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Abstract

In this thesis we are concerned with Diophantine problems of fractional degree. First we con-
sider diagonal Diophantine inequalities of the shape∣∣λ1x

θ
1 + · · ·+ λsx

θ
s

∣∣ < τ,

where θ > 2 is real and non-integral,λi are non-zero real numbers not all of the same sign and τ
is a positive real number. For such inequalities we obtain an asymptotic formula for the number
of positive integer solutions x = (x1, . . . , xs) inside a box of side length P. Moreover, we con-
sider the problem of representing a large positive real number by a positive definite generalised
polynomial of degree θ. Our approach follows the Davenport–Heilbronn–Freeman method. A
key element in our proof is an essentially optimal mean value estimate for an exponential sum
involving fractional powers of integers.

We then turn our attention to systems of simultaneous equations and inequalities. Let λi, µj
be non-zero real numbers not all of the same sign and let ai, bk be non-zero integers not all of
the same sign. We investigate a mixed Diophantine system of the shape

∣∣λ1x
θ
1 + · · ·+ λ`x

θ
` + µ1y

θ
1 + · · ·+ µmy

θ
m

∣∣ < τ

a1x
d
1 + · · · a`xd` + b1z

d
1 + · · ·+ bnz

d
n = 0,

where d ≥ 2 is an integer, θ > d + 1 is real and non-integral and τ is a positive real number.
For such systems we obtain an asymptotic formula for the number of positive integer solutions
(x, y, z) = (x1, . . . , zn) inside a bounded box. Our approach makes use of a two-dimensional
version of the classical Hardy–Littlewood circle method and the Davenport–Heilbronn–Freeman
method. The proof involves a combination of essentially optimal mean value estimates for
the auxiliary exponential sums, together with estimates stemming from the classical Weyl and
Weyl–van der Corput inequalities.
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Chapter 1

Introduction

1.1 General introduction to the thesis

As the title suggests, this thesis is concerned with the study of Diophantine problems involving

fractional powers of integers. Ignoring for now the adjective fractional, let us first explain the

term Diophantine problems. That is, problems concerning the investigation of existence of in-

teger solutions to equations with integer coefficients. The name comes from the ancient Greek

mathematician Diophantus of Alexandria who is the author of Arithmetica, the oldest surviving

book on the topic of algebraic equations.

Suppose that s is a natural number. A specific type of Diophantine equations that has attract

a lot of attention is equations of the diagonal shape

c1x
k
1 + · · ·+ csx

k
s = 0, (1.1.1)

where ci are non-zero integers andk ≥ 2 is a natural number. If one were to replace the integers

ci by some non-zero real numbers λi then it makes sense to ask whether the inequality

|λ1x
k
1 + · · ·+ λsx

k
s | < ε, (1.1.2)

possesses a non-trivial solution x = (x1, . . . , xs) ∈ Zs for arbitrarily small values of ε > 0.

The term non-trivial refers to solutions x with at least one component xi 6= 0. Note that due to

homogeneity the existence of a solution implies that the inequality actually possesses infinitely

many integer solutions. The main theme of the present thesis is the study of inequalities of the

shape (1.1.2), where now we consider a non-integral exponent θ, namely we study inequalities

of the shape

|λ1x
θ
1 + · · ·+ λsx

θ
s| < ε, (1.1.3)

where θ > 2 is real and non-integral. As in the case of equations, one may consider study-

ing systems of inequalities. Here we investigate a mixed system consisting of an equation and

an inequality. More specifically, we investigate the simultaneous solubility of equations of the

shape (1.1.1) and inequalities of the shape (1.1.3).

Before we close this first section we introduce some pieces of notation that we use in the rest
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Chapter 1. Introduction

of this work. For x ∈ R we write e(x) to denote e2πix with i =
√
−1 being the imaginary unit.

For a complex number z we write z to denote its complex conjugate. For a function f : Z→ C
and for two real numbers m,M, whenever we write∑

m<x≤M

f(x)

the summation is to be understood over the integers that belong to the interval (m,M ].

We make use of the standard symbols of Vinogradov and Landau. Namely, when for two func-

tions f, g there exists a positive real constant C such that |f(x)| ≤ C|g(x)| for all sufficiently

large x we write f(x) = O(g(x)) or f(x) � g(x). We write f � g to denote the relation g �
f � g. Furthermore, we write f(x) = o(g(x)) if f(x)/g(x)→ 0 as x→∞ and we write f ∼ g
if f(x)/g(x) → 1 as x → ∞. For a real number x we shall write dxe = min{n ∈ Z : n ≥ x}
and bxc = max{n ∈ Z : n ≤ x} to denote the ceiling and the floor function respectively. For

two integers a, b we write (a, b) to denote their greatest common divisor. An expression of the

shape m < x ≤ M where m < M and x = (x1, . . . , xn) is an n-tuple, is to be understood as

m < x1, . . . , xn ≤ M. Similarly, for n tuples x, y, z, an inequality of the shape y < x ≤ z is to

be understood as yi < xi ≤ zi for 1 ≤ i ≤ n. Finally, and for the sake of clarity, let us declare at

this stage that the term form refers to a homogeneous polynomial. Moreover, we say that a form

is non-degenerate if all of its coefficients are non-zero. Recall as well that the term non-trivial

solution refers to a solution x 6= 0.

1.2 Diagonal Diophantine inequalities

One of the first major results in the study of additive type Diophantine inequalities is due to Dav-

enport and Heilbronn [30]. In this paper it is proven that any real indefinite diagonal quadratic

form in 5 variables that is not proportional to a form with integral coefficients, can take arbi-

trarily small values. Let us make this more concrete.

Theorem 1.2.1 (Davenport and Heilbronn – [30]). Suppose that λ1, . . . , λ5 are non-zero real

numbers, not all of the same sign, and such that one at least of the ratios λi/λj is irrational. We

write

Q(x) = λ1x
2
1 + · · ·+ λ5x

2
5.

Then there exist arbitrarily large integers P such that the inequality

|Q(x)| < 1

has more than γP 3 solutions with 1 ≤ x1, . . . , x5 ≤ P. Here γ = γ(λ1, . . . , λ5) is a positive real

constant.

Note here that one may obtain a corresponding result for the inequality |Q(x)| < ε for any

given ε > 0 by simple applying the theorem to the quadratic form ε−1Q(x). In order to prove

Theorem 1.2.1, Davenport and Heilbronn developed a variant of the classical Hardy–Littlewood

circle method. This method, which is now called the Davenport–Heilbronn method, has been

since then a fundamental tool in studying the solubility of inequalities.

2



1.2. Diagonal Diophantine inequalities

Let us now say a word behind the motivation in the investigation of Davenport and Heilbronn.

In 1884 Meyer [47] proved that any non-degenerate indefinite quadratic form of the shape

q(x) = a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 + a5x

2
5 ∈ Z[x]

possesses a non-trivial rational (and hence by clearing the denominators an integral) zero x.

Note that this is sharp. Consider the quadratic form

q(x) = x2
1 + x2

2 − 3(x2
3 + x2

4).

Using Fermat’s method of infinite descent and reducing (mod 3) one can readily see that the

equation q(x) = 0 does not admit a non-trivial integer solution. Motivated by Meyer’s result,

Oppenheim [52] in 1929 conjectured that any real non-degenerate indefinite quadratic formQ

in s ≥ 5 variables which is not proportional to a rational form can take arbitrarily small values.

In 1953, in a series of papers [53], [54], [55], Oppenheim made the stronger conjecture that

for a quadratic form as above in s ≥ 3 variables, the set Q(Zs) is dense in R. Oppenheim’s

conjecture, now a theorem after Margulis’s work [46], is usually formulated as follows.

Theorem 1.2.2 (Oppenheim Conjecture–Margulis’s Theorem [46]). LetQ be a non-degenerate

real indefinite quadratic form in s ≥ 3 variables, that is not proportional to a form with rational

coefficients. Then for any ε > 0 there exists x ∈ Z \ {0} such that 0 < |Q(x)| < ε.

The case of real indefinite diagonal quadratic forms was investigated by Davenport and Heil-

bronn in [30]. In 1956 Davenport [27] proved that any indefinite real quadratic form can take

arbitrarily small values, provided that it can be expressed as a sum of squares of real linear

forms that have sufficiently many positive and negative signs. This result was subsequently

improved by Davenport [28] in 1958, and by Birch and Davenport [7]. Further improvements

were obtained by Davenport and Ridout [33] and Ridout [66]. To give an idea of the spirit of

these results, let us describe Ridout’s conclusion. Suppose that Q is a real indefinite quadratic

form in s variables. Suppose further that after a diagonalization Q can be expressed a sum of

squares of real linear forms with r positive signs and s− r negative signs. If min(r, s− r) ≤ 4

and s ≥ 21, then for any ε > 0 the inequality |Q(x)| < ε has a non-trivial integer solution.

Oppenheim’s conjecture was finally settled in the affirmative in 1989 by Margulis [46]. Mar-

gulis’s approach in proving Oppenheim’s conjecture makes use of different tools and methods

than the previous mentioned works.

As a closing remark on our short discussion about Oppenheim’s conjecture, let us say that

Margulis’s result is the best possible. There exists real indefinite quadratic forms in 2 variables

that have no non-trivial integer solutions. Set

Q(x1, x2) = x2
1 − α2x2

2,

where α = 1 +
√

2. Note that the quadratic form we consider is diagonal. Using Liouville’s

theorem 1 we can show that there exists a constant C > 0 so that for any pair (p, q) ∈ Z × N
1see [44, Theorem 191, §11.7] ; Suppose that α is an irrational that is a root of a polynomial f ∈ Z[x] of degree

d > 0. Then there exists a real constantC > 0 such that for all pairs (p, q) ∈ Z× N one has |α− p/q| > C/qd.

3



Chapter 1. Introduction

one has ∣∣∣∣α− p

q

∣∣∣∣ > C

q2
.

By changing signs if necessary we may assume that x1

x2
> 0. So by the above inequality one has

C

x2
2

α <

∣∣∣∣α− x1

x2

∣∣∣∣ · ∣∣∣∣α+
x1

x2

∣∣∣∣ ,
which in turn yields that the inequality |Q(x1, x2)| < ε does not admit a non-trivial integer

solution for ε ≤ Cα.

We return now to the setting of diagonal inequalities. As we already discussed, Davenport

and Heilbronn [30] proved that if λi are non-zero real numbers not all of the same sign, and

such that at least one of the ratios λi/λj is irrational, then the inequality

∣∣λ1x
2
1 + · · ·+ λ5x

2
5

∣∣ < ε

possesses a non-trivial solution in positive integers for any ε > 0.Moreover, in [30] it is pointed

out that using Hua’s inequality one may similarly prove (under the same assumptions on λi)

that if k ≥ 2 is a fixed integer, then the inequality

|λ1x
k
1 + · · ·+ λsx

k
s | < ε (1.2.1)

possesses a non-trivial solution in positive integers for any ε > 0, provided that s ≥ 2k + 1.

For the details of the proof, the interested reader may look at [78, Chapter 11]. In §1.8 we shall

give a sketch of this argument.

Following the work of Davenport and Heilbronn, various results were obtained concerning

diagonal inequalities. In 1955 Davenport and Roth [34] used Vinogradov’s estimate for Weyl

sums to show that for k ≥ 12 the inequality (1.2.1) is non-trivially soluble in positive integers

provided that s ≥ Ck log k, where C is an absolute positive constant. Moreover, in the same

paper, it is proven that if M is an arbitrary real number, then for any ε > 0 the inequality

∣∣λ1x
3
1 + · · ·+ λ8x

3
8 +M

∣∣ < ε

has infinitely many solutions in positive integers. In fact, Brüdern [14] showed that if there is

at least one irrational ratio λi/λj , then the inequality

∣∣λ1x
3
1 + · · ·+ λ8x

3
8

∣∣ < (max |xi|)ε−1/4

has infinitely many integer solutions. Baker, Brüdern and Wooley [3] showed that any diagonal

cubic inequality in s = 7 variables that is not proportional to an integral form has infinitely

many integer solutions. More precisely, in [3] it is proven if there is at least one irrational ratio

λi/λj , then for any M ∈ R the inequality

∣∣λ1x
3
1 + · · ·+ λ7x

3
7 −M

∣∣ < (max |xi|)−10−4

has infinitely many solutions in integers. Under the extra condition that there is a ratio λi/λj
which is irrational and algebraic, Brüdern [17] replaced the exponent−10−4 by−360−1.More-

4



1.3. Asymptotic lower bounds and asymptotic formulas

over, for cubic inequalities Brüdern in [16] investigated the size of the solutions in terms of the

coefficients of the form. The main result of [16] says that if λi ≥ 1 are real numbers, then for

any ε > 0 there exists x ∈ Z8 such that the inequalities

∣∣λ1x
3
1 + · · ·+ λ8x

3
8

∣∣ < 1

and

0 <

8∑
i=1

λi|xi|3 � (λ1 · · ·λ8)15/8+ε

hold simultaneously. This improved previous work of Pitman and Ridout [63] on bounding

solutions of cubic equations and inequalities.

Though in the present thesis we do not deal with mixed power inequalities, let us mention

here that some results for such a case have been obtained by Brüdern in [13] and [15]. Suppose

that s, k1, . . . , ks ≥ 2 are fixed natural numbers. The main theme of these papers is to show that

for specific values of s, ki and for integral xi, the values taken by non-degenerate real forms of

the shape

H(x) = λ1x
k1
1 + · · ·+ λsx

ks
s

are dense in R.

We shall close this section we a few comments on general cubic inequalities. For cubic not

necessarily diagonal inequalities we have the work of Pitman [61]. Suppose that C(x) is real

cubic form in s variables. Pitman proved in [61] that for any ε > 0 the inequality |C(x)| < ε

possesses a non-trivial integer solution provided that s ≥ (1314)256−1.This was the first finite

lower bound for the number of variables needed to ensure the existence of a non-trivial integral

zero for a real cubic form. Pitman’s result was significantly improved by Freeman in [37] who

showed that any real cubic form is non-trivially soluble in integers, provided that the number

of variables s satisfies s ≥ 359, 551, 882. For general real forms of odd degree, it was proven by

Schmidt [67] that given enough variables it is always possible to prove the existence of a non-

trivial integer solution. However, Schmidt gives no explicit value for the number of variables

needed to ensure solubility. We shall come back to Schmidt’s result in §1.5.

1.3 Asymptotic lower bounds and asymptotic formulas

Suppose that s, k ≥ 2 are fixed integers. Suppose further that λi are fixed non-zero real num-

bers, such that at least one of the ratios λi/λj is irrational, and such that, if k is even, then not

all have the same sign. We put

F (x) = λ1x
k
1 + · · ·+ λsx

k
s .

Let P be a large positive real number and let τ > 0 be a fixed real number. We denote byN(P )

the number of integer solutions of the inequality

|F (x)| < τ, (1.3.1)

5



Chapter 1. Introduction

with |x| ≤ P, where |x| = maxi |xi|. There are about P s possible choices for a tuple x with

|x| ≤ P. Moreover, and roughly speaking, an arbitrary tuple x is a solution of the inequality

(1.3.1) with probabilityP−k . So, heuristically one expects that the number of solutions counted

by N(P ) is roughly of the order of magnitude P s−k. As we mentioned in the opening of §1.2,

when k = 2 and s = 5 Davenport and Heilbronn in [30] showed that there exist arbitrarily large

non-trivial integer solutions x to the inequality (1.3.1). Theorem 1.2.1 guarantees the existence

of a sequence of integers (Pn)n∈N with Pn → ∞ as n → ∞, such that N(Pn) � γP s−2
n for

some positive real number γ depending at most on λi and τ. This asymptotic lower bound is

proven to be valid for arbitrarily large values of P and not for all large values of P. In the proof

P is restricted to take values from the convergent continued fractions approximation of some

irrational ratio λi/λj .

It becomes apparent from the above discussion that a central problem now is to establish an

asymptotic lower bound for the counting function N(P ), that is of the correct order of magni-

tude for all sufficiently largeP.This problem was open up until 2000. At this point Freeman [36]

finally succeed to remove the previous restriction on the values of P. In [36] was established

for the first time an asymptotic lower bound of the shape N(P )� P s−k (P →∞). We state

Freeman’s result below.

Theorem 1.3.1 (Freeman – [36]). Suppose that k ≥ 3 is a fixed integer. Let

s0(k) = min

{
2k + 1, k(log k + log log k + 3) +

C̃k log log k

log k

}
,

where C̃ > 0 is a suitable absolute real constant. Suppose that s ≥ s0(k) is an integer. Then as

P →∞ one has

N(P )� P s−k,

where the implicit constant depends at most on k, s, τ and the coefficients λi.

A key role in the proof of Theorem 1.3.1 is played by the work of Bentkus and Götze [4] on

value distribution of positive definite quadratic forms. Drawing inspiration from some of the

methods of [4], Freeman developed further the Davenport–Heilbronn method in order to de-

liver a lower bound for the counting function N(P ) for all sufficiently large values of P. The

apparatus introduced in [36] is now known as Freeman’s variant of the Davenport–Heilbronn

method. We illustrate the main ideas of this method in §1.8. An asymptotic formula for the

counting function was obtained by Freeman in [39]. Building on [36] and introducing appro-

priate kernel functions, Freeman proved that given s ≥ 2k + 1 variables one has as P → ∞
that

N(P ) = C(s, k;λ)τP s−k + o
(
P s−k

)
, (1.3.2)

where C(s, k;λ) is a positive real number, which depends at most on k, s and λi.

For the inhomogeneous case, Freeman [40] extended the results of [36] in order to deal with

additive inequalities of the shape

|h(x1) + · · ·+ h(xs)−M | < ε,

where hi are real polynomials in one variable, of degree at most k. Using a diminishing ranges

6



1.3. Asymptotic lower bounds and asymptotic formulas

argument, Freeman proved that the above inequality has infinitely many integer solutions for

any given real numbers ε,M with ε > 0, provided that s ≥ s0(k) where s0(k) ∼ 4k log k. Note

that compared to the homogeneous case, here for large k one needs four times more variables.

This is due to the presence of the real number M which prevents one from making use of the

technology for exponential sums over smooth numbers as in [36].

Back to the homogeneous case now, Freeman’s results from [36] and [39] were improved

shortly afterwards by Wooley [86]. We write F (k) to denote the least integer s0 so that when-

ever s ≥ s0 the asymptotic lower bound

N(P )� C(s, k;λ)τP s−k

holds for all large P. As before, C(s, k;λ) is a positive real number, which depends at most on

k, s and λi. In [86] Wooley refined Freeman’s approach by using an amplification procedure.

In [86, Theorem 2] it is proven that when k is large one has

F (k) ≤ k(log k + log log k + 2 + o(1)),

while for small values of k one has F (k) ≤ F(k), where the integer F(k) is recorded in the

following tables. As far as the author is aware, this is the current state of art in the existing

bibliography for the number F (k).

Table 1.1: Values of F(k) for 3 ≤ k ≤ 11

k 3 4 5 6 7 8 9 10 11
F(k) 7 12 18 25 33 42 50 59 67

Table 1.2: Values of F(k) for 12 ≤ k ≤ 20

k 12 13 14 15 16 17 18 19 20
F(k) 76 84 92 100 109 117 125 134 142

Let us notice that a possible direction for future research here would be to improve on the

values of F(k), recorded on the above tables. It seems possible to obtain some improvement by

using methods of [93].

In the same work [86, Corollary] Wooley showed that the asymptotic formula (1.3.2) is valid

whenever

s ≥ 2k (k ≥ 3), s ≥ 7

8
2k (k ≥ 6), s ≥ k2(log k + log log k +O(1)) when k is large.

Here one can get an improvement by using the latest developments in Vinogradov’s mean value

theorem due to Wooley [95]. For α ∈ R we put

fk(α) =
∑

1≤x≤P

e(αxk).

7



Chapter 1. Introduction

In [95, Corollary 14.7] it is proven that∫ 1

0

|fk(α)|s dα� P s−d,

provided that s ≥ s0, where

s0 = k2 − k + 2b
√

2k + 2c − θ(k),

with θ(k) defined via

θ(k) =


1, when 2k + 2 ≥ b

√
2k + 2c2 + b

√
2k + 2c,

2, when 2k + 2 < b
√

2k + 2c2 + b
√

2k + 2c.

Combining the above estimate with the methods of [21], one may establish (1.3.2) using s0 + 1

variables. This improves the previous results of Wooley for s ≥ 5.

1.4 Diophantine inequalities of fractional degree

We may now come to describe the first result of this thesis. Instead of a diagonal form of de-

gree k ≥ 2 we consider a diagonal generalised polynomial of fractional degree. More specifi-

cally, suppose that θ > 2 is real and non-integral, and suppose that s is a positive integer. Let

λ1, . . . , λs be fixed non-zero real numbers not all of the same sign. Consider the generalised

polynomial

F(x) = λ1x
θ
1 + · · ·+ λsx

θ
s. (1.4.1)

Note that in contrast to the previous case, we do not need to assume the existence of an irra-

tional ratio λi/λj .

Going back to the literature, it seems that the first to consider studying additive problems

with non-integral exponents is Segal in the early 1930’s. In [69], [70] and [71] ( see also [72]),

Segal studied Waring’s problem with non-integral exponents. Suppose that ν is a positive real

number. Segal considered the inequality

|xθ1 + · · ·+ xθs − ν| < ε,

with θ > 2 real and non-integral and 0 < ε < ν−c(θ)/θ, where 0 < c(θ) < 1 is a fixed number

depending only on θ. For large values of ν Segal showed the existence of a solution x ∈ Ns,
provided that we are given s ≥ s0(θ) variables, where s0(θ) ≈ θ(bθc+ 1)2bθc+1 + 1.

Let τ > 0 be a fixed real number. Recall from (1.4.1) the definition of the generalised poly-

nomial F(x). We writeN τ
s,θ(P ) to denote the number of integer solutions of the inequality

|F(x)| < τ, (1.4.2)

with 1 ≤ x1, . . . , xs ≤ P. In Chapter 2 we establish an asymptotic formula for the counting

functionN τ
s,θ(P ) as P →∞. Our result reads as follows.
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1.4. Diophantine inequalities of fractional degree

Theorem 1.4.1. Suppose that θ > 2 is real and non-integral, and suppose further that s ≥
(b2θc+ 1) (b2θc+ 2) + 1 is a natural number. Then as P →∞ one has

N τ
s,θ(P ) = 2τΩ(s, θ;λ)P s−θ + o

(
P s−θ

)
,

where

Ω(s, θ;λ) =

(
1

θ

)s
|λ1 · · ·λs|−1/θC(s, θ;λ) > 0

with

C(s, θ;λ) =

∫
U

(−σs(σ1β1 + · · ·+ σs−1βs−1))
1/θ−1

(β1 · · ·βs−1)1/θ−1dβ,

where dβ here stands for dβ1 · · · dβs−1, and σi = λi/|λi|, and U denotes the set of points of the

box [0, |λ1|]× · · · × [0, |λs−1|], satisfying the condition that

−σs(σ1β1 + · · ·+ σs−1βs−1) ∈ [0, |λs|].

In particular, the inequality (1.4.2) possesses a non-trivial positive integer solution.

With minor adjustments the method we employ in proving Theorem 1.4.1 allows us to treat

also positive definite generalised polynomials of the shape (1.4.1). A well known and exten-

sively studied problem in additive number theory is Waring’s problem. Suppose that k ≥ 2 is a

fixed integer. In its most standard form, the problem asks for the least natural number s = s(k)

such that every sufficiently large natural N is represented in the shape

N = xk1 + · · ·+ xks ,

where xi are non-negative integers. A real analogue of this problem was studied by Chow in

[23] and [24]. Using the Davenport–Heilbronn–Freeman method, Chow studied the number of

solutions x ∈ Ns as τ →∞ of the inequality

∣∣(x1 − θ1)k + · · ·+ (xs − θs)k − τ
∣∣ < η,

where θi ∈ (0, 1) with θ1 /∈ Q and η ∈ (0, 1] being fixed. In Chapter 2 we obtain a similar in

spirit result.

Suppose that λi > 0 (1 ≤ i ≤ s). For a positive real number ν sufficiently large in terms of

s, k and τ, we ask how many positive integer solutions are possessed by the inequality

|F(x)− ν| < τ, (1.4.3)

with F as in (1.4.1). We write ρs(τ, ν) = ρs(τ, ν;λ) to denote the number of positive integer

solutions of (1.4.3). One anticipates ρs(τ, ν) to be large when τ is fixed and ν is large in terms

of s, k, λi and τ. In Chapter 2 we prove the following result.

Theorem 1.4.2. Suppose that θ > 2 is real and non-integral, and that τ ∈ (0, 1] is a fixed real

number. Suppose further that s ≥ (b2θc+ 1) (b2θc+ 2)+1 is a natural number. Then as ν →∞
one has

ρs(τ, ν) = 2(λ1 · · ·λs)−1/θ Γ
(
1 + 1

θ

)s
Γ
(
s
θ

) τνs/θ−1 + o
(
νs/θ−1

)
.
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Though the asymptotic formulae of Theorem 1.4.1 and Theorem 1.4.2 look similar, there is an

essential difference between them. In the indefinite case of Theorem 1.4.1 we consider boxes of

arbitrarily large side length P and so the main term grows like P s−θ. On the other hand, in the

definite case covered by Theorem 1.4.2 , the main term in the asymptotic formula is growing

like νs/θ−1 and hence it is limited by the size of the real number ν we wish to represent. This

is explained by the fact that there is a natural height restriction imposed on a solution x of the

inequality (1.4.3).

1.5 Systems of Diophantine inequalities

In this section we shall be concerned with systems of inequalities and mixed systems consisting

of both equations and inequalities. For this reason let us begin our discussion with systems of

integral forms. For diagonal integral forms we have the work of Davenport and Lewis [32]. In

this paper the authors study the zeros of simultaneous forms of the shape

Gi(x) = ai1x
k
1 + · · ·+ aisx

k
s (1 ≤ i ≤ R),

where aij are fixed integers and k ≥ 2 is a fixed integer. In [32] it was proven that simultane-

ously the formsGi(x) (1 ≤ i ≤ R) possess a non-trivial integer zero provided that the number

of variables s satisfies s ≥ b9R2k log(3Rk)cwhen k is odd and s ≥ b48R2k3 log(3Rk2)cwhen k

is even. This paper has been influential for many subsequent works dealing with simultaneous

zeros of forms and inequalities.

One of the most remarkable results concerning systems of general integral forms is due to

Birch [6]. Suppose that F1, . . . , FR are any integral forms of degree k in s variables. Then the

system of equations Fi(x) = 0 (1 ≤ i ≤ R) possesses a non-trivial integer solution provided

that we have enough variables. Here enough variables means that s exceeds a quantity that

grows at least quadratically with R. This was recently improved by Myerson in [49] and [50],

to a linear dependence on R in the case of quadratic and cubic forms.

Suppose now that instead of integral forms we consider real forms. More relevant to us is the

case of simultaneous diagonal inequalities. However, before we discuss this case and present

some of the existing results in the literature, we choose to say a word for systems of general (not

necessarily diagonal) real forms of unlike degree. This is certainly much harder compared to

the diagonal situation of like degrees. A major result here dating to 1980 is due to Schmidt [67],

who investigated the solubility of simultaneous general real forms of unlike odd degrees. Below

we quote one version of Schmidt’s result. Let us remark that the following version is not the

strongest conclusion that was established in [67]. However, it is good enough for us to illustrate

the spirit of the results obtained in [67].

Theorem 1.5.1 (Schmidt – [67]). Let h ≥ 1 be a given integer and letE be a given positive real

number. Suppose that d1, . . . , dh are given odd integers and suppose further that Fi(x) is a real

form of degree di, for 1 ≤ i ≤ h. Then there exists a positive real number τ = τ(d1, . . . , dh, E)

such that for any natural number s ≥ τ and any real number N ≥ 1, there exists x ∈ Zs \ {0}
which satisfies

max
1≤i≤s

|xi| ≤ N,

10



1.5. Systems of Diophantine inequalities

and

|Fi(x)| � N−E |Fi| (1 ≤ i ≤ h),

where |Fi| stands for maximum of the absolute values of the coefficients of the formFi.The implicit

constant depends only on d1, . . . , dh and E.

Roughly speaking, Schmidt’s result tells us that any system of real forms of odd degree has a

non-trivial integer solution provided that we are given enough variables. However, no explicit

value was given for the number τ = τ(d1, . . . , dh, E). For diagonal real forms of like odd degree

we have the following result due to Nadesalingam and Pitman.

Theorem 1.5.2 (Nadesalingam and Pitman – [51]). Suppose thatR ≥ 2 and d ≥ 13 are integers

withdbeing odd. Suppose further thatF1, . . . , FR are diagonal real forms in s ≥ dR2k2 log(3Rk)e
variables. Then for any ε > 0 the system of inequalities

|Fi(x)| < ε (1 ≤ i ≤ R)

has a non-trivial integer solution.

The result of Nadesalingam and Pitman contains implicitly the case where the forms are mul-

tiplies of rational forms. In such a case and for sufficiently small ε, some of the inequalities are

reduced to equations with integer coefficients. The authors combine the classical circle method

of Hardy and Littlewood with the Davenport–Heilbronn method. A key step in their approach

is the use of an inductive argument on the number of integral forms hidden in the system.

Suppose now that we are given anyR real formsFi(x) (1 ≤ i ≤ R) in s variables of degree d,

where d is an odd integer. We write τ(d,R) to denote the least positive natural number s0 such

that for s ≥ s0 and any ε > 0 the system of simultaneous inequalities |Fi(x)| < ε (1 ≤ i ≤ R)

possesses a non-trivial integer solution. The first finite upper bound for the number τ(3, R)

was given by Freeman in the early 2000’s. In [42] Freeman proved that τ(3, h) ≤ (10h)γ where

γ = (10h)5. Freeman’s approach goes through the pursuit of bounded non-trivial integer so-

lutions to cubic inequalities. The proof makes use of diagonalization techniques and builds

on [51].

We turn now our attention to systems consisting of even degree forms. We begin with the

simplest case, namely a pair of two quadratic forms. We write

Qi(x) = λi1x
2
1 + · · ·+ λisx

2
s (i = 1, 2),

where λij are fixed real numbers. In 1974 Cook [26] considered the system of simultaneous

quadratic inequalities

|Qi(x)| < ε (i = 1, 2)

in s = 9 variables. In order to exclude the case where the forms Q1 and Q2 are multiplies of

rational forms, Cook associated to the formsQ1 andQ2 the following ternary linear forms. For

1 ≤ i < j < k ≤ 9 we write

Lijk(u, v, w) = det

 u v w

λ1i λ1j λ1k

λ2i λ2j λ2k

 .

11
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With this piece of notation we may now state the result of Cook.

Theorem 1.5.3 (Cook – [26]). Suppose that Q1 and Q2 have real algebraic coefficients in nine

variables. Suppose further that

(i) Every member of the pencil {αQ1 + βQ2}with (α, β) ∈ R \ { 0} is an indefinite form with

at least five non-zero coefficients ;

(ii) Not all the ternary linear formsLijk(u, v, w) have coefficients which are linearly dependent

over the rationals.

Then for every ε > 0 there exist integers x1, . . . , x9 not all zero, such that

|Q1(x)| < ε and |Q2(x)| < ε.

In [18] Brüdern and Cook considered a pair of real diagonal cubic forms in s = 15 variables.

Suppose that F1 and F2 are two such forms. Assuming that the coefficients of F1 and F2 are

algebraic and the condition (ii) of Theorem 1.5.3 is satisfied, they showed that for any ε > 0

the system of inequalities |Fi(x)| < ε (i = 1, 2) has infinitely many integer solutions. This

improved a result of Pitman [61]. Moreover, in [19] Brüdern and Cook considered the solubility

of R simultaneous real diagonal forms of odd degree k ≥ 2. Say F1, . . . , FR are such forms.

Imposing a condition similar to the condition (ii) of Theorem 1.5.3, they proved that the system

of inequalities |Fi(x)| < ε (1 ≤ i ≤ R) has a non-trivial integer solution provided that the

number of variables is of order Rn0 with n0 = O (k log k) . As a matter of fact, Brüdern and

Cook proved an asymptotic lower bound of the correct magnitude for the number of solutions

inside a box of side length P. However, this asymptotic lower bound is proven to be valid for a

sequence of arbitrarily large positive real numbers P and not for all large P. This is due to the

limitation of the Davenport–Heilbronn method as it was introduced in [30].

Returning to the case of quadratic forms, the next result comes from Freeman. Using his

variant variant of the Davenport–Heilbronn method, Freeman considered in [36] a system ofR

diagonal real quadratic forms. Below we state that result for the case R = 2.

Theorem 1.5.4 (Freeman – [38]). Let Q1, Q2 be real diagonal quadratic forms in s ≥ 10 vari-

ables. Suppose that every member of the pencil {αQ1 + βQ2} with (α, β) ∈ R \ {0} has at least

five non-zero coefficients, one irrational coefficient, at least one negative coefficient and at least

one positive coefficient. Then for any ε > 0 there exists x ∈ Zs \ {0} such that

|Q1(x)| < ε and |Q2(x)| < ε. (1.5.1)

Moreover, ifP is a sufficiently large positive real number andN(P ) denotes the number of integer

solutions of the system (1.5.1) with 1 ≤ x ≤ P, then as P →∞ one has

N(P )� P s−2,

where the implicit constant depends on ε and the coefficients of the forms Q1 and Q2.

One may compare the result of Freeman with that of Cook. The latter requires fewer variables

to ensure solubility. However, this comes with stronger assumptions on the coefficients of the

12
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forms. The assumption that the forms Q1, Q2 have algebraic coefficients and the condition

(ii) in Theorem 1.5.3, are now being replaced by the condition that for any (α, β) ∈ R \ { 0}
the form αQ1 + βQ2 has at least one irrational coefficient. In [38, §2] it is demonstrated that

Cook’s condition is in fact strictly stronger than the above irrationality condition. For the case of

R > 2 simultaneous real diagonal quadratic forms, Freeman [38, Theorem 3] obtained a similar

result in s ≥ 5R variables. For this conclusion Freeman made the following assumptions : the

existence of a non-singular real solution, a rank condition on the coefficients of the forms and

an irrationality condition of the shape

for every choice (β1, . . . , βR) ∈ RR \ {0}, the form β1Q1 + · · ·+ βRQR

has at least one irrational coefficient.
(1.5.2)

The next step in Freeman’s investigations is to remove the irrationality condition (1.5.2).

Note that this condition ensures that no form in the pencil is an integral form. Hence, subject

to such a condition, one considers only true inequalities and excludes systems consisting of

equations and inequalities. Suppose that R ≥ 2 is a fixed integer. We put

Fi(x) = λi1x
k
1 + · · ·+ λisx

k
s (1 ≤ i ≤ R),

where λij are fixed real numbers and k ≥ 2 is a fixed integer. We may reduce the system

consisting of the forms Fi into a new system of forms (which by abuse of notation we denote

again by Fi), for which the following condition is satisfied. Suppose that for some 0 ≤ r ≤ R

the forms F1, . . . , Fr are integral and suppose further that if (β1, . . . , βR) ∈ RR is such that the

form β1F1 + · · · + βRFR is rational then βr+1 = · · · = βR. Furthermore, in the case where

k is even suppose that the system of equations F1(x) = · · · = FR(x) = 0 possesses a non-

singular real solution. Subject to a suitable rank condition and if the singular series associated

to the integral forms F1, . . . , Fr is positive, it was proven by Freeman [41] that the system of

inequalities

|Fi(x)| < ε (1 ≤ i ≤ R), (1.5.3)

has a non-trivial integer solution for any ε > 0, provided that the number of variables s satis-

fies s ≥ Rn0, where n0 is of order of magnitude k log k + o(k log k). At the cost of extra vari-

ables, Freeman demonstrates that the assumption for the singular series to be positive may

be dropped. The proof combines techniques by Nadesalingam and Pitman [51], together with

methods of Bentkus and Götze [4], as in [36]. If we write N(P ) to denote the number of solu-

tions of the system (1.5.3) with |x| ≤ P, Freeman shows that

N(P )� P s−Rk (P →∞),

where the implicit constant depends on s, k,R, ε and the coefficients of the forms Fi.

We now come to discuss the case of systems of inequalities of unlike degrees. The first to

consider the simultaneous solubility of real forms of unlike degree was Parsell in [56]. In that

paper, motivated by Wooley’s work on simultaneous additive equations [83], [85], and using

Wooley’s methods on exponential sums over smooth numbers [84], Parsell developed a two

dimensional version of the Davenport–Heilbronn method to study the solubility of a system of

pair of diagonal cubic and quadratic form. Shortly afterwards, and taking advantage of Free-
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man’s work [36], Parsell in [57] obtained an asymptotic lower bound for the number of solu-

tions of a pair of cubic and quadratic form lying inside a box of sufficiently large side length. In

the third paper on that series [59], Parsell considered a more general system consisting of R

diagonal forms of unlike degree. Fix an integer R ≥ 2. Let k1 ≥ · · · ≥ kR ≥ 2 be fixed integers

and let λij be fixed non-zero real numbers. Suppose that τ > 0 is a fixed real number. The

subject of [59] is the solubility in integers of the simultaneous inequalities∣∣∣λ1ix
ki
1 + · · ·+ λisx

ki
s

∣∣∣ < τ (1 ≤ i ≤ s). (1.5.4)

No irrationality assumption is being made here. Hence, there might be a case that some of the

forms are actually proportional to an integral form. Parsell calls this the integral subsystem and

makes the assumption that it possesses a p-adic solution for every prime p. Moreover, Parsell

makes the assumption that the system

λ1ix
ki
1 + · · ·+ λisx

ki
s = 0 (1 ≤ i ≤ s)

possesses a non-trivial real solution. For technical reasons associated with the application of

the circle method these local solutions are assumed to be non-singular. For a system which

satisfies this local solubility condition define Ĝ?(k) to be the least number number s such that

whenever s ≥ s0 the system (1.5.4) has a non-trivial integer solution. The main theorem of [59]

examines the relationship between mean value estimates for exponential sums and the bounds

these estimates yield for the number Ĝ?(k). As a corollary, in the case R = 2 Parsell obtained

some explicit values for small exponents k1 and k2.Below we record the values obtained in [59,

Corollary 1.2].

Table 1.3: Values of Ĝ?(k1, k2) for k1 ∈ {3, 4, 5} and k2 ∈ {2, 3, 4}

(k1, k2) (3, 2) (4, 2) (4, 3) (5, 2) (5, 3) (5, 4)

Ĝ?(k1, k2) 13 20 24 31 32 36

Table 1.4: Values of Ĝ?(k1, k2) for k1 ∈ {6, 7} and k2 ∈ {3, 4, 5, 6}

(k1, k2) (6, 3) (6, 4) (6, 5) (7, 4) (7, 5) (7, 6)

Ĝ?(k1, k2) 49 47 50 65 64 66

For (k1, k2) = (3, 2) using methods of [91] we expect to be able to get Ĝ?(3, 2) ≤ 11. Further

improvements might be possible using some of the methods of [12].

1.6 A mixed system of an inequality and an equation

We now come to describe our result for a mixed system consisting of an equation and an in-

equality. We fix non-zero real numbers λi, µj not all of the same sign and non-zero integers

ai, bk not all of the same sign. Suppose thatd ≥ 2 is an integer and suppose further that θ > d+1
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is real and non-integral. We write
F(x, y) = λ1x

θ
1 + · · ·+ λ`x

θ
` + µ1y

θ
1 + · · ·+ µmy

θ
m

D(x, z) = a1x
d
1 + · · · a`xd` + b1z

d
1 + · · ·+ bnz

d
n.

(1.6.1)

Let τ > 0 be a fixed real number. The system we study is of the shape
|F(x, y)| < τ

D(x, z) = 0.

(1.6.2)

Here we make the following local solubility assumptions as in [59]. We ask for the system

F(x, y) = D(x, z) = 0 (1.6.3)

to admit a non-trivial real solution (x, y, z).Moreover, we ask D(x, z) ≡ 0 (mod pν) to be solu-

ble for all prime powers pν . Additionally, we impose the extra condition that the local solutions

are in fact non-singular. When all these assumptions hold, then we say that the system (1.6.2)

satisfies the local solubility condition.

We write N (P ) to denote the number of positive integer solutions (x, y, z) of the system

(1.6.2) with

1

2
x?P < x ≤ 2x?P,

1

2
y?P < y ≤ 2y?P,

1

2
z?P < z ≤ 2z?P,

where (x?, y?, z?) is a non-singular real solution of the system of equations (1.6.3). In Chapter

3 we obtain an asymptotic formula for the counting functionN (P ) asP →∞.Our result reads

as follows.

Theorem 1.6.1. Suppose that d ≥ 2 is an integer and suppose further that θ > d+ 1 is real and

non-integral. Let τ be a fixed positive real number. Consider the system

|F(x, y)| < τ and D(x, z) = 0, (1.6.4)

with F,D defined in (1.6.1). We write

Aθ = (b2θc+ 1) (b2θc+ 2) and Ad = d2.

Moreover, we set

smin =

⌈
max

{
Aθ + n,

Ad
Aθ

m+Aθ

}⌉
+ 1

and

smax =

⌊
min

{
Aθ +Ad, Aθ +

Ad
Aθ

m+ n

}⌋
+ 1.

Suppose that the system (1.6.4) satisfies the following conditions.

(a) The system (1.6.4) satisfies the local solubility condition, namely the system (1.6.3) possesses

a non-singular real solution and the congruence D(x, z) ≡ 0 (mod pν) possesses a non-
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singular solution for all prime powers pν .

(b) One has ` ≥ max{d2θ(1− n/d)e, 1}, 0 ≤ m ≤ Aθ and 0 ≤ n ≤ Ad.

(c) One has `+m ≥ Aθ + 1 and `+ n ≥ Ad + 1.

(d) For the total number of variables s = `+m+ n one has smin ≤ s ≤ smax.

Then, there exists a positive real number C = C(λ,µ,a,b, θ, d, s), such that as P →∞ one has

N (P ) = 2τCP s−(θ+d) + o
(
P s−(θ+d)

)
.

In particular, the number of positive integer solutions (x, y, z) ∈ [1, P ]` × [1, P ]m × [1, P ]n of

the system (1.6.4) is� P s−(θ+d), where the implicit constant is a positive real number, which

depends on s, λi, µj , ai, bk, θ, d and τ.

Note here that by the assumptions made in Theorem 1.6.1 our conclusions are valid when

the total number of variables s = `+m+ n satisfies Aθ + 1 ≤ s ≤ Aθ + Ad + 1. The method

we employ in Chapter 3 allows one to handle systems with s ≥ Aθ+Ad+2 variables and show

that in such a case the number of positive integer solutions of the system (1.6.4) inside a box of

side length P is� P s−(θ+d) as P →∞.

1.7 Vinogradov’s mean value theorem

We now say a few words about the methods we employ in proving our results. Until the mid

1930’s the standard approach for estimating exponential sums was by means of repeated differ-

encing process, as introduced by Weyl [82] and van der Corput [75]. In 1935, Vinogradov [79]

(see also [80]) came up with a new method. Let s, k ∈ N. For α ∈ Rk we write

fk(α;P ) =
∑

1≤x≤P

e(α1x+ · · ·+ αkx
k).

In order to study the exponential sum fk(α;P ), Vinogradov turned his attention into the mean

value

Js,k(P ) =

∫
[0,1)k

|fk(α;P )|2s dα, (1.7.1)

which by orthogonality counts the number of solutions of the system

s∑
i=1

(
xji − x

j
s+i

)
= 0 (1 ≤ j ≤ k), (1.7.2)

with 1 ≤ x ≤ P.

The problem of bounding the mean value Js,k(P ) is known as Vinogradov’s mean value the-

orem. One may consider the family of trivial solutions of system (1.7.2) where we suppose that

{x1, . . . , xs} = {xs+1, . . . , x2s}. Hence, we certainly have that Js,k(P )� P s. Furthermore, by

considering the contribution in the integral (1.7.1) from α with |αj | ≤ 1
8kP

−j (1 ≤ j ≤ k) we
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1.7. Vinogradov’s mean value theorem

deduce that Js,k(P )� P 2s− 1
2k(k+1). Therefore one has that

Js,k(P )� P s + P 2s− 1
2k(k+1).

The Main Conjecture (now a theorem) in Vinogradov’s mean value theorem, states that the

above lower bound reflects the true order of magnitude of Js,k(P ).

Theorem 1.7.1 (Main Conjecture in Vinogradov’s mean value theorem – [92], [11]). For any

natural numbers s, k and any fixed ε > 0 one has

Js,k(P )� P s+ε + P 2s− 1
2k(k+1)+ε. (1.7.3)

Going a step further, the conjecture predicts that the estimate (1.7.3) holds with ε = 0.How-

ever, this has not been proven yet. The case k = 1 is trivial. So is the case k = 2. The latter can

be readily seen by using the identity

(a+ b− c)2 − (a2 + b2 − c2) = 2(a− b)(a− c),

together with the estimate d(n) � nε (n → ∞), where d(n) =
∑
d|n 1 is the number of

divisors of n. The first non-trivial case is k = 3. For k = 3 the inequality (1.7.3) was proven

by Wooley in [92] using his efficient congruencing method, introduced in the breakthrough

papers [88], [89]. This method was developed further by Wooley in a series of papers. For a

summary of the main ideas and various applications of Vinogradov’s mean value theorem, one

may look at Wooley’s ICM address [90] from 2014.

Parallel to Wooley’s work, another breakthrough was taking place in the field of harmonic

analysis with the proof of the `2-decoupling conjecture by Bourgain and Demeter [10]. Build-

ing on these ideas, Bourgain, Demeter and Guth [11] proved the estimate (1.7.3) for any k ≥ 4,

and hence established the Main Conjecture. Shortly after this paper, Wooley [95] established

the same conclusion using his nested efficient congruencing method, which is a variant of the

efficient congruencing method. In [95] it is also proven a number of results concerning "rel-

atives" and applications of the Vinogradov’s mean value theorem. A general discussion about

the similarities between the decoupling theory and the efficient congruencing method can be

found in the report of Pierce [60] for the Bourbaki seminar. For an exposition on decoupling

theory and its applications one may look in the recent book of Demeter [35].

We now come to describe our result within the above context. Recall from (1.7.2) the system

s∑
i=1

(
xji − x

j
s+i

)
= 0 (1 ≤ j ≤ k).

A key feature of this system is that it is a Translation-Dilation-Invariant (henceforth TDI) sys-

tem. For q ∈ N and ξ ∈ Z and for each 1 ≤ j ≤ k one has that

s∑
i=1

(
(qxi − ξ + ξ)

j − (qxs+i − ξ + ξ)
j
)

=

j∑
`=1

(
j

`

)
ξj−`

s∑
i=1

(
(qxi − ξ)j − (qxs+i − ξ)j

)
.

So for ξ 6= 0 and a fixed tuple x one can see that the left hand side of the above equality vanishes

if and only if the right hand side vanishes. This property does not hold if one of the exponents
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j is non-integral. Suppose that θ > 2 is real and non-integral. For α ∈ R we write

fθ(α;P ) =
∑

1≤x≤P

e(αxθ).

In Chapter §2 we obtain an essentially optimal mean value estimate for the exponential sum

fθ(α;P ). Our result reads as follows.

Theorem 1.7.2. Suppose that θ > 2 is real and non-integral, and that κ ≥ 1 is a real number.

Suppose further that s ≥ 1
2 (b2θc+ 1) (b2θc+ 2) is a natural number. Then for any fixed ε > 0,

one has ∫ κ

−κ
|fθ(α;P )|2s dα� κP 2s−θ+ε.

We emphasize here, that the implicit constant depends on ε, θ, and s, but not on κ andP. Further-

more, for s > 1
2 (b2θc+ 1) (b2θc+ 2) one can take ε = 0.

It will be apparent from the proof of the theorem that with slight modifications our argument

works also if we consider the exponential sum

fθ(α;P ) =
∑

1≤x≤P

e
(
α1x+ · · ·+ αnx

n + αθx
θ
)
,

where n = bθc and α ∈ Rn+1. The details of this argument are presented in the Appendix B.

Theorem 1.7.3. Suppose that θ > 2 is real and non-integral, and write n = bθc. Let κ ≥ 1 be a

real number. Suppose further that s ≥ 1
2 (b2θc+ 1) (b2θc+ 2) is a natural number. Then for any

fixed ε > 0, one has ∫ κ

−κ

∫
[0,1)n

|fθ(α;P )|2s dα� κP 2s−θ+ε.

We emphasize here, that the implicit constant depends on ε, θ, and s, but not on κ andP. Further-

more, for s > 1
2 (b2θc+ 1) (b2θc+ 2) one can take ε = 0.

We believe that one should be able to prove a discrete restriction estimate for the exponential

sum fθ(α;P ) as in [94, Theorem 1.1]. This would require to modify some of the parts of the

argument presented in the Appendix B. We leave this as a remark for a possible future work.

Moreover, the argument given in the Appendix B seems to apply as well when the term xθ in the

exponential sum fθ(α;P ) is replaced by a generalised polynomial with leading term xθ. Again

we leave this as a remark for a possible future work.

1.8 The Davenport–Heilbronn–Freeman method

In this subsection we shall give a brief overview of the Davenport–Heilbronn method. We follow

the exposition of [78, Chapter 11]. Subsequently we shall sketch the innovation introduced by

Freeman in [36]. Our exposition about Freeman’s variant follows Wooley’s paper [86]. We shall

focus in proving an asymptotic lower bound. For the asymptotic formula one may use the kernel

functions of Freeman [39, Lemma 1] or apply a squeezing (sandwich) argument as in [20].

Fix integers k ≥ 2 and s ≥ 2k + 1. Suppose that λ1, . . . , λs are non-zero real numbers, not

all of the same sign and not all in rational ratio. Let P be a large positive real number. We write
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1.8. The Davenport–Heilbronn–Freeman method

N(P ) to denote the number of integer solutions of the inequality

|λ1x
k
1 + · · ·+ λsx

k
s | < 1

with |x| ≤ P, where |x| = maxi |xi|. If necessary one may relabel the variables, so that from

now we assume that λ1/λ2 is negative and irrational. Note that there is no loss of generality in

assuming that the coefficients λi are not all of the same sign even if k is an odd positive integer.

In such a case, one may replace if necessary, xk1 by (−x1)k and then relabel further.

The method of Davenport and Heilbronn uses a Fourier transform over the real line R. The

idea is to use an even kernel function K : R → R that allows us to make a weighted count for

the number of solutions of the inequality in order to give a lower bound for the quantityN(P ).

Define the function

K(α) =


(

sin(πα)

πα

)2

, when α 6= 0,

1, when α = 0.

One can easily verify (see for example [30, Lemma 4]) that the Fourier transform of this function

has the property that for any real ξ it satisfies∫ ∞
−∞

K(α)e(αξ)dα = max{0, 1− |ξ|}.

For α ∈ R we define the generating function

f(α) =
∑

1≤x≤P

e(αxk),

and write fi(α) = f(λiα) (1 ≤ i ≤ s). One has

N(P )�
∫ ∞
−∞

f1(α) · · · fs(α)K(α)dα. (1.8.1)

For sufficiently small positive real numbers δ and ω we put

S1(P ) = P δ and T1(P ) = Pω.

One may now dissect the real line intro three disjoint subsets called the major, minor and trivial

arcs, defined respectively by

M =
{
α ∈ R : |α| < S1(P )P−k

}
,

m =
{
α ∈ R : S1(P )P−k ≤ |α| < T1(P )

}
,

t = {α ∈ R : |α| ≥ T1(P )} .

In contrast to the Hardy–Littlewood method here we only have one major arc around 0 = 0/1.

Moreover, since we are dealing with real forms no local solubility conditions for finite places is

required. Hence, in this context there is no singular series.

The disposal of the trivial arcs is straightforward. Here we use Hua’s inequality, appearing
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first in [45], which states that for any 1 ≤ j ≤ k and any fixed ε > 0 one has∫ 1

0

|f(α)|2
j

dα� P 2j−k+ε.

Moreover, we make use of the decay of the kernel function K(α), which for all α satisfies

|K(α)| � min{1, |α|−2}.

Splitting the set t into unit intervals and using Hua’s inequality we obtain∫
|α|≥T1(P )

|fi(α)|2
k

K(α)dα = o
(
P s−k

)
(1 ≤ i ≤ s).

An application of Hölder’s inequality then delivers∫
t

|f1(α) · · · fs(α)K(α)| dα = o
(
P s−k

)
. (1.8.2)

Over the set of major arcs one wishes to compare the exponential sum fi(α) with its contin-

uous analogue υi(α) defined by

υi(α) =

∫ P

0

e(λiαx
k)dα (1 ≤ i ≤ s).

For α ∈M as a consequence of Poisson’s summation formula one has

fi(α)− υi(α) = O
(
P δ
)

(1 ≤ i ≤ s).

One may now use a standard telescoping summation argument to deduce that∫
M

f1(α) · · · fs(α)K(α)dα−
∫ ∞
−∞

υ1(α) · · · υs(α)K(α)dα = o
(
P s−k

)
.

Due to the decay of the kernel K(α) the integral over (−∞,∞), which is the singular integral

of our problem, converges absolutely. Making now a change of variables to linearise the ex-

pression and using the fact that the λi are not all of the same sign, one may deduce by applying

Fubini’s theorem that∫ ∞
−∞

υ1(α) · · · υs(α)K(α)dα =

∫
[0,P ]s

max
{

0, 1−
∣∣λ1x

k
1 + · · ·+ λsx

k
s

∣∣} dx� P s−k,

where dx stands for the s-dimensional Lebesgue measure dx1 · · · dxs. A comparison of the last

two asymptotic estimates yields∫
M

f1(α) · · · fs(α)K(α)dα� P s−k. (1.8.3)

We are now dealing with the set of minor arcs. Since we assume that the ratio λ1/λ2 is irra-
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1.8. The Davenport–Heilbronn–Freeman method

tional, by Dirichlet’s theorem on Diophantine approximation 2 there exist infinitely many co-

prime pairs (a, q) ∈ Z× N with ∣∣∣∣λ1

λ2
− a

q

∣∣∣∣ < 1

q2
. (1.8.4)

Consider now a sequence of such pairs (an, qn)n∈N and setPn = q2
n. It is here that we essentially

restrict P to take values from a specific sequence. Note that the terms of the sequence (Pn)n∈N

become arbitrarily large.

Next, we recall Weyl’s inequality which appeared in 1916 in the influential paper [82]. Sup-

pose that for a real number α ∈ R one has |α−a/q| ≤ 1/q2 for some coprime a ∈ Z and q ∈ N.
Then for any fixed ε > 0 one has that

|f(α)| � P 1+ε

(
1

q
+

1

P
+

q

P k

)1/2k−1

.

With the above choice Pn = q2
n we may infer by using Weyl’s inequality that there exists

some δ > 0 so that for some j ∈ {1, 2} and any α ∈ m one has for any fixed ε > 0 that

fj(α)� P 1+ε
n q

−1/2k−1

j + P 1−δ
n ,

where the q1 and q2 satisfy (1.8.4). Hence there exists some δ′ > 0 such that for all α ∈ m one

has

min {f1(α), f2(α)} � P 1−δ′
n = o(Pn). (1.8.5)

Using again Hua’s inequality one may now deduce that∫
m

|f1(α) · · · fs(α)K(α)|dα = o
(
P s−kn

)
. (1.8.6)

Putting together (1.8.2), (1.8.3), (1.8.6) and invoking (1.8.1) we have shown that there exists a

sequence of integers (Pn)n∈N with Pn → ∞ as n → ∞ such that N(Pn) � γP s−kn for some

positive real number γ depending at most on λi, k and s.

Without restricting the values ofP the estimate (1.8.5) does not necessarily hold. As a matter

of fact, it is pointed out in [78, p. 170] that by choosing λ1/λ2 appropriately one may show

lim sup
P→∞

(
1

P
sup
α∈m

min {|f1(α)|, |f2(α)|}
)
> 0.

This can be seen by taking λ1/λ2 to be a Liouville number. A real number x is called a Liouville

number, if for every n ∈ N there exist infinitely many pairs (p, q) ∈ Z×N with q > 1 such that

0 < |x − p/q| < 1/qn. It turns out that Liouville’s numbers are transcendental numbers that

can be approximated very well by rational numbers.

In Freeman’s work [36], two are the main ingredients in the minor arc analysis. An ε-free

2 Dirichlet’s approximation theorem in its simplest form is stated as follows. Let α ∈ R and suppose thatX ≥ 1 is
a real number. Then there exist a ∈ Z and q ∈ N with (a, q) = 1 and 1 ≤ q ≤ X such that |α− a/q| ≤ 1/(qX). For a
proof see for example [44, Theorem 36]. It is a consequence of this, see [44, Theorem 185], that if α is irrational then
there exist infinitely many such pairs (p, q) which satisfy the inequality |α− p/q| < 1/q2.
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mean value estimate of the shape ∫ 1

0

|f(α)|sdα� P s−k,

and a weak type analogue of Weyl’s inequality. The innovation introduced in [36] is such a Weyl

type inequality, which works as a replacement for (1.8.5) without restricting the values of P.

This inequality which was inspired by the work of Bentkus and Götze [4], may be formulated

as follows. Suppose that 2 ≤ S(P ) ≤ P is a function that increases to infinity as P → ∞.
Then there exists a function T (P ) ≤ S(P ) depending only on λ1, λ2 andS(P ),which increases

monotonically to infinity as P →∞ and such that

sup
S(P )P−k≤|α|<T (P )

|f1(α)f2(α)| ≤ P 2T (P )−1/2k+1

. (1.8.7)

One may now dissect the real line in the same fashion as before, whereas now we takeS1(P ) =

S(P ) and T1(P ) = T (P ). The analysis of the major and trivial arcs is almost identical to the

previous treatment.

In the set of minor arcs m we apply the classical Hardy–Littlewood method by dissecting into

major and minor arcs. We put

N =
⋃

0≤a≤q≤S(P )
(a,q)=1

{
α ∈ [0, 1) : |qα− a| ≤ S(P )P−k

}
,

and write n = [0, 1)\N.Using standard techniques due to Vaughan [78, Lemma 4.9 & Theorem

4.4] and [77, Theorem A] one may obtain (respectively) that∫
N

|f(α)|sdα� P s−k and
∫
n

|f(α)|sdα� P s−k. (1.8.8)

Let us remark here that the first estimate is valid provided only s > max{4, k + 1}. For any

n ∈ R we may then deduce that ∫ n+1

n

|fi(α)|sdα� P s−k.

At this step we partition the real line into two disjoint sets defined by

P = {α ∈ R : λ1α (mod 1) ∈ N} and p = R \P = {α ∈ R : λ1α (mod 1) ∈ n} .

One may split the interval m into unit intervals of the shape [n, n+1] for n ∈ R. Then, by taking

into account (1.8.8) an application of Hölder’s inequality yields∫
[n+1]∩p

|f1(α) · · · fs(α)K(α)|dα� P s−kT (P )−1/s = o
(
P s−k

)
.

We are left to deal with the set m ∩P. Here we make use of the estimate (1.8.7). For any unit
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interval [n, n+ 1] ⊂ m one has

sup
α∈[n,n+1]

|f1(α)f2(α)| ≤ P 2T (P )−1/2k+1

.

Combining this inequality together with the estimates in (1.8.8), we obtain by an application of

Hölder’s inequality that∫
[n,n+1]∩P

|f1(α) · · · fs(α)K(α)|dα� P s−kT (P )−δ = o
(
P s−k

)
,

for some δ = δ(s, k) > 0. Here we make use of the assumption that s > 2k. One may now sum

over all unit intervals [n, n + 1] ⊂ m. Taking into account the decay of the kernel function we

deduce that ∫
m

|f1(α) · · · fs(α)K(α)|dα = o
(
P s−k

)
,

which is exactly what we were aiming for.
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Chapter 2

Diophantine inequalities of

fractional degree

The work in this chapter is based (with minor changes) on the author’s paper [64].

2.1 Introduction

A central topic in analytic number theory with a long history and various applications is the

study of solubility of Diophantine inequalities. In the present chapter we are concerned with

diagonal Diophantine inequalities whose degree is a fractional power. Let us make this more

precise. Suppose that θ > 2 is real and non-integral, and suppose that s is a positive integer. Let

λ1, . . . , λs be fixed non-zero real numbers, not all of the same sign. Consider the generalised

polynomial

F(x) = F(x1, . . . , xs) = λ1x
θ
1 + · · ·+ λsx

θ
s. (2.1.1)

Suppose that τ is a fixed positive real number. A first natural question one can pose is the

following. Does the inequality

|F(x)| < τ (2.1.2)

admit a solution x = (x1, . . . , xs) in positive integers? Note that the assumption that not all of

the coefficients λi are of the same sign, is natural in order to study the solubility of inequality

(2.1.2), for otherwise one always has |F(x)| ≥ |λ1|+· · ·+|λs|, and thus it is clear that |F(x)| fails

to take arbitrarily small values. In the case where (2.1.2) admits infinitely many solutions one

could additionally ask for the distribution of them. To formulate this, take P to be an arbitrary

large positive real number that eventually we let tend to infinity. With this parameter serving as

a quantification measure for the size of solutions of (2.1.2) we writeN τ
s,θ(P ) = N τ

s,θ(P ;λ) for

the number of positive integer solutions x = (x1, . . . , xs) of (2.1.2) withxi ∈ [1, P ] (1 ≤ i ≤ s).
A standard heuristic argument suggests that one typically expects� P s−θ such solutions to

(2.1.2).

The main result of this chapter reads as follows.
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Theorem 2.1.1. Suppose that θ > 2 is real and non-integral, and suppose further that s ≥
(b2θc+ 1) (b2θc+ 2) + 1 is a natural number. Then as P →∞ one has

N τ
s,θ(P ) = 2τΩ(s, θ;λ)P s−θ + o

(
P s−θ

)
, (2.1.3)

where

Ω(s, θ;λ) =

(
1

θ

)s
|λ1 · · ·λs|−1/θC(s, θ;λ) > 0

with

C(s, θ;λ) =

∫
U

(−σs(σ1β1 + · · ·+ σs−1βs−1))
1/θ−1

(β1 · · ·βs−1)1/θ−1dβ,

where dβ here stands for dβ1 · · · dβs−1, and σi = λi/|λi|, and U denotes the set of points of the

box [0, |λ1|]× · · · × [0, |λs−1|], satisfying the condition that

−σs(σ1β1 + · · ·+ σs−1βs−1) ∈ [0, |λs|].

In particular, the inequality (2.1.2) possesses a non-trivial positive integer solution.

As a first comment on the asymptotic formula (2.1.3), let us remark that, as will be apparent

to experts, the positivity of the real number C(s, θ;λ) follows immediately from the fact that

the σi are not all of the same sign. In the special case where θ ∈ Q is a rational number greater

than 2 one can obtain a "special" family of solutions as follows. Let us write θ = p/q ∈ Q for

some p, q ∈ N with gcd(p, q) = 1. Take xi = yqi (1 ≤ i ≤ s) where yi ∈ N with yi � Y � P 1/q.

Then inequality (2.1.2) takes the shape |λ1y
p
1 + · · ·+ λsy

p
s | < τ.When the number of variables

s is large enough in terms of p, as for example in [36, Theorem 1], one has that the number

of solutions of this last inequality is� Y s−p. Thus, the number of solutions of the inequality

(2.1.2) satisfiesN τ
s,θ(P )�

(
P 1/q

)s−p
.On the other hand, the number of solutions obtained in

this way is o
(
P s−p/q

)
, and so the number of solutions obtained is very small compared with

what is expected.

The first to consider studying additive problems with non-integral exponents is Segal in the

early 1930’s. In the papers [69], [70] and [71], Segal studied Waring’s problem with non-

integral exponents, and additionally (phrased slightly different in his work) considered the

problem of solubility of the inequality

|xθ1 + · · ·+ xθs − ν| < ε,

with θ > 2 real and non-integral and 0 < ε < ν−c(θ)/θ, where 0 < c(θ) < 1 is a fixed number,

depending only on θ. For large values of ν Segal showed the existence of a solution x ∈ Ns,
provided that we are given s ≥ s0(θ) variables, where s0(θ) ≈ θ(bθc+1)2bθc+1 +1. In Theorem

2.1.3 below we improve this.

For questions and results on the interface between the fields of Diophantine inequalities and

Diophantine approximation the interested reader can refer to the monograph [2], which con-

tains an exposition of some of the most pivotal results in that area, dating up to late 1980’s.

A great body of work in the existing literature is concerned with counting solutions inside a
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bounded box of side length P to indefinite inequalities of the shape

|λ1x
d
1 + · · ·+ λsx

d
s | < τ, (2.1.4)

where d ≥ 2 is a natural number, and at least one of the ratios λi/λj is irrational. This last

irrationality assumption is necessary, for otherwise if all the coefficients are in rational ratio

then one can clear out the denominators by multiplying with the least common multiple which

would reduce the inequality to an equation over the integers. The latter has been a separate

area of research since the birth of the Hardy - Littlewood circle method in the early 1920’s. The

problem of the solubility of inequalities of the shape (2.1.4) first appears in the literature with

the seminal work of Davenport and Heilbronn [30] in 1946. In that paper the authors prove

that every real indefinite diagonal quadratic form in s = 5 variables can take arbitrarily small

values. Their method to prove that result, what now is called the Davenport–Heilbronn method,

is a Fourier analytic one over the entire real line. It is important here to mention that the main

theorem of [30] proves that there exist arbitrarily large values of the parameter P such that

(2.1.4) with d = 2 and s = 5 is soluble with xi ∈ [1, P ] ∩ Z. More precisely, they prove their

result for a sequence of arbitrarily large numbers P, that depends essentially on the continued

fraction expansion of the irrational ratio λi/λj . Thus, their conclusion would apply to boxes

of side length P whenever this parameter P is a term of that specific sequence of values. This

dependence was removed only in the early 2000’s by Freeman. Beginning with [36], Freeman

introduced a variant of the Davenport-Heilbronn method motivated by methods developed in

[4]. This allowed Freeman to show the existence of infinitely many non-trivial integer solutions

in boxes of any sufficiently large side length P, given roughly d log d variables (when d is large).

Later in [39], Freeman established for the first time an asymptotic formula for the number of

integer solutions of (2.1.4) inside the box [−P, P ]s, provided we have s ≥ 2d + 1 variables.

The results of [36] and [39] were refined by Wooley in [86]. Since we are not dealing with

an inequality of positive integral degree d as in (2.1.4), we finish here our rather short tour

amongst results concerning that problem. The interested reader is directed to the papers of

Freeman and Wooley for a general discussion.

It is reasonable to expect that a conclusion as in Theorem 2.1.1 would remain valid if instead

of a homogenous inequality as of the type (2.1.2) we count solutions to an inhomogenous in-

equality of the shape

|F(x)− L| < τ, (2.1.5)

with F as in (2.1.1) and L being a given real number. We write N τ
s,θ(P ;λ, L) to denote the

number of positive integer solutions x of the inequality (2.1.5) with xi ∈ [1, P ] (1 ≤ i ≤ s).

Here, the generalised polynomialF could be either indefinite or definite. In the case whereF is

indefinite there is no restriction on the size ofL.However, one has to take boxes with side length

P being sufficiently large in terms of s, θ and the coefficients λi of F . On the other hand, if F
is positive definite then one has to assume that L �λ P

θ. Namely, there exist suitable positive

constants c(λ), C(λ) such thatL belongs to an interval of the shape c(λ)P θ ≤ L ≤ C(λ)P θ.As

is to be expected, the counting function of such solutions satisfies the same kind of asymptotic

formula as in Theorem 2.1.1. The minor adjustments of the proof are postponed until §2.7.

Theorem 2.1.2. Suppose that F is indefinite and let L be a fixed real number. Suppose further

that θ > 2 is real and non-integral, and that s ≥ (b2θc+ 1) (b2θc+ 2) + 1 is a natural number.
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Then as P →∞ one has

N τ
s,θ(P ;λ, L) = 2τΩ(s, θ;λ)P s−θ + o

(
P s−θ

)
,

where Ω(s, θ;λ) is a positive real number depending only on s, θ and the coefficients λi.

One can refer to [58] for such a conclusion for linear forms over primes, and to [40] for a

general result concerning additive inhomogenous inequalities of integral degree d ≥ 2.

More interesting is the case whereF is positive definite. In such a case the problem is refor-

mulated as a problem of representing arbitrarily large numbers by the generalised polynomial

F . Instead of counting solutions inside a box, we can count solutions that represent an arbi-

trary large real number. That is to say, for a positive real number ν sufficiently large in terms

of s, θ and the positive number τ,we ask how many positive integer solutions are possessed by

the inequality

|F(x)− ν| < τ. (2.1.6)

We write ρs(τ, ν) = ρs(τ, ν;λ) to denote the number of positive integer solutions of (2.1.6).

One anticipates ρs(τ, ν) to be large when τ is fixed and ν is large. Our next result establishes an

asymptotic formula for the counting function ρs(τ, ν).

Theorem 2.1.3. Suppose that θ > 2 is real and non-integral, and that τ ∈ (0, 1] is a fixed real

number. Suppose further that s ≥ (b2θc+ 1) (b2θc+ 2)+1 is a natural number. Then as ν →∞
one has

ρs(τ, ν) = 2(λ1 · · ·λs)−1/θ Γ
(
1 + 1

θ

)s
Γ
(
s
θ

) τνs/θ−1 + o
(
νs/θ−1

)
.

A word is in order regarding the conclusions of Theorems 2.1.2 and 2.1.3. Though they look

similar there is an essential difference between these two conclusions. As we already men-

tioned, in the situation of Theorem 2.1.2 we count solutions of an inequality inside a box, while

in the situation covered by Theorem 2.1.3 we aim to "represent" a large positive number by the

generalised polynomial F . This difference is reflected in the shape of the asymptotic formulae

we establish. In the indefinite case we consider boxes of arbitrarily large side lengthP,while in

the definite case covered by Theorem 2.1.3, the main term in the asymptotic formula is limited

by the size of the real number ν we wish to represent, since there is a natural height restriction

imposed on a solution x. This last observation is straightforward. Suppose that λi are all pos-

itive and suppose that we aim to represent a real number ν ≤ N where N is a positive large

parameter. Choose now P = 2(λ
−1/θ
1 + · · ·+λ

−1/θ
s + 1)N1/θ. Then for any solution x of (2.1.6)

with ν ≤ N one has xi ≤ P (1 ≤ i ≤ s). As a remark, we draw the attention of the reader to

the recent works of Chow [23], [24] and Biggs [5] for the problem of representing a number by

shifts of dth-powers where d ∈ N. That is to say, for τ a sufficiently large positive real number,

they investigate the solubility of the inequality

|(x1 − µ1)d + · · ·+ (xs − µs)d − τ | < η,

in integers xi > µi, where µi are fixed real numbers with µ1 being irrational and η being a

positive real number.

From now on we focus on Theorem 2.1.1. It is possible even at this stage to illustrate the
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route we take to tackle the problem. Define the exponential sum f(α) = f(α;P ) via

f(α;P ) =
∑

1≤x≤P

e(αxθ).

As in Freeman’s variant of the Davenport-Heilbronn method, we are seeking mean value esti-

mates of the asymptotic shape
∫ 1

0
|f(α)|sdα � P s−θ. The key mean value estimate that does

the heavy lifting in the proof of Theorem 2.1.1 is the following.

Theorem 2.1.4. Suppose that θ > 2 is real and non-integral and that κ ≥ 1 is a real number.

Suppose further that t ≥ 1
2 (b2θc+ 1) (b2θc+ 2) is a natural number. Then for any fixed ε > 0

one has ∫ κ

−κ
|f(α)|2t dα� κP 2t−θ+ε.

We emphasize here, that the implicit constant depends on ε, θ and t, but not on κ and P. Further-

more, for t > 1
2 (b2θc+ 1) (b2θc+ 2) one can take ε = 0.

Before we announce the final result of this chapter, we pause for a moment to comment on

the number of variables needed to establish the mean value estimate in Theorem 2.1.4. As we

explain at the end of §2.2, the number 1
2 (b2θc+ 1)(b2θc+ 2) stems from an application of the

Main Conjecture in Vinogradov’s mean value theorem to a system of degree k = b2θc + 1. As

a measure of comparison, note that when θ = d is a natural number the latest developments

in Vinogradov’s mean value theorem by Wooley’s Nested Efficient Congruencing method [95,

Corollary 14.7] deliver the bound ∫ 1

0

|f(α)|sdα� P s−d,

provided s ≥ s0 where

s0 = d2 − d+ 2b
√

2d+ 2c − θ(d), (2.1.7)

with θ(d) defined via

θ(d) =


1, when 2d+ 2 ≥ b

√
2d+ 2c2 + b

√
2d+ 2c,

2, when 2d+ 2 < b
√

2d+ 2c2 + b
√

2d+ 2c.

Making use of the above mean value estimate combined with a Weyl type inequality as in [86,

Lemma 2.3] one can show that s0 + 1 variables suffice to establish the anticipated asymptotic

formula for the counting functionN τ
s,d(P ;λ). Hitherto, in view of [21, Theorem 11.3] one had

to take s ≥ 2d2 when d is large. Incorporating (2.1.7) into [21] reduces the number of variables

needed to establish the asymptotic formula forN τ
s,d(P ;λ) by a factor of 2.

We briefly mention here the following very interesting statistical result due to Brüdern and

Dietmann. From a measure theoretic point of view, the anticipated asymptotic formula holds for

almost all (admissible) real forms λ1x
d
1 + · · ·+λsx

d
s , provided we have more than 2d variables.

More precisely, in [20] it is proven that given s > 2d variables then for almost all (in the sense

of Lebesgue measure) admissible values of the coefficients, there exists a positive real number
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C(s, d;λ) such that for all sufficiently large P one has

∣∣N τ
s,d(P )− 2τC(s, d;λ)P s−d

∣∣ < P s−d−8−2d

,

uniformly in 0 < τ ≤ 1. It would be interesting to derive an analogue with the exponent d

replaced by an arbitrary positive fractional number θ.

Lastly, we encounter a weighted version of Theorem 2.1.4. For a sequence of complex num-

bers (ax)x∈N we write fa(α) = fa(α;P ) to denote the weighted exponential sum

fa(α;P ) =
∑

1≤x≤P

axe(αx
θ).

Motivated by [94] we seek for an inequality

‖fa(α;P )‖L2s ≤ CP ‖ax‖`2 ,

with the real number CP depending at P and being uniform in (ax)x∈N. Due to the fractional

nature of θ, it is reasonable to expect a connection with Diophatine inequalities of the format

(2.1.5). To do so, one has to detect solutions of inequalities by means of an appropriate kernel

function. For α ∈ R we define the function

sinc(α) =


sin(πα)

πα
, when α 6= 0,

1, when α = 0,

(2.1.8)

and set K(α) = sinc2(α) as in [30]. Our result reads as follows.

Theorem 2.1.5. Suppose that θ > 2 is real and non-integral, and suppose further that s ≥
2 (b2θc+ 1) (b2θc+ 2) + 2 is a natural number. Then one has

∫ ∞
−∞
|fa(α)|2sK(α)dα� P s−θ

 ∑
1≤x≤P

|ax|2
s

.

In order to establish Theorem 2.1.5 we apply an elementary argument and "double" the num-

ber of variables, aiming eventually to reduce to a Diophantine problem of representing a large

positive real number by a generalised polynomial F of the shape (2.1.1). Thus, one would be

able to make use of Theorem 2.1.3. This explains the fact that for the inequality recorded in

Theorem 2.1.5, we use twice as many number of variables needed in Theorem 2.1.3. This is

a "cheap" argument. With harder work one could possibly eliminate the factor 2 and half the

number of variables needed. This requires more effort and is not the focus of this work. The

trick of "doubling" the number of variables is a classical argument in harmonic analysis and

goes back to at least Zygmund in his paper [96]. More recently, it was used by Bourgain in the

papers [8], [9], on discrete periodic Strichartz estimates.
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2.2 Set up and overview of the method

We follow Freeman [39] in making use of appropriate kernel functions that allow one to bound

the counting function N τ
s,θ(P ) from above and below. We make use of the following technical

lemma.

Lemma 2.2.1. Fix a positive integer h. Let a and b be real numbers with 0 < a < b. Then there

is an even real function K(α) = K(α; a, b) such that the function ψ defined by

ψ(ξ) =

∫
R
e(ξα)K(α)dα

satisfies

ψ(ξ)



∈ [0, 1] for ξ ∈ R

= 0 for |ξ| ≥ b

= 1 for |ξ| ≤ a.

(2.2.1)

Moreover, K satisfies the bound

K(α)�h min
{
b, |α|−1, |α|−h−1(b− a)−h

}
. (2.2.2)

Proof. This is [39, Lemma 1].

Set τ̃ = τ(logP )−1. We can now define the following two kernel functions

K−(α) = K(α; τ − τ̃ , τ) and K+(α) = K(α; τ, τ + τ̃). (2.2.3)

Note that by (2.2.2) we have

K±(α)�τ,h min{1, |α|−1, (logP )
h |α|−h−1}. (2.2.4)

The estimate (2.2.4) is essential in the disposal of the set of trivial arcs. We make use of this

for a particular choice of h to be chosen at a later stage. We refer to K+,K− as the upper and

lower kernel respectively. The Fourier transform of K+ provides us with an upper bound for

N τ
s,θ(P ) while the Fourier transform of K− provides a lower bound. To see this, let us write

χτ (ξ) for the indicator function of the interval (−τ, τ), namely

χτ (ξ) =

1, when |ξ| < τ,

0, when |ξ| ≥ τ.
(2.2.5)

By (2.2.1) one has that

χτ−τ̃ (ξ) ≤
∫ ∞
−∞

e(αξ)K−(α)dα ≤ χτ (ξ)

and

χτ (ξ) ≤
∫ ∞
−∞

e(αξ)K+(α)dα ≤ χτ+τ̃ (ξ).
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Consequently, one has∫ ∞
−∞

e(ξα)K−(α)dα ≤ χτ (ξ) ≤
∫ ∞
−∞

e(ξα)K+(α)dα. (2.2.6)

We take a moment to point out that the expression∣∣∣∣∫ ∞
−∞

e(ξα)K±(α)dα− χτ (ξ)

∣∣∣∣ (2.2.7)

is zero when ||ξ| − τ | > τ̃ and at most 1 for values of ξ such that ||ξ| − τ | ≤ τ̃ .

We are now equipped to explain how we sandwich the counting functionN τ
s,θ(P ).Recall that

f(α) =
∑

1≤x≤P

e(αxθ).

We write fi(α) = f(λiα) (1 ≤ i ≤ s) and put

R±(P ) =

∫ ∞
−∞

f1(α) · · · fs(α)K±(α)dα. (2.2.8)

Take now ξ = λ1x
θ
1 + · · · + λsx

θ
s in (2.2.1). If we sum over 1 ≤ x ≤ P and take into account

(2.2.5) and (2.2.6), we obtain

R+(P ) ≥
∑

1≤x≤P
|F(x)|<τ

1 = N τ
s,θ(P ),

and

R−(P ) ≤
∑

1≤x≤P
|F(x)|<τ

1 = N τ
s,θ(P ).

Thus, we conclude that

R−(P ) ≤ N τ
s,θ(P ) ≤ R+(P ).

From the inequality above it is clear that in order to establish an asymptotic formula forN τ
s,θ(P )

it suffices to obtain asymptotic formulae for the integralsR±(P ) that are asymptotically equal.

We now fix some notation. Put γ = θ − bθc ∈ (0, 1). We set

δ0 = 4−θ and ω = min

{
1− γ

12
, 5−100θ

}
. (2.2.9)

We dissect the real line into three disjoint subsets as follows.

(i) The major arc M around 0 given by

M =
{
α ∈ R : |α| < P−θ+δ0

}
.

(ii) The minor arcs m given by

m =
{
α ∈ R : P−θ+δ0 ≤ |α| < Pω

}
.
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(iii) The trivial arcs t given by

t = {α ∈ R : |α| ≥ Pω} .

For a Lebesgue measurable set B ⊂ R we define

R±(P ;B) =

∫
B
f1(α) · · · fs(α)K±(α)dα. (2.2.10)

So, by (2.2.8) one has

R±(P ) = R±(P ;M) +R±(P ;m) +R±(P ; t). (2.2.11)

We describe now the general philosophy underlying the Davenport - Heilbronn method and

give a brief overview of the strategy we follow in order to prove Theorem 2.1.1.

The starting point is an analytic representation for the counting function, as in (2.2.11). We

begin with the major arc M. Typically when integrating over M one expects to obtain a contri-

bution of order asymptotically equal to P s−θ, namely∫
M

f1(α) · · · fs(α)K±(α)dα � P s−θ,

where the implied constants are positive. This reflects the observation that for small values of

|α| the exponential sum f(α) =
∑

1≤x≤P e(αx
θ) displays less cancellation. That is to say, the

contribution from a small neighbourhood around 0 dominates, giving rise to the main term of

the asymptotic formula in Theorem 2.1.1. The major arc analysis is rather classical. We present

a treatment based on Fourier’s inversion theorem, similar to that in [20, §5], which in turn is a

simplification of the treatment presented in [39].

We proceed now to describe the treatment of the sets of minor and trivial arcs. As is to be ex-

pected, this constitutes the most challenging part along the way to proving Theorem 2.1.1. Here

one typically expects to demonstrate a smaller overall contribution of size o
(
P s−θ

)
. Namely,

we aim to show ∫
m∪t
|f1(α) · · · fs(α)K±(α)|dα = o

(
P s−θ

)
.

The method we employ here is motivated by our aim to find an alternative route that is less

sensitive to the fact that we are dealing with exponential sums having a smooth and not poly-

nomial phase. With the classical version of Weyl’s inequality out of the game, we put our efforts

into gaining an almost full saving from a Hua type estimate for the exponential sum f(α).With

this aim in mind we can now bound the mean value
∫
m
|f(α)|sdα for s ≥ 2t by noting that

∫
m

|f(α)|sdα�
(

sup
α∈m
|f(α)|

)s−2t ∫
m

|f(α)|2tdα, (2.2.12)

where t is an appropriate positive integer. It may be helpful to the reader if we mention here

that we seek to choose t so that ∫
m

|f(α)|2tdα� P 2t−θ+ε,

for any fixed ε > 0.Note that in order to establish the asymptotic formula (2.1.3) one has to add
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one extra variable and take s ≥ 2t+ 1. We bound each factor in (2.2.12) separately as follows.

For the first factor in (2.2.12) it suffices to show that for some η > 0 one has

sup
α∈m
|f(α)| � P 1−η.

This is achieved by means of van der Corput’s k-th derivative test. The key here is to investigate

the magnitude of the derivatives of the phase function x 7→ αxθ.

For the second factor we aim to obtain an upper bound of the shape
∫
m
|f(α)|2tdα� P 2t−θ+ε.

This is precisely the content of Theorem 2.1.4, which in a sense plays the role of Hua’s inequal-

ity and does the heavy lifting in the proof of Theorem 2.1.1. To demonstrate this we begin by

observing that a mean value of the shape∫ 1/(2δ)

−1/(2δ)

|f(α)|2tdα

counts asymptotically the number of integer solutions 1 ≤ x ≤ P of the corresponding under-

lying inequality

|xθ1 + · · ·+ xθt − xθt+1 − · · · − xθ2t| < δ,

where δ > 0. The idea is to exploit the Taylor expansion of the function x 7→ xθ to obtain

an approximately TDI system. This idea seems to appear first in the work of Arkhipov and

Zhitkov [1]. The new system is composed of an inhomogeneous Vinogradov system and a lin-

ear inequality. The degree of the Vinogradov system is dictated by the number of terms we

consider in the asymptotic expansion, and is the same as the number of variables of the linear

inequality, which arises naturally when we collect the smaller terms of the Taylor expansion.

As one suspects, the height condition on the variables in the inequality is imposed by the vector

that has as components the inhomogeneous side of the Vinogradov system. We follow the orig-

inal approach of Arkhipov and Zhitkov and consider a degree k expansion where k = b2θc+ 1.

However, our treatment differs from that in [1, Lemma 3] in two aspects. Firstly, we encounter

from the very beginning an exponential sum with a smooth phase, while in [1, Lemma 3] the

authors deal with an exponential sum whose phase is the integer bxθc ∈ N. Secondly, and most

important, our treatment is a refinement of that presented in [1, Lemma 3]. In the latter, the

authors obtain an estimate which is P 1/2 away from the near optimal one. By contrast we es-

tablish an essentially optimal estimate in Theorem 2.1.4.

Lastly, a word concerning the set of trivial arcs. To deal with the set of trivial arcs, we split the

range |α| ≥ Pω into dyadic intervals of the shape (2j , 2j+1], and use Theorem 2.1.4 to obtain a

mean value estimate over such interval. The decay of the kernel functionsK± provides us with

the necessary savings in the final summation.

2.3 An auxiliary mean value estimate

In this section we prove Theorem 2.1.4. To do so, we first collect some auxiliary results that we

need in our proof.
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For t, k ∈ N we define the mean value

Jt,k(P ) =

∫
[0,1)k

∣∣∣∣∣∣
∑

1≤x≤P

e(α1x+ · · ·+ αkx
k)

∣∣∣∣∣∣
2t

dα.

By orthogonality, one has that Jt,k(P ) counts the number of integer solutions of the system

t∑
i=1

(xji − x
j
t+i) = 0 (1 ≤ j ≤ k),

with x ∈ [1, P ]2t. The study of the mean value Jt,k(P ) goes back to the mid 1930’s and Vino-

gradov [79]. The central problem here is to find upper bounds for Jt,k(P ).The Main Conjecture

in Vinogradov’s mean value theorem, now a theorem after the work of Wooley [92] for k = 3,

and Bourgain, Demeter and Guth [11], for k ≥ 4, reads as follows.

Theorem 2.3.1. Suppose that t ≥ 1
2k(k + 1) is a natural number. Then for any fixed ε > 0 one

has

Jt,k(P )� P t+ε + P 2t− 1
2k(k+1).

Proof. See [95, Corollary 1.3]. An estimate weaker by a factor P ε can be found in [92, Theorem

1.1] for k = 3 and in [11, Theorem 1.1] for k ≥ 4.

In the proof of Theorem 2.1.4, we deal repeatedly with inequalities of the shape

|xθ1 + · · ·+ xθt − xθt+1 − · · · − xθ2t| < δ, (2.3.1)

where δ > 0 is a fixed real number. Due to the fact that θ is not an integer, one cannot count

directly the solutions via the usual orthogonality relation over the interval [0, 1).As a surrogate,

we make use of an auxiliary lemma which is a variant of [81, Lemma 2.1]. In order to state the

lemma we first introduce some notation. Suppose that I1, I2 ⊂ (0,∞) are bounded intervals,

and suppose further that S ⊂ (0,∞)2 is a bounded set of lattice points. We write Vt(I1, I2; δ)

to denote the number of integer solutions of inequality (2.3.1) with x1, xt+1 ∈ I1 and xi ∈ I2
for all i 6= 1, t+ 1. Similarly, we write Vt(S, I2; δ) to denote the number of integer solutions of

inequality (2.3.1) with (x1, xt+1) ∈ S and xi ∈ I2 for all i 6= 1, t+ 1. For α ∈ R and i = 1, 2 we

put Hi(α) = H(α; Ii), where

H(α; Ii) =
∑
x∈Ii

e(αxθ).

Moreover, we write

HS(α) =
∑

(x1,xt+1)∈S

e
(
α(xθ1 − xθt+1)

)
.

The lemma now reads as follows. We note here that if I1 = I2, then our result in (ii) is a special

case of [81, Lemma 2.1] with K = 1 and ω = xθ in their notation.

Lemma 2.3.2. Define the number ∆ via the relation 2∆δ = 1.

(i) One has

Vt(S, I2; δ)� δ

∫ ∆

−∆

∣∣HS(α)H2(α)2t−2
∣∣ dα.
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(ii) One has

δ

∫ ∆

−∆

∣∣H1(α)2H2(α)2t−2
∣∣ dα� Vt(I1, I2; δ)� δ

∫ ∆

−∆

∣∣H1(α)2H2(α)2t−2
∣∣ dα.

The implicit constants in the above estimates are independent of I1, I2,S, θ and δ.

Proof. The argument proceeds as in [81, Lemma 2.1]. For x ∈ R we define the functions

K(α) = sinc2(α) and Λ(x) = max{0, 1− |x|},

where recall from (2.1.8) the definition of the sinc function. It is well known, one may see for

example in [29, Lemma 20.1], that for x, ξ ∈ R one has

K(ξ) =

∫ ∞
−∞

e(−xξ)Λ(x)dx and Λ(x) =

∫ ∞
−∞

e(xξ)K(ξ)dξ. (2.3.2)

We make use of Jordan’s inequality, which states that for 0 < x ≤ π
2 one has

2

π
≤ sinx

x
< 1,

where the equality holds only if x = π/2. For a proof of this inequality see [48, p. 33]. Note

here that for |α| < 1
2 one has K(α) > 4/π2.

For ease of notation we set

σt,θ(x) = xθ1 + · · · − xθ2t and ξ =
1

2δ
σt,θ(x).

We first prove the upper bound in (i). Let x be a tuple counted by Vt (S, I2; δ) . By Jordan’s

inequality one has
π2

4
K(ξ) > 1.

Hence

Vt (S, I2; δ) ≤ π2

4

∑
x

K(ξ),

where the summation is over tuples x with (x1, xt+1) ∈ S and xi ∈ I2 (i 6= 1, t+1).Using now

(2.3.2) and making a change of variables by setting u = 2δα we successively obtain

Vt (S, I2; δ) ≤ π2

4

∑
x

∫ ∞
−∞

e(uξ)Λ(−u)du =
π2δ

2

∑
x

∫ ∞
−∞

e(ασt,θ(x))Λ(−2δα)dα.

One can interchange the order of integration with that of summation. This is valid since the

integral is absolutely convergent and we have a finite sum. Note here that∑
x

e(ασt,θ(x)) = HS(α)H2(α)2t−2.

Moreover, for |α| > 1
2δ one has Λ(−2δα) = 0. Hence by the triangle inequality we conclude

35



Chapter 2. Diophantine inequalities of fractional degree

that

Vt (S, I2; δ) ≤ π2δ

2

∫ ∞
−∞

∣∣HS(α)H2(α)2t−2
∣∣Λ(−2δα)dα

� δ

∫ ∆

−∆

∣∣HS(α)H2(α)2t−2
∣∣ dα.

Next we prove (ii). In order to establish the upper bound one may argue as in (i), whereas

now we make use of the product H1(α)2H2(α)2t−2. We give the proof of the lower bound. Let

x be a tuple counted by Vt (I1, I2; δ) . Then one has

0 < Λ(2ξ) < 1.

Thus, summing over x with x1, x2 ∈ I1 and xi ∈ I2 (i 6= 1, t+ 1), and using (2.3.2) we obtain

Vt (I1, I2; δ) ≥
∑

x

Λ(2ξ).

Invoking again (2.3.2) and making a change of variables by setting u = δα we successively

obtain

Vt (I1, I2; δ) ≥
∑

x

∫ ∞
−∞

e(2uξ)K(u)du = δ
∑

x

∫ ∞
−∞

e(ασt,θ(x))K(δα)dα.

Since we assume that x1, xt+1 ∈ I1 one has∑
x

e(ασt,θ(x)) =
∣∣H1(α)2H2(α)2t−2

∣∣ .
Changing the order of summation and integration the preceding inequality now delivers

Vt (I1, I2; δ) ≥ δ
∫ ∞
−∞

∣∣H1(α)2H2(α)2t−2
∣∣K(δα)dα. (2.3.3)

Next, using again Jordan’s inequality and the positivity of the integrand we obtain∫ ∞
−∞

∣∣H1(α)2H2(α)2t−2
∣∣K(δα)dα ≥ 4

π2

∫ ∆

−∆

∣∣H1(α)2H2(α)2t−2
∣∣ dα.

Incorporating the above into (2.3.3) yields

Vt (I1, I2; δ)� δ

∫ ∆

−∆

∣∣H1(α)2H2(α)2t−2
∣∣ dα,

which completes the proof.

From now on we set k = b2θc+ 1 and for 1 ≤ j ≤ k we define the binomial coefficients

bj =

(
θ

j

)
=
θ(θ − 1) · · · (θ − j + 1)

j !
.
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For a tuple h = (h1, . . . , hk) ∈ Zk we writeH(h) = H(h1, . . . , hk) to denote the expression

H(h1, . . . , hk) = b1P
θ−1h1 + · · ·+ bkP

θ−khk. (2.3.4)

Lemma 2.3.3. Suppose that θ > 2 is real and non-integral. Let k = b2θc+ 1, and let t be a given

natural number. Suppose that P ≥ k2k is a real number. We write T (P ) to denote the number of

integer solutions of the inequality

|H(h)| ≤ 2t

in the variables hj , satisfying |hj | ≤ tP j/2 (1 ≤ j ≤ k). Then one has

T (P ) ≤ 4(8t)kP
k(k+1)

4 −θ+ 1
2 .

Proof. This is [1, Lemma 1].

For technical reasons it is more convenient to work with exponential sums over dyadic in-

tervals. For a positive real number X we write g(α) = g(α;P ) to denote the exponential sum

g(α;P ) =
∑

P<x≤2P

e(αxθ). (2.3.5)

We are now equipped to prove the key estimate of this chapter. The following is a variant of The-

orem 2.1.4, where now we are dealing with the exponential sum g. One may recover Theorem

2.1.4 by splitting the interval [1, P ] into O (logP ) dyadic intervals and then apply the theorem

below.

Theorem 2.3.4. Let κ ≥ 1 be a real number. Suppose that t ≥ 1
2 (b2θc+1)(b2θc+2) is a natural

number. Then for any fixed ε > 0 one has∫ κ

−κ
|g(α)|2t dα� κP 2t−θ+ε.

We emphasize here, that the implicit constant depends on ε, θ, and t, but not on κ and P. Further-

more, for t > 1
2 (b2θc+ 1) (b2θc+ 2) one can take ε = 0.

Proof. We set I = (P, 2P ]. Apply Lemma 2.3.2 with I1 = I2 = I and δ = 1
2κ . So, one has

1

2κ

∫ κ

−κ
|g(α)|2t dα� Vt

(
I;

1

2κ

)
, (2.3.6)

where Vt
(
I; 1

2κ

)
denotes the number of integer solutions of the inequality

|xθ1 + · · ·+ xθt − xθt+1 − · · · − xθ2t| <
1

2κ
,

with P < x ≤ 2P. Since κ ≥ 1 we plainly have that

Vt

(
I;

1

2κ

)
≤ Vt

(
I;

1

2

)
,
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where Vt
(
I; 1

2

)
denotes the number of integer solutions of the inequality

|xθ1 + · · ·+ xθt − xθt+1 − · · · − xθ2t| <
1

2
,

with P < x ≤ 2P. Hence by (2.3.6) we obtain that∫ κ

−κ
|g(α)|2t dα� κVt

(
I;

1

2

)
. (2.3.7)

We define the interval

Ĩ = (P, P + (b
√
P c+ 1)

√
P ].

Note that I ⊂ Ĩ . Moreover, for α ∈ R we write

g̃(a) =
∑
x∈Ĩ

e(αxθ).

It is apparent that Vt
(
I; 1

2

)
is bounded above by the number of integer solutions of the inequal-

ity ∣∣∣∣∣
t∑
i=1

(xθi − xθt+i)

∣∣∣∣∣ < 1

2
,

with x1, xt+1 ∈ I and xi, xt+i ∈ Ĩ (i 6= 1, t+ 1). Denote this number by Vt(I, Ĩ; 1
2 ).

Apply now Lemma 2.3.2 with I1 = I and I2 = Ĩ . So, one has

Vt

(
I, Ĩ;

1

2

)
�
∫ 1

−1

|g(α)|2|g̃(α)|2t−2dα. (2.3.8)

Putting together (2.3.8) and the fact that Vt
(
I; 1

2

)
≤ Vt

(
I, Ĩ; 1

2

)
reveals that

Vt

(
I;

1

2

)
�
∫ 1

−1

|g(α)|2|g̃(α)|2t−2dα. (2.3.9)

Our aim now is to bound the mean value on the right hand side of (2.3.9). For a natural

number ` ≥ 1 we write

P` = P + (`− 1)
√
P , (2.3.10)

and set Ĩ` = (P`, P`+1].Note that Ĩ` forms a cover of the interval Ĩ consisting of subintervals of

length
√
P . We record this in the following inclusion

I ⊂ Ĩ ⊂
b
√
Pc+1⋃
`=1

Ĩ`. (2.3.11)

For α ∈ R we now set

g̃`(α) =
∑
x∈Ĩ`

e(αxθ).

Incorporating the exponential sum g̃`(α), we deduce by the triangle inequality followed by an
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2.3. An auxiliary mean value estimate

application of Hölder’s inequality that

∫ 1

−1

|g(α)|2|g̃(α)|2t−2dα ≤
∫ 1

−1

|g(α)|2
b√Pc+1∑

`=1

|g̃`(α)|

2t−2

dα

≤
(
b
√
P c+ 1

)2t−3
b
√
Pc+1∑
`=1

∫ 1

−1

|g(α)|2 |g̃`(α)|2t−2 dα.

Invoking (2.3.9), we infer that for some `0 with 1 ≤ `0 ≤ b
√
P c+ 1 one has

Vt

(
I;

1

2

)
�
(
b
√
P c+ 1

)2t−2
∫ 1

−1

|g(α)|2 |g̃`0(α)|2t−2 dα

� P t−1

∫ 1

−1

|g(α)|2 |g̃`0(α)|2t−2 dα.

(2.3.12)

We now turn our attention to the mean value on the right hand side of (2.3.12). One can apply

Lemma 2.3.2 with I1 = I and I2 = Ĩ`0 . Then one has that∫ 1

−1

|g(α)|2 |g̃`0(α)|2t−2 dα� Vt

(
I, Ĩ`0 ;

1

2

)
, (2.3.13)

where Vt
(
I, Ĩ`0 ; 1

2

)
denotes the number of integer solutions of the inequality

∣∣∣∣∣xθ1 − xθt+1 +

t∑
i=2

(xθi − xθt+i)

∣∣∣∣∣ < 1

2
, (2.3.14)

with x1, xt+1 ∈ I and xi ∈ Ĩ`0 (i 6= 1, t+ 1).

Recall that Ĩ`0 = (P`0 , P`0+1], where P`0 = P + (`0 − 1)
√
P . For each index i 6= 1, t + 1 we

set

yi = xi − P`0 .

Clearly one has 0 < yi ≤
√
P . Upon noting that P � P`0 �

√
P , an application of the mean

value theorem of differential calculus yields for each index i 6= 1, t+ 1, that

|xθi − xθt+i| =
∣∣(yi + P`0)θ − (yt+i + P`0)θ

∣∣ � P θ−1
`0
|yi − yt+i| � P θ−1/2.

By the triangle inequality, the above estimate leads to∣∣∣∣∣∣∣∣
t∑
i=2
xi∈Ĩ`

(xθi − xθt+i)

∣∣∣∣∣∣∣∣� P θ−1/2.

Invoking (2.3.14) we now have that |xθ1 − xθt+1| � P θ−1/2. On the other hand, an application

of the mean value theorem of differential calculus yields |xθ1 − xθt+1| � |x1 − xt+1|P θ−1. Thus,

we can conclude that |x1−xt+1| �
√
P .One can rewrite this asymptotic estimate in the shape

|x1 − xt+1| ≤ C1

√
P , where C1 > 0 is a real number that depends at most on t and θ. In view
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of this new constraint one can return to inequality (2.3.14) and count solutions subject to the

constraints

x1, xt+1 ∈ I, |x1 − xt+1| ≤ C1

√
P , and xi ∈ Ĩ`0 (i 6= 1, t+ 1). (2.3.15)

The points x1, xt+1 belong to the interval I. Recalling the inclusion (2.3.11) we have that

there are indices `1 and `2 for which

P`1 < x1 ≤ P`1+1 and P`2 < xt+1 ≤ P`2+1.

Then, combining (2.3.15) with the definition (2.3.10) ofP` and using the fact that for each index

` we have P`+1 − P` =
√
P , one can deduce that

C1

√
P ≥ |x1 − xt+1| ≥ |P`1 − P`2 | −

√
P ≥ (|`1 − `2| − 1)

√
P .

From the above computation we obtain that |`1 − `2| ≤ C1 + 1.

We now bound from above the number of integer solutions of the inequality (2.3.14) under

the constraint (2.3.15). To do so, we make use of appropriate generating functions. We write

S ⊂ I×I for the set of lattice points x1, xt+1 ∈ I which satisfy |x1−xt+1| ≤ C1

√
P .By Lemma

2.3.2 with S as above, I2 = Ĩ`0 and δ = 1
2 one has

Vt

(
I, Ĩ`0 ;

1

2

)
�
∫ 1

−1

|HS(α)g̃`0(α)2t−2|dα, (2.3.16)

where

HS(α) =
∑

(x1,xt+1)∈S

e(α(xθ1 − xθt+1)).

One can tileS ⊂ I×I by invoking the cover
(
Ĩ`

)
`
.Taking into account our previous conclusion

that |`1 − `2| ≤ C1 + 1 we infer that

|HS(α)| �
b
√
Pc+1∑
`1=1

b
√
Pc+1∑
`2=1

|`1−`2|≤C1+1

|g̃`1(α)||g̃`2(α)|.

Hence, for some 1 ≤ `1, `2 ≤ b
√
P c+ 1 one has

|HS(α)| � P
1
2 |g̃`1(α)||g̃`2(α)|.

One can now bound above the right hand side of (2.3.16). So we infer that

Vt

(
I, Ĩ`0 ;

1

2

)
� P

1
2

∫ 1

−1

|g̃`1(α)g̃`2(α)g̃`0(α)2t−2|dα. (2.3.17)

Invoking the elementary inequality |z1 · · · zn| � |z1|n+· · ·+|zn|n,which is valid for all complex

numbers, one has that

|g̃`1(α)g̃`2(α)g̃`0(α)2t−2| � |g̃`1(α)|2t + |g̃`2(α)|2t + |g̃`0(α)|2t.
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Hence, (2.3.17) delivers the estimate

Vt

(
I, Ĩ`0 ;

1

2

)
� P

1
2

∫ 1

−1

|g̃`(α)|2tdα,

where ` is one of the indices `1, `2, `0. Incorporating this estimate into (2.3.13) and recalling

(2.3.12), we deduce that

Vt

(
I;

1

2

)
� P t−

1
2

∫ 1

−1

|g̃`(α)|2tdα. (2.3.18)

We emphasize here that our choice of 1 ≤ ` ≤ b
√
P c+ 1 is now fixed.

In view of (2.3.7) our aim in the rest of the proof is to bound the mean value appearing on

the right hand side of (2.3.18). Appealing to Lemma 2.3.2 with I1 = I2 = Ĩ` and δ = 1
2 one has

∫ 1

−1

|g̃`(α)|2tdα� Vt

(
Ĩ`;

1

2

)
, (2.3.19)

where Vt
(
Ĩ`;

1
2

)
denotes the number of integer solutions of the inequality

∣∣xθ1 + · · ·+ xθt − (xθt+1 + · · ·+ xθ2t)
∣∣ < 1

2
, (2.3.20)

with xi ∈ Ĩ`. From now on we essentially follow [1, Lemma 3]. We set Q` = bP`c and define

yi = xi −Q` (1 ≤ i ≤ 2t). Note that

0 < yi < b
√
P c+ 1 < Q`.

This observation is immediate since by the definitions of P` and Q` one has

0 ≤ P` − bP`c < yi ≤ P`+1 − bP`c = P` − bP`c+
√
P ≤ 1 +

√
P < Q`. (2.3.21)

Then inequality (2.3.20) takes the shape∣∣∣(y1 +Q`)
θ

+ · · ·+ (yt +Q`)
θ − (yt+1 +Q`)

θ − · · · (y2t +Q`)
θ
∣∣∣ < 1

2
,

or equivalently,

Qθ`

∣∣∣∣∣
(

1 +
y1

Q`

)θ
+ · · ·+

(
1 +

yt
Q`

)θ
−
(

1 +
yt+1

Q`

)θ
− · · · −

(
1 +

y2t

Q`

)θ∣∣∣∣∣ < 1

2
. (2.3.22)

We consider the function h : (0, 1) → R with h(z) = (1 + z)θ. Then, a Taylor expansion up

to the k = b2θc+ 1 term around the point z0 = 0 yields

h(z) = h(0) +

k∑
j=1

h(j)(0)

j !
zj + rk(z) = 1 +

k∑
j=1

bjz
j + rk(z),

where recall that

bj =

(
θ

j

)
=
θ(θ − 1) · · · (θ − j + 1)

j !
,
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is the j-th combinatorial coefficient of the expansion. Here rk(z) denotes the remainder term.

In Lagrange’s form, the remainder term takes the shape

rk(z) =
h(k+1)(c)

(k + 1) !
zk+1 = bk+1(1 + c)θ−k−1zk+1,

for some 0 < c < z. Upon nothing that 1 + c > 1 and θ − k − 1 < 0 we obtain

|rk(z)| ≤ |bk+1||z|k+1, (2.3.23)

For each index 1 ≤ i ≤ 2t we write zi = yi/Q`. In view of (2.3.21), one has 0 < zi < 1.

By (2.3.21) it follows that for P sufficiently large one has 0 < zi <
2√
P
. Indeed, this follows

immediately upon writing

zi =
yi
Q`
≤
√
P + 1

bP`c
<

√
P + 1

P` − 1
<

2√
P
.

Thus, (2.3.23) with z = zi delivers the following upper bound for the error term

|rk(zi)| ≤ |bk+1|
(

2√
P

)k+1

= |bk+1|2k+1P−
k+1
2 .

(2.3.24)

Expanding each term occurring in (2.3.22), we obtain that

Qθ`

(
1 +

yi
Q`

)θ
= Qθ`

(
1 + b1

(
yi
Q`

)
+ · · ·+ bk

(
yi
Q`

)k
+ rk

(
yi
Q`

))

= Qθ` + b1Q
θ−1
` y1 + · · ·+ bkQ

θ−k
` yki +Qθ`rk

(
yi
Q`

)
.

(2.3.25)

For large P one has Q` ≤ 2P. So, by (2.3.24) and since k + 1 = b2θc+ 2 > 2θ, we infer that as

P →∞ one has ∣∣∣∣Qθ`rk ( yi
Q`

)∣∣∣∣ ≤ |bk+1|2k+1P−
k+1
2 (2P )

θ

= |bk+1|2k+1+θP θ−
k+1
2

= o(1).

Consequently, when P is large enough in terms of k one has for each index 1 ≤ i ≤ 2t that∣∣∣∣Qθ`rk ( yi
Q`

)∣∣∣∣ ≤ 1

4t
. (2.3.26)

Substituting the asymptotic expansion (2.3.25) into (2.3.22) and taking into account (2.3.26)

together with the symmetry of the inequality, we deduce that the number of integer solutions
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of the inequality (2.3.22) is bounded above by the number of integer solutions of the inequality∣∣∣∣∣∣
k∑
j=1

bjQ
θ−j
`

(
yj1 + · · ·+ yjt − y

j
t+1 − · · · − y

j
2t

)∣∣∣∣∣∣ < 2t

4t
+

1

2
= 1.

Rearranging the terms in the summation on the left hand side of the above expression, we can

rewrite the last inequality in an equivalent form as∣∣∣∣∣b1Qθ−1
`

t∑
i=1

(yi − yt+i) + · · ·+ bkQ
θ−k
`

t∑
i=1

(yki − ykt+i)

∣∣∣∣∣ < 1. (2.3.27)

The number of integer solutions of the inequality (2.3.27) with 0 < yi < 1+b
√
P c is bounded

above by the number of integer solutions of the system

∣∣b1Qθ−1
` h1 + · · ·+ bkQ

θ−k
` hk

∣∣ < 1

t∑
i=1

(yji − y
j
t+i) = hj (1 ≤ j ≤ k)

(2.3.28)

with 0 < yi ≤ Y where Y = 1 + b
√
P c. We denote this counting function by Zt,k (Y ; h) . Note

that the integers hj satisfy the relation |hj | ≤ tY j (1 ≤ j ≤ k).

We write Jt,k (Y ; h) to denote the number of integer solutions of the inhomogeneous Vino-

gradov system
t∑
i=1

(yji − y
j
t+i) = hj (1 ≤ j ≤ k),

with 0 < yi ≤ Y. By orthogonality one has

Jt,k (Y ; h) =

∫
[0,1)k

∣∣∣∣∣∣
∑

0<yi≤Y

e(α1y + · · ·+ αky
k)

∣∣∣∣∣∣
2t

e(−α · h)dα,

where as usual α · h stands for α1h1 + · · · + αkhk. By the triangle inequality and in view of

Theorem 2.3.1 one has for any fixed ε > 0 that

Jt,k (Y ; h) ≤ Jt,k (Y )� Y 2t− 1
2k(k+1)+ε. (2.3.29)

Recall now the definition (2.3.4) of the expressionH. Returning our attention to the system

(2.3.28) we see that

Zt,k (Y ; h)�
∑

|hj |≤tY j
1≤j≤k
|H(h)|<1

Jt,k (Y ; h) ,

which by the triangle inequality leads to

Zt,k (Y ; h)� Jt,k (Y )
∑

|hj |≤tY j
1≤j≤k
|H(h)|<1

1.

(2.3.30)
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Recall now that Y = 1 + b
√
P c �

√
P . One may estimate the sum on the right hand side

of (2.3.30) by using Lemma 2.3.3. Hence, appealing to (2.3.29) and Lemma 2.3.3 the estimate

(2.3.30) now delivers

Zt,k (Y ; h)� Y 2t− 1
2k(k+1)+ε · P 1

4k(k+1)−θ+ 1
2

� P t−θ+
1
2 +ε.

(2.3.31)

Putting together (2.3.31), (2.3.19), and (2.3.18) we deduce that

Vt

(
I;

1

2

)
� P 2t−θ+ε,

which in view of (2.3.7) completes the proof of the theorem.

It is convenient for the rest of the analysis to have in hand an estimate for the dilated expo-

nential sum fi(α) = f(λiα).

Corollary 2.3.5. Letλ be a fixed real number. Suppose thatκ is a real number such thatκ|λ| ≥ 1.

Suppose further that t ≥ 1
2 (b2θc+ 1) (b2θc+ 2) is a natural number. Then for any fixed ε > 0

one has that ∫ κ

−κ
|f(λα)|2t dα� κP 2t−θ+ε.

The implicit constant depends on ε, λ, t,and θ, but not on κ and P.

Proof. Using the fact that f(−α) = f(α) for all α ∈ R and changing variables, we see that

∫ κ

0

|f(λα)|2t dα =

∫ κ

0

|f(|λ|α)|2t dα =
1

|λ|

∫ κ|λ|

0

|f(u)|2t du

� 1

|λ|

∫ κ|λ|

−κ|λ|
|f(u)|2t du.

Invoking Theorem 2.1.4 we are now done.

2.4 Minor arcs analysis

We begin the analysis of the analytical representation (2.2.11) with the contribution coming

from the minor arcs. Recall that this set is given by

m =
{
α ∈ R : P−θ+δ0 ≤ |α| < Pω

}
.

Define the intervals m+ =
[
P−θ+δ0 , Pω

)
and m− =

(
−Pω,−P−θ+δ0

]
and note that m = m+ ∪

m−. One has fi(−α) = fi(α) for all α ∈ R. Moreover, the kernel functions K±(α) are real

valued and even. Recall (2.2.10). By a change of variables one has

R±
(
P ;m−

)
= R± (P ;m+), (2.4.1)
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where R±(P ;m+) stands for the complex conjugate. Therefore, it suffices to deal with the set

m+.

We make use of the following variant of van der Corput’s k-th derivative test, for bounding

exponential sums.

Lemma 2.4.1. Let q ≥ 0 be an integer. Suppose that f : (X, 2X] → R is a function having

continuous derivatives up to the (q + 2)-th order in (X, 2X]. Suppose also there is some F > 0,

such that for all x ∈ (X, 2X] we have

FX−r � |f (r)(x)| � FX−r, (2.4.2)

for r = 1, 2, . . . , q + 2. Then we have∑
X<x≤2X

e(f(x))� F 1/(2q+2−2)X1−(q+2)/(2q+2−2) + F−1X,

with the implied constant depending only upon the implied constants in (2.4.2).

Proof. See [43, Theorem 2.9].

Recall that in (2.3.5) we defined the exponential sum g(α) = g(α;P ) by

g(α;P ) =
∑

P<x≤2P

e(αxθ).

We put gi(α) = g(λiα) (1 ≤ i ≤ s). Below we give a crude non-trivial upper bound for the

exponential sum fi(α) when α ∈ m+. We emphasize here that one can certainly improve this

estimate. However, for our purposes the saving we obtain is sufficient.

Lemma 2.4.2. For each index 1 ≤ i ≤ s one has for any fixed ε > 0 that

sup
α∈m+

|fi(α)| � P 1−4−θ+ε. (2.4.3)

Proof. Fix an index i. It suffices to show that

sup
α∈m+

|gi(α)| � P 1−4−θ .

Then one may split the interval [1, P ] intoO (logP ) dyadic intervals and the desired conclusion

follows.

We set φ(x) = λiαx
θ. For each integer r ≥ 1 one has φ(r)(x) = Crαx

θ−r, where we put

Cr = λiθ(θ − 1) · · · (θ − r + 1). It is apparent that for P < x ≤ 2P one has∣∣∣φ(r)(x)
∣∣∣ � FP−r,

where F = |Cr||α|P θ. For α ∈ m+ =
[
P−θ+δ0 , Pω

)
one has

|Cr|P δ0 ≤ F < |Cr|P θ+ω.
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We apply Lemma 2.4.1 with q = n, where n = bθc in the integer part of θ. This yields that

for any α ∈ m+ one has

|gi(α;X)| � P 1−η + P 1−δ0 ,

where

η =
n+ 2− θ − ω

2n+2 − 2
.

Upon recalling (2.2.9) one may easily verify that η > 4−θ which completes the proof.

By (2.2.4) one has |K±(α)| � 1. An application of Hölder’s inequality reveals that

∫
m+

|f1(α) · · · fs(α)K±(α)|dα�
(∫

m+

|f1(α)|sdα
)1/s

· · ·
(∫

m+

|fs(α)|sdα
)1/s

.

We set κ = Pω. Note that for large enough P one has Pω|λi| ≥ 1. Combining Corollary 2.3.5

and the upper bound recorded in (2.4.3) we deduce that for any fixed ε > 0 one has∫
m+

|fi(α)|sdα�
(

sup
α∈m+

|fi(α)|
)s−2t ∫ Pω

−Pω
|fi(α)|2tdα

� P s−θ · P−4−θ(s−2t)+ω+ε(s−2t+1),

provided that s > 2t ≥ (b2θc + 1)(b2θc + 2). Choosing ε = 5−100θ > 0 as we are at liberty to

do, and recalling from (2.2.9) that ω ≤ 5−100θ, we infer that∫
m+

|fi(α)|sdα� P s−θ · P−4−θ(s−2t)+4−2θ(s−2t+2) = o
(
P s−θ

)
.

In the light of (2.4.1) we have established the following.

Lemma 2.4.3. One has ∫
m

|f1(α) · · · fs(α)K±(α)|dα = o
(
P s−θ

)
,

provided s ≥ (b2θc+ 1)(b2θc+ 2) + 1.

2.5 Trivial arcs analysis

In this section we deal with the set of trivial arcs. Recall that this set is given by

t = {α ∈ R : |α| ≥ Pω}.

Define t+ = [Pω,∞) and t− = (−∞,−Pω] and note that t = t+ ∪ t−. Recall (2.2.10). A change

of variables as in §2.4 yields

R±
(
P ; t−

)
= R± (P ; t+). (2.5.1)
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2.5. Trivial arcs analysis

Hence it suffices to deal with the set t+. By (2.2.4) with h = 1 one has that

∫
t+
|f1(α) · · · fs(α)K±(α)|dα�

∞∑
j=bω log2 Pc

(logP )

22j

∫ 2j+1

2j
|f1(α) · · · fs(α)|dα. (2.5.2)

An application of Hölder’s inequality yields

∫ 2j+1

2j
|f1(α) · · · fs(α)|dα�

(
s∏
i=1

∫ 2j+1

2j
|fi(α)|sdα

)1/s

. (2.5.3)

Define s0 = (b2θc+ 1)(b2θc+ 2) and note that s0 is even. In making the trivial estimate

|fi(α)| = O (P )

it follows that ∫ 2j+1

2j
|fi(α)|sdα� P s−s0

∫ 2j+1

2j
|fi(α)|s0dα,

provided s ≥ s0. For sufficiently large P and for j ≥ bω log2 P c + 1 one has 2j+1|λi| ≥ 1 for

each index i. Invoking Corollary 2.3.5 the above estimate yields that for any fixed ε > 0 one has

∫ 2j+1

2j
|fi(α)|sdα� 2j+1P s−θ+ε (1 ≤ i ≤ s).

By (2.5.2) and (2.5.3) we infer that∫
t+
|f1(α) · · · fs(α)K±(α)|dα� P s−θ+ε

∞∑
j=bω log2 Pc

1

2j
.

Clearly one has
∞∑

j=bω log2 Pc

1

2j
� P−ω.

Hence by choosing ε = ω
2 > 0 the previous estimate delivers∫

t+
|f1(α) · · · fs(α)K±(α)|dα� P s−θ−

ω
2 = o

(
P s−θ

)
.

In the light of (2.5.1) we have established the following.

Lemma 2.5.1. One has ∫
t

|f1(α) · · · fs(α)K±(α)|dα = o
(
P s−θ

)
,

provided s ≥ (b2θc+ 1)(b2θc+ 2).
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Chapter 2. Diophantine inequalities of fractional degree

2.6 Major arc analysis and the asymptotic formula

Now we deal with the contribution of the major arc

M = {α ∈ R : |α| < P−θ+δ0}

around zero. The corresponding analytical approximations for the generating functions fi(α)

are given by

υi(α) = υ(λiα) =

∫ P

0

e(λiαγ
θ)dγ (1 ≤ i ≤ s). (2.6.1)

An application of partial summation delivers

fi(α)− υi(α) = O
(
1 + P θ|α|

)
,

uniformly for α ∈ R. Thus for α ∈M one has

fi(α)− υi(α)� P δ0 .

The above estimate in combination with the trivial bounds |fi(α)|, |υi(α)| ≤ P and the tele-

scoping sum

f1 · · · fs − υ1 · · · υs =

s∑
i=1

f1 · · · fi−1(fi − υi)υi+1 · · · υs,

reveals that for α ∈M one has

f1(α) · · · fs(α)− υ1(α) · · · υs(α)� O(P s−1+δ0).

Integrating over M yields∫
M

f1(α) · · · fs(α)K±(α)dα−
∫
M

υ1(α) · · · υs(α)K±(α)dα�
∫
M

P s−1+δ0dα

= P s−1+δ0meas (M)

� P s−θ−1+2δ0 ,

(2.6.2)

where in the last step we used the fact meas (M) � P−θ+δ0 . By (2.2.4) one has |K±(α)| � 1.

Using integration by parts one has

υi(α)� min{P, |α|−1/θ} � P

(1 + P θ|α|)1/θ
(1 ≤ i ≤ s). (2.6.3)

So we deduce that∫
R\M

υ1(α) · · · υs(α)K±(α)dα�
∫
|α|>P−θ+δ0

|α|−s/θdα� P s−θ−δ0(s/θ−1), (2.6.4)

where in the last step we used the hypothesis s > 2θ.
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2.6. Major arc analysis and the asymptotic formula

The singular integral of our problem is given by

I± =

∫ ∞
−∞

υ1(α) · · · υs(α)K±(α)dα. (2.6.5)

Note that by (2.2.4) and (2.6.3) the integral I± is well defined and absolutely convergent. Com-

bining (2.6.2) and (2.6.4) and since 2δ0 < 1, we see that

I± =

∫
M

f1(α) · · · fs(α)K±(α)dα+ o
(
P s−θ

)
. (2.6.6)

For α ∈ R we put

Φ(α) = υ1(α) · · · υs(α) =

∫
[0,P ]s

e
(
α(λ1γ

θ
1 + · · ·+ λsγ

θ
s )
)

dγ. (2.6.7)

In view of (2.6.3) we see that Φ is an integrable function. Making a change of variables by putting

γi = P
(
βi|λi|−1

)1/θ
(1 ≤ i ≤ s) yields

Φ(α) =

(
P

θ

)s
|λ1 · · ·λs|−1/θ

∫
B

(β1 · · ·βs)1/θ−1e
(
αP θ(σ1β1 + · · ·+ σsβs)

)
dβ, (2.6.8)

where σi = λi/|λi| ∈ {±1} are not all equal and B = [0, |λ1|] × · · · × [0, |λs|]. Let β̃ ∈ R be a

parameter. We now write U(β̃) = U(β̃;λ) ⊂ Rs−1 for the domain defined through the linear

inequalities

0 ≤ βi ≤ |λi| (1 ≤ i ≤ s− 1), 0 ≤ β̃ − σsσ1β1 − · · · − σsσs−1βs−1 ≤ |λs|.

We set

Ψ0(β̃) =

∫
U(β̃)

(
β̃ − σsσ1β1 − · · · − σsσs−1βs−1

)1/θ−1

(β1 · · ·βs−1)1/θ−1dβ1 · · · dβs−1.

For β̃ ∈ [0, |λs|] the map β̃ 7→ Ψ0(β̃) defines a non-negative and continuous function. Put

Ψ(β̃) =


Ψ0(β̃), if β̃ ∈ [0, |λs|],

0, otherwise.

(2.6.9)

Note that Ψ(β̃) is a non-negative and compactly supported function defined over R,which has

precisely two points of discontinuity, at β̃ = 0, |λs|. We set

β̃ = βs + σ1σsβ1 + · · ·+ σs−1σsβs−1.

Replace in (2.6.8) the variable βs by β̃. Letting now β̃ vary through R and using the fact that

Ψ(β̃) is compactly supported we obtain

Φ(α) =

(
P

θ

)s
|λ1 · · ·λs|−1/θ

∫ ∞
−∞

Ψ(β̃)e(αP θσsβ̃)dβ̃. (2.6.10)

Since Φ and Ψ are integrable we may apply Fourier’s inversion theorem. Together with a sub-
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stitution that replaces α by αP−θ we obtain that

Ψ(β̃) =

(
θ

P

)s
|λ1 · · ·λs|1/θ

∫ ∞
−∞

Φ(αP−θ)e(−σsβ̃α)dα. (2.6.11)

Putting together (2.6.5), (2.6.8) and (2.6.10), we infer that

I± =

(
P

θ

)s
|λ1 · · ·λs|−1/θ

∫ ∞
−∞

∫ ∞
−∞

Ψ(β̃)e(αP θσsβ̃)K±(α)dαdβ̃

=

(
P

θ

)s
|λ1 · · ·λs|−1/θ

∫ ∞
−∞

Ψ(β̃)

(∫ ∞
−∞

e(αP θσsβ̃)K±(α)dα
)

dβ̃.

(2.6.12)

By the comment following (2.2.7) one has∫ ∞
−∞

e(αP θσsβ̃)K±(α)dα = χτ

(
P θσsβ̃

)
, (2.6.13)

unless β̃ satisfies the relation
∣∣∣|P θσsβ̃| − τ ∣∣∣ < τ̃,where recall that we have set τ̃ = τ (logP )

−1
.

The measure of the set of points β̃ which satisfy the latter inequality isO
(
τP−θ (logP )

−1
)

=

o
(
P s−θ

)
. The contribution of such points to the integral is o

(
P s−θ

)
and hence one may ignore

this set. Therefore, we may assume from now on that (2.6.13) is valid. Recalling that χτ (·)
denotes the characteristic function of the interval (−τ, τ) we may rewrite (2.6.13) as

∫ ∞
−∞

e(αP θσsβ̃)K±(α)dα =


1, if |β̃| < τP−θ,

0, otherwise.

(2.6.14)

Lemma 2.6.1. For |β̃| < τP−θ one has

Ψ(β̃)−Ψ(0)� τP−θ.

Proof. By (2.6.7) and (2.6.3) one has

|Φ(αP−θ)| =
s∏
i=1

∣∣υi(αP−θ)∣∣� P s

(1 + |α|)s/θ
.

Thus, by (2.6.11) one has

|Ψ(β̃)−Ψ(0)| ≤
(
θ

P

)s
|λ1 · · ·λs|−1/θ

∫ ∞
−∞
|Φ(αP−θ)||e(−σsβ̃α)− 1|dα

�
∫ ∞
−∞

1

(1 + |α|)s/θ
|e(−σsβ̃α)− 1|dα.

Note that for any x ∈ R one has

|e(x)− 1| ≤ 2π|x|.
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Using this inequality we deduce that

Ψ(β̃)−Ψ(0)� |β̃|
∫ ∞
−∞

|α|
(1 + |α|)s/θ

dα� τP−θ,

since for s > 2θ the integral with respect to α is absolutely convergent.

We now return to (2.6.12) and substitute Ψ(β̃) = Ψ(0) + O(τP−θ). In view of (2.6.14) this

yields

I± = 2τΩ(s, θ;λ)P s−θ +O
(
P s−2θ

)
, (2.6.15)

where

Ω(s, θ;λ) =

(
1

θ

)s
|λ1 · · ·λs|−1/θC(s, θ;λ) > 0,

and C(s, θ;λ) = Ψ(0) with Ψ(0) given by (2.6.9) so that

Ψ(0) =

∫
U(0)

(−σs(σ1β1 + · · ·+ σs−1βs−1))
1/θ−1

(β1 · · ·βs−1)1/θ−1dβ1 · · · dβs−1.

Note that Ψ(0) is positive since not all of the σi are equal. This can be readily seen as follows.

Let |λ0| = mini |λi|. Trivially one has

Ψ(0)�
∫ |λ0|

0

· · ·
∫ |λ0|

0

(−σs(σ1β1 + · · ·+ σs−1βs−1))
1/θ−1

(β1 · · ·βs−1)1/θ−1dβ. (2.6.16)

Since the σi are not all of the same sign, by linearity there exists a tuple β such that

−σs(σ1β1 + · · ·+ σs−1βs−1) > 0,

with 0 < βi ≤ |λ0|. One can now assume that there exists a large positive number D that

depends on βi, such that 1
D ≤ βi ≤ |λ0|.Hence, there exists an open neighbourhood of positive

measure over which the integrand on the right hand side of (2.6.16) is positive. Therefore we

deduce that Ψ(0)� 1.

The asymptotic formula (2.6.15) together with (2.6.6) yields,∫
M

f1(α) · · · fs(α)K±(α)dα = 2τΩ(s, θ;λ)P s−θ + o
(
P s−θ

)
.

The proof of Theorem 2.1.1 is now complete by taking into account Lemma 2.4.3, Lemma 2.5.1

and the expression (2.2.11).

2.7 The inhomogeneous case

In this section we prove Theorem 2.1.2. Using the kernel functions defined in (2.2.3) we have

that

R−(P ) ≤ N τ
s,θ(P ;λ, L) ≤ R+(P ),
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whereas now

R±(P ) =

∫ ∞
−∞

f1(α) · · · fs(α)e(−αL)K±(α)dα.

To study the above integrals we dissect the real line as in the case of Theorem 2.1.1. By the

triangle inequality and appealing to Lemma 2.4.3 and Lemma 2.5.1, we immediately obtain that∣∣∣∣∫
m∪t

f1(α) · · · fs(α)e(−αL)K±(α)dα

∣∣∣∣� ∫
m∪t
|f1(α) · · · fs(α)| dα = o

(
P s−θ

)
.

Thus, we are left to deal with the contribution arising when integrating over the major arc

around zero. The approach given in §2.6 applies here as well with minor adjustments, in order

to deal with the twist e(−αL). We briefly now discuss these differences.

The singular integral is now given by

I± =

∫ ∞
−∞

υ1(α) · · · υs(α)e(−αL)K±(α)dα,

where the functions υi(α) are defined as in (2.6.1). One may show as in §2.6 that

I± =

∫
M

f1(α) · · · fs(α)e(−αL)K±(α)dα+ o
(
P s−θ

)
.

Thus, we aim to give an asymptotic formula for the complete singular integral I± defined above.

For α ∈ R we now define

Φ(α) = υ1(α) · · · υs(α)e(−αL) =

∫
[0,P ]s

e
(
α
(
λ1γ

θ
1 + · · ·+ λsγ

θ
s − L

))
dγ. (2.7.1)

Ignoring for the moment the twist factor e(−αL) one can study the function Φ as in §2.6. This

analysis leads now to

Φ(α) =

(
P

θ

)s
|λ1 · · ·λs|−1/θ

∫ ∞
−∞

Ψ(β̃)e
(
α
(
P θσsβ̃ − L

))
dβ̃,

where Ψ is defined as in (2.6.9). Applying now Fourier’s inversion theorem we obtain that

I± =

(
P

θ

)s
|λ1 · · ·λs|−1/θ

∫ ∞
−∞

Ψ(β̃)

(∫ ∞
−∞

e
(
α
(
P θσsβ̃ − L

))
K±(α)dα

)
dβ̃. (2.7.2)

One may assume that β̃ satisfies

∫ ∞
−∞

e
(
α
(
P θσsβ̃ − L

))
K±(α)dα =


1, if |β̃ − LP−θ| < τP−θ,

0, otherwise.

(2.7.3)

Note that for the measure of the set of points β̃ which do not satisfy the above relation one

has O
(
τ |L−1|P−θ (logP )

−1
)

= o
(
P s−θ

)
. The contribution of such points to the integral is

o
(
P s−θ

)
and hence one may ignore this set. Under the assumption that |β̃ − LP−θ| < τP−θ

one can show that

Ψ(β̃)−Ψ(1)� (τ + |L−1|)P−θ.
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Indeed, since the factor e(−αL) in (2.7.1) does not affect things, one can repeat the argument

given in the proof of Lemma 2.6.1 to deduce that

Ψ(β̃)−Ψ(0)� |β̃| � |β̃ − LP−θ|+ |LP−θ| � (τ + |L|)P−θ.

One can now substitute Ψ(β̃) = Ψ(0) + (τ + |L|)P−θ into (2.7.2). In view of (2.7.3) this yields

I± =

(
P

θ

)s
|λ1 · · ·λs|−1/θ

∫ τP−θ+LP−θ

−τP−θ+LP−θ

(
Ψ(0) + (τ + |L|)P−θ

)
dβ̃.

Therefore, we deduce that

I± = 2τΩ(s, θ;λ)P s−θ +O
(
(τ + |L|)P s−2θ

)
,

where

Ω(s, θ;λ) =

(
1

θ

)s
|λ1 · · ·λs|−1/θΨ(0) > 0,

with Ψ(0) given by (2.6.9). The proof of Theorem 2.1.2 is now complete.

2.8 The definite case

In this section we prove Theorem 2.1.3. Here we deal with positive definite generalised poly-

nomials. In this section we put

F(x) = λ1x
θ
1 + · · ·+ λsx

θ
s − ν,

and recall that we write ρs(τ, ν) to denote the number of solutions x ∈ Ns possessed by the

inequality |F(x)| < τ for a fixed real number τ ∈ (0, 1]. Our approach follows that presented

in [22, Theorem 1.10], where the authors deal with the problem of counting solutions to in-

equalities for positive definite polynomials.

Let N be a positive large parameter. For any solution x counted by ρs(τ, ν) with ν ≤ N one

has 0 < xi ≤ P (1 ≤ i ≤ s), where

P = 2
(
λ
−1/θ
1 + · · ·+ λ−1/θ

s + 1
)
N1/θ. (2.8.1)

So, one can write

ρs(τ, ν) =
∑

x∈[1,P ]s

|F(x)|<τ

1.

Recall the kernel function K(α) = sinc2(α). For any real η > 0 we define the function

wη(x) = ηK(ηx)

that was used in [30]. It satisfies

wη(x)� min{1, |x|−2} and 0 ≤ wη(x) ≤ η. (2.8.2)
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The Fourier transform of this function is given by

ŵη(x) =

∫ ∞
−∞

wη(u)e(−xu)du = max

{
0, 1− |x|

η

}
. (2.8.3)

Now we define the weighted integral

ρ?s(τ, ν) =

∫ ∞
−∞

f1(α) · · · fs(α)wτ (α)dα.

In the light of the discussion in [22, §2.1, §2.2] and appealing to [22, Lemma 2.1], whenever

0 < ∆ < τ
2 one has

ρs(τ, ν) =
(

1 +
τ

∆

)
ρ?s (τ + ∆, ν)− τ

∆
ρ?s(τ, ν) +O (ρ?s (∆, ν + τ) + ρ?s (∆, ν − τ)) . (2.8.4)

It is apparent by (2.8.4) that it is enough to establish an asymptotic formula for the weighted

integral ρ?s(τ, ν). To do so, we dissect the real line into three disjoint sets as in §2.2. Note that

now we take P as defined in (2.8.1).

For estimating the contribution arising from the sets of minor and trivial arcs one can invoke

Lemma 2.4.3 and Lemma 2.5.1. Together with the fact that by (2.8.2) one has wτ (α) � 1 for

any α, we deduce that∫
m∪t
|f1(α) · · · fs(α)e(−αν)wτ (α)| dα = o

(
P s−θ

)
. (2.8.5)

So, one is left to deal with the contribution arising when integrating over the major arc. We

write

I (M) =

∫
M

f1(α) · · · fs(α)e(−αν)wτ (α)dα,

and the singular integral is given by

I∞ =

∫ ∞
−∞

υ1(α) · · · υs(α)e(−αν)wτ (α)dα,

where the functions υi(α) are defined as in (2.6.1). Below we obtain an asymptotic formula for

the integral I (M) . The argument is analogous to the one given in [22, Lemma 2.4].

Lemma 2.8.1. Provided that s > 2θ one has

I (M) =
Γ
(
1 + 1

θ

)s
Γ
(
s
θ

) (λ1 · · ·λs)−1/θ
τνs/θ−1 +O

(
τ
(
P s−θ−1+δ0 + P s−θ−δ0(s/θ−1)

))
,

uniformly in 0 < τ ≤ 1 and 1 ≤ ν ≤ N.

Proof. Using the fact that 0 ≤ wτ (x) ≤ τ one has as in (2.6.2) that

I (M)−
∫
M

υ1(α) · · · υs(α)e(−αν)wτ (α)dα� τP s−θ−1+2δ0 .
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So as in §2.6 we may infer that∫
R\M

υ1(α) · · · υs(α)e(−αν)wτ (α)dα� τ

∫
|α|>P−θ+δ0

|α|−s/θdα

� τP s−θ−δ0(s/θ−1).

Thus, the above two estimates yield

I (M) = I∞ +O
(
τ
(
P s−θ−1+δ0 + P s−θ−δ0(s/θ−1)

))
. (2.8.6)

By (2.6.1) we may write

I∞ =

∫ ∞
−∞

(∫
[0,P ]s

e(α(λ1γ
θ
1 + · · ·+ λsγ

θ
s ))

)
e(−αν)wτ (α)dα.

Since the integral is absolutely convergent we can interchange the order of integration in the

right hand side of the above formula. Invoking (2.8.3) one has

I∞ =

∫
[0,P ]s

ŵτ
(
λ1γ

θ
1 + · · ·+ λsγ

θ
s − ν

)
dγ.

Since λi > 0 one may use (2.8.3) to extend the order of integration to [0,∞)s. After a change of

variables with γi = βiλ
−1/θ
i (1 ≤ i ≤ s) the above expression takes the shape

I∞ = (λ1 · · ·λs)−1/θ

∫
[0,∞)s

ŵτ
(
βθ1 + · · ·+ βθs − ν

)
dβ. (2.8.7)

Consider the level sets of the function βθ1 + · · ·+βθs . For t ∈ R the equation t = βθ1 + · · ·+βθs

defines a surface in Rs of codimension 1. We write S to denote the surface obtained by the

intersection with the domain {(β1, . . . , βs) : βi > 0 (1 ≤ i ≤ s)} ⊂ Rs. The area of S is equal

to

ts/θ−1 Γ
(
1 + 1

θ

)s
Γ
(
s
θ

) .

Using the transformation formula we may integrate overS and applying Fubini’s theorem equa-

tion (2.8.7) takes the shape

I∞ = (λ1 · · ·λs)−1/θ Γ
(
1 + 1

θ

)s
Γ
(
s
θ

) ∫ ∞
0

ts/θ−1ŵτ (t− ν)dt. (2.8.8)

By (2.8.3) and putting t− ν = u one has∫ ∞
0

ts/θ−1ŵτ (t− ν)dt =

∫ τ

−τ

(
1− |u|

τ

)
(ν + u)s/θ−1du.

For large enough ν one has |u/ν| < 1, so the binomial expansion yields

(ν + u)s/θ−1 = νs/θ−1
(

1 +
u

ν

)s/θ−1

= νs/θ−1 +O
(
uνs/θ−2

)
,
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as ν →∞. By this asymptotic expansion one has∫ τ

−τ

(
1− |u|

τ

)
(ν + u)s/θ−1du = τνs/θ−1 +O

(
τ2νs/θ−2

)
.

Returning to (2.8.8) we deduce that

I∞ = (λ1 · · ·λs)−1/θ Γ
(
1 + 1

θ

)s
Γ
(
s
θ

) τνs/θ−1 +O
(
τ2νs/θ−2

)
,

which when combined with (2.8.6) and observing that τP s−θ−1−δ0 � τ2νs/θ−2 completes the

proof of the lemma.

We may now complete the proof of Theorem 2.1.3.

Proof of Theorem 2.1.3. Putting together (2.8.5) and the conclusion of Lemma 2.8.1 we deduce

that

ρ?s(τ, ν) =
Γ
(
1 + 1

θ

)s
Γ
(
s
θ

) (λ1 · · ·λs)−1/θτνs/θ−1 + o
(
νs/θ−1

)
.

One can now substitute the above formula into (2.8.4). This yields

ρs(τ, ν) = (λ1 · · ·λs)−1/θ Γ
(
1 + 1

θ

)s
Γ
(
s
θ

) (
2τνs/θ−1 + ∆νs/θ−1 +W

)
+ o

(
νs/θ−1

)
, (2.8.9)

where

W = O
(

∆(ν + τ)s/θ−1 + ∆(ν − τ)s/θ−1 + o
(

(ν + τ)s/θ−1
)

+ o
(

(ν − τ)s/θ−1
))

.

Here ∆ is at our disposal, as long as it satisfies 0 < ∆ < τ
2 . One may choose ∆ = τ

3ν
−1/100.

Then, as ν →∞ one has

∆νs/θ−1 +W = o
(
νs/θ−1

)
.

Hence the asymptotic formula (2.8.9) delivers the desired conclusion which completes the proof.

2.9 A discrete L2-restriction estimate

This section is devoted to the demonstration of Theorem 2.1.5. Before we present our proof let

us motivate the route we take. To make this clearer assume for the moment that θ = d ∈ N.
Then an application of the Cauchy-Schwarz inequality reveals that

∫ 1

0

∣∣∣∣∣∣
∑

1≤x≤P

axe(αx
d)

∣∣∣∣∣∣
2s

dα =

∫ 1

0

∣∣∣∣∣∣
∑
`∈Z

∑
x∈Bd(`)

ax1 · · · axse(α`)

∣∣∣∣∣∣
2

dα

≤
∑
`∈Z

(# (Bd(`)))
∑

x∈Bd(`)

|ax1
· · · axs |2,

56



2.9. A discrete L2-restriction estimate

whereBd(`) = {1 ≤ x ≤ P : xd1+· · ·+xds = `}, and we write #(Bd(`)) to denote its cardinality.

By orthogonality one has

#(Bd(`)) =

∫ 1

0

∣∣∣∣∣∣
∑

1≤x≤P

e(αxd)

∣∣∣∣∣∣
s

e(−α`)dα.

Hence the problem boils down to bounding the quantity max` #(Bd(`)). Using classical meth-

ods together with the circle method, one can show that #(Bd(`))� P s−d for sufficiently large

s. For example, using the latest method of Wooley [95] on Vinogradov’s mean value theorem,

one can take s ≥ s0 with s0 as in (2.1.7).

When dealing with θ /∈ N one has to vary slightly from the argument sketched above. As an

analogue of Bd(`) we define the set

Bθ(`) =
{

1 ≤ x ≤ P : |xθ1 + · · ·+ xθs − `| < 1/2
}
.

The partition ⋃
`∈Z
Bθ(`) = {(x1, . . . , xs) : 1 ≤ xi ≤ P}

no longer makes sense for a fractional exponent θ. In this situation we instead look at tuples

x such that xθ1 + · · · + xθs is close to an integer value `. This observation makes apparent the

link between our aim and the problem of representing integers by a generalized polynomial as

described in (2.1.6).

Note that with the notation of §2.8, one has K(α) = w1(α) and so by (2.8.3) one has∫ ∞
−∞

e(αξ)K(α)dα = max{0, 1− |ξ|}, (2.9.1)

for all ξ ∈ R. We may now embark to the proof.

Proof of Theorem 2.1.5. Recall that we assume s ≥ 2 (b2θc+ 1) (b2θc+ 2) + 2. Expanding one

has that

∫ ∞
−∞
|fa(α)|2sK(α)dα =

∫ ∞
−∞

∣∣∣∣∣∣
∑

1≤x≤P

ax1
· · · axse

(
α(xθ1 + · · ·+ xθs)

)∣∣∣∣∣∣
2

K(α)dα. (2.9.2)

By the definition of the nearest integer function ‖ · ‖R/Z : R → [0, 1/2] we can decompose the

summation over 1 ≤ x ≤ P by counting integer solutions of the inhomogeneous inequality

|xθ1 + · · ·+ xθs − `1| ≤ 1/2,

inside the box [1, P ]
s
, where `1 runs over Z. With this observation and expanding the square,

one has that the right hand side of (2.9.2) is equal to

∑
`1,`2∈Z

∑
x∈Bθ(`1)

∑
y∈Bθ(`2)

ax1 · · · axsay1 · · · ays
∫ ∞
−∞

e (α (σs,θ(x, y)))K(α)dα, (2.9.3)

where we write σs,θ(x, y) = xθ1 + · · ·+ xθs − yθ1 − · · · − yθs .We emphasize at this point that it is
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at this step where we essentially "double" the number of variables.

Invoking (2.9.1) we see that

0 <

∫ ∞
−∞

e (α(σs,θ(x, y))K(α)dα ≤ 1

if and only if |σs,θ(x, y)| < 1. Indeed, if |σs,θ(x, y)| ≥ 1 then max{0, 1 − |σs,θ(x, y)|} = 0 and

so by (2.9.1) we see that the expression in (2.9.3) is equal to zero. Hence, in this case there is

nothing to prove since the estimate claimed in the statement of Theorem 2.1.5 trivially holds.

Thus, we may assume that the tuples x, y satisfy the inequality |σs,θ(x, y)| < 1. Under this

assumption one has

∑
`1,`2∈Z

∑
x∈Bθ(`1)

∑
y∈Bθ(`2)

ax1
· · · axsay1 · · · ays

∫ ∞
−∞

e (α (σs,θ(x, y)))K(α)dα

�
∑

`1,`2∈Z

∑
x∈Bθ(`1)

∑
y∈Bθ(`2)

|σs,θ(x,y)|<1

ax1
· · · axsay1 · · · ays .

(2.9.4)

Let (x, y) ∈ Bθ(`1) × Bθ(`2) and suppose that |σs,θ(x, y)| < 1. Then by the triangle inequality

one has

|`1 − `2| ≤
∣∣`1 − (xθ1 + · · ·+ xθs)

∣∣+ |σs,θ(x, y)|+
∣∣`2 − (yθ1 + · · ·+ yθs)

∣∣ < 2.

Therefore, it turns out that∑
`1,`2∈Z

∑
x∈Bθ(`1)

∑
y∈Bθ(`2)

|σs,θ(x,y)|<1

ax1
· · · axsay1 · · · ays

≤
∑

`1,`2∈Z

∑
x∈Bθ(`1)

∑
y∈Bθ(`2)

|`1−`2|<2

ax1
· · · axsay1 · · · ays .

(2.9.5)

Since `1−`2 ∈ {0,±1}we see that if we fix one of the `1, `2 the other one has exactly 3 choices.

So by symmetry one has that the expression on the right hand side of (2.9.5) is bounded above

by

6
∑
`3∈Z

∣∣∣∣∣∣
∑

x∈B′θ(`3)

ax1 · · · axs

∣∣∣∣∣∣
2

,

where for `3 ∈ Z we put

B′θ(`3) = {1 ≤ x ≤ P : |xθ1 + · · ·+ xθs − `3| < 1}.

An application of the Cauchy-Schwarz inequality reveals that for s ≥ 2 (b2θc+ 1) (b2θc+ 2)+2
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one has

6
∑
`3∈Z

∣∣∣∣∣∣
∑

x∈B′θ(`3)

ax1 · · · axs

∣∣∣∣∣∣
2

≤ 6
∑
`3∈Z

 ∑
x∈B′θ(`3)

1

 ∑
x∈B′θ(`3)

|ax1 · · · axs |2


� max
`3∈Z

(#B′θ(`3))
∑
`3∈Z

∑
x∈B′θ(`3)

|ax1 · · · axs |2

� P s−θ

 ∑
1≤x≤P

|ax|2
s

,

where in the last step we used Theorem 2.1.3. Putting together (2.9.4), (2.9.5) and invoking

(2.9.2) we are done.
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Chapter 3

A mixed Diophantine system

The work in this chapter is based (with minor changes) on the author’s paper [65].

3.1 Introduction

In this chapter we investigate the simultaneous solubility of inequalities and equations. Here

we seek to count the number of positive integer solutions of a mixed system, consisting of a

diagonal inequality of fractional degree and a diagonal integral form.

Fix non-zero real numbers λi, µj not all of the same sign and non-zero integers ai, bk not all

of the same sign. Suppose that d ≥ 2 is an integer and suppose further that θ > d + 1 is real

and non-integral. We write
F(x, y) = λ1x

θ
1 + · · ·+ λ`x

θ
` + µ1y

θ
1 + · · ·+ µmy

θ
m

D(x, z) = a1x
d
1 + · · · a`xd` + b1z

d
1 + · · ·+ bnz

d
n.

(3.1.1)

Let τ be a fixed positive real number. The Diophantine system under investigation is of the

shape 
|F(x, y)| < τ

D(x, z) = 0.

(3.1.2)

In order to ensure that the system (3.1.2) is indefinite it is enough to ask for the system

F(x, y) = D(x, z) = 0, (3.1.3)

to admit a non-trivial real solution (x, y, z). Beyond the indefiniteness of F and D, in order

to study the solubility of the system (3.1.2) over the set of natural numbers one has to im-

pose some further conditions. It is apparent that we must ask for the congruence D(x, z) ≡
0 (mod pν) to be soluble for all prime powers pν . Furthermore, for reasons associated with the

application of the circle method, one has to assume that the given local solutions are in fact non-

singular. For us a tuple η = (x?, y?, z?) ∈ Rs which satisfies the system of equations (3.1.3) is
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called a non-singular solution of the system (3.1.2) if the Jacobian matrix

∂(F,D)

∂(η1, . . . , ηs)

has full rank. We say that the system (3.1.2) satisfies the local solubility condition if the sys-

tem (3.1.3) possesses a non-singular real solution and the congruence D(x, z) ≡ 0 (mod pν)

possesses a non-singular solution for all prime powers pν .

We write N (P ) to denote the number of positive integer solutions (x, y, z) of the system

(3.1.2) with

1

2
x?P < x ≤ 2x?P,

1

2
y?P < y ≤ 2y?P,

1

2
z?P < z ≤ 2z?P,

where (x?, y?, z?) is a non-singular solution of the system (3.1.3). Our aim is to establish an

asymptotic formula for the counting function N (P ) as P → ∞. Before we state our result

we make a comment about two special cases. Suppose that ` = 0. It is apparent by Theorem

2.1.1 and the seminal work of Davenport and Lewis [31] that in such a case and provided that

m ≥ (b2θc+ 1) (b2θc+ 2)+1 andn ≥ d2+1,one certainly hasN (P )� Pm+n−(θ+d). Suppose

now thatm = n = 0.Here one would (in principle) be able to obtain an asymptotic formula for

the counting functionN (P ) provided that s = ` ≥ `0(θ) + 1,where `(θ) is any natural number

for which one has the estimate

∫ 1

0

∫ 1

0

∣∣∣∣∣∣
∑

1≤x≤P

e(αdx
d + αθx

θ)

∣∣∣∣∣∣
`0(θ)

dα� P `0(θ)−θ+ε.

Here dα stands for dαddαθ. Our first result is establishing this observation.

Theorem 3.1.1. Suppose that d ≥ 2 is an integer and suppose further that θ > d+ 1 is real and

non-integral. Let τ be a fixed positive real number. Consider the system

|F(x, y)| < τ and D(x, z) = 0, (3.1.4)

with F,D defined in (3.1.1). Suppose thatm = n = 0 and suppose further that the system (3.1.4)

satisfies the local solubility condition, namely the system (3.1.3) possesses a non-singular real so-

lution and the congruence D(x, z) ≡ 0 (mod pν) possesses a non-singular solution for all prime

powers pν . Then, provided that s ≥ (b2θc+ 1) (b2θc+ 2) + 1, one has that there exists a positive

real number C = C(λ,a, θ, d, s) such that

N (P ) = 2τCP s−(θ+d) + o
(
P s−(θ+d)

)
, (3.1.5)

as P → ∞. In particular, the number of positive integer solutions x ∈ [1, P ]s of the system

(3.1.4) is� P s−(θ+d), where the implicit constant is a positive real number, which depends on

s, λi, ai, θ, d and τ.

Certainly more interesting is the case where in (3.1.1) one has m + n 6= 0. Our next result

examines this case when the total number of variables s is in an intermediate range compared

to the number of variables needed in the scenarios where ` = 0 and m = n = 0.
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Theorem 3.1.2. Suppose that d ≥ 2 is an integer and suppose further that θ > d+ 1 is real and

non-integral. Let τ be a fixed positive real number. Consider the system

|F(x, y)| < τ and D(x, z) = 0, (3.1.6)

with F,D defined in (3.1.1). We write

Aθ = (b2θc+ 1) (b2θc+ 2) and Ad = d2. (3.1.7)

Moreover we set

smin =

⌈
max

{
Aθ + n,

Ad
Aθ

m+Aθ

}⌉
+ 1

and

smax =

⌊
min

{
Aθ +Ad, Aθ +

Ad
Aθ

m+ n

}⌋
+ 1.

Suppose that the system (3.1.6) satisfies the following conditions.

(a) The system (3.1.6) satisfies the local solubility condition, namely the system (3.1.3) possesses

a non-singular real solution and the congruence D(x, z) ≡ 0 (mod pν) possesses a non-

singular solution for all prime powers pν .

(b) One has ` ≥ max{d2θ(1− n/d)e, 1}, 0 ≤ m ≤ Aθ and 0 ≤ n ≤ Ad.

(c) One has `+m ≥ Aθ + 1 and `+ n ≥ Ad + 1.

(d) For the total number of variables s = `+m+ n one has smin ≤ s ≤ smax.

Then, there exists a positive real number C = C(λ,µ,a,b, θ, d, s), such that as P →∞ one has

N (P ) = 2τCP s−(θ+d) + o
(
P s−(θ+d)

)
. (3.1.8)

In particular, the number of positive integer solutions (x, y, z) ∈ [1, P ]` × [1, P ]m × [1, P ]n of

the system (3.1.6) is� P s−(θ+d), where the implicit constant is a positive real number, which

depends on s, λi, µj , ai, bk, θ, d and τ.

The positive real number C = C(λ,µ, a,b, θ, d, s) appearing in the asymptotic formulae

(3.1.5) and (3.1.8) turns out to be a product of the shape C = J0S. Here

J0 =

∫ ∞
−∞

∫ ∞
−∞

(∫
B
e (βθF(x, y) + βdD(x, z)) dxdydz

)
dβ,

where

B =
`×
i=1

[
1

2
x?i , 2x

?
i

] m×
j=1

[
1

2
y?j , 2y

?
j

] n×
k=1

[
1

2
z?k, 2z

?
k

]
is a box containing in its interior a non-singular solution (x?, y?, z?) of the system (3.1.3), and

S =

∞∑
q=1

q∑
a=1

(a,q)=1

T (q, a),
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where

T (q, a) = q−(`+n)
∏̀
i=1

S(q, aai)

n∏
k=1

S(q, abk),

and for a ∈ Z and q ∈ N we write

S(q, a) =

q∑
z=1

e

(
azd

q

)
.

The singular integral J0 is essentially Schmidt’s singular integral. The singular series S cap-

tures the arithmetic behind the equation D(x, z) = 0.

By the assumptions made in Theorem 3.1.2 we see that our conclusion is valid for systems

for which the total number of variables s = `+m+n satisfiesAθ + 1 ≤ s ≤ Aθ +Ad+ 1.Note

that when m = n = 0 in Theorem 3.1.1 we assume that s = ` ≥ Aθ + 1, with Aθ defined in

(3.1.7). The treatment of the minor arcs in the proof of Theorem 3.1.1 follows by using a Hua’s

type inequality

∫
B
|f(αd, αθ)|s dα�

(
sup

(αd,αθ)∈B
|f(αd, αθ)|

)s−2t ∫
B
|f(αd, αθ)|2t dα,

as in Chapter 2, where for (αd, αθ) ∈ R2 we write

f(αd, αθ) =
∑

1≤x≤P

e(αdx
d + αθx

θ),

and where B is a Lebesgue measurable subset of R2. For the case where m + n 6= 0 one may

adopt the methods we use in proving Theorem 3.1.2 to treat systems where the total number

of variables is greater thanAθ +Ad + 1. For such cases one may obtain the following corollary.

Corollary 3.1.3. Suppose that d ≥ 2 is an integer and suppose further that θ > d+ 1 is real and

non-integral. Let τ be a fixed positive real number. Consider the system

|F(x, y)| < τ and D(x, z) = 0, (3.1.9)

with F,D defined in (3.1.1). Suppose that the system (3.1.9) satisfies the following conditions.

(a) The system satisfies the local solubility condition, namely the system (3.1.3) possesses a non-

singular real solution and the congruence D(x, z) ≡ 0 (mod pν) possesses a non-singular

solution for all prime powers pν .

(b) One has ` ≥ max{d2θ(1 − n/d)e, 1}, 0 ≤ m ≤ Aθ and 0 ≤ n ≤ Ad, with Aθ and Ad as

in (3.1.7).

(c) One has `+m ≥ Aθ + 1 and `+ n ≥ Ad + 1, with Aθ and Ad as in (3.1.7).

(d) One has s = `+m+ n ≥ Aθ +Ad + 2.

Then, the number of positive integer solutions (x, y, z) ∈ [1, P ]` × [1, P ]m × [1, P ]n of the system

(3.1.9) is� P s−(θ+d), where the implicit constant is a positive real number, which depends on

s, λi, µj , ai, bk, θ, d and τ.
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Having stated our results let us make a few comments regarding previous works that are of

some relevance to the problem we investigate. The study of Diophantine inequalities for di-

agonal real forms begins with the work of Davenport and Heilbronn [30]. Many authors have

engaged with studying the solubility of systems of diagonal real forms of the same degree. The

interested reader may look for example in [18], [19], [26], [62], [51]. For the case of unlike de-

grees we have the important work of Schmidt [67] who studied systems of real (not necessarily

diagonal) forms of differing odd degrees. In this work Schmidt proves the existence (without

being explicitly determined) of a finite lower bound for the number of variables needed to en-

sure solubility. For the first time, an explicit such bound was given by Freeman [42] in the case

of a system of cubic forms.

Using ideas from [4], Freeman in [36] and [39] introduced a variant of the Davenport—

Heilbronn method. These results of Freeman were afterwards improved by Wooley in [86] us-

ing an amplification method. Based on his variant of the original Davenport–Heilbronn method,

Freeman considered systems of diagonal quadratic real forms in [38] and systems of diago-

nal real forms of degree d in [41]. A two dimensional analogue of the Davenport–Heilbronn

method was presented by Parsell in [56]. Shortly afterwards, in [57] and [59], Parsell adapted

Freeman’s method to study the solubility of systems of diagonal real forms of unlike degree.

More recently, we have Chow’s paper [25] which is an inequality analogue of Birch’s celebrated

result [6]. The interested reader may look as well in the recent breakthroughs due to Myer-

son [49] and [50], who obtained a remarkable improvement compared to Birch’s theorem for

systems of quadratic and cubic integral forms.

3.2 Set up

3.2.1 An analytic representation for the counting functionN (P )

Set τ̃ = τ(logP )−1. We put

K±(α) =
sin (πατ̃) sin (πα(2τ ± τ̃))

π2α2τ̃
. (3.2.1)

By [39, Lemma 1] and its proof we know that

K±(α)�τ min{1, |α|−1, (logP )|α|−2}, (3.2.2)

and

0 ≤
∫ ∞
−∞

e(ξα)K−(α)dα ≤ χτ (ξ) ≤
∫ ∞
−∞

e(ξα)K+(α)dα ≤ 1, (3.2.3)

where we write χτ (ξ) to denote the indicator function of the interval (−τ, τ), namely

χτ (ξ) =

1, if |ξ| < τ,

0, if |ξ| ≥ τ.

Note that the expression ∣∣∣∣∫ ∞
−∞

e(ξα)K±(α)dα− χτ (ξ)

∣∣∣∣
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is zero when ||ξ| − τ | > τ̃ and at most 1 for values of ξ such that ||ξ| − τ | ≤ τ̃ .

One may rewrite the kernel functions K±(α) defined in (3.2.1) in the shape

K±(α) = (2τ ± τ̃)
sin (πατ̃)

πατ̃
· sin (πα(2τ ± τ̃))

πα(2τ ± τ̃)
.

Using a Taylor expansion one has for |x| < 1 with x 6= 0 that

sinx

x
= 1 +O(x2).

Recall that τ̃ = τ(logP )−1. So for |α| < 1 and P sufficiently large one has that

K±(α) = 2τ +O
(

(logP )
−2
)
. (3.2.4)

In our analysis we use various exponential sums. For α = (αd, αθ) ∈ R2 we define the

exponential sums f(α) = f(α;P ), g(αθ) = g(αθ;P ) and h(αd) = h(αd;P ) by

f(α;P ) =
∑

1≤x≤P

e(αdx
d + αθx

θ), g(αθ;P ) =
∑

1≤x≤P

e(αθx
θ),

h(αd;P ) =
∑

1≤x≤P

e(αdx
d).

Moreover, we define Fi(α) = Fi(α;P ), Gj(αθ) = Gj(αθ;P ) and Hk(αd) = H(αd;P ) by

Fi(α;P ) =
∑

1≤x≤P

e(aiαdx
d + λiαθx

d) (1 ≤ i ≤ `),

Gj(αθ;P ) =
∑

1≤x≤P

e(µjαθx
θ) (1 ≤ j ≤ m),

Hk(αd;P ) =
∑

1≤x≤P

e(bkαdx
d) (1 ≤ k ≤ n).

Recall that (x?, y?, z?) is a non-singular real solution of the system (3.1.3). We put

fi(α) =
∑

1
2x
?
iP<x≤2x?iP

e(aiαdx
d + λiαθx

θ) (1 ≤ i ≤ `),

gj(αθ) =
∑

1
2y
?
jP<y≤2y?jP

e(µjαθy
θ) (1 ≤ j ≤ m),

hk(αd) =
∑

1
2 z
?
kP<z≤2z?kP

e(bkαdz
d) (1 ≤ k ≤ n).
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For future reference we note here the following relations

fi(α) = F (α; 2x?iP )−F
(
α;

1

2
x?iP

)
, gj(αθ) = G

(
αθ; 2y?jP

)
−G

(
αθ;

1

2
y?jP

)
,

hk(αd) = H (αd; 2z?kP )−H
(
αd;

1

2
z?kP

)
.

(3.2.5)

We define the generating function

F(α) =
∏̀
i=1

fi(α)

m∏
j=1

gj(αθ)

n∏
k=1

hk(αd),

and set

R±(P ) =

∫ ∞
−∞

∫ 1

0

F(α)K±(αθ)dα. (3.2.6)

Using now (3.2.3), together with the usual orthogonality relation

∫ 1

0

e(αn)dα =


1, when n = 0,

0, when n ∈ Z \ {0},

one has that

R−(P ) ≤ N (P ) ≤ R+(P ).

From the above inequality it is clear that in order to establish an asymptotic formula for the

counting functionN (P ) it suffices to obtain asymptotic formulae for the integrals R±(P ) that

are asymptotically equal.

3.2.2 A mixed version of the circle method

In order to study the integrals R±(P ) defined in (3.2.6) we apply a mixed version of the circle

method. We dissect separately R and [0, 1).

Dissection of R.Here we apply a Davenport–Heilbronn dissection. Write γ = θ−bθc ∈ (0, 1)

for the fractional part of θ. Define the parameters δ0 = δ0(θ) and ω = ω(θ) by

δ0(θ) = 21−2θ and ω(θ) = min

{
1− γ

12
,

1

5100(θ+d)

}
. (3.2.7)

Define the set of major, minor, and trivial arcs respectively as follows

M =
{
αθ ∈ R : |αθ| < P−θ+δ0

}
,

m =
{
αθ ∈ R : P−θ+δ0 ≤ |αθ| < Pω

}
,

t = {αθ ∈ R : |αθ| ≥ Pω} .

Dissection of [0, 1). Here we apply a classical Hardy–Littlewood dissection into major and
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minor arcs. Pick a parameter ξ satisfying

0 < ξ ≤ δ0
8
. (3.2.8)

For integers a, q such that 0 ≤ a < q ≤ P ξ and (a, q) = 1, we define a major arc around the

rational fraction a/q to be the set

Nξ(q, a) = {αd ∈ [0, 1) : |αd − a/q| < P−d+ξ}.

We now form the union

Nξ =
⋃

0≤a<q≤P ξ
(a,q)=1

Nξ(q, a),

and call this the set of major arcs. Note that Nξ is a union of disjoint sets. Indeed, suppose that

there exists αd ∈ [0, 1) which belongs to two distinct major arcs Nξ(q1, a1),Nξ(q2, a2) ⊂ Nξ.

Since a1/q1 6= a2/q2 one has

1

q1q2
≤
∣∣∣∣a1q2 − a2q1

q1q2

∣∣∣∣ ≤ 2P−d+ξ,

which in turn implies that 1 ≤ 2q1q2P
−d+ξ ≤ 2P−d+3ξ. This is clearly impossible for large

P, since by our choice in (3.2.8) one has ξ < 1/3. The set of minor arcs is defined to be the

complement of the set of major arcs. Denote this set by nξ. Namely we have

nξ = [0, 1) \Nξ.

Using the above dissections one may express [0, 1) × R into a disjoint union of sets of the

shape

[0, 1)× R = P ∪ p ∪ c,

where we define the sets P, p and c as follows.

(1) The set of major arcs P given by

P = Nξ ×M.

(2) The set of minor arcs p given by

p = ([0, 1)×m)) ∪ (nξ ×M) .

(3) The set of trivial arcs c given by

c = [0, 1)× t.

For a Lebesgue measurable B ⊂ [0, 1)× R we define

R±(P ;B) =

∫
B
F(α)K±(αθ)dα. (3.2.9)
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Recalling (3.2.6), one has that

R±(P ) = R±(P ;P) +R±(P ; p) +R±(P ; c). (3.2.10)

3.2.3 An application of Hölder’s inequality

We begin by recalling the well known inequality

|z1 · · · zn| � |z1|n + · · · |zn|n,

which is valid for all complex numbers zi. Let B be a Lebesgue measurable set. An application

of this inequality reveals that for some indices i, j and k one has

|F(α)| � f `i g
m
j h

n
k ,

where for easy of notation we abbreviate

|fi(αd, αθ)| to fi, |gj(αθ)| to gj and |hk(αd)| to hk.

Let δ ∈ [0, 1/3) be a real number at our disposal to be chosen at a later stage. We write

`′ = `− δ and s′ = `′ +m+ n = s− δ. (3.2.11)

Note here that `′, s′ /∈ N. The previous estimate yields

∫
B
|F(α)K±(αθ)|dα�

(
sup
B
|fi|
)δ ∫

B
f `
′

i g
m
j h

n
k |K±(αθ)|dα, (3.2.12)

where the supremum is taken over α = (αθ, αd) ∈ B.

We define the following auxiliary mean values,

Ξfi(B) =

∫
B
fAθi |K±(αθ)|dα, Ξfi,gj (B) =

∫
B
fAdi gAθj |K±(αθ)|dα,

Ξfi,hk(B) =

∫
B
fAθi hAdk |K±(αθ)|dα, Ξgj ,hk(B) =

∫
B
gAθj hAdk |K±(αθ)|dα.

For ωi ∈ (0, 1) a formal application of Hölder’s inequality reveals∫
B
f `
′

i g
m
j h

n
k |K±(αθ)|dα

� (Ξfi(B))
ω1
(
Ξfi,gj (B)

)ω2
(Ξfi,hk(B))

ω3
(
Ξgj ,hk(B)

)ω4
.

(3.2.13)
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Combining (3.2.13) and (3.2.12) yields∫
B
|F(α)K±(αθ)|dα

�
(

sup
B
|fi|
)δ

(Ξfi(B))
ω1
(
Ξfi,gj (B)

)ω2
(Ξfi,hk(B))

ω3
(
Ξgj ,hk(B)

)ω4
.

(3.2.14)

The task now is to prove that there exist admissible valuesωi such that the inequality (3.2.13)

is valid. The ωi ∈ (0, 1) must satisfy the simultaneous linear equations

Aθω1 +Adω2 +Aθω3 = `′

Aθω2 +Aθω4 = m

Adω3 +Adω4 = n

ω1 + ω2 + ω3 + ω4 = 1.

By the two equations in the middle we infer that

ω2 = ω3 +
m

Aθ
− n

Ad
.

Substituting ω2 + ω4 = m/Aθ into the last equation of the system yields

ω1 = −ω3 + 1− m

Aθ
.

One may substitute into the first equation of the system the above values for ω2 and ω1. Hence

ω3 =
s′ −Aθ
Ad

− m

Aθ
.

Having determined a value for ω3 one may solve for ω1, ω2 and ω4 to obtain

ω1 = 1− s′ −Aθ
Ad

, ω2 =
s′ −Aθ
Ad

− n

Ad
, ω4 =

m

Aθ
+

n

Ad
− s′ −Aθ

Ad
. (3.2.15)

We now have to ensure that ωi ∈ (0, 1). Since ω1 +ω2 +ω3 +ω4 = 1 it suffices to ensure that

ωi > 0. Solving the simultaneous inequalities ωi > 0 (1 ≤ i ≤ 4) yields

max

{
Aθ + n,

Ad
Aθ

m+Aθ

}
≤ s′ ≤ min

{
Aθ +Ad, Aθ +

Ad
Aθ

m+ n

}
.

Note that this is a legitimate constrain since we assume that 0 ≤ m ≤ Aθ and 0 ≤ n ≤ Ad.

Next, we deduce a constraint for s. Recall from (3.2.11) that s′ = s − δ. Since we consider s

to be a natural number, the preceding inequality about the range of s′ now delivers⌈
δ + max

{
Aθ + n,

Ad
Aθ

m+Aθ

}⌉
≤ s ≤

⌊
δ + min

{
Aθ +Ad, Aθ +

Ad
Aθ

m+ n

}⌋
.
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For any x, y ∈ R one has

bxc+ byc ≤ bx+ yc ≤ bxc+ byc+ 1

dxe+ dye − 1 ≤ dx+ ye ≤ dxe+ dye+ 1.

Since 0 ≤ δ < 1/3 < 1 one has⌊
δ + min

{
Aθ +Ad, Aθ +

Ad
Aθ

m+ n

}⌋
≥
⌊

min

{
Aθ +Ad, Aθ +

Ad
Aθ

m+ n

}⌋
+ 1,

and ⌈
δ + max

{
Aθ + n,

Ad
Aθ

m+Aθ

}⌉
≤
⌈

max

{
Aθ + n,

Ad
Aθ

m+Aθ

}⌉
+ 1.

Hence one has⌈
max

{
Aθ + n,

Ad
Aθ

m+Aθ

}⌉
+ 1 ≤ s ≤

⌊
min

{
Aθ +Ad, Aθ +

Ad
Aθ

m+ n

}⌋
+ 1,

which is precisely the range prescribed by the condition (d) in the statement of Theorem 3.1.2.

It is therefore clear that for such s the inequality (3.2.13) is valid.

3.3 Auxiliary mean value estimates

The aim of this section is to collect the necessary auxiliary estimates that we employ in the

following sections. From now on, and for ease of notation, for each j ∈ {1, . . . , n, θ}we put

σt,j(x) =

t∑
i=1

(xji − x
j
t+i). (3.3.1)

Lemma 3.3.1. Suppose that I ⊂ (0,∞) is a bounded interval. Let δ be a given positive real

number and define the number ∆ by the relation 2δ∆ = 1.We writeVt(I; δ) to denote the number

of positive integer solutions xi ∈ I of the inequality

|σt,θ(x)| < δ.

Then one has

δ

∫ ∆

−∆

∣∣∣∣∣∑
x∈I

e(αxθ)

∣∣∣∣∣
2t

dα� Vt(I; δ)� δ

∫ ∆

−∆

∣∣∣∣∣∑
x∈I

e(αxθ)

∣∣∣∣∣
2t

dα,

with the implicit constants in the above estimate being independent from I, θ, and δ.

Proof. This is a special case of [81, Lemma 2.1] with K = 1 and φ(x) = xθ in their notation.

Alternatively, this follows by Lemma 2.3.2 with S = I × I and intervals I1 = I3 = I.

Next, we need a variant of the above lemma that allows one to bound from above the mixed

mean values Ξfi,gj (B) and Ξfi,hk(B), by the number of solutions of the corresponding under-
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lying system. We write Z1(P ) to denote the number of integer solutions of the system
∣∣∣λiσAd

2 ,θ
(x) + µjσAθ

2 ,θ
(y)
∣∣∣ < 1

2κ

aiσAd
2 ,d

(x) = 0,

with 1
2x

?
iP < x ≤ 2x?iP and 1

2y
?
i P < y ≤ 2y?i P. Similarly, we write Z2(P ) to denote the

number of integer solutions of the system
∣∣∣λiσAθ

2 ,θ
(x)
∣∣∣ < 1

2κ

aiσAθ
2 ,d

(x) + bkσAd
2 ,d

(z) = 0,

with 1
2x

?
iP < x ≤ 2x?iP and 1

2z
?
i P < z ≤ 2z?i P.

Lemma 3.3.2. Let κ be a positive real number and write B = [−1, 1] × [−κ, κ]. Then for each

index i, j and k one has

(i) Ξfi,gj (B)� κZ1(P ) ;

(ii) Ξfi,hk(B)� κZ2(P ).

The implicit constants do not depend on κ.

Proof. We give the proof only of estimate (i).One can establish estimate (ii) in a similar fashion.

Fix indices i and j. For ease of notation we put

p(x, y) = λiσAd
2 ,θ

(x) + µjσAθ
2 ,θ

(y) and q(x) = aiσAd
2 ,d

(x).

Then, Z1(P ) is equivalently given by the number of integer solutions of the system
|p(x, y)| < 1

2κ

|q(x)| < 1

2

with 1
2x

?
iP < x ≤ 2x?iP and 1

2y
?
i P < y ≤ 2y?i P.

Define the function

sinc(x) =


sin(πx)
πx , when x 6= 0,

1, when x = 0.

By [30] we know that for each x, ξ ∈ R one has

Λ(x) =

∫ ∞
−∞

e(xξ)sinc2(ξ)dξ,

where for x ∈ R we write Λ(x) = max{0, 1− |x|}.Note that one has 0 ≤ Λ(x) ≤ 1. So for each

solution counted by Z1(P ) one has 0 < Λ(2κp(x, y)) < 1 and 0 < Λ(2q(x)) < 1.
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By the above considerations and taking the sum over the tuples x, y with 1
2x

?
iP < x ≤ 2x?iP

and 1
2y
?
i P < y ≤ 2y?i P, we infer that

Z1(P ) ≥
∑
x,y

Λ(2κp(x, y))Λ(2q(x))

=
∑
x,y

∫ ∞
−∞

∫ ∞
−∞

e (u1κp(x, y) + u22q(x)) sinc2(u1)sinc2(u2)du

=
1

4κ

∑
x,y

∫ ∞
−∞

∫ ∞
−∞

e (αθp(x, y) + αdq(x)) sinc2

(
1

2κ
αθ

)
sinc2

(
1

2
αd

)
dα,

where in the last step we applied a change of variables under the transformation(
u1

u2

)
=

(
1

2κ 0

0 1
2

)(
αθ

αd

)
.

Because we have a finite sum and since the integral is absolutely convergent, one can change

the order. Thus by the above inequality we obtain

Z1(P ) ≥ 1

4κ

∫ ∞
−∞

∫ ∞
−∞

fAdi gAθj sinc2

(
1

2κ
αθ

)
sinc2

(
1

2
αd

)
dα. (3.3.2)

Next, we use Jordan’s inequality, which states that for 0 < x ≤ π
2 one has

2

π
≤ sinx

x
< 1.

For a proof of this inequality see [48, p. 33]. One then has sinc2(x) > 4/π2 for |x| < 1
2 . Thus,

for |αθ| < κ and |αd| < 1 one has

sinc2

(
1

2κ
αθ

)
, sinc2

(
1

2
αd

)
> 4/π2.

Hence, the inequality (3.3.2) now delivers

Z1(P )� 1

κ

∫ κ

−κ

∫ 1

−1

fAdi gAθj dα,

which completes the proof.

For a tuple α = (α1, . . . , αn, αθ) ∈ Rn+1 we put T (α) = T (α;P ), where

T (α;P ) =
∑

1≤x≤P

e(α1x+ · · ·+ αnx
n + αθx

θ). (3.3.3)

We need the following general estimate.

Theorem 3.3.3. Let κ ≥ 1 be a real number and suppose that t ≥ Aθ/2 is a natural number.

Then, for any fixed ε > 0 one has∫ κ

−κ

∫
[0,1)n

|T (α)|2t dα� κP 2t− 1
2n(n+1)−θ+ε.
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The implicit constant depends on ε, θ, and t, but not on κ and P. Furthermore, for t > Aθ/2 one

can take ε = 0.

Proof. This is Theorem B.1 in Appendix B.

Next, we obtain essentially optimal mean value estimate for the exponential sums f, g and h.

Lemma 3.3.4. Let κ ≥ 1 be a real number. Then the following are valid.

(i) Suppose that t ≥ Aθ/2 is a natural number. Then, for any fixed ε > 0 one has∫ κ

−κ

∫ 1

0

|f(α)|2t dα� κP 2t−(θ+d)+ε.

The implicit constant depends on ε, θ and t, but not on κ and P. Furthermore, for

t > Aθ/2 one can take ε = 0.

(ii) Suppose that t ≥ Aθ/2 is a natural number. Then, for any fixed ε > 0 one has∫ κ

−κ
|g(α)|2t dα� κP 2t−θ+ε.

The implicit constant depends on ε, θ and t, but not on κ and P. Furthermore, for

t > Aθ/2 one can take ε = 0.

(iii) Suppose that t ≥ Ad/2 is a natural number. Then, for any fixed ε > 0 one has∫ 1

0

|h(α)|2t dα� P 2t−d+ε.

The implicit constant depends on ε, d and t, but not on P. Furthermore, for

t > Ad/2 one can take ε = 0.

Proof. We begin with the estimate in (iii). This follows from [95, Corollary 14.7] since

Ad ≥ s0(d), where s0(d) is defined as

s0(d) = d(d− 1) + min
0≤m<d

2d+m(m− 1)

m+ 1
.

The estimate in (ii) is Theorem 2.1.4. Alternative, one can apply an argument similar to the

one present below for proving (i).

We now come to the estimate in (i). Temporarily we write n = bθc. Keep in mind that we

suppose that θ > d + 1, and so one has d < n. In order to prove the estimate in (i) we apply

an average process as in [87, Theorem 2.1]. For each 1 ≤ j ≤ n with j 6= d and for a tuple

h = (h1, . . . , hd−1, hd+1, . . . , hn) ∈ Zn−1 we put

δ(x,h) =

n∏
j=1
j 6=d

∫ 1

0

e (βj (σt,j(x)− hj)) dβj ,
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where recall from (3.3.1) the definition of σt,j(x). Let us rewrite the exponential sum T (α)

defined in (3.3.3) as

T (β, αd, αθ) =
∑

1≤x≤P

e(β1x+ · · ·+ βd−1x
d−1 + αdx

d + βd+1x
d+1 + · · ·+ αθx

θ).

Note that

∫ κ

−κ

∫
[0,1)n

|T (β, αd, αθ)|2t e

− n∑
j=1
j 6=d

βjhj

 dβ =

=
∑

1≤x≤P

δ(x,h)

∫ κ

−κ

∫ 1

0

e (αdσt,d(x) + αθσt,θ(x)) dαddαθ.

(3.3.4)

By orthogonality one has

∫ 1

0

e (βj (σt,j(x)− hj)) dβj =


1, when σt,j(x) = hj ,

0, when σt,j(x) 6= hj .

It is apparent that for each fixed choice of 1 ≤ x ≤ P there is precisely one possible value for

the tuple h ∈ Zn−1. Moreover, for each j and for 1 ≤ x ≤ P one has |σt,j(x)| ≤ tP j . Hence∑
|h1|≤tP

· · ·
∑

|hd−1|≤tPd−1

∑
|hd+1|≤tPd+1

· · ·
∑

|hn|≤tPn
δ(x,h) = 1. (3.3.5)

One may return to (3.3.4) and sum over tuples h satisfying |hj | ≤ tP j for each 1 ≤ j ≤ n with

j 6= d. Thus we obtain

∑
h

∫ κ

−κ

∫
[0,1)n

|T (β, αd, αθ)|2t e

− n∑
j=1
j 6=d

βjhj

 dβ =

=
∑

1≤x≤P

(∑
h

δ(x,h)

)∫ κ

−κ

∫ 1

0

e (αdσt,d(x) + αθσt,θ(x)) dαddαθ.

Applying the triangle inequality and taking into account (3.3.5) one has

P
1
2n(n+1)−d

∫ κ

−κ

∫
[0,1)n

|T (β, αd, αθ)|2t dβ ≥

≥
∑

1≤x≤P

∫ κ

−κ

∫ 1

0

e (αdσt,d(x) + αθσt,θ(x)) dαddαθ.

Note now that

∑
1≤x≤P

∫ κ

−κ

∫ 1

0

e (αdσt,d(x) + αθσt,θ(x)) dαddαθ =

∫ κ

−κ

∫ 1

0

|f(α)|2t dα.
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Invoking Theorem 3.3.3, we deduce that for any fixed ε > 0 one has∫ κ

−κ

∫ 1

0

|f(α)|2t dα� P
1
2n(n+1)−d · P 2t− 1

2n(n+1)−θ+ε

� P 2t−(θ+d)+ε,

which completes the proof.

Below we obtain mean value estimates for the exponential sums fi, gj and hk.

Lemma 3.3.5. For each index i, j and k the following are valid.

(i) Suppose that κ is a real number such that κ|λi| ≥ 1. Suppose further that t ≥ Aθ/2 is a

natural number. Then, for any fixed ε > 0 one has∫ κ

−κ

∫ 1

0

|fi(α)|2t dα� κP 2t−(θ+d)+ε.

The implicit constant depend on ε, θ, t, λi and ai, but not on κ and P. Furthermore, for

t > Aθ/2 one can take ε = 0.

(ii) Suppose that κ is a real number such that κ|µj | ≥ 1. Suppose further that t ≥ Aθ/2 is a

natural number. Then, for any fixed ε > 0 one has∫ κ

−κ
|gj(αθ)|2t dαθ � κP 2t−θ+ε.

The implicit constant depend on ε, θ, t and µj , but not on κ and P. Furthermore, for

t > Aθ/2 one can take ε = 0.

(iii) Suppose that t ≥ Ad/2 is a natural number. Then, for any fixed ε > 0, one has∫ 1

0

|hk(αd)|2t dαd � P 2t−d+ε.

The implicit constant depends on ε, d, t and bk, but not on P. Furthermore, for

t > Ad/2 one can take ε = 0.

Proof. We give a proof only for the estimate in (i). One may argue in a similar fashion to estab-

lish the estimates in (ii) and (iii).

Fix an index i. Recalling (3.2.5) we see that it suffices to prove the following estimate∫ κ

−κ

∫ 1

0

|Fi(α)|2t dα� κP 2t−(θ+d)+ε.

Making a change of variables by(
αθ

αd

)
=

(
1
|λi| 0

0 1
|ai|

)(
βθ

βd

)
,
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yields ∫ κ

−κ

∫ 1

0

|Fi(α)|2t dα =
1

|λiai|

∫ κ|λi|

−κ|λi|

∫ |ai|
0

|f(±βd,±βθ)|2t dβ.

One can chop the interval [0, |ai|] into at most b|ai|c+1 intervals of length at most one. Moreover,

because of the 1-periodicity with respect to βd one has

∫ κ|λi|

−κ|λi|

∫ |ai|
0

|f(±βd,±βθ)|2t dβ �
b|ai|c∑
n=0

∫ κ|λi|

−κ|λi|

∫ n+1

n

|f(±βd,±βθ)|2t dβ

�
∫ κ|λi|

−κ|λi|

∫ 1

0

|f(±βd,±βθ)|2t dβ.

Finally, if necessary, one can make one more change of variables. This together with the fact

that f(−β) = f(β) yields

∫ κ|λi|

−κ|λi|

∫ 1

0

|f(±βd,±βθ)|2t dβ =

∫ κ|λi|

−κ|λi|

∫ 1

0

|f(βd, βθ)|2t dβ.

The conclusion now follows by applying Lemma 3.3.4.

We now estimate the auxiliary mean values Ξfi ,Ξfi,gj ,Ξfi,hk , and Ξgj ,hk .

Lemma 3.3.6. Let κ be a real number such that for each index i and j one has κ|λi| ≥ 1 and

κ|µj | ≥ 1. LetB = [0, 1]× [−κ, κ]. Then, for each index i, j and k, and for any fixed ε > 0 one has

(i) Ξfi(B)� κPAθ−(θ+d)+ε ;

(ii) Ξfi,gj (B)� κPAθ+Ad−(θ+d)+ε ;

(iii) Ξfi,hk(B)� κPAθ+Ad−(θ+d)+ε ;

(iv) Ξgj ,hk(B)� κPAθ+Ad−(θ+d)+ε.

The implicit constants in the above estimates may depend on θ, d, λi, µj , ai, bk and ε, but not on

κ and P.

Proof. In the following we make use of the fact that by (3.2.2) one has |K±(αθ)| � 1. The

estimate (i) follows by part (i) of Lemma 3.3.5 with t = Aθ/2. The proof of the estimate (iv) is

straightforward. One may write

Ξgj ,hk �
(∫ κ

−κ
|gj(αθ)|Aθ dαθ

)(∫ 1

0

|hk(αd)|Ad dαd

)
,

and the conclusion now follows by using (ii) and (iii) of Lemma 3.3.5.

Now we turn our attention to the estimate in (ii). Fix indices i and j. By Lemma 3.3.2 and

since we assume that κ ≥ maxi,j
{
|λi|−1, |µj |−1

}
one has

Ξfi,gj � κZ1(P ), (3.3.6)
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whereas now Z1(P ) denotes the number of integer solutions of the system

∣∣∣∣∣∣λi
Ad
2∑
i=1

(
xθi − xθAd

2 +i

)
+ µj

Aθ
2∑
i=1

(
yθi − yθAθ

2 +i

)∣∣∣∣∣∣ < M

ai

Ad
2∑
i=1

(
xdi − xdAd

2 +i

)
= 0,

(3.3.7)

with 1
2x

?
iP < x ≤ 2x?iP and 1

2y
?
i P < y ≤ 2y?i P, where M =

(
2 maxi,j

{
|λi|−1, |µj |−1

})−1
.

By orthogonality, the number of integer solutions of the equation in (3.3.7) is counted by the

mean value ∫ 1

0

∣∣∣∣∣∣
∑

1
2x
?
iP<x≤2x?iP

e(αxd)

∣∣∣∣∣∣
Ad

dαd.

Note that ∣∣∣∣∣∣
∑

1
2x
?
iP<x≤2x?iP

e(αxd)

∣∣∣∣∣∣� |h (α; 2x?iP )|+
∣∣∣∣h(α;

1

2
x?iP

)∣∣∣∣ .
So by Lemma 3.3.4 one has for any fixed ε > 0 that

∫ 1

0

∣∣∣∣∣∣
∑

1
2x
?
iP<x≤2x?iP

e(αxd)

∣∣∣∣∣∣
Ad

dαd � PAd−d+ε.

Let us fix an integer solution x for the equation in (3.3.7). As we proved, this can be done by

choosing among O
(
PAd−d+ε

)
possibilities. Substitute now these values into the inequality in

(3.3.7). Then the first block of variables is fixed and so one has to count the number of solutions

of the inhomogeneous inequality∣∣∣∣∣∣µj
Aθ
2∑
i=1

(
yθi − yθAθ

2 +i

)
+ L

∣∣∣∣∣∣ < M

with 1
2y
?
i P < y ≤ 2y?i P, where L = L(λi, θ, d, ε, x) is a fixed real number, determined by the

choice we made for the tuple x.We write V (1)
Aθ

(P ) to denote the number of integer solutions of

this inequality. As a consequence of Theorem 2.1.2 one has

V
(1)
Aθ

(P )� PAθ−θ+ε.

Hence, we have showed that Z1(P )� PAθ+Ad−(θ+d)+ε and in view of (3.3.6) the proof of (ii)

is now complete.

Similarly we argue for (iii). Fix indices i and k. By Lemma 3.3.2 one has

Ξfi,hk � κZ2(P ), (3.3.8)
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whereas now Z2(P ) denotes the number of integer solutions of the system

∣∣∣∣∣∣λi
Aθ
2∑
i=1

(
xθi − xθAθ

2 +i

)∣∣∣∣∣∣ < M

ai

Aθ
2∑
i=1

(
xdi − xdAθ

2 +i

)
+ bk

Ad
2∑
i=1

(
zdi − zdAd

2 +i

)
= 0,

(3.3.9)

with 1
2x

?
iP < x ≤ 2x?iP and 1

2z
?
i P < z ≤ 2z?i P. We write V (2)

Aθ
(P ) to denote the number of

integer solutions of the inequality in (3.3.9). By Lemma 3.3.1 one has

V
(2)
Aθ

(P )�
∫ M|λi|

2

−M|λi|
2

∣∣∣∣∣∣
∑

1
2y
?
i P<y≤2y?i P

e(αxθ)

∣∣∣∣∣∣
Aθ

dα.

As in (ii) we can show that for any fixed ε > 0 one has

V
(2)
Aθ

(P )� PAθ−θ+ε.

Fix a solution x counted by V (2)
Aθ

(P ). Substitute these values into the equation of system in

(3.3.9). Then the first block of variables becomes a fixed integer, say C = C(λi, θ, ε, x), which

depends on the choice we made for the tuple x. Hence, this equation takes the shape

aiC + bk

Ad
2∑
i=1

(
zdi − zdAd

2 +i

)
= 0.

Note that if bk does not divide the product aiC , then the above equation is not soluble in inte-

gers. In such a case Z2(P ) = 0 and the claimed estimate holds trivially. Hence, assuming that

bk | (aiC) we can rewrite it as
Ad
2∑
i=1

(
zdi − zdAd

2 +i

)
= C ′,

where C ′ = C ′(λi, ai, bk, θ, ε, x) is a fixed integer determined by the choice we made for the

tuple x. The number of integer solutions of this last equation is bounded above by the mean

value ∫ 1

0

∣∣∣∣∣∣
∑

1
2 z
?
i P<z≤2z?i P

e(αzd)

∣∣∣∣∣∣
Ad

e(−αC ′)dα.

Again note that ∣∣∣∣∣∣
∑

1
2 z
?
i P<z≤2z?i P

e(αzd)

∣∣∣∣∣∣� |h (α; 2z?i P )|+
∣∣∣∣h(α;

1

2
z?i P

)∣∣∣∣ .
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So, by the triangle inequality and invoking Lemma 3.3.4 we deduce that

∫ 1

0

∣∣∣∣∣∣
∑

1
2 z
?
i P<z≤2z?i P

e(αzd)

∣∣∣∣∣∣
Ad

e(−αC ′)dα� PAd−d+ε.

Hence, we deduce that Z2(P ) � PAθ+Ad(θ+d)+ε. In view of (3.3.8) the proof of the estimate

(iii) is now complete.

3.4 Minor arcs analysis

In this section we deal with the set of minor arcs p = ([0, 1)×m) ∪ (nξ ×M) . Here we aim to

show that for smin ≤ s ≤ smax one has∫
p

|F(α)K±(αθ)| dα = o
(
P s−(θ+d)

)
.

For a better presentation of our approach we split the analysis into two parts, dealing separately

with the sets [0, 1)×m and nξ ×M.

3.4.1 Minor arcs: Part 1

First we consider the case where (αd, αθ) ∈ [0, 1)×m. Recall that the set m is given by

m = {αθ ∈ R : P−θ+δ0 ≤ |αθ| < Pω}.

Define the intervalsm+ =
[
P−θ+δ0 , Pω

)
,m− =

(
−Pω,−P−θ+δ0

]
and note thatm = m+∪m−.

Recall (3.2.9). Making a change of variables by(
αθ

αd

)
=

(
−1 0

0 −1

)(
βθ

βd

)
+

(
0

1

)
, (3.4.1)

and using the 1-periodicity of the function F(α) with respect to αd, yields

R±
(
P ; [0, 1)×m−

)
= R± (P ; [0, 1)×m+), (3.4.2)

where R± (P ; [0, 1)×m+) is the complex conjugate. Therefore, it suffices to deal with the set

[0, 1)×m+.

Let f be a real valued function defined on the natural numbers, and let h ∈ N. Define the

forward difference operator ∆hf via the relation

(∆hf) (x) = f(x+ h)− f(x).

For a tuple h = (h1, . . . , ht) ∈ Nt we define the difference operator ∆h1,...,ht = ∆
(t)
h inductively

by

∆
(t)
h f(x) = ∆ht

(
∆h1,...,ht−1

f(x)
)
.
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It is apparent that the operator ∆h is a linear one. Namely, for constants a, b, and two functions

f, g, one has

∆h (af + bg) = a∆hf + b∆hg.

For d ≥ 2 one can inductively verify that

∆
(d)
h (xd) = d! h1 · · ·hd.

Next, we wish to obtain an analogous result for a monomial of fractional degree θ.

Lemma 3.4.1. Suppose that t ≤ bθc is a natural number. Let h ∈ (N ∩ [1, P ])
t and suppose that

P < x ≤ 2P. Then for each natural number r ≥ 1 one has∣∣∣∣ dr

dxr
∆

(t)
h (xθ)

∣∣∣∣ � h1 · · ·htP θ−r−t.

Proof. Observe that if φ : I → R is an r times differentiable function defined on an interval I

and h is a natural number, then one has for x0 ∈ I that

dr

dxr
∆hφ(x)

∣∣∣
x=x0

=
dr

dxr
(φ(x+ h)− φ(x))

∣∣∣
x=x0

= ∆h

(
dr

dxr
φ(x)

∣∣∣
x=x0

)
.

From the inductively definition of the operator ∆
(t)
h and iterating we obtain from the above

observation that

dr

dxr

(
∆

(t)
h (xθ)

)
= ∆

(t)
h

(
dr

dxr
(xθ)

)
= Cr∆

(t)
h (xθ−r),

where Cr = θ(θ − 1) · · · (θ − r + 1).

From the above considerations follows that it suffices to show∣∣∣∆(t)
h (xθ−r)

∣∣∣ � h1 · · ·htP θ−r−t. (3.4.3)

To this end, we use induction on the number of shifts t and apply successively the mean value

theorem of differential calculus to show that one has

∆
(t)
h (xθ−r) = Cr,th1 · · ·hdξθ−r−tx ,

for some ξx = ξx,h withx < ξx < x+h1+· · ·+ht,whereCr,t = (θ−r)(θ−r−1) · · · (θ−r−t+1).

For t = 1 one has

∆h1
(xθ−r) =

(
(x+ h1)θ−r − xθ−r

)
= (θ − r)h1ξ

θ−r−1
x ,

for some ξx = ξx,h1
with x < ξx < x + h1. Assume that the statement of the lemma holds for

t− 1.We prove that it does hold for t. By the definition of the forward difference operator one

has

∆
(t)
h (xθ−r) = ∆ht

(
∆

(t−1)
h′ (xθ−r)

)
,

where h′ = (h1, . . . , ht−1).
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By the inductive hypothesis one has

∆
(t−1)
h (xθ−r) = (θ − r) · · · (θ − r − t+ 2)h1 · · ·ht−1ζ

θ−r−t+1
x ,

for some ζx = ζx,h′ with x < ζx < x+ h1 + · · ·+ ht−1. We put f(ζx) = ζθ−r−t+1
x and write

f ′(ζx) =
df(ζx)

dζx
.

Clearly, f ′(ζx) = (θ − r − t+ 1)ζθ−r−tx . One now has

∆
(t)
h (xθ−r) = (θ − r) · · · (θ − r − t+ 2)h1 · · ·ht−1 (f(ζx + ht)− f(ζx)) . (3.4.4)

To treat the expression in the parenthesis one may apply the mean value theorem of differential

calculus to the function f. Hence one may write

f(ζx + ht)− f(ζx) = (θ − r − t+ 1)htξ
θ−r−t
x , (3.4.5)

for some ξx = ξx,h with ζx < ξx < ζx + ht. By the induction process it is apparent that one has

x < ξx < x + h1 + · · · + ht. It is apparent that whenever 1 ≤ h ≤ P and P < x ≤ 2P one

has ξx � x � P. Putting together (3.4.4) and (3.4.5) confirms (3.4.3), and thus the proof of the

lemma is complete.

In the analysis below we make use of Weyl’s inequality, arising from the differencing process.

Lemma 3.4.2 (Weyl’s inequality). Let φ(x) be a real valued function defined over the natural

numbers. Let d ≥ 2 be a natural number, and write D = 2d−1. Then one has∣∣∣∣∣∣
∑

1≤x≤X

e(φ(x))

∣∣∣∣∣∣
D

� XD−1 +XD−d

∣∣∣∣∣∣
X∑

h1=1

· · ·
X∑

hd−1=1

∑
1≤x<x+Yd−1≤X

e
(

∆
(d−1)
h (φ(x))

)∣∣∣∣∣∣ ,
where Yj = h1 + · · ·hj , for each j. The implied constant depends only on d, and an empty sum

denotes zero.

Proof. See [2, Lemma 3.8].

From now one we fix an index i. By Lemma 3.4.2, and using the linearity of the forward dif-

ference operator one has

|Fi(αd, αθ)|2
d

� P 2d−1 + P 2d−(d+1)
∑

h

∣∣∣∣∣∑
x

e
(
aiαdd! h1 · · ·hd + λiαθ∆

(d)
h (xθ)

)∣∣∣∣∣
� P 2d−1 + P 2d−(d+1)

∑
h

∣∣∣∣∣∑
x

e
(
λiαθ∆

(d)
h (xθ)

)∣∣∣∣∣ ,
where in the second step we used the triangle inequality. In the above summation notation, we

sum over tuples h satisfying 1 ≤ h ≤ P and x belongs to a subinterval of [1, P ] determined by

the shifts h1, . . . , hd. For convenience we denote this interval by I(h).
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We define the exponential

Si(αθ,h) =
∑
x∈I(h)

e
(
λiαθ∆

(d)
h (xθ)

)
. (3.4.6)

Hence, the above estimate now takes the shape

|Fi(αd, αθ)|2
d

� P 2d−1 + P 2d−(d+1)
∑

h

|Si(αθ,h)| . (3.4.7)

One can split the summation over h based on the size of the product H = h1 · · ·hd. Con-

sider the function ψ(P ) = (logP )−1 which decreases monotonically to zero as P → ∞ and

furthermore for large P satisfies ψ(P ) > P−ε for any fixed ε > 0. We form a partition of the

shape

{(h1, . . . , hd) : hi ∈ [1, P ] ∩ Z} = A1 ∪A2 ∪A3,

where we define the sets A1, A2 and A3 by

A1 =
{

(h1, . . . , hd) : hi ∈ [1, P ] ∩ Z, P dψ(P ) < H ≤ P d
}
,

A2 =
{

(h1, . . . , hd) : hi ∈ [1, P ] ∩ Z, P d−5−θ < H ≤ P dψ(P )
}
,

A3 =
{

(h1, . . . , hd) : hi ∈ [1, P ] ∩ Z, H ≤ P d−5−θ
}
.

Moreover, for κ = 1, 2, 3 we define

Tκ(αθ) =
∑

h∈Aκ

|Si(αθ,h)| . (3.4.8)

Hence, we may now write∑
h

|Si(αθ,h)| � T1(αθ) + T2(αθ) + T3(αθ).

Invoking (3.4.7) we deduce that

|Fi(αd, αθ)|2
d

� P 2d−1 + P 2d−(d+1) (T1(αθ) + T2(αθ) + T3(αθ)) . (3.4.9)

Our aim now is to obtain a non-trivial upper bound for the exponential sum Si(αθ) with

αθ ∈ m+. To do so, we make use of van der Corput’s k-th derivative test (see Lemma 2.4.1)

for bounding exponential sums. We now make some observations that set the ground for an

application of Lemma 2.4.1. It is convenient to work with an exponential sum over a dyadic

interval. Recall from (3.4.6) that

Si(αθ,h) =
∑
x∈I(h)

e
(
λiαθ∆

(d)
h (xθ)

)
.

One may split the interval I(h) intoO (logP ) dyadic intervals. By making abuse of notation one
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then has

|Si(αθ,h)| � logP
∑

P<x≤2P

e
(
λiαθ∆

(d)
h (xθ)

)
.

Define the exponential sum

S̃i(αθ,h) =
∑

P<x≤2P

e
(
λiαθ∆

(d)
h (xθ)

)
.

Hence for all αθ and for any fixed ε > 0 one has

|Si(αθ,h)| � P ε
∣∣∣S̃i(αθ,h)

∣∣∣ . (3.4.10)

It is apparent that an upper bound for the exponential sum S̃i(αθ) leads to an upper bound

for the exponential sum Si(αθ) with an ε- loss. This is enough for our purpose. Observe that

invoking Lemma 3.4.1 with t = d one has for each natural number r ≥ 1 that∣∣∣∣ dr

dxr

(
λiαθ∆

(d)
h (xθ)

)∣∣∣∣ � FP−r,
where F = |λiCdCd,r||αθ|HP θ−d. Recall here that m+ =

[
P−θ+δ0 , Pω

)
.

Lemma 3.4.3. Suppose that P d−5−θ < H ≤ P d. For each index i and for any αθ ∈ m+ one has

that

|Si(αθ,h)| � P 1−4−θ .

Proof. Note that it is enough to show that for all αθ ∈ m+ one has∣∣∣S̃i(αθ,h)
∣∣∣� P 1−σ,

for some σ > 4−θ. Then returning in (3.4.10) and taking ε = σ − 4−θ > 0 as we are at liberty

to do, yields the desired conclusion. We consider two separate cases depending on the size of

H.

Suppose first that P dψ(P ) < H ≤ P d. Then one has

P δ0ψ(P )� F � P θ+ω.

We may now apply Lemma 2.4.1 with q = n,where temporarily we write n = bθc. This reveals

that for any αθ ∈ m+ one has∣∣∣S̃i(αθ,h)
∣∣∣� P 1−σ + P 1−δ0ψ(P )−1,

where

σ =
n+ 2− θ − ω

2n+2 − 2
. (3.4.11)

Recalling (3.2.7) one may verify that for θ > d+ 1 ≥ 3 one has

σ >
1

3θ + 6
>

1

4θ
.
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Moreover, recalling that ψ(P ) = (logP )−1 one has ψ(P )−1 � P 10−θ , which yields

P 1−δ0ψ(P )−1 � P 1−δ0+10−θ .

Hence, the previous estimate for the exponential sum S̃i(αθ,h) delivers∣∣∣S̃i(αθ,h)
∣∣∣� P 1−σ′ ,

where σ′ = min{σ, δ0 − 10−θ} > 4−θ and we are done.

Suppose now that P d−5−θ < H ≤ P dψ(P ). In this case one has

P δ0−5−θ � F � P θ+ωψ(P ).

Applying again Lemma 2.4.1 with q = n, yields that for any αθ ∈ m+ one has∣∣∣S̃i(αθ,h)
∣∣∣� P 1−σ (ψ(P ))

1/(2n+2−2)
+ P 1−δ0+5−θ ,

with σ as in (3.4.11). For large P one may assume that ψ(P ) < 1. Recalling again from (3.2.7)

that δ0 = 21−2θ the above estimate delivers∣∣∣S̃i(αθ,h)
∣∣∣� P 1−σ′ ,

where now we write σ′ = min{σ, δ0 − 5−θ} > 4−θ. Thus the proof is now complete.

We may now estimate the sums Tκ(αθ) (1 ≤ κ ≤ 3) defined in (3.4.8).

Lemma 3.4.4. For each index i and for any αθ ∈ m+ one has that

(i) |T1(αθ)| � P d+1−5−θ ;

(ii) |T2(αθ)| � P d+1−5−θψ(P );

(iii) |T3(αθ)| � P d+1−6−θ .

Proof. For each κ = 1, 2, 3 we write #Aκ to denote the cardinality of the set Aκ. We set

X1 = P d, X2 = P dψ(P ), X3 = P d−5−θ .

Observe that for each κ = 1, 2, 3 and for any fixed ε > 0 one has

#Aκ �
∑
H≤Xκ

τd(H)� XκP
ε,

where recall that H = h1 · · ·hd and τd is the d-fold divisor function.

One may get an upper bound for each Tκ(αθ) by using the above observation together with

the bound supplied by Lemma 3.4.3. Let us demonstrate this by proving estimate (i). Recall

here that

T1(αθ) =
∑

h∈A1

|Si(αθ,h)| ,
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where

A1 = {(h1, . . . , hd) : hi ∈ [1, P ] ∩ Z, P dψ(P ) < H ≤ P d}.

Invoking Lemma 3.4.3 one has for any αθ ∈ m+ and any fixed ε > 0 that

|T1(αθ)| �

 sup
αθ∈m+

h∈A1

|Si(αθ,h)|

 ∑
h∈A1

1� P 1−4−θ (#A1)� P d+1−4−θ+ε.

Pick now a sufficiently small 0 < ε < 4−θ − 5−θ to deduce that for any αθ ∈ m+ one has

|T1(αθ)| � P d+1−5−θ .

Similarly we may argue to estimate the sums T2(αθ) and T3(αθ). For the sake of clarity, let

us mention that in estimating T3(αθ) one may use the trivial bound

|Si(αθ,h)| � P,

which is always valid. With this observation the proof of the lemma is now complete.

By Lemma 3.4.4 it is apparent that for each index i and for any αθ ∈ m+ one has

|Tκ(αθ)| � P d+1−6−θ (κ = 1, 2, 3).

One may now use the above estimate in order to bound from above the right hand side of (3.4.9).

Hence we deduce that

|Fi(αd, αθ)| � P 1−1/2d + P 1−1/(2d·6θ) � P 1−6−θ−d .

Upon recalling (3.2.5) we have proved the following.

Lemma 3.4.5. For each index i and for any (αd, αθ) ∈ [0, 1)×m+ one has that

|fi(αd, αθ)| � P 1−6−θ−d .

Equipped with all the necessary auxiliary estimates, we may now finish up the first part of

the minor arcs analysis. We now set

η1 = 6−θ−d and κ = Pω.

Note that for large enough P one has mini,j{κ|λi|, κ|µj |} ≥ 1. Recall from (3.2.11) that one

has s′ = s − δ and recall as well from (3.2.15) that s′ = Aθ + (1 − ω1)Ad. One may now use

Lemma 3.4.5 and Lemma 3.3.6 in order to estimate the right hand side of the inequality (3.2.14).

Hence, we may infer that for any fixed ε > 0 one has∫
m+

∫ 1

0

|F(α)K±(αθ)| dα� P (1−η1)δP s
′−(θ+d)+ω+ε � P s−(θ+d)−η1δ+ω+ε.
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Recall from( 3.2.7) that ω ≤ 5−100(θ+d). One may choose

δ = 6−θ ∈ (0, 1/3) and ε = 5−100(θ+d),

as we are at liberty to do. With these choices for δ and ε it is clear that−η1δ + ω + ε < 0. Thus

the above estimate delivers∫
m+

∫ 1

0

|F(α)K±(αθ)| dα = o
(
P s−(θ+d)

)
.

In the light of (3.4.2) we have established the following.

Lemma 3.4.6. For smin ≤ s ≤ smax one has∫
m

∫ 1

0

|F(α)K±(αθ)| dα = o
(
P s−(θ+d)

)
.

3.4.2 Minor arcs: Part 2

In this subsection we consider the case where (αd, αθ) ∈ nξ ×M. Let us recall here that nξ ⊂
[0, 1) is a set of minor arcs in the classical sense and M =

(
−P−θ+δ0 , P−θ+δ0

)
. We put M+ =(

0, P−θ+δ0
)

andM− =
(
−P−θ+δ0 , 0

)
.Note thatM = M+∪M−.Making a change of variables

as in (3.4.1) yields

R±
(
P ; nξ ×M−

)
= R± (P ; nξ ×M+). (3.4.12)

So in the following it suffices to deal with the set nξ ×M+. The point of departure in our ap-

proach is the following version of the Weyl - van der Corput inequality.

Lemma 3.4.7 (Weyl–van der Corput inequality). Suppose that I is a finite subset of N, and sup-

pose that (w(n))n∈N ⊂ C is a complex-valued sequence, such that w(n) = 0 for n /∈ I. Let H be

a positive integer. Then one has,∣∣∣∣∣∑
n∈N

w(n)

∣∣∣∣∣
2

≤ card(I) +H

H

∑
|h|<H

(
1− |h|

H

)∑
n∈N

w(n)w(n− h).

Proof. See [43, Lemma 2.5].

To begin with, let us fix an index i. Apply Lemma 3.4.7 to the exponential sum Fi(αd, αθ),

with I = [1, P ] ∩ N. For an integer H ∈ [1, P ] with H = o(P ) to be chosen at a later stage one

has

|Fi(αd, αθ)|2 �
P +H

H

∑
|h|<H

∑
1≤x≤P

e
(
aiαd∆h

(
xd
)

+ λiαθ∆h

(
xθ
))
. (3.4.13)

By the mean value theorem of differential calculus one has that

|(x+ h)θ − xθ| � |h|P θ−1 � HP θ−1.

For αθ ∈M+ the above estimate leads to

|αθ||(x+ h)θ − xθ| � P−1+δ0H.
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Using the elementary inequality |e(x)| ≤ 2π|x|which is valid for all x ∈ R,we may infer that

for any αθ ∈M+ one has ∣∣e (λiαθ∆h

(
xθ
))∣∣� P−1+δ0H.

One may now use the fact that |e(x)| ≤ 1 for all x ∈ R, together with the above estimate to

derive that∑
|h|<H

∑
1≤x≤P

e
(
aiαd∆h

(
xd
)

+ λiαθ∆h

(
xθ
))

=
∑
|h|<H

∑
1≤x≤P

e
(
aiαd∆h

(
xd
))

+O
(
P δ0H2

)
.

Substituting the above conclusion into (3.4.13) and using the fact that H = o(P ) yields

|Fi(αd, αθ)|2 � P 1+δ0H +
P +H

H

∑
|h|<H

|Wi(αd, h)| , (3.4.14)

where we write

Wi(αd, h) =
∑

1≤x≤P

e
(
aiαd∆h

(
xd
))
.

We now examine separately the cases d ≥ 3 and d = 2.

First we consider the case d ≥ 3. An application of Hölder’s inequality reveals

 ∑
|h|<H

|Wi(αd, h)|

2d−2

� H2d−2−1
∑
|h|<H

|Wi(αd, h)|2
d−2

. (3.4.15)

Applying Weyl’s differencing process, we infer by Lemma 3.4.2 that

|Wi(αd, h)|2
d−2

� P 2d−2−1 + P 2d−2−(d−1)
∑

h

∣∣∣∣∣∣
∑
x∈I(h)

e (d! hh1 · · ·hd−2aiαdx)

∣∣∣∣∣∣ ,
where in the above summation notation, we sum over tuples h = (h1, . . . , hd−2) satisfying

1 ≤ h ≤ P and I(h) is a subinterval of [1, P ], determined by the shifts h1, . . . , hd−2.

Invoking a classical estimate for the sum of the geometric series we see that∣∣∣∣∣∣
∑
x∈I(h)

e (d! hh1 · · ·hd−2αdaix)

∣∣∣∣∣∣� min
{
P, ‖d! hh1 · · ·hd−2aiαd‖−1

}
.

Hence by the preceding estimate concerning Wi(αd, h) we deduce that∑
|h|<H

|Wi(αd, h)|2
d−2

�HP 2d−2−1 + P 2d−2−(d−1) ×

×
H∑
h=1

P∑
h1=1

· · ·
P∑

hd−2=1

min
{
P, ‖d! hh1 · · ·hd−2aiαd‖−1

}
.

We write d! |ai|hh1 · · ·hd−2 = m. Note that for 1 ≤ h ≤ H and for h = (h1, . . . , hd−2) with

1 ≤ h ≤ P one has that m ∈ Z ∩ [1, d! |ai|HP d−2]. Clearly, the number of solutions of the

previous equation with respect to m is≤ τd−1(m)�d,ai m
ε. Thus, for any fixed 0 < ε < 1 we
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obtain

∑
|h|<H

|Wi(αd, h)|2
d−2

� HP 2d−2−1 + P 2d−2−(d−1)+ε

d! |ai|HPd−2∑
m=1

min
{
P, ‖mαd‖−1

}
.

(3.4.16)

We may bound the sum on the right hand side of the above estimate using the following.

Lemma 3.4.8. Suppose that α, β are real numbers and suppose further that |α− a/q| ≤ 1/q2,

where (a, q) = 1. Then

R∑
z=1

min {N, ‖αz + β‖} � (N + q log q)

(
R

q
+ 1

)
.

Proof. See [2, Lemma 3.2]. For the sake of clarity we remark here that in the statement Baker

is imposing a strict inequality, namely |α− a/q| < 1/q2.However it is apparent from the proof

that this is unnecessary.

By Dirichlet’s theorem on Diophantine approximation, there exist a ∈ Z and q ∈ N which

satisfy (a, q) = 1, 1 ≤ q ≤ HP d−1−ξ and∣∣∣∣aiαd − a

q

∣∣∣∣ ≤ 1

qHP d−1−ξ .

We pause for a moment to reflect on the fact that αd ∈ nξ. Recall that we assumeH = o(P ). So

for large enough P one has HP d−1−ξ < P d−ξ. So if it was 1 ≤ q ≤ P ξ, then αd would belong

to the set of major arcs Nξ. Thus, we may suppose that q > P ξ. Hence

P ξ < q ≤ HP d−1−ξ. (3.4.17)

One may now apply Lemma 3.4.8. For any fixed 0 < ε < 1 one has

d! |ai|HPd−2∑
m=1

min
{
P, ‖mαd‖−1

}
� (P + q log q)

(
d! |ai|HP d−2

q
+ 1

)

� HP d−1+ε

(
1

q
+

1

P
+

q

HP d−1

)
,

where in the second step estimate, we used the facts that log q � P ε, and that for d ≥ 3 one

has HP d−2 log q � P. By (3.4.17) one has

1

q
+

1

P
+

q

HP d−1
� P−ξ.

Thus, the previous estimates delivers

d! |ai|HPd−2∑
m=1

min
{
P, ‖mαd‖−1

}
� HP d−1−ξ+ε.
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Using the above bound, one may now estimate the right hand side of (3.4.16) to obtain∑
|h|<H

|Wi(αd, h)|2
d−2

� HP 2d−2−1 +HP 2d−2−ξ+ε.

Invoking (3.4.15) the previous estimate implies∑
|h|<H

|Wi(αd, h)| � HP 1−ξ/2d−2+ε.

Incorporating the above into (3.4.14) and using the fact that H = o(P ), yields that for any

αd ∈ nξ one has

|Fi(αd, αθ)|2 � P 1+δ0H + P 2−ξ/2d−2+ε. (3.4.18)

We now deal with the case where d = 2. In this case one does not have to apply Weyl’s

differencing process. Note that for d = 2 the difference ∆h(x2) = 2xh + h2 is already a linear

polynomial with respect to x. So one has

|Wi(αd, h)| ≤

∣∣∣∣∣∣
∑

1≤x≤P

e (2haiαdx)

∣∣∣∣∣∣� min
{
P, ‖2haiαd‖−1

}
.

Thus, ∑
|h|<H

|Wi(αd, h)| �
2|ai|H∑
m=1

min
{
P, ‖mαd‖−1

}
.

One may now apply Dirichlet’s theorem on Diophantine approximation and argue as in the

case d ≥ 3. Here the inequality (3.4.17) is replaced by P ξ < q ≤ HP 1−ξ. Applying Lemma

3.4.8 one has

2|ai|H∑
m=1

min
{
P, ‖2haiαd‖−1

}
� (P + q log q)

(
2|ai|H
q

+ 1

)

� HP 1−ξ+ε + P 1+ε,

where in the second step estimate we used the facts thatP � H log q andH � HP.Therefore,

by (3.4.14) we infer that

|Fi(αd, αθ)|2 � P 1+δ0H + P 2−ξ+ε + P 2+εH−1. (3.4.19)

We may now obtain a non-trivial upper bound for the exponential sumFi(αd, αθ).Recall that

H ∈ [1, P ] is an integer at our disposal which satisfies H = o(P ). Let us now choose a value

forH so thatH � P$ where$ = (1− δ0)/2 ∈ (0, 1). First we deal with the case d ≥ 3. Recall

from (3.2.7) that δ0 = 21−2θ and recall from (3.2.8) that 0 < ξ ≤ δ0/8. By (3.4.18) we deduce

that for any fixed 0 < ε < 1 and any αd ∈ nξ one has that

|Fi(αd, αθ)| � P 1−ξ/2d−3+ε.

Now we come to the case d = 2. With the above choice for the integer parameter H we may
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infer by (3.4.19) that for any fixed 0 < ε < 1 and any αd ∈ nξ one has

|Fi(αd, αθ)| � P 1−ξ/2+ε.

By the preceding conclusions and recalling (3.2.5) we have proved the following.

Lemma 3.4.9. For each index i and for any (αd, αθ) ∈ nξ ×M, one has for any fixed 0 < ε < 1

that

|fi(αd, αθ)| �


P 1−ξ/2+ε, when d = 2,

P 1−ξ/2d−3+ε, when d ≥ 3.

We may now finish our analysis as in Part 1 of the minor arcs treatment. Below we demon-

strate how to deal with the case d ≥ 3. One may argue similarly when d = 2. Put

η2 = ξ/2d−3 and κ = max
i,j

{
|λi|−1

, |µj |−1
}
.

Note that now κ is a fixed real number such that mini,j{κ|λi|, κ|µj |} ≥ 1. As in Part 1 of the

minor arcs analysis, one may now use Lemma 3.4.9 and Lemma 3.3.6 in order to estimate the

right hand side of the inequality (3.2.14). Hence, we may infer that for any fixed 0 < ε < 1 one

has ∫
M+

∫
nξ

|F(α)K±(αθ)| dα� P (1−η2+ε)δ · P s
′−(θ+d)+ε � P s−(θ+d)−η2δ+(1+δ)ε.

One may now choose

δ =
1

6
∈ (0, 1/3) and ε =

ξ

(1 + δ)2d
∈ (0, 1),

as we are at liberty to do. With these choices one has−η2δ+ (1 + δ)ε < 0. Hence, the previous

estimate delivers ∫
M+

∫
nξ

|F(α)K±(αθ)| dα = o
(
P s−(θ+d)

)
.

In the light of (3.4.12) we have established the following.

Lemma 3.4.10. For smin ≤ s ≤ smax one has∫
M

∫
nξ

|F(α)K±(αθ)| dα = o
(
P s−(θ+d)

)
.

Before we close this section, we find it appropriate to record the following lemma which

concerns the complete set of minor arcs

p = ([0, 1)×m) ∪ (nξ ×M) .

Combining Lemma 3.4.6 and Lemma 3.4.10 we have established the following.

Lemma 3.4.11. For smin ≤ s ≤ smax one has∫
p

|F(α)K±(αθ)|dα = o
(
P s−(θ+d)

)
.
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3.5 Trivial arcs

In this section we deal with the disposal of the set of trivial arcs c = [0, 1)× t,where recall that

t = {αθ ∈ R : |αθ| ≥ Pω}. We put t+ = [Pω,∞) and t− = (−∞,−Pω]. Note that t = t+ ∪ t−.

We set c+ = [0, 1)× [Pω,∞) and c− = [0, 1)× (−∞, Pω]. By a change of variables as in (3.4.1)

one has

R±
(
P ; c−

)
= R± (P ; c+). (3.5.1)

So, it is enough to deal with the set c+.

Fix an index i. One has

c+ ⊂
∞⋃

ρ=bω log2 Pc

(
[0, 1)×

(
2ρ, 2ρ+1

])
.

We take κ = 2ρ+1. Here we consider large enough values of P so that for ρ ≥ bω log2 P c one

has mini,j{κ|λi|, κ|µj |} ≥ 1. By Lemma 3.3.6 and taking into account (3.2.2), one has for any

fixed ε > 0 that

Ξfi(c
+)�

∞∑
ρ=bω log2 Pc

∫ 2ρ+1

2ρ

∫ 1

0

fAθi |K±(αθ)|dα

� PAθ−(θ+d)+ε
∞∑

ρ=bω log2 Pc

1

2ρ
.

Clearly,
∞∑

ρ=bω log2 Pc

1

2ρ
� P−ω.

Hence, by choosing ε = ω
2 > 0 the previous estimate now delivers

Ξfi(c
+)� PAθ−(θ+d)−ω2 .

One may deal with the auxiliary mean values Ξfi,gj (c
+),Ξfi,hk(c+),Ξgj ,hk(c+) similarly. We

may now put these estimates together. One is at liberty to take δ = 0 in the inequality (3.2.14).

So, in this case by (3.2.11) one has s′ = s, and by (3.2.15) one has s = Aθ + (1− ω1)Ad. Thus

we obtain ∫
t+

∫ 1

0

|F(α)K±(αθ)| dα� PAθ+(1−ω1)Ad−(θ+d)−ω2 = o
(
P s−(θ+d)

)
.

In the light of (3.5.1) we have established the following.

Lemma 3.5.1. For smin ≤ s ≤ smax one has∫
c

|F(α)K±(αθ)| dα = o
(
P s−(θ+d)

)
.
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3.6 Major arcs analysis

In this section we deal with the set of major arcs P = nξ ×M. We split the analysis into two

subsections.

3.6.1 Singular integral analysis

Here we deal with the singular integral. For each index i, j and k, and any β = (βd, βθ) ∈ R2

we define the continuous generating functions

υf,i(β) =

∫ 2x?iP

1
2x
?
iP

e(aiβdγ
d + λiβθγ

θ)dγ, υg,j(β) =

∫ 2y?jP

1
2y
?
jP

e(µjβθγ
θ)dγ,

υh,k(β) =

∫ 2z?kP

1
2 z
?
kP

e(bkβdγ
d)dγ.

(3.6.1)

Moreover we write

V (β) =
∏̀
i=1

υf,i(β)

m∏
j=1

υg,j(β)

n∏
k=1

υh,k(β).

Define the truncated singular integrals

J±(P ξ, P δ0) =

∫ P−θ+δ0

−P−θ+δ0

∫ P−d+ξ

−P−d+ξ
V (β)K±(βθ)dβ,

J(P ξ, P δ0) =

∫ P−θ+δ0

−P−θ+δ0

∫ P−d+ξ

−P−d+ξ
V (β)dβ,

(3.6.2)

and the complete singular integral

J(∞) =

∫ ∞
−∞

∫ ∞
−∞

V (β)dβ. (3.6.3)

Lemma 3.6.1. For each index i, j, k and for any β = (βd, βθ) ∈ R2 one has

υf,i(β)� P (1 + P d|βd|+ P θ|βθ|)−1/θ, υg,j(β)� P (1 + P θ|βθ|)−1/θ,

υh,k(β)� P (1 + P d|βd|)−1/d.

In the case where θ ∈ N one can find a proof of this lemma in [78, Theorem 7.3]. In our case

one has θ /∈ N. For this reason we give an alternative proof using van der Corput’s estimate

for oscillatory integrals, dating back to 1935 in van der Corput’s work on the stationary phase

method [76].

Lemma 3.6.2. Let λ be a positive real. Suppose that φ : (a, b)→ R is a smooth function in (a, b),

and suppose that
∣∣φ(k)(x)

∣∣ ≥ 1 for all x ∈ (a, b). Then,∣∣∣∣∣
∫ b

a

eiλφ(x)dx

∣∣∣∣∣ ≤ ckλ−1/k
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holds when:

(i) k ≥ 2, or

(ii) k = 1 and φ′(x) is monotonic.

The bound ck is independent of φ and λ.

Proof. See [73, Proposition 2, p.332].

Proof of Lemma 3.6.1. The estimates concerningυg,j andυh,k can be easily established by using

integration by parts. As an alternative approach, one may use Lemma 3.6.2 as below. Now we

come to prove the claimed estimate about the function υf,i.

For β = (βd, βθ) ∈ R2 we put

υf (β) =

∫ 2

1/2

e(βdγ
d + βθγ

θ)dγ.

It is enough to prove that

υf (β)� 1

(1 + |βd|+ |βθ|)1/θ
. (3.6.4)

The desired estimate for the function υf,i follows by a change of variables replacing γ by x?iPγ.

Then one may apply (3.6.4) with ai(x?iP )dβd in place of βd and λi(x?iP )θβθ in place of βθ.

It is apparent that |υf (β)| ≤ 3/2� 1. So, if |βd|+ |βθ| < 1 then (3.6.4) trivially holds. Hence,

in the rest of the proof we may suppose that |βd|+ |βθ| ≥ 1. For γ ∈ [1, 2] we define the function

φ(γ) = βdγ
d + βθγ

θ.

We distinguish the following two cases about βd and βθ.

Case (1). Suppose that |βθ| > |βd|. Recall that d is a positive integer such that θ > d+ 1. This

last condition implies that d < bθc. Temporarily we write n = bθc. Hence, for γ ∈ [1/2, 2] one

has

|φ(n)(γ)| = Cn|βθ|γθ−n ≥ Cn
(

1

2

)θ−n
|βθ|,

where we putCn = θ(θ− 1) · · · (θ−n+ 1). PutC = Cn
(

1
2

)θ−n
. One may now take λ = C|βθ|

and apply Lemma 3.6.2 with k = n to the function

γ 7→ 1

C|βθ|
φ(γ).

Since |βθ| > |βd| and |βd|+ |βθ| ≥ 1, we deduce that∫ 2

1/2

e(φ(γ))dγ ≤ C−1/n |βθ|−1/n � 1

(1 + |βd|+ |βθ|)1/θ
,

which confirms (3.6.4).
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Case (2). Suppose that |βθ| ≤ |βd|. One has

|φ(d)(γ)| =
∣∣d!βd + Cdβθγ

θ−d∣∣ ,
where we put Cd = θ(θ − 1) · · · (θ − d + 1). In order to give a lower bound for the quantity∣∣φ(d)(γ)

∣∣we examine separately the following two scenarios.

Suppose that
1

2
d!|βd| ≥ Cd2θ−d|βθ|.

By the triangle triangle inequality one may infer for γ ∈ [1/2, 2] that

|φ(d)(γ)| > d!|βd| − Cdγθ−d |βθ| ≥ d!|βd| − Cd2θ−d |βθ| ≥
1

2
d!|βd|.

One may now take λ = 2−1d!|βd| and apply Lemma 3.6.2 with k = d to the function

γ 7→ 1

2−1d!|βd|
φ(γ).

Since |βd| ≥ |βθ| and |βd|+ |βθ| ≥ 1, we deduce that∫ 2

1/2

e(φ(γ))dγ ≤ (2−1d!)−1/d |βd|−1/d � 1

(1 + |βd|+ |βθ|)1/θ
,

which again confirms (3.6.4).

Next, we suppose that
1

2
d!|βd| < Cd2

θ−d|βθ|.

Since we assume as well that |βd| ≥ |βθ| one may now suppose that |βd| � |βθ|. In such a

situation an application of Lemma 3.6.2 with k = n as in Case (1) yields∫ 2

1/2

e (φ(γ)) dγ � |βθ|−1/θ � 1

(1 + |βd|+ |βθ|)1/θ
,

and thus the proof is now complete.

Define ∆ = ∆(θ, d, `,m, n) > 0 via

∆(θ, d, `,m, n) = min

{
m

θ
+

`

2θ
− 1,

n

d
+

`

2θ
− 1

}
. (3.6.5)

Note that the assumptions `+m ≥ Aθ + 1 and ` ≥ max{d2θ(1−n/d)e, 1} ensure that ∆ > 0.

Lemma 3.6.3. One has

J±(P ξ, P δ0) = 2τJ(∞) + o
(
P s−(θ+d)

)
.

Proof. For |βθ| < P−θ+δ0 by (3.2.4) one has that

J±(P ξ, P δ0) =
(

2τ +O
(

(logP )
−2
))

J(P ξ, P δ0). (3.6.6)
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By Lemma 3.6.1 and a trivial estimate one has that

V (β)� P s
(
1 + |βθ|P θ

)−m/θ (
1 + |βd|P d

)−n/d (
1 + |βd|P d + |βθ|P θ

)−`/θ
.

Using the trivial estimate

α1/2β1/2 ≤ max{α, β} � 1 + α+ β,

the preceding inequality now yields

V (β)� P s
(
1 + |βθ|P θ

)−m/θ−`/2θ (
1 + |βd|P d

)−n/d−`/2θ
� P s

(
1 + |βθ|P θ

)−(1+∆) (
1 + |βd|P d

)−(1+∆)
.

(3.6.7)

Temporarily we write B to denote the box [P−θ+ξ, P−θ+ξ]× [−P−d+δ0 , P−d+δ0 ]. If β ∈ R2 \B
then we either have |βθ|P θ ≥ P δ0 or |βd|P d ≥ P ξ.By the preceding estimate we may infer that

J(P ξ, P δ0)− J(∞)� P s

(∫
|βθ|P θ≥P δ0

∫ ∞
−∞

V (β)dβ +

∫ ∞
−∞

∫
|βd|Pd≥P ξ

V (β)dβ

)

� P s−(θ+d)−∆δ0 + P s−(θ+d)−∆ξ

� o
(
P s−(θ+d)

)
.

Therefore, by (3.6.6) we deduce that

J±(P ξ, P δ0) = 2τJ(∞) + o
(
P s−(θ+d)

)
,

which is what we wanted to prove.

After these preliminary results we now come to the heart of the singular integral analysis.

The approach we take for studying the singular integralJ is essentially the treatment of Schmidt

as presented in [68]. The validity of the results below should come with no surprise to the

experts and to those who are familiar with the paper of Schmidt. For the sake of completeness

we have decided to include the proofs that are related to the system under investigation. This is

mainly due to the nature of the system (3.1.2), which consists of an equation and an inequality

of fractional degree.

One can plainly extend the definition of F and D given in (3.1.2) to s tuples by taking the

additional coefficients to be equal to zero. Namely, for an s tuple x we can rewrite F and D

equivalently in the shape
F(x) = λ1x

θ
1 + · · ·+ λ`x

θ
` + µ1x

θ
`+1 + · · ·+ µ`+mx

θ
`+m + 0xθ`+m+1 + · · ·+ 0xθs

D(x) = a1x
d
1 + · · ·+ a`x

d
` + 0xd`+1 + · · ·+ 0xds−n + b1x

d
s−n+1 + · · ·+ bnx

d
s .

(3.6.8)

So, from now on we take the argument in the expressions F and D to be s tuples. For conve-
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nience in the following, we write B to denote the box defined by

B =

[
1

2
η1, 2η1

]
×· · ·×

[
1

2
ηs, 2ηs

]
,

where η = (x?, y?, z?) is a non-singular real solution of the system (3.1.3), with F and D de-

fined as in (3.6.8). Note that with this notation, we count solutions to the system (3.1.2) with

(x, y, z) ∈ PB.

We define the integral

K(β) =

∫
B
e (βθF(γ) + βdD(γ)) dγ.

For future reference we note here that by (3.6.7) with P = 1 and since meas(B) = O(1) one

has

K(β)� (1 + |βθ|)−(1+∆)
(1 + |βd|)−(1+∆)

. (3.6.9)

Moreover, we set

J0 =

∫ ∞
−∞

∫ ∞
−∞
K(β)dβ. (3.6.10)

In the light of (3.6.9) the integralJ0 is well-defined and absolutely convergent. One may express

the complete singular integral J(∞) in terms of J0. Replace γ by γP in (3.6.1). Then make a

change of variables in the right hand side of (3.6.3) by putting(
βθ

βd

)
=

(
P−θ 0

0 P−d

)(
β′θ
β′d

)
.

This yields

J(∞) = P s−(θ+d)J0. (3.6.11)

We may now focus in analysing the integral J0. To do so, we make use of a family of approxi-

mate singular integrals. For T ≥ 1 we put

J(T ) =

∫ ∞
−∞

∫ ∞
−∞
K(β)kT (β)dβ, (3.6.12)

where

kT (β) =

(
sin(πβθ/T )

πβθ/T

)2(
sin(πβd/T )

πβd/T

)2

.

Note again that by (3.6.9) the integral J(T ) is well-defined and absolutely convergent. Two are

the key properties of the family of integrals J(T ). Firstly that J(T ) � 1 and secondly that as

T → ∞ one has J(T ) → J0. To begin with, let us rewrite the integrals J(T ) using a Fourier

transform formula. For T ≥ 1 we put

ψT (y) =


T (1− T |y|) , when |y| ≤ T−1,

0, when |y| > T−1.

(3.6.13)
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A standard calculation as presented for example in [29, Lemma 20.1] reveals that

ψT (y) =

∫ ∞
−∞

e(βy)

(
sin (πβ/T )

πβ/T

)2

dβ,

where clearly the integral is absolutely convergent. One may rewrite the integral J(T ) defined

in (3.6.12) as follows

J(T ) =

∫ ∞
−∞

∫ ∞
−∞

(∫
B
e(βθF(γ) + βdD(γ)dγ

)
kT (β)dβ.

Hence, invoking Fubini’s theorem and appealing to (3.6.13) one has

J(T ) =

∫
B
ψT (F(γ))ψT (D(γ))dγ. (3.6.14)

At this point we pause for a moment in order to exploit the assumption we have made that the

system (3.1.2) satisfies the local solubility condition. The conclusion we establish below plays

an essential role in demonstrating that J(T ) � 1. The proof proceeds as in [83, Lemma 6.2],

namely by using the implicit function theorem. So, the fact that F is a generalised polynomial

of fractional degree θ does not affect things. We include a proof for the sake of completeness.

Lemma 3.6.4. There exists locally an (s− 2)-dimensional subspace U of positive (s− 2)-volume

in a neighbourhood of η, on which one has F = D = 0. In particular, there exists a real solution

η′ to the system (3.1.3), with η′i 6= 0 for all i.

Proof. Recall that η = (η1, . . . , ηs) is a non-singular real solution of the system (3.1.2) with

F,D as in (3.6.8). By relabelling if necessary the variables, one has

det

θλ1η
θ−1
1 θλ2η

θ−1
2

da1η
d−1
1 da2η

d−1
2

 = θdη1η2

(
λ1a2η

θ−2
1 ηd−2

2 − λ2a2η
d−2
1 ηd−2

2

)
6= 0.

Hence, we deduce that η1, η2 6= 0. Let A ⊂ R2+(s−2) be a neighbourhood of the point η. Con-

sider the map

Φ : A → R2, x 7→ Φ(x) = (F(x),D(x)) .

We know that Φ(η) = 0. By the implicit function theorem we know that there exists a neigh-

bourhood V ⊂ Rs−2 around the point (η3, . . . , ηs) and a unique continuously differentiable

map g : V → R2 such that for all ζ = (ζ3, . . . , ζs) ∈ V one has
F(g(ζ), ζ) = 0

D(g(ζ), ζ) = 0.

(3.6.15)

Thus, we have showed the existence of an (s− 2)-dimensional subspace in the neighbourhood

of (η3, . . . , ηs),which has positive (s− 2)-volume and on which one has F = D = 0.We denote

this subspace by U . This establishes the main part in the statement of the lemma.

For the second assertion we argue as follows. One can choose ζi ∈ V sufficiently close to ηi
for 3 ≤ i ≤ s. Namely, choose ζi such that |ζi − ηi| is sufficiently small. Then, we can solve
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the system (3.6.15) with respect to g =: (ζ1, ζ2). Hence, we have found a tuple η′ = (ζ1, ζ2, ζ)

which satisfies F(η′) = D(η′) = 0. Recall, that η1, η2 6= 0. Hence, by continuity we obtain that

ζ1, ζ2 6= 0. Therefore, we can conclude that ζi 6= 0 for 3 ≤ i ≤ s. Thus, we have shown the

existence of a real solution η′ with all of its components being non-zero.

We now exploit the conclusion of Lemma 3.6.4, in order to prove that J(T ) � 1. Here we

follow [68, Lemma 2].

Lemma 3.6.5. One has

J(T )� 1.

Proof. With the notation as in Lemma 3.6.4, we write η′ = (ζ1, ζ2, ζ) to denote a real solution

to the system (3.6.8) with η′i 6= 0 for 1 ≤ i ≤ s. We put ζ = (ζ3, . . . , ζs). Note here that we

assume ζi 6= 0 for 3 ≤ i ≤ s. For ε > 0 we define

Sε = {(ξ, ζ) : ζ ∈ U such that ‖g(ζ)− ξ‖2 < ε} ,

where ‖·‖2 stands for the usual euclidean norm inRs−2. In the setSε we consider points ξ ∈ R2

which belong to a neighbourhood of the point g(ζ). Since U is a subset of the interior of the box

B, one may now consider sufficiently small ε so that Sε ⊂ B. Moreover, by Lemma 3.6.4 we

know that g(ζ) 6= 0. Hence, it becomes apparent that the set Sε has a positive s-volume.

When viewed as real valued functions in s variables, the generalised polynomial F and the

polynomial D are continuously differentiable in the box B, which is a compact subset of Rs.
Hence, F and D satisfy the Lipschitz condition with some constants K1 and K2 respectively.

Put

c =
1

2 max{K1,K2}
> 0.

From now on we take T sufficiently large so that ScT−1 ⊂ B.

For (ξ, ζ) ∈ ScT−1 one has

|D(ξ, ζ)−D(g(ζ), ζ)|
‖(ξ, ζ)− (g(ζ), ζ)‖2

< K2.

By (3.6.15) one has D(g(ζ), ζ) = 0.Moreover, one has ‖(ξ−g(ζ),0)‖2 < c/T and so the above

inequality yields

|D(ξ, ζ)| < c

T
K2 <

1

2T
.

Thus, for γ = (ξ, ζ) ∈ ScT−1 we deduce

ψT (D(γ)) = max {0, T (1− T |D(γ)|)} ≥ T

2
.

Similarly, when (ξ, ζ) ∈ ScT−1 one may prove that

|F(ξ, ζ)| < 1

2T
.
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Thus, we may again deduce that for γ = (ξ, ζ) ∈ ScT−1 one has

ψT (F(γ)) = max {0, T (1− T |F(γ)|)} ≥ T

2
.

Note now that the set ScT−1 has positive s-volume which satisfies� T−2. Hence, from the

above conclusions and (3.6.14) one has

J(T ) =

∫
B
ψT (D(γ))ψT (F(γ))dγ �

∫
ScT−1

(
T

2

)2

� 1

4
,

which completes the proof of the lemma.

Next, we establish the second key property of the family of approximate integral J(T ).

Lemma 3.6.6. One has

J(T ) = J0 +O
(
T−∆

)
,

where ∆ > 0 is defined in (3.6.5). In particular, the limit of J(T ) as T → ∞ exists and equals to

J0.

Proof. By (3.6.9) and (3.6.12) we infer that

J0 − J(T ) =

∫ ∞
−∞

∫ ∞
−∞
K(β) (1− kT (β)) dβ

�
∫ ∞

0

∫ ∞
0

(1 + βθ)
−(1+∆)(1 + βd)

−(1+∆) (1− kT (β)) dβ.

Let β ∈ R and let T be large enough so that π|β|T < 1. Then one has

(
sin(πβ/T )

πβ/T

)2

= 1 +O

(
|β|2

T 2

)
,

which yields that

1−
(

sin(πβ/T )

πβ/T

)2

� min

{
1,
|β|2

T 2

}
� |β|2

T 2 + |β|2
,

and thus we deduce that

1− kT (β)� |βθ|2

T 2 + |βθ|2
+

|βd|2

T 2 + |βd|2
.

We may now finish the proof easily. By symmetry one has

J0 − J(T )�
(∫ ∞

0

(1 + βθ)
−(1+∆)dβθ

)(∫ ∞
0

(1 + βd)
−(1+∆) |βd|2

T 2 + |βd|2
dβd

)

� T−2

∫ T

0

β1−∆
d dβd +

∫ ∞
T

β
−(1+∆)
d dβd

� T−∆,
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which completes the proof.

Below we put together the outcomes of the so far analysis, in order to deduce the desired

estimate for the truncated singular integral defined in (3.6.2).

Lemma 3.6.7. One has

J±(P ξ, P δ0) = 2τJ0P
s−(θ+d) + o

(
P s−(θ+d)

)
,

where J0 > 0 is defined in (3.6.10).

Proof. Combining Lemma 3.6.3 and relation (3.6.11) we deduce that

J±(P ξ, P δ0) = 2τJ0P
s−(θ+d) + o

(
P s−(θ+d)

)
.

Moreover, by Lemma 3.6.5 and Lemma 3.6.6 we infer that J0 � 1 which completes the proof.

3.6.2 Singular series analysis

We now study the singular series related to the equation D(x, z) = 0. For a ∈ Z and q ∈ N we

write

S(q, a) =

q∑
z=1

e

(
azd

q

)
.

Furthermore we put

T (q, a) = q−(`+n)
∏̀
i=1

S(q, aai)

n∏
k=1

S(q, abk).

Next, we introduce the truncated singular series and its completed analogue

S(P ξ) =
∑

1≤q≤P ξ

q∑
a=1

(a,q)=1

T (q, a) and S =

∞∑
q=1

q∑
a=1

(a,q)=1

T (q, a).

Lemma 3.6.8. Suppose that a ∈ Z and q ∈ N with (a, q) = 1. Then for each index i and k one

has

S(q, aai), S(q, abk)� q1−1/d.

Proof. By [29, Lemma 6.4] we know that when (a, q) = 1 one has

S(q, a)� q1−1/d.

Fix an index i. Note that one has

S(q, aai) =

q∑
z=1

e

(
aiaz

d

q

)
= (q, ai)S

(
q

(q, ai)
,
aia

(q, ai)

)
.
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Since (a, q) = 1 one has
(

q
(q,ai)

, aia
(q,ai)

)
= 1. Thus we derive that

S

(
q

(q, ai)
,
aia

(q, ai)

)
� q1−1/d,

which in turn, and since ai is a fixed integer, delivers the estimate

S(q, aai)� q1−1/d.

Similarly we argue for S(q, abk).

Lemma 3.6.9. Provided that `+n ≥ Ad+1 the singular series is absolutely convergent. Moreover

one has S > 0 and

S(P ξ) = S +O
(
P−ξ/d

)
.

Proof. The first two claims follow from the analysis of Davenport as presented in [29, Sections

5 & 6]. Recall that we write Ad = d2. By [31, Theorem 1] we know that if ` + n ≥ Ad + 1

then the singular series is absolutely convergent and positive. For the last assertion note that

by Lemma 3.6.8 one has

∣∣S−S(P ξ)
∣∣ ≤ ∑

q>P ξ

q∑
a=1

(a,q)=1

|T (q, a)| �
∑
q>P ξ

q1−(`+n)/d � P (2−(`+n)/d)ξ.

For d ≥ 2 one has ` + n ≥ Ad + 1 ≥ 2d + 1, where in the second inequality, the equality case

holds only when d = 2. Thus, we obtain ξ
d ≤

(
`+n
d − 2

)
ξ. The previous estimate now delivers

∣∣S−S(P ξ)
∣∣� P−ξ/d,

which completes the proof.

3.7 The asymptotic formula

We now combine the results from the previous two sections to establish the anticipated asymp-

totic formula for the counting functionN (P ).

For αd ∈ Nξ(q, a) we write αd = βd + a/q with |βd| < P−d+ξ. From now on we take

β = (βd, αθ),with αθ ∈M. For each i, j and k we define the approximate generating functions

f?i (β) =
1

q
Sf,i(q, a)υf,i(β), g?j (β) = υg,j(β), h?k(β) =

1

q
Sh,k(q, a)υh,k(β).

Put

F?(β) =
∏̀
i=1

f?i (β)

m∏
j=1

g?j (β)

n∏
k=1

h?k(β).

We wish to compareF(α) withF?(β).Below we record a consequence of Poisson’s summation

formula.
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Lemma 3.7.1. Let f : [a, b] → R be a function differentiable in [a, b]. Suppose that f ′(x) is

monotonic, and suppose that |f ′(x)| ≤ A < 1 for all x ∈ [a, b]. Then

∑
a<x≤b

e (f(x)) =

∫ b

a

e (f(x)) dx+O(1).

Proof. See [74, Lemma 4.8].

Lemma 3.7.2. For each index i, j, k and for any α = (αd, αθ) ∈ Nξ(q, a)×M one has

(i) fi(α)− f?i (β)� P δ0+ξ ;

(ii) gj(α)− g?j (β)� 1;

(iii) hk(α)− h?k(β)� P 2ξ.

Proof. For the estimate (iii) one may argue as in [29, Lemma 4.2].

For the estimate (ii) one may apply Lemma 3.7.1. Fix an index j. Recall from (3.6.1) the

definition of the function υg,j(β). Then, the claimed estimate reads

∑
1
2y
?
i P<y≤2y?i P

e(µjαθy
θ)−

∫ 2y?jP

1
2y
?
jP

e(µjαθγ
θ)dγ = O(1).

By taking the complex conjugate it suffices to prove the above estimate when αθ > 0. For a real

variable t we define the function

φ :

(
1

2
y?i P, 2y

?
i P

]
→ R, φ(t) = µjαθt

θ.

The functionφ′′(t) is of fixed sign and soφ′(t) is monotonic. Moreover, forαθ ∈M and for large

enough P one has

|φ′(t)| = |µj |θαθtθ−1 ≤ |µj |θ(2y?i )θ−1P−1+δ0 < 1,

where recall from (3.2.7) that δ0 < 1. Thus, Lemma 3.7.1 is applicable and yields the desired

conclusion.

Now we prove estimate (i). Here we argue as in [29, Lemma 4.2]. We fix an index i. Decom-

posing into residue classes modulo q and writing x = qy + z with 1 ≤ z ≤ q we obtain

fi(α) =

q∑
z=1

∑
y∈I(z)

e
(
ai(βd + a/q)(qy + z)d + λiαθ(qy + z)θ

)

=

q∑
z=1

e
(
aiaz

d/q
)∑
y∈I

e
(
aiβd(qy + z)d + λiαθ(qy + z)θ

)
,

(3.7.1)

where I = I(z) is the interval defined by

I(z) =

( 1
2x

?
iP − z
q

,
2x?iP − z

q

]
.
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For ease of notation we denote the endpoints of the interval I by A and B. So I = (A,B].

For t ∈ R we put

φi(t) = e
(
aiβd(qt+ z)d + λiαθ(qt+ z)θ

)
.

The function φi is a holomorphic complex valued function of the real variable t. Consider an

arbitrary interval [x, x + 1] ⊂ R of length equal to 1. By the fundamental theorem of calculus

one has for any t ∈ [x, x+ 1] that

|φi(t)− φi(x)| =
∣∣∣∣∫ t

x

φ′i(u)du

∣∣∣∣ ≤ max
u∈[x,x+1]

|φ′i(u)| .

One may break the interval I into� B − A = O
(
Pq−1

)
unit intervals of the shape [x, x + 1]

with x ∈ Z, together with two possible broken intervals in the case where at least one of the

endpoints A and B of the interval I is not an integer. Then, we deduce that∣∣∣∣∣∣
∑

A<y≤B

φi(y)−
∫ B

A

φi(t)dt

∣∣∣∣∣∣�
∑

A<y≤B

∫ y+1

y

|φi(y)− φi(t)| dt+ max
A<y≤B

|φi(t)|

� Pq−1 max
A<t≤B

|φ′i(t)|+ max
A<t≤B

|φi(t)| .

Clearly, |φi(t)| ≤ 1 for all t. One has

φ′i(t) = 2πi
(
aidqβd(qt+ z)d−1 + λiθqαθ(qt+ z)θ−1

)
φi(t).

Hence, for any t ∈ I one has

|φ′i(t)| � q|βd|P d−1 + q|αθ|P θ−1.

Therefore for (αd, αθ) ∈ Nξ(q, a)×M and since ξ < δ0, the preceding estimate now delivers∣∣∣∣∣∣
∑

A<y≤B

φi(y)−
∫ B

A

φi(t)dt

∣∣∣∣∣∣� P δ0 . (3.7.2)

We put qt+ z = γ and make a change of variables. Then one has∫ B

A

φi(t)dt =
1

q

∫ 2x?iP

1
2x
?
iP

e(aiβdγ
d + λiαθγ

θ)dγ =
1

q
υf,i(β),

where bear in mind that β = (βd, αθ) = (αd − a/q, αθ). Putting together (3.7.1) and (3.7.2)

yields

fi(α) =

q∑
z=1

e
(
aiaz

d/q
)(∫ B

A

φ(t)dt+ P δ0

)

=
1

q

q∑
z=1

e
(
aiaz

d/q
)
υf,i(β) +O

(
P δ0+ξ

)
,
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where in the last step we used the fact that 1 ≤ q ≤ P ξ. The proof is now complete.

By Lemma 3.7.2 and using a standard telescoping identity one has that

F(α)−F?(β)� P s−1
(
|fi − f?i |+ |gj − g?j |+ |hk − h?k|

)
� P s−1+δ0+ξ.

Moreover one has

meas (Nξ(q, a)×M) � P−d+ξ · P−θ+δ0 = P−(θ+d)+δ0+ξ.

Next, note that one has F?(β) = V (β)T (q, a). Integrating over the set Nξ(q, a) ×M against

the measure K±(αθ)dα and taking into account the preceding observations reveals∫
M

∫
Nξ(q,a)

F(α)K±(αθ)dα = T (q, a)

∫
M

∫
Nξ(q,a)

V (β)K±(αθ)dβ + E,

where

E = O
(
P s−(θ+d)−1+2(δ0+ξ)

)
.

One can now sum over 1 ≤ q ≤ P ξ and 1 ≤ r ≤ q to conclude that∫
M

∫
Nξ

F(α)K±(αθ)dα = S(P ξ)J±(P ξ, P δ0) +O
(
P s−(θ+d)−1+2δ0+4ξ

)
.

Recall from (3.2.7) that δ0 = 21−2θ and from (3.2.8) that 0 < ξ ≤ δ0/8. Recall that we assume

θ > d+ 1 ≥ 3. Hence, for the error term in the above asymptotic formula one has

P s−(θ+d)−1+2δ0+4ξ � P s−(θ+d)−1+ 5
2 δ0 = o

(
P s−(θ+d)

)
.

By Lemma 3.6.7 and Lemma 3.6.9 one has

S(P ξ)J±(P ξ, P δ0) = 2τJ0SP
s−(θ+d) + o

(
P s−(θ+d)

)
.

Thus we conclude that∫
P

F(α)K±(αθ)dα = 2τJ0SP
s−(θ+d) + o

(
P s−(θ+d)

)
,

where recall that P = Nξ ×M. Upon invoking (3.2.10) and taking into account Lemma 3.4.11

and Lemma 3.5.1, the proof of Theorem 3.1.2 is complete.
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Appendix A

"Orthogonality " for inequalities

In this appendix we give a variant of Lemma 2.3.2 for a more general case that might be of some

interest and usage in problems of counting solutions of inequalities in terms of mean values.

Let R ∈ N. Suppose that

φ : R→ RK x 7→ φ(x) = (φ1(x), . . . , φK(x))

is a RR-valued function of the real variable x. Furthermore, let δj > 0 (1 ≤ j ≤ R) be positive

real numbers. We aim to count the number of integer solutions x of the simultaneous inequal-

ities ∣∣∣∣∣
s∑
i=1

(φj(xi)− φj(xs+i))

∣∣∣∣∣ < δj (1 ≤ j ≤ R). (A.1)

Suppose that I1, I2 ⊂ (0,∞) are two bounded intervals. Fix a natural number n ≤ s. Suppose

that S ⊂ (0,∞)2n is a bounded set of lattice points. We write Vs(I1, I2;φ, δ) to denote the

number of integer solutions of the simultaneous inequalities (A.1) with xi, xs+i ∈ I1 (1 ≤ i ≤
n) and xi, xs+i ∈ I2 (n+1 ≤ i ≤ s). Similarly, we write Vs(S, I2;φ, δ) to denote the number of

integer solutions of the simultaneous inequalities (A.1) with (x1, . . . , xn, xs+1, . . . , xs+n) ∈ S
and xi, xs+i ∈ I2 (n+ 1 ≤ i ≤ s). For ease of notation we set

σs,j(x) =

s∑
i=1

(φj(xi)− φj(xs+i)) (1 ≤ j ≤ R).

For any α ∈ RR we define the exponential sums Hi(α) = H (α; Ii;φ) via

H (α; Ii;φ) =
∑
x∈Ii

e (α1φ1(x) + · · ·+ αKφK(x)) (i = 1, 2).

Moreover, for α ∈ RR we put

HS(α) =
∑
x∈S

e (α1 (φ1(x1)− φ1(xs+1)) + · · ·+ αR (φR(xn)− φR(xs+n))) ,

where the summation is over tuples x = (x1, . . . , xn, xs+1, . . . , xs+n) ∈ S. Finally, we define

the numbers ∆j via the relation 2δj∆j = 1 (1 ≤ j ≤ R).With this notation, we may now state
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the following lemma which is a variant of Lemma 2.3.2 in a more general form.

Lemma A.1. One has

(i)

Vs (S, I2;φ, δ)� δ1 · · · δR
∫ ∆R

−∆R

· · ·
∫ ∆1

−∆1

∣∣HS(α)H2(α)2s−2n
∣∣ dα;

(ii)

Vs (I1, I2;φ, δ) � δ1 · · · δR
∫ ∆R

−∆R

· · ·
∫ ∆1

−∆1

∣∣H1(α)2nH2(α)2s−2n
∣∣ dα.

The implicit constants in the above estimates are independent of I1, I2,S, δ and φ.

The proof makes use of the following pair of functions. For x ∈ R we define the functions

sinc(x) =


sin(πx)

πx
, when x 6= 0,

1, when x = 0,

and

Λ(x) = max{0, 1− |x|}.

Moreover, we set K(x) = sinc2(x). It is well known, see for example [29, Lemma 20.1] that

these two functions are the Fourier transform of each other. Namely, for x, ξ ∈ R one has

K(ξ) =

∫ ∞
−∞

e(−xξ)Λ(x)dx and Λ(x) =

∫ ∞
−∞

e(xξ)K(ξ)dξ. (A.2)

Moreover, we make use of Jordan’s inequality which states that for 0 < x ≤ π
2 one has

2

π
≤ sinx

x
< 1, (A.3)

where the equality holds if and only if x = π
2 . A proof of this inequality can be bound in [48, p.

33].

Proof of Lemma A.1. (i). By (A.3) one has for |x| < 1
2 that

K(x) >

(
2

π

)2

.

For ease of notation we put

ξj =
1

2δj
σs,j(x) (1 ≤ j ≤ R).

Let x be a solution of the simultaneous inequalities (A.1) counted by Vs (S, I2;φ, δ) . Then

for each index 1 ≤ j ≤ R one has
π2

4
K (ξj) > 1.

Hence, by summing over tuples x with (xi, xs+i) ∈ S (1 ≤ i ≤ n) and xi, xs+i ∈ I2 (n + 1 ≤
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i ≤ s) one has that

Vs (S, I2;φ, δ) ≤
∑

x

R∏
j=1

π2

4
K (ξj)

=

(
π2

4

)R∑
x

R∏
j=1

K (ξj) .

(A.4)

Then, by invoking (A.2) we infer that for each 1 ≤ j ≤ R one has

K(ξj) =

∫ ∞
−∞

e(−uξj)Λ(u)du =

∫ ∞
−∞

e(uξj)Λ(−u)du.

So, by making the change of variables uj = 2δjαj (1 ≤ j ≤ R) we deduce that

R∏
j=1

K(ξj) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

e(u1ξ1)Λ(−u1) · · · e(uRξR)Λ(−uR)du

= 2Rδ1 · · · δR
∫ ∞
−∞
· · ·
∫ ∞
−∞

e (α1σs,1(x) + · · ·+ αRσs,R(x)) Λ (−2δ1α1) · · ·Λ (−2δRαR) dα.

For each index 1 ≤ i ≤ 2swe write α ·φ(xi) to denote the standard dot product in the space

RR, namely

α · φ(xi) = α1φ1(xi) + · · ·+ αKφk(xi).

With this notation one has

e (α1σs,1(x) + · · ·+ αRσs,R(x)) = e (α · φ(x1) + · · · −α · φ(x2s)) .

So we infer that
∏R
j=1K(ξj) is equal to

2Rδ1 · · · δR
∫ ∞
−∞
· · ·
∫ ∞
−∞

e (α · φ(x1) + · · · −α · φ(x2s)) Λ (−2δ1α1) · · ·Λ (−2δRαR) dα.

One can now sum over tuples x = (x1, . . . , x2s) with (x1, . . . , xn, xs+1, . . . , xs+n) ∈ S and

xi, xs+i ∈ I2 (n+1 ≤ i ≤ s). Since the integrals are absolutely convergent one can interchange

the order of integration with the finite sums. Note here that∑
x

e (α · φ(x1) + · · · −α · φ(x2s)) = HS(α)H2(α)2s−2n.

Furthermore, note that for |αj | > ∆j = 2δ−1
j one has Λ(−2δjαj) = 0 and for all α one has

∣∣HS(α)H2(α)2s−2n
∣∣ ≥ 0.

Keep in mind that for any x one has 0 ≤ Λ(x) ≤ 1. Hence by (A.4) and the triangle inequality

107



Appendix A. "Orthogonality " for inequalities

we deduce that

Vs (S, I2;φ, δ) =

(
π2

2

)R
δ1 · · · δR×

×
∫ ∞
−∞
· · ·
∫ ∞
−∞

HS(α)H2(α)2s−2nΛ (−2δ1α1) · · ·Λ (−2δRαR) dα

≤
(
π2

2

)R
δ1 · · · δR×

×
∫ ∆R

−∆R

· · ·
∫ ∆1

−∆1

∣∣HS(α)H2(α)2s−2n
∣∣Λ (−2δ1α1) · · ·Λ (−2δRαR) dα

� δ1 · · · δR
∫ ∆R

−∆R

· · ·
∫ ∆1

−∆1

∣∣HS(α)H2(α)2s−2n
∣∣ dα,

which establishes the upper bound.

We now prove (ii). For the upper bound we argue in a similar fashion as in (i),whereas now

we use the product H1(α)2nH2(α)2s−2n. So we focus on proving the lower bound. Let x be a

tuple counted by Vs (I1, I2;φ, δ) . Then by the definition of the function x 7→ Λ(x), one has for

each index 1 ≤ j ≤ R that

0 < Λ (2ξj) < 1.

One can now sum over tuples x with xi, xs+i ∈ I1 (1 ≤ i ≤ n) and xi, xs+i ∈ I2 (n+1 ≤ i ≤ s)
to obtain

Vs (I1, I2;φ, δ) ≥
∑

x

R∏
j=1

Λ(2ξj). (A.5)

Invoking (A.2) we infer for each index 1 ≤ j ≤ R that

Λ(2ξj) =

∫ ∞
−∞

e(2uξj)K(u)du.

As before, one may now sum over the xi ∈ Ii and interchange the order of summation and

integration to get by (A.5) that Vs (I1, I2;φ, δ) equals to

δ1 · · · δR
∫ ∞
−∞
· · ·
∫ ∞
−∞

∑
x

e (α · φ(x1) + · · · −α · φ(x2s))K(δ1α1) · · ·K(δRαR)dα.

Since we assume that xi and xs+i belong to the same interval I1 for each 1 ≤ i ≤ n, one has

that ∑
x

e (α · φ(x1) + · · · −α · φ(x2s)) =
∣∣H1(α)2nH2(α)2s−2n

∣∣ .
By (A.3) one has for |αj | < (2δj)

−1 = ∆j that K(δjαj) < 4/π2. Therefore, we deduce that

Vs (I1, I2;φ, δ)� δ1 · · · δR
∫ ∆R

−∆R

· · ·
∫ ∆1

−∆1

∣∣H1(α)2nH2(α)2s−2n
∣∣ .

The proof is now complete.
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We give a variant of Lemma A.1. Let I = {I1, · · · , I2s} be a collection of bounded intervals

Ii ⊂ (0,∞) for all i. We aim to count the number of integer solutions x with xi ∈ Ii (1 ≤
i ≤ 2s), of the simultaneous inequalities (A.1). We denote the number of such solutions by

Vs (I;φ, δ) . For any α ∈ RK we define the exponential sums Hi(α) = H (α; Ii;φ) via

H (α; Ii;φ) =
∑
x∈Ii

e (α1φ1(x) + · · ·+ αKφK(x)) (1 ≤ i ≤ 2s).

Moreover, we define the mean value

Js (I;φ,∆) =

∫ ∆K

−∆K

· · ·
∫ ∆1

−∆1

|H1(α) · · ·H2s(α)| dα,

where the numbers ∆j are defined via the relation 2δj∆j = 1 (1 ≤ j ≤ K).With this notation,

we may now state the following lemma which is a variant of Lemma A.1 and one may prove

arguing in a similar fashion.

Lemma A.2. One has

Vs (I;φ, δ)� δ1 · · · δKJs (I;φ,∆) .

Moreover, if Ii = Is+i for 1 ≤ i ≤ s, then one has

δ1 · · · δKJs (I;φ,∆)� Vs (I;φ, δ) .

The implicit constants in the above estimates are independent of I,φ, and δ.
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Appendix B

The mean value estimate for the

complete exponential sum

This appendix contains the details required if one wishes to obtain a mean value estimate as in

Theorem 2.1.4 for the exponential sum

f(α;P ) =
∑

P<x≤2P

e
(
α1x+ · · ·+ αnx

n + αθx
θ
)
,

where n = bθc. For technical reasons we assume that the exponential sum f is defined over a

dyadic interval (P, 2P ]. If the exponential sum f is defined over an interval of the shape [1, P ],

then by making abuse of notation one may split this intoO (logP ) dyadic intervals of the shape

(P, 2P ]. The logP -loss is absorbed into the ε-loss P ε. We demonstrate the following.

Theorem B.1. Suppose that θ > 2 is real and non-integral and write n = bθc. Let κ ≥ 1 be a

real number. Suppose further that s ≥ 1
2 (b2θc+ 1) (b2θc+ 2) is a natural number. Then for any

fixed ε > 0 one has ∫ κ

−κ

∫
[0,1)n

|f(α;P )|2s dα� κP 2s− 1
2n(n+1)−θ+ε.

The implicit constant in the above estimate may depend on ε, θ, and s, but not on κ and P. Fur-

thermore, for s > 1
2 (b2θc+ 1) (b2θc+ 2) one can take ε = 0.

First we need a replacement of Lemma 2.3.2. From now on we set k = b2θc + 1. For each

index j with n+ 1 ≤ j ≤ k we define the binomial coefficients

bj =

(
θ

j

)
=
θ(θ − 1) · · · (θ − j + 1)

j !
.

For fixed θ one may treat the bj as being of size O(1). For a tuple h = (hn+1, . . . , hk) we write

H(h) = H(hn+1, . . . , hk) to denote the expression

H(hn+1, . . . , hk) = bn+1P
θ−(n+1)hn+1 + · · ·+ bkP

θ−khk. (B.1)

Lemma B.2. Let L be a given positive real number, and t be a given natural number. We write
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T (P ) to denote the number of integer solutions of the inequality

|H(h)| ≤ L

in the variables hj satisfying |hj | ≤ tP j/2 (n+ 1 ≤ j ≤ k). Then one has

T (P )� P
k(k+1)

4 −n(n+1)
4 −θ+ 1

2 ,

where the implicit constant depends on L, t and θ.

Proof. The proof is similar to [1, Lemma 1]. One may rewrite the inequality under investigation,

in the shape

bn+1P
θ−(n+1)hn+1 + · · ·+ bkP

θ−khk = Lγ, (B.2)

for some γ satisfying |γ| ≤ 1. From this equation we get that

hn+1 = −b−1
n+1P

n+1−θ
k∑

`=n+2

b`P
θ−`h` + Lγb−1

n+1P
n+1−θ. (B.3)

By our hypothesis one has |h`| � P
`
2 for all n+ 1 ≤ ` ≤ k. Hence, the first term appearing on

the right hand side of (B.3) is bounded above by

� Pn+1−θ
k∑

`=n+2

|h`|P θ−` � Pn+1
k∑

`=n+2

1

P
`
2

� Pn+1−n+2
2 � P

n
2 .

Recall now that n = bθc ≥ 2. So one has n + 1 − θ < n
2 . Hence, the second term on the right

hand side of (B.3) is� P
n
2 . Thus, we deduce

|hn+1| � P
n
2 .

So, the unknown hn+1 assumes at most O
(
P
n
2

)
possible values.

Fix now an index j0 withn+2 ≤ j0 ≤ k.Then, the equation (B.2) can be equivalently written

as

hj0 + b−1
j0
P j0−θ

j0−1∑
`=n+1

b`P
θ−`h` = −b−1

j0
P j0−θ

k∑
`=j0+1

b`P
θ−`h` + Lγb−1

j0
P j0−θ. (B.4)

We put

Aj0 = b−1
j0
P j0−θ

j0−1∑
`=n+1

b`P
θ−`h`,

and

Bj0 = −b−1
j0
P j0−θ

k∑
`=j0+1

b`P
θ−`h` + Lγb−1

j0
P j0−θ.

Then, by (B.4) we obtain that

|hj0 +Aj0 | ≤ |Bj0 |. (B.5)
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By the definition of the expression Bj0 we have that

|Bj0 | ≤ |b−1
j0
|

P j0−θ k∑
`=j0+1

|b`|P θ−`|h`|+ L|γ|P j0−θ
 .

We now bound the expression lying in the parentheses on right hand side of the above in-

equality. Using again our assumption that |h`| � P `/2 one has

P j0−θ
m∑

`=j0+1

|b`|P θ−`|h`|+ L|γ|P j0−θ = P j0
k∑

`=j0+1

|b`|P−`|h`|+ L|γ|P j0−θ

� P j0
k∑

`=j0+1

1

P `/2
+ P j0−θ

� P
j0−1

2 + P j0−θ.

So one has

|Bj0 | � P
j0−1

2 + P j0−θ.

Thus by (B.5) we infer that

|hj0 +Aj0 | � P
j0−1

2 + P j0−θ.

Hence, by the triangle inequality we deduce that for each fixed index j0 with n + 2 ≤ j0 ≤ k

one has

|hj0 | ≤ |hj0 +Aj0 |+ |Aj0 | � P
j0−1

2 + P j0−θ + |Aj0 | . (B.6)

Let us now fix a value for hn+1. As we proved in the beginning, the variable hn+1 can assume

at most O
(
P
n
2

)
values. For the variables hj (n+ 2 ≤ j ≤ k − 2) one can argue inductively as

follows. Let j0 be such an index and suppose that the variables hj with n + 1 ≤ j < j0 have

been fixed. In such a case, by the definition of Aj0 one has that

|Aj0 | � P j0
j0−1∑
`=n+1

1

P `
� P j0−(n+1) � P

j0−1
2 .

Appealing to (B.6) we get that

|hj0 | � P
j0−1

2 + P j0−θ � P
j0−1

2 ,

where in the second inequality we used the fact that j0 ≤ k − 2 = b2θc. Therefore, we deduce

that the unknowns hj (n+ 2 ≤ j ≤ k − 2) assume at most O
(
P
j−1
2

)
values.

We are now left to deal with the last two variables, namely with hk−1 and hk. Assuming that

the variables hj (n+ 1 ≤ j ≤ k − 2) have been fixed and recalling that n = bθc one has by the

definition of Aj0 with j0 = k − 1 that

|Ak−1| � P k−1
k−2∑
`=n+1

1

P `
� P (k−1)−(n+1) � P (k−1)−θ.
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Note here that

k − 1− θ = b2θc − θ > b2θc − 1

2
=
k − 2

2
.

Hence, appealing to (B.6) we now infer that

|hk−1| � P
(k−1)−1

2 + P (k−1)−θ + P (k−1)−θ � P (k−1)−θ.

Thus, the unknown hk−1 assumes at most O
(
P (k−1)−θ) possible values. Finally, again by our

initial assumption, we know that the variable hk assumes at most O
(
P
k
2

)
values.

Summarising the above we have showed the following.

• The unknown variable hn+1 can assume O
(
P
n
2

)
values.

• The unknown variables hj (n+ 2 ≤ j ≤ k − 2) can assume O
(
P
j−1
2

)
values.

• The unknown variable hk−1 can assume O
(
P (k−1)−θ) values.

• The unknown variable hk can assume O
(
P
k
2

)
values.

Collecting together the above conclusions, we can now deduce that

T (P )� P
n
2 · P

n+1
2 · · ·P

k−3
2 · P (k−1)−θ · P k

2

� P
1
4k(k+1)− 1

4n(n+1)−θ+n+1
2 ,

since one can easily verify that

n

2
+
n+ 1

2
+ · · ·+ k − 3

2
+ (k − 1)− θ +

k

2
=

1

4
k(k + 1)− 1

4
n(n− 1)− θ +

1

2

=
1

4
k(k + 1)− 1

4
n(n+ 1)− θ +

n+ 1

2
.

The proof of the lemma is now complete.

Next, we fix some notation for the rest of this section. From now on when applying Lemma

A.1 we take

R = n+ 1, φ =
(
x, . . . , xn, xθ

)
.

Furthermore, recall that k = b2θc+ 1 and n = bθc. For each j ∈ {1, . . . , n, θ}we set

σs,j(x) =

s∑
i=1

(
xji − x

j
s+i

)
(B.7)

Moreover, we write f(α;P ) = f(α). We now embark to the proof of Theorem B.1.

Proof of Theorem B.1. We split the proof into several steps for a better presentation. From now

on we set I = (P, 2P ] .

Step 1: The underlying Diophantine system. Set δ1 =
(

1
2 , . . . ,

1
2 ,

1
2κ

)
. We apply Lemma
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A.1 with I1 = I2 = I and δ = δ1. So, one has

1

2κ

∫ κ

−κ

∫
[−1,1]n

|f(α)|2s dα̂dαθ � Vs (I; δ1) , (B.8)

where dα̂dαθ stands for dα1 · · · dαndαθ and Vs(I; δ1) denotes the number of integer solutions

of the system 
|σs,j(x)| < 1

2 (1 ≤ j ≤ n)

|σs,θ(x)| < 1
2κ ,

with P < x ≤ 2P, where recall from (B.7) the definition of σs,j(x).

Set δ2 =
(

1
2 , . . . ,

1
2 ,

1
2

)
. Since κ ≥ 1 we plainly have that

Vs (I; δ1) ≤ Vs (I; δ2) ,

where Vs(I; δ2) denotes the number of integer solutions of the system
|σs,j(x)| < 1

2 (1 ≤ j ≤ n)

|σs,θ(x)| < 1
2 ,

with P < x ≤ 2P. By the estimate (B.8) we infer that∫ κ

−κ

∫
[−1,1]n

|f(α)|2s dα̂dαθ � κVs (I; δ2) . (B.9)

In view of (B.9) we are now aiming to bound from above the counting function Vs (I; δ2) .

From now on, the mean values we encounter are independent of κ. For this reason, and for

ease of the notation, we use the symbol
∮

to denote integration over the (n+1)-cube [−1, 1]n+1.

We define the interval

Ĩ =
(
P, P +

(
b
√
P c+ 1

)√
P
]
,

and note that I ⊂ Ĩ . Moreover, we define the exponential sum

f̃(α) =
∑
x∈Ĩ

e
(
α1x+ · · ·+ αnx

n + αθx
θ
)
.

Since I ⊂ Ĩ one has that

Vs (I; δ2) ≤ Vs
(
I(n+1), Ĩ; δ2

)
,

where Vs
(
I(n+1), Ĩ; δ2

)
denotes the number of integer solutions of the system



∣∣∣∣∣
n+1∑
i=1

(
xθi − xθs+i

)
+

s∑
i=n+2

(
xθi − xθs+i

)∣∣∣∣∣ < 1

2∣∣∣∣∣
n+1∑
i=1

(
xji − x

j
s+i

)
+

s∑
i=n+2

(
xji − x

j
s+i

)∣∣∣∣∣ < 1

2
(1 ≤ j ≤ n),
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with xi, xs+i ∈ I (1 ≤ i ≤ n+ 1) and xi, xs+i ∈ Ĩ (n+ 2 ≤ i ≤ t). Applying again Lemma A.1

with δ = δ2 we obtain that

Vs

(
I(n+1), Ĩ; δ2

)
�
∮
|f(α)|2(n+1) |f̃(α)|2s−2(n+1)dα.

Combining the above we infer that

Vs (I; δ2)�
∮
|f(α)|2(n+1) |f̃(α)|2s−2(n+1)dα. (B.10)

Step 2: Breaking the interval Ĩ into short intervals. For a natural number ` ≥ 1 we write

P` = P + (`− 1)
√
P , (B.11)

and set Ĩ` = (P`, P`+1]. Note that Ĩ` forms a cover of the interval Ĩ , consisting of subintervals

of length
√
P . We record this in the following inclusion

I ⊂ Ĩ ⊂
b
√
Pc+1⋃
`=1

Ĩ`. (B.12)

We write f̃`(α) to denote the exponential sum given by

f̃`(α) =
∑
x∈Ĩ`

e(α1x+ · · ·+ αnx
n + αθx

θ). (B.13)

Incorporating the exponential sum f̃`(α) we deduce by the triangle inequality followed by

an application of Hölder’s inequality that∮
|f(α)|2(n+1)

∣∣∣f̃(α)
∣∣∣2s−2(n+1)

dα

≤
∮
|f(α)|2(n+1)

b√Pc+1∑
`=1

∣∣∣f̃`(α)
∣∣∣
2s−2(n+1)

dα

≤
(
b
√
P c+ 1

)2s−2(n+1)−1
b
√
Pc+1∑
`=1

∮
|f(α)|2(n+1)

∣∣∣f̃`(α)
∣∣∣2s−2(n+1)

dα.

Thus, for some `0 with 1 ≤ `0 ≤ b
√
P c+ 1 one has∮

|f(α)|2(n+1)
∣∣∣f̃(α)

∣∣∣2s−2(n+1)

dα

�
(
b
√
P c+ 1

)2s−2(n+1)
∮
|f(α)|2(n+1)

∣∣∣f̃`0(α)
∣∣∣2s−2(n+1)

dα.
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Combining now the above with (B.10) we deduce that

Vs (I; δ2)�
(
b
√
P c+ 1

)2s−2(n+1)
∮
|f(α)|2(n+1)

∣∣∣f̃`0(α)
∣∣∣2s−2(n+1)

dα

� P s−(n+1)

∮
|f(α)|2(n+1)

∣∣∣f̃`0(α)
∣∣∣2s−2(n+1)

dα.

(B.14)

Now we apply Lemma A.1 with I1 = I, I2 = Ĩ`0 and δ = δ2. So one has∮
|f(α)|2(n+1)

∣∣∣f̃`0(α)
∣∣∣2s−2(n+1)

dα� Vs

(
I(n+1), Ĩ`0 ; δ2

)
, (B.15)

where we write Vs
(
I(n+1), Ĩ`0 ; δ2

)
to denote the number of integer solutions of the system



∣∣∣∣∣
n+1∑
i=1

(
xθi − xθs+i

)
+

s∑
i=n+2

(
xθi − xθs+i

)∣∣∣∣∣ < 1

2∣∣∣∣∣
n+1∑
i=1

(
xji − x

j
s+i

)
+

s∑
i=n+2

(
xji − x

j
s+i

)∣∣∣∣∣ < 1

2
(1 ≤ j ≤ n),

(B.16)

with xi, xs+i ∈ I (1 ≤ i ≤ n + 1) and xi, xs+i ∈ Ĩ`0 (n + 2 ≤ i ≤ s). Putting together (B.14)

and (B.15) we deduce that

Vs (I; δ2)� P s−(n+1)Vs

(
I(n+1), Ĩ`0 ; δ2

)
. (B.17)

Step 3: A diminishing ranges type argument. Recall that Ĩ`0 = (P`0 , 2P`0 ] , where we

write P`0 = P + (`0 − 1)
√
P . We now set

yi = xi − P`0 (n+ 2 ≤ i ≤ s).

Clearly one has 0 < yi ≤
√
P . Invoking the Binomial theorem, we see that a 2s tuple x satisfies

system the (B.16), if and only if it satisfies the system

∣∣∣∣∣
n+1∑
i=1

(
xθi − xθs+i

)
+

s∑
i=n+2

(
(yi + P`0)

θ − (ys+i + P`0)
θ
)∣∣∣∣∣ < 1

2∣∣∣∣∣
n+1∑
i=1

(
xji − x

j
s+i

)
+

s∑
i=n+2

(
yji − y

j
s+i

)∣∣∣∣∣ < 1

2
(1 ≤ j ≤ n).

(B.18)

For the sake of clarity, we note here that in the above system one has

P < xi, xs+i ≤ 2P (1 ≤ i ≤ n+ 1) and 0 < yi, ys+i ≤
√
P (n+ 2 ≤ i ≤ s).

We now focus on the inequality of degree θ of the system (B.18). Since P � P`0 �
√
P , an

application of the mean value theorem of differential calculus yields for each indexn+2 ≤ i ≤ s
that ∣∣(yi + P`0)θ − (ys+i + P`0)θ

∣∣ � P θ−1
`0
|yi − ys+1| � P θ−1/2.
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Hence we obtain that ∣∣∣∣∣
s∑

i=n+2

(
(yi + P`0)

θ − (ys+i + P`0)
θ
)∣∣∣∣∣� P θ−1/2.

Returning now to the system (B.18) one has∣∣∣∣∣
n+1∑
i=1

(
xθi − xθs+i

)∣∣∣∣∣� P θ−1/2, (B.19)

where xi, xs+i ∈ I. For x ∈ I = (P, 2P ] and using the mean value theorem of the differential

calculus one has

|xθi − xθs+i| � P θ−1|xi − xs+i| (1 ≤ i ≤ n+ 1).

Hence, by (B.19) we infer that ∣∣∣∣∣
n+1∑
i=1

(xi − xs+i)

∣∣∣∣∣� P 1/2.

In other words, there exists a positive real number C > 0 depending at most on s and θ, such

that ∣∣∣∣∣
n+1∑
i=1

(xi − xs+i)

∣∣∣∣∣ ≤ CP 1/2.

Summarizing, we have showed that

Vs

(
I(n+1), Ĩ`0 ; δ2

)
� V F

s

(
I(n+1), Ĩ`0 ; δ2

)
, (B.20)

where V F
s

(
I(n+1), Ĩ`0 ; δ2

)
denotes the number of integer solutions of the system



∣∣∣∣∣
n+1∑
i=1

(
xθi − xθs+i

)
+

s∑
i=n+2

(
xθi − xθs+i

)∣∣∣∣∣ < 1

2∣∣∣∣∣
n+1∑
i=1

(
xji − x

j
s+i

)
+

s∑
i=n+2

(
xji − x

j
s+i

)∣∣∣∣∣ < 1

2
(1 ≤ j ≤ n),

(B.21)

with 

xi, xs+i ∈ I (1 ≤ i ≤ n+ 1),

∣∣∣∣∣
n+1∑
i=1

(xi − xs+i)

∣∣∣∣∣ ≤ CP 1/2,

xi, xs+i ∈ Ĩ`0 (n+ 2 ≤ i ≤ s).

(B.22)

Invoking (B.12) one has that for the points xi, xs+i ∈ I there are indices `i, `s+i for which

P`i < xi ≤ P`i+1 and P`s+i < xs+i ≤ P`s+i+1 (1 ≤ i ≤ n+ 1). (B.23)
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Combining (B.22) together with the definition (B.11) ofP` and using the fact that for each index

` we have P`+1 − P` = P 1/2, one can deduce that

CP 1/2 ≥

∣∣∣∣∣
n+1∑
i=1

(xi − xs+i)

∣∣∣∣∣ ≥
∣∣∣∣∣
n+1∑
i=1

(
P`i − P`s+i

)∣∣∣∣∣− (n+ 1)P 1/2

≥

(∣∣∣∣∣
n+1∑
i=1

(`i − `s+i)

∣∣∣∣∣− (n+ 1)

)
P 1/2.

From the above computation we deduce that∣∣∣∣∣
n+1∑
i=1

(`i − `s+i)

∣∣∣∣∣ ≤ C + (n+ 1) =: C ′. (B.24)

Return now to the problem of counting the number of solutions of the system (B.21) subject

to the restrictions given in (B.22). To do so, we use appropriate generating functions. We write

S ⊂ I2(n+1) to denote the set of lattice points which satisfy the first two restrictions given in

(B.22). By Lemma A.1 with such S and I2 = Ĩ`0 , δ = δ2 one has

V F
s

(
I(n+1), Ĩ`0 ; δ2

)
�
∮ ∣∣∣HS(α)f̃`0(α)2s−2(n+1)

∣∣∣ dα, (B.25)

where the exponential sum HS(α) is given by

HS(α) =
∑
x∈S

e
(
α1(x1 − xs+1) + · · ·+ αn(xnn − xns+n) + αθ(x

θ
n+1 − xθs+n+1)

)
,

where x = (x1, . . . , xn+1, xs+1, . . . , xs+n+1).One can tileS by invoking the cover
(
Ĩ`

)
`
.Taking

into account (B.24) we infer that

|HS(α)| �
b
√
Pc+1∑
`1=1

· · ·
b
√
Pc+1∑

`s+n+1=1

|
∑n+1
i=1 (`i−`s+i)|≤C′

n+1∏
i=1

|f̃`i(α)f̃`s+i(α)|

� P
n+1
2

n+1∏
i=1

|f̃`i(α)f̃`s+i(α)|.

One can bound above the right hand side of (B.25) to obtain

V F
s

(
I(n+1), Ĩ`0 ; δ2

)
� P

n+1
2

∮ (n+1∏
i=1

∣∣∣f̃`i(α)
∣∣∣ ∣∣∣f̃`s+i(α)

∣∣∣) ∣∣∣f̃`0(α)
∣∣∣2s−2(n+1)

dα. (B.26)

Recall the elementary inequality |z1 · · · zn| � |z1|n+· · ·+|zn|n,which is valid for all complex

numbers zi. Using this inequality we obtain that(
n+1∏
i=1

∣∣∣f̃`i(α)
∣∣∣ ∣∣∣f̃`s+i(α)

∣∣∣) ∣∣∣f̃`0(α)
∣∣∣2s−2(n+1)

�
∣∣∣f̃`1(α)

∣∣∣2s + · · ·+
∣∣∣f̃`s+n+1(α)

∣∣∣2s +
∣∣∣f̃`0(α)

∣∣∣2s .
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Hence, by (B.26) we infer that

V F
s

(
I(n+1), Ĩ`0 ; δ2

)
� P

n+1
2

∮ ∣∣∣f̃`(α)
∣∣∣2s dα,

where ` is one of the indices `1, . . . , `s+n+1, `0. Combining the above estimate with (B.20) and

invoking (B.17) we deduce that

Vs (I; δ2)� P s−
n+1
2

∮ ∣∣∣f̃`(α)
∣∣∣2s dα. (B.27)

Appealing once more to Lemma A.1 with I1 = I2 = Ĩ` and δ = δ2 we see that∮ ∣∣∣f̃`(α)
∣∣∣2s dα� Vs

(
Ĩ`; δ2

)
,

where Vs
(
Ĩ`; δ2

)
denotes the number of integer solutions of the system


|σs,θ(x)| < 1

2

|σs,j(x)| < 1

2
(1 ≤ j ≤ n),

(B.28)

with xi, xs+i ∈ Ĩ` (1 ≤ i ≤ s). Therefore, the estimate (B.27) now delivers

Vs (I; δ2)� P s−
n+1
2 Vs

(
Ĩ`; δ2

)
. (B.29)

We emphasise here, that our choice of 1 ≤ ` ≤ b
√
P c+ 1 is now fixed.

Step4: Taylor series expansion. It is apparent that system (B.28) is equivalent to the system

∣∣∣∣∣
s∑
i=1

(
xθi − xθs+i

)∣∣∣∣∣ < 1

2

s∑
i=1

(
xji − x

j
s+i

)
= 0 (1 ≤ j ≤ n).

(B.30)

We substitute yi = xi − Q` (1 ≤ i ≤ 2s), where Q` = bP`c and the yi satisfies the relation

0 < yi < b
√
P c+ 1. By the Binomial theorem, we see that a tuple x satisfies (B.30) if and only

if it satisfies the system

∣∣∣∣∣
s∑
i=1

(
(yi +Q`)

θ − (ys+i +Q`)
θ
)∣∣∣∣∣ < 1

2

s∑
i=1

(
yji − y

j
s+i

)
= 0 (1 ≤ j ≤ n).

One can now apply the argument presented in Theorem 2.3.4 to deal with the inequality. So,

we deduce that

Vs

(
Ĩ`; δ2

)
� Zs,k,n (Y ; h) , (B.31)
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where Zs,k,n (Y ; h) denotes the number of integer solutions of the system

∣∣b1Qθ−1
` h1 + · · ·+ bkQ

θ−k
` hk

∣∣ < 1

s∑
i=1

(
yji − y

j
s+i

)
= hj (1 ≤ j ≤ k)

s∑
i=1

(
yji − y

j
s+i

)
= 0 (1 ≤ j ≤ n).

with 0 < yi ≤ Y (1 ≤ i ≤ 2s) where Y = 1 + bP 1
2 c. Note that the integers hj satisfy the

relation |hj | ≤ sY j (1 ≤ j ≤ k).

Step5: Invoking VMVT. From now on we write

h = (h1, . . . , hn, hn+1, . . . , hk) = (h1,h2) ∈ Zn × Zk−n.

We write Ws,k,n (Y ; h) to denote the number of integer solutions of the system

s∑
i=1

(
yji − y

j
s+i

)
= hj (1 ≤ j ≤ k)

s∑
i=1

(
yji − y

j
s+i

)
= 0 (1 ≤ j ≤ n),

(B.32)

with 0 < yi ≤ Y. Moreover, and following the notation of Lemma B.2, we put

H(h2) = bn+1Q
θ−(n+1)
` hn+1 + · · ·+ bkQ

θ−k
` hk.

It is apparent that one has hj = 0 for 1 ≤ j ≤ n. So we obtain

Zs,k,n (Y ; h) =
∑

|H(h2)|<1

|hj |≤sY j
n+1≤j≤k

Ws,k,n (Y ; h) . (B.33)

Our aim now is to find an upper bound for the quantityWs,k,n (Y ; h) .We extend the notation

σs,j(x) from (B.7) to all indices j with 1 ≤ j ≤ k. As we already mentioned, by the shape of

the system (B.32), one has that each hj (1 ≤ j ≤ n) assumes only one value, namely the zero

value. Thus, one has

Ws,k,n (Y ; h)�
∑

|hn+1|≤sY n+1

hn+1=σs,n+1(x)

· · ·
∑

|hk|≤sY k
hk=σs,k(x)

1

� Y −
1
2n(n+1)

∑
|hj |≤sY j
hj=σs,j(x)

1≤j≤k

1.

(B.34)

The sum appearing in the right hand side of (B.34) counts the number of integer solutions of
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the system

σs,j(x) = hj (1 ≤ j ≤ k),

with 0 < yi ≤ Y. We denote this number by Js,k (Y ; h) . By orthogonality one has

Js,k (Y ; h) =

∫
[0,1)k

∣∣∣∣∣∣
∑

0<yi≤Y

e
(
α1y + · · ·+ αky

k
)∣∣∣∣∣∣

2s

e(−α · h)dα,

where α ·h stands for the standard dot product in Rk. So by the triangle inequality and in view

of Theorem 2.3.1 one has for any fixed ε > 0 that

Js,k (Y ; h) ≤ Js,k (Y )� Y 2s− 1
2k(k+1)+ε.

Using the above estimate to bound the right hand of (B.34) yields,

Ws,k,n (Y ; h)� Y 2s− 1
2k(k+1)− 1

2n(n+1)+ε. (B.35)

Putting together (B.33), (B.35), Lemma B.2 and recalling thatY = 1+b
√
P c �

√
P ,we deduce

that

Zs,k,n (Y ; h)� P
1
4k(k+1)− 1

4n(n+1)−θ+n+1
2 · P s− 1

4k(k+1)− 1
4n(n+1)+ε

� P s−
1
2n(n+1)−θ+n+1

2 +ε,

which when incorporated into (B.31) delivers

Vs

(
Ĩ`; δ2

)
� P s−

1
2n(n+1)−θ+n+1

2 +ε. (B.36)

Finally, combining (B.36) with (B.29) yields

Vs (I; δ2)� P 2s− 1
2n(n+1)−θ+ε,

which in view of (B.9) completes the proof.
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