between a time tn and tn + h (i.e. the rate) for a current of type α is

λα =

∫ tn+h

tn

Iα
e
dt for α = i, e, ν, (4.20)

where the currents are given by Eqs. 4.1 and 4.19. A random number is generated from a

uniform distribution, RαP ∼ U(0, 1], and compared to the Poisson distribution for each current

type,

P (λα, kα) = exp(−λα)
λkαα
kα!

, for kα = 0, 1, . . . (4.21)

given a number of charging events kα = 0, 1, . . . (cf. Eq. 4.13). So, for example, if λα = 0.4 for

a given current type (assuming a single current for simplicity) and the random number happens

to be RαP = 0.965, then comparing to the corresponding probabilities:

P (λα = 0.4, kα = 0) = 0.670 . . . ,
P (λα = 0.4, kα = 1) = 0.268 . . . ,
P (λα = 0.4, kα = 2) = 0.0536 . . . ,
P (λα = 0.4, kα = 3) = 0.00715 . . . , (4.22)
. . .
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which are illustrated in Figure 4.9, it can be seen that the kα = 2 event is chosen as RαP falls

within that bin; that is, two charges happen to be collected by the grain during that timestep.

The nature of the charges, whether electron or ion, depends on the current type in question; the

way that the code developed here handles multiple current types is explained in greater detail by

Figures 4.15 and 4.16 in §4.2.1b).

Figure 4.9: Poisson probabilities of 4.22 for λα = 0.4 for kα = 0, 1, 2, 3. A cross marks
RαP = 0.965, described in the main text.

Hsu et al. (2011) sets an upper bound on the expected number of charging events in a given time

interval, λα ∼ 0.4 so that the probability of having more than one charging event per step is

1−P (kα = 0, 1) = 1− e−0.4(1 + 0.4) ≈ 6.2%. That is, they choose their timestep sizes so that

no more than a single charging event takes place during each step in most cases. The exact time

of the charging event is unknown (beyond the resolution of the step size chosen by the orbital

integrator), and therefore allowing more than one charging event per step would enhance this

inaccuracy because it would permit several charging events to occur simultaneously at the start

of a (single larger) step. The charging timescale should determine the modelling timestep used

in the numerical integration.

The method of Hsu et al. (2011) either permits the occasional multiple charging event to occur

in a single step or discards steps with λα > 0.4, which has the potential to skew the probability

distribution towards prohibiting rare multiple events. In this thesis, a timestep-splitting approach

is taken to ensure that no more than a single charging event occurs within a single (sub)step, by

recursively splitting the step until that condition is fulfilled. This novel stochastic charging

method automates the process of simultaneously updating the equations of motion (Eq. 2.1) and

charging equation (Eq. 4.3) by utilising a binary tree traversal algorithm (§4.2.1).
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4.2.1 Binary Tree Traversal for Charge Distribution

If the adaptive integrator for the equations of motion (§2.2) returns a timestep during which

the total number of charging events for all the currents is greater than one,
∑
α
kα > 1, then

the timestep is divided in half and the charging events are distributed across the step accord-

ing to binomial probability distributions, weighted according to the respective strengths of the

contributing currents, which will be explained further in the following examples, refer to Fig-

ures 4.15 and 4.16. This is different to the approach of Hsu et al. (2011), which either allows

(without adjustment) or discounts the occurrence, albeit rare, of multiple charging events within

a single step. The precise method of the tree-traversing algorithm for multiple currents is out-

lined in §4.2.1b), but it is enlightening to describe a specific single current case (§4.2.1a)) before

generalising.

a) Single Current

The decision of how to distribute the multiple charging events for a single current, generated by

the Poisson distribution (shown by example in Figure 4.9), in time across the step is a matter of

finding the random variable Xα, denoting the number of electrons/ions collected by the grain

for the first half-step, as in general (for each current type) the number of charging events in the

second half-step must be the difference between the number of charging events for the full step

and the first half-step: kα − Xα. The number of charging events for the first half-step, xα, is

obtained from the binomial distribution, as it can be modelled as the probability of obtainingXα

events in the first half-step out of kα Bernoulli trials. Therefore, the probability of choosing the

number of charging events to occur in the first half-step can written as

P (Xα = xα) =
kα!

xα!(kα − xα)!

(
1

2

)kα
for xα = 0, 1, . . . , kα, (4.23)

given the total number of charging events in the whole step, kα; noting the assumption that any

electron/ion is equally likely to encounter the dust grain in the first or second sub-step, hence a

probability of 1
2 in the binomial probability (4.23).

Consider the simple case of a single current Iα, once a random number, Rα1 ∼ U(0, 1] has been

generated and compared to the Poisson distribution, which causes two electrons/ions to collect
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on the grain, kα = 2, as illustrated in Figure 4.9. Since only one or zero charging events are

permitted per timestep, the step is split in half, and the order in which the two events occur over

time is generated using a binomial distribution with a second random number, RB ∼ U(0, 1]

in a similar fashion, described in Figure 4.10. If RB = 0.7641, for example, then both charging

events occur in the first half-step, which will need to be further split again (and the zero events

in the second half-step stored).

Figure 4.10: Binomial probabilities of Eq. 4.23 for kα = 2. A cross marks RB = 0.7641,
described in main text.

Figure 4.11: A binary tree example, showing how 7 charging events in the initial stepsize
could be randomly distributed between substeps. Each numbered circle represents a node, a
structure containing the number of charging events at that level. The root is the top node in
the tree. Each node must have either 0 or 2 children (nodes which are directly connected be-
low the node in question) as the substep either contains kα = {0, 1} or must be split again.
The number of events in the right branch is the difference between the number of events in
the parent and the left branch. The order of the steps for pre-order traversal, indicated by the
dotted blue line, is 1) visit node 2) go to left branch 3) go to right branch, so that in this ex-
ample it is 7312211042112020211, with the code returning the leaf nodes and correspond-
ing levels: [(kα = 1, l = 2), (1, 4), (1, 4), (0, 3), (1, 3), (1, 3), (0, 3), (0, 4), (1, 5), (1, 5)].

The recursive nature of the problem of assigning charging events between substeps lends itself

well to using binary trees, hierarchical data structures consisting of nodes and edges, which are

described by Figure 4.11. The root node contains the initial timestep’s charging event number,

kα > 1, then the left and right branches are populated at each level as the (sub)steps are split
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in half recursively and charging events assigned to each based on binomial probabilities (4.23),

until the base case of kα = {0, 1} is achieved, thereby terminating the tree structure at leaf

nodes.

The arrow of time means that the code must execute a pre-order tree traversal (a variant of depth

first traversal), so that the nodes are visited in the correct order and the timestep is incremented

from leftmost leaf node to rightmost leaf node. The code abstracts the binary tree away and uses

a tree walker function to track the level of the node and randomly generate the children of the

current node it is located at, thereby adding a left branch and right branch frame object to the

top of the call stack; then when the leaf node is reached, each walker function call is returned

and a frame object is popped off the call stack.

Figure 4.12: The time-step splitting lends itself well to recursion and a binary tree struc-
ture, as illustrated for the single current kα = 2 case. All possible charging event outcomes
down to a level 2 are shown. Dashed lines denote where kα > 1 beyond the level 2 in-
cluded here and where further splitting is required. The corresponding timestep splitting
is shown below each binary tree outcome. Arrows indicate how the step is traversed, by
adding h

2l for each base case, with dashed arrows indicating where the timestep would need
to be further refined in order to distribute the charges.

The depth of the leaf node l enables the timestep to be traversed in increments of h
2l

. Figure 4.12

illustrates this, showing all possible outcomes for a simple example. A more complex single

current case is given in Figure 4.13.

The code was tested to ensure that all edge cases were accounted for, by running batches of

106 simulations and counting up each binary tree outcome for an extensive range of kα and

maximum tree depth. The resulting distributions agreed with theoretical predictions (obtained

by standard probability theory), Figure 4.14.
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Figure 4.13: A single current binary tree example for a kα = 7 event generated by a
Poisson distribution, with each decision of how to split the charging events obtained by
the binomial probabilities, RB. The corresponding timestep traversal is drawn underneath,
each substep being incremented by h

2l for the base case levels.

Figure 4.14: Unit testing the binomial probability code for a single current, kα = 2, down
to tree level = 3. The predicted frequencies are plotted as darker (right) bars, the simulated
frequencies for 106 runs are plotted as lighter (left) bars for each binary tree output, which
are labelled on the horizontal axis.
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b) Multiple Currents

The approach can be generalised for multiple current types to account for the photoelectron

current and plasma electron and ion currents simultaneously. The expected number of charging

events, λα, is calculated for each current respectively using Eq. 4.20. Together with the Poisson

distribution (4.21) and a uniform random number for each current, RαP ∼ [0, 1), this generates

the number of charging events in a given timestep for each current, kα. If
∑

α kα > 1, then

the step must be split and the events distributed in smaller substeps using a similar approach to

that used for a single current. However, given that there are multiple currents to consider, the

binomial probability distributions for each type of current α = i, e, ν, given by 4.23, must be

weighted according to the fraction of events that each contributes,

Wα =
kα∑
α kα

. (4.24)

Figure 4.15: Weighted binomial probabilities for ke = 2, ki = 4, kν = 0. The plasma
electron current has a weight of We = 2

6 , the plasma ion current Wi = 4
6 , and Wν = 0.

For instance, the ke = 0 probability spans the range 0 to 2
6 ×

2!
0!2!

(
1
2

)2
= 1

12 ≈ 0.083 . . .,
and the ki = 0 probability spans the range 2

6 to 2
6 + 4

6 ×
4!

0!4!

(
1
2

)4
= 3

8 = 0.375. A cross
marksRB = 0.57, which would mean that two plasma ion charging events occur in the first
half-step.

Figure 4.15 shows such a weighted binomial probability distribution for multiple currents. Once

the number and type of charging events in the first half-step has been determined, the remaining

events must occur in the second half-step, which will have its own weighted binomial probability

distribution, then both half-steps check the condition for further splitting,
∑

α kα > 1, and

further timestep splitting is applied if necessary. This process is repeated until the base case of

kα = {0, 1} is achieved. A resulting binary tree structure for multiple current types with the

Poisson-generated events ke = 2, ki = 4, kν = 0 (the same case as illustrated in Figure 4.15) is

shown in Figure 4.16.
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4.2. Charging Algorithm Using Poisson Processes

Figure 4.16: As Figure 4.13, but for multiple currents showing ke = 2, ki = 4, kν = 0.

As in §4.2.1a), the code was tested to ensure that all edge cases were accounted for, by running

batches of 106 simulations and counting up each binary tree outcome for a range of kα and a

specified maximum tree depth. The resulting distributions agreed with theoretical predictions,

refer to Figure 4.17.
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4.2. Charging Algorithm Using Poisson Processes

4.2.2 Applying the Binary Tree Traversal Algorithm

Having tested the novel stochastic grain charging algorithm, the code was applied to the problem

of dust in plasma as posed by Cui & Goree (1994), described in §4.1.5. The Ie and Ii plasma

currents, Eqs. 4.1 and 4.2, were used in the binary tree traversal method described in §4.2.1b).

Figures 4.18a and 4.18b show the algorithm reproduces the expected results.

(a) ad = 10 nm, refer to Figure 4.5 for simulation parameters.

(b) ad = 100 nm, refer to Figure 4.6 for simulation parameters.

Figure 4.18: Time series of the charge number, N = qd/e, for two different grain sizes:

10 nm (top) and 100 nm (bottom) with plasma parameters and linestyles as described in

§4.1.5.
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4. Time-Variable Charging of Dust

The charging algorithm was integrated for 1000TK to check its long-term behaviour and include

the effects of the photoelectron emission current, Eq. 4.19, in addition to the plasma currents,

Eq. 4.1. At Saturn, the photo-emission factor is f ≈ 2.7 × 1012 m−2 s−1 (Horányi 1996). The

simulation was run with hydrogen plasma parameters used by Hsu et al. (2011) and Hsu et al.

(2018a): n = 0.3 cm−3, Te = 5 eV, Ti = Te, Tν = 2.5 eV, for an initially uncharged grain

launched around Saturn at rL = 1.48RS with radius, ad = 10 nm and a dielectric constant

for water of κν = 0.1. The algorithm appears well-behaved as the charge does not grow to

unphysical values (Figure 4.19). The steps of the charging algorithm and how it is implemented

alongside the orbital code are summarised in Figure 4.20.

Figure 4.19: Time series of the charge number, N = qd/e, and grain potential, φd, for a

grain of radius 10 nm with plasma parameters following Hsu et al. (2018a), as described in

the main text. The grain’s potential is labelled on the right hand vertical axis using Eq. 4.4.
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4. Time-Variable Charging of Dust

4.3 Planetary Shadow

The implementation of the photoelectron current necessitates the inclusion of the planetary

shadow. As a grain passes behind the planet, relative to the Sun, it enters a shadow region where

the photoelectron current is switched off, then as it passes back into sunlight, the photoelectron

current switches back on; resulting in periodic changes in the surface potential of dust as it orbits

around the planet. The equilibrium surface potential of a grain in sunlight is less negative than

in shadow, as the solar photons eject electrons from the dust surface (Figure 4.8).

Figure 4.21: Reproducing continuous charging results, including Ie, Ii, Iν , and planetary
shadow, for micron-sized dust in Jupiter’s gossamer rings. Top row: Horányi & Burns
(1991, Fig. 5), bottom row: Hamilton & Krüger (2008, Fig. 3a). The original literature is
shown on the left hand side.

The shadow’s modulating effect on the photoelectron current changes the semi-major axes and

eccentricities of grains (Horányi & Burns 1991). Figure 4.21 reproduces some previous literature

results for variable-charged dust in Jupiter’s gossamer rings. The slight differences between

the shapes of the curves may be due to slight differences in the input parameters, as the full

simulation parameters were not detailed. Hamilton & Krüger (2008) show that the transit of

dust through the planet’s shadow creates the Thebe extension, faint material in the rings outside

the moon’s orbit that had previously eluded understanding. Like Horányi & Burns (1991), they

find that shadowing can cause significant changes to the sizes and shapes of dust orbits, that

accumulate in phase over months; Figure 4.22 shows such a shadow resonance producing a
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4.3. Planetary Shadow

Figure 4.22: Numerical simulations by Hamilton & Krüger (2008, Fig. 3c) of 3.2 µm dust
grains in an ne = 2 cm−3 plasma show the formation of asymmetric Thebe (outer) and
Amalthea (inner) rings, as the grains pass through Jupiter’s shadow (stippled region). The
bottom left plot of Figure 4.21 shows the charging history for the same simulated grain.

non-axisymmetric ring that is offset away from the Sun.

The rate at which nanograins reach their equilibrium potential can be quite slow, as charging

time is inversely proportional to grain size, Eq. 4.8. Therefore, during shadow transits, the grain

may not have enough time to achieve charge equilibrium. The effect was studied by Horányi &

Burns (1991), who noted that for micron-sized grains orbiting Jupiter in low plasma densities

(1 cm−3), grains did not achieve charge equilibrium, for the same reason of the transit time in

shadow being longer than the characteristic charging time (top curve of upper subplot of Figure

4.21).

Like Figure 4.21, Figure 4.23 shows the consequences of this shadowing effect, by applying a

continuous charging model including Ie, Ii and Iν currents. As the grain enters the shadow for

the first time (t ≈ 4 h), the positive photoelectron current does not contribute to charging and so

the grain surface potential becomes more negative (Figure 4.23a). The resulting larger charge-to-

mass ratio leads to tighter gyrations (Figure 4.23b), then as the grain leaves the shadow (t ≈ 8 h)

and becomes more neutral, the gyrations become looser causing its radial distance to change as

well as its velocity. Subsequently, the following transit time in shadow is shorter (around 2 hours

at t ≈ 15 − 17 h) so that the grain potential minimum at t ≈ 17 h is less negative than the first

minimum (t ≈ 7 h). The grain continues on its orbit slightly further away from the planet and

enters the shadow briefly a third time before the 30 h integration time completes.
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4. Time-Variable Charging of Dust

(a) Grain surface potential over time.

(b) Radial position over time. (c) Plan view of orbit, time indicated by 5 h markers .

Figure 4.23: Continuous charging model for a 10 nm grain orbiting Saturn at a distance of
1.7RS in an n = 1 cm−3, Te = Ti = 5 eV plasma. For simplicity, the planet’s magnetic
field is modelled as an aligned centred dipole, and the gravitational field only includes the
spherical term. The photoelectron efficiency has been artificially boosted, setting κν = 1,
to highlight the shadowing effect.

(a) Grain surface potential over time.

(b) Radial position over time. (c) Plan view of orbit, time indicated by 5 h markers.

Figure 4.24: As Figure 4.23, but using the discrete charging model described in §4.2.
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4.3. Planetary Shadow

(a) Grain surface potential over time.

(b) Radial position over time. (c) Plan view of orbit, time indicated by 1 h markers.

Figure 4.25: As Figure 4.24, but using a different random seed.

(a) Grain surface potential over time.

(b) Radial position over time. (c) Plan view of orbit, time indicated by 5 h markers.

Figure 4.26: As Figure 4.24, but using a different random seed.
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4. Time-Variable Charging of Dust

(a) Grain surface potential over time.

(b) Radial position over time. (c) Plan view of orbit, time shown by 5 h markers.

Figure 4.27: As Figure 4.24, but using a different random seed.

(a) Grain surface potential over time.

(b) Radial position over time. (c) Plan view of orbit, time shown by 5 h markers.

Figure 4.28: As Figure 4.24, but using a different random seed.
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4.3. Planetary Shadow

The importance of the stochastic variation in charge for orbital evolution is demonstrated in

comparing the continuous charging model, Figure 4.23, to some discrete charging simulations:

Figures 4.24 – 4.28 show very different orbital outcomes to the continuous charging results

and also demonstrate how changing the random seed, that is, changing the number of charging

events during the initial timestep for the grain, leads to orbital differences even when all other

model parameters are kept the same. Figures 4.25 and 4.27 show how discharging from a pos-

itive potential, caused by entering the planetary shadow, can alter the gyroradius leading to an

unstable orbit. Figures 4.24, 4.26 and 4.28 show orbits that remain stable over the 30 hr integra-

tion time, with different charging histories that result from stochastic kicks leading to different

trajectories.

An interesting observation to make at this stage, before preceding to a more detailed re-visiting

of ring rain in Chapter 5, that was introduced in §1.2.3, is that a grain can fall onto the planet’s

nightside (Figure 4.25) or dayside (Figure 4.27). The dominant loss mechanism for H+
3 ions –

dissociative recombination with electrons – is faster than a Saturn day and therefore an asym-

metry in the longitudinal deposition of water-ice grains onto the ionosphere could add further

insight into the explanation for the diurnal variation in peak electron density (Moore et al. 2018).

O’Donoghue et al. (2016) report higher auroral H+
3 density at local noon compared to midnight.

Measurements of the mid-to-low latitude H+
3 emission by the Jupiter Infrared Auroral Mapper

on board Juno have proved inconclusive about day and night differences due to poor sampling

(Migliorini et al. 2019).

The planetary shadow introduces an azimuthal asymmetry that needs to be considered in respect

to both the final destination of grains and the initial launch location. The grain could be launched

from any azimuthal angle, not only local noon (Figures 4.24 - 4.28). This could change the

orbital outcome of grains, as any grains grains launched from within the planetary shadow would

initially charge more negatively due to the absence of the photoelectron current. Such cases will

be considered further in Chapter 5, where the orbital charge-varying dust model can be applied

to studying the ring dust-planet connection, which was introduced in §1.2.3.
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Having described the most relevant physical processes for charged dust in the main rings of

Saturn and motivated the need for their study through examples in Chapter 1; explained the

numerical method for the study of test grains in Chapter 2; detailed the characteristic motions

of charged dust in simplified planetary fields and verified previous literature results for constant

charge-to-mass ratios in Chapter 3; and implemented a novel stochastic charging algorithm in

Chapter 4, we return to the phenomenon of ring rain (§1.2.3) in this chapter. To turn our attention

to the open questions still remaining and to see how the dynamical modelling developed in this

work can contribute to our understanding of the ring dust - planet connection. Conclusions and

further work are presented in Chapter 6.

5.1 Open Questions

The unanswered questions and unexplored avenues relating to ring rain are highlighted here and

will serve to guide the focus of this chapter.
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5.1.1 Silicate-to-Water-Ice Ratio and Latitudinal Water Deposition

There is more silicate material falling onto Saturn, compared to water-ice (§1.2.3). Hsu et al.

(2018b) report an ice-to-silicate mass ratio as low as 2:1 , which is a much lower water fraction

than that observed in the main rings: & 95% (Zhang et al. 2017a,b). Such a large difference

between the ring rain composition and the composition of bulk ring material could potentially

be explained through a dynamical sorting mechanism, whereby only material from the least icy

regions of the main rings (in the mid-C ring) finds its way onto the planet. However, Hsu et

al. (2018b) state that their best-fitting simulations indicate only about half of the dust impacting

the CDA originated from the C ring. Moreover, they find that the relative fraction of grains that

arrived at Cassini from the B ring compared to those from the C ring remained almost constant.

If it is assumed that grains rain onto planetary latitudes from radial positions in the rings that

are magnetically conjugate (O’Donoghue et al. 2017), then the radial compositional variation in

the main rings (in a broad sense, comparing the A, B, and C rings) should be reflected in the

latitudinal variation in water-ice fraction (Figure 1.19). For example, dust from the C ring would

rain onto Saturn in the region L = 1.239 − 1.534 (Figure 5.6) and so a lower water fraction in

ring rain at those latitudes might be expected to reflect the higher non-icy composition of the

mid-C ring. However, this does not appear to be the case as Hsu et al. (2018b) finds that the

relative proportions of dust from each region of the rings remains fixed.

Since there does not appear to be a dynamical selection process in the main rings to explain the

composition and latitudinal variations of ring rain, what are the alternatives? One suggestion

relies on the time taken for water-ice to be removed from ring rain through photo-evaporation.

This could explain the lower water-ice fraction at higher planetary latitudes as grains take a

longer time to reach such latitudes and therefore would evaporate before reaching the planet,

as the photo-evaporation lifetime of ice nanograins is only a few hours (Hsu 2020), and this is

the case for some of the simulations presented in §5.4. Another point to consider is that the

mechanism that produces the dust itself could preferentially generate silicate grains over water

grains (Hsu et al. 2018b). Indeed, it seems plausible that the very same reason for latitudinal

water-ice variation – its evaporation – could be involved: the hypervelocity impacts that generate

dust, which Hsu et al. (2018b) assume is the primary source, could sublimate water-ice grains

in the process, thereby removing them from ring rain.

Another speculative possibility to explain the higher silicate-to-water-ice ratio in ring rain, would
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be that the initial velocity distribution of silicate-rich material originating from the plumes of

Enceladus, Figure 1.24, material dredged up from the moon’s ocean floor, is such that it dynam-

ically sorts the grains onto unstable orbits falling onto the planet. This is a dynamical selection

mechanism, but outside of the main rings, a process that Hsu et al. (2018b) argue is not oc-

curring within the main rings. However, it is unlikely that many nanograins originating from

Enceladus’s orbit rain onto the planet, as the launch location is outside of Rsyn, which leads

to grains streaming outward (§1.2.2) on radially unstable orbits to escape the system (§3.5.2).

However, Hsu et al. (2018b) report 10% of CDA-detected grains originate from the A and D

rings, and Cassini Division so there is a proportion of grains, albeit small, that must be crossing

synchronous orbit from outside.

5.1.2 Ring Structure and Electromagnetic Erosion

Another aspect of ring rain to consider, alongside the imprint it leaves upon the planetary atmo-

sphere in the form of H+
3 emission (§1.2.3), is the corresponding evacuation of dusty material

from the rings and what that can reveal about their survival time. This electromagnetic ero-

sion process has been used to describe the relationship between ring structure and H+
3 emission

(O’Donoghue et al. 2013, 2017), presented in Figure 1.18. The dust itself could originate from a

number of sources, including meteoroid bombardment, and the subsequent ballistic transport of

ejecta (Ip 1983; Durisen 1984; Lissauer 1984) is also associated with shaping the rings, includ-

ing the inner edges of the A and B rings (e.g. Estrada et al. 2015); but for the purposes of this

work the focus shall be on gravitoelectrodynamic processes.

As described in §1.2.3, an increase in H+
3 emission is associated with more ice grains raining

onto the planet, as a higher water influx reduces the electron density (through rapid recom-

bination) and hence reduces the major loss channel of H+
3 . By assuming that the grains are

highly charged and therefore travel from the rings along magnetic field lines onto the iono-

sphere, O’Donoghue et al. (2017) map the H+
3 emission to its origins in the rings. They find a

broad peak associated with the 1.525− 1.625RS instability region (near 43◦N) and the Cassini

Division between the A and B rings. This outer edge of the B ring at 1.948RS has been shown

to be caused by resonance with Mimas (Goldreich & Tremaine 1978; Borderies et al. 1982), al-

though that work did not include electromagnetic effects, which are of utmost importance for the

dynamics of smaller grains and described below with regard to orbital stability (§3.6.2).

166



5.1. Open Questions

Figure 5.1: Natural colour mosaic of the unilluminated side of the main rings taken by
Cassini’s NAC, with key radial distances of the main rings labelled. The inner B ring’s
instability region (1.525−1.625RS) is delineated by two dashed lines. Adapted version of
Figure 1.6 (image credit: NASA/JPL/Space Science Institute (PIA08389)).

Figure 5.1 shows key features of the bulk structure of the rings. The dense B ring has two distinct

sections, with the boundary between the more transparent inner region and more opaque outer

region at ∼ 98, 000 km (∼ 1.625RS), this is clearly seen in the UVIS optical depth profile of

Figure 1.8, where τ(r ≈ 1.525−1.625RS) ≈ 1.5, τ(r ≈ 1.625−1.948RS) ≈ 4.5. Inside of the

B ring lies the C ring, where the opacity is much lower: τ(r < 1.525RS) ≈ 0.1. Outside of the

B ring, the opacity drops off dramatically in the Cassini Division (r ≈ 118, 000− 122, 000 km),

beyond which lies the A ring: τ(r ≈ 2.023− 2.267RS) ≈ 1.

The internal B ring boundary (at r ∼ 98, 000 km), where the opacity transitions from a more

transparent inner ring section to a more opaque outer ring section was studied by Northrop &

Hill (1982). This was discussed in §3.6.2, where the equation for the vertical stability boundary

derived by Northrop & Hill (1982) was presented in Eq. 3.54 and shown to predict a value

of ∼ 1.625RS, Eq. 3.55. Northrop & Hill (1982)’s analysis assumes the grains are highly

charged so that the grain is constrained to slide along the magnetic field lines. They consider

the gravitational and centrifugal forces acting on a grain displaced slightly away from the ring

plane, Figure 1.17. The centrifugal force acts outward and therefore tries to slide the grain along

its constraining field line to the furthest distance from the planet, shown in Figure 3.17 – the ring

plane. Due to their respective radial dependences (gravity∝ 1
r2

, centrifugal force∝ r), there is a

distance at which inward-acting gravity overcomes the outward-acting centrifugal force, so that

the grain runs up the field line onto the planet. Outside of the stability boundary, if perturbed

normal to the ring plane, the grain oscillates back and forth and could be re-absorbed by the

main ring particles (Northrop & Hill 1982).

This vertical instability can be seen in the stability map of Figure 3.21a for high L∗ (grey dashed

curve, qd < 0). Due to Thomsen et al. (1982)’s suggestion that spokes (§1.2.1) are comprised
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of negatively charged grains, Northrop & Hill (1982) restrict their focus to negatively charged

grains only, although it should be noted that a similar boundary can also be seen for qd > 0

(Figure 3.21a). The vertical stability boundaries are not a singular radial position but a curve

that depends on the charge-to-mass ratio. In §3.6.2, the second solution to Ω2
b = 0 derived by

Jontof-Hutter & Hamilton (2012a) was presented, which describes a second curve much closer

to the planet for grains with high |L∗| and qd < 0, that is also observed in Figure 3.21a.

The vertical instability boundary of Figure 3.21a actually lies closer to the planet than that pre-

dicted by Northrop & Hill (1982). This is because the numerical simulations use Keplerian

initial conditions. The derivation of Northrop & Hill (1982) was for grains on circular orbits,

that is, grains launched at the guiding centre orbital velocity (§3.4.1). Northrop & Hill (1983)

relax this condition, and study grains launched at the Keplerian orbital velocity (grains that are

launched from a large parent body in orbit around Saturn). For these cases, where the grain has a

component of velocity around the guiding centre, there is gyromotion in addition to the guiding

centre motion, and therefore an associated magnetic moment. This magnetic moment has a sta-

bilising effect because the grain is reflected away from the planet towards the ring plane (§3.6.1),

and so there is a radial range inside of the 1.625RS stability boundary where the destabilising

effect of gravity is countered, thereby bringing the marginal stability radius inward to 1.525RS

(Northrop & Hill 1983), which is observed in Figure 3.21a. The loss of material from the rings

to the planet explains the lower observed opacity of the C ring (r < 1.525RS).

Returning to ring features that are associated with observations of haze (Figure 1.16) and H+
3

(Figure 1.18), which have been described in greater detail in §1.2.3, the question of how the

stochastic charging of nanograins (§4.2) affects these ring stability boundaries can be studied,

including the effects of planetary shadowing (§4.3), higher order gravitational and magnetic field

terms (§1.3.1) and varied launch speeds (§5.4).

5.1.3 The Effect of Ring Rain on the Perceived Age of the Rings

The origin of Saturn’s rings is still debated (e.g. Northrop & Connerney 1987; Connerney 2013;

Crida et al. 2019). The rings could be primordial, material left over from the planetary nebula

which has evolved but failed in its attempts at satellite building (Northrop & Connerney 1987),

or they could be much younger, due to a more recent formation event such as the tidal stripping
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of a satellite whose rocky core is lost to collision with Saturn (Canup 2010). Estimating mass

loss through ring rain and other erosion processes is of paramount importance in establishing

the age of the rings. The relatively low mass of Saturn’s rings (introduced in §1.1.1), measured

during the final orbits of Cassini to be equivalent to that of a 300 km wide icy satellite (Iess et al.

2019), holds implications for the age of the rings.

Firstly, given the pristine appearance of the main rings (> 95% water-ice, §1.1.1b)), and the

observed flux of exogenous non-icy material in the form of meteoroids (Cuzzi & Estrada 1998),

the rings are argued to be relatively young because there is insufficient ring material to dilute the

pollutants that would be accrued over a longer time period and still maintain the observed rings’

bright, youthful appearance. Secondly, given a ring mass loss mechanism, such as ring rain,

where material is lost from the rings onto the planet, the rings are argued to have insufficient mass

to remain in existence for longer than ∼ 300 million years (O’Donoghue et al. 2018). Northrop

& Connerney (1987) modelled the C ring as an initially dense ring like the B ring which is

eroded, through the electromagnetic processes described above, to its present low opacity. Using

calculations of the micrometeorite influx and electromagnetic erosion rates, they estimate a very

young age for the rings: 4−67×106 yr. Based on more recent CDA observations of nanograins

between the rings and planet, Hsu et al. (2018b) estimate the erosion time of the rings to be an

order of magnitude longer: ∼ 1 − 4 × 108 yr, which is still an order of magnitude shorter than

the age of the Solar System, and consistent with O’Donoghue et al. (2018)’s estimate for the age

of the rings.

Crida et al. (2019) highlight the important distinction between the exposure age of the rings and

the formation age of the rings. The latter is straightforwardly the amount of time elapsed since

their formation until the present, whereas the exposure age of Saturn’s rings is the time taken for

the rings to pollute and darken via meteoroid bombardment to their present composition, assum-

ing an initial pure water-ice progenitor. These ages need not be the same, as some mechanism

can disconnect the two. Crida et al. (2019) suggest that ring rain is such a mechanism. The

observed higher silicate-to-water-ice ratio in ring rain compared to that in the bulk ring material

(§§1.2.3, 5.1.1) could be an indication that the rings are being ‘cleaned’. Non-icy material could

be preferentially removed by the ring rain mechanism so that the rings appear brighter and more

youthful than they would otherwise, thereby concealing their older origin.
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5.2 Literature Review of Ring Rain Dynamical Studies

Before proceeding to explore the ring dust - planet connection through simulations, there are

three key papers to review (§§5.2.1 - 5.2.3) in addition to the work of Hsu et al. (2018b) described

in §1.2.3, which use a similar dynamical approach to undertake their parametric studies of ring

rain. These are described in detail in the following sections, in order to clarify gaps in the

literature and identify unexplored avenues to venture down.

5.2.1 Constant qd
md

and Keplerian Launch Velocities: Liu & Ip (2014)

This paper models positively and negatively charged nanograins with constant charge-to-mass

ratios, through integrating a simple equation of motion including the planetary gravitational and

rotating magnetic fields only. They note that the electrostatic potential of dust grains would be

variable due to plasma charging and photoemission, but keep qd/md constant due to the then

poorly constrained plasma density and temperature distribution near the rings.

There is a slight error in Liu & Ip (2014), which propagates throughout, where they use the

equation φd = 4πqd
ε0ad

instead of Eq. 4.4. This means they erroneously write qd
md

= 1.683 ×

10−4
(

1µm
ad

)2 (
φd
V

)
instead of qd

md
= 2.7 × 10−2

(
1µm
ad

)2 (
φd
V

)
, refer to Eq. 1.5. Nevertheless,

qualitatively their results are unchanged. They initially present results for only three representa-

tive charge-to-mass ratios, to show that negatively charged grains with sufficiently high qd/md,

launched at Keplerian velocity inside the Northrop & Hill (1983) stability boundary of 1.525RS

(§5.1.2), accelerate along magnetic field lines onto the planet – a result previously demonstrated

by Jontof-Hutter & Hamilton (2012a) across a wider range of L∗ (§3.6.2). Liu & Ip (2014)

demonstrate that positively charged grains exhibit similar behaviour as their negative counter-

parts, apart from certain charge-to-mass ratios being radially unstable (colliding with the planet

at low latitude), a result that was also previously shown by Jontof-Hutter & Hamilton (2012a),

refer to the black region in Figure 3.21a (lower panel).

Liu & Ip (2014) then explore a wider class of orbits, launching positive and negative grains

from radial positions spanning the inner edge of the C ring to the outer edge of the A ring.

Their results align with the stability map results of Jontof-Hutter & Hamilton (2012a); namely,

they find four classes of orbit: stable, radially unstable (collision with planet if launched within

170



5.2. Literature Review of Ring Rain Dynamical Studies

Figure 5.2: Comparing the latitudinal deposition angle (by colour) for grains across a
range of charge-to-mass ratios and launch locations, for (a) negatively charged grains and
(b) positively charged grains. Grains that do not collide with the planet are indicated by
white. One caveat to note is their charge-to-mass ratios have a slight numerical error,
explained in the main text. Image credit: Liu & Ip (2014, Fig. 5).

Rsyn or escape the system if launched outside Rsyn), and vertically unstable (colliding with the

planet outside the equatorial region). Running 126 simulations, they plot the latitudinal impact

position of grains against their launch positions (9 representative values) and charge-to-mass

ratios (7 representative values), Figure 5.2.

Figure 5.2 is similar to the stability maps of Chapter 3 (Figures 3.5, 3.21), plotting launch

position against charge-to-mass ratio, but with a less refined grid (126 simulations compared

to 16, 000) and indicating the planetary collision latitude by colour instead of the orbital out-

come classes (stable, radially unstable, vertically unstable). Liu & Ip (2014) find that positively

charged grains dominate the equatorial zone influx below a certain charge-to-mass ratio, pro-

vided the launch position is inside Rsyn, whereas outside Rsyn there are grains within a certain
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range of charge-to-mass ratios that move outward and escape the system, corresponding to the

black regions of Figure 3.21. They find that negatively charged grains always contribute to mid-

latitude influx, as shown by the (grey) vertically unstable region of the upper subplot (qd < 0)

of Figure 3.21a – there are no (black) radially unstable orbits in those results. Liu & Ip (2014)

reason that grains with high enough charge-to-mass ratios launched inside 1.525RS can explain

the sharp discontinuity in mass distribution between the B and C rings. However, their model

cannot explain the observed H+
3 emission in the northern hemisphere, as their simulations result

in only southern grain deposition. The low-velocity Keplerian initial conditions used in their pa-

rameter study, which is sufficient to explain dust generated by mutual collision of ring particles

is developed further by Ip et al. (2016).

5.2.2 Constant qd
md

and Vertical Launch Velocities: Ip et al. (2016)

Following on from the low initial velocity fixed-charge dust simulations of Liu & Ip (2014), Ip

et al. (2016) model the trajectories of high-velocity ejecta produced by meteoroid bombardment.

Ip et al. (2016) estimate the ejecta velocity to be ∼ 1.5 − 2.5 km s−1, based on a range of

micrometeoroid impact velocities of 25− 40km s−1. They argue that velocities in the direction

perpendicular to the ring plane, being least affected by collisional scattering or re-absorption

with main ring material, leads to the grains having an initial vertical velocity component, ∆vz .

Ip et al. (2016) use the same equation of motion for constant-charge grains as Liu & Ip (2014),

with an northward-offset magnetic dipole. It should be noted that the same minor error in their

numerical values of qd/md (§5.2.1) is also present in Ip et al. (2016).

Ip et al. (2016) find that positively charged grains fall onto the planet at mid-latitudes in the

same direction as their initial velocity boost (northern hemisphere for vz > 0, southern hemi-

sphere for vz < 0) , provided they are launched within synchronous orbit and have a high

enough charge-to-mass ratio, Figure 5.3. Negatively charged grains, however, only fall onto the

southern hemisphere within the instability radius of 1.525RS (Northrop & Hill 1983), otherwise

oscillating about the ring plane. They argue that due to the low opacity of the C ring (spanning

1.237−1.525RS, Figure 5.1), the rate of influx of negatively charged grains is much lower than

that of positively charged grains, which fall onto the planet from orbital distances spanning the

much denser B ring (1.525− 1.86RS) as well as the C ring.
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Figure 5.3: Trajectories of positively charged nanograins ejected with vertical upward
velocity ∆vz = +1.5kms−1. The subplots labelled (i) are ρ − z projections for three
different charge-to-mass ratios shown left to right (with the caveat of their slight Q/m
numerical error, explained in the main text). The subplots labelled (ii) are x−y projections
in the stationary frame of Saturn for the three different charge-to-mass ratios. Image credit:
Ip et al. (2016, Fig. 2).

The observations of H+
3 in the northern as well as southern hemispheres (O’Donoghue et al.

2013) could be explained by positive grains, interpreting the results of Ip et al. (2016), while

the higher influx into the southern hemisphere of Saturn is due to its northward offset magnetic

dipole (§1.3.1) – an azimuthal velocity crossed with a radial magnetic field term results in a

vertical impulse, by the Lorentz force’s right hand rule.

5.2.3 Variable qd
md

and Ejecta Launch Velocities: Hsu et al. (2018a)

Hsu et al. (2018a) investigate the effect of varying charge on the trajectories of nanograins

and their latitudinal deposition distribution, in contrast to the constant charge-to-mass ratios

modelled by Liu & Ip (2014); Ip et al. (2016). Hsu et al. (2018a) note the importance of

the grain charging history and the significant effect of even a single electronic charge on the

subsequent grain trajectory (§4.2). Alongside the equation of motion used by Liu & Ip (2014);
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Ip et al. (2016), including the J2 gravity term and northward-offset aligned magnetic dipole

model, Hsu et al. (2018a) simultaneously integrate the grain charging equation, Eq. 4.3, using

a stochastic algorithm (Hsu et al. 2011) for the plasma and photoemission currents, assuming a

constant plasma density and temperature. They choose a single launch position located inside of

the inner edge of Northrop & Hill (1983)’s instability region, rL = 1.48RS, and launch 500 test

grains, for a given plasma density (n = {0.1, 0.3, 0.7, 1.0} cm−3) and temperature (Te = 5 eV),

with a modest velocity boost in addition to the Keplerian velocity, chosen at random to uniformly

cover all angles with a magnitude of 81 ms−1, slightly slower than the initial velocities chosen

by Ip et al. (2016). The grain is assumed to be initially uncharged.

Figure 5.4: Comparing the number fraction of 10 nm grains falling into Saturn’s equatorial
region (blue) and southern latitudes (green) as a function of plasma density. The total
deposition is shown by the black dashed line. Image credit: Hsu et al. (2018a), Fig. 2.

Hsu et al. (2018a) find grains that acquire fewer charges are deposited in equatorial regions,

whilst grains acquiring more fall onto the planet’s southern hemisphere and take longer to do

so. Because the grain charging is modulated by the plasma density, they find that most of the

grains fall onto the equatorial region when the plasma density is low, and by increasing the

plasma density, Figure 5.4, more grains spiral along field lines to flow onto the planet at southern

latitudes instead. They acknowledge the simplifying assumptions they have made, noting that

the initial grain charge distribution, grain size distribution, plasma distribution alongside other

factors will all play a role in the charging history, and will also determine the deposition of

nanograins from the rings onto the planet.
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5.2.4 Variable qd
md

, Ejecta Launch Velocities and Plasma Model: Hsu et al. (2018b)

The work of Hsu et al. (2018b), introduced in §1.2.3, characterised the influx of dust from

the rings onto Saturn using measurements from the CDA and numerical simulations of test

grains. Some of their key findings, the latitudinal variation in the deposition of water-ice and the

silicate-to-water ratio of ring rain, were recapitulated in §5.1.1. The focus of this section is to

describe their dynamical modelling approach and compare it to the previous literature (§§5.2.1-

5.2.3).

Figure 5.5: Plasma electron model used by Hsu et al. (2018b). Subplots b) and d) show
the electron temperature and density as a function of radial distance, respectively. Subplots
a) and c) show the electron temperature and density profiles along the labelled Cassini
trajectory. Image credit: Hsu et al. (2018b), Fig. S1.

Hsu et al. (2018b) use a similar approach to Hsu et al. (2018a), that is, they simultaneously

integrate the equations of motion and the charging equation to determine a test grain’s position,

velocity and charge, rather than keeping the grain charge constant as in the work of Liu & Ip

(2014); Ip et al. (2016). The grain’s charge is stochastically updated using the inhomogeneous

Poisson process approach of Hsu et al. (2011), including the plasma and photoelectron emission

currents. The orbital outcomes they consider include collision with Saturn or the ring plane, or

escape from the system (r > 2.5RS). In their equation of motion they include planetary grav-

itational (spherical and oblate terms) and (aligned offset dipole) magnetic fields, including the

corotational electric field, and the drag force from Saturn’s atmosphere. Rather than adopting the

constant temperature and densities of Hsu et al. (2018a), Hsu et al. (2018b) implement a two-

component plasma model for the planetary ionosphere and ring ionosphere, Figure 5.5. They
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set the ring ionosphere to have a constant temperature of 3 eV and a plasma density decreas-

ing with a scale height of 10◦ latitude from 0.3 cm−3 at the ring plane. They model Saturn’s

cold and dense ionosphere following Wahlund et al. (2018), and switch off both plasma and

photoemission charging currents in the shadow of the dense A and B rings.

Figure 5.6: Hsu et al. (2018b)’s modelled grain number density in (r, z) space shown by
colour, with a grid size of 0.05RS. Dotted curves indicate magnetic field lines connecting
the rings to the planet, with the higher-latitude curves labelled L = 3.07, 3.95 indicating the
orbits of Mimas and Enceladus respectively. The grey curve illustrates an example Cassini
Grand Finale trajectory. An example grain trajectory is shown by the white curve. Image
credit: Hsu et al. (2018b), Fig. 1B.

Hsu et al. (2018b) construct a library of test grain trajectories (e.g. Horányi & Cravens 1996;

Juhász & Horányi 2002). This method involves dividing the (r, z) space in the vicinity of the

planet and main rings into a grid and running a set of simulations that cover a range of initial

conditions (launch location, velocity, charge and grain radius), numerically following each grain

as the integration proceeds, and recording the number of hits that each (∆r,∆z) grid cell re-

ceives. The grain number density of a particular (∆r,∆z) grid cell is obtained by taking the sum

of the total time spent by all grains in that cell, where a given grain’s contribution is weighted

according to its initial conditions. For example, a grain with a high initial charge that spends
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an equal amount of time as a grain with a lower initial charge in a particular grid cell (with all

other grain parameters equal), contributes less to the simulated grain density as the probability

of generating a highly charged grain is lower (refer to Eq. 2 of Hsu et al. (2018b)’s supplemen-

tary material for details). Figure 5.6 shows their simulated dust number density, with a higher

proportion of grains falling towards the southern hemisphere due to the northward dipole offset,

as also found in the work of Hsu et al. (2018a).

Figure 5.7: Latitudinal deposition of 20 nm modelled dust ejecta (yellow histogram) com-
pared to H+

3 observations (green curve O’Donoghue et al. (2013)). Image credit: Hsu et al.
(2018b), Fig. S6.

Hsu et al. (2018b) relate their simulation results directly to ring rain, Figure 5.7. As their dust

density results (Figure 5.6) indicate, more dust is deposited at southern latitudes (∼ 30% below

−15◦), compared to northern latitudes (only∼ 3% above +15◦), with the majority of dust falling

onto the equatorial region. Based on their best-fitting results for the dust measured by Cassini’s

CDA (§1.2.3), they choose to model 20 nm grains. Hsu et al. (2018b)’s simulations indicate

that the ratio between grains from the B ring and those from the C ring is almost constant, with

∼ 40% originating from the B ring, ∼ 50% from the C ring, and ∼ 10% from the Cassini

Division, A and D rings (§§1.2.3, 5.1.1), although they do not map their results directly to the

main rings’ structure.

Although Hsu et al. (2018b)’s choice of 20 nm grain size is based on their best-fit across a
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grain size range of 5 − 40 nm for the MA impact rate measurements during Kepler ram orbits,

it is likely that the nanodust covers a range of grain sizes across the nanoscale, including sizes

smaller than the CDA’s calibrated range (Cassini Final Mission Report NASA/JPL 2019). Hsu

et al. (2018b) assume the dust population originates from impact ejecta production, and the size

distribution in the nanoscale is largely unknown (Hsu 2020). Therefore, a range of nanograin

sizes is proposed in §6.2. Moreover, as both the charging timescale and charging currents, Eqs.

4.8, 4.1, 4.2, and 4.19, depend on the grain size and the plasma density, it is clear that a wide

range of simulation parameters should be considered.

5.3 Ring Rain Simulation Method

Although progress has been made, the questions raised in §5.1.1-5.1.3 remain open, and the

need for further dynamical studies of ring rain remains. Grains with constant charge-to-mass

ratios released by low-velocity mutual collisions between ring particles (Liu & Ip 2014) and

higher impact velocities (Ip et al. 2016) have been studied (§§5.2.1, 5.2.2). However, when

studying the dynamics of nanograins in orbit around Saturn, a key parameter is the varying grain

charge (§§5.2.3, 5.2.4), specifically its charging history based on the currents it encounters and

any periodic modulating influences, such as the planetary shadow. Hsu et al. (2018a) note that

variations in plasma density and temperature (e.g. Figure 5.4) will affect the dust charging times,

Eq. 4.8, and alter the grain distribution raining from the rings onto the planet, with Hsu et al.

(2018b) employing a more complex plasma model.

Modelling the plasma environment accurately then, is of key importance to the accuracy of the

results. The Cassini mission provided a wealth of information regarding the plasma environment

surrounding the rings, §1.1.2. Oxygen is the principal component of the main ring ionosphere

based on CAPS measurements (Tokar et al. 2005; Young et al. 2005) and INMS measurements

(Waite et al. 2005). The density and temperature of the plasma in the vicinity of the main rings is

variable, Figure 1.11, according to the interactions of the O2 ring atmosphere (produced by UV

photon decomposition of ring ice) with the ring particles, and the ionisation rate which depends

on the opening angle of the rings to sunlight and the local time (Johnson et al. 2006). The ring

tilt angle will also influence the photoelectron current.

Wahlund et al. (2018) made in situ measurements, using Cassini’s RPWS instrument, of Saturn’s
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cold, dense ionosphere, which was approximated in Hsu et al. (2018b)’s model, Figure 5.5.

The rings cast a shadow on the planet, leading to reduced ionospheric plasma, so that Hsu et

al. (2018b) switch off all currents, photoelectron and plasma, when test grains pass through

shadowed regions. Wahlund et al. (2018) observe high levels of variability and fine structure in

the ionosphere, and suggest ring rain as the cause, as variable amounts of infalling water could

produce the observed sporadic electron depletions, although they note the difficulty of explaining

the two orders of magnitudes difference between flybys by H+
3 recombination alone.

The plasma environment is highly dynamic, with multiple sources and sinks (Johnson et al.

2006), and to fully consider the resulting complex temporal and spatial variability of the plasma

environment in the vicinity of the main rings (§1.1.2), that changes with local time and season

(Johnson et al. 2006; Wahlund et al. 2018) is beyond the scope of this work. Moreover, such

complexity could cause results to be highly model dependent, which cautions that a complete

plasma model should not be pursued at this stage but instead a sensitivity analysis using a pa-

rameter study approach (e.g. Hsu et al. 2018a) would be more appropriate.

As described in Chapters 2 and 4, the equation of motion of test grains under the influence of

Saturn’s gravitational, magnetic and corotational electric fields, including the J2 and g0
1, g

0
2, g

0
3

terms, alongside the current equation, including plasma and photoelectron currents (modulated

by planetary shadow), were simultaneously updated according to a prescribed accuracy toler-

ance. The integrations were followed until the grain collided with the planet, escaped the main

ring system (r > 2.5RS), or collided with a main ring particle as it crossed the ring plane. The

probability of a dust grain colliding with the ring plane,A, can be parametrised following Cuzzi

& Estrada (1998):

A =

[
1− exp

(
− τ
τs

)p] 1
p

, (5.1)

with fitting parameters τs = 0.515 and p = 1.0335, so that the higher the optical depth, τ , the

less likely the grain will pass through.
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5.4 Ring Rain Simulation Results

Grain launch locations were chosen inside, outside, and within the instability region, 1.525 −
1.626RS (§5.1.2). Figures 5.8 - 5.12 illustrate orbital outcomes for grains launched from the

outer B ring (rL = 1.7RS) with a vertically-directed velocity boost (as expected for impact

ejecta, §5.2.2). Figures 5.8 and 5.9 show grains that experience low latitude oscillations before

eventually crashing into the optically thick B ring, launched from outside and inside the plane-

tary shadow respectively. The grains climb up magnetic field lines as they charge up but as they

have a high probability of colliding with the optically thick outer B ring, Eq. 5.1, they do not

survive crossing the ring plane. Physically, a grain composed of water-ice would not survive the

> 250 h integration time so a temporal cut-off at ∼ 10 h (Hsu 2020) should be used.

The simulation of Figure 5.10 has the same input parameters as Figure 5.9, but with the grain

launched with a smaller vertical velocity boost. This grain eventually falls onto the nightside

of Saturn at mid-latitude, but again, due to the long integration time, it would have photo-

evaporated before impact. Figure 5.11 simulates the grain’s trajectory using the same input

parameters as Figure 5.10, but launched with an upward vertical velocity boost. The resulting

orbit is very different, taking a fraction of the time to reach the planet and impacting in the

equatorial region; a single plasma ion collected by the grain serves to destabilise it. Figure 5.12

launches the grain with the same input parameters as used in Figure 5.11 but from local noon,

rather than midnight, and the grain also collides with Saturn but at mid-latitude. These prelim-

inary results indicate that the dynamical lifetimes for dust falling into non-equatorial latitudes

are significantly longer (Hsu et al. 2018b; Hsu 2020), which has consequences for the water-

ice:silicate ratio, as described in §5.1.1. They also serve to highlight the chaotic nature of the

nanograins’ trajectories, being highly sensitive to initial conditions.

Figures 5.13 - 5.16 illustrate orbital outcomes for grains launched from the inner B ring (rL =

1.55RS). As for the simulations further out, grains within the instability region (1.525 −
1.625RS) take longer to collide with the planet at higher latitudes: Figure 5.14 shows a grain

falling into the equatorial region within 3 hours, while Figures 5.15 and 5.16 show mid-latitude

deposition taking about an order of magnitude longer.

Figures 5.17 - 5.21 show grain trajectories for the C ring (rL = 1.4RS). The time taken for

grains to fall onto the planet is shorter, as to be expected for shorter travel distances. Again,
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equatorial influx is quicker than for mid-latitudes, although Figure 5.19 shows that grains can

fall onto southern latitudes within fewer than ten hours. Collision with the ring plane (Figure

5.17) versus collision with the planet (Figure 5.18) can come down to a single charging event

– all other simulation parameters were identical in the simulations shown by Figures 5.17 and

5.18 apart from the random seed used by the stochastic charging algorithm. Figure 5.21 shows

a high velocity initial condition (∆vz = +5 kms−1), which results in the grain falling onto the

planet at northern mid-latitude within 8 hours.

The results of this section are summarised in Table 5.1. A discussion of these, including further

work to be done, is presented in Chapter 6.

Figure rL(RS) ∆vz (ms−1)
Launch

Azimuth
(local time)

Collisional
Outcome

Time to
Impact
(hours)

Latitude of
Planetary
Impact

5.8 1.7 −200 Noon Main rings 255 −
5.9 1.7 −200 Midnight Main rings 320 −
5.10 1.7 −100 Midnight Planet 700 42◦S

5.11 1.7 +100 Midnight Planet 4.5 1◦N

5.12 1.7 +100 Noon Planet 17 38◦S

5.13 1.55 −100 Midnight Main rings 2.5 −
5.14 1.55 +100 Noon Planet 3 1.5◦N

5.15 1.55 −100 Noon Planet 51 42◦S

5.16 1.55 −100 Midnight Planet 26 40◦S

5.17 1.4 +100 Noon Main rings 1.3 −
5.18 1.4 +100 Noon Planet 1.6 1.5◦N

5.19 1.4 −100 Midnight Planet 9 40◦S

5.20 1.4 +200 Midnight Planet 27 33◦S

5.21 1.4 +5000 Noon Planet 8 49◦N

Table 5.1: Summary of simulations for initially uncharged 10 nm grains around Saturn,
with plasma parameters: Te = Ti = 1 eV, Tν = 2.5 eV, nα = 1 cm−3; launched from the
outer B ring (1.7RS), the instability region (1.55RS), and the C ring (1.4RS).

181



2 1 0 1 2
x (Rp)

2

1

0

1

2

y 
(R

p)

1.60 1.65 1.70 1.75 1.80
= x2 + y2  (Rp)

5000

4000

3000

2000

1000

0

z (
km

)

0 50 100 150 200 250
t (hours)

2

1

0

d  
(V

)

0 50 100 150 200 250
t (hours)

1.60

1.65

1.70

1.75

1.80

r (
R p

)

0 50 100 150 200 250
t (hours)

3

2

1

0

 (
)

Figure 5.8: Following an initially uncharged 10 nm grain’s trajectory around Saturn until

it crashes into the ring plane, with initial conditions: rL = 1.7RS, ∆vz = −200 m s−1,

and O+ plasma parameters: Te = Ti = 1 eV, Tν = 2.5 eV, nα = 1 cm−3. The top row

shows the grain’s spatial trajectory, with a black circle indicating its initial launch at local

noon; the bottom three rows show the grain surface potential, radial range and latitudinal

temporal evolution.
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Figure 5.9: Following an initially uncharged 10 nm grain’s trajectory around Saturn until

it crashes into the ring plane, with initial conditions: rL = 1.7RS, ∆vz = −200 m s−1,

and O+ plasma parameters: Te = Ti = 1 eV, Tν = 2.5 eV, nα = 1 cm−3. The top

row shows the grain’s spatial trajectory, with a black circle indicating its initial launch at

local midnight; the bottom three rows show the grain surface potential, radial range and

latitudinal temporal evolution.
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Figure 5.10: Following an initially uncharged 10 nm grain’s trajectory around Saturn until

it crashes into the planet at λ ≈ 42◦S, with initial conditions: rL = 1.7RS, ∆vz =

−100 m s−1, and O+ plasma parameters: Te = Ti = 1 eV, Tν = 2.5 eV, nα = 1 cm−3.

The top row shows the grain’s spatial trajectory, with a black circle indicating its initial

launch at local midnight; the bottom three rows show the grain surface potential, radial

range and latitudinal temporal evolution.
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Figure 5.11: Following an initially uncharged 10 nm grain’s trajectory around Saturn until

it crashes into the planet’s equatorial region, with initial conditions: rL = 1.7RS, ∆vz =

+100 m s−1, and O+ plasma parameters: Te = Ti = 1 eV, Tν = 2.5 eV, nα = 1 cm−3.

The top row shows the grain’s spatial trajectory, with a black circle indicating its initial

launch at local midnight; the bottom three rows show the grain surface potential, radial

range and latitudinal temporal evolution.
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Figure 5.12: Following an initially uncharged 10 nm grain’s trajectory around Saturn until

it crashes into the planet at λ ≈ 38◦S, with initial conditions: rL = 1.7RS, ∆vz =

+100 m s−1, and O+ plasma parameters: Te = Ti = 1 eV, Tν = 2.5 eV, nα = 1 cm−3.

The top row shows the grain’s spatial trajectory, with a black circle indicating its initial

launch at local noon; the bottom three rows show the grain surface potential, radial range

and latitudinal temporal evolution.
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Figure 5.13: Following an initially uncharged 10 nm grain’s trajectory around Saturn until

it crashes into ring plane, with initial conditions: rL = 1.55RS, ∆vz = −100 m s−1,

and O+ plasma parameters: Te = Ti = 1 eV, Tν = 2.5 eV, nα = 1 cm−3. The top

row shows the grain’s spatial trajectory, with a black circle indicating its initial launch at

local midnight; the bottom three rows show the grain surface potential, radial range and

latitudinal temporal evolution.
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Figure 5.14: Following an initially uncharged 10 nm grain’s trajectory around Saturn until

it crashes into the planet’s equatorial region, with initial conditions: rL = 1.55RS, ∆vz =

+100 m s−1, and O+ plasma parameters: Te = Ti = 1 eV, Tν = 2.5 eV, nα = 1 cm−3.

The top row shows the grain’s spatial trajectory, with a black circle indicating its initial

launch at local noon; the bottom three rows show the grain surface potential, radial range

and latitudinal temporal evolution.



2 1 0 1 2
x (Rp)

2

1

0

1

2
y 

(R
p)

1.0 1.2 1.4 1.6
= x2 + y2  (Rp)

40000

30000

20000

10000

0

z (
km

)

0 10 20 30 40 50
t (hours)

1.0

0.5

0.0

d  
(V

)

0 10 20 30 40 50
t (hours)

1.0

1.2

1.4

1.6

r (
R p

)

0 10 20 30 40 50
t (hours)

40

30

20

10

0

 (
)

Figure 5.15: Following an initially uncharged 10 nm grain’s trajectory around Saturn until

it crashes into the planet at λ ≈ 42◦S, with initial conditions: rL = 1.55RS, ∆vz =

−100 m s−1, and O+ plasma parameters: Te = Ti = 1 eV, Tν = 2.5 eV, nα = 1 cm−3.

The top row shows the grain’s spatial trajectory, with a black circle indicating its initial

launch at local noon; the bottom three rows show the grain surface potential, radial range

and latitudinal evolution.
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Figure 5.16: Following an initially uncharged 10 nm grain’s trajectory around Saturn until

it crashes into the planet at λ ≈ 40◦S, with initial conditions: rL = 1.55RS, ∆vz =

−100 m s−1, and O+ plasma parameters: Te = Ti = 1 eV, Tν = 2.5 eV, nα = 1 cm−3.

The top row shows the grain’s spatial trajectory, with a black circle indicating its initial

launch at local midnight; the bottom three rows show the grain surface potential, radial

range and latitudinal temporal evolution.
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Figure 5.17: Following an initially uncharged 10 nm grain’s trajectory around Saturn until

it crashes into the C ring, with initial conditions: rL = 1.4RS, ∆vz = +100 m s−1, and

O+ plasma parameters: Te = Ti = 1 eV, Tν = 2.5 eV, nα = 1 cm−3. The top row

shows the grain’s spatial trajectory, with a black circle indicating its initial launch at local

noon; the bottom three rows show the grain surface potential, radial range and latitudinal

temporal evolution.
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Figure 5.18: Following an initially uncharged 10 nm grain’s trajectory around Saturn until

it crashes into the planet’s equatorial region, with initial conditions: rL = 1.4RS, ∆vz =

+100 m s−1, and O+ plasma parameters: Te = Ti = 1 eV, Tν = 2.5 eV, nα = 1 cm−3.

The top row shows the grain’s spatial trajectory, with a black circle indicating its initial

launch at local noon; the bottom three rows show the grain surface potential, radial range

and latitudinal temporal evolution.
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Figure 5.19: Following an initially uncharged 10 nm grain’s trajectory around Saturn until

it crashes into the planet at λ ≈ 40◦S, with initial conditions: rL = 1.4RS, ∆vz =

−100 m s−1, and O+ plasma parameters: Te = Ti = 1 eV, Tν = 2.5 eV, nα = 1 cm−3.

The top row shows the grain’s spatial trajectory, with a black circle indicating its initial

launch at local midnight; the bottom three rows show the grain surface potential, radial

range and latitudinal temporal evolution.
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Figure 5.20: Following an initially uncharged 10 nm grain’s trajectory around Saturn until

it crashes into the planet at λ ≈ 33◦S, with initial conditions: rL = 1.4RS, ∆vz =

+200 m s−1, and O+ plasma parameters: Te = Ti = 1 eV, Tν = 2.5 eV, nα = 1 cm−3.

The top row shows the grain’s spatial trajectory, with a black circle indicating its initial

launch at local midnight; the bottom three rows show the grain surface potential, radial

range and latitudinal temporal evolution.
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Figure 5.21: Following an initially uncharged 10 nm grain’s trajectory around Saturn until

it crashes into the planet at λ ≈ 49◦N, with initial conditions: rL = 1.4RS, ∆vz =

+5 km s−1, and O+ plasma parameters: Te = Ti = 1 eV, Tν = 2.5 eV, nα = 1 cm−3.

The top row shows the grain’s spatial trajectory, with a black circle indicating its initial

launch at local noon; the bottom three rows show the grain surface potential, radial range

and latitudinal temporal evolution.



6
Conclusions

In this thesis, the dynamics of charged dust in Saturn’s main rings has been studied. Here, I

describe the findings of the ring rain simulations of Chapter 5, discussing further work that can

be undertaken, and review the key results of previous chapters.

6.1 Summary of Work

In Chapter 2, adaptive integrators for solving the equations of motion of grains with constant

charge-to-mass ratios were developed and tested. The derivation and verification of analyti-

cal results for grains in planetary gravitational and magnetic fields were presented in Chap-

ter 3, and extensive simulations were run and compared to literature. In Chapter 4, a novel

stochastic charging algorithm was described, that was used to integrate the charging equations

for nanograins. This was applied to the study of ring rain, Chapter 5.

The results presented in §5.4 (Table 5.1) hint at the complexity still to be explored in ring rain,

highlighting the chaotic nature of the nanograins’ trajectories through their sensitivity to initial

conditions, and also provide a useful step towards independently verifying the results of Hsu et

al. (2018b). Grains were launched from different regions of the main rings and their equations of
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motion and stochastic charging integrated. Grains launched from the outer B ring took hundreds

of hours to reach southern mid-latitudes (Figure 5.10), whilst equatorial deposition occurred on

much shorter timescales (Figure 5.11). This corroborates Hsu (2020)’s hypothesis that the higher

silicate fraction in the observed dust at mid-latitudes is due to photo-evaporation of water-ice.

Although further simulations must be run to confirm this, it suggests that ring rain may not be

a cleansing mechanism for the rings (Crida et al. 2019), and the rings may indeed be youthful

(millions of years old as opposed to coeval with the formation of the Solar System), assuming

certain interplanetary pollution fluxes.

The dust’s initial velocity distribution appears to be a significant factor influencing the distribu-

tion of ring rain’s latitudinal deposition. Liu & Ip (2014) assumed a population of nanograins

produced by low-velocity mutual collisions between ring particles, whilst Ip et al. (2016) set

|∆vz| = 1.5 km s−1 based on high-velocity impacts from laboratory experiments, to model

ejecta from micro-meteoroid bombardment of the rings. Hsu et al. (2018b) also assumed an

impactor-ejecta process, with the ejecta speed distribution treated as a free parameter, charac-

terised by a range and power-law slope, to be fit to the measured CDA profiles. Jontof-Hutter

(2012) studied the effect of varied launch speeds on the stability of dust and found that a ver-

tical impulse of |∆vz| = 0.5 km s−1 leads to additional instability, however, their assumption

of constant charge-to-mass ratios precludes a direct comparison to grains whose charge varies

stochastically. Figure 5.21 hints that northern mid-latitudinal influx occurs for grains with faster

northward vertical velocities (∆vz ∼ km s−1), in order to overcome the Lorentz force directed

southwards arising from the vertical offset of Saturn’s magnetic dipole. Otherwise, the modest

vertical velocity boosts explored by Figures 5.8 - 5.20 result in southern or equatorial deposition

(or collision with the main rings).

Grains can exhibit wide radial excursions (Figure 5.20), if they are not initially highly-charged,

and so the radial opacity profile (Figure 1.8) may not be straightforwardly explained by magnet-

ically conjugate ring locations with H+
3 emission peaks (Figure 1.18).
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6.2 Future Work

To study ring rain further, a statistically significant sample of simulations needs to analysed. As

identified in §5.3, a sensitivity analysis, through running batches of test grains whilst varying a

single parameter (in particular, plasma density, plasma temperature, impact ejection speed and

grain radius) systematically and iterating through parameters, would be a more informative ap-

proach rather than finely tuning a single complex plasma model. Even Cassini measurements

(e.g. Tokar et al. 2005; Young et al. 2005; Waite et al. 2005) give snapshots of the plasma envi-

ronment within a restricted space and time, for which simulations could provide a quantitative

measure of the effect of small perturbations to initial conditions, as well as exploring a wider

range of input parameters to predict ring rain at other seasons and examine the effect of ring tilt

angle and shadowing.

During micro-meteoroid bombardment of the rings, high density impact plasma is generated

(e.g. Northrop & Connerney 1987). Hsu et al. (2018b) allow the initial grain charge to be

variable (|qd0| = 0− 50e), with the initial charge distribution proportional to (1 + |qd0|)−0.5, to

account for the electrons/ions collected by the grains from the impact plasma. This parameter

is something to be explored further in a sensitivity analysis, alongside other environmental and

grain parameters. Recalling that a significant factor in a grain’s charging history is its size

(e.g. Iα ∝ a2
d, Eq. 4.1), an important caveat to note is that a grain is subject to sputtering,

solar radiation and other erosive processes that would change its size and therefore its orbital

trajectory.

The inclusion of grain composition in the dynamical model would allow an analysis of the

silicate to water-ice ratio of ring rain, to compare to the photo-evaporation interpretation, which

explains the lower water-ice fraction in ring rain by long integration times leading to water loss

(§5.1.1). Using the approach of Cui & Goree (1994), who describe charge distribution functions

(§4.1.5), the fraction of grains having a certain charge at a given time could be quantified, to

investigate any differences in the average charge and the magnitude of charge fluctuations of

silicate versus water-ice grains, that could lead to orbital instability (Chapter 3).

Together with a detailed systematic investigation of the influx of dust onto Saturn across lati-

tudes, by varying grain and environmental parameters, the effect of ring rain on the structure of

the rings can be investigated further; to examine how the relative proportions of dust from the
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distinct regions of the main rings (Figure 5.1) varies, to review whether compositional differ-

ences in ring rain occur due to dynamical sorting from the bulk rings. The contribution of grains

from Enceladus’ orbit (E ring) needs to be studied, which may necessitate the inclusion of the

secondary electron emission current, to ascertain the proportion of silicate nanograins able to

cross synchronous orbit from outside. Given that grains can exhibit wide radial excursions, the

mapping from ring locations to H+
3 profiles can be further investigated; as well as considering

the mechanism of ballistic transport.

The results cannot be predicted with certainty at this stage, but the path has been mapped out

and the journey awaits.
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Colwell, J. E., Nicholson, P. D., Tiscareno, M. S., et al. 2009b, in Saturn from Cassini-Huygens

(Springer), 375–412

Connerney, J. 2013, Nature, 496, 178

Connerney, J. E. P. 1986, Geophys. Res. Lett., 13, 773

Connerney, J. E. P. 1993, Journal of Geophysical Research: Planets, 98, 18659

Connerney, J. E. P., Ness, N. F., & Acuna, M. H. 1982, Nature, 298, 44

Connerney, J. E. P. & Waite, J. H. 1984, Nature, 312, 136

Cooper, J. F. 1983, Journal of Geophysical Research: Space Physics, 88, 3945

203

https://pds-rings.seti.org/cassini/report/Cassini%20Final%20Report%20-%20Volume%201.pdf
https://pds-rings.seti.org/cassini/report/Cassini%20Final%20Report%20-%20Volume%201.pdf


Bibliography

Cowling, T. G. 1933, Monthly Notices of the Royal Astronomical Society, 94, 39

Crida, A., Charnoz, S., Hsu, H.-W., & Dones, L. 2019, Nature Astronomy, 1

Cui, C. & Goree, J. 1994, IEEE Transactions on Plasma Science, 22, 151

Cuzzi, J., Clark, R., Filacchione, G., et al. 2009, Ring Particle Composition and Size Distribu-

tion, ed. M. K. Dougherty, L. W. Esposito, & S. M. Krimigis, 459

Cuzzi, J. N. & Durisen, R. H. 1990, Icarus, 84, 467

Cuzzi, J. N. & Estrada, P. R. 1998, Icarus, 132, 1

Cuzzi, J. N., French, R. G., Hendrix, A. R., et al. 2018, Icarus, 309, 363

Deuflhard, P. 1983, Numerische Mathematik, 41, 399

Dionne, G. F. 1975, Journal of Applied Physics, 46, 3347

Dormand, J. & Prince, P. 1980, Journal of Computational and Applied Mathematics, 6, 19

Dougherty, M., Esposito, L., & Krimigis, S., eds. 2009, Saturn from Cassini-Huygens (Springer

Science & Business Media)

Dougherty, M. K., Cao, H., Khurana, K. K., et al. 2018, Science, 362

Draine, B. T. & Salpeter, E. E. 1979, ApJ, 231, 77

Durisen, R. H. 1984, in IAU Colloq. 75: Planetary Rings, 416–446

Durisen, R. H., Cramer, N. L., Murphy, B. W., et al. 1989, Icarus, 80, 136

Dzhanoev, A. R., Schmidt, J., Liu, X., & Spahn, F. 2016, A&A, 591, A147

Epstein, E. E., Janssen, M. A., & Cuzzi, J. N. 1984, Icarus, 58, 403

Esposito, L. 2014, Planetary Rings: A Post-Equinox View, 2nd edn. (Cambridge University

Press)

Esposito, L. W., Colwell, J. E., Larsen, K., et al. 2005, Science, 307, 1251

Estrada, P. R., Durisen, R. H., Cuzzi, J. N., & Morgan, D. A. 2015, Icarus, 252, 415

Farmer, A. J. & Goldreich, P. 2005, Icarus, 179, 535

204



Bibliography

Farrell, W. M., Desch, M. D., Kaiser, M. L., Kurth, W. S., & Gurnett, D. A. 2006, Geophysical

Research Letters, 33, 7203

Fehlberg, E. 1969, NASA Technical Report R-315

Filacchione, G., Ciarniello, M., Capaccioni, F., et al. 2014, Icarus, 241, 45

Fillius, W., Ip, W., & McIlwain, C. 1980, Science, 207, 425

French, R. G., Salo, H., McGhee, C. A., & Dones, L. 2007, Icarus, 189, 493

Giguere, P. & Huebner, W. 1978, The Astrophysical Journal, 223, 638

Goertz, C. & Ip, W.-H. 1984, Geophysical Research Letters, 11, 349

Goertz, C. K. 1989, Reviews of Geophysics, 27, 271

Goertz, C. K. & Morfill, G. 1983, Icarus, 53, 219

Goldreich, P. & Tremaine, S. 1978, Icarus, 34, 240

Goldstein, H., Poole, C., & Safko, J. 2014, Classical Mechanics, New International edn. (Pear-

son Education Limited), 134–183
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Graps, A., Grün, E., Krüger, H., Horányi, M., & Svedhem, H. 2001, in ESA Special Publication,

Vol. 495, Meteoroids 2001 Conference, ed. B. Warmbein, 601–608

205



Bibliography

Graps, A. L., Grün, E., Svedhem, H., et al. 2000, Nature, 405, 48
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Horányi, M., Morfill, G. E., & Cravens, T. E. 2010, IEEE Transactions on Plasma Science, 38,

874
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Juhász, A. & Horányi, M. 2002, Journal of Geophysical Research: Space Physics, 107, 1066

Julian, W. H. & Toomre, A. 1966, Astrophysical Journal, 146, 810

Kaiser, M., Desch, M., & Connerney, J. 1984, Journal of Geophysical Research: Space Physics,

89, 2371

Kanal, M. 1962, Scientific Report JS-5, Space Physics Research Lab., Univ. of. Michigan, Col-

lege of Engineering, Space Physics Research Laboratory,

Keeler, J. E. 1895, ApJ, 1, 416

Kempf, S., Srama, R., Horanyi, M., et al. 2005, Nature, 433, 289

Khrapak, S. A., Nefedov, A. P., Petrov, O. F., & Vaulina, O. S. 1999, Phys. Rev. E, 59, 6017

Kliore, A. J., Nagy, A., Asmar, S., et al. 2014, Geophysical Research Letters, 41, 5778

Kliore, A. J., Patel, I. R., Lindal, G. F., et al. 1980, Journal of Geophysical Research: Space

Physics, 85, 5857

Kollmann, P., Roussos, E., Kotova, A., Paranicas, C., & Krupp, N. 2017, Nature Astronomy, 1,

872

Koschny, D. & Grün, E. 2001, Icarus, 154, 391

Koskinen, T., Sandel, B., Yelle, R., et al. 2015, Icarus, 260, 174

Kovalevskaya, S. 1948, Scientific Works (Izd. Akad. Nauk SSSR, Moscow)

Krimigis, S., Armstrong, T., Axford, W., et al. 1981, Science, 212, 225

Krimigis, S., Armstrong, T., Axford, W., et al. 1982, Science, 215, 571
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