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Abstract

The generalised Bohigas-Giannoni-Schmit Conjecture (BGS-Conjecture) states that the spectral

statistics of classically chaotic Hermitian systems without unitary symmetries match the stat-

istics of one of ten random matrix ensembles, chosen according to the symmetry class of the

system under the Altland-Zirnbauer Tenfold Way. This is the classification of the forms of the

time-reversal, charge-conjugation and chiral operators on the system, and whether it is symmetric

under them. The BGS-Conjecture is unproven but well supported, including by testing individual

systems for consistency with it. Systems for all ten ensembles have been tested numerically, but

experimental verification has been managed for only six classes, leaving four needing lab confirm-

ation. This is due to them requiring experimentally hard to realise forms of time-reversal and

charge-conjugation operators. Here we show all ten ensembles are realisable on a system with

a single chosen form of time-reversal and charge-conjugation by the application of unitary sym-

metries, giving a lab-realisable example system for each ensemble. Allowing unitary symmetries

causes the system to decompose into subsystems, which have new, independent, local forms of

the time-reversal, charge-conjugation and chiral operators. When the BGS-Conjecture is applied

to the individual subsystems, the ensemble measured can then differ from that predicted by the

global operator forms. We show this allows symmetries to be killed, or converted into the form for

any desired Altland-Zirnbauer class for a subsystem. As our system, we choose the Dirac graph.

We study the action of time-reversal, charge-conjugation and the chiral operator on the Dirac

graph, and define the most general version of symmetry on a Dirac graph. With an algorithm

to find a graph with any chosen set of symmetries, a graph in each Altland-Zirnbauer class is

constructed. Numerical simulations confirm that all ten ensembles are found, opening up full

testing of the generalised BGS-Conjecture in the lab.
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There are different kinds of rules. From the simple comes the complex, and from the complex

comes a different kind of simplicity. Chaos is order in a mask. . .

-Terry Pratchett, Thief of Time
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1. Introduction

The calculation of the energy levels of a quantum system is a common problem, but a hard one

- it requires not only knowing the Hamiltonian of the system, but having a Hamiltonian that is

sufficiently simple to work with, and find eigenvalues for. Unfortunately in a lot of systems, one

or both of these conditions fail, the energy levels cannot be calculated analytically and it might

be assumed that all information about the energy spectrum is lost.

However, there is a subset of quantum problems where this is not true, as under certain

circumstances it is possible to identify statistical information about the distribution of the energy

levels.

Out of work in the 1950s on the initial data from neutron resonances in heavy nuclei ex-

periments, the question was raised over what form the distribution of the spacings between

consecutive resonance levels took, [57, 82, 174]. Wigner, [172, 173, 174], argued that the nuclei

were sufficiently large and complex that statistical methods could be applied to them. This would

mean that instead of calculating an exact Hamiltonian for them and deriving the energy levels,

statistically, it was sufficient to model the required Hamiltonian as a series of random draws out

of the set of real symmetric matrices of the appropriate size. The spacing distribution of the

resonances then had to match the statistics of the eigenvalue spacing statistics of the matrices in

the group of real symmetric matrices. This formed the ensemble of random matrices known as

the Gaussian Orthogonal Ensemble or the GOE ensemble, with experimental agreement of this

conjecture of the level spacings following the GOE statistics being seen over the following years,

[131].

The systems considered by Wigner were always symmetric under an involutive time-reversal,

T̂ : t → −t so that T̂ 2 = I, and only symmetric under the involutive time-reversal. As Dyson,

[50], began considering a broader range of complex systems, he found that it was necessary to

introduce an additional two ensembles to cover the situations Wigner didn’t - first the ensemble of

complex Hermitian matrices which forms the Gaussian Unitary ensemble, or the GUE ensemble,

and the set of quaternionic Hermitian matrices which forms the Gaussian Symplectic Ensemble,

or the GSE ensemble - forming his Threefold Way, [51]. Remaining in the simplest setup where

systems are at most symmetric under time-reversal, Dyson expanded the definition of T̂ to be a

more general operator, chosen so that it is anti-linear, T̂ z = z∗T̂ , to match the fact that ψ(x,−t)
is a solution of the complex conjugated Schrödinger equation, anti-unitary so

〈
T̂ ψ
∣∣∣T̂ φ〉= 〈ψ|φ〉∗,

and allowing T̂ = ±I so that it is now allowed that T̂ 2 = −I. The additional types of statistics

then appear when the system isn’t symmetric under T̂ for the GUE ensemble; and when the

system is symmetric under T̂ but T̂ 2 = −I for the GSE ensemble. The threefold classification

1



Ensemble

T̂ is a symmetry, T̂ 2 = I GOE

T̂ is a symmetry, T̂ 2 = −I GSE

T̂ is not a symmetry GUE

Table 1.1: The Dyson Threefold Way when the unitary subgroup U of the symmetry group G of
the system is trivial. The classes only depend on whether T̂ is a symmetry, and its square.

this creates of the system under the action of T̂ , and the ensemble its statistics correspond to is

presented in Table 1.1.

However, Dyson’s seminal work, [51], went further and also described the cases where a

system was symmetric under other operators in addition to T̂ , including general linear, unitary

transformations; or it wasn’t symmetric under T̂ but was symmetric under a sort of ‘generalised’

time-reversal operator α̂ = α̃T̂ which combined a unitary transformation α̃ with the time-reversal

operator, giving a general anti-unitary operator. He showed that in this case, random matrix

predictions could still be made, but there would not be a single ensemble corresponding to

the statistics of the entirety of the energy spectrum, rather there would be several ensembles

corresponding to separate sub-spectra in the full spectrum.

Dyson furthermore showed that these sub-spectra could be isolated and their statistics pre-

dicted entirely by studying the group of transformations of the Hilbert space which leave the

system invariant, and their representations. In more detail, the transformations which commute

with the Hamiltonian and which preserve the transition probabilities between different states

can be collated to form the symmetry group of the system, G =
{
Ô ∈ Hom(H) | ÔĤ = ĤÔ,∣∣∣〈Ôψ∣∣∣Ôφ〉∣∣∣2= |〈ψ|φ〉|2 ∀ |φ〉 , |ψ〉 ∈ H}. Isolating then the subgroup of operators in G that are

linear and unitary forms the normal subgroup U =
{
Ô ∈ G |

〈
Ôψ
∣∣∣Ôφ〉= 〈ψ|φ〉 ∀ |φ〉 , |ψ〉 ∈ H

}
of

G, which has representation R on the Hilbert space H. Dyson then states that all that is needed

to fully predict the statistical behaviour of the energy level spectrum is to know the forms of G,

U and R.

Firstly, when U contains more than scalar multiplication, then the full energy spectrum {Ei}
splits into a number of independent sub-spectra, {Ei}a so that {Ei} =

⋃
a {Ei}a and {Ei}a ∩

{Ei}a′ = ∅ if a 6= a′. This corresponds to the full Hilbert space splitting into a series of subspaces,

H =
⊕

aHa, each with their own sub-Hamiltonian Ĥa so that Ĥ =
⊕

a Ĥa, with {Ei}a being the

eigenvalues of Ĥa. These decompositions correspond to the representation R of U on H splitting

into irreducible representations, so there exists one sub-spectrum in the full spectrum for every

unique irreducible representation in the decomposition of R.

Having a subspace Ha and sub-Hamiltonian Ĥa, then a subspace symmetry group can be

defined, Ga =
{
Ô ∈ Hom(Ha) | ÔĤa = ĤaÔ,

∣∣∣〈Ôψ∣∣∣Ôφ〉∣∣∣2= |〈ψ|φ〉|2 ∀ |φ〉 , |ψ〉 ∈ Ha}, which can

include only scalar multiplication and potentially the operation of time-reversal, T̂a : t → −t,
T̂az = z∗T̂a, on the subspace. This then causes the general case to shift back to the specific case

where at most time-reversal symmetry was possible, so the ensemble statistics for the sub-space

can be read off from Table 1.1 by applying it to the square of T̂a in the same manner as was done

for T̂ .
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That is, if T̂a ∈ Ga and T̂ 2
a = I, then the sub-spectrum displays statistics matching the GOE

ensemble; if T̂a ∈ Ga and T̂ 2
a = −I then the sub-spectrum statistics match the GSE ensemble;

and finally if T̂a 6∈ Ga then the sub-spectrum statistics match the GUE ensemble. These are the

only three possibilities for T̂a.

Note how Dyson’s methodology is entirely independent of any details of the system that is

being considered - all that is needed to predict the statistics of the spectrum are the forms of T̂ ,

G, U and R. An important corollary of this is that the statistics predicted by Dyson’s method

rely not on the implementation of the system, so that the properties predicted are universal

to any system sharing the same T̂ , G, U and R when the conditions for the random matrix

correspondence are met.

Of course it was necessary to experimentally test these predictions, but the number of suffi-

ciently complex systems that could be realised outside of the GOE class was limited. However,

the requirement on a system to be ‘sufficiently large and complex’ that Wigner and Dyson had

based their assumptions on is now widely believed to be overly restrictive. Initial evidence of

the properties of possible random matrix statistics occurring in simple, classically non-integrable

systems, [20, 34, 114], led to the study of the statistics of the Sinai billiard - a system with a mere

two degrees of freedom - by Bohigas, Giannoni and Schmit, where they found excellent agreement

between the level spacing statistics of the billiard and the GOE ensemble, [25]. With the Sinai bil-

liard system being too small and simple to fulfil the conditions posed by Wigner and Dyson, they

instead conjectured that it was sufficient that the classical analogue of the quantum system under

consideration was chaotic. In doing so, and posing what is now known as the BGS-conjecture

- that a generic quantum system that is sufficiently classically chaotic in the large system limit

has statistics matching a canonical random matrix ensemble identified by having the same sym-

metries as the relevant system, [170] - they inextricably tied the fields of ‘quantum chaos’, or

the study of quantum equivalents of classically chaotic systems, [35, 71, 73, 157], to the study of

random matrices, [70, 115], that was developing out of the work of Wigner and Dyson. There

have been many arguments over exactly what the exact requirements of ‘sufficiently chaotic’ are

on the classical system, [25, 154], but the conjecture is generally believed to hold, and while it has

no general proof, it has been supported by some semi-classical work, [21, 120, 121, 122, 147, 148],

and has been analytically proven in the case of the quantum graph, [62, 63, 130, 159].

The BGS-conjecture then both opens up the number of systems which can be tested against

random matrix predictions, and increases the importance of doing so as a key method of testing

its validity by checking for either individual systems to be consistent with the conjecture, or

identifying counter examples. These tests can be numeric simulations, or experiments, however it

is important to have a mixture, and we will focus primarily on the experimental side as one of the

aims of the thesis is to improve the methods of constructing experimental setups to test some of

the more complicated random matrix ensembles that are introduced later. We note several works

applying numerics to the BGS problem here though. For confirming the GOE ensemble there has

been numerical studies of the Feingold-Peres model, [56]; billiards, [25]; and the quantum graph,

[101]; along with various systems constructed to have GOE statistics in [24, 64, 94, 125]. The

GUE ensemble has been tested against billiard models, [109]; and quantum graphs, [101]; along

with various systems constructed to have GUE statistics in [24, 64, 94, 125]. The GSE ensemble

statistics have been confirmed numerically in the cases of Hamiltonians with quartic potentials,
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[36]; the kicked top for a particle with half-integer spin, [141, 142, 160]; and quantum cat-maps,

[97]; along with various systems constructed to have GSE statistics in [24, 64, 94, 125].

Experimental work on systems to confirm the BGS-conjecture has largely focussed on the GOE

ensemble, with examples including nuclear resonance data, [131], and in particular [132] within

it, along with [26, 76, 178]; microwave cavity resonances, [4, 45]; microwave networks, [107, 152];

acoustic resonances, [128, 140]; and the hydrogen atom in a strong magnetic field, [80]; along with

many other examples. There is also a reasonable amount of study of the GUE statistics, with

them having been experimentally observed in microwave cavity experiments, [44, 46, 153, 158];

and microwave networks, [107, 152].

However despite the numerous systems shown numerically to have GSE statistics, experi-

mental tests against the GSE random matrix predictions were not managed until recently. This

is because of the sort of system needed to implement a time-reversal operator of the form T̂ 2 = −I,
which is the form required to show GSE statistics if no other symmetries are present in the sys-

tem - a T̂ 2 = −I operator implies that the system comprises of an odd number of fermions,

which is significantly harder to realise in the lab than the bosons associated to the GOE T̂ 2 = I
time-reversal, and which leads to quantum systems that can be mimicked by classical setups.

There have been various prior attempts at seeing the GSE statistics experimentally, of course.

An early one applied tangential methods, using the fact that a GOE spectrum with every second

level removed from the spectra is statistically the same as a GSE ensemble, [115], to convert the

experimental spectra of GOE microwave billiards into a GSE spectrum, [4]; and there has been

work on condensed matter systems which have behaviour linked to the GSE ensemble which have

been experimentally tested according to their condensed matter properties, [98, 116], but not the

standard random matrix measures such as the level spacing distribution. Thus, it is only within

recent years that a system has been realised experimentally and shown to hold to the standard

measures of random matrix theory associated to quantum chaos. The first, [133], of these was

the study of Au nanoparticles, [105]; while the slightly later quantum graph method, suggested

in [92] and experimentally verified in [113, 133, 134, 135], is better known and uses methods that

will be easier to extend here, and thus will have more of our focus.

The difficulty in realising GSE statistics in the lab outside of the example in [105] came

entirely from the artificial limit of working with systems with a trivial unitary subgroup - Dyson’s

work already covered non-trivial examples of U and how the behaviour of the local time-reversal

operator T̂a on Ha could be very different to the behaviour of the global time-reversal T̂ operator

on H, but there was little work done on systems taking advantage of this fact until recently. The

first study to really deal with the divergence in the sub-spectra statistics from the form that would

have been predicted by considering the global T̂ was the billiard of Leyvraz, Schmit and Seligman,

[109]. Their billiard included a threefold rotation symmetry which splits the spectra into three

sub-spectra, and while the billiard itself is symmetric under a T̂ 2 = I time-reversal operator which

would predict GOE statistics in the case of no unitary symmetries, two of the three sub-spectra

show GUE statistics, the rotation symmetry having killed the time-reversal symmetry in these

sub-spaces. Works studying this phenomena in other systems however remained limited and none

turned the technique to the issue of realising GSE statistics in the lab prior to [92].

Considering this methodology of starting in a system which would have GOE statistics, then

creating a subspace with the desired statistics through the use of symmetry, Joyner, Müller and
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Sieber, [92], identified the group U = Q8, G = U × Z2 as a symmetry group such that there was

a representation R of U on H where despite the global time-reversal having the bosonic form

of T̂ 2 = I, there exists a subspace with GSE statistics. This system can be constructed as a

quantum graph - and with the equations describing a generic quantum graph being identical to

those describing a microwave graph, [83], implemented in the lab as a microwave wire network,

which is a simple classical system to build. This has allowed the typical identifiers associated

with a random matrix ensemble to be compared against a lab system displaying GSE statistics,

[113, 134, 135], through microwave wire experiments.

In addition to this, a second quantum graph has been recently identified, [3], based on a

billiard system identified in [176] which has been numerically shown to hold GSE statistics and

is compliant with the methodology of microwave wire experiments laid out by [83], and as such

which could be physically realised. This would bring the number of systems tested experimentally

for the GSE statistics up to three if done.

Thus, all three ensembles identified by Wigner and Dyson have been tested for on chaotic

systems in the lab, and been seen to comply with the BGS-conjecture. However, the systems

displaying the statistics described by Wigner and Dyson form only a small subset of Hermitian

chaotic quantum systems - to cover the full set and describe their statistical behaviour it is

necessary to work with what is known as the Altland-Zirnbauer Tenfold Way instead.

The limitation of the systems Wigner and Dyson considered is that they consider systems

where either negative energy levels are not allowed, or the negative energy part of the level spec-

trum is independent of the positive energy part, and when this ceases to hold it has been necessary

to add seven additional ensembles to the original three to describe how the positive energy solu-

tions can relate to the negative energy solutions. The first three of these seven ensembles were

described by Verbaarschot, Shuryak and Zahed based on work on the Dirac operator in QCD,

[146, 166, 167], while Altland and Zirnbauer introduced the final four ensembles from work on

superconductors, [5, 6]. It has since been proven that the classification of Altland and Zirnbauer

is complete for Hermitian systems, and these ten ensembles are the only ensembles a Hermitian

chaotic quantum system’s statistics can match, [79]; there are of course other ensembles outside

the Altland-Zirnbauer Tenfold Way possible when the system isn’t Hermitian, [95].

Altland and Zirnbauer showed that in order to identify the statistics of a spectrum in the

expanded classification it was necessary not only to consider symmetries in the dynamics of the

system, but also symmetries in the energy level spectrum of the system - it is possible to have a

mirror symmetry about zero so that whenever the level En, n ≥ 1, is present in the system, so too

is the level E−n = −En. This means that two new operators on the system become relevant in

addition to the time-reversal operator - the anti-linear particle-hole reversal or charge-conjugation

operator Ĉ which exchanges particles with holes or anti-particles, and the linear chiral operator

P̂, combining the action of T̂ and Ĉ, P̂ = ĈT̂ - with both of these operators potentially anti-

commuting with the Hamiltonian. The relation between these operators and the spectral mirror

symmetries is that in the simplest setup where there are no unitary symmetry operators that

commute with the Hamiltonian, then Ĉ can be shown to provide a potential spectral mirror

symmetry, as the anti-commutation relation ĈĤ = −Ĥ Ĉ implies that if Ĥ |ψ〉 = E |ψ〉 is an

energy eigenstate with eigenvalue E, then Ĥ Ĉ |ψ〉 = −ĈĤ |ψ〉 = −EĈ |ψ〉 and Ĉ |ψ〉 is an existing
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Ĉ is a symmetry,
Ĉ2 = I

Ĉ is a symmetry,
Ĉ2 = −I

Ĉ is not a symmetry

T̂ is a symmetry,
T̂ 2 = I

BDI CI AI

T̂ is a symmetry,
T̂ 2 = −I

DIII CII AII

T̂ is not a sym-
metry

D C AIII, P̂ is a sym-
metry

A, P̂ is not a sym-
metry

Table 1.2: The Altland-Zirnbauer Tenfold Way when the unitary-commuting subgroup U of G is
trivial. The classes depend only on which of T̂ , Ĉ and P̂ are symmetries of the system, and the
squares of T̂ , Ĉ when they are symmetries.

energy eigenstate with energy −E. The equivalent relation P̂Ĥ = −ĤP̂ can cause P̂ to also

produce a spectral mirror symmetry, with the same effect on the energy levels.

The ten different classes in the Altland-Zirnbauer Tenfold Way in this simple case then come

from applying the threefold classification of an operator - as either a symmetry that squares to

the identity; a symmetry that squares to minus the identity; or not a symmetry - to each of the

operators T̂ and Ĉ individually. This would define nine classes, but the case where neither are a

symmetry splits into two based on whether or not P̂ is a symmetry or not. This defines the Tenfold

Way seen in Table 1.2, labelling the system with one of the descriptors A, AI, AII, AIII, BDI,

CII, C, D, CI and DIII, with each corresponding to a different random matrix ensemble classified

by Altland and Zirnbauer and described in [70, 156]. Only the first six of these ensembles have

commonly used names - being the GUE, GOE, GSE, chiral-GUE, chiral-GOE and chiral-GSE

ensembles respectively - so the class labels for the systems will be used instead throughout the

thesis, referring to the class of the system, the class of the symmetry group and the random matrix

ensemble interchangeably. When it is absolutely necessary for the ensembles for the classes C,

D, CI, and DIII to be refereed to specifically though, we will use the abbreviations AZ-C, AZ-D,

AZ-CI and AZ-DIII for them respectively.

As with the Wigner-Dyson classification, the situation for the Altland-Zirnbauer classification

is more complicated when additional unitary-commuting symmetries are allowed in the system,

or the system is not symmetric under charge-conjugation or the chiral operation but is symmetric

under a generalised charge-conjugation operation γ̂ = γ̃Ĉ or generalised chiral operator, π̂ = π̃P̂
combining a unitary transform γ̃ or π̃ with either charge-conjugation or the chiral operator. Once

again, random matrix statistics are possible, but only once the independent sub-spectra have been

identified and isolated, and the method to do this involves identifying the symmetry group G of

the system, its normal subgroup U and U ’s representation R on H.

In this more general case, the symmetry group is now considered to include operators that

anti-commute with the Hamiltonian. This makes the updated symmetry group

G =
{
Ô ∈ Hom(H) | ÔĤ = ±ĤÔ,

∣∣∣〈Ôψ∣∣∣Ôφ〉∣∣∣2= |〈ψ|φ〉|2 ∀ |φ〉 , |ψ〉 ∈ H}. The relevant normal

sub-group U of G, becomes the set of unitary transforms which do commute with the Hamiltonian

U =
{
Ô ∈ G | ÔĤ = ĤÔ,

〈
Ôψ
∣∣∣Ôφ〉= 〈ψ|φ〉 ∀ |φ〉 , |ψ〉 ∈ H

}
and from here Dyson’s method of

isolating sub-spectra and identifying their statistics remains unchanged.

Once again, U containing more than scalar multiplication causes the full spectra to split into

independent sub-spectra {En} =
⋃
a {En}a to match the Hilbert space splitting into sub-spaces
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Class Ensemble T̂a Ĉa P̂a Class Ensemble T̂a Ĉa P̂a
A GUE 6∈ Ga 6∈ Ga 6∈ Ga AIII chGUE 6∈ Ga 6∈ Ga ∈ Ga

AI GOE
∈ Ga
T̂ 2
a = I

6∈ Ga 6∈ Ga BDI chGOE
∈ Ga
T̂ 2
a = I

∈ Ga
Ĉ2
a = I

∈ Ga

AII GSE
∈ Ga
T̂ 2
a = −I

6∈ Ga 6∈ Ga CII chGSE
∈ Ga
T̂ 2
a = −I

∈ Ga
Ĉ2
a = −I

∈ Ga

D 6∈ Ga ∈ Ga
Ĉ2
a = I

6∈ Ga CI
∈ Ga
T̂ 2
a = I

∈ Ga
Ĉ2
a = −I

∈ Ga

C 6∈ Ga ∈ Ga
Ĉ2
a = −I

6∈ Ga DIII
∈ Ga
T̂ 2
a = −I

∈ Ga
Ĉ2
a = I

∈ Ga

Table 1.3: The Altland-Zirnbauer class of the sub-space for each form of the local symmetry
group Ga, with the common name of the corresponding ensemble for the spectral statistics where
a common name for the ensemble exists.

H =
⊕

aHa with their own sub-Hamiltonians, Ĥ =
⊕

a Ĥa, and R splitting into irreducible

representations. This allows the definition of the local symmetry group

Ga =
{
Ô ∈ Hom(Ha) | ÔĤa = ±ĤaÔ,

∣∣∣〈Ôψ∣∣∣Ôφ〉∣∣∣2= |〈ψ|φ〉|2 ∀ |φ〉 , |ψ〉 ∈ Ha} which includes at

most scalar multiplication and the local time-reversal, charge-conjugation and chiral operators,

T̂a, Ĉa and P̂a respectively. The sub-spectrum can then be given an Altland-Zirnbauer class based

on which of T̂a, Ĉa and P̂a are included in Ga and the form of their squares as seen in Table 1.3,

this class then corresponds to matching one of the ten random matrix ensembles described in

[70, 156].

The BGS-conjecture is assumed to be extendible to the new systems covered by Altland and

Zirnbauer, thus there are a new set of classes for which experiments need to be carried out for to

test the conjecture. There is however, a similar problem to the GSE case in finding examples that

can be created in the lab for several of the new classes. This is despite a plethora of numerical

examples existing for each of the clsses - the Feingold-Peres model can display AI, BDI or CI

statistics, [56]; the Dirac operator on an SU(2) lattice under QCD can show one of the classes A,

AI, AII, AIII, BDI and CII, [15, 125]; and by taking different values of N in supersymmetric SYK

models each of the ten classes can be simulated, [94]; numerous other examples are discussed

in [14] - and experimental examples in condensed matter that haven’t applied the traditional

random matrix checks to the system, see the systems discussed in [14, 39, 55, 143]. Experimental

verification of the standard measures of the random matrix predictions on the other hand, have

so far been limited to the classes AIII, BDI and CII, [136]. This obviously leaves examples of the

classes C, CI, D and DIII outstanding.

There is a necessity then to identify a set of systems which cover each of the seven new classes

and which could be potentially be realised in the lab. Given a lot of the difficulty can arise from

implementing specific forms of T̂ , Ĉ and P̂, this would optimally take a system with a specific

easy to implement pair of T̂ and Ĉ and then use techniques like that of Leyvraz, Schmit and

Seligman, and Joyner, Müller and Sieber in using symmetry to create subspaces in the system

and selectively kill or convert the local T̂a and Ĉa into the appropriate forms for each ensemble.

It is important to note two prior works that have had similar goals or techniques. The

first is by Gnutzmann and Seif, [64, 144], which defines the Andreev star graph, a series of
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superconducting wires that are linked in the center, so that a particle can travel up and down the

wires and experience Andreev reflection at the loose ends, becoming a hole with an added phase,

or scattering between different wires at the center point according to a chosen scattering matrix.

An Andreev graph without additional symmetry naturally sits in the Altland-Zirnbauer class

CI, [67], however by using different manipulations of the Andreev reflection parameters and the

scattering matrix at the center, Gnutzmann and Seif shifted the ensemble statistics to be in each

of the ten different classes. Essentially, the matrices describing the reflections and scatterings were

drawn from those allowed under the desired class, and the ensemble was used to generate itself.

Like Gnutzmann and Seif, we will use a generalisation of the quantum graph, and we will use a

simple manipulation of the vertex scattering matrices to place the system into one class before

symmetry is added; however, our method of manipulating the vertex scattering conditions shall

not change between the different classes, moving between classes will be done entirely through

symmetry in the graph’s geometry, so that each ensemble is created by drawing from the unitary

ensemble. This means that only one rule on the scattering matrices need be imposed, instead of

a different one for each class, and thus the number of different vertex conditions to have to be

able to implement in the lab is significantly reduced.

The second work of note is by Blatzios, [24], which takes a system with trivial unitary-

commuting subgroup, U , from each Altland-Zirnbauer class - so a collection of ten systems where

each is symmetric under a different one of the ten possible forms of G with U the trivial group

- and then adds a threefold rotation as a unitary commuting symmetry to each system, now

setting U = Z3 and studying what classes appear in each of the new sub-spaces created by the

symmetry. This did return a sub-space showing the statistics of each of the ten classes, but

it required iterating over the different initial systems to achieve it, keeping the chosen form of

U fixed. We wish to choose a single system, and then apply different symmetry groups G and

unitary commuting subgroup U to find the different classes in contrast.

At this point we restate our aim - identify a single system with fixed forms of T̂ and Ĉ
as operators, and by initialising it with different symmetry groups, produce ten examples of

subspaces, each showing the statistics of a different random matrix ensemble from Altland and

Zirnbauer’s classification. Furthermore, demonstrate that these subspaces can be constructed as

stand-alone systems. We then hope that this produces a set of systems which can be realised in

the lab to show each of the ten ensembles described under Altland and Zirnbauer’s classification.

To do this, we first discuss the abstract representation and corepresentation theory of the

groups with the structure of a symmetry group in Chapter 2. We introduce both the Dyson

Threefold and Altland-Zirnbauer Tenfold classifications of corepresentations, and how they are

linked to the structure of the corepresentations and their commutators. The modifications to

these theories needed to allow for non-involutive global forms of T̂ and Ĉ are also discussed.

In Chapter 3 we then qualitatively discuss the meaning of quantum symmetries and the

physical interpretations of different types of symmetry operator. The theory of Chapter 2 is

applied, showing how corepresentations describe the action of symmetry groups on the system,

and how the reduction into subspaces is possible and how it affects symmetry groups described.

How knowing the Altland-Zirnbuer class of a subspace can be used to identify the structure of

the corresponding sub-Hamiltonian is introduced prior to being expanded upon in Chapter 4.
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Quantum chaos is finally introduced, with a discussion on the universal behaviours seen in the

Gaussian systems considered here.

Chapter 4 then details the random matrix theory behind the ten ensembles involved in the

Altland-Zirnbauer classification, along with a set of characteristic distributions of properties of

the system that can be used to identify each ensemble when given the spectral data of a system.

At this point, knowing the symmetry group G, we can identify what statistics should appear in

its spectra, as well as test for these statistics, meaning we can move onto looking for the desired

example systems.

The first part of identifying the example systems is identifying suitable symmetry groups. The

methodology behind searching for these groups is described in Chapter 5, with suitable examples

for producing each Altland-Zirnbauer class located.

Chapters 6 and 7 then move onto discussing the models which can be used to represent these

symmetry groups. Chapter 6 starts with the quantum graph, giving the most general definition

of symmetry on a quantum graph and then using this to generalise the algorithm used by Joyner,

Müller and Sieber to find models symmetric under G = U × Z2 symmetry groups, extending it

to cover all possible forms of symmetry groups described by Dyson, the first stage of defining

the algorithm which will be necessary to build the Altland-Zirnbauer example systems. This

allows the first three systems from Chapter 5 to be modelled and tested numerically. While the

GOE, GUE and GSE ensembles tested here have already been covered in the literature, the work

here fills the final gaps in the description of symmetric quantum graphs, discussing implementing

generalised time-reversal symmetries on the graph and testing ensemble-generation methods and

identifying ensembles through measuring spectral statistics other than the spacing distribution

as practise for dealing with the Altland-Zirnbauer ensembles.

In Chapter 7 we then turn to the models that will allow us to fulfil the task of finding ten

systems showing the ten ensemble statistics of the Altland-Zirnbauer classification. We turn to

the Dirac graph, introduced by Bulla and Trenkler, [31], as a variant of the quantum graph which

allows both particle and anti-particle solutions by supplanting the Schrödinger equation on the

wires with the Dirac equation; the Dirac graph having already had application to the study of

quantum chaos and random matrix theory, [27].

The Dirac equation is introduced, its one-dimensional form and solutions discussed and its

action under T̂ and Ĉ described. The Dirac graph can then be described, and a definition of

symmetry on it given, including the restrictions on its form to be symmetric under T̂ , Ĉ and P̂.

The algorithm of Joyner, Müller and Sieber then receives its final extension, now covering all of

the symmetry groups considered by Altland and Zirnbauer, so that a graph symmetric under any

form of applicable symmetry group G can be generated. Systems for each of the ten Altland-

Zirnbauer ensembles are constructed, and simulated numerically, showing agreement with the

predictions and fulfilling the aim of the thesis. Finally, there is discussion of how Dirac graphs

can be converted into equivalent quantum graphs for potential microwave implementations.

In addition to this, there are primers on group theory, super-algebra and quantum systems

in Appendices A, B and C, along with a discussion on how the graphs considered here have

structure that can be taken advantage of for doing periodic orbit expansions for semiclassical

approximation of statistical measures in Appendix D. The results of the algorithmic classification

9



of symmetry groups according to the Dyson and Altland-Zirnbauer methodologies are given for

small groups in Appendix E.
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2. Representation Theory

We begin by covering the pure representation theory that will be necessary to understand how

geometric, time-reversal, charge-conjugation and chiral operators act on quantum states. First,

having given a primer on group theory in Appendix A we consider the standard unitary represent-

ations of finite groups. These will be used for describing geometric and other unitary symmetries

in Section 2.1. In Section 2.2 we study the modifications to unitary representations that are al-

lowable when a Z2-grading is imposed; Section 2.3 covers the case when a Z2×Z2-grading is used.

Z2-gradings will allow for time-reversal symmetries; Z2×Z2-gradings for charge-conjugation and

the chiral operation when we come to work with their application as the method of switching

between symmetry transforms of a quantum system, and quantum operators. Finally, we cover

projective representations, which will be necessary for dealing with spin particles.

2.1 Representation of Finite Groups

The study of unitary representations of finite groups is the subject of many books, and lecture

courses. We will draw primarily from [99, 149] here, with additions from [52, 53, 86, 96], and

while aiming to keep language consistent with [117] for comparison with the later sections.

It is often the case that group theory is introduced by the study of two abstract sets and their

multiplication rules, say the nth roots of unity under multiplication, and Z/nZ under addition.

Comparing how these two act, it is realised that they are at an abstract level the ‘same’, and

both are implementations of the group Zn. Group theory has its power in recognising abstract

rules and structure, and using these to prove things for all its implementations rather than do

each individually.

However, in its abstractness, group theory loses all information about how groups interact

with other objects. In order to recover this, representation theory gives methods to calculate

and classify different implementations of a group acting in a vector space, while identifying

‘fundamental’ representations of a group and studying their structure. Representation theory can

be a powerful tool for understanding groups in its own right, for example Burnside’s Theorem

for groups was first proved with representation theory, and it would take another 70 years for a

solely group theoretic proof to be generated, [32, 86]. It is though, primarily the information on

how groups transform vector spaces that we will care about here.

We begin with the formal definition of a representation, linking group elements to the invertible

maps GL(V ) of a vector space, [96].
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Definition 2.1.1. Let G be a finite group, V a finite dimensional vector space and GL(V ) ⊂
Hom(V ) be the set of invertible linear maps from V to itself. Then, a representation R of G is

a homomorphism

R : G→ GL(V ), R : g → R(g).

In our case, it will only be necessary to consider those linear representations that can be

written with matrices, [86, 96]:

Definition 2.1.2. Let G be a finite group, K a field and GL(n,K) be the group of invertible

n× n matrices with entries in K. Then a matrix representation M of G is a homomorphism

M : G→ GL(n,K), M : g →M(g).

It has dimension dim(M) = n.

There is no conflict between the two definitions of a representation when both exist; when

V = Kn, with a basis {ei} and a bilinear form (·, ·), a linear representation R : G → GL(V )

can be converted to a matrix representation M : G → GL(n,K) by defining the matrices with

elements, [53],

Mij(g) = (ei, R(g)ej).

In these cases GL(V ) = GL(n,K) and it is permissible to write R : G → GL(V ) is a matrix

representation.

We also restrict ourselves to fields of characteristic 0, that is the fields where if 1 is the

multiplicative identity there is no sum 1 + 1 + · · · + 1 = 0. We will see later that is is sufficient

to consider the fields R and C.

Given a representation of a group G, it is natural to ask what representations of groups G′

related to G we can construct. Four primary methods exist - first are the direct sums and tensor

products that come naturally from their existence on matrices:

Definition 2.1.3. Let G be a finite group, V1, V2 vector spaces and R1, R2 matrix representations

of G on V1, V2 respectively. Then, two further representations of G can be formed:

� The direct sum representation R1 ⊕R2 : G→ GL(V1 ⊕ V2) is defined as

(R1 ⊕R2)(g)(v1 ⊕ v2) = R1(g)v1 ⊕R2(g)v2

It has dimension dim(R1) + dim(R2).

� The tensor product representation R1 ⊗R2 : G→ GL(V1 ⊗ V2) is defined as

(R1 ⊗R2)(g)(v1 ⊗ v2) = R1(g)v1 ⊗R2(g)v2

It has dimension dim(R1)× dim(R2).

The second pair are the induced and restricted representations which relate a representation

RH on the vector space VH for a subgroup H < G to the representation RG of its supergroup G

on the vector space VG, [96]:
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Definition 2.1.4. Let G be a group with representation RG on VG = Kn, and H a subgroup of

G of index [H : G] with transversal T = {sa} in G, and representation RH on VH = Km. Then:

� The restriction of RG onto H, RG↓H is the representation of H on VG such that RG↓H(h) =

RG(h).

� The matrix representation RH↑G of G induced by RH of H is defined on V ′ = K [G:H]⊗Km

as the block matrix,

RH↑G(g)(a,i),(b,j) =

RH(s−1
a gsb)ij s−1

a gsb ∈ H

0 otherwise

The restricted representation of G to H essentially constructs a representation of H by taking

a representation of G and forgetting the additional information about the elements of G not in

H. The induced representation takes a known representation RH of H and then uses the coset

structure of H in G to extend the representation by identifying how the representation RH acts

within each of the coset copies of H, and how elements in G but not H permute the cosets around.

This gives the block structure given above.

Induced representations from normal subgroups will be of great use, in particular the case

where G/H = Z2 with transversal T = {e, a}, which by substituting into the definition of the

induced representation is seen to give a representation with the structure,

RH↑G(g ∈ H) =

RH(g) 0

0 RH(a−1ga)

, RH↑G(g ∈ aH) =

 0 RH(ga)

RH(a−1g)

, (2.1)

while the case where G/H = K4 with the transversal T = {e, a, b, c = ab} gives the induced

representation

RH↑G(g ∈ H) =


RH(g) 0 0 0

0 RH(a−1ga) 0 0

0 0 RH(b−1gb) 0

0 0 0 RH(c−1gc)



RH↑G(g ∈ aH) =


0 RH(ga) 0 0

RH(a−1g) 0 0

0 0 0 RH(b−1gc)

0 0 RH(c−1gb) 0



RH↑G(g ∈ bH) =


0 0 RH(gb) 0

0 0 0 RH(a−1gc)

RH(b−1g) 0 0 0

0 RH(c−1ga) 0 0



RH↑G(g ∈ cH) =


0 0 0 RH(gc)

0 0 RH(a−1gb) 0

0 RH(b−1ga) 0 0

RH(gc−1) 0 0 0

.

(2.2)
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These two induced representations will see application in describing the Dyson Threefold Way,

[30], and the Altland-Zirnbauer Tenfold Way respectively.

Identification of equivalent objects R,R′ always involves finding if there are bijective homo-

morphisms between the two. The representation version of the bijective homomorphisms, which

in context are also called intertwiners, will also have further roles to play in classifying repres-

entations, [149].

Definition 2.1.5. Let G be a finite group, V1, V2 be vector spaces and R1, R2 be matrix repres-

entations of G on V1, V2 respectively. Then an intertwiner T ∈ Hom(V1, V2) is a function such

that

TR1(g) = R2(g)T

If T is a bijection, then R1, R2 are equivalent representations, R1
∼= R2.

Equivalence of representations, and direct sums of representations give the foundation to begin

classifying representations.

Firstly, we recognise that we can restrict consideration of matrix representations to unitary

matrices without loss of generality, GL(n,K)→ U(n,K), [99].

Theorem 2.1.6. Let G be a finite group, V a vector space with inner product 〈·, ·〉 and R : G→
GL(V ) a representation. Then there exists an inner product 〈·, ·〉′ which R is unitary in respect

to,

〈R(g)u,R(g)v〉′ = 〈u, v〉′, ∀u, v ∈ V, g ∈ G

Proof. We prove this by construction of an appropriate inner product as

〈u, v〉′ =
1

|G|
∑
g∈G
〈R(g)u,R(g)v〉

which satisfies the requirements of an inner product and is invariant under 〈u, v〉′ → 〈R(g)u,R(g)v〉′
by Theorem A.0.7.

Corollary 2.1.7. Let G be a finite group, and R : G → GL(n,K) be a matrix representation.

Then there exists a matrix T such that

TR(g)T−1 ∈ U(n,K) ∀g ∈ G

and U(g) = TR(g)T−1 ∼= R(g) provides a unitary matrix representation of G that is equivalent

to R.

Next we can identify whether or not a representation is a direct sum of representations, [99].

Proposition 2.1.8. Let G be a finite group and R : G → GL(V ) a matrix representation. If

there exists a proper subspace W ⊂ V , W 6= ∅, such that W is invariant under R,

R(g)w ∈W, ∀g ∈ G, w ∈W

then R is the direct sum of the two representations RW : G→ GL(W ) and RW⊥ : G→ GL(W⊥).
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If no such proper subspace exists, then R is an irreducible representation of G, and will be

labelled ρ.

Irreducible representations of groups form the building blocks of all of representation theory;

from them every representation of a group can be constructed, [33, 99]:

Theorem 2.1.9 (Maschke). Let G be a finite group with irreducible representations {ρi} and

representation R all over a field of characteristic 0. Then either R = ρi is irreducible, or R is

completely decomposable as a direct sum of irreducible representations with multiplicities si,

R =
⊕
i

si⊕
n=1

ρi

Proof. We use proof by induction on the dimension of the representation. A dimension 1 repres-

entation is trivially irreducible. Assume that all representations of dimension n or less are either

irreducible or a direct sum of irreducible representations. Take a representation of dimension n+1,

either it is irreducible, or by Proposition 2.1.8 we can find RW , RW⊥ such that R = RW ⊕RW⊥ .

As dim(RW ),dim(RW⊥) ≤ n, then they are either irreducible or completely reducible, and the

direct sum of their decompositions into irreducible components gives the decomposition for R.

This seems trivial, however the full version for a field of any characteristic only holds for groups

where the character of the field doesn’t divide the order of the group, [33]. Thus, our choice to

consider only characteristic 0 fields is essential here in guaranteeing Maschke’s theorem holds

for all groups. Complete reducibility is essential though, as the most important classification

methods will hold only for irreducible representations.

Classification of a potentially infinite set of irreducible representations seems impossible, how-

ever we are guaranteed that finite groups only have a finite number of irreducible representations.

Theorem 2.1.10. Let G be a finite group, then the number of unique irreducible representations

of G, is the number of unique conjugacy classes of G,

|{ρi}| = |{Cg}|

Proof. See [149] for a proof using class functions and character theory.

Though not irreducible, the representation known as the regular representation will be of

great use, [99]:

Definition 2.1.11. Let G be a finite group of order n and V = Rn. We identify the basis

elements ei of V with the group elements gi of G, ei ↔ gi and define the regular representation

Rreg. as the matrices

(Rreg.)jk(gi) =

1 gjg
−1
k = gi

0 otherwise

Essentially, Rreg. describes how the elements of G permute under multiplication. It will appear

later as the representation of a group acting on its Cayley Graph, and will be the reason every

possible sub-spectrum appears on a quantum Cayley Graph, underpinning the algorithms used to
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generate the desired spectral statistics for a given group. The reason for this is that the regular

representation of G includes exactly one copy of every irreducible representation of G.

Theorem 2.1.12. Let G be a finite group with n irreducible representations {ρi} then the regular

representation decomposes into irreducible components as

Rreg. =
⊕

ρi∈{ρi}

ρi

Proof. See [99] for a particularly elegant proof of this using character theory.

Finally, irreducibility of representations will have an impact on the existence and form of

intertwiners between representations, [53]:

Theorem 2.1.13 (Schur). Let ρ1, ρ2 be two irreducible representations of G on V . Let T be an

intertwiner for ρ1, ρ2 so that Tρ1 = ρ2T . Then, either,

� T = zI, is a scalar multiple of the identity on V and ρ1
∼= ρ2.

� T = 0, the intertwiner is trivial and the two irreducible representations are inequivalent.

Proof. See [53] for a proof.

2.1.1 Classification of Finite Irreducible Representations

We now consider what fields matrix representations can be taken over, by applying Artin-

Wedderburn’s Theorem to restrict them to elements of a division ring. The method followed

is from [51, 171].

Artin-Wedderburn’s theorem in its general form states that all semi-simple algebras A over

a field K can be written as a direct product of matrix algebras Mi with entries from division

rings Di over K, [54]. To apply it to the matrix representations then requires the definition of

a suitable algebra out of the representation, the obvious one being the group algebra, and its

commutator algebra, [51].

Definition 2.1.14. Let G be a finite group, with matrix representation R over K. Then the

group algebra A = 〈R(g)〉 is the algebra generated by the elements of R(g) over K.

The commutator algebra A of A is defined as the algebra generated by the set of matrices A

that commute with all elements of A.

In this case, A is also the algebra generated by the set of self-intertwiners of the representation

R, A = Z = 〈T ∈ Hom(V, V )|R(g)T = TR(g) ∀g ∈ G〉. These algebras are guaranteed to be

semi-simple when K is chosen to be a characteristic 0 field, [33].

Defining the two forms of algebra tA, At that can be constructed from the algebra A, [51],

At =


a11 a12 . . .

a21
. . .

...

 aij ∈ A, tA = {It ⊗ a | a ∈ A}
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then Artin-Wedderburn’s theorem can be given in Dyson’s notation as:

Theorem 2.1.15. Let A be a matrix algebra over a characteristic 0 field K, decomposable into

n components. Then A is also decomposable into n components and the pair have structure

A =

n∑
i=1

si(Ei)ti , A =

n∑
i=1

ti(Ei)si

where Ei is an associative division algebra over K.

In order to apply this to unitary matrix representations over Cn it is useful to note that a

representation over Cn can always be converted into a representation over R2n by applying the

map, [51],

R(a+ ib) =

a −b
b a

, R

a11 . . .
...

. . .

 =

R(a11) . . .
...

. . .

 (2.3)

The algebra over Cn with basis {ei} can then be written as an algebra over R2n with basis

{R(ei)} ∪

i = In ⊗

0 −1

1 0

, giving the map

R : A = 〈{ei}〉 → AR =

〈
{R(ei)} ∪

i = In ⊗

0 −1

1 0


〉

(2.4)

between a complex algebra and its real version.

Using this map on the algebras A,A before the Artin-Wedderburn Theorem is applied to

them, then Frobenius’ Theorem, [51], applies to the decomposition elements Ei, restricting them

to one of three forms:

Theorem 2.1.16 (Frobenius). The only associative division algebras over R are R,C and H.

This identifies the possible division algebras for Theorem 2.1.15:

Corollary 2.1.17. Let R be a unitary matrix representation of G over Cn, generating the group

algebra A and its commutator algebra A. Then AR, AR decompose into irreducible components

AR =

n∑
i=1

si(Ei)ti , AR =

n∑
i=1

ti(Ei)si

for some si, ti, where Ei ∼= R,C or H for each i.

For irreducible representations, the result is generally paraphrased as, [149]:

Theorem 2.1.18. Let G be a finite group, and ρ an irreducible unitary matrix representation,

then ρ is isomorphic to a matrix representation over one of R,C or C with quaternionic structure,

H. It will be termed a real, complex or quaternionic (pseudo-real) representation respectively.

Another approach to classifying the field K the representation is taken over, is to consider

how the representation acts under complex conjugation, K : x→ x∗, [149]. Formally on a vector

space X, a complex conjugate map K : X → X is a map so that
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� K(ax+ by) = a∗K(x) + b∗K(y) ∀a, b ∈ C, x, y ∈ X.

� 〈Kx,Ky〉 = 〈y, x〉 = 〈x, y〉∗

� K2 = I.

These requirements can be summarized as requiring that K is involutive (requirement 3) and

anti-linear, anti-unitary (requirements 1 and 2). The anti-linear, anti-unitary requirements will

appear again in defining graded representations and the definition of complex conjugtion as the

operator K will persist throughout this thesis.

Given ρ and K, the complex conjugation representation is defined as

ρ∗(g) = Kρ(g)K

and it must either be equivalent or inequivalent to ρ, which in turn classifies the field ρ is defined

over, [149]:

Theorem 2.1.19. Let G be a finite group, and ρ an irreducible representation with complex

conjugate representation ρ∗. Then, either there exists an intertwiner S such that

ρ∗ = SρS−1,

SS
∗ = I and ρ is real

SS∗ = −I and ρ is quaternionic

or

ρ∗ 6∼= ρ, and ρ is complex

Both of the above approaches of classifying K as real, complex or quaternionic are useful, and

will see application in defining structure on graded groups.

2.1.2 Character Theory

Irreducible representations are the idealised objects of study of representation theory, however

they are difficult to construct. The regular representation does encode a copy of every one,

but finding the correct transformation to separate them is a complicated task. However, for

most purposes, the matrix form of an irreducible representation is unnecessary - all the relevant

information is encoded in the representation’s character, [99, 149]:

Definition 2.1.20. Let G be a finite group with matrix representation R. Then the character

χR of R is defined as

χR(g) = Tr(R(g)).

The fact that the easiest proofs of Theorems 2.1.10 and 2.1.12 require character theory is a

hint towards their power. They obey a number of incredibly useful rules, [52, 99]:

Proposition 2.1.21. Let G be a finite group, with the set of conjugacy classes {Cg}, the set of

irreducible representations {ρi}, and the representation R. Then:
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1. For a given representation R, χR(g) is dependent only on the conjugacy class of g. That is

χR(g1) = χR(g2) ∀g2 ∈ Cg1 . Thus, the characters of the conjugacy class c ∈ {Cg} can be

referred to as χR(c).

2. The character of an element’s inverse is the complex conjugate of the character, χR(g−1) =

χ∗R(g).

3. The characters of inequivalent irreducible representations are orthogonal, with respect to the

inner product on characters,

〈χρi , χρj 〉 =
1

|G|
∑

c∈{Cg}

|c|χρi(c)χ∗ρj (c) = δij (2.5)

4. The characters of two conjugacy classes Cj , Ck of elements j, k inequivalent under conjug-

ation, i ∼ j ⇔ ∃g ∈ G : i = gjg−1, are orthogonal when averaged over the irreducible

representations,
|Ci|
|G|

∑
r∈{ρi}

χr(Cj)χ
∗
r(Ck) = δj∼k

5. Given a reducible representation R, then its decomposition into irreducible components

R =
⊕

i

⊕si
n=1 ρi can be calculated by finding the multiplicities of each of the irreducible

representations ρi in R. These are given by

si = 〈χR, χρi〉

for each irreducible representation ρi of G.

6. If a representation R has dimension d, then χR(e) = d.

Characters have the advantage over matrix representations in that they are algorithmically

computable having been given a group without it representation, with examples of such algorithms

including Burnside’s Method appearing in [52]. They are therefore more suitable for any work

with representations done on computers, and will provide an essential tool for designing the

algorithms described in Chapter 5.

The standard way of presenting the information about the characters of a group is in the

character table.

Definition 2.1.22. Let G be a finite group, {ρi} the set of unique irreducible representations and

{Cg} the set of unique conjugacy classes of G. Then the character table Γ of G is the |{ρi}|×|{ρi}|
table with entries given by

Γij = χρi(Cj)

Characters can also be applied to the problem of classifying the fields of irreducible repres-

entations by combining the classification of irreducible representations ρ by their equivalence

to ρ∗ according to Theorem 2.1.19 with the character orthogonality relation 2.5 to form the

Frobenius-Schur Indicator, [52]:

19



Theorem 2.1.23. Let G be a finite group with irreducible matrix representation ρ over K. Then,

ρ is real, complex or quaternionic according to the indicator

FSIU (ρ) =
1

|G|
∑
g∈G

χρ(g
2) =


1 ρ real

0 ρ complex

−1 ρ quaternionic

2.2 Representation of Z2-Graded Groups

The reason for the study of representations is that the symmetry group G of a quantum system

can often be inferred from the geometry of the system more easily than it can be found through

the testing of combinations of operators. When this geometric analysis is done, an abstract

group is found, and it is then necessary to reconstruct the appropriate operators on the Hilbert

space. Furthermore, as previously mentioned, the representations of the symmetry group and its

subgroup U predict the statistical behaviour of the energy levels of the system. However, the

representations discussed in the last section produce purely unitary operators, and it has already

been discussed how time-reversal and charge-conjugation type operators require anti-unitary op-

erators. This issue can however be circumvented, by the application of graded groups. These are

groups where additional structure is identified in the elements, which allows representations of

them to include the necessary anti-unitary elements.

We begin with the grading structure needed to describe systems with generalised time-reversal

but not generalised charge-conjugation or generalised chiral symmetries. These groups were first

studied in the context of physics by Wigner, [175], and developed by [30, 47, 48] as the magnetic

groups; their special representations are most commonly known as corepresentations. We note

that Moore, [59, 117], on the other hand calls them φ-representations to avoid the fact the term

corepresentation is already used for representations of co-algebras. In keeping with the majority

of the physics literature, we will continue to discuss them as ‘corepresentations’ rather than

adopting Moore’s language despite the issue of the name overlap. This will also allow a degree

of useful name overloading when dealing with situations where either Z2-graded or the Z2 × Z2-

graded groups discussed in Section 2.3 could be present, as we can refer to the representations of

both as corepresentations.

From here on, we treat the subject abstractly, laying the foundation to apply these groups

in Chapter 3. This will allow the theory to be discussed more rigorously, however we do ensure

that naming conventions are kept consistent with physically motivated labels and interpretations.

There is only one thing of importance to note before doing this - the symmetry group G described

in the introduction is not the symmetry group normally considered, but is the extension of the

true symmetry group, which acts on the projective Hilbert space, not the full Hilbert space,

with the true symmetry group being found by taking G → G/U(1). The link between the true

symmetry group and the extended symmetry group and how one can move between them is

discussed in Chapter 3. The important change however, is that scalar multiplication is removed

as a member of G - which sets all phase shifts in the operators to 1 - and in all cases to be

considered turns the extended symmetry group - which was infinite - into a finite group. These
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are necessary measures when working with an abstract group, in order to find the correct finite

number of corepresentations, which will act on the projective Hilbert space. It should be noted

however, that phrasing around whether a subset of scalars is included in the symmetry group

can be fairly fluid in the physics community. None are included here initially, and the abstract

techniques of re-including scalar multiplication in the corepresentations of the true symmetry

groups to find their representation on the full Hilbert space are discussed in Section 2.4.

Reiterating, we now call the true symmetry group G, and drop the prefix of ‘true’ from its

description.

With this motivation, we now start with the most general definition of a graded group:

Definition 2.2.1. Let G,G′ be finite groups. (G,R) is a G′-graded group if R : G → G′ is a

homomorphism. If U = ker(R) and T is the transversal of U in G, then G =
⋃
t∈T tU .

G is then divided into subsets that interact with each other according to G′.

The first relevant grading here is the Z2 grading, [30, 117]:

Definition 2.2.2. A Z2-graded group (G,φ) is the finite group G with the group homomorphism

φ : G → Z2. Labelling ker(φ) = U and A = {g ∈ G | φ(g) = −1} then G = U ∪ A. Choosing an

element α ∈ G− ker(φ), then G = U ∪ αU .

This either splits G into two halves - a normal subgroup U of index 2 and its coset, αU , or

else U = G as the map φ is trivial.

Lemma 2.2.3. If A 6= ∅ then |A| = |U | = |G|/2.

Proof. If A is non-empty, then it is a coset of U in G and G = U ∪ A. Therefore |U | = |A| and

|U |+ |A| = |G| which implies |A| = |U | = |G|/2. If A = ∅ then kerφ = G and φ = 1 is the trivial

map.

In almost all cases of interest though, A will be non-empty, as this is the case when the new

structure of the corepresentations of Z2-graded groups becomes relevant. This is the ability for

corepresentation elements to be anti-linear, that is to apply the complex conjugation operator to

all elements to their right. Due to this non-linearity, these elements are no longer homomorphisms

when taken over a vector space that allows multiplication of its vectors by complex numbers. This

would be an issue, as the standard representation definition requires the originating vector space V

to be complex, however, by taking the same basis elements {ei} and then allowing multiplication

by only scalars in R, a subspace VR ⊂ V is created, and the anti-linear corepresentation elements

are homomorphisms on this subspace of V . The space GL(VR) can then be taken as the space to

define the representation elements, with the domain of the functions in it then extended to all of

V . As the domain is being extended, there is no requirement that the functions remain linear on

the new parts of the domain - allowing the necessary anti-linear elements.

We note that where the previous section used GL(V ) as the name of the group of invertible,

linear maps, when V is finite dimensional it is more common to call the space Aut(V ) in the

physics literature, which we do from here out. This is allowable, as all the vector spaces under

consideration in our applications will be finite so GL(V ) = Aut(V ).

The formal definition of a corepresentation is given as, [59, 117, 176]:
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Definition 2.2.4. Let (G,φ) be a Z2-graded group. Let V be a vector space over C with subspace

VR where scalar multiplication is restricted to R. Then the corepresentation R of (G,φ) is defined

as

R : G→ Aut(VR), R(g)z =

zR(g) φ(g) = 1

z∗R(g) φ(g) = −1

∀z ∈ C.

Given that U is a normal subgroup of G of index 2, a matrix representation R of U induces

a matrix corepresentation of G by a modification of the induced representation formulae for Z2

in Equation 2.1, as, [30],

R(g ∈ U) =

R(g) 0

0 R∗(α−1gα)

, R(g ∈ αU) =

 0 R(gα)

R∗(α−1g) 0

K (2.6)

so that the complex conjugate representation is taken whenever α−1 appears, and the complex

conjugation map is added for elements of αU . As K is anti-unitary, corepresentation elements

can no longer all be unitary, but are instead are unitary/anti-unitary based on whether g is in U

or αU , [176]:

Theorem 2.2.5. Let (G,φ) be a Z2 graded group, V a vector space with inner product 〈·, ·〉 and

R : G→ Aut(VR) a corepresentation. Then there exists and inner product 〈·, ·〉′ which R(u ∈ U)

is unitary with respect to and R(a ∈ αU) is anti-unitary with respect to,

〈R(u)v,R(u)w〉′ = 〈v, w〉′ , 〈R(a)v,R(a)w〉′ = 〈v, w〉′∗ , ∀v, w ∈W, u ∈ U, a ∈ αU.

Group elements of U will be termed unitary, and elements of αU , anti-unitary.

Proof. We prove this by construction of a suitable inner product. Assuming that the inner

product 〈·, ·〉′ on V already exists, then

〈v, w〉′ =
1

|G|
∑
u∈U
〈R(u)v,R(u)w〉+ 〈R(uα)v,R(uα)w〉∗

is an inner product and satisfies the unitary/anti-unitary requirement.

This is also where the labels for the two subsets U,A of G come from - U stands for the

unitary elements, and A stands for the anti-unitary elements.

While an anti-unitary element can no longer be written solely as a unitary matrix, it is still

possible to standardise the form of their corepresentations, so it is not required to look for many

different forms of anti-unitary operator - looking at the matrix forms for a corepresentation, the

anti-unitary elements can always be represented by a unitary matrix right-multiplied by an anti-

unitary operation K. The unitary-matrix part of a corepresentation will be defined as R̃, so that

for a unitary element, R = R̃, while for an anti-unitary element, R = R̃K.

Equivalence of corepresentations is again through the existence of intertwiners between the

corepresentations, [176]:

Definition 2.2.6. Let (G,φ) be a Z2-graded group, V1, V2 vector spaces, and R1,R2 be corepres-

entations of (G,φ) on V1, V2 respectively. Then an intertwiner T ∈ Hom(V1, V2) is a morphism
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such that

TR1(g) = R2(g)T ∀g ∈ G.

If T is a bijection, then R1,R2 are equivalent corepresentations, R1
∼= R2.

Looking only at the unitary matrix parts of the corepresentations, two corepresentations

R1,R2 will then be equivalent if

∃T ∈ U(n),
R̃1(u ∈ U)T = T R̃2(u ∈ U)

R̃1(a ∈ αU)T ∗ = T R̃2(a ∈ αU).

Irreducible corepresentations can also be defined the same way as irreducible representations,

[30]:

Definition 2.2.7. Let R be a corepresentation on V of G = U ∪αU , a Z2-graded group. If there

exists a proper subspace W ( V , W 6= ∅ such that W is invariant under R,

R(g)w ∈W, ∀g ∈ G, w ∈W

then R is the direct sum of two corepresentations RW : G → Aut(WR) and RW⊥ : G →
Aut(W⊥R ).

If no such proper subspace exists then R is an irreducible corepresentation of G, and will be

labelled %.

This means Maschke’s Theorem of complete reducibility further holds for corepresentations,

and can be proved in exactly the same way as for unitary representations, [176].

Theorem 2.2.8. Let (G,φ) be a finite Z2-graded group with irreducible corepresentations {%i}
and corepresentation R all over a field of characteristic 0. Then either R = %i is irreducible, or

R is completely decomposable as a direct sum of irreducible corepresentations with multiplicities

si,

R ∼=
⊕
i

si⊕
n=1

%i.

2.2.1 Classification of Finite Irreducible Corepresentations

We now come to the problem of attempting to classify the irreducible corepresentations of a Z2-

graded group in a manner similar to that which was done for the unitary representations of an

ungraded group. This lead to the classification of corepresentations under another threefold way,

this time introduced by Dyson, [51]. The methodology here will be nearly the same as in Section

2.1.1, applying Artin-Wedderburn’s Theorem to a group algebra, and then applying Fronbenius’

Theorem to restrict the number of allowable division algebras.

We begin by defining the applicable group algebra. In this case, where the corepresentation

contains complex-conjugation as an element, it is necessary to work immediately over the real

vector space found by applying the map from Equation 2.3 to the vector space V . In this basis

K has a matrix representation, K = In ⊗
(

1 0
0 −1

)
, allowing it to appear in the matrix algebra.

Dyson’s construction of the group algebra and its commutator algebra, [51], is thus:
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Definition 2.2.9. Let R on V over C be a corepresentation of the Z2-graded group G = U ∪αU .

Let R : Cn → R2n be the map defined by Equation 2.3 and let K = In ⊗
(

1 0
0 −1

)
be the matrix

representation of complex conjugation in this basis.

Then the group algebra X over R is the algebra defined with the basis

{
R(R̃(g ∈ U))

}
∪
{
R(R̃(g ∈ αU))K

}
∪

i = In ⊗

0 −1

1 0

.
The commutator algebra X of X is defined as the algebra generated by the matrices over R2n

such that they commute with all the elements of X.

The form of Artin-Wedderburn’s Theorem given in Theorem 2.1.15 applied to this group

algebra, with the division algebras over R already identified by Frobenius’ Theorem, then gives,

[51]:

Theorem 2.2.10. Let R be a corepresentation of the Z2-graded group (G,φ) generating the

group algebra X and its commutator algebra X over R2n. Then X,X decompose into irreducible

components

X ∼=
n∑
i=1

si(Ei)ti , X ∼=
n∑
i=1

ti(Ei)si

for some si, ti, where Ei ∼= R,C or H for each i.

Looking at the irreducible representations in particular gives what is known as Dyson’s

Threefold Way, [51]:

Theorem 2.2.11. Let G = U ∪ αU be a Z2-graded group and % an irreducible matrix corepres-

entation. Then the group algebra X over R generated by % is isomorphic to a matrix algebra over

one of the division rings R,H,C. It will be termed a Wigner Type I, II or III corepresentation

respectively.

In the same way real, complex and quaternionic representations could be identified by whether

they were equivalent to their complex conjugate representation, comparison of the irreducible

representation ρ generating R and its copy under the action of α allows the Wigner type of R to

be identified, [30].

Theorem 2.2.12. Let G = U ∪αU a Z2-graded group, ρ an irreducible representation of U and

R the corepresentation of G generated by ρ. Then, the action of α on ρ is given by

α : ρ→ ρ(u) = ρ∗(α−1uα).

and either there exists an intertwiner W such that

ρ = WρW−1,

WW ∗ = I R is of Type I

WW ∗ = −I R is of Type II

or

ρ 6∼= ρ, R is of Type III.
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The Frobenius-Schur Indicator can also be modified to tell apart the different corepresentation

classes, [30, 48]:

Theorem 2.2.13. Let G = U ∪ αU be a Z2-graded group with irreducible representation ρ of U

generating the corepresentation R of G. Then R is of Wigner Type I, II, III according to the

Frobenius-Schur Indicator

FSIA(R) =
1

|U |
∑
u∈U

χρ((uα)2) =


1 R Type I

0 R Type III

−1 R Type II

Proof. The proof is very similar to that of the Frobenius-Schur indicator, but only applying the

sum to the subset A of elements. See [30] for the standard proof.

Taking a corepresentation derived using Equation 2.6, its Wigner Type also gives its reducib-

ility, [30]:

Theorem 2.2.14. Let G = U ∪ αU be a Z2-graded group, ρ an irreducible representation of U

and R the matrix corepresentation generated by ρ according to Equation 2.6.

Then, if R is of Wigner Type II or III, R is irreducible. If R is of Type I with ρ = WρW−1,

it reduces as

R(g ∈ U) ∼=

ρ(g) 0

0 ρ(g)

, R(g ∈ αU) ∼=

ρ(gα−1)W 0

0 −ρ(gα−1)W

.
Dyson’s Tenfold Way

Occasional reference is made to a ‘Tenfold Way’ of Dyson. This is is due to the fact that given

a corepresentation R generated by the irreducible representation ρ, the pair can be classified

according to both Theorem 2.1.18 and Theorem 2.2.11; alternatively by Theorem 2.1.19 and

Theorem 2.2.11 or alternatively Theorem 2.1.23 and Theorem 2.2.13, [51]:

Theorem 2.2.15. Let G = U ∪ αU be a finite Z2-graded group. Let ρ be an irreducible unitary

representation of U and R the corepresentation of G generated by ρ.

Then the classification of ρ as real, complex or quaternionic and the classification of R as

Wigner Type I, II and III are independent and form a nine-fold classification.

Furthermore, the case when ρ is complex and R is of Wigner Type III can be split into two

- if ρ(u) = ρ∗(α−1uα) and ρ(u) = ρ∗(u), then the class CIII implies that ρ 6∼= ρ∗ and ρ 6∼= ρ.

However it is still possible that ρ ∼= ρ∗, creating two subclasses within the class CIII - the class

CIII1 when the equivalence breaks, and the class CIII2 when the equivalence holds.

This forms Dyson’s Tenfold Way, the combination of the Frobenius class of the representation

ρ and the Wigner Type of the corepresentation R that it generates:
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ρ ∼= ρ∗, SS∗ = I ρ ∼= ρ∗, SS∗ = −I ρ 6∼= ρ∗

ρ ∼= ρ, WW ∗ = I RI HI CI

ρ ∼= ρ, WW ∗ = −I RII HII CII

ρ 6∼= ρ RIII HIII ρ 6∼= ρ∗ CIII1 ρ ∼= ρ∗ CIII2

In order to tell the ten classes apart, the indicators FSIU and FSIA can be used, along with

the additional indicator IndCIII which is used when FSIU (ρ) = FSIA(ρ) = 0 and tells apart

the CIII1 and CIII2 classes:

Theorem 2.2.16. Let G be a Z2-graded group with unitary sub-group U . Let ρ be an irreducible

representation of U generating the corepresentation R of G. If FSIU (ρ) = FSIA(ρ) = 0, then

the class of the pair ρ,R according to Dyson’s tenfold-way can be found by applying the indicator,

IndCIII(ρ) =
1

|U |
∑
u∈U

χρ(u)χ∗ρ(α
−1uα) =

0 CIII1

1 CIII2

(2.7)

Proof. The classes CIII1 and CIII2 are differentiated depending on whether ρ(u) = ρ(α−1uα) =

ρ̃(u) ∀u ∈ U . This is the requirement that ρ ∼= ρ̃. Equivalence of two irreducible representations

ρ1, ρ2 can be checked by using the character orthogonality relation,

1

|U |
∑
u∈U

χρ1(u)χ∗ρ2(u) =

0 ρ1 6∼= ρ2

1 ρ1
∼= ρ2

so substituting ρ1 = ρ and ρ2 = ρ̃ gives the above indicator.

The Dyson Tenfold Way is useful as it gives significantly more information about the structure

of the algebras X and X, as can be seen in in Table 2.1, [51]. The structure given to X by the

combination of studying combinations of indicators will continue to be important, as it will

allow structure to be imposed on the Hamiltonian of the system, once the applications of graded

symmetry groups are applied to quantum systems. In Appendix E, the corepresentations of the

groups of order up to G ≤ 30 will be classified according to Dyson’s Tenfold Way by using the

indicators given above and the search algorithms for Z2-graded groups from Chapter 5.

2.3 Representation of Z2 × Z2-Graded Groups

Corepresentations of Z2-graded groups were introduced to cover systems with time-reversal sym-

metry. Here the additional Z2 grading that needs to be added to describe systems with chiral and

particle-hole or charge-conjugation symmetry, where operators anti-commute with the Hamilto-

nian, such as in certain types of superconductors, [64], is discussed. Again we stick to a more

abstract definition before expanding on their applications in Chapter 3.
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X X

RI 2Rn nR2

RII Hn nH
RIII Cn nC
HI 4Rn nR4

HII 2Hn nH2

HIII 2Cn nC2

CI 2Rn ⊕ 2Rn nR2 ⊕ nR2

CII Hn ⊕Hn nH⊕ nH
CIII1 Cn ⊕ Cn nC⊕ nC
CIII2 2Cn nC2

Table 2.1: The structure imposed on X and X by the Dyson Tenfold Way class of the irreducible
representation ρ generating them, [51]. This also makes clear the importance of separating the
classes CIII1 and CIII2, as the forms of X,X for CIII2 are significantly more restricted than
in the case of CIII1.

We consider the Z2 × Z2-graded groups:

Definition 2.3.1. A Z2 × Z2-graded group (G,φ, ξ) is the finite group with the group homo-

morphism φ× ξ : G→ Z2 × Z2. Choosing the sets and elements

U = {g ∈ G | φ(g) = 1 = ξ(g)} α ∈ A = {g ∈ G | φ(g) = −1, ξ(g) = 1}
γ ∈ C = {g ∈ G | φ(g) = −1 = ξ(g)} π ∈ P = {g ∈ G | φ(g) = 1, ξ(g) = −1}

then

G = U ∪A ∪ C ∪ P, G = U ∪ αU ∪ γU ∪ πU.

Lemma 2.3.2. Let (G,φ, ξ) be a Z2 × Z2-graded group. Then either G = U ; G = U ∪ A,

|A| = |G|/2; G = U ∪ C, |C| = |G|/2; G = U ∪ P , |P | = |G|/2; or G = U ∪ A ∪ C ∪ P ,

|A| = |C| = |P | = |G|/4.

Proof. In the case that only one of A,C, P is non-empty, the proof of Lemma 2.2.3 holds.

To show that if at least two of A,C, P are non-empty, then the third is also non empty,

consider that ∀a ∈ A, c ∈ C then ac, ca ∈ P , similarly ∀a ∈ A, p ∈ P then ap, pa ∈ C and

∀p ∈ P, c ∈ C then pc, cp ∈ A. There are then the multiplication rules on the sets AC = P ,

AP = C, CP = A and two non-empty sets construct a third non-empty set.

If all three of A,C, P are non-empty, then they are co-sets of U in G and must be of the same

size and sum to |G|, |U | = |A| = |C| = |P | = |G|/4.

Effectively, to form a Z2 × Z2-graded group, a Z2-graded group has been taken, then an

additional structure added on top of the original grading. This means that when considering

their representations, they must be consistent with the corepresentations of a Z2-graded group,

but with an additional structure added. These representations of Z2 × Z2-graded groups, which

we again call corepresentations, are studied by [24, 59, 117], and add the necessary additional

structure by being defined over not a vector space, but a super-vector space, V = V 0 + V 1,
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as described in Appendix B and [117, 165]. This means that the automorphism group Aut(VR)

also requires grading, and becomes Aut(VR), and the representation elements can now be either

even or odd transformations of V , depending on where in Aut(VR) they sit. We note that the

corepresentation elements are always homogeneous.

Formally, the corepresentation of a Z2 × Z2-graded group is given by, [59, 117]:

Definition 2.3.3. Let (G,φ, ξ) be a Z2 × Z2-graded group, V a super-vector space over C
and VR its restriction of scalar multiplication to R. Then the corepresentation R is the super-

homomorphism

R : G→ Aut(VR), R(g)z =

zR(g) φ(g) = 1

z∗R(g) φ(g) = −1

, R(g) ∈

Aut(VR)0 ξ(g) = 1

Aut(VR)1 ξ(g) = −1

.

Given that when all of A,C and P are non-empty U is a normal subgroup of G of index

4, with Klein-4 quotient group G/U = K4, the induced representation in Equation 2.2 can be

modified to take a matrix representation R of U and generate the matrix corepresentation R of

G by the formulae,

R(g ∈ U) =


R(g) 0 0 0

0 R∗(α−1gα) 0 0

0 0 R(π−1gδ) 0

0 0 0 R∗(γ−1gγ)



R(g ∈ αU) =


0 R(gα) 0 0

R∗(α−1g) 0 0

0 0 0 R(π−1gγ)

0 0 R∗(γ−1gπ) 0

K

R(g ∈ δU) =


0 0 R(gπ) 0

0 0 0 R∗(α−1gγ)

R(π−1g) 0 0 0

0 R∗(γ−1gα) 0 0



R(g ∈ γU) =


0 0 0 R(gγ)

0 0 R∗(α−1gπ) 0

0 R(π−1gα) 0 0

R∗(γ−1g) 0 0 0

K

(2.8)

having swapped the ordering of P,C for better symmetry under U,A ↔ P,C. These matrices

very clearly show the super-vector space structure of the corepresentation - the space is split into

two subspaces V = V 0 ⊕ V 1 and elements of U ∪ αU preserve the subspaces, while elements of

γU ∪ πU invert the subspaces, the exact definition of even and odd operators on super-vector

spaces.
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Equivalence of the corepresentations now require super-intertwiners to take into account that

the concept of commutation is extended to super-commutation, as per Equation B.1.7, on super-

vector spaces, [117]:

Definition 2.3.4. Let (G,φ, ξ) be a Z2×Z2-graded group, V1, V2 super-vector spaces and R1,R2

corepresentations of (G,φ, ξ) on V1, V2 respectively. Then the super-intertwiner T ∈ Hom(V1, V2)

is the graded C-linear transformation between V1, V2 such that

T 0R1(g) = R2(g)T 0, T 1R1(g) = ξ(g)R2(g)T 1 ∀g ∈ G.

If T is bijective, then R1,R2 are equivalent (φ, ξ)-representations, R1
∼= R2.

Irreducibility of the corepresentations continues to maintain its standard definition, [117].

Definition 2.3.5. Let R be a corepresentation on V of the Z2 × Z2 graded group (G,φ, ξ). If

there exists a proper super-vector sub-space W ( V , W 6= ∅ such that W is G-invariant,

R(g)w ∈W ∀g ∈ G,w ∈W

then R is the direct sum of two corepresentations, RW : G → Aut(WR) and RW⊥ : G →
Aut(W⊥R ) and is reducible.

If no such proper subspace exists then R is an irreducible corepresentation of G and will be

labelled ς.

Maschke’s Theorem of complete reducibility then still applies for the same reasons as before:

Theorem 2.3.6. Let (G,φ, ξ) be a finite Z2×Z2-graded group with irreducible corepresentations

{ςi} and corepresentation R, all over a field of characteristic 0. then either R = ςi is irreducible,

or R is completely decomposable as a direct sum of irreducible corepresentations with multiplicities

si,

R =
⊕
i

si⊕
n=1

ςi.

2.3.1 Classification of Finite Irreducible Corepresentations

Having defined Dyson’s Threefold Way on the corepresentations of the Z2-graded groups, we

move onto classifying the corepresentations of the Z2 × Z2 graded groups. Again, this is done

by studying the decomposition of the algebra generated by the group according to a version of

the Artin-Wedderburn theorem. However, there are modifications required to deal with the fact

that the group algebra must now be graded, being a super-algebra. This firstly requires a slightly

different version of the group algebra to be taken [93]:

Lemma 2.3.7. Let (G,φ, ξ) be a Z2 × Z2-graded group, then the group algebra K[G] over the

field K of characteristic 0 is the algebra defined by

u =
∑
g∈G

λgg, λg ∈ K
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with ∑
g∈G

λgg +
∑
g∈G

µgg =
∑
g∈G

(λg + µg)g

∑
g∈G

λgg ×
∑
h∈G

µhh =
∑
g,h∈G

(λhµh−1g)g

Taking the grading where homogeneous algebra elements are built of sums of elements entirely

from U or entirely from αU , with degree based on which set is used to build u,

∣∣∣∣∣∣
∑
g∈G

λgg

∣∣∣∣∣∣ =

0 λg = 0 ∀g : ξ(g) = −1

1 λg = 0 ∀g : ξ(g) = 1

then K[G] is a semi-simple super-algebra.

The inverse of the group element h appearing in the subscript of the sum is the standard form

for group actions to be homomorphic.

Next, instead of being able to consider the super-algebra K[G] itself, it must be reconsidered

as its own super-module, in the way described in Appendix B. Due to K[G] being semi-simple,

then all of its super-modules are also semi-simple, [165], and as a super-module, K[G] can be

expressed as

K[G] =
⊕
i

Mi

where the super-modules Mi are simple. Given that modules take the same role for algebras that

representations did for groups, constructing the simple super-module decomposition of K[G] is

equivalent to taking the irreducible representation decomposition of a representation of a group.

Furthermore, as taking K[G] as its own super-module is equivalent to starting with the regular

representation, this produces all simple modules of K[G].

With the simple modules - equivalent to the irreducible representations - identified, it is now

possible to look at applying a form of Artin-Wedderburn’s theorem to each of the modules.

When not needing super-algebras, this theorem stated that the algebra K[G] and its commutant

decomposed into direct sums of division algebras. The super-Artin-Wedderburn theorem isn’t

able to guarantee that the module K[G] decomposes into division algebras, but it is able to

guarantee that the super-commutants for each of the simple modules is isomorphic to a super-

division algebra when considered individually, [165]:

Lemma 2.3.8. If A is a super-algebra over K and M a simple super-module for A, then the

super-commutant AM of M is isomorphic to a super division algebra over K.

While this is less strong in not determining the form of K[G] but only the super-commutants

of its simple components, the theorem covers exactly what is needed for the Altland-Zirnbauer

Tenfold Way and its applications to quantum chaos - one of the key factors in defining random

matrix ensembles is that they are the super-commutant of a suitable symmetry group, as will be

discussed at the end of Section 3.1 and in Chapter 4.

As was done for the regular and Z2-graded groups, using the map R from Equation 2.3 with

K → I ⊗
(

1 0
0 −1

)
and i → I ⊗

(
0 −1
1 0

)
, then K[G] can be defined over R instead of C, having the
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knock on effect of the super-module K[G] also being defined over R. Rephrasing and paraphrasing

the super-Artin-Wedderburn theorem, this allows for a ‘super-Schur’ theorem, [117]:

Theorem 2.3.9. Let (G,φ, ξ) be a Z2×Z2 graded group with irreducible corepresentation ς. Let

Z(ς) =
{
T ∈ Hom(V, V ) | T 0ς(g) = ς(g)T 0 T 1ς(g) = ξ(g)ς(g)T 1

}
be the super-commutant of ς as a representation and let Z = 〈Z(ς)〉 be the associated super-

algebra over R generated by its elements. Then Z is isomorphic to a real associative super-division

algebra.

Like the number of real associative division algebras are limited to three by Frobenius’s

Theorem, Wall’s Theorem describes the ten possible real associative super division algebras,

[117, 168]:

Theorem 2.3.10 (Wall). The only associative super-division algebras over R are R1|0, C1|0, H1|0

as purely even super algebras, and ClC1 , ClR±1, ClR±2 and ClR±3.

The Clifford algebras ClK±i are described in Appendix B.2, along with a demonstration that

they are super-division algebras.

It is hard to prove that there are only ten real associative division algebras, but given the ten

above, it is easy to verify that they are the required ten. This provides a tenfold classification of

the irreducible corepresentations, which are labelled by the Cartan classes of symmetric spaces,

[117],

Class A AIII AI BDI D DIII AII CII C CI

Z ∼= C ClC1 R ClR1 ClR2 ClR3 H ClR−1 ClR−2 ClR−3

Due to the classification being equivalent to the one introduced by Altland and Zirnbauer in

[6] to describe the connection between Z2 × Z2-graded groups, random matrices and the Cartan

symmetric spaces, this classification is known as the Altland-Zirnbauer Tenfold Way, and in

physics is considered an extension of the Dyson Threefold Way, adding the allowance of particle-

hole and chiral symmetries to Dyson’s time-reversal when calculating the associated random

matrix statistics of the quantum system. These applications are discussed in Chapter 4.

As with the Z2-graded corepresentation, the classification of an irreducible corepresentation

of a Z2 × Z2-graded group can be found by considering if the underlying unitary representation

is equivalent to its copies under the action of conjugation by α, γ, π, [24]:

Theorem 2.3.11. Let (G,φ, ξ) be a Z2 × Z2-graded group with irreducible corepresentation ς

induced by the irreducible unitary representation ρ of U / G. Consider the representations of U

given by

ρ̄(u) = ρ∗(α−1uα), ρ̂(u) = ρ∗(γ−1uγ), ρ̃(u) = ρ(π−1uπ)

then ten cases exist according to whether ρ ∼= ρ̄, ρ ∼= ρ̂ and ρ ∼= ρ̃,
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ρ̂ = SρS−1

SS∗ = I

ρ̂ = SρS−1

SS∗ = −I
ρ̂ 6∼= ρ

ρ = WρW−1

WW ∗ = I
BDI CI AI

ρ = WρW−1

WW ∗ = −I
DIII CII AII

ρ 6∼= ρ D C
ρ̃ 6∼= ρ

A

ρ̃ ∼= ρ

AIII

and this classification is equivalent to that given in Theorem 2.3.9.

Also again, generalised Frobenius-Schur Indicators can then be defined to identify the groups,

[24]:

Theorem 2.3.12. Let (G,φ, ξ) be a Z2 ×Z2-graded group and ς an irreducible corepresentation

of (G,φ, ξ) induced by ρ of U . Then

FSIA =
1

|U |
∑
u∈U

χρ
(
(uα)2

)
, FSIC =

1

|U |
∑
u∈U

χρ
(
(uγ)2

)

IndP =
1

|U |
∑
u∈U

χρ(u)χ∗ρ(π
−1uπ)

give the Altland-Zirnbauer class of ς according to Table 2.2.

Class FSIA FSIC IndP Z ∼=
A 0 0 0 C

AIII 0 0 1 ClC1

AI 1 0 0 R
BDI 1 1 1 ClR1

D 0 1 0 ClR2

DIII −1 1 1 ClR3

AII −1 0 0 H
CII −1 −1 1 ClR−1

C 0 −1 0 ClR−2

CI 1 −1 1 ClR−3

Table 2.2: The Altland-Zirnbauer Tenfold Way as given by the indicators FSIU , FSIA, FSIC
and IndP .
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2.4 Projective Representations

It was mentioned at the start of Section 2.2 that there existed both the true symmetry group G of

the system, which acts on the projective Hilbert space, and the extended symmetry group, which

we now call GE , which acts on the full Hilbert space; the difference between them being that

G = GE/U(1), and all scalar multiplication is removed going from GE to G. Part of the reason

for this is that the full group GE is infinite, and the methods worked with in the last sections

required finite groups, the other part is that working on the projective Hilbert space, where all

states are physical and unique causes certain parts of the theory related to the quantum form of

the system to be more intuitive. This makes the true symmetry group the right group to work

with, in most cases.

There are however, situations when removing all of the scalars from GE is too much. These

situations rise predominately from the relevant system containing particles with fractional spin.

In these cases, there exist elements in the group G of order n, so that gn = e, but by applying

physical knowledge of the system to the corepresentation R of G, it is known that R(gn) 6= I
against what is required for an element equal to the identity; instead R(gn) = kI, k ∈ K. The

most well known example of this is that a rotation of the electron by 2π has the representation

R(rot(2π)) = −I and it is only after a rotation of 4π that a representation of I is recovered. These

cases where additional scalar factors are picked up are not possible when defining a standard

corepresentation which for the symmetry group sits on the projective Hilbert space. There are

however a couple of ways to work around this restriction, allowing these corepresentations with

additional scalar factors to be built and then classified according to the Dyson Threefold and

Altland-Zirnbauer Tenfold Way as described above - because these scalar factors must be taken

into account to get the correct classification.

The first method would be to define a new group in between G and GE which doesn’t contain

all of the scalars, but it does add the scalars {k ∈ U(1) | ∃g ∈ G,n ∈ N : gn = e, R(gn) = kI} as

group elements, redefining multiplication so gn = k rather than e as necessary, along with adding

all the necessary new combinations of the scalar elements and the ordinary group elements. This

group can still be treated as an abstract group, ignoring the fact that the new elements are

scalars and using them as abstract group elements for whom R(k) = kI. This group can then

be graded, and its corepresentations constructed and classified according to Sections 2.2 or 2.3

as appropriate. This method is known as finding the pullback extension of G by M ⊂ U(1), the

set of necessary scalars to add, and it will be discussed along side the next method of projective

corepresentations.

The second method is to recognise that the inclusion of the extra scalars arises from the

corepresentation having been defined on a projective space and it then moving onto the full vector

space. To deal with this, what are known as projective corepresentations are defined directly onto

the full space, where every element is allowed to contain a phase factor in its representation, with

multiplication rules between the phase factors allowed. This defines a new set of characters which

can then be substituted into the Frobenius-Schur indicators used to construct the Dyson and

Altland-Zirnbauer classifications. This is the method we discuss first, as it is the most flexible of

the three, and will also be useful in explaining how symmetry groups which act on the projective

Hilbert space can be turned into operators on the Hilbert space, linking together all the different

33



ways symmetries have to be considered. This method also can inform about other non-symmetry

properties of the system - projective corepresentations are used to check if superconductors have

energy gaps, and locate phase changes in their topological families for example, [37].

The final method can be used when there is the physical interpretation of a symmetry group

acting on a Hilbert space with the very specific structure of H = Hcharge⊗Hspin⊗Horbital and the

global time-reversal and charge-conjugation operators obey T̂ = (I⊗ T ⊗ I)K, Ĉ = (C ⊗ I⊗ I)K
while the representations of U act only on Horbital, [24]. In this case, the extra scalars come

from taking either T 2 = −I or C2 = −I, however there is essentially the ability to factor out the

contribution of T,C to the Frobenius-Schur indicators, and the standard true symmetry group

can be taken with some modified Frobenius-Schur indicator equations. This is the easiest method

to work with, and will apply to all systems considered in this thesis, so we describe this method

after the most rigorously general method of projective representations.

We begin with the projective corepresentations of a graded group G. For most generality,

it will be assumed throughout that G is Z2 × Z2-graded, though all techniques will continue to

hold for a Z2-graded group, or even an ungraded group if the grading maps ξ, φ of G are set

to the trivial map as needed. The projective representations of these groups are actually well

studied - see for example [38, 169] for the construction of unitary projective representations and

[37, 59, 69, 88] for the minor modifications required to deal with anti-unitary group elements and

super-vector spaces.

To begin, we look closer at the structure of the spaces the homomorphisms act on, and consider

how vectors can be equivalent up to scalar multiplication, [88]:

Definition 2.4.1. Let V = Kn be a vector space. Then define an equivalence relation on the

vectors in V by

x ∼ y ⇔ ∃k ∈ K − {0} such that x = ky.

Then the space of equivalence classes (V − {0})/ ∼ is the projective vector space of V , PV . It

can also be considered as PV = V/K×, the quotient of V under multiplication by the scalars K.

If V = Kn then PV ∼= Kn−1.

This has the set of invertible linear maps on it defining the projective linear group, [169]:

Definition 2.4.2. Let V = Kn be a vector space with the projective space PV . Then the projective

general linear group PGL(V ) is given by

PGL(V ) = GL(V )/K× = GL(PV ) = P(GL(V )).

The grading operator on a super-vector space does not interfere with the equivalence relations,

so projective super-vector spaces PV can be considered, and will be taken for the rest of this

section. The set of graded invertible linear maps on the projective super-vector space can then

be taken, remembering the equivalence between GL(V ) and Aut(V ):

Definition 2.4.3. Let V be a super-vector space with graded automorphism group Aut(V ) and

let the projective space of V be PV . Then the projective automorphism group PGL(V ) is given

by

PAut(V ) = Aut(PV )
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Shifting from V to PV is equivalent to normalising each vector’s length, and is represented

by the projection operator ς from V to PV ,

ς : V → PV, ς : v → v

|v|

which is a surjective map, but definitely not injective. It also defines a surjective morphism

between Aut(V ) and PAut(V ), [117],

σ : Aut(V )→ PAut(V ), σ(g)(ς(v)) = ς(g(v)) ∀g ∈ Aut(V ), v ∈ V.

It is then possible to define a lifting of PAut(V ) into Aut(V ) by a section, which is a map

π, by choosing the image π(p) for each p ∈ PAut(v) so that

σ(π(p)) = p.

It is normal that π is not a true inverse, and that π(σ(g)) 6= g, so π is not a homomorphism, [117].

This is because the axiom of choice has been used to choose a representative element of the set

s = {g ∈ Aut(V ) | σ(g) = p} as the value of π(p), so the value of π(σ(g)) can only match with one

element of s. That is, if s = {s1, s2} and π(p) = s1 is chosen, then π(σ(s1)) = π(σ(s2)) = s1 6= s2.

The kernel of the map σ is {kI | k ∈ K}, which is often just renamed K again, so that

K,Aut(V ) and PAut(V ) form a short exact sequence using the inclusion map K ↪→ Aut(V ),

[169]:

Definition 2.4.4. Let A,B,C be groups with the homomorphisms α : A → B and β : B → C.

If α is injective, A ∼= α(A), β is surjective, so C ∼= B/A and im(α) = ker(β) then A,B,C and

α, β form a short exact sequence, visualised as

1 A B C 1.α β

Given that A ∼= α(A) it is usual to take A = α(A) and α the inclusion map.

This also defines what is known as the group extension of C by A to form B. In the case

that there is a homomorphism π : C → B such that β ◦ π = I is the identity, the group extension

splits, and B = Ao C is a semidirect product.

From now on, it will be assumed that B = Aut(V ), C = PAut(V ) where V is a complex

vector space, and A = M(G,U) ⊂ U(1), a subgroup of the unitary group.

Given the Z2 × Z2-graded group G, and knowing that a corepresentation is wanted so that

for some g ∈ G of order n, RP(gn) 6= I, then an ordinary corepresentation R can be taken, but

considered to be on the projective space PAut(V ). The desired corepresentation is then the lifting

of R onto Aut(V ), termed the projective corepresentation, where the standard corepresentation

according to Definition 2.3.3 has been taken, and then scalar factors have been added as desired,

[7, 88, 117]:

Definition 2.4.5. Let G be a finite Z2 × Z2-graded group, and V a complex super-vector space

with the subspace VR where multiplication has been restricted to R. The projective corepresentation
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RP : G→ Aut(VR) is defined from the super-homomorphism R : G→ PAut(VR) by taking

RP(g) = ω(e, g)R(g), ω(e, g) ∈ U(1)

where the map ω : G × G → U(1) provides the factor system of the projective corepresentation,

and obeys the rules,

RP(g1)RP(g2) = ω(g1, g2)R(g1g2) (2.9)

ω(g1, g2)ω(g1g2, g3) = ω(g1, g2g3)ωg1(g2, g3) (2.10)

RP(g)z = zgRP(g), RP(g)

∈ PAut(VR)0ξ(g) = 1

∈ PAut(VR)1ξ(g) = −1

(2.11)

where

zg =

z φ(g) = 1

z∗ φ(g) = −1

.

This projective corepresentation RP can be found by taking a standard corepresentation R
of G and interpreting it as the base corepresentation over PAut(VR) and then finding a suitable

set of factors ω that obey the rules above, which is equivalent to constructing π(R); or by

constructing the pullback extension G′ of G and finding a standard corepresentation R′ of G′ on

GL(V ), [88, 169]:

Definition 2.4.6. Let G be a finite graded group, with σ : Aut(VR)→ PAut(VR) and corepres-

entation R : G→ PAut(VR). The pull-back extension G′ of G is defined as

G′ = {(g,A) ∈ G×Aut(VR) | σ(A) = R(g)}

The group G′ is called the universal covering group of G. Furthermore, taking the maps

σ̃ : G′ → G, σ̃(g,A) = g

π̃ : G→ G′, π̃(g) = (g, π(R(g)))

there is then the commutative diagram

1 M(G,U) G′ G 1

1 U(1) Aut(VR) PAut(VR) 1

σ̃

R′ R
π̃

RP

σ

π

so that given any two points in the diagram, any path between them gives a sequence of maps

that can be composed in the order they are traversed along, and the end function for each path

will be equivalent. In this case, it implies that

RP = π ◦ R = R′ ◦ π̃.
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The universal covering group G′ found in the pullback extension of G is equivalent to the

afore-mentioned version of finding the projective representations by allowing some scalars to

remain in the group when factoring out U(1).

Due to the fact that π requires choosing a single element out of the sets

{g ∈ Aut(VR) | σ(g) = p} for each g ∈ G, there exist multiple ways π can be constructed. This

leads to there being several ways to add scalars back into the corepresentation and choose ω.

This leads to the fact that the projective corepresentation RP isn’t unique. In order to reduce

the number of these possible projective corepresentations under consideration, we look to identify

when two projective corepresentations are equivalent, so we don’t double count. First, we identify

that projective corepresentations which differ only by a unitary phase factor, can be identified,

[88]:

Definition 2.4.7. Let G be a finite Z2×Z2-graded group with projective corepresentations RP,1,

RP,2 by the factor systems ω1, ω2. RP,1,RP,2 are associated projective corepresentations if and

only if

ω2(g1, g2) =
c(g1g2)

c(g1)cg1(g2)
ω1(g1, g2) ∀g1, g2 ∈ G, RP,2(g) = c(g)RP,1(g)

where c : G→ U(1) is a map.

This allows a definition of equivalence, [163]:

Definition 2.4.8. Let G be a finite Z2 × Z2-graded group with associated projective corepres-

entations RP,2(g) = c(g)RP,1(g). Then RP,1,RP,2 are equivalent projective corepresentations if

c(e) = 1.

Associativity means that given a projective corepresentation RP with factor system ω, then

a gauge transformation ω → ω′ can always be done so to remove the ω(e, g) factor prefix from

un-multiplied elements, [7], that is, the factor system can always be chosen so that,

ω(e, e) = ω(e, g) = ω(g, e) = 1 ∀g ∈ G.

In Theorem 2.3.12, we give a method of classifying each corepresentation of every possible

Z2 × Z2-graded group according to the Altland-Zirnbauer way, applying it to the small groups

to get the tables in Appendix E. We claim that knowing about the universal covering group,

it is also possible to use this technique to classify every projective corepresentation of G - each

possible universal covering group G′ of G is identified and then Theorem 2.3.12 applied to the

corepresentations of the covering group to get the result for G. This makes the results of Theorem

2.3.12, and the tables in Appendix E, much more general - they can be applied to systems with any

kind of fractional spin for example - the correct covering group just needs to be found and then it

can be looked up in the tables if small enough, or the Frobenius-Schur indicators calculated. It is

just necessary to be able to identify possible covering groups, either specifically, or systematically

searching for all of them.

The problem of finding all the covering groups, is really one of finding a factor system, and

then using this to define new elements and multiplication rules in G. The method of finding

all factor systems is also documented for non-graded unitary projective representations, see for
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example [38, 169], which will give a basis for expanding to finding all factor systems for a projective

corepresentation.

We begin with considering exactly how many elements of ω need to be known in order to fully

define it. The multiplication rule on the factors of different elements in Equation 2.10 means that

given a generating set S of U and taking S′ = s ∪ {α, γ, π} as a generating set of the Z2 × Z2-

graded group G, then only the factors ω(s′1, s
′
2), ∀s′1, s′2 ∈ S′ actually need be chosen and the rest

can be calculated through the factor multiplication rule. This result is expanded in [163], so that

all that is needed to be known is the factor system ωH where H = U for a Z2-graded group, and

H = U ∪ πU for a Z2 × Z2-graded group, so it covers the unitary elements of G.

The method defines the equivalence relation h1 ∼ h2 ⇔ ∃n ∈ N such that h2 = αnh1α
−n

divides H into equivalence classes Ch which have transversal TH in H. Taking the subset H0 ⊂ T
of the transversal containing elements whose conjugacy classes have even order,

H0 = {t ∈ TH | |Ct| = 2m, m ∈ N}

the following function DωH : H → C can be constructed,

DωH (h) =


∏|Ch|−2
n=0 n=2m ω∗H(α(n+1)hα−(n+1), α2)ωH(α2, α(n−1)hα−(n−1)) h ∈ H0

1 h 6∈ H0

.

Then ωH can be used to construct a factor system of G, [163]:

Theorem 2.4.9. Let G be a graded group, with the unitary subgroup H. If ωH is

a factor system of H, such that there exists an equivalent factor system ω′H and

ω′H(h, h′)ω′H(α−1hα, α−1h′α) = DωH (h)DωH (h′)D∗ωH (hh′)

ω′(αhα−1, α2)ω′H(α2, α−1hα) = D∗ωH (αhα−1)DωH (h)

for all h, h′ ∈ H, then a factor system ωG of G is defined by

ωG(h, h′) = ωH(h, h′), ωG(α, h) = 1, ωG(h, α) = DωH (h).

Calculating all possible factor systems of G, or even just a particular factor system, becomes

a problem of knowing the values of the factor system on the ungraded group H. This is, as

mentioned, a well studied problem and is related to the co-homology of the group H. For a

discussion of this see for example [38, 169].

For many practical applications in physics, it will be possible to define simpler methodologies.

For example, the case where the vector (Hilbert) space the problem is defined over, and thus the

space the representations are defined over, splits into a ‘charge’ component, a ‘spin’ component

and an ‘orbital’ component, [14, 24, 73],

V → Vcharge ⊗ Vspin ⊗ Vorbital. (2.12)
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The unitary-commuting symmetries which define U don’t interact with the particles spin, and

they don’t flip particles into holes, so they must act entirely on the orbital space, and take the

representation

ρV (u ∈ U)→ IVcharge
⊗ IVspin ⊗ ρVorbital

(u ∈ U). (2.13)

If this ρVorbital
is a representation of U for U / G = U ∪ αU ∪ γU ∪ πU , which generates the

corepresentation of R of G on Vorbital, then the ordinary corepresentation matrices on IVcharge
⊗

Vspin ⊗ Vorbital are given by, [24],

R(u ∈ U)→ IVcharge ⊗ IVspin ⊗R(u) (2.14)

R(a ∈ αU)→
(
IVcharge ⊗ IVspin ⊗ R̃(a)

)
T =

(
IVcharge ⊗ IVspin ⊗ R̃(a)

)
K (2.15)

R(c ∈ γU)→
(
IVcharge ⊗ IVspin ⊗ R̃(c)

)
C

=
(
IVcharge ⊗ IVspin ⊗ R̃(c)

)0 I

I 0

⊗ IVspin ⊗ IVorbital

K (2.16)

R(p ∈ πU)→
(
IVcharge ⊗ IVspin ⊗R(p)

)
P

=
(
IVcharge ⊗ IVspin ⊗R(p)

)0 I

I 0

⊗ IVspin ⊗ IVorbital

 (2.17)

where T , C and P are considered to be time-reversal, charge-conjugation and chiral operators

respectively. The reason for these representations appearing the way they do is based on the

physical interpretations of what each of the spaces Hcharge,Hspin and Horbital cover, and how

they interact with the operators T̂ , Ĉ and P̂. This is discussed in Appendix C and Section 3.1.

In this case, taking the projective representation is then a standing in for substituting T →
T = (IVcharge

⊗ T ⊗ IVorbital
)K, C → C = (C ⊗ IVspin

⊗ IVorbital
)K and P → P = (P ⊗ IVorbital

) for a

suitably chosen triple of unitary operators T,C, P which are chosen from ten options, as in Table

2.3, depending on whether αU, γU and πU are empty or not and depending on the nature of the

system they are being defined on. Generally, T 2 = I implies a bosonic system, T 2 = −I implies

fermionic system, while the form of C generally relates to the spin dependence/independence

of the main-diagonal components of the associated Hamiltonian when written under the BdG

formalism - C2 = −I when H11, H22 are spin-dependent and C2 = −I when they are spin-

independent, [14].

Furthermore, because T,C, P act on the spin and charge spaces, and the representations of

U on the orbital space, the Frobenius-Schur Indicators from Theorem 2.3.12 can be modified to

cover this special case of projective corepresentations by including a factor of T 2, C2, as was done

for the Z2-graded groups in [48], and now extending to the Z2 × Z2-graded groups:

Theorem 2.4.10. Let G = U ∪ αU ∪ γU ∪ πU be a Z2 × Z2 graded group with an irreducible

representation ρ of U on the vector space Vorbital. Let V = Vcharge ⊗ Vspin ⊗ Vorbital be a super

vector space, and the projective corepresentations of G generated by ρ be given as

R(u ∈ U) = IVcharge
⊗ IVspin

⊗R(u)

R(a ∈ αU) =
(
IVcharge

⊗ IVspin
⊗ R̃(a)

)
(IVcharge

⊗ T ⊗ IVorbital
)K

R(c ∈ γU) =
(
IVcharge

⊗ IVspin
⊗ R̃(c)

)(
C ⊗ IVspin

⊗ IVorbital

)
K
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R(p ∈ πU) =
(
IVcharge

⊗ IVspin
⊗R(p)

)
(P ⊗ IVorbital

)

Then the Altland-Zirnbauer class of the projective corepresentation generated by ρ is given by

the modified Frobenius-Schur indicators,

FSIA(ρ) =
T 2

|U |
∑
a∈αU

χρ(a
2) (2.18)

FSIC(ρ) =
C2

|U |
∑
c∈γU

χρ(c
2) (2.19)

FSIP (ρ) =
1

|U |
∑
u∈U

χρ(u)χ∗ρ(π
−1uπ) (2.20)

with the classes given by Table 2.2.

In particular this means that if U is the trivial group, the Altland-Zirnbauer class of G is

decided entirely by whether A,C, P are non-empty, and how T,C square, as seen in the rightmost

columns of Table 2.3, with the existence of P telling apart the classes A and AIII. A more general

adaptation of the Frobenius-Schur indicators can be derived using the relations in [38].

The group extensions relating to these projective corepresentations are known specifically

as the Double Groups, and specific rules exist to calculate them, [7, 24, 126]. Double groups

were actually the precursor to projective representations in the physics community, and in many

areas are still the more studied of the pair, however they are significantly more restrictive and

many have argued that projective representations are better to use, [7]. Double groups make

the most sense when VOrbital = SO(3) so the addition of the spin space is equivalent to the

lifting from SO(3) to SU(2), which is a very specific geometric interpretation inapplicable to

more abstract groups. Furthermore, projective representations and the related co-homologies

have additional benefits in studying things like energy gaps and symmetry-protected-topological

phases in topological insulators [37], or they can be used to describe Majorana zero modes in

topological super-conductors and they have links with quantum Monte-Carlo simulations, [177].
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Class T C P T̂ 2 Ĉ2 π ∈ G
A − − − − − No

AI I − − I − No

AII

(
0 1

−1 0

)
− − −I − No

AIII − −
(

0 I
I 0

)
− − Yes

BDI I

(
0 1

1 0

) (
0 I
I 0

)
I I Yes

CII

(
J 0

0 J

) (
0 J

J 0

)
C ⊗ T −I −I Yes

D −
(

0 1

1 0

)
− − I No

C −
(

0 −1

1 0

)
− − −I No

CI I2

(
0 −1

1 0

) (
0 −I2
I2 0

)
I −I No

DIII

(
J 0

0 J

) (
0 I2
I2 0

)
C ⊗ T −I I No

Table 2.3: Possible choices for the matrices T,C, P depending on which of the sets αU, γU and πU are non-
empty, [64]. The right hand columns can also be used to identify the Altland-Zirnbauer class of a projective
corepresentation for a Z2 × Z2-graded group where U = I is the trivial group. The matrix J is given by
J =

(
0 1
−1 0

)
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3. Symmetric Quantum Systems and Chaos

We now turn to the discussion of symmetries quantum systems, having defined the basic frame-

work of quantum theory in Appendix C. This involves discussing the invariance of Hilbert spaces

and Hamiltonians under certain operators, and how these form quantum symmetries, and lead to

special structure on the Hamiltonians that can be classified in Sections 3.1 and 3.1.1. Finally, the

classical limit of quantum systems will be discussed, and the idea of quantum chaos introduced

in Section 3.2.

3.1 Quantum Symmetries

The study of quantum symmetry is the study of the invariant transforms of the Hilbert space H,

and its projective counter-part, PH. Rigorous definitions for both are given in Appendix C with

more context for the choice of their definition, but they are restated here for ease of reference.

Firstly, the Hilbert space describes the state-space of a quantum system Q, so that the vectors

|ψ〉 are the possible states of the system, and it takes the form of a chosen complex inner product

space, [155]:

Definition 3.1.1. Let Q be a quantum system, then its Hilbert Space H is a complex vector

space, with vectors ψ and inner product 〈·, ·〉, such that:

� 〈·, g〉 is a linear function for all g ∈ H.

� 〈f, g〉 = 〈g, f〉∗

� 〈f, f〉 ≥ 0 for all f ∈ H.

The norm shall be defined as ‖ψ‖ =
√
〈ψ,ψ〉.

A common example is L2(Rn)m, the set of dimension m vectors with each entry being a square

integrable function over Rn. The projective Hilbert space PH then describes the unique physical

states in H, so that all of the copies c |ψ〉 of |ψ〉 for c ∈ C− {0} are removed, [117, 176]:

Definition 3.1.2. Let H be the Hilbert space of the quantum system Q. Then the projective

Hilbert space PH is defined as the space of rays,

PH = (H− {0})/C×.
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It is possible to define a projection operator σ from H to PH,

σ : |ψ〉 → |σ(ψ)〉 = |Ψ〉 ∈ PH, σ : |ψ〉 → |ψ〉√
|〈ψ|ψ〉|

(3.1)

which also allows a representative state |Ψ〉 to be chosen for each ray.

Describing the invariant transforms of H and PH then begins with defining a general trans-

formation on the full Hilbert space, which are termed the operators on the Hilbert space, as given

by Wigner, [175], and as per Definition C.1.3:

Definition 3.1.3. Let Q be a quantum system with Hilbert space H. An operator Ô is a map

on the Hilbert space, Ô : H → H, that is either linear, Ô(a |ψ〉 + b |φ〉) = aÔ |ψ〉 + bÔ |φ〉 or

anti-linear, Ô(a |ψ〉+ b |φ〉) = a∗Ô |ψ〉+ b∗Ô |φ〉.

Note that in contrast to standard quantum theory, where operators must be linear, anti-linear

transforms are allowed in Wigner’s definition. Doing so is essential to his study of quantum time-

reversal symmetries, and the later extension to charge-conjugation and chiral symmetry - it is

only possible to define time-reversal, charge-conjugation and their generalised forms through anti-

linear operators. When dealing with linear operators, quantum theory would identify a special

subset of them as unitary; with the anti-linear operators included, we identify the special subset

of operators as the set of unitary or anti-unitary operators, [175]:

Definition 3.1.4. Let H be the Hilbert space for the quantum system Q with inner product 〈·, ·〉.
Then if, Ô is an operator and,

�

〈
Ôφ
∣∣∣Ôψ〉 = 〈φ|ψ〉 ∀ |φ〉 |ψ〉 ∈ H and Ô is linear, then Ô is a unitary operator.

�

〈
Ôφ
∣∣∣Ôψ〉 = 〈φ|ψ〉∗ ∀ |φ〉 |ψ〉 ∈ H and Ô is anti-linear, then Ô is an anti-unitary operator.

The collection of linear unitary operators, and anti-linear anti-unitary operators define the group

Aut(HR), the set of linear, invertible transformations of the subspace of the Hilbert space generated

by multiplication by R rather than by C. When the domain of these functions is expanded to H,

then the group Autqtm(H) is formed.

Knowing from Section 2.4 that for every vector space V , given Aut(V ), a corresponding set of

transformations PAut(V ) can be defined over PV allows us to define a general transform on PH,

and understand the impact of operators on the projective Hilbert space. This involves taking the

projection operator σ : H → PH and using it to define the projection from Autqtm(H) onto its

projective counterpart, PAutqtm(H) = Autqtm(PH),

Σ : Autqtm(H)→ Autqtm(PH) Σ
(
Ô
)
|Ψ〉 = Σ

(
Ô
)
|σ(ψ)〉 =

∣∣∣σ(Ôψ)〉 ∀ |ψ〉 ∈ H.

This states that applying the projected operator to a projected state is equal to applying the

un-projected operator to the un-projected state and then projecting down onto the projective

Hilbert space. This is to be expected, as the projection operator is only dividing out all of the

scalar factors, which commutes with all other operations.

We can now begin to define symmetries, considering which subsets of Autqtm(H) and Autqtm(PH)

leave the quantum system intact. These transformations are the ones that leave characteristic
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quantum features of the system the same. Beginning with the projective Hilbert space, this means

preserving structure of the transmission amplitude, so the probability to move between two states

remains the same, as the key physical quantity describing the relation between different states.

According to Wigner, [175], this is:

Definition 3.1.5. Let PH be the projective Hilbert space of a quantum system. Then the subset

S of Autqtm(PH) preserving the quantum system and forming the set of potential symmetries of

the system is the set of bijective maps s : PH → PH that are linear on PHR and which preserve

the transition probability,

P (s(Φ)→ s(Ψ)) = P (Φ→ Ψ).

It is more important in terms of defining symmetries that the quantum structure is pre-

served over making sure that the operators generating the symmetries are either unitary or anti-

unitary. Thus we need to check whether there are any transformations of PH in Hom(PHR) pre-

serving the transition probabilities that aren’t in Autqtm(PH). However, by Wigner’s Theorem,

[117, 175, 176], we know that Autqtm(PH) contains all of the transition-probability preserving

transformations:

Theorem 3.1.6 (Wigner). Let H,PH be the Hilbert and projective Hilbert spaces of a quantum

system Q, related by the map σ : H → PH. Let Autqtm(H) and Autqtm(PH) be the groups defined

by Definition 3.1.4 and 3.1.5. Then the set of maps preserving the transition probability,

S′ = {s ∈ Hom(PHR) | P (s(Φ)→ s(Ψ)) = P (Φ→ Ψ) ∀ |Φ〉 , |Ψ〉 ∈ PH}

is contained entirely in Autqtm(PH) and S = S′ ⊂ Autqtm(PH).

Proof. See [175] or [150, 151] for several examples of proofs.

This means that general homomorphisms on PHR need not be considered, and only the maps

generated by the unitary and anti-unitary operators on H. This is how Wigner’s theorem is more

commonly stated - every symmetry on the system corresponds to either a unitary or anti-unitary

operator.

Members of this group S ⊂ Autqtm(PH) are still only described as potential symmetries of the

system however, as while they are already guaranteed to leave the Hilbert space and transition

probabilities invariant under transformation, to be full symmetries of the system they will have

to fulfil the extra restriction of preserving the quantum structure on H. This is the requirement

that the operators which generate S either commute or anti-commute with the Hamiltonian.

The symmetry group of the system G sits in Autqtm(PH), thus to check whether elements of

S are included in G under the commutation rule requires defining a method of finding each of

the associated operators in Autqtm(H) for every member of Autqtm(PH). We already have the

projection operator Σ : Autqtm(H)→ Autqtm(PH), so the method of doing this is by constructing

the section Π : Autqtm(PH) → Autqtm(H) as per Section 2.4. This uses the axiom of choice to

define Π by taking each element s ∈ Autqtm(PH) and picking one of the set of operators that is

mapped to it by Σ,
{
Ŝ ∈ Autqtm(H) | Σ(Ŝ) = s

}
, to define Π(s),

Π : Aut(PH)→ Aut(H), s→ Π(s) = Ŝ ∈
{
Ŝ ∈ Autqtm(H) | Σ(Ŝ) = s

}
.
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Furthermore, we note that Σ is a surjective homomorphism with the kernel U(1) and the groups

U(1), Autqtm(H) and Autqtm(PH) define the short exact sequence under Σ:

1 U(1) Autqtm(H) PAutqtm(H) 1
Σ

Π

As before, there will be a number of possible choices for Π(s), which will correspond to different

physical properties of the quantum system - for example the spin of the particles, and whether

the Hamiltonian is spin dependent. There will be short discussions as to the correspondence

between the physical nature of the quantum systems and the extensions below, mainly in the

simplified setup of H = Hcharge ⊗ Hspin ⊗ Horbital. Anyway, with a method of identifying the

operators corresponding to a member of Autqtm(PH), it is now possible to identify the symmetry

group of a quantum system as the elements whose lifts either commute or anti-commute with the

Hamiltonian, [24, 117]:

Definition 3.1.7. Let Q be a quantum system with Hilbert space H Hamiltonian Ĥ. Then the

symmetry group of the system G ⊂ Autqtm(PH) is defined as the automorphisms of PH whose

lifts Π : s→ Ŝ into Autqtm(H) are compatible with the Hamiltonian so that either,

� [Ŝ, Ĥ] = ŜĤ − ĤŜ = 0 which are Symmetries of the Dynamics of the system

�

{
Ŝ, Ĥ

}
= ŜĤ + ĤŜ = 0 which are Symmetries of the Spectra

This defines the symmetry group G as,

G =
{
g ∈ Autqtm(PH) | Π(g)Ĥ = ±ĤΠ(g), |〈gΦ|gΨ〉|2 = |〈Φ|Ψ〉|2 ∀ |Ψ〉 , |Φ〉 ∈ PH

}
.

This forms the group G, which can be seen to contain elements of four types - if an element

s ∈ G lifts to an operator Ŝ, then Ŝ can either be a unitary operator that commutes with the

Hamiltonian; an anti-unitary operator that commutes with the Hamiltonian; a unitary operator

that anti-commutes with the Hamiltonian; or an anti-unitary operator that anti-commutes with

the Hamiltonian. These classifications can be used to form a partition of G into the sets U,A,C, P

according to 〈
Ŝ†φ

∣∣∣Ŝψ〉 = 〈φ|ψ〉
〈
Ŝ†φ

∣∣∣Ŝψ〉 = 〈φ|ψ〉∗

ŜĤ = ĤŜ Ŝ ∈ U Ŝ ∈ A
ŜĤ = −ĤŜ Ŝ ∈ P Ŝ ∈ C

This means that G is a group of the form G = U ∪A ∪C ∪ P with U /G a normal subgroup

of G. This is equivalent to Definition 2.3.1 of a Z2 × Z2 graded group:

Theorem 3.1.8. Let Q be a quantum system with the symmetry group G. Then G ⊂ Autqtm(PH)

is Z2 × Z2-graded with respect to the gradings

φ : G→ Z2, φ(g) =

1 〈gΦ|gΨ〉 = 〈Φ|Ψ〉 ∀ |Φ〉 , |Ψ〉 ∈ PH

−1 〈gΦ|gΨ〉 = 〈Φ|Ψ〉∗ ∀ |Φ〉 , |Ψ〉 ∈ PH
(3.2)
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ξ : G→ Z2, ξ(g) =

1 Π(g)Ĥ = ĤΠ(g)

−1 Π(g)Ĥ = −ĤΠ(g)

(3.3)

Then G can be partitioned into the sets U,A,C, P according to

U = {s ∈ G | (φ(g), ψ(g)) = (1, 1)} A = {s ∈ G | (φ(g), ψ(g)) = (−1, 1)}
C = {s ∈ G | (φ(g), ψ(g)) = (−1,−1)} P = {s ∈ G | (φ(g), ψ(g)) = (1,−1)}

so that U / G and choosing α ∈ A, γ ∈ C, π ∈ P , G = U ∪ αU ∪ γU ∪ πU .

This now means that if G is considered as an abstract Z2 × Z2-graded group, then mapping

elements of G onto their associated operators in Autqtm(H) is the method of projective corepres-

entations discussed in Section 2.4. That is, the Hilbert space can be considered a super-vector

space, or linking to the charge-spin-orbital construction of the Hilbert space, it can be split into a

charge-space part, Hcharge, and a non-charge-space, H′, so thatH = Hcharge⊗H′ = (|p〉 |h〉)T⊗H′
with the particle states (|p〉 0)

T ⊗ |ψ〉 forming the even subspace and the hole states forming the

odd subspace (0 |h〉)T ⊗ |ψ〉.
The automorphism groups of H and PH can then be graded with respect to the super-Hilbert

space, becoming Autqtm(H) → Autqtm(H) and Autqtm(PH) → Autqtm(PH). These are then

substituted in to Definition 2.4.5 with G, so that the most general map from the symmetry group

to the symmetry operators is given by:

Definition 3.1.9. Let Q be a quantum system with the abstract Z2×Z2-graded symmetry group

G. Let H = Hcharge ⊗H′ be the super Hilbert space of the system with the super-vector space of

unitary and anti-unitary operators Autqtm(H) on H, and its projection onto PH as Autqtm(PH),

the transformations of the projective Hilbert space.

Let R : G → Autqtm(PH) be a corepresentation of G. Then, there exists a factor system

ω : G×G→ U(1) which is chosen according to the physical properties of the system Q, such that

each element g ∈ G can be mapped onto an operator RP(g) on H so that,

RP(g) = ω(e, g)R(g) (3.4)

RP(g1)RP(g2) = ω(g1, g2)R(g1g2) (3.5)

ω(g1, g2)ω(g1g2, g3) = ω(g1, g2g3)ωg1(g2, g3) (3.6)

RP(g)z = zgRP(g), RP(g)

∈ Autqtm(PH)0 ξ(g) = 1

∈ Autqtm(PH)1 ξ(g) = −1

(3.7)

where

zg =

z φ(g) = 1

z∗ φ(g) = −1

∀z ∈ C

Following the projective corepresentation method, there two methods of constructing the

factor systems. The first, but more complicated method is to use the methods described in

Section 2.3 to define the corepresentation R : G → Autqtm(PH), and then take the section Π
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into Autqtm(H). Alternatively, the pullback extension G′ of G,

G′ =
{

(a, Ŝ) ∈ G×Autqtm(H) | R(a) = Σ(Ŝ)
}

(3.8)

can be constructed with the ordinary corepresentationR′ : G′ → Autqtm(H) giving the operators

for G. This forms another commutative diagram giving the relations between G, G′, Autqtm(H)

and Autqtm(PH) as well as the relations between R, R′ and RP, showing the many ways that

the map RP between G and its associated operators can be constructed:

1 M(G,U) G′ G 1

1 U(1) Autqtm(H) Autqtm(PH) 1

σ̃

R′ R
π̃

RP

Σ

Π

In most cases using the pullback extension of G will be preferred, creating the universal covering

group G′ of G. As discussed before, constructing G′ corresponds to adding back in just enough

elements of U(1) to allow non-identity scalars as elements in G′, for example allowing −1 as

an element when the rotations of an electron are considered. This means that if for example,

g = Rot(π/2), then g4 = e would hold in G and R(g4) = R(Rot(2π)) = 1 which is a contradiction

to the known physical fact that on a half-spin system, rotation by 2π is not the identity operator

but −I. The universal covering group adding −1 as an element allows multiplication in this

group to be re-defined so that g4 = −1, sidestepping the issue of trying to represent an element

equivalent to the identity element in G as something other than I.

The reason for the preference of working with the universal covering group is that, as stated

above and discussed further below, the additional elements which are added to G can be predicted

by knowing the physical properties of the quantum system. This means that the formal definition

of the universal covering group is often not needed, and G′ can be identified out of the quantum

system, before a standard corepresentation is taken to find the operators.

Furthermore, it allows matrix forms for the operators to be found using the corepresentation

matrices from Equation 2.8. Taking the unitary commuting subgroup U ′ / G′ and one of its

representations, r, then the projective corepresentation of G can be constructed to give the
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matrix forms of the operators described by the symmetry group:

RP(g ∈ U) =


r(π̃(g)) 0 0 0

0 r∗(π̃(α)−1π̃(g)π̃(α)) 0 0

0 0 r(π̃(π)−1π̃(g)π̃(δ)) 0

0 0 0 r∗(π̃(γ)−1π̃(g)π̃(γ))



RP(g ∈ αU) =


0 r(π̃(g)π̃(α)) 0 0

r∗(π̃(α)−1π̃(g)) 0 0

0 0 0 r(π̃(π)−1π̃(g)π̃(γ))

0 0 r∗(π̃(γ)−1π̃(g)π̃(π)) 0

K

RP(g ∈ δU) =


0 0 r(π̃(g)π̃(π)) 0

0 0 0 r∗(π̃(α)−1π̃(g)π̃(γ))

r(π̃(π)−1π̃(g)) 0 0 0

0 r∗(π̃(γ)−1π̃(g)π̃(α)) 0 0



RP(g ∈ γU) =


0 0 0 r(π̃(g)π̃(γ))

0 0 r∗(π̃(α)−1π̃(g)π̃(π)) 0

0 r(π̃(π)−1π̃(g)π̃(α)) 0 0

r∗(π̃(γ)−1π̃(g)) 0 0 0

K

(3.9)

In the trivial extension, where π̃(g) = g ∀g ∈ G, G′ = G, this reduces to the standard corepres-

entation matrices.

There is a lot more that can be discussed with regards to the matrix structure of the operators

generated like this. For now though, we consider classifying the behaviour of the operators in

each of the sets U,A,C, P when applied to the eigenstates of the Hamiltonian Ĥ.

Firstly, for any element g ∈ G, the action of its operator RP on an energy eigenstate, |ψn〉
of Ĥ, can be checked by seeing what energy eigenvalue is returned by applying Ĥ to |RP(g)ψn〉.
Using the fact that operators of G are required to either commute or anti-commute with the

Hamiltonian according to ξ, then the relation, [24],

Ĥ |RP(g)ψn〉 = ĤRP(g) |ψn〉 = ξ(g)RP(g)Ĥ |ψn〉 = ξ(g)RP(g)En |ψn〉 = ξ(g)En |RP(g)ψn〉 (3.10)

is found.

That is, all the operators generated by G share an eigenbasis |ψn〉 → |En, a〉 with the Hamilto-

nian and preserve the absolute value of the eigenvalues associated to eigenstate. However, while

the operators in U,A for which ξ(s) = 1 preserve the eigenvalues, RP(g) : |En, a〉 → |En, a′〉; the

operators in C,P for which ξ(s) = −1 flip the sign, RP : |En, a〉 → |−En, a′〉. This means that

if C,P are non-empty, and if En is an eigenstate, then so must be −En, which causes a mirror

symmetry in the spectra about 0, which is why these operators are known as spectral mirror

symmetries. The prime appears on a, as it is possible that G may also provide a re-ordering on

the basis states.

We now look at the specific forms and interpretations of elements of G acting as operators.

This is a lot of work to do when G is a general Z2 × Z2-graded group, however we note that the
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possible lifts of G into Autqtm(H) are greatly simplified and heavily limited when U = {I}. This

might seem restrictive, however, we note that when U contains more than the identity, then by

applying techniques from Section C.1.2 which will be discussed further in Section 3.1.1, the full

Hilbert space decomposes into independent subspacesH =
⊕

a

⊕sa
n=1Ha which can be considered

independently with their own independent symmetry groups Ga acting on each Ha separately.

It is guaranteed that these local symmetry groups have Ua = {I}, [24, 79, 180]. This means that

the following analysis can be done for the group elements of Ga in the simplified case, describing

the operators and their interpretations before the subspaces in H are recombined by taking the

direct sums; the operators found in the subspaces may also be combined using direct sums to get

their forms on H.

Thus, the simplest case U = {I} can always be constructed and considered.

First, we show that G has a very restricted form when U = {I}. In this simplified case, G has

to be generated by a subset of {α, γ, π} where α, γ and π are elements of A, C and P respectively:

Lemma 3.1.10. Let G = U ∪A∪C ∪P be the symmetry group of a quantum system. If U = {I}
then G ⊆ {I, α, γ, π}, α ∈ A, γ ∈ C, π ∈ P , where α2 = γ2 = π2 = I and αγ = γα, απ = πα,

γπ = πγ, αγ = π.

This gives five options for the form of G: G = {I}; G = {I, α}; G = {I, γ}; G = {I, π}; and

G = {I, α, γ, π}.

Proof. We begin by showing that G ⊂ {I, α, γ, π}. Given G = U ∪A ∪ C ∪ P has U as a normal

subgroup by definition of a Z2 × Z2-graded group, then there must be a traversal T ⊂ {α, γ, π}
of U in G, where α ∈ A if A 6= ∅, γ ∈ C if C 6= ∅, and π ∈ P if P 6= ∅. As U = {I}, then

gU = {g} holds for all g ∈ G, and thus A = αU = {α} or A = ∅, C = γU = {γ} or C = ∅, and

P = πU = {π} or P = ∅. Taking the union of these sets gives G ⊂ {I, α, γ, π}.
Next we apply Lemmas 2.2.3 and 2.3.2, that the options for |G|/|U | are 4, 2, and 1 to limit

the forms of G to G = {I}; G = {I, α}; G = {I, γ}; G = {I, π}; and G = {I, α, γ, π}. This proves

the last statement of the theorem, and also forces the involutive nature of α, γ or π when |G| = 2.

Finally, it is required to check the relations on α, γ and π when G = {I, α, γ, π}. This can

be done by noting that when all of U, A, C and P are non-empty, a Z2 ×Z2-graded group must

satisfy G/U ∼= K4. As U = {I}, then G ∼= G/U ∼= K4, which gives all the required relations on

the elements of G.

With standardised symmetry elements, we can introduce standard labels for the lifts of each

of the elements of the symmetry group:

Lemma 3.1.11. Let H be Hilbert space with Hamiltonian Ĥ that has symmetry group G ⊂
{I, α, γ, π}. Then the lifts of α, γ, π onto Autqtm(H) are associated to the operators T̂ , Ĉ and P̂,

RP(α) = T̂ , RP(γ) = Ĉ, RP(π) = P̂

To understand the forms of these operators, and later their physical interpretations, it is

easiest to start looking at their squares, T̂ 2, Ĉ2 and P̂2. These are all unitary commuting

operators, which can be checked by showing that T̂ 2, Ĉ2 and P̂2 obey the unitarity, Hamiltonian
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commutativity and linearity requirements,〈
T̂ 2φ

∣∣∣T̂ 2ψ
〉

=
〈
T̂ φ
∣∣∣T̂ ψ〉∗ = 〈φ|ψ〉 T̂ 2Ĥ = T̂ ĤT̂ = ĤT̂ 2 T̂ 2z = T̂ z∗T̂ = zT̂ 2〈

Ĉ2φ
∣∣∣Ĉ2ψ

〉
=
〈
Ĉφ
∣∣∣Ĉψ〉∗ = 〈φ|ψ〉 Ĉ2Ĥ = −ĈĤ Ĉ = Ĥ Ĉ2 Ĉ2z = Ĉz∗Ĉ = zĈ2〈

P̂2φ
∣∣∣P̂2ψ

〉
=
〈
P̂φ
∣∣∣P̂ψ〉 = 〈φ|ψ〉 P̂2Ĥ = P̂ĤP̂ = ĤP̂2 P̂2z = P̂zP̂ = zP̂2

This will allow the application to each of them the lemma that any unitary commuting operator

on a Hilbert space for which U = {I} must be multiplication by a scalar phase:

Lemma 3.1.12. If U = {I} then any unitary commuting symmetry operator on the Hilbert space

must be scalar multiplication by elements of U(1).

Proof. Let Ŝ be a unitary commuting operator, then Σ(Ŝ) ∈ U = I and Ŝ ∈ ker(Σ) = U(1).

This can now be used to show that each of T̂ , Ĉ and P̂ squares to plus or minus the identity

in a suitable basis, [24]:

Theorem 3.1.13. Let G ⊆ {I, α, γ, π} such that α2 = γ2 = π2 = I. Let the lifts of α, γ, π be

T̂ , Ĉ and P̂ respectively. Then there exists a basis such that,

T̂ 2 = ±I, Ĉ2 = ±I, P̂2 = I

Proof. As Σ is a homomorphism then,

Σ
(
T̂ 2
)

= Σ
(
T̂ 2
)

= I⇐⇒ T 2 = zT I zT ∈ U(1)

due to the fact that T̂ 2 must be a unitary commuting operator, which must lie in the kernel of Σ,

which is just scalar multiplication. This also holds respectively for Ĉ2 = zCI and P̂2 = zPI too.

The anti-linearity property of T̂ means that

T̂ zT = T̂ T̂ 2 = T̂ 2T̂ = zT T̂ = z∗T T̂

and that zT = ±1 must be real. Similarly, as Ĉ is also anti-linear, zC = ±1.

In the case of P̂, the choice of P̂ can be scaled as P̂ ′ = z−1
P P̂ as P̂ is linear, thus P̂ can be

chosen to square to I by choice of basis.

As well as knowing that each of T̂ , Ĉ and P̂ square to ±I, their form is also restricted by

the fact that they are projective corepresentations of G and when written as matrices, must have

the block structure seen in Equation 3.9. These two requirements completely define the possible

matrix forms for T̂ , Ĉ and P̂ for each possible combination of T̂ 2, Ĉ2, and P̂ existing - of which

there are ten possible combinations. These matrices are easiest to define over the Hilbert space

H ∼= Cm ⊗ Cn ⊗H′, separating out the blocks that T̂ and Ĉ act on, [24, 64]:

Theorem 3.1.14. Let Q be a quantum system with symmetry group G ⊂ {I, α, γ, π} so that

there are no unitary-commuting symmetries. Then the Hilbert space can be expressed as H =

Cm⊗Cn⊗H′ and the operators T̂ , Ĉ and P̂ corresponding to the symmetry transforms α, γ and
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Class m n T C P T̂ 2 Ĉ2 π ∈ G
A m 1 − − − − − No

AI m 1 I − − I − No

AII m 2

(
0 1

−1 0

)
− − −I − No

AIII 2 n − −
(

0 In
In 0

)
− − Yes

BDI 2 1 I

(
0 1

1 0

) (
0 1

1 0

)
I I Yes

CII 4 4

(
J 0

0 J

) (
0 J

J 0

)
C ⊗ T −I −I Yes

D 2 n −
(

0 1

1 0

)
− − I No

C 2 n −
(

0 −1

1 0

)
− − −I No

CI 2 1 I

(
0 −1

1 0

) (
0 −1

1 0

)
I −I No

DIII 2 4

(
J 0

0 J

) (
0 1

1 0

)
C ⊗ T −I I No

Table 3.1: Possible choices for the matrices T,C, P depending on whether α, γ and π are in G,
and the square of T̂ and Ĉ, [64, 73]. Where the size of Hcharge and Hspin is restricted by the form

of the operators Ĉ and T̂ respectively, then values for m and n have been given. The matrix J is
given by J =

(
0 1
−1 0

)
.

π respectively may be expressed as

T̂ = (Im ⊗ T ⊗ IH′)K
Ĉ = (C ⊗ In ⊗ IH′)K
P̂ = (P ⊗ IH′)

where T, C and P are taken from Table 3.1 according to how T̂ and Ĉ square and if π ∈ G.

Note how H = Cm ⊗ Cn ⊗ H′ ∼= Hcharge ⊗ Hspin ⊗ Horbital, the Hilbert space introduced

at the end of Section C.1.1 and used in Theorem 2.4.10. This both justifies the use of this

structure on the Hilbert space, and makes clear the link between the Altland-Zirnbauer class of

a projective corepresentation of G and the form of the operators T̂ , Ĉ and P̂ - Theorem 3.1.14 is

exactly Theorem 2.4.10, only in the language of quantum operators instead of corepresentation

matrices. Note this connection would always have to exist - the operators are defined by the

corepresentation and must take structure from its classification, however it is now seen, and will

have further effects on the structure of the Hilbert space and Hamiltonian.

First though, having identified that the operators may be described on Hcharge ⊗ Hspin ⊗
Horbital, we can use their matrix forms, and their interaction with the operators q̂k, p̂k, Ĵk

and ĉk, ĉ
†
k to study the effect of T̂ , Ĉ and P̂ on each of these operators, giving them physical

interpretations.
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Firstly, T̂ conjugates everything with imaginary components so that, [176],

T̂ −1qkT̂ = q̂k, T̂ −1pkT̂ = −p̂k, T̂ −1ĴkT̂ = −Ĵk, T̂ :

|p〉
|h〉

→
|p〉
|h〉

 (3.11)

This leaves particle type and position unchanged, but flips the direction of all of the momentums

- this is equivalent to the operation of time-reversal. Also, when U > {I} then any symmetry

operator which has the same type of interaction T̂ has with the Hamiltonian and transition

amplitude will be known as a generalised time-reversal symmetry - this covers the anti-unitary,

commuting operators, or those generated by elements of A.

Next, Ĉ conjugates the imaginary components, but also inverts the charge space, and switches

creation and annihilation operators in the second quantised basis, [14, 112],

Ĉ :

|p〉
|h〉

→
|h〉
|p〉

, Ĉ : ĉi → ĉ†i (3.12)

which is interpreted as transforming particles into anti-particles - this is known as charge-

conjugation - or the particle-hole symmetry. This time, when U > {I}, then any symmetry

operator which has the same type of interaction Ĉ has with the Hamiltonian and transition

amplitude is known as a generalised charge-conjugation symmetry - this covers the anti-unitary,

anti-commuting operators, or those generated by elements of C.

Finally, P̂ = T̂ Ĉ combines the two operations T̂ and Ĉ,

P̂ = Ĉ ◦ T̂ (3.13)

This is the chiral operator, or the sub-lattice symmetry operator as it can occur due to sub-lattice

symmetries, [112]. It is thus sometimes denoted as the operator Ŝ as the sub-lattice symmetry,

[112, 139]. When U > {I}, then any symmetry operator which has the same type of interaction

P̂ has with the Hamiltonian and transition amplitude is known as a generalised chiral symmetry

- this covers the unitary, anti-commuting operators, or those generated by elements of P .

We note that the anti-commutation of Ĉ and P̂ with the Hamiltonian as a symmetry require-

ment holds only with the first-quantised Hamiltonian, they commute with the second quantised

Hamiltonian, [112], which is part of why they may be called symmetries despite not commuting

with the first quantised Hamiltonian - the notion of symmetry normally applies to operators

commuting with the Hamiltonian in the wider physics literature, which would be violated by the

charge-conjugation and chiral operators.

This now also allows the discussion of the reasons for why each of the names of the cosets

of U in G are chosen for the case of the Z2 × Z2-graded group - U and A carry over from the

Z2-graded case, where they stand for the unitary and anti-unitary elements respectively. The

subsets C and P are labelled after the Ĉ and P̂ operators.

We can also now discuss how the factor system can be predicted from the physical properties

of the system for the projective corepresentation taking G to the operators T̂ , Ĉ and P̂. This

is because it is well known that the forms of the operators T̂ , Ĉ and P̂, not even necessarily as

symmetries, are fixed by the physical properties of the system. This is best expressed as a method
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of inferring the squares of T̂ and Ĉ, as from here their matrix forms can be read off from Table

3.1 by treating them as if they were symmetries, and taking P̂ = ĈT̂ . Of course their actual

status as symmetries still remains to be checked after finding their forms.

Firstly, if the system comprises of bosons or an even number of fermions, then T̂ 2 = I; while an

odd number of fermions requires T̂ 2 = −I, [30]. The form of Ĉ2 requires expressing the system’s

Hamiltonian in the BdG formalism,

ĤBdG =

H0 − EF −iσy∆

iσy∆∗ EF −H∗0


and ifH0 is spin-dependent, then Ĉ2 = I while ifH0 is spin-independent, then Ĉ2 = −I, [14]. These

two simple rules are all that is needed to infer the forms of the time-reversal, charge-conjugation

and chiral operators on a system, finding their forms and allowing them to be checked if they

are symmetries. This can be used to describe the factor system taking G as an abstract group

to the operators through a projective corepresentation, or it also allows the Altland-Zirnbauer

class of the system to be checked directly by which of them are symmetries and their squares,

without needing to work with the projective corepresentations when there are no non-trivial

unitary symmetries.

The different forms of T̂ , Ĉ and P̂ also dictate the structure of the Hilbert space they sit in.

This was seen in Theorem 3.1.14 and Table 3.1, where the sizes of Hcharge
∼= Cm and Hspin

∼= Cn

could be limited by the forms of the symmetries T̂ and Ĉ. More restrictions on H can be seen by

comparing an eigenstate |ψn〉 with its image under T̂ , Ĉ and P̂, [24]:

Theorem 3.1.15. Let H be the Hilbert space of a quantum system with Hamiltonian Ĥ and

energy eigenstates |ψn〉 spanning the Hilbert space. Then, there exists a basis |ψ′n〉 where:

� If T̂ 2 = I then
∣∣∣T̂ ψ′n〉 ∼= |ψ′n〉

� If T̂ 2 = −I then
∣∣∣T̂ ψ′n〉 6∼= |ψ′n〉 and all eigenvalues En are doubly degenerate.

� In all cases,
∣∣∣Ĉψ′n〉 6∼= |ψ′n〉 6∼= ∣∣∣P̂ψ′n〉

Proof. When T̂ 2 = −I, then the orthogonality test for |ψn〉 and
∣∣∣T̂ ψn〉 is

〈
ψn

∣∣∣T̂ ψn〉 =
〈
T̂ ψn

∣∣∣T̂ 2ψn

〉∗
= −

〈
T̂ ψn

∣∣∣ψn〉∗ = −
〈
ψn

∣∣∣T̂ ψn〉 = 0

so they are linearly independent states. As there are two linearly independent states with the

eigenvalue En, it is doubly degenerate.

When T̂ 2 = I, then if the two eigenstates |ψn〉 and
∣∣∣T̂ ψn〉 are not already equal, then a

change of basis

|ψ′n〉 =
1√
2

(
|ψn〉+

∣∣∣T̂ ψn〉)
satisfies

∣∣∣T̂ ψ′n〉 = |ψ′n〉.

53



Class Ĥ Class Ĥ

A AIII =

(
0 h

h† 0

)

AI ∈ R BDI =

(
0 h

hT 0

)
, h = h∗

AII =

(
h1 h2

−h∗2 h∗1

)
CII =

(
0 h

h† 0

)
, h =

(
k1 k2

−k∗2 k∗1

)

C =

(
h1 h2

−h∗2 h∗1

)
CI =

(
0 h

h∗ 0

)
, hT = h

D =

(
h1 h2

−h∗2 −hT1

)
, h1 = h†1, h2 = −hT2 DIII =

(
0 h

−h∗ 0

)
, hT = −h

Table 3.2: Canonical structure on the Hamiltonian of a quantum system according to the Altland-
Zirnbauer class of its symmetry group G ⊆ {I, α, γ, π}, [1, 24, 39, 156].

In the final case, as |ψn〉 has eigenvalue En, while
∣∣∣Ĉψn〉 and

∣∣∣P̂ψn〉 have eigenvalue −En,

they must be linearly independent of |ψn〉,
∣∣∣Ĉψ′n〉 6∼= |ψ′n〉 6∼= ∣∣∣P̂ψ′n〉.

The degeneracy when T̂ 2 = −I is known as Kramer’s degeneracy, and means that whenever

T̂ 2 = −I, the Hamiltonian is of even dimension. The structure of the Hamiltonian can be further

classified when the corepresentation class of G is considered, [117]:

Theorem 3.1.16. Let Q be a quantum system with Hilbert space H, Hamiltonian Ĥ and sym-

metry group G with a projective corepresentation RP on H. Let Z(RP) be the super-algebra

generated by the super-commutant of RP. Then Ĥ ∈ Z.

Proof. RP forms the set of operators on H generated by G. By definition of a symmetric operator,

RP(g)Ĥ = ξ(g)ĤRP(g) ∀g ∈ G. This is also the definition of an element being in the super-

commutant. Thus, Ĥ ∈ Z(RP).

Using the matrix forms of T̂ , Ĉ and P̂ when U = I gives a more explicit form, [24, 156]:

Theorem 3.1.17. Let Ĥ be the Hamiltonian of a system with symmetry group G ⊆ {I, α, γ, π}.
Given the Altland-Zirnbauer class of G, then there exists a basis for the Hilbert space where Ĥ is

isomorphic to a Hermitian matrix with the additional structure given by Table 3.2.

This is an incredibly strong restriction on the different canonical forms of the Hamiltonian, and

will allow for random matrix theory to be applied to the Hamiltonians by statistically sampling

the super-commutant of the symmetry class of the system, this will be further discussed in

Chapter 4. We note that the Altland-Zirnbauer classification is essential to this process of taking

a quantum system and then doing random matrix statistics on it - it is only because we are able

to take a symmetry group, then take its projective-corepresentation and its super-commutant,

which is now guaranteed by the Altland-Zirnbauer classification not to be one of infinitely many

different forms, but one of ten different forms which have similar and well defined statistics. The

ensembles coming out of the Altland-Zirnbauer classification also explains why the random matrix

behaviour is universal to all systems sharing a symmetry group - these systems all obviously share

an Altland-Zirnbauer class, so their Hamiltonians sit inside the same ensembles.
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3.1.1 Non-Trivial Unitary Symmetries: Spectral Splitting, Symmetry

Reduced Bases And Desymmetrisation

We come now to discussing the general case where there may be non-trivial unitary symmetries.

This case has already been alluded to in several places - first we stated in the introduction that

the effect of non-trivial unitary symmetries was to cause spectral splitting, so that the full energy

spectrum contains a number of independent spectra to which random matrix theory had to be

applied separately; in the above section, we claimed it was possible to derive a ‘desymmetrised’

system, finding a subspace such that all unitary symmetries in it were trivial, and only in these

subspaces could the ten Altland-Zirnbauer ensembles occur. Here we elaborate on the effects of

non-trivial unitary symmetries on the spectral statistics of a quantum system, deriving the sym-

metry reduced basis for the system, and show how both of the effects of the spectrum splitting

and desymmetrising the system arise out of the construction of the symmetry reduced basis. We

also discus the process of restricting the time-reversal, charge-conjugation and chiral operators

to the systems constructed through desymmetrisation or the symmetry reduced basis, discussing

how the form of the local symmetry group in the subspace may be inferred based on the corep-

resentation associated to the subspace. This allows the techniques discussed in the section above

for analysing the structure of the Hilbert space and Hamiltonian to be applied to the subspaces,

and the random matrix ensembles appearing in them derived for each subspectrum.

We begin with describing the creation of subspaces in the Hilbert space due to the unitary

symmetries, forming the independent subspectra in the full spectrum, and in the process defining

the symmetry reduced basis for the system.

Let then Q be a quantum system with a symmetry group G = U∪αU∪γU∪πU and projective

corepresentation RP : G → Autqtm(H) taking G to a set of symmetry operators on H. Let U

contain non-trivial elements. Let G′ be the universal covering group of G found with the pullback

extension. We can happily work with the covering group G′ and its corepresentation R′ onto

Autqtm(H), and will in fact assume that we are, relabelling G′ → G throughout with R′ → R
giving the symmetry operators.

First we note, that if U ⊂ G is a set of non-trivial symmetry transformations mapped to

operators R(u) that are unitary and commute with the Hamiltonian for all u ∈ U , then Ĥ and

R(u) share an eigenbasis for all u ∈ U by Theorem 3.10. Firstly, this means that if |En, a〉 is an

eigenstate of Ĥ with energy En, then R(u) |En, a〉 = |En, a′〉 is also an eigenstate with energy

En, but it is potentially linearly independent of the original eigenstate. Secondly, the operators

are all simultaneously block diagonalisable.

We consider this block-diagonalised basis. To do this we note that the corepresentation R of

G once restricted to U acts as a linear, unitary representation of U . This can be seen by taking

the matrix form of the corepresentation for U on H = HU ⊕ αHU ⊕ πHU ⊕ γHU , as generated

by the unitary representation of U on HU by Equation 2.8,

R(u ∈ U) =


R(u) 0 0 0

0 R∗(α−1uα) 0 0

0 0 R(π−1uπ) 0

0 0 0 R∗(γ−1uγ)

.
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The blocks R∗(α−1uα), R(π−1uπ) and R∗(γuγ) are still unitary representations of U when R

is, thus by forgetting about the information about the elements R(a ∈ A), R(c ∈ C) and

R(p ∈ P ), then R is a unitary representation of U on H, as per the definition of the restricted

representation from Definition 2.1.4. We for now ignore the decomposition of the Hilbert space

into H = HU⊕αHU⊕πHU⊕γHU however, and consider R as a general unitary representation of

U . This means that the decomposition into irreducible representations can be taken for it, so that

R(u) ∼=
⊕

a

⊕sa
n=1 ρa(u) with a dimension da irreducible representation ρa having multiplicity sa

in R as a representation.

In this basis, then the eigenstates may be described by three quantum numbers, |a, i, n〉, [90],

where a corresponds to a unique irreducible representation of U , 1 ≤ i ≤ da corresponds to a

component in its dimension da expression, and 1 ≤ n ≤ sa corresponds to the degenerate copy

of the representation. This allows the eigenstates to be written as transforming under U as,

u : |a, i, n〉 → R(u) |a, i, n〉 =

da∑
j=1

(ρa(u))ji |a, j, n〉 . (3.14)

Note that while sharing an eigenbasis with R is enough to guarantee that Ĥ is block diagonal

in this basis, it is not enough to assume that Ĥ decomposes into exactly the same number of

blocks as R, with the same sizes. That is, we can’t assume that Ĥ =
⊕

a

⊕sa
n=1 Ĥa, so that there

is one block Ĥa in the decomposition for each copy of ρa. Instead we will show that one block

Ĥa corresponds to the combination of all degenerate copies of ρa in the decomposition of R, so

Ĥ =
⊕

a Ĥa.

Identifying the block structure of Ĥ in this basis is a case of computing the matrix elements

HNM for the states N = |a, i, n〉 and M = |b, j,m〉 and identifying the conditions for HNM = 0.

The matrix elements can be computed with the standard expression,

HNM = 〈a, i, j|Ĥ|b, j,m〉

=
1

|U |
∑
u∈U
〈a, i, n|Ĥ|b, j,m〉 ,

where by adding the sum over U , the Rearrangement Theorem from Theorem A.0.7 can be

applied, inserting R(u) into the matrix element while leaving HNM invariant. This gives,

HNM =
1

|U |
∑
u∈U
〈a, i, n|R−1(u)ĤR(u)|b, j,m〉

=
1

|U |
∑
u∈U

∑
1≤k≤da

∑
1≤l≤db

(ρ∗a(u))ki(ρ(b))lj 〈a, i, n|Ĥ|b, j,m〉 .

Note that while there is an orthogonality condition on the characters of irreducible represent-

ations, there is also one on the matrix elements of the irreducible representations, [149],

1

|U |
∑
u∈U

(ρ∗a(u))ij(ρb(u))kl =
δikδjlδab

da
. (3.15)
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Substituting this into the matrix element equation gives,

HNM =
∑

1≤k≤da

∑
1≤l≤db

δklδijδab
da

HNM (3.16)

and HNM = 0 if either a 6= b or i 6= j. Thus, it is not required that 〈a, i, n|Ĥ|a, i,m〉 = 0

for n 6= m, and Ĥ allows for crossover between different degenerate copies of the irreducible

representation ρa. This is our required block structure - the Hamiltonian decomposes into one

block for each unique, non-equivalent irreducible representation of U contained in R. This block

Ĥa contains all the degenerate copies of the irreducible representation ρa. This means that if ρa

is a dimension da irreducible representation with multiplicity sa in R, then Ĥa is a dimension

dasa square matrix.

This also gives the spectral splitting property of the unitary symmetries immediately - each

of the sub-Hamiltonians Ĥa may be treated as an independent system and will have its own

independent spectrum. Being able to isolate the sub-Hamiltonians as independent systems is

also how the ‘desymmetrised’ systems appear - the promised subspace from the previous section

where Ua = {I} is trivial, though discussion of why this is will be left to after this basis is formally

recognised as the symmetry reduced basis, [11, 24, 90, 110]:

Theorem 3.1.18. Let Q be a quantum system with the extended symmetry group G = U ∪αU ∪
γU ∪ πU . Let U > {I} contain non-trivial elements. Let the action of G on the Hilbert space be

given by the corepresentation R : G → Autqtm(H), expressed over the basis |ψi〉 by the matrix

Rji(u),

u : |ψi〉 →
∑
j

Rji(u) |ψj〉 .

Let W be the transformation giving the decomposition of the restriction of R to U as a represent-

ation into irreducible components, W : R → ⊕
a

⊕sa
n=1 ρa. Applying W to the basis |ψn〉 gives

the basis |a, i, n〉 for 1 ≤ i ≤ da and 1 ≤ n ≤ sa, which transforms under U as

u : |a, i, n〉 =

da∑
j=1

(ρa(u))ji |a, j, n〉 .

Then, the following occur:

� The Hilbert space decomposes into subspaces, H =
⊕

aHa with

Ha = 〈|a, i, n〉|1 ≤ i ≤ da, 1 ≤ n ≤ sa〉 being the subspace spanned by the vectors associated

to all equivalent copies of the unique irreducible reducible representation ρa of U

� The Hamiltonian decomposes into the block structure Ĥ =
⊕

a Ĥa with one block for each

subspace Ha in the Hilbert space.

� The energy level spectrum {Ei} of Q decomposes into independent subspectra, {Ei} =⊕
a {Ei}a where {Ei}a is the set of eigenvalues of Ĥa.

� Treating Ha and Ĥa as forming an independent system, Qa, a local unextended symmetry

group Ga can be constructed. Ga is also Z2 × Z2-graded but has Ua = {I}. The inclusion

of αa, γa and πa in Ga can be predicted through the Altland-Zirnbauer class of the corep-
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(a) The full Sinai billiard. (b) The desymmetrised Sinai billiard.

Figure 3.1: The Sinai billiard and its desymmetrised form, [25]. Given the full billiard, it has
geometric symmetries U = D8 when there is no magnetic field imposed; by considering only an
eighth of the full billiard, with particular boundary conditions on the two new edges where the
rest of the billiard has been cut away, it is reduced to a subspace where U = {I}.

resentation Ra generated by ρa, as can be the forms their operators take on Ha when local

symmetries or alternatively the form of the universal covering group G′a of Ga.

The proof of the first two statements regarding the decomposition of H and Ĥ is the con-

struction described prior to the theorem. We note that the decomposition and the process of

identifying the necessary transform W are explored further in [11, 24, 110], while [24, 179] show

that it is also possible to go further in restricting the structure of Ha, the representation of U on

Ha, Ra : U → Aut(Ha), and the local sub-Hamiltonian,

Ha = Csa ⊗H′a, Ra(u) = Isa ⊗ ρa(u), Ĥa = Ĥ ′a ⊗ Isa .

Understanding the reason why it can be guaranteed that Ua = {I} is a little more complicated.

The standard proof is given in [79] by Heinzner, Huckleberry and Zirnbauer, but the most intuitive

reason is to understand that the symmetry reduced basis is heavily linked with the construction

of both the quotient space, G/U and the fundamental domain or desymmetrised configuration

space, [11, 137], and in these interpretations it is forced that Ua = {I} by their definition. That

is, the definition of the quotient G/U is that U ≡ I are equated, while the fundamental domain

or desymmetrised configuration space is the isolation of the subset of the system where every

point fully in the subset is mapped out of the subset by the action of U , bar a few points on the

boundary, [137]. Again, as it corresponds to the separate process of looking at the configuration

space, and then removing sections of it until there are no unitary commuting symmetries, it is

required that Ua = {I}.
This desymmetrisation process done by modifying the geometry is well known, particularly for

billiard systems. A well known example of the Sinai billiard is given in Figure 3.1, showing both

the full billiard - which is square with the central circle removed and has the unitary symmetry

group U = D8 from its geometry - and the desymmetrised billiard which takes 1/8th of the initial

billiard’s area, but which has no geometric symmetries. Boundary conditions must be imposed

on the new walls where the desymmetrised billiard has been ‘cut’ out of the full billiard, and how

these are imposed allows which of the subspaces Ha is being considered to be controlled.
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(a) A quantum graph.
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S =

(
0 0 ( 2

3−δij)1≤i,j≤3 0
I3 0 0 0
0 0 0 I3
0 ( 2

3−δij)1≤i,j≤3 0 0

)

(b) Its uni-directional equivalent.
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b′7

b′8

b′9

b′4

b′5

b′6
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(
0 ( 2

3−δij)1≤i,j≤3 0 0
I3 0 0 0
0 0 0 ( 2

3−δij)1≤i,j≤3

0 0 −I3 0

)

(c) Its form in the symmetry reduced basis.

Figure 3.2: A quantum graph, having a U = Z2 geometric mirror symmetry through the x-axis,
and the form it takes in the symmetry reduced basis, identifying the two non-connected subgraphs
within it that can be studied as separate, desymmetrised systems, [16]. Note how they correspond
to cutting the graph in half along the mirror axis, and imposing a new scattering condition at
the cut edges, as was the case for the Sinai billiard.

To establish the link between the symmetry reduced basis and a reduction in the geometry

of the system, it is easiest to consider the quantum graph however, and understand how the

symmetry reduced basis leads to the construction of the quotient graph, [11, 110]. This is a

model that will be considered further in Chapters 6 and 7, so we give a brief gloss here, but

further details will be covered later.

The quantum graph, an example being seen in Figure 3.2a, consists of a series of quantum

wires connected together at vertices. A quantum particle then exists on one of the wires, and

can travel down them and scatter between connected wires at the vertex. This behaviour can

be described by two matrices - the transmission matrix, T (E), describing the phases picked

up by an energy E particle down the wires, and the scattering matrix, S(E), where S(E)b2b1

describes the probability to scatter from the wire b1 onto the wire b2; the combination of them as

Ξ(E) = S(E)T (E) can be considered as a time-evolution operator replacing the Hamiltonian in

the system. We note briefly that due to travel in the direction ‘against’ the direction of the wire

being possible, the scattering matrix has twice the dimension of the number of physical wires if

back travel is allowed. We will talk further about the exact definition and interpretations of the

quantum graph and its scattering matrix in Chapter 6, but for now it will suffice to enforce instead

that instead of having wires with back-travel, we replace each wire with two wires allowing only

unidirectional travel, with their directions of travel in opposite direction as in Figure 3.2b. This
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doesn’t change the scattering matrix, and it allows us to recognise that the scattering matrix

actually encodes the geometry of the system into itself - particles can only scatter between two

wires b1, b2 if they are connected, so Sb2b1(E) is only non-zero when the start of b2 connects to

the end of b1.

As Ξ replaces the Hamiltonian in describing the system, the symmetry reduced basis involves

block diagonalising Ξ. As T is diagonal, this leads to block diagonalising S. This leads to defining

a new scattering matrix S′ =
⊕

a Sa, which is block diagonal. This can then be used to define

a new graph geometry based on the idea that non-zero elements of Sa lead to connected bonds.

The block diagonal structure means that different subgraphs end up being created, without

connections between them. These subgraphs can then be studied as separate systems - and are

the above defined geometrically desymmetrised systems. Figure 3.2c gives the subgraphs derived

from block diagonalising the scattering matrix for the example graph in Figure 3.2b, showing

how it splits into two.

Finally, we discuss how given the subspaceHa, we can predict the form of the local unexpended

symmetry group Ga and its covering group G′a, along with the forms of any local time-reversal,

charge-conjugation and chiral symmetry operators. Recall the breakdown of the Hilbert space

intoHU , and its time-reversed, charge-conjugated and chiral copies,H = HU⊕αHU⊕πHU⊕γHU ,

and recognise that if u acts on the state |a, i, n〉 by

u : |a, i, n〉 →
da∑
j=1

(ρa(u))ji |a, j, n〉

then the matrix form of the corepresentation generated by ρa means that u acts on the time-

reversed, charge-conjugated and chiral states found by applying the operator forms of α, γ and

π in this basis - α̂, γ̂ and π̂ - to |a, i, n〉 as,

u : α̂ |a, i, n〉 →
da∑
j=1

(ρ∗a(α−1uα))jiα̂ |a, i, n〉

u : γ̂ |a, i, n〉 →
da∑
j=1

(ρ∗a(γ−1uγ))jiγ̂ |a, i, n〉

u : π̂ |a, i, n〉 →
da∑
j=1

(ρa(π−1uπ))jiπ̂ |a, i, n〉 .

Asking whether a local time-reversal, charge-conjugation or chiral symmetry exists in Ha,

is then the question of whether for a basis state |a, i, n〉 its copy under either α, γ or π as

appriopriate is included in Ha. Based on Ha containing all basis states transforming under an

irreducible representations equivalent to ρa, this is then the question of whether ρ̄a = ρ∗a(α−1uα),

ρ̂a = ρ∗a(γ−1uγ) and ρ̃a = ρa(π−1uπ) are equivalent to ρa. This can be solved using the Altland-

Zirnbauer class of the corepresentation generated by ρa, using Theorem 2.3.11, [24]:

Theorem 3.1.19. Let Q be a quantum system with extended symmetry group G, and corepres-

entation R on the Hilbert space H. Let the symmetry decomposed basis be taken for Q, so that

R =
⊕

a

⊕sa
n=1 ρa as a representation of U on H =

⊕
aHa with basis states |a, i, n〉. Let each ir-

reducible representation ρa generate a corepresentation of G as Ra. Then a local symmetry group
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Ga can be defined on Ha. As an unextended group, then Ga ⊆ {I, αa, γa, πa} where αa, γa and

πa are local time-reversal, charge-conjugation and chiral symmetries according to the inclusion

rules:

� αa ∈ Ga if and only if α |a, i, n〉 ∈ Ha ⇔ ρ̄a ∼= ρ which occurs if Ra is of Altland-Zirnbauer

class AI, AII, BDI, CII, CI or DIII.

� γa ∈ Ga if and only if γ |a, i, n〉 ∈ Ha ⇔ ρ̂a ∼= ρ which occurs if Ra is of Altland-Zirnbauer

class C, D, BDI, CII, CI or DIII.

� πa ∈ Ga if and only if π |a, i, n〉 ∈ Ha ⇔ ρ̃a ∼= ρ which occurs if Ra is of Altland-Zirnbauer

class AIII, BDI, CII, CI or DIII.

There are two things to note here. Firstly, while it is possible to ‘kill’ certain types of symmetry

so that A 6= ∅ but αa 6∈ Ga for example, it is not possible to create new forms of symmetry in

the subsystem if a form of it didn’t exist on the larger system. That is, there are the rules

A = ∅ ⇒ αa 6∈ Ga, C = ∅ ⇒ γa 6∈ Ga and P = ∅ ⇒ πa 6∈ Ga on the form of Ga.

Secondly, if there is a generalised time-reversal, generalised charge-conjugation or generalised

chiral symmetry that is killed in going to the subspace, this instead causes spectral degeneracies,

[24]. That is, for a killed generalised time-reversal symmetry α, ρa 6∼= ρ̄a, so there exists a second

subspace Hā generated by ρ̄a so that α : Ha → Hā. As α will act as a time-reversal in Ha, it can’t

change the spectrum when shifting to Hā, so there is a degeneracy created with {Ei}a = {Ei}ā.

Similarly, a killed generalised charge-conjugation symmetry γ will have the subspaceHâ generated

by ρ̂a, γ : Ha → Hâ acting as the charge-conjugation operator so that {Ei}a = {−Ei}â. Finally,

a killed generalised chiral symmetry π will have the subspace Hã generated by ρ̃a, π : Ha → Hã
acting as the chiral operator so that {Ei}a = {−Ei}ã.

We move on to considering the forms of the lifts of the elements αa, γa and πa of Ga as

operators - which, given the lack of unitary symmetries in the subspace will be the local time-

reversal, charge-conjugation and chiral operators T̂a, Ĉa and P̂a in the subspace Ha respectively.

Finding explicit expressions for their forms will require recognising Ha as isomorphic to the kernel

space, HKa , [11, 24, 110]. The kernel space is defined out of the relation in Equation 3.14 that

the dimension da states |ψa,i〉 ∈ Ha for 1 ≤ i ≤ da satisfy the action of R being equivalent to the

action ρa in the basis,

R(u) |ψa,i〉 =

da∑
j=1

(ρa(u))ji |ψa,j〉 .

Forming the vector |Ψa〉 out of the individual |ψa,i〉 by stacking them vertically on top of each

other,

|Ψa〉 =
∑

1≤j≤da

|ej〉 ⊗ |ψa,j〉 =
(
|ψa,1〉 . . . |ψa,da〉

)T
then if the dimension of R is dr, the state |Ψa〉 must satisfy

(
Ida ⊗R(u)− ρTa (u)⊗ Idr

)
|Ψa〉 = 0 ∀u ∈ U.
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This is equivalent to the relation that

|Ψa〉 ∈
⋂
u∈U

ker
(
Ida ⊗R(u)− ρTa (u)⊗ Idr

)
= HKa .

If a representation ρa has multiplicity sa in R, then HKa will then have dimension sa, and as three

quantum numbers a, i and n were needed to label a state previously, another quantum number

n will need to be added here, so that |Ψa,n〉 for 1 ≤ n ≤ sa then refers to the state related to the

nth degenerate copy of ρa.

The kernel space is useful as it allows expressions on H using a map from R to be con-

verted into a map on the subspace by using the relation u : |Ψa,n〉 → (Ida ⊗R(u)) |Ψa,n〉 =(
ρTa (u)⊗ Idr

)
|Ψa,n〉. In particular, there are the relations on the squares of the generalised

time-reversal, generalised charge-conjugation and generalised chiral symmetries so that

α2 : |Ψa,n〉 →
(
Ida ⊗R(α2)

)
|Ψa,n〉 =

(
ρTa (α2)⊗ Idr

)
|Ψa,n〉

γ2 : |Ψa,n〉 →
(
Ida ⊗R(γ2)

)
|Ψa,n〉 =

(
ρTa (γ2)⊗ Idr

)
|Ψa,n〉

π2 : |Ψa,n〉 →
(
Ida ⊗R(π2)

)
|Ψa,n〉 =

(
ρTa (π2)⊗ Idr

)
|Ψa,n〉

which will be essential to testing the squares of the local time-reversal and local charge-conjugation

symmetries.

The local time-reversal, charge-conjugation and chiral symmetry operators can then be defined

in the kernel space, [24]:

Theorem 3.1.20. Let G = U ∪ αU ∪γ U ∪ πU be a general Z2 × Z2-graded group with corep-

resentation R on the Hilbert space H with the decomposition of R(u) =
⊕

a

⊕sa
n=1 ρa(u) as a

representation. Let H =
⊕

aHKa be the decomposition into the kernel spaces of the Hilbert space.

Let α̂, γ̂ and π̂ be the global generalised time-reversal, generalised charge-conjugation and gener-

alised chiral symmetry operators. Then there are potential local time-reversal, charge-conjugation

and chiral symmetries T̂a, Ĉa and P̂a in the subspace HKa which are given by,

T̂a =

Sa,α ⊗ α̂ ρa(u) = Sa,αρ
∗(α−1uα)S−1

a,α

6 ∃T̂a as a symmetry otherwise

Ĉa =

Sa,γ ⊗ γ̂ ρa(u) = Sa,γρ
∗(γ−1uγ)S−1

a,α

6 ∃Ĉa as a symmetry otherwise

P̂a =

Sa,π ⊗ π̂ ρa(u) = Sa,πρ(π−1uα)S−1
a,π

6 ∃P̂a as a symmetry otherwise

This also allows us to test the squares of T̂a, Ĉa and P̂a, and show that the Altland-Zirnbauer

class they predict in the subspace HKa is the same as the Altland-Zirnbauer class of the corepres-

entation generated by the irreducible representation ρa by any of the methods in Section 2.3.1.
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This ensures that the classification of the subspaces is consistent in all methods of calculation,

[24]:

Theorem 3.1.21. Let G = U ∪ αU ∪γ U ∪ πU be a general Z2 × Z2-graded group with corep-

resentation R on the Hilbert space H with the decomposition of R(u) =
⊕

a

⊕sa
n=1 ρa(u) as a

representation. Let H =
⊕

aHKa be the decomposition into the kernel spaces of the Hilbert space.

Let Ga ⊆ {I, αa, γa, πa} be the local unexteneded symmetry group on the subspace HKa , whose

elements give local time-reversal, charge-conjugation and chiral symmetry operators T̂a, Ĉa and

P̂a. Then the classification of the subspace according to the Altland-Zirnbauer Tenfold Way is

the same regardless whether it is calculated using the existence of T̂a, Ĉa and P̂a as symmetry

operators and the sign of the squares of T̂a, Ĉa; or by the classification of the corepresentation Ra
generated by the irreducible representation ρa generating HKa . That is, the following hold:

T̂ 2
a =



I FSIA(ρa) = 1,
ρa(u) = Sa,αρ

∗(α−1uα)S−1
a,α,

Sa,αS
∗
a,α = ρ(α2)

−I FSIA(ρa) = −1,
ρa(u) = Sa,αρ

∗(α−1uα)S−1
a,α,

Sa,αS
∗
a,α = −ρ(α2)

T̂a is not a symmetry FSIA(ρa) = 0

Ĉ2
a =



I FSIC(ρa) = 1,
ρa(u) = Sa,γρ

∗(γ−1uγ)S−1
a,γ ,

Sa,γS
∗
a,γ = ρ(γ2)

−I FSIC(ρa) = −1,
ρa(u) = Sa,γρ

∗(γ−1uγ)S−1
a,γ ,

Sa,γS
∗
a,γ = −ρ(γ2)

Ĉa is not a symmetry FSIC(ρa) = 0

P̂a is a symmetry⇔ IndP (ρa) = 1⇔ ρa(u) = Sa,πρ(π−1uπ)S−1
a,π

Proof. Having shown that T̂a, Ĉa and P̂a exist as symmetries according to the Altland-Zirnbauer

corepresentation class of ρa in the previous theorem, it is sufficient to prove that when T̂a is a

symmetry it squares according to T̂ 2
a = ±I⇔ Sa,αS

∗
a,α = ±ρ(α2) and that when Ĉa is a symmetry

it squares according to Ĉ2
a = ±I⇔ Sa,γS

∗
a,γ = ±ρ(γ2). These can be calculated directly by their

action on the state |Ψa,n〉.
Firstly for T̂a,

T̂ 2
a |Ψa,n〉 = (S∗a,α ⊗ α̂)(S∗a,α ⊗ α̂) |Ψa,n〉

= (S∗a,αSa,α ⊗ α̂2) |Ψa,n〉
= (S∗a,αSa,α ⊗ Idr )(Ida ⊗R(α2)) |Ψa,n〉
= (S∗a,αSa,α ⊗ Idr )(ρTa (α2)⊗ Idr ) |Ψa,n〉
= (Sa,αS

∗
a,αρ

−1
a (α2)⊗ Idr ) |Ψa,n〉

which gives the required relation when Sa,αS
∗
a,α = ±ρa(α2) is substituted in.
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Equivalently for Ĉa,

Ĉ2
a |Ψa,n〉 = (S∗a,γ ⊗ γ̂)(S∗a,γ ⊗ γ̂) |Ψa,n〉

= (S∗a,γSa,γ ⊗ γ̂2) |Ψa,n〉
= (S∗a,γSa,γ ⊗ Idr )(Ida ⊗R(γ2)) |Ψa,n〉
= (S∗a,γSa,γ ⊗ Idr )(ρTa (γ2)⊗ Idr ) |Ψa,n〉
= (Sa,γS

∗
a,γρ

−1
a (γ2)⊗ Idr ) |Ψa,n〉

which gives the required relation when Sa,γS
∗
a,γ = ±ρa(γ2) is substituted in.

This means that the link between the spectral statistics of a general quantum system sym-

metric under a Z2 × Z2-graded group, and random matrix theory can now be given by applying

the results from Theorem 3.1.17 for the case with trivial U to each of the subspaces individually,

[11, 24]:

Theorem 3.1.22. Let Q be a quantum system with the extended symmetry group G = U ∪
αU ∪ γU ∪ πU . Let U > {I} contain non-trivial elements. Let the action of G on the Hilbert

space be given by the corepresentation R : G → Autqtm(H). Let R(u) =
⊕

a

⊕sa
n=1 ρa(u) be the

irreducible representation decomposition of R as a representation of U on H. Then the following

occur:

� H =
⊕

aHKa , the Hilbert space decomposes into a series of kernel spaces, with one subspace

HKa for each unique irreducible representation ρa of U in the decomposition of R.

� {Ei} =
⋃
a {Ei}a, the energy level spectrum decomposes into a series of independent sub-

spectra, with one subspectrum {Ei}a for each unique irreducible representation ρa of U in

the decomposition of R.

� Ĥ =
⊕
Ĥa, the Hamiltonian block diagonalises, with one block Ĥa for each unique irre-

ducible representation ρa of U in the decomposition of R. This sub-Hamiltonian Ĥa has

a structure taken from Table 3.3, with the structure dictated only by the Altland-Zirnbauer

class of the corepresentation Ra generated by ρa.

Once it is known that the system fulfils the conditions to be compared with random matrix

statistics, as discussed in the section below, this is what leads to the standard result that either the

independent subspectra in a system with non-trivial unitary symmetries match random matrix

statistics; or equating the subpectra to the spectrum of the desymmetrised system, that the

spectrum of the desymmetrised system matches random matrix statistics.

We note the importance of the dependence of random matrix statistics’ dependence on Ga and

not G directly. Due to this, and the process of transferring the operators α̂, γ̂ and π̂ as T̂a, Ĉa and

P̂a with the opportunity to either kill symmetries, or convert them to have the opposite sign when

squared then, though a system may globally have, for example, a bosonic T̂ 2 = I time-reversal

symmetry, with the right choice of symmetry group G, it is possible that the subspaces could

display fermionic T̂ 2
a = −I time-reversal symmetry, or even no time-reversal symmetry at all, and

similarily for Ĉ and P̂. This is something that has already been explored - Leyvraz, Schmit and
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Class Ĥa Class Ĥa

A AIII =

(
0 h

h† 0

)

AI ∈ R BDI =

(
0 h

hT 0

)
, h = h∗

AII =

(
h1 h2

−h∗2 h∗1

)
CII =

(
0 h

h† 0

)
, h =

(
k1 k2

−k∗2 k∗1

)

C =

(
h1 h2

−h∗2 h∗1

)
CI =

(
0 h

h∗ 0

)
, hT = h

D =

(
h1 h2

−h∗2 −hT1

)
, h1 = h†1, h2 = −hT2 DIII =

(
0 h

−h∗ 0

)
, hT = −h

Table 3.3: Canonical structure on the sub-Hamiltonian associated to the subspace HKa generated
by the representation ρa according to the Altland-Zirnbauer class of the corepresentation Ra
generated by ρa, [1, 24, 39, 156].

Seligman, [109], demonstrated that a billiard with a global T̂ 2 = I symmetry and with a U = Z3

geometric symmetry had a class A sub-spectrum, while Joyner, Müller and Sieber, [92], showed

that a quantum graph with U = Q8, G = U × Z2 system with bosonic time-reversal had a class

AII sub-spectrum. However it has only been used in the context of T̂ and not Ĉ.
The primary aim of this work is to exploit methodology derived from [92] to demonstrate

methods of algorithmically generating a system with any Altland-Zirnbauer class of sub-spectrum

having been given a fixed form of T̂ and Ĉ as the global time-reversal and charge-conjugation

operators. Understanding how these subspaces are created out of a unitary symmetry group, and

knowing how to predict the structure of Ĥa - and thus the random matrix statistics the subspace

will conform to when this prediction is valid - this is now a question of finding specific graded

groups G with the right properties to generate each subspace, which will be covered in Chapter

5, and considering when the random matrix prediction is valid to be applied, which is what is

considered now.

3.2 Classical Chaos and Quantum Implications

It was discussed at the end of Appendix C how quantum mechanics can be derived by taking

classical mechanics and then substituting operators for variables, and commutators for Poisson

brackets. This means that each Hamiltonian quantum systems has a classical analogue, which

should be recoverable in the classical limit of ~→ 0 or E →∞ per the correspondence principle;

this in turn causes the natural question of whether special behaviour on the classical level carries

over in any way to the quantum version, or if it doesn’t, how this behaviour reappears when the

classical limit is reached in the system.

One of the major behaviours under consideration is the separation on the classical side of

integrable systems and chaotic systems. Integrable systems are characterised by having traject-

ories which are regular in the phase space; that are encased in a subset of the full phase space;

and where trajectories with close initial conditions remain close throughout their path. Chaotic
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systems on the other hand, have trajectories which cover the full phase space; and initially close

trajectories diverge rapidly.

On the quantum side, it is not possible to accurately define a phase-space for the system

or even a trajectory, [73]. This is because in the quantum setup, positions and momenta are

probabilistic and the uncertainty principle excludes knowing precise information about both -

which is required for defining these quantities. Furthermore, without the ability to consider

trajectories in the quantum picture, any properties based on them become meaningless - including

the trajectory-based definition of classical chaos. Thus a direct correspondence between classical

chaos and a quantum version is not possible. However, quantitative work, [25], has seen that

there are commonalities shared in the behaviour of quantum systems with classical equivalents

that are chaotic, and which aren’t present in the systems with integrable analogues. Here we give

an overview of the types of systems which show what is known as ‘quantum chaos’, [157], and

their universal behaviour, for more detailed discussions see [35, 70, 71, 73, 115, 157, 170].

First, we introduce some concepts necessary to define a form of classical chaos, [35, 61, 118].

Hyperbolicity is first:

Definition 3.2.1. Let C be a classical system with Hamiltonian Ĥ = H. Let X = ( p q )
T

be

the position in the phase space M, with the dynamical system described by the first order set of

differential equations Ẋ = F(X). Trajectories in this phase space may be described by an initial

condition X0 and the flow function, Φt, so the position in phase space at time t is Xt = Φt(X0),

describing the time-evolution of the trajectory.

Then, if δX0 describes a small deviation in the starting point of the trajectory, the time-

evolution of this deviation along the trajectory may be linearly approximated by,

δẊ =
∂F(X)

∂X
· δX ⇒ δXt =

∂Φt(X0)

∂X0
· δX0 = M(t,X0)δX0

where M(t,X0) is a matrix given by the time ordered exponential,

M(t,X0) = T exp

∫ t

0

∂F

∂X
dτ.

The vectors δXt and δX0 sit in the vector space which is tangent to the phase space at each

point X, TM(X). Furthermore, a general vector v ∈ TM(X) in the tangent space has a Lyapnov

exponent given by,

λ(X,v) = lim
t→∞

1

t
ln |M(t,X)v|.

It is stable if λ(X,v) < 0, neutral if λ(X,v) = 0 and unstable if λ(X,v) > 0.

An invariant subset I ∈ M of the phase space is then hyperbolic if:

� For all points X in I, the tangent space at X, TM(X) decomposes into subspaces according

to whether the vectors in them are stable, neutral or unstable,

TM(X) = SS ⊕ SN ⊕ SU = SS ⊕ ()F(X)⊕ SU

so that the only neutral vectors lie in the direction of the flow.
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� There exists a positive constant κ and a positive function C(X,X′) such that for each

es ∈ SS and eu ∈ SU , and for all t ≥ 0,

|M(t,X)es| ≤ C(XΦtX)−1 exp(−κt)|es|
|M(t,X)eu| ≥ C(XΦtX) exp(κt)|eu|

γ(ΦtX) ≥ C(XΦtX)γ(X)

where γ(X) is the angle between the stable and unstable subspaces.

The Lyaponov exponent helps describe the speed at which δX grows in time; having λ > 0

means that δX grows as t→∞. This provides the requirement for trajectories to diverge rapidly,

given a small difference in their initial conditions.

Ergodicity then makes sure the phase space is covered sufficiently well:

Definition 3.2.2. Let C be a classical system. It is ergodic if for all observables F (q,p) on a

trajectory through the phase space, the time average of F is equal to the average of F calculated

over an energy shell,

lim
T→∞

1

T

∫ T

0

F (q(t),p(t))dt =

∫
dµ(q,p)

Ω
F (q,p),

where dµ(q,p)/Ω is the Liouville measure; dµ(q,p) = dqdpδ(H(q,p)− E) and Ω =
∫
dµ(q,p).

Definition 3.2.3. Let C be a classical system. It fulfils the weakest form of chaos if it is hyperbolic

and ergodic.

This is one definition of chaos, there are in fact many ‘levels’ of chaos which have different

strengths of requirement, [71, 127], and there is much discussion over what level of chaos is

required for the BGS-conjecture, [25, 154].

Quantitative study has considered a number of chaotic systems, either experimentally, [25, 45,

80, 107, 108, 128, 131, 134, 153, 158, 178] or numerically, [36, 92, 97, 141]. In each of these cases,

when the energy level spectra for these systems is plotted a universal behaviour is found, namely

that the energy levels repel each other, and the probability to find two levels close together is

small when compared to that given by the Poissonian distribution which describes the energy

level statistics of an integrable system according to the Berry-Tabor conjecture, [22]. This is

demonstrated in Figure 3.3 by plotting the probability for two consecutive energy levels to be

separated by a distance s = Ei+1 − Ei, showing that once normalised to have a mean of s = 1,

then there is a very low possibility to have s ≈ 0.

The combined work of Wigner and Dyson, and Bohigas, Giannoni and Schmidt, [25, 51,

175], posits that generic chaotic quantum systems display these universal behaviours, and they

occur because over an ensemble of similar systems, the Hamiltonians are statistically distributed

according to one of three random matrix ensembles - the Gaussian Unitary Ensemble or GUE;

the Gaussian Orthogonal Ensemble or GOE; and the Gaussian Symplectic Ensemble or GSE.

Matching the universality of the statistical behaviour, the exact ensemble a system’s statistics

matches can’t depend on the method used in the lab to implement the system, or any of the

choices of parameters such as size or material, but an over-arching property of them - this is seen

to be the behaviour of the system under its time-reversal operator, T̂ .
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(a) Spacing distribution for a system with a broken time-reversal symmetry, demonstrating universal behaviour corresponding to

the GUE ensemble. The system considered is a microwave cavity implementation of the LSS billiard, [44].

(b) Spacing distribution for systems with a T̂ 2 = I
symmetry, demonstrating universal behaviour cor-

responding to the GOE ensemble. The systems con-

sidered are the Sinai billiard, [25], (a); the Hydro-

gen atom in a magnetic field, [80], (b); excitations

of the NO2 molecule, [178], (c); acoustic resonances

of a Sinai-billiard shaped quartz block, [128], (d);

chaotic microwave cavity, [45], (e); and a quarter-

stadium billiard vibrating plate, [108], (f). Picture

from [157].

(c) Spacing distribution for systems with a
T̂ 2 = −I symmetry, demonstrating universal
behaviour corresponding to the GSE ensemble.
The systems considered are a Hamiltonian with
quartic potential, [36], (a); the spin-1/2 kicked
top, [141]; and the spin-1/2 quantum cat map,
[97], (c) - which is described as CSE, but is equi-
valent to the GSE ensemble.

Figure 3.3: The probability distribution for the distance between consecutive energy levels for several systems
in either the three universality classes of GUE, GOE and GSE. Note how in each case the probability for close
levels is small - this is the level repulsion that occurs in all the spectra of chaotic quantum systems.
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Class Ensemble T̂ 2 Ĉ2 P̂ ∈ G Class Ensemble T̂ 2 Ĉ2 P̂ ∈ G
A GUE T̂ 6∈ G Ĉ 6∈ G No AIII chGUE T̂ 6∈ G Ĉ 6∈ G Yes

AI GOE I Ĉ 6∈ G No BDI chGOE I I Yes

AII GSE −I Ĉ 6∈ G No CII chGSE −I −I Yes

C AZ-C T̂ 6∈ G −I No CI AZ-CI I −I Yes

D AZ-D T̂ 6∈ G I No DIII AZ-DIII −I I Yes

Table 3.4: The ten random matrix ensembles a Hermitian chaotic quantum system’s statistics
can match according to the form of G and the squares of T̂ , Ĉ.

Conjecture 3.2.4 (BGS-conjecture). Let Q be a generic quantum system corresponding to a

classical system that is chaotic. Let Q be symmetric under at most a time-reversal operator T̂ .

Then the energy level spectrum has statistics identical to the GUE random matrix ensemble if Q
is not symmetric under T̂ ; the GOE ensemble if Q is symmetric under T̂ and T̂ 2 = I; and the

GSE ensemble if Q is symmetric under T̂ and T̂ 2 = −I.

There is no proof of this conjecture, however it is widely believed to hold - bar for a small

set of counter examples such as the quantum star graph, [17] - and it has been supported by

numerous numerical and experimental tests. Current work towards a proof is summarised in

[70, 170], and a proof for the specific system of the quantum graph can be found in [62, 130, 159].

The proof that generic classically chaotic systems can be statistically modelled by a random

matrix ensemble may not exist yet, but accepting that they take upon a statistical behaviour,

then from the earlier parts of this chapter, it should be clear why the three ensembles are given

by the behaviour of the system under time reversal - Theorem 3.1.17 describes how the Wigner-

Dyson class of the Hilbert space restricts the form of the Hamiltonian to one of three types of

matrices; the ensembles GUE, GOE and GSE merely consist of taking the random matrices fitting

each of these restricted forms of Hamiltonian. This concept and the ensembles themselves will

be discussed further in the next chapter.

With the addition of the allowance of systems to be symmetric under Ĉ and P̂, [5, 6, 146,

166, 167], so the energy level spectrum is symmetric around 0, the universal behaviour of level

repulsion between neighbouring energy levels remains, but an additional repulsion from a level

E feeling its negative equivalent −E is felt close to 0, modifying the density of states behaviour,

[73, 85], and causing deviations away from the semi-circle distribution for E ≈ 0. In this case,

the BGS-conjecture is assumed to still hold, but is expanded to include an extra seven ensembles

to account for the extra seven classes in Altland-Zirnbauer’s classification of symmetry groups of

the form G ⊆
{
I, T̂ , Ĉ, P̂

}
:

Conjecture 3.2.5. Let Q be a generic quantum system corresponding to a classical system that

is chaotic. Let Q be symmetric under a subset of operators from
{
T̂ , Ĉ, P̂

}
. Then the energy

level statistics of Q are universal to the choice of subgroup of G ⊆
{
I, T̂ , Ĉ, P̂

}
and the squares of

T̂ , Ĉ if T̂ , Ĉ are in G, and correspond to the eigenvalue statistics of a random matrix ensemble

given as in Table 3.4.

A full description of the new ensembles will be given in the next chapter.

Again, there is strong numerical evidence for the conjecture holding, [24, 56, 64, 94], however

experimental tests have been limited to only the classes AIII, BDI and CII for now, [136]. It is

for this reason that we aim to find a set of systems which could be tested in the lab for each
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of the remaining ensembles, to allow experimental testing of the BGS-conjecture for the rest of

the Altland-Zirnbauer classes. This will not prove the conjecture, but it will provide further

supporting evidence.
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4. Random Matrix Theory

Given a quantum system and its Hamiltonian, a common question is to identify the energy level

spectra {En}, or the set of eigenvalues of the Hamiltonian,

Ĥ |ψn〉 = En |ψn〉 .

This is due to the fact that for many complicated systems, the energy level spectrum is one of the

easiest measurements to make on the system, such as using neutron resonance spectroscopy to find

the energy levels of heavy nuclei, [115]. However, despite the ease of the physical measurement

in many of these systems, comparison to the theoretical prediction is difficult as the form of the

Hamiltonian may only be approximable, or it may be entirely unknown.

This is the problem that physicists were faced with in the mid twentieth century. As discussed

at the end of last chapter though, experimental data showed that for at least the set of systems

whose classical analogues were chaotic, there were universal behaviours in the spectra - namely

level repulsion - and it was theorized, [25], that when an ensemble of systems is taken, the statistics

of Ĥ of would match the statistic of an appropriate ensemble of random matrices. Thus, while

the exact spectra {En} remains unknown, its statistical properties are derivable.

The motivation is thus: the Hamiltonian of a system must be a complex Hermitian matrix, and

thus lies within the set h =
{
H ∈ CN×N | H = H†

}
when expressed as a matrix. If a probability

measure dH can be appropriately expressed on this set, then if the Hamiltonian isn’t known,

random drawing from h must give a probability distribution P (Ĥ) on the Hamiltonian for an

ensemble of systems, the ensemble representing a collection of systems with the same structure

but with randomly drawn parameters. If the statistics P (Ĥ) are known, then the statistics of

the energy level spectra can be derived to give a joint probability distribution P ({En}) for the

spectra.

This is the generic case, where no further restrictions on the structure of Ĥ have been given,

and by defining an entry

H =


h11 h12 . . . h1(N−1) h1N

h∗12 h22 . . . h2(N−1) h2N

...
. . .

. . .
...

...

h∗1N h∗2N . . . h∗(N−1)N hNN

 (4.1)

where hij for j > i are N2/2−N independent identically distributed complex Gaussian random

variables and hii are N independent identically distributed real Gaussian random variables, [73],
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and taking a suitable measure dH over the matrix space then the Gaussian Unitary Ensemble is

defined, [70].

In the case where there is further structure on the system, expressed as a set F = {fi} of

functions such that fi(Ĥ) = 0 then the set of possible Hamiltonians reduces to

h′ =
{
H ∈ CN×N | fi(H) = 0 ∀fi ∈ F, H = H†

}
⊂ h. Given another measure dH, a new distri-

bution P (H) can be defined for the Hamiltonian and a new joint distribution P ({En}) for the

energy level spectra.

This case is particularly applicable for systems with symmetry groups - Theorem 3.1.22 has

already discussed how structure is imposed on Ĥa according to the Altland-Zirnbauer class of

the corepresentation Ra generating Ha. These ten classes now define ten ensembles of random

matrices.

The first three ensembles, given by classes A,AI and AII, describe systems with at most time

reversal symmetry, T̂ = ±I, with the restriction set F =
{

[T̂ , ·]
}

. These were the first random

matrix ensembles discovered by physicists, [50, 51, 172, 175], and are collected under the name

of the Wigner-Dyson ensembles. They have been well discussed in the literature, [51, 73, 115],

and will be considered in Section 4.1.

The next three ensembles are given by the classes AIII, BDI and CII which describe systems

which have at either both time-reversal and charge-conjugation symmetry whose squares match,

T̂ 2 = Ĉ2 = ±I with F =
{

[T̂ , ·],
{
Ĉ, ·
}}

or who have only chiral symmetry, F =
{{
P̂, ·
}}

. These

ensembles are known as the chiral ensembles and were introduced in [146, 166, 167] to explain

the behaviour of the spectra of the QCD Dirac operator.

The final four ensembles were introduced by Altland and Zirnbauer to explain the spectral

behaviour of particles in systems with a super-conducting region, [5, 6]. These four systems split

into two types - the two ensembles generated by the classes C and D describe systems with at

most charge-conjugation symmetry, Ĉ = ±I, F =
{
Ĉ, ·
}

; while finally DIII and CI generate

ensembles where the restriction set is F =
{

[T̂ , ·],
{
Ĉ, ·
}}

with T̂ 2 = −Ĉ2 = ±I so that while

both time-reversal and charge-conjugation exist as symmetries, their squares have the opposite

parity. Together, these four classes may be called the Andreev classes due to their applications

to Andreev scattering, [64], or with the previous three ensembles are they are now collectively

known as the additional seven Altland-Zirnbauer ensembles, [73], though Zirnbauer recognises

that they introduced only four of the seven ensembles now commonly attributed to them, [180].

These seven ensembles are discussed in Section 4.2.

In the following sections, the properties of each random matrix ensemble will be discussed

further, as well as methods of identifying which ensemble statistics an experiment’s measured

spectra is displaying. This will involve discussing key observable properties of the spectra includ-

ing the nearest neighbour spacing of the eigenvalues, the probability distribution of the smallest

eigenvalue and the local density of states around 0.

4.1 The Wigner-Dyson Ensembles

The Wigner-Dyson ensembles were introduced to describe the statistics of systems with at most

time-reversal symmetry, [50, 51, 172, 175]. These are systems for which the symmetry group G
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is not only Z2-graded, G = U ∪ αU , but G ⊆ {I, α}. In this case, as the lift T̂ of α requires

[T̂ , Ĥ] = 0 when α is a symmetry, Ĥ sits in the commutant of the corepresentation R of G acting

on H by Definition 2.2.9. This was part of Theorem 3.1.16.

Knowing the allowed forms of the commutants of a Z2-graded group from Theorem 2.2.11

and Table 2.1, this is the requirement that if the irreducible projective corepresentation R of G

is of class A, AI or AII then Ĥ ∈ CN×N ,RN×N or HN×N respectively; or by Theorem 3.1.17,

the ensemble h′ is defined as the following sets:

Class of R h′ Ensemble Name

A
{
H ∈ CN×N | H = H†

}
Gaussian Unitary Ensemble (GUE)

AI
{
H ∈ CN×N | H = H∗, H = HT

}
Gaussian Orthogonal Ensemble (GOE)

AII

H ∈ C2M×2M

∣∣∣∣∣∣H =

 h1 h2

−h∗2 h∗1

 Gaussian Symplectic Ensemble (GSE).

The ensembles themselves are named after the types of matrices which the set forming the

ensemble h′ is invariant under conjugation by, [156],

GUE ⇒ ∀U ∈ U(N), H ∈ h′ U−1HU ∈ h′

GOE ⇒ ∀O ∈ O(N), H ∈ h′ O−1HO ∈ h′

GSE ⇒ ∀S ∈ Sp(N), H ∈ h′ S−1HS ∈ h′

so that the GUE ensemble is invariant under conjugation by all unitary matrices; the GOE

ensemble is invariant under conjugation by all orthogonal matrices; and the GSE ensemble is

invariant under conjugation by all symplectic matrices.

The measure dH on h′ for each Wigner-Dyson ensemble can be derived from the decomposition

H = M−1EM where M ∈ U(N) for the GUE ensemble; M ∈ O(N) for the GOE ensemble and

M ∈ Sp(N) for the GSE ensemble. The measure for H must then combine a measure over the

eigenvalues Ei of H, and a measure over M . The measure is given by, [70],

dH = |∆({En})|βdEdµ(U(N ;β)), β =


1 GOE

2 GUE

4 GSE

where β is a parameter denoting which of the three ensembles is being considered, and which will

occuer in several key places in later equations; ∆({En}) is the Vandermont determinant,

∆({xn}) =
∏
k>l

(xk − xl);

and dµ(U(N ;β)) is the Haar measure over SO(N) for β = 1; U(N) for β = 2; and Sp(N) for
β = 4. These measures are given by, [40],

∫
U(N)

f(M)dµ(M) =

∫
[0,2π]N

f(θ1, . . . , θN )

 ∏
1≤j<k≤N

∣∣∣eiθk − eiθj ∣∣∣2
∏N

j=1 dθj

N !(2π)N
(4.2)

73



∫
SO(2N)

f(M)dµ(M) =
2(N−1)2

πNN !

∫
[0,π]N

f(θ1, . . . θN )
∏

1≤j<k≤N
(cos θk − cos θj)

2

dθ1 . . . dθN (4.3)

∫
SO(2N+1)

f(M)dµ(M) =
2N

2

πNN !

∫
[0,π]N

f(θ1, . . . θN )
∏

1≤j<k≤N
(cos θk − cos θj)

2
N∏
h=1

sin2

(
θh

2

)dθ1 . . . dθN
(4.4)∫

Sp(2N)
f(M)dµ(M) =

2N
2

πNN !

∫
[0,π]N

f(θ1, . . . θN )
∏

1≤j<k≤N
(cos θk − cos θj)

2
N∏
h=1

sin2 (θh)

dθ1 . . . dθN
(4.5)

with θi being the eigenvalues of M . This then gives the Haar-contribution to dH for the GUE,

even-dimension GOE, odd-dimensional GOE, and the GSE ensemble respectively.

The probability distribution for a N ×N Hamiltonian H with an average distance δ0 between

each of its eigenvalues is then given by, [14],

P (H)dH ∝ exp

(−π2β

4Nδ2
0

TrH2

)
dH.

In most cases, the normalisation δ0 → 1 will be taken.

The argument for the distribution being dependent only on the trace of H is based on the

fact that P (H)dH must be invariant under the same types of transformation that H is - that is

conjugation by matrices in U(N),O(N) or Sp(N) as appropriate. Combined with the requirement

that each entry in the Hamiltonian drawn from the Gaussian distribution is independent, then

there is the following theorem, [115],

Theorem 4.1.1. Let h′ be an ensemble of matrices invariant under the transform

A−1HA = H ∀H ∈ h′

where A ∈ U(N),O(N) or Sp(N). Then the probability distribution for H must be given by a

function of the form

P (H) = exp
(
a trH2 + b trH + c

)
(4.6)

for a, b, c ∈ R and a > 0.

The restriction to b = 0 for the Wigner-Dyson classes is decided by explicitly testing the 2×2

case and assuming that the result must hold for any N , [73]. The value of c can then be found as

the necessary normalisation constant. This is not the only time an assumption that the results

calculated for the dimension two case are universal and can be applied to any N will appear,

as it will form the Wigner Surmise for calculating the nearest neighbour spacing between the

eigenvalues.

From P (H) the joint energy level distributions are derived as, [73, 115],

P ({En})d{En} = CN,β |∆({En})|β
∏
k

exp
(
−βE2

k/4
)
dEk. (4.7)

Note that due to Kramer’s degeneracy energy levels will have degeneracy d = 2 in the GSE

case; while d = 1 for GUE and GOE. It is only necessary to take the unique eigenvalues in the

computation, so energy levels are not double counted in the GSE case. It holds generally that
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Figure 4.1: Probability distribution for the normalised spacing of the energy levels of the three
Wigner-Dyson classes, compared to Poissonian statistics. Note the low probability for states to
be close - this is the appearance of level repulsion. See for example [73, 115].

there are no points in the spectrum that have a degeneracy greater than d, so all eigenvalues

have the same degeneracy. The reason for this will be seen when the level spacing distribution is

plotted - the probability to have very close eigenvalues is vanishingly small, so degenerate eigen-

values are highly unlikely. These near impossible occurrences in a generic system are known as

‘accidental’ degeneracies when they happen; however there do still exist specific systems where

the probability of eigenvalue degeneracies diverging from d is large. These systems must be inten-

tionally constructed through parameter space searches, and are described as having ‘diabolical’

points when the degeneracy of an eigenvalue is greater than d, [23]. It will be possible to assume

that we are not working in a system with diabolical points, as the probability of finding one

randomly is near-zero.

The first distribution of interest is the spacing distribution. Defining the normalised distance

between adjacent eigenvalues as si = (Ei+1 − Ei)/δ0, the probability distribution of s can be

explicitly calculated for the N = 2 case; and according to the Wigner Surmise, this N = 2 distri-

bution serves as a sufficiently good approximation of distribution for any N for most purposes,

[73]. This gives the approximated spacing distribution as,

PGOE(s) =
πs

2
exp
(
−πs2/4

)
PGUE(s) =

32s2

π2
exp
(
−4s2/π

)
PGSE(s) =

218s4

36π3
exp
(
−64s2/9π2

)
.

Here δ0 is the mean level spacing averaged over the bulk of the spectra, δ0 = 〈Ei+1 − Ei〉i
Ei �

√
N for very large N so that the distribution P (s) is normalised to have mean 1. The

spacing distribution is then the first indicator used to identify which random matrix ensemble an

energy level spectra corresponds to, as it gives a simple to calculate distribution, with three very

characteristic forms as shown in Figure 4.1. It will be applied in this manner in Chapters 6 and

7, taking simulation data and comparing it to the analytical predictions.

The second distribution to be calculated is significantly less useful as an identifier for telling

the three Wigner-Dyson classes apart - as it is identical in all three classes - but still has important

application. The average density of states can be calculated by taking the average value of E1

75



150000 100000 50000 0 50000 100000 150000
E

0

50

100

150

200

250

d(E
)

Figure 4.2: The eigenvalues of a 10000 × 10000 real symmetric matrix from the GOE ensemble
showing the semi-circular distribution of the eigenvalues.

over an ensemble of H in h′,

〈d(E)〉 =

〈
N∏
i=2

(∫ ∞
0

dEi

)
P ({En})

〉
H

.

By the Wigner Semi-circle Law this gives a semi-circular distribution, [24],

〈d(E)〉 =


1
δ20

√
δ2
0 −

(
πEd
2N

)2 |E| ≤ ±
√

2Nδ0
πd

0 otherwise

(4.8)

for each of the GUE, GOE and GSE ensembles. An example of the GOE case is given in Figure

4.2. The semi-circular shape of the density of states is a global property of the random matrix

ensemble, and thus won’t be seen in any local densities calculated from generated simulation data.

It is possible to use the data to take the two-point correlation function R2(x) = δ2
0〈d(E)d(E +

xδ0)〉E of the average density of states, and the Fourier transforms K1(τ) and K2(τ) of d(E)

and R2 respectively as the spectral form factors; these will also have a different characteristic

form for each of the Wigner-Dyson ensembles, allowing them to be used to identify the different

ensembles in the data, however as we don’t apply them to our numerics, we won’t discuss them

further. Information about them may be found in [64, 67, 73, 115].

The normalisation λn = En/δ0 used to calculate the nearest neighbour spacing distribution

with mean one is a simplification of the procedure of unfolding the spectrum, which holds only

where the average density of states is constant. Unfolding is necessary as the nearest neigh-

bour spacing is supposed to show local fluctuations in the eigenvalue distribution, while the

density of states shows global fluctuations. An accurate study of the local fluctuations thus

needs the global effects removed to be accurate, which is done by unfolding the spectra, or

dividing each eigenvalue by the local average density, En → λn = En/d̄(E) with d̄(E) =

|{Ei ∈ [E −∆E,E + ∆E]}|/2∆E, [73]. This will be very near to a constant d̄(E) ∼ δ0 when

N is very large and away from the edges of the spectra, but when near to the edges of the spectra

for small N , or in cases where d(E) varies greatly throughout the spectrum - such for the seven

Altland-Zirnbauer ensembles - the properly unfolded spectrum should be used.
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Figure 4.3: The probability distribution Pmin of the smallest normalised eigenvalue x.

Numerically this process also changes, taking the evaluation of the counting function N(E),

which is the number of eigenvalues smaller than E, [67],

E → N(E) =
∑

Ej∈{Ei}

θ(E − Ej), θ(x) =


1 x > 0

0.5 x = 0

0 x < 0

(4.9)

as the unfolding.

Finally, the distribution of the first positive normalised eigenvalue x is calculated, giving

the energy gap, or the probability that there is a distance x gap between zero energy, and the

lowest energy level in the system. It is found by assuming that Ei = x is the smallest eigenvalue

eigenvalue, and then calculating the probability all other eigenvalues lie in the range (x,∞), [123],

Pmin(x) =
1

(N − 1)!

N∏
i=2

(∫ ∞
x

dλi

)
P ({λn}).

By [56], the integrated smallest eigenvalue distribution Imin(x) =
∫ x

0
P (x′)dx′ can instead be

related to the level spacing distribution by

Imin(x) =

∫ x

0

sP (s)ds+ x

∫ ∞
x

P (s)ds

for the Wigner-Dyson classes. Substituting in the level spacing distributions for each class, this

gives the integrated distributions as,

Imin,A(x) = 1− exp
(
−4x2/π

)
+ xerfc(2x/

√
π)

Imin,AI(x) = erf(x
√
π/2)

Imin,AII(x) = 1 + xerfc(8x/3
√
π)− (144πx2 + 81π2) exp

(
−64x2/9π

)
/(9π)2.

Again, this distribution has a form highly characteristic to each ensemble, so given a set of

experimental data, it is possible to compare it to the theoretical forms of Imin(x) and identify the

corresponding ensemble which would have generated it. The distributions are plotted in Figure

4.3. The smallest eigenvalue probability distribution has also been taken, by differentiating the
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integrated distributions to get,

Pmin,A(x) =
8x− 4

π
exp
(
−4x2/π

)
+ erfc(2x/

√
π)

Pmin,AI(x) = exp
(
−x2π/4

)
Pmin,AII(x) = erfc(8x/3

√
π)− 16x exp

(
−642/9π

)
3π

+
32 exp

(
−64x2/9π

)
x(64x2 + 27x)

81π2
.

It will be seen in the applications to the simulation data that it is essential to plot both, as

small errors in the estimated probability distribution near zero can have a serious impact on the

integrated form.

4.2 The Altland-Zirnbauer Ensembles

Wigner and Dyson described systems with at most time-reversal symmetry, but as random matrix

theory was extended to cover systems with charge-conjugation or chiral symmetries, it became

necessary to add seven additional classes of ensembles to their original three, [5, 6, 146, 166, 167].

These seven ensembles are generally known as the seven Altland-Zirnbauer ensembles in addition

to the Wigner-Dyson ensembles, as Altland and Zirnbauer were the first to consider the ten

ensembles together in the context of a complete classification of the possible statistics of chaotic

quantum systems with at most time-reversal, charge-conjugation and chiral symmetry, [6, 179].

The completeness was expected but not proved initially, but it has since been shown that the ten

random matrix ensembles considered by Altland and Zirnbauer are indeed the only ten ensembles

the statistics of a chaotic Hermitian quantum system can match, [79, 95].

The seven new ensembles arise in the case where a quantum system has a Z2 × Z2-graded

symmetry group G with G ⊆ {I, α, γ, π} and and at least one of γ, π is included in G. In this

case, then for the lifts of α, γ and π to T̂ , Ĉ and P̂ to be symmetry operators, it is necessary

[T̂ , Ĥ] = 0,
{
Ĉ, Ĥ

}
= 0 and

{
P̂, Ĥ

}
= 0 respectively. This leads to Theorem 3.1.16, which states

the Hamiltonian must sit inside the super-commutant Z(R) generated by the corepresentation

R of G on the Hilbert space H. Applying Theorem 3.1.17 to use the matrix forms of the super-

commutants, then h′ is defined as in Table 4.1.

Note how the matrices all have a 2× 2 block matrix form (A B
C D ), this is because the Hamilto-

nians can be expressed as occurring over the particle-hole space, so the blocks represent trans-

formations either preserving or inverting the particle or hole space. The different ensembles then

correspond to different relations between the matrices A and D, and the matrices B and C.

In the classes AIII, BDI and CII, only the off-diagonal matrices are non-zero, and the entire

Hamiltonian can be expressed through the choice of a single matrix C.

When it comes to ensemble names, there are no agreed upon names for the ensembles generated

by the classes D, C, DIII and CI, so we will use the Altland-Zirnbauer labels for all seven classes

throughout. The classes AIII, BDI and CII do have special ensemble names however, and generate

ensembles known as the chiral GUE, chiral GOE and chiral GSE ensembles, as they continue to

be invariant under transformation by unitary, orthogonal and symplectic matrices like for the

GUE, GOE and GSE ensembles, however the transformation is no longer conjugation by a single
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Class of R Z(R) h′ Ensemble Name

AIII ClC1

H ∈ C2M×2M

∣∣∣∣∣∣∣
H =

(
0 C

C† 0

)
H = H†

 Chiral GUE (chGUE)

BDI ClR1

H ∈ C2M×2M

∣∣∣∣∣∣∣∣∣∣
H =

(
0 C

C† 0

)
H = H†

H = H∗

 Chiral GOE (chGOE)

CII ClR−1


H ∈ C2M×2M

∣∣∣∣∣∣∣∣∣∣∣∣

H =

(
0 C

C† 0

)

C =

(
k1 k2

−k∗2 k∗1

)
H = H†


Chiral GSE (chGSE)

C ClR−2

H ∈ C2M×2M

∣∣∣∣∣∣∣
H =

(
A B

B∗ −A∗

)
H = H†

 AZ-C

D ClR2

H ∈ C2M×2M

∣∣∣∣∣∣∣∣∣∣
H =

(
A B

−B∗ −AT

)
A = A†

B = −BT

 AZ-D

CI ClR−3

H ∈ C2M×2M

∣∣∣∣∣∣∣
H =

(
0 B

B∗ 0

)
H = H†

 AZ-CI

DIII ClR3

H ∈ C2M×2M

∣∣∣∣∣∣∣
H =

(
0 B

−B∗ 0

)
H = H†

 AZ-DIII

Table 4.1: The ensembles h′ for each of the seven Altland-Zirnbauer classes, [1, 24, 39, 156].
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matrix and involves two matrices acting on the sub-block C in H, [156],

chGUE ⇒ ∀U, V ∈ U(N), C ∈ h′ UCV −1 ∈ h′

chGOE ⇒ ∀O,Q ∈ O(N), C ∈ h′ OCQ−1 ∈ h′

chGSE ⇒ ∀R,S ∈ Sp(N), C ∈ h′ RCS−1 ∈ h′

The probability distribution on H for the Altland-Zirnbauer classes retains the same general

structure as the Wigner-Dyson classes, being proportional to the exponential of TrH2, however

there is now an extra factor of 1/2 in the exponential, so that, [14],

P (H) ∝ exp

(−π2β

8Nδ2
0

TrH2

)
describes the probability distribution for an N × N Hamiltonian with mean level spacing δ0.

Clearly, β remains an important variable distinguishing the behaviour of the different ensembles,

and its value for each class can be found in Table 4.2, however when the joint eigenvalue distribu-

tion is calculated, it is seen that these ensembles pick up a second indicator variable - α - which

describes the repulsion of an eigenvalue from its negative copy,

P ({En})dE = CN,β,α
∣∣∆(
{
E2
n

}
)
∣∣β∏

k

|Ek|α exp
(
−βE2

k/4
)
dEk. (4.10)

It is noted that the Vandermont determinant is now dependent on E2
j not Ej as well. Also, the

correct measure for the set is still the Haar measure.

The values of α possible for each ensemble are also plotted in Table 4.2. It is noted that for

the ensembles AIII, BDI and CII, α does not have a fixed value, but depends on the parameter ν,

which is the degeneracy of the zero-energy level eigenvalue. We note that while it is guaranteed

that every non-zero eigenvalue has the same degeneracy d - as per the case for the Wigner-Dyson

ensembles - the zero eigenstates have a special position as the only eigenstates which can be

transformed into themselves under the action of Ĉ and P̂. This and their triviality in terms of

the eigenvalue equation allow them to take on a totally different degeneracy number than the

rest of the system. The possible values of ν are also a characteristic of the ensemble - the classes

C and CI can never have a zero eigenvalue, whereas the classes D and DIII may have an at most

a degeneracy 1 zero eigenvalue. On the other hand, the classes AIII, BDI and CII may have any

natural number of zero eigenvalue eigenstates. The number of zero-eigenvalues the system has

will affect the density of states, and thus the smallest eigenvalue distribution, so it is important

to track it in addition to α.

There are then four numbers describing the characteristic behaviour of an Altland-Zirnbauer

ensemble - ν, d, β and α which for each ensemble can take the values in Table 4.2.

The characteristic distributions described for the Wigner-Dyson classes are again considered.

First is the level spacing distribution. The level spacing distribution must be calculated in the

bulk of the spectrum, away from zero. In this area, where 0 is far way, the effects of the spectral

mirror symmetry are small, as an eigenvalue is too far way from its negative counterpart to be

repelled from it strongly. Due to this, the level spacing distributions for the Altland-Zirnbauer

ensembles will match the distribution of the Wigner-Dyson ensemble which has a matching β

value. For the classes BDI and CI this is then the GOE ensemble; the classes AIII, C and D will
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AIII BDI CII C D CI DIII

ν 0, 1, 2, . . . 0, 1, 2, . . . 0, 1, 2, . . . 0 0, 1 0 0, 1

d 1 1 2 1 1 1 2

β 2 1 4 2 2 1 4

α 1 + 2ν ν 3 + 4ν 2 0 1 1

Table 4.2: The four parameters which can be used to describe an Altland-Zirnbauer ensemble,
given the general form, ν, , d, β and α, [14].

match the GUE statistics; and the classes CII and DIII will match the spacing distribution of

the GSE.

The mean density of states however does show significant divergence from the Wigner-Dyson

ensembles as the level repulsion between the positive and negative energy levels causes large

fluctuations away from the Wigner Semicircle near E = 0. These fluctuations can furthermore

be seen in the local density of states near zero, meaning that they that they can be used as a

comparison for simulated experimental data, helping to identify which of the ensembles appears.

The characteristic forms for the fluctuations in the local mean density of states near 0 for each

Altland-Zirnbauer ensemble are given by, [85],

〈d(E)〉AIII =
π2|E|

2

(
J2
ν (π|E|)− Jν−1(π|E|)Jν+1(π|E|)

)
+ νδ(|E|) (4.11)

〈d(E)〉BDI =
π

2

(
π|E|

(
J2
ν (π|E|)− Jν−1(π|E|)Jν+1(π|E|)

)
(4.12)

+Jν(π|E|)Rν(π|E|)) + νδ(|E|) (4.13)

〈d(E)〉CII =
π

2

(
2π|E|

(
J2

2ν(2π|E|)− J2ν−1(2π|E|)J2ν+1(2π|E|)
)

(4.14)

+J2ν(2π|E|)R2ν(2π|E|)) + νδ(|E|) (4.15)

〈d(E)〉C = 1− sin(2π|E|)
2π|E| (4.16)

〈d(E)〉D = 1 +
sin(2π|E|)

2π|E| + νδ(|E|) (4.17)

〈d(E)〉CI =
π

2

(
π|E|

(
J2

0 (π|E|) + J2
1 (π|E|)

)
− J0(π|E|)J1(π|E|)

)
(4.18)

〈d(E)〉DIII =
π

2

(
2π|E|

(
J0(2π|E|)J ′1(2π|E|) + J2

1 (2π|E|)
)

(4.19)

+(−1)νJ1(2π|E|)) + νδ(|E|) (4.20)

with

Rn(x) =

∫ x

0

Jn(x′)dx′.

The cases for ν = 0, N large are plotted in Figure 4.4. Note that in each case, the eigenvalues

are repelled from 0 or attracted to it, often with oscillations continuing away from zero and

gradually decreasing, and in every case the distribution is symmetric. All of this extra behaviour

comes from the interaction between an energy level and its negative copy so that they repel each

other, along with the change of the Vandermont determinant to use the square of the energy

levels. Due to this, the oscillations fade away as |E| increases, and the system begins to behave

more like a Wigner-Dyson ensemble.
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Figure 4.4: Average density of states about 0 for the normalised energy spectra λ when ν = Nf = 0 and N
large.
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These distributions will also have characteristic forms of R2(x), the 2-point correlator of

the density of states, and K1(τ) and K2(τ) the spectral form factors. However, without their

application to the later numeric simulations, we leave discussion of these distributions to [64] and

the references within. Note that K2 is dependent only on the value of β for the ensembles, so like

the level spacing distribution, it will reduce to one of the forms of the Wigner-Dyson ensembles.

The distribution of the smallest positive eigenvalue will prove to be the most useful method of

identifying which of the different Altland-Zirnbauer ensembles appear in the simulated spectral

data of the systems in Chapter 7. With the chosen example systems of Quantum Graphs and Dirac

Graphs, where the firstN eigenvalues Ei are identified by identifying allN roots of a function ζ(E)

in a range [0, δ0N ], the smallest eigenvalue distribution requires the fewest number of runs of the

root finding algorithms, and is thus computationally the fastest to return results. Quantitatively,

it was possible to return calculated smallest eigenvalue distributions for the example systems

in Chapter 7 in under an afternoon per class, while the mean density of states required several

days worth of computation for still poorer agreement between the simulations and the theoretical

predictions. Use of the smallest eigenvalue distribution as an indicator for the Altland-Zirnbauer

ensembles is not without precedent either - the distributions of the edges of the spectrum of

random matrices has seen much dedicated study, [123, 162, 164], with its use as an indicator

function for the different Altland-Zirnbauer classes in [56], and its use to identify deviations away

from ‘pure’ Altland-Zirnbauer ensembles appearing in [125]. Away from the Altland-Zirnbauer

classes, the smallest eigenvalue distribution has been applied to checking simulated data against

the random matrix theory predictions for the chSE ensemble, [15], Laguarre ensembles, [123] and

the β-Wishart-Laguerre ensembles, [106], this being a non-exhaustive list.

We now identify the smallest eigenvalue distributions for the Altland-Zirnbauer classes. Sub-

stituting the joint eigenvalue distribution for N unique positive eigenvalues for the Altland-

Zirnbauer classes into the general form for the smallest eigenvalue distribution gives the distri-

bution,

Pmin(x) =
1

(N − 1)!

N∏
i=2

(∫ ∞
x

dEi

)
P ({En})

=
Cxαe−βx

2/4

(N − 1)!

(∫ ∞
x

)N−1 ∏
2≤i<j≤N

∣∣E2
i − E2

j

∣∣β N∏
k=2

Eαk
∣∣E2

k − x2
∣∣βe−βE2

k/4dEk (4.21)

which after the change of variables yk = (E2
k+1 − x2), dyk = 2Ek+1dEk+1, m = (α − 1)/2 and

n = N − 1 is, [123, 164],

Pmin(x) =
Cxαe−Nβx

2/4

2n(N − 1)!

(∫ ∞
0

)n ∏
1≤i<j≤n

|yi − yj |β
n∏
k=1

(yk + x2)myβk e
−Nβyk/4dyk

The integral is a constant in the cases m = 0⇒ α = 1, giving,

Pmin(x) = C ′(N)xαe−A(N)βx2

and thus can be dropped in favour of calculating the normalisation of P (x) directly, so that the

distributions for AIII, CI and DIII for ν = 0, N →∞ are given by,

Imin AIII, ν=0(x) = 1− exp
(
−π2x2/4

)
Imin CI(x) = 1− exp

(
−π2x2/8

)
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IminDIII, ν=0 = 1− exp
(
−π2x2/2

)
where the correct values for the constants are taken from [58]. The results for the classes BDI and

CII have been found through multiple methods including Vandermont determinant techniques,

[167], and the QCD partition function, [42], and are given by, [125],

Imin BDI, ν=0(x) = 1− exp
(
−π2x2/8− πx/2

)
Imin CII(x) = 1− cosh(πx) exp

(
−π2x2/2

)
.

Where these analytic expressions exist for Imin, Pmin and ν = 0, it is also possible to derive the

expressions for ν > 0 by using the recursion relations given by [106].

There is, however, no readily available closed-form expression for the smallest eigenvalue

distribution for the remaining classes C and D. To have a theoretical prediction to compare

simulation data against, we then turn to their numerical approximation. In all cases of the

Altland-Zirnbauer ensembles, solving Equation 4.21 for Pmin(x) and then finding the integrated

smallest eigenvalue distribution I(x) is equivalent to calculating the Fredholm Determinant, [164],

Imin(x) =

∫ x

0

Pmin(x′)dx′ = 1−Det(I−Km |L2([0,x2]))

where the Fredholm determinant is an integral equation defined with a kernal A on L2([a, b]),

[29],

Det(I− zA |[a,b]) =

∞∑
n=0

zn

n!

n∏
i=1

(∫ b

a

dti

)
det(A(tp, tq)) |np,q=1 . (4.22)

The integrated smallest eigenvalue distribution Imin(x) then takes z = 1, a = 0, b = x2 and

A = Km for m = (α− 1)/2 with, [162],

Km(x, y) =


√
yJm(

√
x)J′m(

√
y)−
√
xJ′m(

√
x)Ja(

√
y)

2(x−y) x 6= y

1
4

(
J2
m(
√
x)− Jm+1(

√
x)Jm−1(

√
x)
)

x = y.

(4.23)

The smallest eigenvalue distribution for the classes C and D are then given by the Fredholm

determinants for the kernels K1/2 and K−1/2 respectively.

We here now apply the algorithm given by Bornemann in [29] to approximate any Fredholm

determinant by taking the symmetrised version of Nyström’s linearisation of the integral equation,

Det(I− zA) ≈ det
(
δij + zw

1/2
i A(xi, xj)w

1/2
j

)
|mi,j=1 (4.24)

where {xi} are m points chosen in the range [a, b] with weights wi by the Gauss-Legendre quad-

rature,
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∫ b

a

f(x)dx ≈
m∑
i=1

wif(xi),

xi =
b− a

2
ζi +

a+ b

2
, ζi = ith root of Lm(x) in [−1, 1]

wi =
b− a

2

2

(1− x2
i )(L

′
m(xi))2

Python has built in methods to compute the Gauss-Legendre quadrature; defining a method to

build the matrix (δij + zw
1/2
i A(xi, xj)w

1/2
j ) |mi,j=1, so inputting the kernel from Equation 4.23

allows an approximation of the integrated distribution of the smallest eigenvalue. Using the

standard two point numeric differentiation routine can then calculate the smallest eigenvalue

probability distribution Pmin(x) out of Imin(x).

There is still the issue of accuracy in the numerical approximations. The accuracy is dependent

on the number n of quadrature points used to do the integral, returning a function Imin,n(x)

rather than the true Imin(x). It is then necessary to choose an n such that Imin(x)− Imin,n(x) is

sufficiently small, but the computation time for Imin,n(x) is not excessive. To do this, Imin,N (x)−
Imin,n(x) is taken for several values of n, with N � n, and assuming that Imin,N (x) ∼ Imin(x)

is a sufficiently good approximation. Plotting these in Figures 4.5a and 4.5b for N = 300 and

n = {30, 50, 70, 90}, it is seen that in the case of class C, the accuracy is already of the order

2 × 10−4 for n = 30, so this is a good number of points to take. For class D the error is only

under 1 × 10−2 when at least 50 points are taken, and it is not significantly so unless at least

90 points are taken. The requirement that the error should be no more than 1 × 10−2 is due

to the fact the smallest eigenvalue distribution is a function on the scale of 10−1, so this is the

requirement the error be in the third significant figure rather than the second. In practise, 50

points will be enough, with the note that the approximation always underestimates the function

Imin, so a good numerical simulation will produce an estimate of Imin,D(x) that slightly exceeds

the approximated analytic prediction.

The smallest eigenvalue distributions for the Altland-Zirnbauer classes are then plotted and

compared in Figure 4.6.
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Figure 4.5: Calculating the error in the estimate of the Fredholm determinant of the kernels K±1/2 for different
numbers of quadrature points n. This gives the parameters to find the smallest eigenvalue distribution for the
class C and D ensembles through numerical integration.
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Figure 4.6: The probability distribution Pmin(x), and integrated probability distribution Imin(x) of the smallest
positive normalised eigenvalue x
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5. Identifying Minimal Examples of The Altland-

Zirnbauer Classes

At the end of Chapter 3 it was discussed how chaotic quantum systems show universal behaviours

depending on their symmetries, and it has been theorized that the quantum analogues of chaotic

classical systems display random matrix statistics, forming the BGS-conjecture. There is as yet,

no general proof of the BGS-conjecture, so testing it often falls to defining quantum systems

that are predicted to show a certain type of random matrix statistics and then comparing the

experimental results to the predicted ensemble.

To this end, it is necessary to be able to test several systems per Altland-Zirnbauer class to

see repeated agreement with the BGS-conjucture.

However, the Altland-Zirnbauer classes require particle-hole and chiral symmetries which can

be hard to produce physically - despite numerous systems being simulated numerically, [13, 56, 64],

experimental realisation has occurred only for the chiral classes AIII, BDI and CII, [14, 136]. The

similar problem of testing the AII ensemble in the lab was solved by Joyner, Sieber and Müller in

[92] which bypassed the need to work with fermions by adding an appropriate geometric symmetry

to the system and using the symmetry-decomposed basis to isolate a sub-spectrum with the AII

ensemble statistics as per Theorem 3.1.21. By doing so, their system could be tested in the lab

using microwave wires, [113, 133, 134, 135].

It is our desire to extend this method to the Altland-Zirnbauer ensembles, showing that

given any form of global time-reversal and charge-conjugation, an appropriately geometrically

symmetric system can be found such that the symmetry-reduced basis produces a sub-spectrum

that is locally any one desired ensemble from the ten presented in Chapter 4. This means, that if

a particular form of T̂ and Ĉ is found to be easy to realise experimentally, then by combining them

with geometric symmetries, the BGS-conjecture can be tested on these systems for any of the ten

ensembles in Chapter 4, sidestepping the difficulty of building experiments that would be required

for harder forms of T̂ , Ĉ. This is hoped to ease the difficulty in realising the Altland-Zirnbauer

enesmbles in the lab.

To do this, we must demonstrate that for any given global time-reversal and charge-conjugation

operators, T̂ = (Icharge ⊗ T ⊗ Iorbital)K and Ĉ = (C ⊗ Ispin ⊗ Iorbital)K and any desired Altland-

Zirnbauer class of corepresentation, X, there exists a symmetry group G = U ∪ αU ∪ γU ∪ πU
such that one of the corepresentations of G generates a subspace that is of Altland-Zirnbauer

class X.

87



This requires classifying all the corepresentations of the Z2 × Z2-graded groups according to

the Altland-Zirnbauer Tenfold Way until an example has been found for each Altland-Zirnbauer

class. We do this by identifying a method of algorithmically identifying and classifying all the

Z2×Z2-graded groups, then applying this to all the groups of order less than |G| = 40, the results

for this being given in Appendix E. This includes an extension to the work done by Cracknell in

[41] where the Z2-graded crystallographic groups were classified according to the Wigner-Dyson

classes; we give the class of all Z2-graded groups of order less than |G| = 30.

In Chapters 6 and 7, methods of taking the symmetry groups we have found here and turning

them into corresponding systems will be discussed, completing the desired work.

5.1 Searching For Graded Groups

In order to classify the representations of Z2×Z2-graded groups, it is first necessary to be able to

identify if a given group G is Z2 × Z2-graded. Only then can the set of small groups be iterated

over, classifying all the applicable Z2 × Z2 groups.

The problem of checking if a group is Z2 × Z2 graded is the same as checking if two homo-

morphisms φ, ξ : G → Z2 exist and fulfil the requirements of a Z2 × Z2 graded group given by

Definition 2.3.1. Part of this problem has already been solved by Indenbom, [84], giving a method

to find all Z2 gradings of a given group, G:

Theorem 5.1.1 (Indenbom). Let G be a finite group such that 2 | |G|. Then the group ho-

momorphism φ : G → Z2 is a non-trivial Z2-grading of G if and only if φ is a one dimen-

sional irreducible representation of G such that φ(g) = ±1 ∀g ∈ G and |{g ∈ G | φ(g) = 1}| =

|{g ∈ G | φ(g) = −1}| = |G|/2.

Proof. Let the set of Z2-gradings of G be Φ = {φ} and the set of suitable representations of G

be P = {ρ}. The if and only if requirement is equivalent to showing Φ = P .

Firstly, Φ ⊆ P . Let φ ∈ Φ. Then as a homomorphism onto Z2 ⊂ C, it is a one dimensional

representation and automatically irreducible. Furthermore, φ(g) = ±1 by definition, and as

|A| = |U |, |{g ∈ G | φ(g) = 1}| = |{g ∈ G | φ(g) = −1}|. Then φ ∈ P ∀φ ∈ Φ =⇒ Φ ⊆ P .

Also, P ⊆ Φ. Let ρ ∈ P , then ρ : G → Z2 as a homomorphism and G/ ker(ρ) = Z2 as

|ker(ρ)| = |G|/2 and there is only one group of order 2. So ρ is a Z2 grading of G and ρ ∈ P
∀ρ ∈ P =⇒ P ⊆ Φ.

P ⊆ Φ and Φ ⊆ P =⇒ Φ = P.

This can be used to find all Z2 gradings of G by identifying all suitable representations of G

and taking them as the gradings. There is an obvious generalisation of Indenbom’s Theorem to

identify the Z2 ×Z2-graded groups, by checking if two Z2-gradings exist on G and whether they

interact according to Definition 2.3.1:

Theorem 5.1.2. Let G be a group such that 4 | |G|. Then the group homomorphisms φ, ξ : G→
Z2 provide a Z2 × Z2-grading of G if and only if φ, ξ are orthogonal one dimensional irreducible
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representations of G such that φ(g) = ±1, ξ(g) = ±1 ∀g ∈ G and

|G|/2 = |{g ∈ G | φ(g) = 1}| = |{g ∈ G | ξ(g) = 1}|

Proof. Let P be the set of pairs of orthogonal one dimensional representations of G fulfilling the

conditions,

P =

(ρ1, ρ2) | ρ1 ⊥ ρ2, ρ1(g) = ±1, ρ2(g) = ±1,
|{g ∈ G | ρ1(g) = 1}| = |G|/2
|{g ∈ G | ρ2(g) = 1}| = |G|/2


and let Φ = {(φ, ξ)} be the set of Z2 × Z2-gradings of G. The requirement to be proved is that

Φ = P .

Firstly, Φ ⊆ P . Let (φ, ξ) ∈ Φ. Then individually, φ, ξ are Z2-gradings of G and are thus

both one dimensional representations of G according to Theorem 5.1.1, with

|G|/2 = |{g ∈ G | φ(g) = 1}|
= |{g ∈ G | ξ(g) = 1}|

according to the definition of a graded group. Also, ∃g ∈ G such that φ(g) = −ξ(g) so that

φ, ξ provide orthogonal representations as there is an element for which the characters of the two

representations are different. Therefore Φ ⊆ P .

Conversely, every pair (ρ1(g), ρ2(g)) ∈ P provides two Z2-gradings of G by Theorem 5.1.1.

Furthermore, orthogonality of ρ1, ρ2 requires that

|{g ∈ G | ρ1(g) = ρ2(g)}| = |{g ∈ G | ρ1(g) = −ρ2(g)}| = |G|/2.

Combined with the requirement that |{g ∈ G | ρ1(g) = 1}| = |{g ∈ G | ρ2(g) = 1}| = |G|/2
this requires that

|G|/4 = |{g ∈ G | ρ1(g) = ρ2(g) = 1}|
= |{g ∈ G | ρ1(g) = −ρ2(g) = 1}|
= |{g ∈ G | −ρ1(g) = ρ2(g) = 1}|
= |{g ∈ G | −ρ1(g) = −ρ2(g) = 1}|

and (ρ1, ρ2) provides a homomorphism from G to Z2 × Z2 that is a Z2 × Z2 grading of G and

P ⊆ Φ. Thus, P = Φ and all Z2 × Z2 gradings can be found by finding the set P .

Finding all Z2×Z2-graded groups is then a case of iterating over all groups G whose order is

divisible by four and checking their one dimensional representations. Note that this finds only the

Z2×Z2-graded groups such that all of A, C and P are non-empty. If a Z2×Z2-graded group with

only one of A, C and P non-empty, then Indenbom’s method for the Z2-graded groups may be

used, but with the group partitioned into the sets U and whichever of A, C and P is non-empty.

Application of these methods then requires having access to databases of groups and their

characters, with the ability to work with group elements and operations. This is possible due to
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the existence of programs like GAP, [60], which are designed for work exactly like this and which

even have lists of the small finite groups, with their own internal orderings that can be iterated

over, allowing systematic searches through the small groups.

GAP identifies a group G by a tuple (|G|, n) where n is a position in an internal arbitrary

ordering on the groups of order |G|. Conversion from GAP’s notation to more human-readable

labels can be found for example at [49, 124], but GAP notation is now used consistently in

programming, and can be useful as a universal label for groups that have many names. Small

examples of GAP’s naming notation are given by (2, 1) = Z2, (4, 1) = Z4, (4, 2) = Z2 × Z2,

(6, 1) = D6, and (6, 2) = Z6 while larger examples include (32, 49) = (Z2 ×D4) o6 Z2.

Where possible, standard descriptive names for groups will be used. Code-generated results

will use the modified GAP notation for a group,

(|G|, n)→ Gn|G|, (|U |, n)→ Un|U |.

With GAP’s databases of groups and their character tables and conjugacy classes, the al-

gorithms discussed above can be implemented. Using its methods, it is possible to take a group

and then look at the databased character table to check if any of the one-dimensional represent-

ations of G form Z2 × Z2-gradings of G. If any do, then for each grading, it sorts the elements

into the sets U,A,C, P , identifies the group U , finds its character table and then computes the

Altland-Zirnbauer class for each of the irreducible representations of U for the given partition of

G. This can then be printed to file for later access, and will result in the tables in Appendix E

after some additional formatting has been done.

What is now required is a way to efficiently describe partitions of G. In the case of the Z2×Z2

graded group, to label a group G and its grading, it is sufficient to list the names of the groups

G,U,U ∪ αU,U ∪ γU and U ∪ πU . To do this efficiently we use the pair of labels Uk|U | describing

the unitary normal subgroup, and the tuple Gm4|U |(n, p, q) which contains GAP’s group numbers

for G,U ∪ α,U ∪ γ and U ∪ π, the pair together being read as

Uk|U |, G
m
4|U |(n, p, q) −→

U = (|U |, k)

G = (4|U |,m)

U ∪ αU = (2|U |, n)

U ∪ γU = (2|U |, p)
U ∪ πU = (2|U |, q)

An example classifying each of the possible corepresentations of the partitions of the groups

groups G with normal subgroup U = Z2 is given in Table 5.1 - this covers the groups G =

Z4 × Z2, Z
3
2 , D8, Q8, while the allowed partitions are given by,

U1
2 , G

2
8(2, 1, 1)→ G = Z4 × Z2, U = Z2, U ∪ αU = Z2

2 , U ∪ γU = Z4, U ∪ πU = Z4

U1
2 , G

2
8(1, 2, 1)→ G = Z4 × Z2, U = Z2, U ∪ αU = Z4, U ∪ γU = Z2

2 , U ∪ πU = Z4

U1
2 , G

3
8(2, 1, 2)→ G = Z3

2 , U = Z2, U ∪ αU = Z2
2 , U ∪ γU = Z4, U ∪ πU = Z2

2

U1
2 , G

3
8(2, 2, 1)→ G = D8, U = Z2, U ∪ αU = Z2

2 , U ∪ γU = Z2
2 , U ∪ πU = Z4
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U1
2 C0 C1 G2

8(2, 1, 1) G2
8(1, 2, 1) G3

8(2, 1, 2) G3
8(2, 2, 1) G4

8(1, 1, 1) G5
8(2, 2, 2)

ρ0 1 1 BDI BDI BDI BDI BDI BDI

ρ1 1 −1 CI DIII CI BDI CII BDI

Table 5.1: The Altland-Zirnbauer classes of each Z2 × Z2-graded group with U = Z2, for each
irreducible representation of U . Note how the trivial representation of U always returns the class
BDI.

T 2 C2 A AI AII AIII BDI CII D C CI DIII

I −I A AI AII AIII CI DIII C D BDI CII

−I I A AII AI AIII DIII CI D C CII BDI

−I −I A AII AI AIII CII BDI C D DIII CI

Table 5.2: The necessary substitutions to get the correct Altland-Zirnbuer class in Tables 5.1,
5.4 and in Appendix E when at least one of T̂ , Ĉ squares to −I, [24].

U1
2 , G

4
8(1, 1, 1)→ G = Q8, U = Z2, U ∪ αU = Z4, U ∪ γU = Z4, U ∪ πU = Z4

U1
2 , G

5
8(2, 2, 2)→ G = Z3

2 , U = Z2, U ∪ αU = Z2
2 , U ∪ γU = Z2

2 , U ∪ πU = Z2
2

when translated into the standard group names.

The independence of the classification from the exact elements used to form the sets U,A,C, P

is useful, as repeatedly identifying single group elements is something computers are poor at -

GAP stores group elements as a randomly ordered list, which changes with every instantiation so

there is no way to guarantee that a given description of a group would generate the same group

when re-entered into GAP. Thus, if the exact individual elements were needed, they would need

to be identified entirely by hand to get a useable labelling on them, which would significantly

increase the workload. Instead, while a partition of G must still be identified by hand, the

simplest partition resulting in the groups U , U ∪ αU , U ∪ γU and U ∪ πU can always be taken,

this normally involves identifying three of the generating elements of G as α, γ and π and taking

the subgroup generated by the remaining elements as U , though exceptions where u = α2 or

similar do occur. This does also mean there will often be multiple possible ways of forming the

partition Uk|U |, G4|U |(n, p, q) when it comes to building a system.

Note that these tables of group classifications are given with the assumption that the global

time-reversal and charge-conjugation operators on the system in consideration are given by T̂ =

(Icharge⊗T⊗Iorbital)K and Ĉ = (C⊗Ispin⊗Iorbital)K with T 2 = C2 = I. If this is not the case and

at least one of T,C squares to −I, then tables can still be used to identify the Altland-Zirnbauer

classes of the corepresentations but under the substitutions given in Table 5.2. If these factorised

forms of T̂ and Ĉ are not applicable, then construction of the universal covering group of G, and

then checking the entries for G′ will give the correct answer.

The case where it is allowed that one of A,C is empty reduces to the problem of finding the

Z2-graded groups. There is no real difference in the process as for the Z2 × Z2 case, except it

is now sufficient to label using just G and U . Having calculated the classification of the small

groups under Dyson Tenfold Way, as in Section E.1, the necessary substitutions for the Altland-

Zirnbauer classes are given by Table 5.3. The example for U = Z2 is given in Table 5.4 for both

91



A = ∅ C = ∅
RI,CI,HI D AI

RII,CII,HII C AII

RIII,CIII1,CIII2,HIII A A

Table 5.3: The substitutions needed to turn the classification of a corepresentation of a Z2-
graded under Dyson’s Tenfold Way, as given in Section E.1, into an Altland-Zirnbauer class of a
corepresentation of a Z2×Z2-graded group where either A = ∅ or C = ∅. The Altland-Zirnbauer
class is solely given by the second half of the Dyson class.

U1
2 C0 C1 G1

4 G2
4

ρ0 1 1 AI/D AI/D

ρ1 1 −1 AII/C AI/D

Table 5.4: The Altland-Zirnbauer classes for each corepresentation of a Z2 × Z2-graded group
with U = Z2 and either A = ∅ or C = ∅.

the case C = ∅ and A = ∅. The same substitutions given in Table 5.2 may be used in the case

that T 2 = −I or C2 = −I.
Finally in the case where G is Z2 × Z2-graded but A = C = ∅, P 6= ∅, the two Altland-

Zirnbauer classes that a representation of U can generate are A,AIII. These can all be found

by studying the Dyson Tenfold Way classification of the Z2-graded groups as given in Theorem

2.2.15, with the mappings from Dyson’s ten classes as given in Theorem 2.2.15 onto the possible

two classes A,AIII given by,

RI,RII,HI,HII,CIII2→ AIII

CI,CII,RIII,HIII,CIII1→ A

An example of the classification of the groups G = U ∪ P for U = Z3 is given in Table 5.5.

U1
3 C0 C1 C3 G1

6 G2
6

ρ0 1 1 1 AIII AIII

ρ1 1 e2iπ/3 e−2iπ/3 A AIII

ρ2 1 e−2iπ/3 e2iπ/3 A AIII

Table 5.5: The Altland-Zirnbauer classes for each corepresentation of a Z2 × Z2-graded group
with U = Z3, A = C = ∅ and P 6= ∅.
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5.2 Minimal Examples of the Altland-Zirnbauer Tenfold

Way

Having a method to search for Z2 × Z2-graded groups and identify the ensembles they generate

in their symmetry-decomposed bases when used as symmetry groups, we can now identify the

groups with smallest order showing each Altland-Zirnbauer class as the minimal examples of the

Altland-Zirnbauer Tenfold Way:

Theorem 5.2.1. Let Q be a quantum system with global time-reversal, charge-conjugation and

chiral operators so that

T̂ 2 = I, Ĉ2 = I, P̂2 = I.

Then, for each Altland-Zirnbauer class there exists a graded symmetry group G of minimal order

such that its normal subgroup of unitary-commuting symmetries, U , has an irreducible repres-

entation generating a corepresentation of G of that class. There is also an associated subspace

in the Hilbert space of the system which displays spectral statistics matching the random matrix

ensemble associated to the Altland-Zirnbauer class.

The symmetry group G takes the form G = U ∪ A ∪ C ∪ P , A = αU , C = γU , P = πU .

Allowing some of A,C, P to be empty, the relevant symmetry groups and representations are given

by

Class G U U ∪ αU U ∪ γU U ∪ πU Irreducible Representation of U

A Z1 Z1 Trivial

AI Z2 Z1 Z2 Trivial

AII Z4 Z2 Z4 Sign

AIII Z2 Z1 Z2 Trivial

BDI Z2
2 Z1 Z2 Z2 Z2 Trivial

CII Q8 Z2 Z4 Z4 Z4 Sign

C Z4 Z2 Z4 Sign

D Z2 Z1 Z2 Trivial

DIII Z4 × Z2 Z2 Z4 Z2
2 Z4 Sign

CI Z4 × Z2 Z2 Z2
2 Z4 Z4 Sign

In the case that at least one of T,C doesn’t square to the identity, then having taken the

substitutions for the classes as given in Table 5.2, the result still holds.

Proof. It can be seen in Tables 5.1, 5.4, 5.5 that these gradings and representations give the

correct Altland-Zirnbauer classes according to the Frobenius-Schur indicators. Proof that these

are the minimal groups requires showing that no smaller groups exist for each example. This can

be seen by referencing the tables compiled in Appendix E.

In practise, the cases where the trivial representation is used returns poor numerical simula-

tions. For this reason we used the modified theorem:
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Theorem 5.2.2. Let Q be a quantum system with global time-reversal, charge-conjugation and

chiral operators so that

T̂ 2 = I, Ĉ2 = I, P̂2 = I.

Then, for each Altland-Zirnbauer class there exists a graded symmetry group G of minimal order

such that its normal subgroup of unitary-commuting symmetries, U , has an irreducible non-

trivial representation generating a corepresentation of G of that class. There is also an associated

subspace in the Hilbert space of the system which displays spectral statistics matching the random

matrix ensemble associated to the Altland-Zirnbauer class.

The symmetry group G takes the form G = U ∪ A ∪ C ∪ P , A = αU , C = γU , P = πU .

Allowing some of A,C, P to be empty, the relevant symmetry groups and representations are given

by

Class G U U ∪ αU U ∪ γU U ∪ πU Irreducible Representation of U

A Z6 Z3 Z6 Complex

AI D6 Z3 D6 Complex

AII Z4 Z2 Z4 Sign

AIII Z6 Z3 Z6 Complex

BDI D12 Z3 D6 D6 Z6 Complex

CII Q8 Z2 Z4 Z4 Z4 Sign

C Z4 Z2 Z4 Sign

D D6 Z3 D6 Complex

DIII Z4 × Z2 Z2 Z4 Z2
2 Z4 Sign

CI Z4 × Z2 Z2 Z2
2 Z4 Z4 Sign

In the case that at least one of T,C doesn’t square to the identity, then having taken the

substitutions for the classes as given in Table 5.2, the result still holds.

This allows for some of the sets A,C, P to be empty, in the case that it is required that all of

U,A,C, P are non-empty it is still possible to find symmetry groups G to cover each of the ten

Altland-Zirnbauer classes:

Theorem 5.2.3. Let Q be a quantum system with global time-reversal, charge-conjugation and

chiral operators so that

T̂ 2 = I, Ĉ2 = I, P̂2 = I.

Then, for each Altland-Zirnbauer class there exists a graded symmetry group G of minimal order

such that its normal subgroup of unitary-commuting symmetries, U , has an irreducible non-

trivial representation generating a corepresentation of G of that class. There is also an associated

subspace in the Hilbert space of the system which displays spectral statistics matching the random

matrix ensemble associated to the Altland-Zirnbauer class.

The symmetry group G takes the form G = U ∪ A ∪ C ∪ P , A = αU , C = γU , P = πU .

Requiring all of A,C, P to be non-empty, the relevant symmetry groups and representations are

given by
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Class G U U ∪ αU U ∪ γU U ∪ πU Irreducible Representation

A Z2 ×M4(2) Z8 Z8 × Z2 M4(2) M4(2) eiπ/4 Complex

AI D12 Z3 D6 Z6 D6 Complex

AII Q16 Z4 Q8 Z8 Q8 Complex

AIII Z6 × Z2 Z3 Z6 Z6 Z6 Complex

BDI D12 Z3 D6 D6 Z6 Complex

CII Q8 Z2 Z4 Z4 Z4 Sign

C D12 Z3 Z6 D6 D6 Complex

D Q16 Z4 Z8 Q8 Q8 Complex

DIII Z4 × Z2 Z2 Z4 Z2
2 Z4 Sign

CI Z4 × Z2 Z2 Z2
2 Z4 Z4 Sign

Where M4(2) =
〈
a, b
∣∣a2 = b8 = 1, aba = b5

〉
and

Q16 =
〈
a, b
∣∣a8 = 1, b2 = a4, bab−1 = a−1

〉
.

In the case that at least one of T,C doesn’t square to the identity, then having taken the

substitutions for the classes as given in Table 5.2, the result still holds.

Proof. See the tables in Section E.2 for the classification of the Z2×Z2-graded groups according

to the Frobenius-Schur Indicators. It can be checked that the above examples give the stated

classes, and that that there are no smaller groups fulfilling the requirements.

It of course still necessary to demonstrate experimentally that systems with these symmetry

groups show the spectral statistics predicted by their Altland-Zirnbauer statistics. Developing the

necessary algorithm to build systems with time-reversal symmetries in Chapter 6, and charge-

conjugation and chiral symmetries in Chapter 7, this experimental confirmation will come in

Sections 6.2.3 and 7.3.2.
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6. Quantum Graphs

So far, we have demonstrated that given a fixed global form of T̂ , Ĉ and P̂, then for any Altland-

Zirnbauer class X, there exists a symmetry group G with an irreducible representation ρa of

U generating a corepresentation of class X. Furthermore, given a suitable quantum system

symmetric under G and with ρa in the decomposition of G’s action on H by the corepresentation

R, then the subspace Ha generated by ρa shows random matrix statistics of type X, assuming

the BGS-conjecture holds, and the system is chaotic. It is now necessary to demonstrate that

such a suitable quantum system can always be found.

The first part of this problem has already been solved by Joyner, Müller and Sieber, [92],

where in the specific case of a symmetry group G fulfilling the requirements that C = P = ∅
and α = e so that G = U × Z2 they gave an algorithm to construct a quantum graph that was

symmetric under G and contained all of U ’s irreducible representations in G’s action. Separate

to [92], uni-directional quantum graphs have been used to construct systems with GSE statistics

by breaking time-reversal symmetry by preventing flow in one direction along the bonds, then

combining differently directed sections to build new time-reversal systems, [3]. In many ways,

it is unsurprising that quantum graphs would provide a suitable model for work like this - in

abstract group theory, graphs are commonly used to visualise group structure, while in physics

they have long been used as models for quantum chaos, [67, 101, 102, 103, 104], as they are one

of the few systems where the BGS-conjecture has been proven, [130], and explicit and simple

conditions exist for a graph to show the universal behaviour associated with chaos, [62, 159].

Here, we introduce quantum graphs as a model in Section 6.1, discussing the definition of

symmetry on a graph and random matrix theory in the context of quantum graphs. We expand

the definition of a symmetric quantum graph to allow for generalised time-reversal symmetries,

and in Section 6.2.1, we then expand the algorithm given in [92] to cover generating systems with

any Z2-graded symmetry group, G = U ∪ αU by the application of magnetic potentials. Imple-

menting the minimal examples for showing the Wigner-Dyson statistics according to Theorem

5.2.2, we in Section 6.2.3 demonstrate their compliance with the BGS-prediction. This will serve

as a stepping stone to the Dirac graphs in Chapter 7 where quantum graphs will be modified to

include particle-hole symmetry and all ten Altland-Zirnbuer classes will be constructed.

6.1 Quantum Graphs

The definition of a quantum graph begins with the definition of an abstract graph, [18, 67]:

96



Definition 6.1.1. The graph Γ is the tuple (V, E) such that V = {v1, v2, . . . vN} is a set of vertex

labels, and E = {(vi, vj), (vm, vn), . . . } is a set of unordered pairs of vertices (vi, vj) denoting an

edge connecting the vertices vi and vj. For ease of reading, if a graph has N vertices, they will

be labelled with the integers 1, 2 . . . N . If N <∞ then Γ will be a finite graph.

The information contained by the graph can be represented fully by listing the number of edges

between two vertices i and j. Doing this as a N ×N matrix forms the adjacency matrix, AΓ,

(AΓ)ij = |{e ∈ E | e = (i, j)}|, (AΓ)ii = 2|{e ∈ E | e = (i, i)}|

with the loops (i, i) having to be double counted, as the edge is connected to the vertex twice. The

number of edges connected to a single vertex gives its valency, di =
∑
j Aij.

The neighbourhood Γi of a vertex i is the set of vertices connected directly to it, Γi =

{j ∈ V | (i, j) ∈ E}.

In most cases, we will be considering only graphs without loops so that there are no edges

of the form e = (i, i); and graphs without repeated edges (AΓ)ij ≤ 1. This will mean that (i, j)

identifies a unique edge e in E , these graphs will be called simple graphs. Any non-simple graph

can be turned into a simple graph by inserting an extra vertex into the middle of the repeated

edge or loop, [67]. In this case, the neighbourhood of a vertex and its valency are connected by

the relation di = |Γi|. The exception to the rule of considering only simple graphs will occur

when constructing the quotient graph, where loops are common, but only in an intermediate step

before methods are applied to return it to being simple. From here on out, we will assume that

all the considered are simple, or have been made to be simple.

Defining position based functions on a graph will require a method of locating a point on an

edge. The beginning of this process is defining a direction on each of the edges, [18, 67]:

Definition 6.1.2. Let Γ be a simple graph, a direction can be chosen on each edge, (i, j)→ [i, j]

so that the edge starts at the vertex i and ends at the vertex j, i → j. A directed edge is a bond

and the collection of them forms the set B.

This defines a directed graph.

Given an undirected edge (i, j), a direction could be assigned as either [i, j] : i → j or

[j, i] : j → i. If b = [i, j] is chosen, then b = [j, i] is the reversal of b. As they have a direction,

the bonds [i, j] and [j, i] are not equivalent, and it is possible to define a simple directed graph

containing both of them; simplicity on a directed graph requires there are no repeated bonds. This

is important, as an undirected graph can correspond to the directed graph which also contains

all the bond reversal of its bonds, [18],

(i, j) ∈ E ⇔ [i, j], [j, i] ∈ B.

When it comes to defining quantum graphs, it will be assumed that if b ∈ B then b 6∈ B, however

when working with some concepts, it will be easier to label some quantities as if b was in B, this

is a quirk of the mathematical notation however - it really refers to the act of travelling down the

bond b against the direction of the bond.
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The concepts of neighbourhood and valency will extend onto the directed graph once the

direction of the bonds has been accounted for, [67].

Definition 6.1.3. Let Γ be a directed graph. Then there are two directed neighbourhoods of a

vertex i based on whether a bond originates at the vertex, or terminates at the vertex,

Γ+
i = {j ∈ V | [i, j] ∈ B}, Γ−i = {j ∈ V | [j, i] ∈ B}, Γi = Γ+

i ∪ Γ−i

with the undirected neighbourhood being the union of the two directed neighbourhoods. The directed

valencies of i are then given by

d+
i =

∣∣Γ+
i

∣∣, d−i =
∣∣Γ−i ∣∣, di = d+

i + d−i .

Given a directed graph, it is now possible to assign a length Lb to each bond b so that the

bond can be considered the segment of the real line [0, Lb] ⊂ R. Any point along this line can

then be specified as a distance xb from the originating vertex of the bond, defining metric graph,

[18].

Definition 6.1.4. Let Γ be defined as a directed graph. Associating to each bond b = [i, j] a

section of the real line [0, Lb] ⊂ R with euclidean metric and position function xb on b such that

xb |i= 0, xb |j= Lb so that if b ∈ B, Lb = Lb and xb = Lb − xb forms a metric graph.

By taking the union of the intervals on each of the edges on the graph, the space on the full

graph can be described as

V =
⋃
b∈B

[0, Lb] ⊂ R|B|.

Taking a vector of positions on the separate edges, x =
(
x1 x2 . . . x|B|

)T
then allows a

function space on the graph, [18],

L2(Γ) =
⊕
b∈B

L2([0, Lb]),

and it is possible to define a function on the graph:

Definition 6.1.5. Let fi(x) : R→ Kn be a set of |B| functions. Then given a metric graph Γ,

F (x) = (fT1 (x1), fT2 (x2), . . . fT|B|(x|B|))
T

is a function on Γ, when appropriate boundary conditions are defined at each vertex in V.

The appropriate functions for defining a standard quantum graph are the solutions to Schrödinger’s

equation on each bond, [16, 67, 100]:

Definition 6.1.6. Let Γ be a metric graph with Hilbert space H = ⊕b∈BL2([0, Lb]). Define a mag-

netic potential Ab on each bond b. Take the functions

ψb(xb) =
(
ψ1
b (xb) . . . ψnb (xb)

)T
as the n-component solutions to Schrödinger’s magnetic time-

independent equation,

−
(

∂

∂xb
+ iAb

)2

ψb(xb) = Ebψb(xb)
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on each bond. The unconstrained solution on the whole graph is then,

Ψ(x) =
(
ψT1 (x1), ψT2 (x2), . . . ψT|B|(x|B|)

)T
A set of boundary conditions can be given by a pair of 2n|B| × 2n|B| matrices C1, C2, chosen

so that rank(C1 | C2) = 2n|B| and C1C
†
2 = C2C

†
1. With the vectors

Ψ1 =



ψ1(0)
...

ψ|B|(0)

ψ1(L1)
...

ψ|B|(L|B|)


, Ψ2 =



ψ′1(0)
...

ψ′|B|(0)

−ψ′1(L1)
...

−ψ′|B|(L|B|)


defined, then a valid, constrained solution on the graph then fulfils the boundary condition that

C1Ψ1 + C2

Ψ2 +

iAb 0

0 −iAb

⊗ In

Ψ1

 = 0 (6.1)

with Ab the diagonal matrix

Ab =


A1

. . .

A|B|

.
First, we note that in almost all cases, we will consider only quantum graphs with one di-

mensional solutions ψb on their bonds, and will assume that all graphs in this Chapter are as

such.

Second, the term ‘quantum graph’ can be used in the literature, [18], to refer more generally

to a metric graph with the solution of any differential equation defined on the bonds - a definition

which includes the Dirac graph which is considered in Chapter 7. Technically, the system defined

above should then be known as a ‘Schrödinger quantum graph’, however as this term isn’t used

in the literature, and the common name for it is still the ‘quantum graph’, [67], we restrict the

term to cover only the above graphs.

Third, the boundary condition requirement is designed to ensure the operators on the graph

are self-adjoint and that the solution and its derivative fulfil dictated conditions at each vertex -

and for any self-adjoint solution, there exists an expression for C1 and C2 that will generate it.

Due to this, it is common to consider the boundary condition at a single vertex i. The solution

and modified derivative local to the vertex can be expressed by the vector and operator, [16, 102],

F (i) = ⊕b∈B:i∈bψb |i, Di = ιi(b)

(
∂

∂xb
+ iAb

)
with ιi acting to ensure that the derivative is always taken in the outwards direction, away from

the vertex. This requires negating the derivatives for incoming edges to take the derivative against
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the direction of the bond,

ιi(b) =

1 b = [i, j]

−1 b = [j, i]

and the boundary condition problem is now given by requiring that

C1 |i F (i) + C2 |i DF (i) = 0 (6.2)

at each vertex, where the expression has been simplified by subtracting the magnetic potential

within the derivative. The matrices C1 |i, C2 |i are the restriction of C1 and C2 to contain only

the bonds of the form [i, j] and [j, i].

This can be used to construct the matrices C1, C2 for different types of boundary conditions

at each vertex. For example, the Dirichlet boundary condition ψb |0= 0 ∀b ∈ B is given by the

matrices, [18],

C1 |i= I, C2 |i= 0

while the Kirchhoff or Neumann-like conditions, where the solution on each of the bonds connected

to the vertex must agree at the vertex, and the total flux through the vertex must be zero, [12],

ψb |i= ψb′ |i ∀b, b′ ∈ B : i ∈ b, b′
∑

b∈B:i∈b

ιi(b)ψ
′
b |i= 0 (6.3)

so that the function is continuous at i and there is current conservation at the vertex, is given by

the matrices

C1 |i=



1 −1

1 −1

. . .
. . .

1 −1

0 0 0 0 0


, C2 |i=



0 0 0 0 0

0 0 0 0 0
...

...
...

...
...

0 0 0 0 0

1 1 1 1 1


.

In most cases in the study of quantum graphs, the Kirchhoff conditions are taken at each vertex,

however we will continue to allow a more general set of boundary conditions. More information

on the forms of C1 |i and C2 |i for generating different types of boundary conditions, and other

methods of parametrising the boundary conditions on quantum graphs can be found in [18].

To find the solutions Ψ(x) on the whole graph, we begin by looking at ψb the solution of the

one dimensional Schrödinger equation on a single bond, [16, 67],

ψb(xb) = e−iAbxb
(
µbe

ikxb + µ̃be
−ikxb

)
= µbe

i(k−Ab)xb + µ̂be
i(k+Ab)(Lb−xb)

with

µ̂b = e−i(k+Ab)Lb µ̃b, k =
√
E.

We see that there are two possible ways of expressing the constants that arise from solving the

second order differential equation. The first pair of amplitudes, µb, µ̃b, are the standard constants
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for a second order differential equation solution, and describe a single, mixed travelling wave-

packet solution; the second pair µb, µ̂b, treats the two solutions eikx and e−ikx as the amplitudes

of two travelling plane waves, the first, with amplitude µb travelling along b with the direction

of the bond, the second, with amplitude µ̂b travelling against the direction of the bond - which

is the same as travelling down the reversed bond, [67]. This explains the change in sign of Ab in

the solution - the effect of the magnetic potential flips sign in taking the reversal - as well as the

use of Lb − xb = xb to measure the displacement of the wave packet. Due to this, we note gain

that when defining a quantum graph, bond reversals are not allowed as separate bonds as they

are already counted in the solution of the original bond. We also note that µ̂[i,j] → µ[j,i] is a

common relabelling of the back-travelling wave amplitude which will be useful for standardising

the labelling.

Both expressions µb, µ̃b and µb, µ̂b = µb have been given, as for the purposes of working with

time-reversal, using the version with µ̃b will be easier, however outside of this, it is more common

to work with µ̂b.

Note that by knowing E and µb, µ̂b for all b ∈ B, it is possible to reconstruct the full solution

Ψ of the graph. This allows a change of basis to the amplitude space, [67],

Ψ→ µ =
(
µ1 . . . µ|B| µ̂1 . . . µ̂|B|

)T
.

A solution on the graph then requires the set of constants µb, µ̂b to take values consistent with

the boundary conditions expressed in Equation 6.1. To test for this, we follow [78] and express

the vectors Ψ1,Ψ2 in terms of µ,

Ψ1 =

 I ei(k+Ab)Lb

ei(k−Ab)Lb I

µ
Ψ2 =

 i(kI−Ab) −i(kI +Ab)e
i(k+Ab)Lb

−i(kI−Ab)ei(k−Ab)Lb i(kI +Ab)

µ
so that Equation 6.1 becomes

0 = C1

 I ei(k+Ab)Lb

ei(k−Ab)Lb I

µ+ ikC2

 I −ei(k+Ab)Lb

−ei(k−Ab)Lb I

µ
= (C1 + ikC2)µ+ (C1 − ikC2)

 0 ei(k+Ab)Lb

ei(k−Ab)Lb 0

µ.
The matrix C1 + ikC2 is always invertible for real k 6= 0 as it is Hermitian, [100]. Multiplying by

the inverse then gives

µ = −(C1 + ikC2)−1(C1 − ikC2)

0 I

I 0

ei(k+Ab)Lb 0

0 ei(k−Ab)Lb

µ (6.4)
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which is a requirement that µ is invariant under the action of

Ξ(k) = −(C1 + ikC2)−1(C1 − ikC2)

0 I

I 0

ei(k+Ab)Lb 0

0 ei(k−Ab)Lb


and would imply that µ is an eigenvector of Ξ(k) with eigenvalue 1.

The physical interpretation of this is as a scattering-transmission problem, [67, 103, 104],

µ = S(k)

0 I

I 0

T (k)µ = Ξ(k)µ (6.5)

with

S(k) = −(C1 + ikC2)−1(C1 − ikC2), T (k) =

ei(k+Ab)Lb 0

0 ei(k−Ab)Lb

 (6.6)

the scattering and transmission matrices. The plane waves described by the amplitudes in µ

leave a vertex and are transmitted along the bonds by T (k), picking up a phase as they travel

from xb = 0 → xb = Lb. They are then incident at a vertex, the appropriate reordering of the

elements being done by the ( 0 1
1 0 ) to get the directions right, and S(k) scatters them down the

connected bonds, ready to restart the process. In this case, Ξ(k) can be interpreted as a sort of

discrete time evolution operator, and µ = Ξ(k)µ becomes the time invariance requirement of the

Time Independent Schrödinger operator.

Note that the right multiplication of (C1 + ikC2)−1(C1− ikC2) by ( 0 1
1 0 ) is often absorbed into

the definition of the scattering matrix to give its ‘standard’ form, [100],

Sstandard(k) = S(k)

0 I

I 0

.
Studying symmetries of the graphs will require looking at the scattering behaviour of the

graph at the vertex level. Using the vertex boundary conditions from Equation 6.2, then a local

vertex scattering matrix σ(i) is defined as, [18],

σ(i) = −(C1 |i +ikC2 |i)−1(C1 |i −ikC2 |i), −→µ i = σ(i)(k)←−µ i (6.7)

with
−→µ i = ⊕b=[i,j]:b or b∈Bµb,

←−µ i = ⊕b=[j,i]:b or b∈Be
i(k+Ab)Lbµb

where −→µ i contains the amplitudes leaving the vertex i, and ←−µ i contains the amplitudes entering

the vertex i - which as µ[j,i] is an amplitude leaving the vertex j, must be multiplied by the

appropriate part of the transmission matrix to get its form at the end of the bond and entering

i. The full scattering matrix is then reconstructed from the local vertex scattering matrices as

S(k)[k,l],[i,j] = δjk(σ(j))[k,l],[i,j]
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Substituting in the vertex boundary matrices for the Kirchhoff conditions from Equation 6.3,

then gives the scattering matrix, [18, 67],

S(k)[k,l],[i,j] = δjk

(
2

dj
− δil

)
so that an incoming wave at a vertex is scattered equally across all connected bonds, including

backscattering.

Equation 6.5 also gives a clear statement for when an energy level E exists in the spectra of

a quantum graph - there must exist a solution to the eigenvalue problem µ = Ξ(
√
E)µ. This

occurs whenever the matrix Ξ(k) has an eigenvalue of value 1, defining the relationship, [67],

E is an energy level ⇐⇒ ζ(E) = det
(
I− S

(√
E
)
T
(√

E
))

= 0

which is a secular equation.

The energy level spectra of the graph can theoretically then be calculated by iterating over E,

calculating the function ζ(E) from the left-hand side of the secular equation, and then running

a root finding program. In practise ζ is both complex and too unstable to compute numerically,

and instead the real secular equation is used, [90],

ζR(k) = (det(S(k)T (k)))
−1/2

det (I− S(k)T (k)) = 0 (6.8)

The function ζR(k) is always real, and if S(k) is a constant, it simplifies to

ζR(k) =
1

eik
∑
b Lb
√

det(S)
det (I− S(k)T (k)) (6.9)

Finding the energy level spectrum is then as simple as using a numerical root finding program

can on ζR(k) when the degeneracy of the eigenvalues is odd. If the degeneracy of the eigenvalues

is even, then all roots are repeated roots and a minimisation program on |ζR(k)|1/2 should be

used instead, as traditional root finding programs mostly need a function that changes sign when

passing through the root, which a repeated root doesn’t. In addition to this, numerical errors

mean that it is further unlikely that the root even touches the x-axis during practical evaluation,

so minimisation is a much better routine to run. By taking the square root of the absolute

value of ζR, it is guaranteed that the function is positive and minimisation is right rather than

maximisation of a negative function, and the square root increases the sharpness of the troughs,

improving the speed at which the minimisation routine returns good results, [91].

6.1.1 Time-Reversal on Quantum Graphs

As a one-dimensional system, time reversal on the Schrödinger equation on the line is defined by

T̂ = uK, u ∈ U(1), [175], and it can be seen that ψ(−t, x) satisfies the conjugated time-dependent

Schrödinger equation, −i~ ∂
∂tψ(−t, x) = Ĥ∗ψ(−t, x). It is assumed here that no phase shift is

included in order to take the simplest possible form of T̂ , T̂ = K, this also keeps the form of the

time-reversal consistent with the standard forms given in Table 2.3. Its action on a solution ψ(x)
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written in the form of the wave-packet with amplitudes µ, µ̃ is then given by

T̂ : e−iAx
(
µeikx + µ̃e−ikx

)
→ eiAx

(
µ∗e−ikx + µ̃∗eikx

)
= eiAx

(
µ′eikx + µ̃′e−ikx

)
= ψ′(x),

which is equivalent to the solution defined on a second line with potential −A and with the new

constants µ′ = µ̃∗, µ̃′ = µ∗ when the factors of eikx and e−ikx are equated. In most cases ψ′(x)

will not provide a solution to the original system - the magnetic potential has been negated, and

µ′, µ̃′ will not fulfil the boundary conditions of ψ(x), and the system has broken time-reversal

symmetry.

In the case that A = 0 and µ′ = µ̃∗, µ̃′ = µ∗ are again compatible with the boundary

conditions of the system, then this generates a new solution of the Schrödinger equation on the

same line, and T̂ is a symmetry of the system.

This carries over onto the quantum graph - if Ab = 0 ∀b ∈ B and if T̂ Ψ meets the now

simplified boundary condition requirement

C1Ψ1 + C2Ψ2 = 0 (6.10)

then T̂ provides a symmetry of the system. This means that the symmetrised time-evolution

operator Ξ(k) = T 1/2(k)S(k)T 1/2 must be invariant under the action of T̂ , in particular that

S(k) is invariant under T̂ , [67].

Testing the scattering matrix condition invariance requirement is easiest to do at the local

vertex level, which using Equation 6.7, is equivalent to requiring that, [27],

T̂ −→µ i = T̂ σi(k)T̂ −1T̂ ←−µ i = σ(i)(k)T̂ ←−µ i. (6.11)

Checking for this requires first calculating the action of T̂ on the vectors −→µ i,←−µ i. To do this, we

look at the action of T̂ on µ, which by comparing to the single wire case can be seen to be,

T̂

µ
µ̃

 =

0 I

I 0

µ∗

µ̃∗

.
Taking then the alternative representation of the outgoing and incoming amplitudes −→µ i,←−µ i at

i written using µb and µ̃b for a vertex with outgoing bonds 1, 2, . . . d+
i and incoming bonds

d+
i + 1, d+

i + 2, . . . di, [27],

−→µ i =



µ1

...

µ
d+i

exp
(
−i(k +A

d+i +1
)L

d+i +1

)
µ̃
d+i +1

...

exp (−i(k +Adi)Ldi)µ̃di


, ←−µ i =



µ̃1

...

µ̃
d+i

exp
(
i(k +A

d+i +1
)L

d+i +1

)
µ
d+i +1

...

exp (i(k +Adi)Ldi)µdi


where for the outgoing bonds, µb, µ̃b are the full amplitudes as the particle has originated at the

vertex and hasn’t yet travelled along a bond to pick up the phase shift from the transmission
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matrix; whereas they have for the incoming bonds so multipliction by the exponential from the

transmission matrix is necessary, as well as switching around µb and µ̃b in −→µ i,←−µ i to make sure

the particles are travelling in the right direction relative to the vertex. Then, applying T̂ ’s

transformation of µ, µ̃ to −→µ i,←−µ i it is seen that,

←−µ T̂ ,i = T̂ ←−µ i = −→µ ∗i , −→µ T̂ ,i = T̂ −→µ i =←−µ ∗i .

Substituting this into Equation 6.11 gives

←−µ ∗i = σ(i)(k)−→µ ∗i

which under rearrangement gives the requirement for a graph to be symmetric under T̂ = K as

σ(i)(k) = σ(i)T (k). (6.12)

This is automatically satisfied by taking the Kirchhoff boundary conditions where σ(i)(k) is

symmetric, [67], which are the standard boundary conditions to work with. Because of this, it

is standard to assume a graph with no magnetic potentials on any of the bonds is time-reversal

symmetric, but one with magnetic potentials is not, so the magnetic potentials are used to kill

time-reversal symmetry, [27, 67]. However we shall show below how careful choice of positive and

negative magnetic potentials can be used to build anti-unitary symmetries into quantum graphs

with forms that are more general than T̂ = K and σ(i) = σ(i)T .

6.1.2 General Symmetries of Quantum Graphs

For abstract graphs, symmetries are given by the action of a group on the vertices as a permutation

that preserves the connectivity of the graph, [90]:

Definition 6.1.7. Let Γ be a graph and G a group. Define the action of G on the graph as the

permutation of the vertices by

g : i→ gi.

The action on the bonds is then

g : [i, j]→ [gi, gj].

If this leaves B invariant,

[i, j] ∈ B ⇐⇒ [gi, gj] ∈ B ∀g ∈ G i, j ∈ B

then Γ is symmetric under G.

Symmetries of quantum graphs must be compliant with this definition. Furthermore, they

must leave the additional structure of the quantum graph alone - the bond lengths, potentials

and vertex scattering matrices. For a unitary element, this is simply ensuring nothing about the

graph changes, which means preserving bond lengths, Lub = Lb; scattering matrices, σ(ui) = σ(i);

and matrix potentials, Aub = Ab ∀u ∈ U . On the other hand, we know that the anti-unitary

symmetries include the action of time-reversing the graph as part of their action on the graph. In
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the last section, it was shown that for time-reversal to be a symmetry by itself, it was necessary

that Ab = −Ab = 0 ∀b ∈ B, and σ(i) = σ(i)T ∀i ∈ V. We note that all that is needed to include a

vertex permutation alongside the time-reversal operation in the symmetry check is to include the

multiplication by the unitary element on the left handside of both of these relations, defining the

general anti-unitary symmetry conditions as Agb = −Ab = 0 ∀b ∈ B, g ∈ αU and σ(gi) = σ(i)T

∀i ∈ V, g ∈ αU . This is of course, also allowing for permutations of the orderings of the bonds

in the entries of σ(g).

This then gives the general definition of a quantum graph with a Z2-graded symmetry group

as:

Definition 6.1.8. Let G = U ∪ αU be a finite Z2-graded group and Γ a quantum graph. Define

the action of G on Γ as the permutation of the vertices by

g : i→ gi

Γ is symmetric under G if and only if the following relations hold:

[i, j] ∈ B ⇔ [gi, gj] ∈ B, L[gi,gj] = L[i,j]

A[gi,gj] =

A[i,j] g ∈ U

−A[i,j] g ∈ αU
(σ(gi))[gi,gj],[gk,gl] =

(σ(i))[i,j],[k,l] g ∈ U

(σ(i)T )[i,j],[k,l] g ∈ αU

In the case where Ab = 0 ∀b ∈ B and σ(i) = σ(i)T = σ
(i)
Kirchhoff ∀i ∈ V the old definition of

symmetric quantum graphs used by [92] is recovered. These graphs have only unitary symmetries

and time-reversal T̂ = K and have symmetry groups G = U × Z2, which produces an incredibly

limited subset of the symmetric graphs under the new definition - of the 59 possible Z2-graded

groups of order at most |G| ≤ 20, only 18 are of the form G = U × Z2 - approximately 30.5% of

the total, and this proportion decreases dramatically as larger groups G are considered.

Given that unitary symmetries exist on the graph, then as per Theorem 3.1.18, there will

be multiple independent sub-spectra within the energy level spectrum and when looking at the

random matrix predictions it will be necessary to isolate the sub-spectra by constructing the

symmetry decomposed basis, taking a change of basis to split the system into independent sub-

systems.

To begin this process, we require the representation of U acting on Γ. As the unitary ele-

ments of G are solely permutations of the vertices, it permits the application of the permutation

representation to define the action of U on a single bond solution ψb as, [90],

u : ψb → ψu−1b(xg−1b) ∀u ∈ U

This gives a matrix representation of U on Ψ as

u : Ψ→ P (u)Ψ, (P (u))ij = δi,u−1j (6.13)

with P (u) a matrix permutation representation as the more general version of the regular repres-

entation, Definition 2.1.11, the regular representation actually forming the smallest permutation
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representation of a group where there aren’t elements only acting trivially - it is common for a

general permutation representation to have more elements in the set being permuted than group

elements. The representation of U on the amplitude space is then given by

u : µ→

P (u) 0

0 P−1(u)

µ. (6.14)

P is reducible, being a permutation representation, and applying Theorem 3.1.18 there exists

a change of basis W such that,

Γ = ∪aΓ/ρa = ∪aΓa, WL2(Γ)W−1 = ⊕aL2(Γa), WΞ(k)W−1 = ⊕a ⊕san=1 Ξa(k) (6.15)

W

P (u) 0

0 P−1(u)

W−1 = ⊕a

ρTa (u) 0

0 ρ−1T
a (u)

⊗ Isa (6.16)

so that Γ splits into a number of independent sub-graphs, and the secular equation then factorises,

det(I− Ξ(k)) =
∏
a

det(I− Ξa(k))
sa

so that the spectra of Γ splits into a number independent sub-spectra, one for each unique, non-

equivalent irreducible representation ρa in P , each with eigenvalues of degeneracy sa. This forms

the symmetry decomposed basis, with the method to choose W found in [11].

As was mentioned in Section 3.1.1 in relation to the Sinai billiard, studying a symmetry

decomposed subspace is equivalent to constructing a system that is only a segment of the whole

system, and adding appropriate boundary conditions at the new edges. On quantum graphs, this

is the process of forming the quotient of a quantum graph, going from Γ to the quotient graph

Γ/(U, ρa) by removing the symmetries in U using information from an irreducible representation

ρa of U , a method introduced in [12, 129]. The most rigorous method of defining the quotient

graph is given in [11, 110]; a more intuitive method is discussed in [16, 90], which is the method

we will follow.

Let Γ be a graph symmetric under a unitary symmetry group U , then a minimal sub-graph

ΓU can be defined so that UΓU generates all of Γ by multiplication:

Definition 6.1.9. Let Γ be a quantum graph symmetric under the unitary symmetry group U .

Then the Fundamental Domain ΓU is the sub-graph of Γ defined by the vertex set VU and bond

set BU :

VU = min {v ∈ V | ∀w ∈ V ∃v′ ∈ VU , u ∈ U such that w = uv′}
BU = {b ∈ B | b = [v, v′], v, v′ ∈ VU}

+ min {b ∈ B | b = [v, w] : v ∈ VU , w ∈ Γv − VU and ∀b′ ∈ B ∃b′′ ∈ BU ,
u ∈ U b′ = ub′′}
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(a) Γ

1 4

(b) ΓU

Figure 6.1: Given the graph Γ in (a) is symmetric under the group U = Z3 generated by the
permutation u = (1, 2, 3)(4, 5, 6), the fundamental domain of U can be chosen as in (b).

Then for every point xb on a bond b outside of ΓU , there exists a bond b′ ∈ BU and a point

x′b′ and an element u ∈ U such that

b = u−1b′, ψb(xb) = ρT (u−1)ψb′(x
′
b′)

It is more common however to add dummy vertices to the centre of each of the bonds and

take the fundamental domain to have its boundary on the dummy vertices, as per Figure 6.2a, in

comparison to Figure 6.1. This prevents bonds existing in the graph of the fundamental domain

without being connected to a vertex.

The cut bonds come in pairs b1 = [v1, d1], b2 = [d2, v2] so that ∃u ∈ U such that d2 = ud1.

Then d2 is equated to d1 under multiplication by u, and they can be considered the same point,

merging the two cut bonds into two bonds linked at d2 ≡ d1, as per Figure 6.2b, so long as the

periodic boundary condition

d2 = ud1 ≡ d1, ψ[d2,v2] |d2= ρT (u−1)ψ[v1,d1] |d1

is taken at the vertex d1 ≡ d2. If ρa has dimension greater than one, this requires a multidimen-

sional function on the bonds, where if n = dim(ρa), the amplitude space increases to

µ→
(
µ1,1 . . . µ1,n µ|B|,1 . . . µ|B|,n µ1̄,1 . . . µ1̄,n µ ¯|B|,1 . . . µ ¯|B|,n

)T
(6.17)

while T and S act the same on each of the components of the multi-dimensional µb spinor,

T (k)→ T (k)⊗ In, S(k)→ S(k)⊗ In. (6.18)

The periodic boundary condition can then be considered as an expression of the vertex scattering

matrix,

−→µ i = σi
←−µ i =

 0 ρT (u−1)

ρ−T (u−1) 0

←−µ i
or, as the dummy vertex has only two bonds connected to it, the representation matrix can

instead be merged into the transmission matrix for the bond [v1, v2],

T ′(k)[v1,v2] = ρT (u)T (k)[v1,v2], T ′(k)[v2,v1] = ρ−T (u)T (k)[v2,v1]
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1 4

d1d2 = u2d1 d4 = u2d5 d3

(a) ΓU

1 4

d1 ≡ d2 d3 ≡ d4

(b) Fundamental domain with merged bonds

1 4

σ =
(
e2iπ/3 0

0 e−2iπ/3

)
σ =

(
e2iπ/3 0

0 e−2iπ/3

)
(c) Quotient Graph

Figure 6.2: Continuing the example in Figure 6.1, the fundamental domain ΓU is constructed
using the dummy vertices (a) and then the vertices merged (b) with appropriate vertex scattering
matrices taken from the boundary conditions to form the quotient graph (c) for U of the quantum
graph on Γ

which if ρ is of dimension one can be interpreted as the solution picking up an additional phase

while travelling on the bond; if ρ is of dimension two or more, it constitutes a mixing of the spinor

states while travelling on bond.

This then defines the quotient graph:

Definition 6.1.10. Let Γ be a quantum graph which is symmetric under a unitary group U with

no fixed points. Let P be the permutation representation of U on Γ and ρa ∈ P be an irreducible

representation of U with n = dim(ρa). Let ΓU be the fundamental domain of Γ under U with the

merged dummy vertices. Then the quotient graph Γ/(U, ρa) of Γ by ρa of U is given by ΓU with

the scattering and transmission matrices

S(k) = −(C1 |ΓU +ikC2 |ΓU )−1(C1 |ΓU −ikC2 |ΓU )

T (k)[i,j],[k,l] = δikδjle
i(k+A[i,j])L[i,j]

1 inner bond on ΓU

ρT (u) cut bond on ΓU wrt u ∈ U

6.1.3 Quantum Graphs, Quantum Chaos and Random Matrix Statist-

ics

We consider now quantum graphs in the context of studying the correspondence between the

statistics of their spectra and the statistics of random matrix ensembles. This will focus on

identifying when a quantum graph can be considered a chaotic quantum system, and identifying

specific expressions for the quantities N(k) and d(k) discussed in Chapter 4. In the process, it

will be seen that quantum graphs have some highly useful properties in the context of studying

quantum chaos, such as general approximations becoming exact, [67], and clear rules as to when
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a graph is sufficiently chaotic to show random matrix statistics in its spectra in the semi-classical

limit, [62, 159].

Historically, the correspondence of quantum graph energy levels and random matrix statistics

was first seen quantitatively by Kottos and Smilansky, [101, 102], by comparing systems with and

without magnetic potentials to the GUE and GOE ensembles and seeing numerical agreement in

the case that the bond lengths were incommensurate, that is when

6 ∃m ∈ Q|B| such that

|B|∑
i=1

miLi = 0 (6.19)

and the graph is sufficiently connected. For symmetric graphs, the incommensurate bond lengths

condition will be relaxed to requiring that the unique bond lengths are incommensurate.

A more formal approach to identifying chaotic quantum graphs requires the identification of a

classical system corresponding to the quantum graph. This is in contrast to most chaotic quantum

systems, where the classical system is already known as it was used to define the quantum system

through quantization, [18]. However, it is possible to identify a classical system which will indicate

if the quantum graph is chaotic. It will though, be probabilistic rather than deterministic - as

as the clearest classical equivalent is of a ball travelling along a wire in the graph and whenever

it reaches a vertex, scattering down one of the connected wires according to the Markov process,

[101]:

Definition 6.1.11. Let Γ be a metric graph with a quantum graph defined on it by the scattering

and transition matrices S, T (k). Then a Markov process can be defined on Γ for a particle on a

bond i at one time-step moving to the bond j at the next time-step by the transition matrix T ,

Tji = |S(k)ij |2 (6.20)

With this equivalent classical system identified, the requirement for the quantum graph on Γ

to show random matrix statistics in the semi-classical limit - represented on graphs as a sequence

of graphs with increasing number of bonds - is then related to the eigenvalues of T , [62, 159]:

Theorem 6.1.12. Let T be the transition matrix defining the Markov process on the quantum

graph Γ. Then T has one eigenvalue η1 such that η1 = 1. Then Γ demonstrates quantum chaos

with energy level statistics matching a random matrix ensemble if and only if

� |ηi| < 1 ∀i ∈ [2, |B|].

� For ∆Γ = maxi∈[2,|B|](1− |ηi|), then ∆Γ ∼ |B|−α in the limit |B| → ∞ where 0 ≤ α < 1/2.

It will not be possible to take the semi-classical limit of |B| → ∞ on the graphs considered

later as this would require a well-defined method of taking the limit of the number of bonds to

infinity, which isn’t practical here, instead it will have to be assumed that the graph is sufficiently

large to model the limit well. For the same reason, testing the asympote condition for ∆Γ in the

limit |B| → ∞ will not be possible. However, it will be possible to test the condition that only

one eigenvalue ηi lies on the unit circle, and all others lie within it, and this will be done for all

the graphs which are simulated. This will at least demonstrate that the studied graphs do not

fail at the first hurdle of determining whether they are chaotic or not - from there on, it will have
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to be hoped that satisfying the heuristic conditions found by Kottos and Smilansky is sufficient

to see good agreement with the random matrix prediction in the graph’s spectrum.

The system dependent random matrix quantities can then be calculated for the quantum

graphs. The counting function, [67],

N(k) =

∞∑
n=1

θ(k − kn), θ(k) =


0 k < 0

1/2 k = 0

1 k > 0

keeps track of the number of energy levels kn smaller than k. On quantum graphs, it can be

written in terms of the secular function ζ, [67],

N(k) = N0 +

∑
b∈B Lb

πd
k +

1

π
Im ln ζ(δ)− 1

π
Im ln ζ(k + iε) (6.21)

in the limit ε, δ → 0, where N0 is the value of N(0). It is usual to split this into a ‘smooth’ or

Weyl part and an ‘oscillating’ part,

N(k) = NWeyl(k) +Nosc(k) NWeyl(0) = N0 +
1

π
Im ln ζ(δ) (6.22)

NWeyl(k) =

∑
b∈B Lb

πd
k +NWeyl(0) Nosc(k) =

−1

π
Im ln ζ(k + iε). (6.23)

Further approximations of N can be taken by applying the periodic orbit approximation to

Nosc(k), as discussed in Appendix D. This method of approximating N(E) using a sum over

periodic orbits can be applied to any generic chaotic quantum system in its semi-classical regime,

however as is noted in the appendix, it becomes exact in the case of a quantum graph, [67].

With the approximation of N(k), the unfolding procedure to normalise the eigenvalues from

Chapter 4 - which appears as the substitution k → N(k) on the quantum graph - can be approx-

imated as, [67],

k → N(k)→ NWeyl(k) =

∑
b∈B Lb

πd
k +NWeyl(0)

assuming that everything except the smooth part is highly oscillatory and averages out. In the

case of calculating properties such as the level spacing distribution, where only the relative dis-

tance between eigenvalues matters, it will also be possible to drop the translation term NWeyl(0)

and use the simplified unfolding

k →
∑
b∈B Lb

πd
.

The density of states is then the derivative of the counting function, [67],

d(k) =
dN(k)

dk
dWeyl(k) =

∑
b∈B Lb

πd

= dWeyl(k) + dosc(k) dosc(k) =
−1

π

d

dk
Im ln ζ(k + iε) (6.24)
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which means the mean density of states is δ0 = L/πd for L =
∑
b Lb. This depends only on

the total length of the graph and the degeneracy of the eigenvalues, agreeing with the Wigner

semi-circle law in the infinite spectrum limit.

There is of course the question of what to average over to form an ensemble. For a large

graph with incommensurate bond lengths, averaging over the bulk of the spectrum for a single

graph is equivalent to averaging over an ensemble of graphs and their scattering matrices S(k),

[67]. This will be sufficient for calculating the spacing distributions, but calculating the density of

states requires information about a specific section of the spectra - in this case, averaging over an

ensemble of S(k) is necessary. To do this, a single graph is defined with fixed bond connectivity,

length and magnetic potential, then the unique vertex scattering matrices will be drawn from the

unitary matrices according to the Haar measure, then the rest of the vertex scattering matrices

are derived by the symmetry rules for the vertex scattering matrices. The desired ensemble

average then is found by averaging over the value calculated for a sequence of Haar distributed

boundary conditions.

6.2 Minimal Examples of the Wigner-Dyson Ensembles on

Quantum Graphs

6.2.1 Constructing G = U ∪ αU Symmetric Graphs

The natural action of a symmetry group as a vertex permutation means that it will be very easy

to find a graph Γ which is symmetric under a group G. Not only that, but by building the right

graph, it is possible to guarantee every possible sub-spectra of the system appears. Given also

that we have seen that large, well connected quantum graphs display random matrix statistics,

then they are the perfect model for looking for example systems for generic symmetry groups G.

A method for building quantum graphs with symmetry groups of the form G = U × Z2 has

been given in [90, 92]. As discussed above, this is a very small subset of the full range of possible

Z2-graded groups G, however the methodology can be easily updated to suit the definition of

symmetry under a Z2-graded group given by Definition 6.1.8.

Abstract group theory often applies the construction of the Cayley graph Γ(G,S) for a given

group G and generating set S:

Definition 6.2.1. Let G be a finite group and S a generating set on G. The Cayley graph Γ(G,S)

is defined by taking the elements of the group as the vertex set, V = G, and defining the bond

set so that for each s ∈ S, there is a bond of ‘colour’ s between the vertices v1, v2 if and only if

v2 = v1s,

v1 →s v2 ⇐⇒ v2 = v1s

The Cayley graph is used to display the multiplicative structure of G, and also automatically

provides a graph that is symmetric under left multiplication by G.

Theorem 6.2.2. Let G be a finite group, S a generating set of it and Γ(G,S) its Cayley graph.

Define the action of G on Γ(G,S) as the permutation of the vertices given by matrix multiplication
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on the left,

g : g′ → gg′

Then Γ(G,S) is symmetric under G.

Proof. As each vertex is labelled by a group element, the action ofG on Γ is the action of left group

multiplication within the group. The symmetry requirement is the same as the multiplication

cancellation of factors rule,

i→s j ⇐⇒ j = is⇐⇒ g(j = is)⇐⇒ gj = gis⇐⇒ gi→s gj

The methodology in [92] is that given a group U , then the Cayley graph Γ(U, S) of U can be

turned into a quantum graph by taking Kirchhoff conditions at each vertex, and given lengths

for the bonds [e, s] ∀s ∈ S, then the quantum graph is symmetric under G = U × Z2. Their

construction relies on the fact that the Cayley graph provides a base graph that fulfils the vertex

permutation rule, using this graph to define the quantum graph with Kirchoff boundary condi-

tions. With this, the only additional requirement to meet their symmetry requirements is that if

two bonds can be mapped to each other by the group action, they must have the same length.

The graph can be constructed to have this property, by taking a subset of bonds which are in-

equivalent under the group action - here this would be the bonds [e, s] for s ∈ S the generating

set, as the group action cannot map bonds of one ‘colour’ s to bonds of a different ‘colour’, s′ -

and define the incommensurate lengths L[e,s] before using the symmetry rules to construct the

rest of the bond lengths, rather than as a test for symmetry. This will produce a quantum graph

symmetric under G = U × Z2.

To find a graph symmetric under a general Z2 × Z2-graded group G, as per Definition 6.1.8,

all that is needed is to expand the Cayley graph to be a Cayley graph of G not U , allowing the

permutation part of the generalised time-reversal symmetries to exist on the elements αu; and

to include the bond potentials and scattering matrices in the things that are generated for the

unique bonds and vertices and then extended to the rest of the graph through the symmetry

relations. This allows the following quantum graph to be constructed as a specific example of a

graph symmetric under a Z2 × Z2-graded group:

Theorem 6.2.3. Let G be a Z2-graded group G = U ∪ αU . Let S be a generating of G.

The quantum graph defined by taking Γ(G,S), choosing the quantities L[e,s], A[e,s] for each

s ∈ S, and taking σ(e) ∈ U(de), before constructing the rest of the quantities on the graph by

using the relations

L[gi,gj] = L[i,j]

A[gi,gj] =

A[i,j] g ∈ U

−A[i,j] g ∈ αU
(σgi)[gi,gj],[gk,gi] =

(σi)[i,j],[k,i] g ∈ U

(σ(i)T )[i,j],[k,i] g ∈ αU

is symmetric under G.
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Γ(U, SU ) αΓ(U, SU )

Figure 6.3: The interlinked two part structure of a quantum graph Γ(G,SU ∪ {α}) generated by
the union of the generating set SU of the index two normal subgroup U , and α, the last remaining
generator of G.

There is then the choice of how to choose the generating set S. The obvious answer is

S = SU ∪ {α}, where SU is the minimal generating set of U . This, in all cases except G = Z2n,

forms the minimal generating set for G, as α provides the addition to SU needed to take the set

from generating U to generating G. Having the minimum generating set for G 6= Z2n is desirable

as it minimises the number of bonds included in the graph, as increasing the number of bonds

increases the computation time for the real secular equation, and thus all derived quantities and

statistics; in the case of G = Z2n, the minimal generating set of G is {α} which is too small to

generate enough bonds on the graph with the quotient graph phases to get good numerics, so it

is still better to work with G = SU ∪ {α} in this case. The other advantage of this choice is that

Γ(G,SU ∪{α}) picks up a two part structure - it is formed by two interlinked copies of Γ(U, SU ).

One of these can be thought to be the ‘original’ unitary subsystem, with its image under the

action of αU bolted on to preserve the symmetry under G, as seen in Figure 6.3.

This two-part structure will create a universal graph structure once quotients have been taken,

and will allow for a lot of simplifications in calculating periodic orbits on the graphs.

6.2.2 Identifying and Isolating Sub-spectra

With the method given in Theorem 6.2.3 to take a group G = U ∪ αU and find a quantum

graph symmetric under it, we have fulfilled the first requirement in finding a minimal system

for displaying an energy level sub-spectrum {Ei}a generated by the irreducible representation

ρa. The next requirement is to show that if U acts on Γ(G,SU ∪ {α}) as P , then ρa is part

of the decomposition of P . By using the Cayley graph, this is guaranteed, as the permutation

representation of U on Γ(G,SU ∪ {α}) contains the regular representation which includes one

copy of every irreducible representation. This is derived from the fact that a group acting on its

own Cayley graph does so by its regular representation:

Lemma 6.2.4. Let U be a group with Cayley graph Γ(U, S). Then the permutation representation

P of U acting on Γ(U, S) is given by the regular representation.

Proof. The definition of P in Equation 6.13 matches the Definition 2.1.11 of the regular repres-

entation when the Cayley graph is chosen.

U then acts separately on each copy of its Cayley graph in the full Cayley graph of G as its

regular representation, as well as permuting the connecting bonds:
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e α...
...

ρ(u−1
1 ) ρ(αu−1
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ρ(u−1
n ) ρ(αu−1
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(a) When α2 = e

e α...
...

ρ(u−1
1 ) ρ(αu−1

1 α−1)

ρ(u−1
n ) ρ(αu−1

n α−1)

ρ(α−2)

(b) When α2 6= e

Figure 6.4: The form of the quotient graph Γ(G,SU ∪ {α})/(U, ρ) for Z2-graded G = U ∪ αU
where U has n generators u1, . . . un and ρ is an irreducible representation of U .

Lemma 6.2.5. The permutation representation of U on the Cayley graph Γ(G,SU∪{α}) includes

a direct sum of two copies of the regular representation RU of U ,

P = RU |Γ(U,SU ) ⊕RU |αΓ(U,SU ) ⊕R′

Proof. The Cayley graph Γ(G,S) when constructed with the generating set S = SU ∪{α} is given

by two interconnected copies of Γ(U, SU ), Γ(G,SU ∪ {α}) = Γ(U, SU ) ∪ αΓ(U, SU ) ∪ Γ′ where Γ′

forms the interlinking bonds. U acts on each sub-graph separately, and its action on each copy

of Γ(U, SU ) is its regular representation, RU , so if R′ is the permutation on Γ′ under U ,

P = RU |Γ(U,SU ) ⊕RU |αΓ(U,SU ) ⊕R′

Theorem 6.2.6. Let G = U ∪ αU be a Z2-graded group, and Γ(G,SU ∪ {α}) be the quantum

graph generated by Theorem 6.2.3. Let U have irreducible representations {ρi}.
Then Γ(G,S) has an energy level spectrum which is composed of |{ρi}| independent sub-spectra

which contains a copy of the sub-spectra generated by ρa for every ρa ∈ {ρi}.

Proof. Follows directly from Lemma 6.2.5 that the action of U on Γ(G,SU ∪ {α}) includes the

regular representation of U ; Theorem 2.1.12, that the regular representation contains a copy

of every irreducible representation of U , so that the action of U on Γ(G,SU ∪ {α}) includes a

copy of every irreducible representation of U ; and Lemma 6.2.5 to describe the splitting of the

spectrum into sub-spectra with one sub-spectrum per unique irreducible representation of U in

the system.

This means that for every theoretically identified sub-spectrum identified for a system, the

quantum graph Γ(G,S) includes it. This is very powerful when searching for minimal systems

for the Wigner-Dyson classes, as it guarantees any identified pair of Z2-graded group G and

irreducible representation ρ of U can be found in a quantum graph.

To isolate the sub-spectra they generate, it is necessary to construct the quotient graph by U .

When quotienting out U , the set VU can always be taken as VU = {e, α}, as every other element

of G can be reached by multiplication of these two elements by members of SU - this because

G is generated by SU ∪ {α}. Furthermore, the bond [e, ui] always equates to the bond [u−1
i , e]
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Figure 6.5: Substituting a vertex for the sub-graph given by AΓ =
[[0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 0, 1], [0, 1, 1, 0]].

∀ui ∈ SU , and similarly, [α, αui] ≡ [αu−1
i , α] ∀ui ∈ SU and [α, α2] ≡ [α−1, e]. This generates the

same universal form of quotient graph of two linked vertices with a number of self-loops coming

off them for every possible Γ(G,SU ∪ {α}), the number of loops being decided by the number of

generators of U in SU , as can be seen in Figure 6.4. Also, the phases on the cut bonds are always

the same - ρ(u−1
i ), ρ(αu−1

i α−1) ∀ui ∈ SU and ρ(α2) for the respective bonds.

This means that if Γ(G,SU ∪ {α})/(U, ρ) is to be constructed to test the spectral statistics

generated by the pair G, ρ, it isn’t actually necessary to construct Γ(G,SU ∪ {α}) in the first

place, if ρ(u−1
i ), ρ(αu−1

i α−1) ∀ui ∈ SU and ρ(α2) are known, the values can just be substituted

into Figure 6.4, and the correct quotient graph will be found.

There was however, the requirement of Kottos and Smilansky for seeing random matrix stat-

istics in the spectrum that the graphs considered are simple and contain sufficiently many bonds.

Both of these requirements are broken in the process of taking the quotient of the graph, however

there is a method to substitute each vertex for a small sub-graph, improving the complexity,

[92]. The process is demonstrated in Figure 6.5 for a single vertex with two incoming and two

outgoing bonds. The single vertex is replaced with four interconnected vertices, described by the

adjacency matrix AΓ = [[0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 0, 1], [0, 1, 1, 0]]. Each bond connected to the

original vertex is connected to one of the four new vertices. Each one should be connected to

a different vertex in the sub-graph, and if an incoming bond of type s connects to the vertex i

and the corresponding outgoing bond of type s connects to j, neither [i, j] or [j, i] should be in-

cluded in the sub-graph. This is a heuristically found rule based on experimenting with different

graph structures, which is part of the requirement that the sub-graph be neither too spare or too

complete to get good random matrix statistics, [91]. Furthermore, once the connecting bonds

between different sub-graphs are added, no vertex should have degree less than three. For any

given construction, various sub-graphs must be trialled, but it was found here that an edge dens-

ity of approximately 60-75% was needed. Also, each of the original bonds should be ‘doubled’ so

that two different copies are taken to improve the connectivity between the different sub-graphs.

There are other advantages to using the vertex sub-graphs. Firstly, taking the quotient graph

introduces self-loops into the graph, when simple graphs are needed. By adding the vertex sub-

graphs, the loops now start and finish at different vertices and the graph returns to being simple.

Secondly, the Cayley graph relies on the directed bonds to ensure its symmetry class, however

when a Cayley graph is turned into a quantum graph, the pseudo-inclusion of the bond-reversals

by µ̂b ↔ µb can generate extra symmetries on the quantum graph. The vertex sub-graphs can

then also be used to preserve the original symmetry group, firstly by having incoming bonds arrive
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at one vertex and leave at a separate vertex to introduce a form of directionality on the graph,

and also by being chosen to break any symmetries, [92]. It is normally sufficient to randomly

choose the vertex subgraph to be used.

It should be noted that every vertex must be replaced with exactly the same vertex sub-

graph with the bonds entering and exiting in the same way each time to preserve the large scale

symmetries of the graph.

6.2.3 Minimal Examples for the Wigner-Dyson Ensembles

The motivation for introducing Z2-graded symmetric quantum graphs was to be able to define

the smallest possible systems with each of the Wigner-Dyson ensembles describing their spectral

statistics. The process for this required identifying pairs G, ρ of Z2-graded groups and irreducible

representations ρ of U / G such that ρ generated a corepresentation R of Wigner-Dyson type I,

II or III; identifying a quantum graph generated by Γ(G,SU ∪ {α}) and taking the quotient by

ρ would then give either GOE, GUE or GSE statistics based on the class of R. This method is

now ready to test whether the groups and representations given by Theorem 5.2.2 for the classes

A, AI and AII give the correct random matrix statistics.

The groups and representations identified in Theorem 5.2.2 are given in Table 6.1 - not using

the examples that rely on the trivial representation, as the numerics for these are always poor

when compared to the random matrix prediction. This is probably due to removing a level of

complexity in the graph when the phases on the cut bonds are trivial, an example of these poor

numerics is given in Figure 6.6. Implementing the groups from Table 6.1 as quantum graphs

Γ(G,SU ∪ {α}) under the algorithm given in Theorem 6.2.3, they form the graphs in Figure 6.7.

To isolate the desired subspectra and find the graph which will give the desired random matrix

statistics, it is then required to take the quotients Γ(G,SU ∪{α})/(U, ρ). This can be done by the

procedure described in Section 6.1.2, or else the universal form of the quotient graph from Figure

6.4 can be used directly. This gives the graph in Figure 6.8, which is also presented with its

expansion by a vertex subgraph. The required values of the phases p1aρ(u−1), p1b = ρ(αu−1α−1)

and p2b = ρ(α−2) needed on the cut-and-merged bonds are given in Table 6.2 for each ensemble.

Class G U Irreducible Representation

A Z6 Z3 Complex

AI D6 Z3 Complex

AII Z4 Z2 Sign

Table 6.1: The smallest Z2-graded groups G such that there exists an irreducible representation
of U generating the appropriate Altland-Zirnbauer class of corepresentation. Simpler examples of
pairs G, ρ which give A and AI statistics exist, however they take ρ as the trivial representation,
and simulations using the trivial representation always give poor numerics when compared to the
RMT prediction, so more complicated exmples are taken here.

117



0.0 0.5 1.0 1.5 2.0 2.5

s

0.0

0.2

0.4

0.6

0.8

1.0

P
(s

)

Spacing Distribution Comparison

Class AI

Complex

Trivial

Figure 6.6: Comparing the approximation of the GOE spacing distribution for the quotient graph Γ(D6, SU ∪
α)/(Z3, ρ) for the trivial and complex representations of Z3. The trivial representation shows more deviation
from the true values, and this behaviour carries over to other graphs, so we avoid taking the trivial representation
throughout.
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(a) Γ(Z6, {u, α}).
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uαu

(b) Γ(Z4, {u, α}).
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(c) Γ(D6, {u, α}).

Figure 6.7: The quantum graphs generated by the algorithm of Theorem 6.2.3 as the minimal graphs with a
GUE sub-spectra (a), GSE sub-spectra (b) and GOE sub-spectra (c). In each case, the solid bonds are bonds
of type u; the dashed bonds are bonds of type α.
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(a) Unexpanded quotient graph.
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(c) The expanded quotient graph. Each pair of bonds ia, ib have the relation Lia = Lib, Aia = −Aib. The phases pia,b
are chosen according to the type of quotient graph.

Figure 6.8: Deriving the example graphs for the different Wigner-Dyson classes. For the phases p1aρ(u−1), p1b =
ρ(αu−1α−1) and p2b = ρ(α−2) required to get each Wigner-Dyson class of statistics, see Table 6.2.
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Class p1a = ρ(u−1) p1b = ρ(αu−1α−1) p2b = ρ(α−2)

A exp(2iπ/3) exp(2iπ/3) 1

AI exp(2iπ/3) exp(−2iπ/3) 1

AII −1 −1 −1

Table 6.2: The values of ρ(u−1), ρ(αu−1α−1) and ρ(α−2) to take on Figure 6.4 and Figure 6.8
to give each of the Wigner-Dyson ensembles as the spectral statistics.

All that is now required is to define the values required to run the numerical simulations. For

each graph, the unique bond lengths and potentials are drawn uniformly from the range [2, 5]

which almost certainly guarantees that they are incommensurate. The unique vertex scattering

matrix σ(e) is then drawn form the unitary ensemble with Haar measure. Symmetry is then used

to find the values on the rest of the graph, according to Theorem 6.1.8.

This brings us to an outline of the general numerical routine used to identify energy levels

or eigenvalues of the system. The general problem will be to identify all energy levels occurring

in an unfolded range k ∈ (kL, kH); this corresponds to finding all the roots of ζ(k) in this range

when d = 1 or all the minima of |ζ(k)|1/2 when d = 2. The process is fairly simple in each

case. First, when d = 1, then by calculating ζ(ki) for ki = kL + iδk, a series of equally spaced

points in the range k ∈ (kL, kH), a grid search can be done for the roots - if sign(ζ(ki)) =

−sign(ζ(ki+1)), then there is a root in the range (ki, ki+1). This bounds each of the roots, and

then a root finding program can be run on each root individually to locate it more precisely.

When d = 2, the main difference is switching to tracking the derivative of |ζ(k)|1/2. Using the

points ki = kL + iδk to do a grid search for the minima, there is a minima in the range (ki, ki+1)

if sign(d|ζ(ki)|1/2/dk) − sign(d|ζ(ki+1)|1/2/dk) = −2. This bounds the minima, and allows a

bounded optimisation to be done to locate each individual minima; choosing the bounded version

to make sure the local minima and not a global minima is found.

We note that when the constant average level density, δ0 holds, and the unfolding is taken as

k → k/δ0, it is expected to find (kH − kL)/δ0 eigenvalues in the range k ∈ (kL, kH). In the more

general case when the unfolding k → f(k) = λ has to be used, then N eigenvalues are predicted

to lie in a range k ∈ [f−1(λ0), f−1(λ0 + N)], where the unfolded spectrum having mean level

spacing 1 has been used to predict N eigenvalues in the range λ ∈ (λ0, λ0 + N) and then the

inverse unfolding procedure has been taken. These methods will allow us to define the necessary

search ranges to find specific number of eigenvalues in our simulations.

We also note that there is an algorithm used in [144] that uses the rotation of the eigen-angles

to find the roots that is faster than straight calculation of the real secular equation method

described above, however given the number of eigenvalues computed here, the method used was

sufficiently fast for our calculations.

In terms of the measures we are approximating, simulating the level spacing distribution can

then be done by calculating 10,000 eigenvalues on a single graph by searching for all eigenvalues

in the range k ∈ (k0, k0 + 10, 000δ0), unfolding them by using k → k/δ0 = λ and then taking the

distance between consecutive levels to form their distribution. As remarked earlier, it is sufficient

here to work on a single realisation of the graph rather than an ensemble of graphs as long s

sufficient eigenvalues are taken.

120



Class |η1| |η2|
A 1.00 0.917

AI 1.00 0.874

AII 0.9999 0.925

Table 6.3: Checking the values of the eigenvalues of Tij = |S(k)ji|2 according to Theorem 6.1.11.
Assuming the eigenvalues are ordered so that |η1| ≥ |η2| ≥ · · · ≥ |ηN |, then the first requirement
for chaos is that |η1| = 1 and |η2| < 1. In each case the condition is satisfied. All numbers
rounded to three significant figures and come from a single initialisation.

If the smallest eigenvalue distribution is being calculated, then an ensemble of similar graphs

must be created. This is done by defining a number of graphs according to Definition 6.2.3 with

the same Cayley graph, bond lengths and potentials, but for each copy of the quantum graph,

the unique vertex scattering matrix σ(e) is drawn repeatedly from U(de) by the Haar measure to

form an ensemble of graphs. In this case, 10,000 graphs were created in this manner. The real

secular equation is then calculated for increasing k until a root is located for each graph, before

its value is unfolded and being added to the distribution. The more accurate unfolding procedure

is needed for this method, taking k → k/δ0 + Im ln(ζ(δ))/π = λ, δ ≈ 0, to remove the translation

of the energy spectrum by Nosc(k), which will vary for each realisation of the graph. This also

allows us to identify the start of the search range for the eigenvalue as k = −(Im ln ζ(δ))/δ0π, as

the value which unfolds to λ = 0.

We now come to the results of our simulations.

Firstly, the first condition for chaos required from Theorem 6.1.11 can be checked, with the

results given in Table 6.3 showing compliance with the requirement that the matrix Tij = |S(k)ji|2

has one eigenvalue of size 1, and all others lie within the unit circle. This confirms that the graphs

are mixing, and do not necessarily fail to show chaos.

The results of the numerical simulations in terms of the level spacing distribution and smallest

eigenvalue distribution are then presented in Figures 6.9-6.14.

The spacing distributions for the classes A, AI and AII are given in Figures 6.9, 6.11 and 6.13

respectively, with the probability distributions, and integrated probability distributions compared

to the theoretical predictions, and with the errors plotted to show that the absolute error is small

- of the order 10−2 for the probability distributions of the classes A and AI, while the class AII

graph has error of order 10−1. The error in the integrated distribution is in each case of the order

10−2.

The smallest eigenvalue distributions for the classes A, AI and AII are given in Figures 6.10,

6.12 and 6.14 respectively, with the probability distributions, and integrated probability distribu-

tions compared to the theoretical predictions, and with the errors also given. The relative error

in the probability distribution is now large, of the order 101, however as it is highly oscillatory,

the error in the integrated distribution is significantly smaller. A large factor in this is probably

the trade off between choosing to do a large number of runs on a comaparetively small graph -

the graphs here feature 38 bonds, and when graphs with 136 bonds were tested for the class AI

Dirac graph using 10,000 runs, as seen in Figure 7.18, the error was significantly smaller despite

using fewer runs - 1/10th of the runs to be accurate. This holds true for the corresponding graphs
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for the classes A and AII as well. The choice to use a small number of bonds but large ensemble

was made here as the spacing distributions were also being calculated on the graphs, where the

number of bonds has a large effect on the computational time required and it was chosen to

prioritise good all-around statistics, particularly when it was only the probability distribution

Pmin(x) that was seeing large oscillatory errors.

Overall, in each case it can be seen that the graphs correspond well to their respective random

matrix statistics, supporting the BGS-conjecture on quantum graphs.
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Figure 6.9: Spacing distribution results for Γ(Z6, {u, α})/(Z3, ρ) for the complex representation, demonstrating
agreement with the predicted class A GUE ensemble.
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Figure 6.10: Smallest eigenvalue distribution results for Γ(Z6, {u, α})/(Z3, ρ) for the complex representation,
demonstrating agreement with the predicted class A GUE ensemble.
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Figure 6.11: Spacing distribution results for Γ(D6, {u, α})/(Z3, ρ) for the complex representation, demonstrating
agreement with the predicted class AI GOE ensemble.
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Figure 6.12: Smallest eigenvalue distribution results for Γ(D6, {u, α})/(Z3, ρ) for the complex representation,
demonstrating agreement with the predicted class AI GOE ensemble.
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Figure 6.13: Spacing distribution results for Γ(Z4, {u, α})/(Z2, ρ) for the sign representation, demonstrating
agreement with the predicted class AII GSE ensemble.
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Figure 6.14: Smallest eigenvalue distribution results for Γ(Z4, {u, α})/(Z2, ρ) for the sign representation, demon-
strating agreement with the predicted class AII GSE ensemble.
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7. Dirac Graphs

The intent set out at the start of this thesis was to demonstrate that there was a single type

of system with fixed T̂ , Ĉ symmetries, which under the addition of further unitary commuting

symmetries, could be used to construct an example system for each type of random matrix

statistics from the Altland-Zirnbauer classification through the formation of sub-spectra in the

energy level spectrum. Theorem 5.2.2 has already identified for each ensemble a graded symmetry

group G and a representation ρ of U generating the subspace which will show these statistics;

what remains is to show that there is a type of system that can be constructed to be symmetric

under G and include this subspace. We will actually go further, and demonstrate that these

systems can be constructed to be symmetric under every possible symmetry group G described

by Altland and Zirnbauer, and contain all of the possible subspaces and sub-spectra for the pair

G, U.

Chapter 6 already covered constructing systems for the classes A, AI and AII by applying

the Cayley graph geometry to the Schrödinger quntum graph. However, as the potential-less

Schrödinger equation does not permit negative solutions, it is not a suitable system for any of the

ensembles which involve a form of charge-conjugation or chiral symmetry - the classes AIII, BDI,

CII, C, D, CI and DIII. However if a variant of the quantum graph which replaced the solutions of

the Schrödinger equation on the bonds with the solutions of some quantum equation with charge-

conjugation symmetry could be taken, then it would be possible to describe charge-conjugation

and chiral symmetric graphs. This would allow the algorithms of Chapter 6 to be supplanted on

to the the new type of graph, in particular using the Cayley graph geometry to define a system

symmetric under a symmetry group G with all of the associated sub-spectra appearing in the

energy level spectrum, and being able to be isolated through the quotient graph procedure.

There are several known methods of constructing these charge-conjugation symmetric

quantum graphs, [77], though two are of particular interest - the Andreev graph, and the Dirac

graph.

First, the Andreev graph, [144], uses the Bogolubov-de Gennes Hamiltonian from Equation

C.10,

Ĥ =

ĥ+ V̂ ∆

−∆∗ −ĥT − V̂ T

, ψ(x) =


u↑(x)

u↓(x)

v↑(x)

v↓(x)


as an alternative to the Schrödinger equation to define the functions on the bonds. The particles

and holes travel along normal-conducting quantum wires forming the graph bonds, hitting su-
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perconductor boundaries at the vertices and experiencing Andreev reflection, [144], converting

particles into holes that also pick up a phase factor based on an order parameter of the super-

conductor. The Andreev graphs have already seen use in building systems with each of the ten

Altland-Zirnbauer ensembles, by drawing the exterior vertex scattering matrices of a star graph

from the desired Altand-Zirnbauer ensemble, [64, 144], however they provide a poor fit for gener-

alising the Cayley graph algorithm discussed above due to the action of a group U on a solution

being given by the representation

ρ→

ρ 0

0 ρ∗


on the particle-hole space, [24]. The complex conjugate on the action on the hole space means

that the quotient can’t be used to control the killing of the particle-hole symmetry in the same

way it killed the time-reversal symmetries on the Schrödinger quantum graph when quotients are

taken.

Thus, we turn to the Dirac graph defined by Bulla and Trenkler, [31], by putting the one

dimensional Dirac operator onto the graph. These graphs behave much more similarly to the

Schrödinger quantum graphs and will be able to be transplanted almost directly into the al-

gorithms for defining symmetric quantum graphs and their quotients lifted from Chapter 6 to

give methods for defining symmetric Dirac graphs and their quotients.

Therefore we will discuss the definition of a Dirac graph in Section 7.1. We will then introduce

the notion of time-reversal symmetry on Dirac graphs as studied by [27, 78] and add new defin-

itions of charge-conjugation and chiral symmetry on Dirac graphs in Section 7.2.1. From here,

the general definition of a symmetric Dirac graph can now be given in Section 7.2.2. Finally, in

Section 7.3.1 we extend the algorithm from Theorem 6.2.3 to take a Z2 × Z2-graded symmetry

group G and derive a compliant Dirac graph, applying it to the examples given in Theorem 5.2.2

as the minimal examples for each of the Altland-Zirnbauer ensembles. The results will be given

in Section 7.3.2, demonstrating the expected random matrix agreement and completing the aims

of this work.

7.1 The Dirac Graph

7.1.1 The Dirac Equation on the Line

The Dirac equation was introduced by Dirac as a model for relativistic electrons, with its standard

presentation being a four-dimensional equation over three dimensional space, [161]:

Definition 7.1.1. Let H = L2(R3)4 be a Hilbert space, then the Hamiltonian describing a charge

e particle in the external electromagnetic field (φ,A) is

Ĥ(e) = cα ·
(
p− e

c
A(t,x)

)
+ βmc2 + eφ(t,x) (7.1)
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where α = (α1, α2, α3), and αi, β define a Dirac Algebra,

αi, β ∈ C4×4, α2
i = β2 = I,

[αi, αj ] = 2δijI.

[αi, β] = 0.
(7.2)

The standard representation of α, β is given by taking the Pauli matrices,

σ1 =

0 1

1 0

, σ2 =

0 −i
i 0

, σ3 =

1 0

0 −1


with αi and β then defined as

αi =

 0 σi

σi 0

, β =

I2 0

0 −I2

. (7.3)

The time-dependent Dirac equation is then given by

Ĥ(e)ψ(e; t,x) = i~
∂

∂t
ψ(e; t,x) (7.4)

while the time-independent Dirac equation is

Ĥ(e)ψ(e, E; x) = Eψ(e, E; x) (7.5)

The solutions ψ include e inside the brackets as though it is not a free variable for ψ, it does

affect the form of ψ by being a variable for Ĥ(e), so it will be useful to locate e in ψ as a variable

for when comparisons between solutions ψ(e), ψ(e′) with different charges are made. This is the

same reason that E appears as a variable for the time-independent equation, comparisons will be

made between eigen-solutions for different values of E.

There are some simplifications which can be made to Equation 7.1. Firstly, for our purposes,

it can be assumed that φ = 0, ~ = c = 1 and that A(t,x) = A is a constant when working on a

graph. Secondly, defining the Dirac equation on a graph will require its restriction to one spacial

dimension variable. This can be taken by considering only one of the α1, α2 or α3 components

- here taking α2 component. In the one-dimensional case, it is also possible to satisfy the Dirac

algebra requirement with 2 × 2 matrices found by taking a transform of α2 and β into a block

diagonal form, however, we choose to stick with the standard four-dimensional α2 and β matrices,

to be able to use the standard charge conjugation operator for the Dirac equation.

With these modifications, the Dirac equation then becomes, [27],

Ĥ(e) = α2

(
−i ∂
∂x
− eA

)
+ βm (7.6)
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which in expanded form is

Ĥ(e) =


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0


∂

∂x
+


m 0 0 eiA

0 m −eiA 0

0 eiA −m 0

−eiA 0 0 −m

.

The time-independent Dirac equation then takes the form
w′

x′

y′

z′

 =


eiA 0 0 E +m

0 eiA −E −m 0

0 E −m eiA 0

−E +m 0 0 eiA




w

x

y

z

,

which can be solved as a linear ordinary partial differential equation, having the plane-wave

positive energy solutions, [27],

ψ(e, E > 0;x) = eieAx

µα


1

0

0

iγ(k)

e
ikx + µβ


0

1

−iγ(k)

0

e
ikx

+µ̂α


1

0

0

−iγ(k)

e
−ikx + µ̂β


0

1

iγ(k)

0

e
−ikx



(7.7)

with,

k =
√
E2 −m2, γ(k) =

√
k2 +m2 −m

k
=
|E| −m√
E2 −m2

.

At this point the labelling the amplitudes µα, µβ , µ̂α, µ̂β of the component exponential solutions

may seem arbitrary, but there will be useful structure and physical interpretation possible once

the operation of particle-hole inversion is discussed.

Unlike the Schrödinger equation where negative energy solutions require a potential, negative

energy solutions E < 0 are also now consistent with the definition of the potential-less Dirac
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equation in Equation 7.6, and take the form,

ψ(e, E < 0;x) = eieAx

µα

iγ(k)

0

0

1

e
ikx + µβ


0

−iγ(k)

1

0

e
ikx

+µ̂α


−iγ(k)

0

0

1

e
−ikx + µ̂β


0

iγ(k)

1

0

e
−ikx

 .

(7.8)

In the case m = 0 for massless particles, these equations can be combined and the solution for

any energy is given by

ψ(e, E 6= 0;x) = eieAx

sgn(E)µα


1

0

0

i

e
iEx + µβ


0

1

−i
0

e
iEx

+µ̂α


1

0

0

−i

e
−iEx + sgn(E)µ̂β


0

1

i

0

e
−iEx

 eiπ(1−θ(E))/2

= eieAx

µα(e, E)


1

0

0

i

e
iEx + µβ(e, E)


0

1

−i
0

e
iEx

+µ̂α(e, E)


1

0

0

−i

e
−iEx + µ̂β(e, E)


0

1

i

0

e
−iEx



ψ(e, E = 0;x) = eieAx


µα

µβ

µ̂α

µ̂β

,

where the dependence of the amplitudes µα, µβ , µ̂α and µ̂β on e, E is now explicit. It will be

assumed in calculations later that m = 0, which is allowable, as a non-negative mass would only

cause a translation of the energy level statistics along the real line. This would mean that by the
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definition of k, k = |E| and γ(k) = 1, however, if calculating the m = 0 solution directly, it would

be found that the correct substitution is k → E. In the following, it will be easiest to work with

the generic k, and only take the limit m→ 0, with the replacement k = E at the end.

Negative energy solutions for a particle make no physical sense, so instead anti-particles are

constructed - particles with all the same physical properties as the original, except for their

reversed charge. For electrons e−, this defines the positron e+ with charge −e, having taken e as

negative. They have solutions to the Dirac equation given by,

ψ(−e, E > 0;x) = e−ieAx

µ
′
α


1

0

0

iγ(k)

e
ikx + µ′β


0

1

−iγ(k)

0

e
ikx

+µ̂′α


1

0

0

−iγ(k)

e
−ikx + µ̂′β


0

1

iγ(k)

0

e
−ikx



(7.9)

which are related to the negative energy electron solutions by the charge conjugation operator Ĉ,
[161],

Ĉ = iβα2K =


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

K, ĈĤ(e) = −Ĥ(−e)Ĉ, ψ(e,−E;x) = Ĉψ(−e, E;x).

(7.10)

A negative energy −E < 0 solution for a charge e is then considered to be a charge-conjugated

positive energy solution for the anti-particle with charge −e. The eigenbasis of the system can

then be considered not to consist of electron states of both positive and negative energy, but

to consist of states describing positive energy electrons, and states describing charge-conjugated

positive energy positrons, so the energy in each eigenstate is positive,

{ψ(e, E > 0)} ∪ {ψ(e,−E < 0)} −→ {ψ(e, E > 0)} ∪
{
Ĉψ(−e, E > 0)

}
,

keeping the system consistent with the physical interpretation where E > 0 must hold without

negative potential. This also allows the four spinors labelled by their amplitudes µα, µβ , µ̂α, µ̂β

to take the physical interpretation of a forward travelling electron wave-packet with amplitudes

µα, µ̂α and a backwards travelling positron wave packet with amplitudes µβ , µ̂β .

There are two other details to note with regards to the symmetries of the Dirac Equation on

the line [−L,L]. Firstly, as it takes only the first partial derivative in x, not the second, even

when there is no magnetic field, a solution ψ is not symmetric under x → −x. Secondly, the
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time-reversal operator can be defined as, [27],

T̂ = −

σ2 0

0 σ2

K (7.11)

for the Dirac equation. It can be seen to provide a symmetry in the case that A = 0.

Given then the matrix forms of T̂ and Ĉ, the Dirac equation on the line can be classified

according to the Altland-Zirnbauer Tenfold Way,

Theorem 7.1.2. The Dirac Equation on the line [0, L] defines a system of Altland-Zirnbauer

class DIII when A = 0.

Proof. The Dirac equation on the line is only symmetric under Ĉ, T̂ and ĈT̂ , thus the Altland-

Zirnbauer class can be found by checking how Ĉ, T̂ square. Given that

Ĉ2 = I = −T̂ 2

then it has to be of class DIII.

7.1.2 The Dirac Graph

The Dirac graph can be thought of as a direct modification to the quantum graphs defined in

Definition 6.1.6, by swapping out the use of Schrödinger’s equation for Dirac’s equation, [27, 78]:

Definition 7.1.3. Let Γ be a metric graph with Hilbert space H =
⊕

b∈B L2([0, Lb])
4. Define a

magnetic potential Ab on each bond b. Take the functions ψb(xb) on each bond as the solutions

to Dirac’s magnetic time-independent equation,(
α2

(
−i ∂
∂x
− eA

)
+ βm

)
ψb(xb) = Ebψb(xb),

then an unconstrained solution on the whole graph can be given by the vector

Ψ(x) =
(
ψ1(x1), ψ2(x2), . . . , ψ|B|(x|B|)

)T
.

A set of boundary conditions on the bond solutions must be given by a pair of 4|B| × 4|B|
matrices C1, C2, chosen so that rank(C1 | C2) = 4|B| and C1C

†
2 = C2C

†
1. With the vectors

ψ+ =
(
ψ1

1(0), . . . , ψ
|B|
1 (0), ψ1

2(0), . . . , ψ
|B|
2 , ψ1

1(L1), . . . , ψ
|B|
1 (L|B|), ψ

1
2(L1), . . . , ψ

|B|
2 (L|B|)

)T
ψ− =

(
−ψ1

4(0), . . . ,−ψ|B|4 (0), ψ1
3(0), . . . , ψ

|B|
3 , ψ1

4(L1), . . . , ψ
|B|
4 (L|B|),−ψ1

3(L1), . . . ,−ψ|B|3 (L|B|)

)T
defined, then a valid constrained solution Ψ on the graph satisfies the boundary condition that,

C1ψ
+ + C2ψ

− = 0. (7.12)

The boundary conditions given here derive from the necessity of ensuring the Dirac operator on

the graph is self-adjoint, a discussion on the derivation of this form appearing in [27]. Though they

132



appear very different to the version using the derivative for the quantum graph as per Equation

6.1, they are actually closer to those defined for the quantum graph using the derivative then

they would appear - ψ− is actually equivalent to ∂
∂xψ

+ − ieAψ+, so this is actually a useful

simplification of the quantum graph version that is possible due to the forms of the vectors in

the solution Ψ.

Solving the Dirac graph for a given charge e and an energy E then again requires finding a

set of amplitudes µα, µβ , µ̂α, µ̂β such that they are consistent with Equation 7.12. In the method

from [78], and in the same way as for quantum graphs in Section 6.1, it is possible to consider

the solution in the basis defined by the amplitudes of the solution on each of the bonds,

µ =
(
µ µ̂

)T
=
(
µα,1 µβ,1 . . . µα,|B| µβ,|B| µ̂α,1 µ̂β,1 . . . µ̂α,|B| µ̂β,|B|

)T
and then use the boundary conditions to derive the scattering and transmission expression of the

Dirac Graph. From there, a secular equation det(I− Ξ(E)) = 0 can then be derived to find the

energy level spectrum.

The vectors ψ+, ψ− are related to µ by

ψ+ =

 I I

ei(k+eAi)Li e−i(k−eAi)Li

µ
µ̂

, ψ− = iγ(k)

 −I I

ei(k+eAi)Li −e−i(k−eAi)Li

µ
µ̂


so the boundary condition problem expressed with µ then becomes

0 =

C1

 I I

ei(k+eAi)Li e−i(k−eAi)Li

+ iγ(k)C2

 −I I

ei(k+eAi)Li −e−i(k−eAi)Li

µ
µ̂


= (C1 − iγ(k)C2)

I 0

0 e−i(k−eAi)Li

µ
µ̂

+ (C1 + iγ(k)C2)

 0 I

ei(k+eAi)Li 0

µ
µ̂


Rescaling µ to get rid of the factor of

( I 0
0 e−i(k−eAi)Li

)
,

µ̃ =

I 0

0 e−i(k−eAi)Li

µ
also consolidates both the exponential parts into the same matrix factor. Then taking advantage

of the fact that (C1 − iγ(k)C2) is always invertible as it is Hermitian, [100], scattering and

transmission matrices equivalent to those given in Equation 6.6 for the Schrödinger quantum

graph drop out,

µ̃ = −(C1 − iγ(k)C2)−1(C1 + iγ(k)C2)

 0 ei(k−eAi)Li

ei(k+eAi)Li 0

µ̃
= S(e, k)T (e, k)µ̃ = Ξ(e, k)µ̃
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where

S(e, k) = −(C1 − iγ(k)C2)−1(C1 + iγ(k)C2), T (e, k) =

 0 ei(k−eAi)Li

ei(k+eAi)Li 0

.
As it is being assumed that m = 0, then k = E and it is possible to relabel k → E from here on.

Note how here it is not common to factor out a copy of
(

0 I
I 0

)
from T to bring it into main

diagonal form, but instead it is left in its non-main-diagonal block form. This means there is

no difference between the derived scattering matrix and the ‘standard’ forms as there was for

quantum graphs.

Again Ξ(e, E) = S(e, E)T (e, E) can be considered a form of time evolution operator, trans-

mitting and scattering a wave packet down the bonds, so that the relation µ̃ = Ξ(e, E)µ̃ becomes

a version of the time independence problem. A valid solution µ̃ then must be an eigenstate of

Ξ(e, E) with eigenvalue 1. Thus, there again exists an energy level in the system whenever the

secular equation

0 = det
(
I4|B| − S(e, E)T (e, E)

)
(7.13)

is consistent. The real secular equation can also be defined again, having the form

ζ(e, E) =
1

eik
∑
b Lb
√

det(S(e, E))
det (I− S(e, E)T (e, E)) (7.14)

so that whenever ζ(e, E) has a root, there is an energy level in the spectrum of the Dirac graph.

This allows exactly the same numerical program as for the quantum graph to be run to find the

spectrum of Dirac graph - iterating over E and calculating ζ(e, E) and then running root finding

programs to find roots with an odd degeneracy, or a minima finding routine on |ζ(e, E)|1/2 to

find roots with an even degeneracy.

7.1.3 The Dirac Graph as a Quantum Graph

The Dirac graph is completely described by the time evolution invariance equation,

µ̃ = −(C1 − iγ(k)C2)−1(C1 + iγ(k)C2)

 0 ei(k−eAi)Li

ei(k+eAi)Li 0

µ̃
= S(e, k)T (e, k)µ̃ = Ξ(e, k)µ̃

which is formed of the scattering matrix, S(e, k) = −(C1 − iγ(k)C2)−1(C1 + iγ(k)C2), where

the block S(e, k)b1,b2 with b1 = [i, j], b2 = [m, i] describes the how much of the two compon-

ent wave coming into the vertex along b2 with the vector of amplitudes (µb2,α, µb2,β)T scatters

onto the bond b1 as the amplitude vector (µb1,α, µb1,β)T ; and the transmission matrix T (e, k) =(
0 ei(k−eAi)Li

ei(k+eAi)Li 0

)
where ei(k−eAi)Li is the diagonal matrix diag(ei(k+eAb1 )Lb1 , ei(k+eAb1 )Lb1 ,

. . . , e
i(k+eAb|B| )Lb|B| , e

i(k+eAb|B| )Lb|B| ), and which transforms amplitudes at the start of the bonds

into amplitudes at the ends of the bonds. This equation was derived by taking the boundary con-

dition expression and re-expressing it in terms of the amplitudes, then re-arranging the equation

to get an invariance condition.

134



The same method was employed in the case of the quantum graph, resulting in the equations,

µ = −(C1 + ikC2)−1(C1 − ikC2)

 0 ei(k+Ab)Lb

ei(k−Ab)Lb 0

µ
= S(k)T (k) = Ξ(k)µ

where S(k) = −(C1 + ikC2)−1(C1 − ikC2) and T (k) =
(

0 ei(k+Ab)Lb

ei(k−Ab)Lb 0

)
are the scattering

and transmission matrices with the same interpretation as the Dirac graph case.

These basic equations have much the same form when S, T are independent of e and k or

E, except for two differences - firstly, the Dirac graph method of rescaling µ → µ̃ to collate

the matrices with exponential parts into a single matrix that becomes the transition matrix is

not necessary in the case of the quantum graph; secondly, there is a sign change within the

definition of the scattering matrix - the inverse is taken of (C1 + ikC2), not (C1− iγ(k)C2). This

mathematical similarity means that when taken out of the context of the Dirac graph, the Dirac

graph’s scattering and transmission matrices can be re-interpreted as defining a quantum graph

with a two component wave function.

That is, let C1,D, C2,D be the boundary condition matrices for the Dirac graph with bond

lengths {Lb} and bond potentials {Ab}. Then the quantum graph with 2 component wave

functions on its bonds, and with bond lengths {Lb} and bond potentials {Ab} taken from the

Dirac case, and boundary condition matrices C1,C = C1,D and C2,C = −C2,D will have an energy

level k in its spectra if and only if the Dirac graph it was defined from does for the same k. Note

that the rescaling of µ→ µ̃ has no effect in going from the Dirac graph to the quantum graph, as

they appear only as part of an invariance equation so their forms don’t matter, only that Ξ(e, k)

and Ξ(k) have an eigenvalue of one.

Given that a Dirac graph is mathematically equivalent to a quantum graph, then the results

proved for quantum graphs also hold for Dirac graphs - including the results from Section 6.1.3

and which discuss when the graphs will be chaotic and approximations for their density of states,

and the result from Appendix D that the periodic-orbit approximation for the semi-classical

approximation of the density of states is exact. Thus, for the same reasons that quantum graphs

proved to be a good system for testing that the random matrix predictions for the spectral

statistics of bosonic-type chaotic quantum systems indeed hold; Dirac graphs will be a good

model for testing that the random matrix predictions for the spectral statistics of fermionic-type

chaotic quantum systems indeed hold.

Furthermore, given that quantum graphs with single component wave-functions are known

to be build-able in the lab as microwave wire graphs, [83], this opens avenues to realising the

Dirac graph in the lab. The issue of the microwave wires graph only taking one component wave

functions but the Dirac graph requiring a two component wave function can be circumvented by

considering each single bond of the Dirac graph as a pair of bonds on the microwave graph, with

one amplitude component on each half of the pair, as per Figure 7.1.

This demonstrates a basic construction that can be used to realise magnetic-field free Dirac

graphs in the lab, which is important as the desire of the thesis was to find a system which

can be easily constructed in the lab and which could be used to demonstrate statistics from

each of the ensembles considered by Altland and Zirnbauer. It would seem that the one issue
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(a) The Dirac graph with two-component wave
functions on each bond.

(b) The associated microwave network, split-
ting a two-component wave function over a pair
of bonds.

Figure 7.1: Realising the Dirac graph as a microwave wire network.

is that the graphs discussed below rely on the use of carefully chosen magnetic potentials to

kill time-reversal and charge-conjugation symmetry, while also controlling the creation of new

generalised time-reversal, generalised charge-conjugation and generalised chiral symmetries; and

it would seem that in not being able to build magnetic potentials into the microwave networks

these graphs wouldn’t be realisable. However, magnetic potentials were introduced on these

graphs only as a method of breaking time-reversal or charge conjugation symmetry, and it is

possible to look for other mechanisms that would do this. For the quantum graph, microwave

wires which allow transmission in only one direction have been considered as a method, [2], and

have already been used to control one type of generalised time-reversal symmetry, [3]. It is

expected that uni-directionality would be another possible method of breaking the anti-unitary

symmetries and re-constructing their generalised forms; taking the direction-reversed copies of

the unitary-commuting sub-graph to construct the charge-conjugated and time-reversed copies. If

so, then paired with an appropriate method of drawing the scattering matrices to fully sample the

ensemble of possible graphs, the uni-directional graphs would provide an experimental method

of realising the Dirac graphs discussed below in the lab.

7.2 Symmetric Dirac Graphs

7.2.1 Time-Reversal and Charge-Conjugation on Dirac Graphs

The action of T̂ and Ĉ have been defined for the Dirac equation on a line, where they provide

symmetries of the system. Their action can be defined on the Dirac graph by their action on

each of the bonds individually, while their action on the scattering matrix S(e, E) can be found

by considering the expression of a general scattering matrix S(e, E) as a function of the Green’s

functions of its associated Hamiltonian, Ĥ, [64],

G±(e, E) =
1

E ± iε− Ĥ(e)
, G−(e, E) = G†+(e, E), S(e, E) = G+(e, E)G−(e, E)−1. (7.15)

This allows the question of finding the action of T̂ , Ĉ on S(e, E) to become a question of their

action on the Hamiltonian Ĥ(e), which is already known, and it can be seen that

T̂ G±(e, E)T̂ −1 = G∓(e, E) ⇒ T̂ S(e, E)T̂ −1 = S†(e, E) (7.16)

ĈG±(e, E)Ĉ−1 = −G±(−e,−E) ⇒ ĈS(e, E)Ĉ−1 = S(−e,−E) (7.17)
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which is in agreement with the general form given by [14].

On the unconstrained line, these operators T̂ , Ĉ provide a symmetry when A = 0; this extends

to the Dirac graph when Ab = 0 ∀b ∈ B and when the boundary conditions at the vertices fulfil

specific requirements. These requirements can, as in Section 6.1.1 be found by considering the

action of T̂ , Ĉ on the amplitude space local to single vertex. This is the procedure in [27] used to

identify the conditions for a Dirac graph to be symmetric under T̂ , but it is generalised here to

include symmetry under the charge-conjugation operator.

As in Section 6.1.1, the local scattering problem at a vertex i relates the amplitudes of the

incoming waves ←−µ i to the outgoing amplitudes −→µ i,

−→µ i(e, E) = σ(i)(e, E)←−µ i(e, E), σ(i)(e, E) = S(e, E) |i

where at a vertex with outgoing bonds 1, 2, . . . d+
i and incoming bonds d+

i + 1, d+
i + 1, . . . di,

−→µ i,←−µ i are described in terms of µα, µβ , µ̂α and µ̂β by

−→µ =



µ1
α

µ1
β

...

µ
d+i
α

µ
d+i
β

exp
(
−i(k − eA

d+i +1
)L

d+i +1

)
µ̂
d+i +1
α

exp
(
−i(k − eAdtv+1)Ldtv+1

)
µ̂
d+i +1

β

...

exp (−i(k − eAdv )Ldv )µ̂dvα

exp (−i(k − eAdi)Ldi)µ̂
di
β



, ←−µ =



µ̂1
α

µ̂1
β

...

µ̂
d+i
α

µ̂
d+i
β

exp
(
i(k + eAdti+1)Ldt++1

)
µ
d+i +1
α

exp
(
i(k + eA

d+i +1
)L

d+i +1

)
µ
d+i +1

β

...

exp (i(k + eAdi)Ldi)µ
di
α

exp (i(k + eAdi)Ldi)µ
di
β



.

Multiplication of the phases in the lower half of the vectors by exp(i(k +Ab)Lb) occurs as these

are the phases on the bonds which are incoming at i - so b = [j, i] and the phases µbα,β and µ̂bα,β
without the added phase are the values at the vertex j not i; multiplying by the phase transmits

the amplitudes to i. This is also why µb and µ̂b are swapped in the way they appear in←−µ and −→µ
- these vectors are about the direction of travel of the amplitudes relative to the vertex, not the

bonds, and on an incoming bond, the direction travelling away from the vertex is the direction

travelling against the bond, and vice versa - hence why µ̂ appears in −→µ and µ appears in ←−µ .

The requirement for symmetry is then that given the time-reversed vectors,
−→µ i,T (e, E) = T̂ −→µ i(e, E), ←−µ i,T (e, E) = T̂ ←−µ i(e, E), or the charge-conjugated vectors,
−→µ i,C(−e,−E) = Ĉ−→µ i(e, E), ←−µ i,C(−e,−E) = Ĉ←−µ i(e, E), the local scattering relations continue

to hold for the right choice of e, E. This is the requirement that the relations

−→µ i,T (e, E) = σ(i)(e, E)←−µ i,T (e, E) (7.18)

−→µ i,C(−e,−E) = σ(i)(−e,−E)←−µ i,C(−e,−E) (7.19)

must hold.
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The explicit action of T̂ , Ĉ on the vector forms of −→µ i,←−µ i can be found by comparing the

amplitudes of each component in ψ(e, E;x) and ψ(−e,−E;x) to T̂ ψ(e, E;x) and Ĉψ(e, E;x)

respectively so that it is found that
µα,T (e, E)

µβ,T (e, E)

µ̂α,T (e, E)

µ̂β,T (e, E)

 =

0 J

J 0



µα(e, E)

µβ(e, E)

µ̂α(e, E)

µ̂β(e, E)



∗

(7.20)


µα,C(−e,−E)

µβ,C(−e,−E)

µ̂α,C(−e,−E)

µ̂β,C(−e,−E)

 = i

−I2 0

0 I2



µα(e, E)

µβ(e, E)

µ̂α(e, E)

µ̂β(e, E)



∗

(7.21)

where

J =

 0 1

−1 0

.
This then gives the forms for −→µ i,T ,C ,←−µ i,T ,C as,

−→µ i,T = i(Idi ⊗ J)←−µ ∗i ←−µ i,T = i(Idi ⊗ J)−→µ ∗i (7.22)

−→µ i,C = i

−I2d+i 0

0 I2d−i

−→µ ∗i ←−µ i,C = i

I2d+i 0

0 −I2d−i

←−µ ∗i (7.23)

Substituting Equation 7.22 into Equation 7.18 gives the requirement on σ(i) for time-reversal

symmetry,

σ(i)(e, E) = (Idi ⊗ J)−1σ(i)T (e, E)(Idi ⊗ J) (7.24)

while substituting Equation 7.23 into Equation 7.19 gives for charge-conjugation symmetry the

requirement that

σ(i)(e, E) =

−I2d+i 0

0 I2d−i

σ(i)∗(−e,−E)

I2d+i 0

0 −I2d−i

. (7.25)

Assuming σ is independent of e and E, this means for a Dirac graph to have both time-reversal

and charge-conjugation symmetry, σ(i) must satisfy both the relations

σ(i) = u(i)(X(i) ⊗ I2)u(i)−1 (7.26)

σ(i) =

 A(i) B(i)

B(i)T D(i)

 (7.27)

where u(i) = diag(u1, u2, . . . udi), ui ∈ U(2), A(i)T = −A(i), D(i)T = −D(i) and A(i) ∈ C2d+i ×2d+i ,

B(i) ∈ C2d+i ×2d−i and D(i) ∈ C2d−i ×2d−i , for each i ∈ V. The choice in [27] is to take X(i) as the

scattering matrix found for the Schrödinger quantum graph, however this creates a graph that
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is symmetric under T̂ and M̂ Ĉ where M̂ : b→ b exchanges the directions of the bonds, which is

insufficient to either fully break or maintain the spectral mirror symmetry as is required here.

The action of T̂ , Ĉ can also be calculated on µ̃, and is given by the operators

T̂ = i

 0 I|B| ⊗ J
I|B| ⊗ J

K, Ĉ = i

−I2|B| 0

0 I2|B|

K. (7.28)

which allows the chiral operator P̂ = ĈT̂ to be inferred as

P̂ =

−I2|B| 0

0 I2|B|

 0 I|B| ⊗ J
I|B| ⊗ J

. (7.29)

The condition on the vertex scattering matrices for the graph to be symmetric under P̂ are also the

combination of the vertex scattering matrix conditions for time-reversal and charge-conjugation

symmetry:

σ(i) =

Id+i ⊗ J 0

0 −Id−i ⊗ J

σ(i)†(−e,−E)

Id+i ⊗ J 0

0 −Id−i ⊗ J

. (7.30)

This will be automatically satisfied if the graph is symmetric under both T̂ and Ĉ, as would be

expected.

The Altland-Zirnbauer class of the Dirac graph with no additional symmetries can now be

checked - and was the case for the Dirac equation on the line, it sits in the class DIII,

Lemma 7.2.1. Let Γ be a Dirac graph that contains no unitary commuting symmetries, and

no magnetic potentials on the bonds. Let the relations σ(i) = u(i)(X(i) ⊗ I2)u(i)−1 with u(i) =

diag(u1, u2, . . . udi), ui ∈ U(2) and σ(i) =

 A(i) B(i)

B(i)T D(i)

 with A(i) ∈ C2d+i ×2d+i , B(i) ∈ C2d+i ×2d−i

and D(i) ∈ C2d−i ×2d−i hold for all i ∈ V. Then the graph is a member of the Altland-Zirnbauer

class DIII.

Proof. The defined graph is symmetric under T̂ , Ĉ and T̂ Ĉ and no other symmetries. Therefore,

the Altland-Zirnbauer class of the system can be calculated by taking the squares of the time-

reversal and charge-conjugation symmetries. Given their forms as

T̂ = i

 0 I|B| ⊗ J
I|B| ⊗ J

K, Ĉ = i

−I2|B| 0

0 I2|B|

K
on the whole graph, it can be seen that their squares are

Ĉ2 = I = −T̂ 2

which means the correct class is DIII.
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7.2.2 General Symmetries of Dirac Graphs

The definition of a generally symmetric quantum graph from Definition 6.1.7 carries over to

the Dirac Graph with the obvious generalisation based on the action of T̂ and Ĉ on the vertex

scattering matrices:

Definition 7.2.2. Let G = U ∪ αU ∪ γU ∪ πU be a finite Z2 × Z2-graded group and Γ a Dirac

graph. Define the action of G on Γ as a graph as the permutative homomorphism of the vertices

by

g : i→ gi.

Then Γ is symmetric under G as a Dirac graph if and only if the following relations hold ∀g ∈ G,

∀i, j ∈ V,

[i, j] ∈ B ⇔ [gi, gj] ∈ B, L[gi,gj] = L[i,j]

A[gi,gj] =

A[i,j] g ∈ U ∪ πU

−A[i,j] g ∈ αU ∪ γU

σ
(gi)

[gi,gj],[gk,gi](e, E) =



σ
(i)

[i,j],[k,i](e, E) g ∈ U

(Idi ⊗ J)−1σ
(i)T

[i,j],[k,i](e, E)(Idi ⊗ J) g ∈ αU−I2d+i 0

0 I
2d−i

σ(i)∗
[i,j],[k,i](−e,−E)

I
2d+i

0

0 −I
2d−i

 g ∈ γU

I
d+i
⊗ J 0

0 −I
d−i
⊗ J

σ(i)†
[i,j],[k,i](−e,−E)

I
d+i
⊗ J 0

0 −I
d−i
⊗ J

 g ∈ πU

The preservation of the connectivity and bond lengths is direct from the standard definition of

a symmetric graph. The requirement on the magnetic potentials is unchanged from the definition

of a symmetric quantum graph - anti-unitary group elements cause a sign flip in Ab in their action,

so this is accounted for in the definition. The rules on σ(i) are found by taking Equations 7.24

and 7.25 and swapping σ(i) for σ(gi) on the left-hand side so the action of the operator includes a

vertex permutation when testing for symmetry. The action under an element in πU is found by

combining Equations 7.24 and 7.25 so that the action without the vertex permutation is given

by ĈT̂ = P̂. In this way, generalised time-reversal, charge-conjugation and chiral symmetries can

be represented on a Dirac graph.

If these graphs are to be used to test random matrix predictions, it will again be necessary

to construct the symmetry decomposed basis or the quotient graph in order to isolate single

sub-spectra. There will be little difference in the procedure as given in Section 6.1.2 - the rep-

resentation of U on Γ will be found, and then the decomposition of this representation into

irreducible representations provides the necessary symmetry decomposed basis transformation,

giving the correct transformation to split Ξ(e, E) into block diagonal form and the spectra into

independent sub-spectra.
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Again, the action of U on Γ is solely a permutation of the vertices, so it can be represented

as acting on the bond functions ψb,

u : ψb → ψu−1b(xu−1b) ∀u ∈ U

which gives the action of u on the graph solution Ψ as

u : Ψ→ (P (u)⊗ I4)Ψ, (P (u))ij = δi,u−1j (7.31)

where P is the matrix permutation representation of U acting on the bonds of Γ. The tensor

product with I4 occurs to take into account the fact that U must act the same on each component

of the spinors ψb.

On the amplitude space described by µ̃, taking as before the relabelling µ̂α,β,[i,j] → µα,β,[j,i],

so that the inverse of P arises as the action on the hole space as the bond directions have been

reversed, the representation of U is given by

u : µ̃→

P (u)⊗ I2 0

0 P−1(u)⊗ I2

µ̃. (7.32)

Note how the only change from the Schrödinger quantum graph of Equation 6.14 is to add a right

tensor product by I2. This means that when calculating the subspaces in the graph by taking the

transformation of basis into the symmetry decomposed basis - the basis where P is decomposed

into irreducible representations - it is possible to just take the appropriate transformation W for

the Schrödinger case, and then right-tensor by I2. That is, if
(
P (u) 0

0 P−1(u)

)
can be decomposed

into irreducible representations by W in the Schrödinger graph case as in Equation 6.16, the

Dirac graph version can be decomposed by W ⊗ I2,

(W ⊗ I2)−1

P (u)⊗ I2 0

0 P−1(u)⊗ I2

(W ⊗ I2) =

⊕i

⊕si
a=1 ρi(u)⊗ I2 0

0
⊕

i

⊕si
a=1 ρ

∗
i (u)⊗ I2

.
(7.33)

As before, the evolution operator Ξ then block diagonalises,

(W ⊗ I2)−1Ξ(e, E)(W ⊗ I2) =
⊕
i

si⊕
a=1

Ξi(e, E) (7.34)

and the secular equation factorises as

det(I− Ξ(e, E)) =
∏
i

det(I− Ξi(e, E))
si (7.35)

so that the energy spectrum splits into |{i}| independent sub-spectra of multiplicities si. The

exact form for W can as before, be found by applying the method of [11] - and the transformation

W⊗I2 can actually be computed directly with this method without resorting to the mid-way step

of using the reduction to the quantum graph case if wanted. While [11] discusses the Schrödinger

case exclusively, the Dirac graph can be considered as a Schrödinger graph where every bond

has been doubled, or where each bond carries a two-dimensional wave function, so there is no

idealogical issue with applying their method, this will be discussed further in Section 7.1.3 below.
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Furthermore, going through their calculations, the new right-hand tensor product by I2 that

appears in the Dirac graph representation of U factors out of all of their calculations, and once

again returns W ⊗ I2 as the correct quotienting transformation, confirming the easier method of

relating back to the Schrödinger problem.

In terms of the heuristic derivation of the quotient graph - which if constructed with the

irreducible representation ρi automatically has the statistics of the subspace related to the rep-

resentation ρi - there is no change needed from the Schrödinger case described in Section 6.1.2.

The method is discussed in detail there, however in summary, it is a matter of finding the funda-

mental domain and isolating it from the full graph, with the edges leaving the fundamental domain

being cut at dummy vertices. The pairs of cut bonds [v1, d1] and [d2, v2] are then appropriately

merged by equating the dummy vertices d1, d2 when there exists u ∈ U such that d2 = ud1, the

periodic boundary condition at the vertex d1 ≡ d2 ≡ d being ψ[d,v2] |d= ρT (u−1)ψ[v1,d] |d. This

can either be used to define a vertex scattering matrix

σ(d) =

 0 ρT (u−1)

ρ−1T (u−1) 0

⊗ I2

or it can be merged into the transmission matrix for the bond [v1, v2], so the dummy vertex d

is dropped. This however, completes the general definition of the quotient graph on the Dirac

graph. Further discussion on the structure of the quotient graphs will be possible but require

a particular type of symmetric graph to be chosen, however it can be said that universal forms

very similar to those seen in Section 6.2.2 will once again appear.

7.3 Minimal Examples of the Altland-Zirnbauer Ensembles

on Dirac Graphs

7.3.1 Constructing G = U ∪αU ∪ΓU ∪ πU Symmetric Graphs and Their

Quotients

We now turn to showing that any symmetry group G = U ∪αU ∪ γU ∪πU can be represented as

a Dirac graph Γ, and that for every irreducible representation ρ of U , there is exactly one copy

of ρ in the action R of U on Γ. This will allow the implementation of the systems identified by

Theorem 5.2.2 and demonstrate that every Altland-Zirnbauer random matrix ensemble can be

represented on a Dirac Graph.

As has been previously discussed, quantum graphs are optimal systems for identifying con-

structions which are symmetric under a Z2-graded group, and which can be guaranteed to contain

the representation ρ, an algorithm being given in Theorem 6.2.3 to build a graph for each sym-

metry group G = U∪αU by identifying the Cayley graph as an example. Once an anti-commuting

symmetry is required, and the symmetry group become Z2×Z2-graded, Dirac graphs become the

system of choice, and the algorithm is updated to use the definition of symmetry from Definition

7.2.2, so that given a Z2 × Z2-graded group G, its Cayley graph generates a specific example of

a Dirac graph symmetric under G,
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Theorem 7.3.1. Let G be a Z2 × Z2-graded group G = U ∪ A ∪ C ∪ P . Let S be a generating

set of G.

The Dirac graph defined by taking the Cayley graph Γ(G,S), choosing the quantities L[e,s], A[e,s]

for each s ∈ S and choosing σ(e) ∈ U(de), with their values on the rest of the graph constructed

by the rules

L[gi,gj] = L[i,j], A[gi,gj] =

A[i,j] g ∈ U ∪ πU

−A[i,j] g ∈ αU ∪ γU

σ
(gi)

[gi,gj],[gk,gi](e, E) =



σ
(i)

[i,j],[k,i](e, E) g ∈ U

(Idi ⊗ J)−1σ
(i)T

[i,j],[k,i](e, E)(Idi ⊗ J) g ∈ αU−I2d+i 0

0 I
2d−i

σ(i)∗
[i,j],[k,i](−e,−E)

I
2d+i

0

0 −I
2d−i

 g ∈ γU

I
d+i
⊗ J 0

0 −I
d−i
⊗ J

σ(i)†
[i,j],[k,i](−e,−E)

I
d+i
⊗ J 0

0 −I
d−i
⊗ J

 g ∈ πU

is symmetric under left multiplication by G.

There is again the the question of which generating set S should be taken for G. Following

the choice of SU ∪ {α} where SU is the generating set of U for the Z2-graded case, the obvious

choice would be to expand the set TG taken in addition to SU to include a representative of every

present type of non unitary-commuting symmetry on the system needed to cover G. This makes

the generating set SU ∪ TG where TG is a transversal for U in G. That is, TG ⊆ {α, γ, π}, with

the exact definition of TG being given by the relations α ∈ TG ⇔ A 6= ∅, γ ∈ TG ⇔ C 6= ∅
and π ∈ TG ⇔ P 6= ∅ and A = C = ∅ - given that π = αγ, then π is not needed as a

generating element, and including it would mean the minimal generating set wasn’t being taken,

thus including π in TG along with α and γ is unnecessary and would only generate additional

bonds to slow the computations down. Thus, the options for TG are {α}, {γ}, {π} and {α, γ}
and |TG| = 1, 2.

This maintains the very regular and universal structure on the generated graph as seen for

the quantum graph in Figure 6.3, with the graph splitting into a series of copies of the sub-graph

Γ(U, SU ) interlinked by bonds generated by elements of TG. If TG = {α}, then the structure

is exactly the same as in the quantum graph case, having a copy of Γ(U, SU ) and a copy of its

time-reversed counter-part, αΓ(G,SU ) as seen by comparing Figure 7.2a with Figure 6.3. In the

case that TG = {γ} or TG = {π}, then the graph retains its two part structure, but now it consists

of a unitary commuting original sub-graph, and either its charge-conjugated or chiral-reversed

copy as in Figures 7.2b and 7.2c respectively.

When TG = {α, γ}, the graph now takes on a four part structure, containing the unitary-

commuting sub-graph Γ(U, SU ) and its copies αΓ(U, SU ), γΓ(U, SU ) and αγΓ(U, SU ) under the

action of α, γ and αγ. These sub-graphs are then interlinked by the bonds generated by α and γ,

giving the structure as in Figure 7.2d, and making clear the structure of the quotient G/U = K4

as the Klein-4 group.
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Γ(U, SU ) αΓ(U, SU )

(a) Γ(G,SU ∪ {α}

Γ(U, SU ) γΓ(U, SU )

(b) Γ(G,SU ∪ {γ})

Γ(U, SU ) πΓ(U, SU )

(c) Γ(G,SU ∪ {π})

Γ(U, SU ) αΓ(U, SU )

γΓ(U, SU ) πΓ(U, SU )

(d) Γ(G,SU ∪ {α, γ})

Figure 7.2: The subgraph structure of Γ(G,SU ∪ TG) for each of the three forms of TG 6= ∅. In
all four cases, dashed bonds are generated by α, dash-dotted bonds by γ and doubled lines by π.

The proof that the graph so constructed includes every possible energy level sub-spectrum

for the graded group G needs little modification from the proof of the equivalent Theorem 6.2.5

in the case of the quantum graph. The permutation representation of U is still the independent

action of U on each of its either two or four interlinked copies of its Cayley graph, thus P includes

the regular representation, which has exactly one copy of each irreducible representation of U ,

thus there is one copy of each sub-spectrum,

Theorem 7.3.2. Let G be a Z2×Z2-graded group and Γ(G,SU ∪TG) be the Dirac graph defined

as by Definition 7.3.1. Let {Ei}n be the sub-spectrum generated by an irreducible representation

ρn of U . Then {Ei}n is present in the spectrum of Γ(G,SU ∪ TG), and has multiplicity one.

Proof. The graph Γ(G,SU ∪ TG) is isomorphic to the decomposition into interconnected sub-

graphs, Γ(G,SU ∪ TG) =
(
∪2|TG|
i=1 Γ(U, SU )

)
+ Γ′ where Γ′ describes the interconnecting bonds.

The permutation representation of U on each copy of Γ(U, SU ) is given independently by its reg-

ular representation, R, so the permutation representation of U on Γ(G,SU ∪ TG) must be given

by

P ∼=

2|TG|⊕
i=1

R

+R′

where R′ describes the permutation of the interconnecting bonds. According to Theorem 2.1.12,

R contains exactly one copy of each irreducible representation ρn of U . Thus, the symmetry

decomposed basis of Γ(G,SU ∪ TG) includes one of every possible subspace, and there is a copy

of every possible independent energy level sub-spectra in the full spectrum of Γ(G,SU ∪TG).
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When isolating the sub-spectra using the quotient graph Γ(G,SU ∪TG)/(U, ρ), there is again a

universal structure to the graphs dependent only on which sets A,C, P ⊂ G are non-empty - the

vertices making up the fundamental domain are always {e, α} if G = U∪αU ; {e, γ} if G = U∪γU ;

{e, π} if G = U ∪ πU ; and {e, α, γ, π} if G = U ∪ αU ∪ γU ∪ πU . These are connected by bonds,

and bonds generated by ui ∈ SU become a number of loops coming off each vertex - these bonds

can’t link between different vertices, as elements of U can only permute e, α, γ and π within the

sets U,A,C and P respectively, so the bond [α, αu] is always connected to [αu−1, α] as a loop

in the quotient graph, and similarly for the other vertices and bonds. This means the quotient

graph always consists of either two or four interconnected vertices, with a number of self-loops

at each vertex given by the number of generators of U in SU . The four possible quotient graphs

are given in Figure 7.3.

Given that the only part of the quotient graphs dependent on the chosen group G and rep-

resentation ρ are the phases on the cut bonds - which are ρ(u−1
i ) on the loops coming off e;

ρ(αu−1
i α−1) on the loops coming off α; ρ(γu−1

i γ−1) on the loops coming off γ; ρ(πu−1
i π−1)

for the loops coming off π; ρ(α−2) for [α, e], ρ(γ−2) for [γ, e]; and either ρ(π−2) for [π, e] or

ρ(γα−1γ−1α−1) for [π, γ] and ρ(αγ−2α−1) for [π, α] - then by knowing these values for G, ρ, and

each ui ∈ SU , it is actually possible to calculate the quotient of the Dirac Cayley graph without

having to construct the full graph. All that is actually necessary once these values are known is

to substitute them directly into the graphs given by Figure 7.3 - this means that graphs for the

isolated sub-spectra may in fact be constructed directly without having to calculate large and

complicated the Cayley graphs for groups with many generators, which is a massive simplification.
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e α...
...

ρ(u−1
1 ) ρ(αu−1

1 α−1)

ρ(u−1
n ) ρ(αu−1

n α−1)

ρ(α−2)

(a) TG = {α}

e γ
...

...

ρ(u−1
1 ) ρ(γu−1

1 γ−1)

ρ(u−1
n ) ρ(γu−1

n γ−1)

ρ(γ−2)

(b) TG = {γ}

e π...
...

ρ(u−1
1 ) ρ(πu−1

1 π−1)

ρ(u−1
n ) ρ(πu−1

n π−1)

ρ(π−2)

(c) TG = {π}

e α...
...

γ π

...
...

ρ(u−1
1 ) ρ(αu−1

1 α−1)

ρ(u−1
n ) ρ(αu−1

n α−1)

ρ(α−2)

ρ(γu−1
1 γ−1) ρ((αγ)u−1

1 (αγ)−1)

ρ(γu−1
n γ−1) ρ((αγ)u−1

n (αγ)−1)

ρ(γα−1γ−1α−1)

ρ(γ−2) ρ(αγ−2α−1)

(d) TG = {α, γ}

Figure 7.3: The four possible forms for a quotient graph Γ(G,SU ∪ TG)/(U, ρ) based on the form of TG. Solid
lines are generated by elements in U , dashed lines by elements of A, dash-dotted lines by elements of C, and
doubled lines by elements of P . These quotient graph forms are universal for any Dirac graph generated from
the Cayley graph of a Z2 × Z2-graded group G when the generating set is chosen to be SU ∪ TG.
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7.3.2 Minimal Examples for the Altland-Zirnbauer Ensembles

Throughout this thesis, the final end-point has always been clear - identify a set of ten systems that

are ‘minimal’ in size and complexity and demonstrate that they show spectral statistics matching

each of the ten Altland-Zirnbauer random matrix ensembles, while all sharing the same global

form of T̂ and Ĉ. All of the constituent parts for this have now been found - the time-reversal, T̂ ,

charge-conjugation, Ĉ and chiral, P̂, operators have been defined and their link to the Altland-

Zirnbauer ensembles have been discussed. Symmetry groups have been introduced, containing

unitary and anti-unitary elements, and elements which either commute or anti-commute with the

Hamiltonian, their effect in splitting the Hilbert space up into independent subspaces has been

described, along with how the forms of the global time-reversal and charge-conjugation operators

can be different in the subspaces as local operators. Using this, appropriate groups and subspaces

were identified to cover all of the ten Altland-Zirnbauer classes. Finally, an algorithm was found

to generate appropriate systems and isolate the subspectra. All that is left is to apply numerical

simulation to the problem, demonstrating that the theoretical predictions hold.

There is little change to the procedure discussed in Section 6.2.3 for the quantum graphs - the

relevant graded groups and their unitary subgroup representations are identified and then their

Cayley graphs constructed, applying the algorithm from Theorem 7.3.1 to get a Dirac graph,

before quotienting out U to isolate the subspectrum and then applying the vertex-subgraph

procedure to repair the graph complexity and identify the final Dirac graph to be worked with.

Ensembles of graphs can then be taken by iterating over choices of σ(e) drawn from U(de) by the

Haar measure, calculating the smallest eigenvalue distributions and densities of state. The one

key difference is that the Dirac graph starts in a DIII ensemble before additional symmetries

are applied, so the substitutions of Table 5.2 must be used.

Applying this to Theorem 5.2.2 then the minimally-sized graded groups G and irreducible

representations ρ needed to cover the Altland-Zirnbauer ensembles are given by the pairs in

Table 7.1. Three of these classes - A, AI and AII - were covered on the quantum graphs, but we

will repeat their treatment on the Dirac graphs here anyway for comparison. The Dirac graphs

for the ten cases can then be generated using Theorem 7.3.1 to generate graphs of the form

Γ(G,SU ∪TG), where TG = {α} for the classes A, AI and AII; TG = {γ} for the classes C and D;

TG = {π} for the class AIII; and TG = {α, γ} for the classes BDI, CI, CII and DIII. This gives

graphs with a two-part structure when |TG| = 1 and four-part structure when |TG| = 2, as seen

in Figure 7.2.

Taking the quotients by U of these graphs will give the minimal graphs for each ensemble.

By the end of last section, this can be done by taking the universal forms of the quotient graphs

for the different TG from Figure 7.3, and substituting in the necessary phases onto the cut-

and-merged bonds. Given that |SU | = 1 in all ten cases considered, these are a subset of the

phases ρ(u−1), ρ(α−2), ρ(γ−2), ρ(π−2), ρ(αu−1α−1), ρ(γu−1γ−1), ρ(πu−1π−1), ρ(γα−1γ−1α−1),

ρ(αγu−1γ−1α−1) and ρ(αγ−2α−1) based on the form of TG. The values for each of the ensembles

given in Table 7.1 can be found in Tables 7.2 and 7.3.
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Class G U U ∪ αU U ∪ γU U ∪ πU Irreducible Representation of U

A Z6 Z3 Z6 Complex

AII D6 Z3 D6 Complex

AI Z4 Z2 Z4 Sign

AIII Z6 Z3 Z6 Complex

DIII D12 Z3 D6 D6 Z6 Complex

CI Q8 Z2 Z4 Z4 Z4 Sign

C Z4 Z2 Z4 Sign

D D6 Z3 D6 Complex

BDI Z4 × Z2 Z2 Z4 Z2
2 Z4 Sign

CII Z4 × Z2 Z2 Z2
2 Z4 Z4 Sign

Table 7.1: The graded groups G of minimal size needed to cover each of the ten Altland-Zirnbauer ensembles
when paired with appropriate non-trivial representation ρ of U . The grading is described by considering what
group the sets U,U ∪ αU,U ∪ γU and U ∪ πU are isomorphic to.

Class p1a = ρ(u−2) p1b = ρ(α−2) p2b = ρ(αu−1α−1)

A exp(2iπ/3) 1 exp(2iπ/3)

AI −1 −1 −1

AII exp(2iπ/3) 1 exp(−2iπ/3)

p1b = ρ(γ−2) p2b = ρ(γu−1γ−1)

C −1 −1 −1

D exp(2iπ/3) 1 exp(−2iπ/3)

p1b = ρ(π−2) p2b = ρ(πu−1π−1)

AIII exp(2iπ/3) 1 exp(2iπ/3)

Table 7.2: The phases required on the bonds of the graph given in Figure 7.4 to get each of the classes A, AI,
AII, C, D or AIII as the energy level statistics ensemble.

DIII CI CII BDI

p1a = ρ(u−2) exp(2iπ/3) −1 −1 −1

p1b = ρ(αu−1α−1) exp(−2iπ/3) −1 −1 −1

p1c = ρ(γu−1γ−1) exp(−2iπ/3) −1 −1 −1

p1d = ρ(αγu−1γ−1α−1) exp(2iπ/3) −1 −1 −1

p2a = ρ(α−2) 1 −1 1 −1

p3a = ρ(γ−2) 1 −1 −1 1

p2b = ρ(γα−1γ−1α−1) 1 −1 1 −1

p3b = ρ(αγ−2α−1) 1 −1 −1 1

Table 7.3: The phases required on the bonds of the graph given in Figure 7.5 or 7.6 to get each of the classes
DIII, CI, CII or BDI as the energy level statistics ensemble.
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(c) The expanded quotient graph.

Figure 7.4: Deriving the example graphs for the classes with |TG| = 1. The phases on each of the bonds required
to achieve the classes A,AI,AII when the graph is interpreted as being the quotient Γ(G,SU ∪ {α})/(U, ρ) can
be found in the top three rows of Table 7.2; while the phases required to generate the classes C and D when the
graph is interpreted as being the quotient Γ(G,SU ∪ {γ})/(U, ρ) form the center two rows; the phases required
for the class AIII when the graph is interpreted as being the quotient Γ(G,SU ∪ {π})/(U, ρ) re in the bottom
row. Note that in the cases A, AI, AII, C and D, A1a = −A1b and A2a = −A2b, while in the case of class AIII,
A1a = A1b and A2a = A2b, this because π is unitary operator.
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Figure 7.5: Deriving the example graphs for systems with TG = {α, γ}. See Table 7.3 for what phases should
be chosen for each of the bonds to get the different Altland-Zirnbauer classes BDI, CII, DIII and CI.

150



e α

γ π

L1, A1, p1a L1,−A1, p1b

L1,−A1, p1c L1, A1, p1d

L2, A2

L2,−A2, p2a

L2,−A2

L2, A2, p2b

L
3
,A

3

L
3
,−
A

3
,p

3
a

L
3
,−
A

3

L
3
,A

3
,p

3
b

(a) Unexpanded quotient graph. (b) Vertex sub-graph, using 6 vertices, 11
bonds and one copy of each of the bonds gen-
erated by α, γ nd u.

1a 1b

1c 1d

2a

2c

2b

2d

3a 3c

3b 3d

(c) The expanded quotient graph.

Figure 7.6: Deriving the smaller example graphs for the classes with TG = {α, γ} for testing the average density
of states numerically. Table 7.3 contains the phases for each of the bonds required to get each Altland-Zirnbauer
class.
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All that is that is then required is to substitute in the appropriate vertex sub-graphs. For the

two-part graphs, the vertex sub-graph used for the quantum graph can be reused, leading to the

structure in Figure 7.4. For the four part graphs, we use a new vertex sub-graph with sixteen

vertices, so there are four ‘spare’ vertices after the main graph bonds have been added, with

twenty-eight bonds in the sub-graph, leading to the structure in Figure 7.5. This size of graph

is fine for calculating the smallest eigenvalue distribution, but it is too large for the much more

computationally intensive average density of states. In this case, we use a smaller sub-graph of

six vertices and eleven bonds, leading to the graph in Figure 7.6. This means that the connecting

bonds cannot be doubled and the results for an individual graph are poorer, but this is made up

for by being able to take a larger ensemble.

We now consider the practicalities of simulating the characteristic statistics of the random

matrix ensembles on Dirac graphs - that is ensemble generation, solving the secular equation, the

unfolding procedure, and identifying the eigenvalue search ranges for the density of states and

smallest eigenvalue distributions.

Firstly, both of the measures taken here - the average level spacing distribution and the

smallest eigenvalue distribution - need to be averaged over an ensemble of graphs. As in Chapter

6, this is done by fixing a graph with its bond lengths and bond potentials, and then iterating

over draws of σ(e) from U(de) according to the Haar measure, computing the rest of the vertex

scattering matrices from the symmetry relations.

Next, solving the Dirac graph numerically is no different to working with the

Schrödinger quantum graph - the real secular equation is calculated in steps, roots or minima

bounded based on the sign of the function or its derivative as necessary, and then a root finding

or minimisation problem is run as required to find precisely each of the eigenvalues. This means

that all code and techniques discussed in the last chapter can be carried over from the quantum

graph case.

For the unfolding procedure, we first note that the semi-classical approximations for the

random matrix quantities discussed for the quantum graphs in Section 6.1.3 carry over, [27], and

in particular approximations of the counting function from Equation 6.22 is the same,

N(E) = NWeyl(E) +Nosc(E) NWeyl(0) = N0 +
1

π
Im ln ζ(δ)

NWeyl(E) =

∑
b∈B Lb

πd
E +NWeyl(0) Nosc(E) =

−1

π
Im ln ζ(E + iε)

so that δ0 = d = L/πd is still the average density of states in the bulk and the unfolding procedure

remains

E → N(E)→ NWeyl(E) = λ

However, while the approximation E → E/δ0 of the unfolding could be taken for the quantum

graph’s spacing distribution calculation as all that mattered were the relative spacings, for

the average density of states and the smallest eigenvalue distribution, the translation term

NWeyl(0) will be required for the unfolding. Without compensating for it, a single calcula-

tion of the spectrum will have its value of λ = 0 and mirror symmetry at E = −NWeyl(0) =

Im ln det (I− S(e, δ)T (e, δ)) 6= 0 in the limit δ → 0. This will be different for every initialisation

of S in the ensemble, so each iteration in the average will be centred differently and lead to poor
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statistics due to the results of the constituent spectra of the ensemble being out of alignment.

This can be fixed by accounting for the translations in the spectra and by taking instead the

unfolding

E →
∑
b∈B Lb

πd
E +

1

π
Im ln ζ(δ) = λ,

using δ ≈ 0. This correctly centres the spectra about 0 in each case, allowing the correct averaging.

We can now turn to the question of what ranges the eigenvalues should be identified in for

each of the characteristic distributions of the ensembles.

The density of states will be calculated by finding all eigenvalues in a range E ∈ [NL, NH ],

and then averaging over these positions with the ensemble. The density of states is symmetric

about zero, so having first demonstrated a symmetry in the solution for the Altland-Zirnbauer

ensembles, it should be only be necessary to calculate the average density of states over the

positive half of the real line to verify its agreement with the analytical results for the Altland-

Zirnbauer ensembles. That would be searching for the first N eigenvalues in the unfolded range

λ ∈ [0, N ], which can be reversed engineered into the folded range,

E ∈
[
−d Im ln ζ(δ)∑

b∈B Lb
,
d(Nπ − Im ln ζ(δ))∑

b∈B Lb
z

]
= [NL, NH ]

by using the inverse of the unfolding routine. This would be a sufficient range to search in, were

it not the fact that the numerical root and minimisation routines need a buffer around each root

to work. This means that for roots very close to the bounds of the search range, it is actually

beneficial to extend the search range slightly to allow a bigger buffer for them and improve the

numerics. This makes the actual search range worked with generally E ∈ [NL − 0.5, NH + 0.5]

for example. Furthermore, this will catch the eigenvalues that should be inside the range but are

sufficiently close to the bound that small numeric errors knock them out of the range, improving

the statistics at the edges of the bounds. This is incredibly important on the zero end which sits

in the centre of the spectra at the mirror symmetry and is part of the largest deviation away

from the Wigner-Dyson statistics, and which is where the ensembles are best characterised in

their differences. This will also occasionally find extra roots, and when they occur to the left of

NL, will show the spectral mirror symmetry in action, further validating the result.

We also note, that due to the necessity to smooth out the ‘spikiness’ of the density of states

averaged over an ensemble of graphs, it is necessary to also do a short-range averaging over the

energy range. This is as simple as using a histogram to plot the averaged density of states, but

we note that depending on how the bins are arranged with relation to the range of calculated

eigenvalues, this can lead to the under-representation of the average density of states in the outer

two bins if they overlap areas where eigenvalues were not computed. In this case, having the

buffer in the calculation means that the under-representation is less of an issue, as it lies outwith

the range in consideration and can be trimmed off if required.

Finally for the average density of states, note that none of the Dirac graphs have a zero energy

level when the real secular equation is calculated, so only the simplest forms of the analytical

predictions for 〈d(k)〉H and Pmin(x) are needed.

When calculating the smallest eigenvalue distribution, it is possible to begin calculating the

real secular equation at small but negative λ, stepping forward until a root is detected. Again,
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it is important that the unfolding is taken into account when giving the range to search in - the

translation by NWeyl(0) must be taken into account. Once again, inverting the unfolding relation

gives the correct range, which is E ∈ [−(Im ln ζ(δ))/δ0π, x).

To start the results of our numerical simulations, we note that the requirements for chaos on

a quantum graph from Theorem 6.1.11 carry over onto the Dirac graph due to the Dirac graph

being interpretable as a quantum graph with doubled bonds. We then first check that the first of

two requirements from Theorem 6.1.11 for a graph to show chaos - that the matrix Tij = |Sij |2

has one eigenvalue |η1| = 1 and all other eigenvalues lie within the unit circle, |ηi| < 1 ∀i > 1 -

is satisfied by the graphs. The tests for this are given in Table 7.4 for the graphs based on those

given in Figures 7.4 and 7.5 which will be used to calculate the smallest eigenvalue distributions

for all ten classes and the average density of states for the class A, AI, AII, AIII, C and D graphs;

and in Table 7.5 for the graphs in Figure 7.6 which will be used to calculate the average density

of states of the class BDI, CII, CI and DIII graphs. In each case, agreement with the condition

can be seen.

Class |η1| |η2| Class |η1| |η2|
A 1.0000 0.86061 AIII 1.0000 0.84591

AI 0.99999. 0.85582 BDI 0.99999. 0.92171

AII 1.0000 0.86811 CII 1.0000 0.93999

C 0.99999. 0.86602 CI 1.0000 0.93427

D 0.99999. 0.84869 DIII 1.0000 0.93032

Table 7.4: Checking the ordered eigenvalues η1 ≥ η2 ≥ · · · ≥ ηN of the Markov process matrix
Tij =

∣∣S2
ij

∣∣ derived from the scattering matrix for each of the example graphs identified in Figures
7.4 and 7.5. The first chaos requirement is that |η1| = 1 and |η2| < 1, which holds in each case.
All numbers rounded to five significant figures and come from a single initialisation.

Class |η1| |η2| Class |η1| |η2|
BDI 1.0000 0.90211 CI 0.99999. 0.890091

CII 0.99999. 0.88061 DIII 0.99999. 0.918761

Table 7.5: Checking the ordered eigenvalues η1 ≥ η2 ≥ · · · ≥ ηN of the Markov process matrix
Tij =

∣∣S2
ij

∣∣ derived from the scattering matrix for each of the example small graphs identified in
Figure 7.6 for testing the density of states of the four-part graphs. The first chaos requirement
is that |η1| = 1 and |η2| < 1, which holds in each case. All numbers rounded to five significant
figures and come from a single initialisation.
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Next, we show that the spectral mirror symmetry appears for the classes AIII, BDI, CII, C,

D, DIII and CI while it is broken in the classes A, AI and AII. We calculate all the eigenvalues

in the unfolded range λ ∈ (−4, 4), expecting eight, and then form the pairs λn, λ−n based on

their ordering λ−4 < · · · < λ−1 < 0 < λ1 < · · · < λ4. Taking the differences |λn − λ−n| measures

how close the two come to showing a mirror symmetry. The results of doing this for each class

are given in Table 7.6 for the graphs generated from Figures 7.4 and 7.5, while Table 7.7 gives

the case for the small density of state test graphs described by Figure 7.6. In each case though,

the necessary behaviour is demonstrated, up to small numeric errors. That is, |λn + λ−n| ≈ 0.1

or bigger in the classes A, AI and AII; on the other hand, the difference is of the order 10−13

or smaller for most cases where the spectral mirror symmetry is expected to hold, covering the

classes BDI, C, D and CII. The only classes which have larger errors are the classes CII and DIII,

which have a divergence of order 10−3 between an energy level and its negative counterpart, but

this is still small, and the spectral mirror symmetry still holds.

Class |λ1 + λ−1| |λ2 + λ−2| |λ3 + λ−3| |λ4 + λ−4|
A 0.22604 0.07873

AI 0.37619 1.07259 0.45656

AII 0.16970 0.16247 0.35103 0.031756

AIII 1.1291× 10−12 1.1326× 10−12 1.1133× 10−12 1.1120× 10−12

BDI 8.8818× 10−16 1.7764× 10−15 7.9936× 10−15 3.9968× 10−15

CII 2.6019× 10−3 4.0608× 10−3 4.3769× 10−3 3.7039× 10−3

C 9.1038× 10−14 1.1324× 10−14 9.3259× 10−15 1.8652× 10−14

D 1.7551× 10−13 1.9695× 10−13 1.6165× 10−13 1.6831× 10−13

CI 2.1316× 10−14 2.0872× 10−14 8.4377× 10−15 2.2204× 10−15

DIII 5.0139× 10−3 2.6018× 10−3 2.3324× 10−3 4.0099× 10−3

Table 7.6: Testing whether the calculated spectrum has a spectral mirror symmetry by taking
the difference between λn and −λ−n for each of the ten ensembles. It can be seen that up to
small numerical errors, the results agree with a spectral mirror symmetry existing in the classes
AIII, BDI, CII, C, D, DIII and CI while the classes A, AI and AII don’t have a spectral mirror
symmetry. Missing values correspond to finding fewer than four eigenvalues in the range (−4, 0),
as the estimate of N eigenvalues in the range (λ−0, λ0+N) breaks in the negative regime without
the spectral mirror symmetry. All numbers rounded to five significant figures and come from a
single initialisation.
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Class |λ1 + λ−1| |λ2 + λ−2| |λ3 + λ−3| |λ4 + λ−4|
BDI 4.6629× 10−15 3.9968× 10−15 2.1539× 10−14 2.6645× 10−15

CII 3.2280× 10−3 3.1280× 10−3 5.2003× 10−3 2.8588× 10−3

CI 4.7740× 10−15 1.3323× 10−15 1.7764× 10−15 1.3323× 10−15

DIII 4.8405× 10−3 3.1889× 10−3 3.6356× 10−3 3.1382× 10−3

Table 7.7: Testing whether the calculated spectrum has a spectral mirror symmetry by taking
the difference between En and −E−n for each of the four small graphs given in Figure 7.6 in
order to test the average density of states. It can be seen that up to small numerical errors, the
results agree with a spectral mirror symmetry existing in each of the classes as predicted. All
numbers rounded to five significant figures and come from a single initialisation.

The results of calculating the smallest eigenvalue distribution and the density of states through

simulation of the above graphs can then be found in Figures 7.7 to 7.26.

First are the density of states simulations for the ten classes in Figures 7.7 to 7.16. It can

be seen first that all three of the Wigner-Dyson classes are modelled well, with their simulated

average density of states being formed of very small oscillations around the constant value of

one. In all three cases, these oscillations are of the order 10−2. We also note the aforementioned

under-representation of the density of states in the first data point for the class AII graph, which

was one of the reasons for allowing the buffer in the choice of the energy range.

Moving onto the additional seven Altland-Zirnbauer ensembles, the numerics matches the

random matrix predictions well in the range [−1, 1], however, way from here, the accuracy to

the prediction lessons, particularly in the classes CII, D and DIII. These ensembles should show

large oscillations in the density of states but the numerics have oscillations that trend to zero too

quickly, or are out of phase with the analytic predictions. This would suggest in these cases the

second-smallest and third-smallest eigenvalues are not being found as accurately as the smallest

eigenvalue. This is likely in part due to the moderate number of runs that is being averaged

over - as the class CII and DIII are the worst, but they use only 35,000 runs instead of the

150,000 runs used for the class AIII which does have good agreement between the numerics and

the oscillatory analytic prediction even away from 0.

Looking at the smallest eigenvalue distributions in Figures 7.17 to 7.26, very good agreement

is seen between the numerics and the random matrix predictions both for the probability dis-

tribution and the integrated probability distribution - the integrated distributions tend to have

an error in the order of 10−2 or 10−3. Larger errors occur in the probability distribution, but

they are really only significant at the absolute smallest scale when x ≈ 0 in the classes AII and

AIII and the numerics strongly underestimate the true probability - which may be due numerical

errors pushing positive roots falsely onto the negative side of zero, or due to the first root being

on the wrong side of the first value taken in the grid search for roots before the optimisation

routines are run. It should be noted that only 20,000 runs were taken for each class, yet the

agreement with the random matrix predictions is excellent already, and further runs would only

improve it.

With this, we can assume success in realising all of the Altland-Zirnbauer classes, and their

associated ensembles on the Dirac graph, supporting the generalised BGS-Conjecture.
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Figure 7.7: The simulated average density of states for the graph Γ(Z6, {u, α})/Z3 as shown in Figure 7.4, with
the phases taken from Table 7.2. Note the agreement with the predicted constant value of the statistics for the
class A ensemble.
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Figure 7.8: The simulated average density of states for the graph Γ(Z4, {u, α})/Z2 as shown in Figure 7.4, with
the phases taken from Table 7.2. Note the agreement with the predicted constant value of the statistics for the
class AI ensemble.
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Figure 7.9: The simulated average density of states for the graph Γ(D6, {u, α})/Z3 as shown in Figure 7.4, with
the phases taken from Table 7.2. Note the agreement with the predicted constant value of the statistics for the
class AII ensemble.
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Figure 7.10: The simulated average density of states for the graph Γ(Z6, {u, α})/Z3 as shown in Figure 7.4,
with the phases taken from Table 7.2. Note the agreement with the chGUE statistics of the Altland-Zirnbauer
class AIII.
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Figure 7.11: The simulated average density of states for the graph Γ(Z4 ×Z2, {u, α, γ})/Z2 as shown in Figure
7.6, with the phases taken from Table 7.3. Note the agreement with the chGOE statistics of the Altland-
Zirnbauer class BDI.
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Figure 7.12: The simulated average density of states for the graph Γ(Z4 ×Z2, {u, α, γ})/Z2 as shown in Figure
7.6, with the phases taken from Table 7.3. Note the agreement with the chGSE statistics of the Altland-
Zirnbauer class CII.
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Figure 7.13: The simulated average density of states for the graph Γ(Z4, {u, γ})/Z2 as shown in Figure 7.4,
with the phases taken from Table 7.2. Note the agreement with the random matrix statistics of the ensemble
related to the Altland-Zirnbauer class C.
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Figure 7.14: The simulated average density of states for the graph Γ(Z6, {u, γ})/Z3 as shown in Figure 7.4,
with the phases taken from Table 7.2. Note the agreement with the random matrix statistics of the ensemble
related to the Altland-Zirnbauer class D.
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Figure 7.15: The simulated average density of states for the graph Γ(Q8, {u, α, γ})/Z2 as shown in Figure 7.6,
with the phases taken from Table 7.3. Note the agreement with the random matrix statistics of the ensemble
related to the Altland-Zirnbauer class CI.
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Figure 7.16: The simulated average density of states for the graph Γ(D12, {u, α, γ})/Z3 as shown in Figure 7.6,
with the phases taken from Table 7.3. Note the agreement with the random matrix statistics of the ensemble
related to the Altland-Zirnbauer class DIII.
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Figure 7.17: The simulated smallest eigenvalue distribution for the graph Γ(Z6, {u, α})/Z3 as shown in Figure
7.4, with the phases taken from Table 7.2. Note the agreement with the GUE ensemble.
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Figure 7.18: The simulated smallest eigenvalue distribution for the graph Γ(Z4, {u, α})/Z2 as shown in Figure
7.4, with the phases taken from Table 7.2. Note the agreement with the GOE ensemble.
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Figure 7.19: The simulated smallest eigenvalue distribution for the graph Γ(D6, {u, α})/Z3 as shown in Figure
7.4, with the phases taken from Table 7.2. Note the agreement with the GSE ensemble.
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Figure 7.20: The simulated smallest eigenvalue distribution for the graph Γ(Z6, {u, π})/Z3 as shown in Figure
7.4, with the phases taken from Table 7.2. Note the agreement with the chGUE ensemble.
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Figure 7.21: The simulated smallest eigenvalue distribution for the graph Γ(Z4 ×Z2, {u, α, γ})/Z2 as shown in
Figure 7.5, with the phases taken from Table 7.3. Note the agreement with the chGOE ensemble.
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Figure 7.22: The simulated smallest eigenvalue distribution for the graph Γ(Z4 ×Z2, {u, α, γ})/Z2 as shown in
Figure 7.5, with the phases taken from Table 7.3. Note the agreement with the chGSE ensemble.
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Figure 7.23: The simulated smallest eigenvalue distribution for the graph Γ(Z4, {u, γ})/Z2 as shown in Figure
7.4, with the phases taken from Table 7.2. Note the agreement with the random matrix statistics of the ensemble
related to the Altland-Zirnbauer class C.
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Figure 7.24: The simulated smallest eigenvalue distribution for the graph Γ(D6, {u, γ})/Z3 as shown in Figure
7.4, with the phases taken from Table 7.2. Note the agreement with the random matrix statistics of the ensemble
related to the Altland-Zirnbauer class D.
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Figure 7.25: The simulated smallest eigenvalue distribution for the graph Γ(Q8, {u, α, γ})/Z2 as shown in
Figure 7.5, with the phases taken from Table 7.3. Note the agreement with the random matrix statistics of the
ensemble related to the Altland-Zirnbauer class CI.
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Figure 7.26: The simulated smallest eigenvalue distribution for the graph Γ(D12, {u, α, γ})/Z3 as shown in
Figure 7.5, with the phases taken from Table 7.3. Note the agreement with the random matrix statistics of the
ensemble related to the Altland-Zirnbauer class DIII.
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As an extension to finding the minimal graphs showing each of the ten Altland-Zirnbauer

classes, it was stated that Dirac graphs allow all Z2 × Z2-graded groups to be represented on

them as symmetry groups. To verify this further than just with the above examples, we also

look to confirm the second theorem of Section 5.2, Theorem 5.2.3, which showed that a ‘full’

Z2×Z2-graded group could always be used to generate any Altland-Zirnbauer class. The groups

identified to cover this problem are now given in Table 7.8, once the substitutions for the DIII

base symmetry have been taken. Of these, the classes BDI, CII ,DIII and CI have already been

considered above, and can be ignored. For the remaining classes, they can be constructed as Dirac

graphs by using the universal form of the quotient graph for TG = {α, γ} with the phases taken

from Table 7.9. This gives the quotient graph structure in Figure 7.27, which also presents the

chosen subgraph to be used for the vertex expansion - which sits between the graphs in Figures

7.5 and 7.6 in terms of size to slightly speed up computation times here.

This gives the graphs which are posited to be derived from systems with all three of generalised

time-reversal, generalised charge-conjugation and generalised chiral symmetries, yet have only one

of them as a local symmetry.
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Class G U U ∪ αU U ∪ γU U ∪ πU Irreducible Representation

A Z2 ×M4(2) Z8 Z8 × Z2 M4(2) M4(2) eiπ/4 Complex

AII D12 Z3 D6 Z6 D6 Complex

AI Q16 Z4 Q8 Z8 Q8 Complex

AIII Z6 × Z2 Z3 Z6 Z6 Z6 Complex

DIII D12 Z3 D6 D6 Z6 Complex

CI Q8 Z2 Z4 Z4 Z4 Sign

D D12 Z3 Z6 D6 D6 Complex

C Q16 Z4 Z8 Q8 Q8 Complex

BDI Z4 × Z2 Z2 Z4 Z2
2 Z4 Sign

CII Z4 × Z2 Z2 Z2
2 Z4 Z4 Sign

Table 7.8: Minimal examples of Z2 × Z2-graded groups and the associated representations of U to produce
each of the Altland-Zirnbauer ensembles on a Dirac graph, given the requirement that TG = {α, γ}. The group
M4(2) is described by the presentation

〈
u, γ

∣∣u8 = γ2 = 1, γuγ = u5
〉
.

A AI AII D C AIII

ρ(u−1) exp(−iπ/4) −i exp(2iπ/3) exp(2iπ/3) −i exp(2iπ/3)

ρ(αu−1α−1) exp(−iπ/4) i exp(−2iπ/3) exp(2iπ/3) −i exp(2iπ/3)

ρ(γu−1γ−1) exp(3iπ/4) −i exp(2iπ/3) exp(−2iπ/3) i exp(2iπ/3)

ρ(αγu−1γ−1α−1) exp(3iπ/4) i exp(−2iπ/3) exp(−2iπ/3) i exp(2iπ/3)

ρ(α−2) 1 −1 1 1 −i 1

ρ(γ−2) 1 −i 1 1 −1 1

ρ(γα−1γ−1α−1) 1 −i 1 1 i 1

ρ(αγ−2α−1) 1 i 1 1 −i 1

Table 7.9: The phases required on the bonds of the graph given in Figure 7.27 to get each of the classes A, AI,
AII, C, D or AIII as the energy level statistics ensemble.
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Figure 7.27: Deriving the example graphs for the classes A, AI, AII, AIII, C and D on graphs with a four-fold
structure so that TG = {α, γ}. See Table 7.9 for what phases should be chosen for each of the bonds to get the
different Altland-Zirnbauer classes.
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The same run-down of numeric tests can be applied to these graphs as were applied to the

previous graphs.

First, the first test for chaos according to Theorem 6.1.11 is shown in Table 7.5, showing that

the requirement for all eigenvalues but one to lie within the unit circle is kept. The spectral

mirror symmetry check for these graphs is then given in Table 7.11, and the spectral mirror

symmetry is indeed broken in the classes A, AI and AII, where |λn − λ−n| > 0.1 which is a

significant divergence from the mirror symmetry requirement of λ−n = −λn. On the other hand,

this relation holds to within an at most order 10−12 error for the classes AIII, C and D which is

well within the allowance for numerical error, and the spectral mirror symmetry exists.

Class |η1| |η2| Class |η1| |η2|
A 1.0000 0.9253 AIII 1.0000 0.91721

AI 1.0000 0.92764 D 0.99999. 0.92028

AII 1.0000 0.91775 C 1.0000 0.91247

Table 7.10: Checking the ordered eigenvalues η1 ≥ η2 ≥ · · · ≥ ηN of the Markov process matrix
Tij =

∣∣S2
ij

∣∣ derived from the scattering matrix for each of the example four-part graphs identified
in Figure 7.27 for the classes A, AI, AII, AIII, C and D. The first chaos requirement is that
|η1| = 1 and |η2| < 1, which holds in each case. All numbers rounded to five significant figures
and come from a single initialisation.

Class |λ1 + λ−1| |λ2 + λ−2| |λ3 + λ−3| |λ4 + λ−4|
A 0.60644 0.26655 0.57989 1.0458

AI 1.9616 2.2080 0.52603 0.10947

AII 0.17889 0.31438 0.318891 0.26556

AIII 2.1126× 10−12 2.1037× 10−12 2.1134× 10−12 2.0899× 10−12

C 1.4155× 10−14 3.9080× 10−14 1.6431× 10−14 7.9936× 10−15

D 3.0531× 10−15 1.4322× 10−14 3.7748× 10−14 1.4655× 10−14

Table 7.11: Testing whether the calculated spectrum has a spectral mirror symmetry by taking
the difference between λn and −λ−n for the four-part version of the graphs for the ensembles A,
AI, AII, AIII, C and D. It can be seen that up to small numerical errors, the results agree with
a spectral mirror symmetry existing in the classes AIII, C and D while the classes A, AI and AII
don’t have a spectral mirror symmetry. All numbers rounded to five significant figures and come
from a single initialisation.
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It is now possible to consider the results of simulating the characteristic distributions of the

random matrix ensembles through the defined graphs. In general, we only take the results of the

calculations of the smallest eigenvalue distribution, as the density of states calculations on these

graphs are too computationally intensive to do large quantities. These distributions can be can

be seen in Figures 7.28 to 7.33, and it can be immediately noted that while very good results are

found in the classes AI, AIII, C and D, the results are significantly poorer in the classes A and

AII.

First, we note that there is a small underestimate of the density of states for the class A

in the range (−0.1, 0.25), as seen in the top left hand corner of Figure 7.28. This is possibly

a fragment of the finite size of the graph, though no others have occurred in any of the other

systems studied here. This underestimate in the density of states however, has the knock-on

effect of underestimating the smallest eigenvalue distribution probability for the same range, and

then overestimating the probability in the rest of distribution due to the normalisation. This has

the effect of erroneously matching the simulation estimate with the class AII statistics for the

smallest eigenvalue distribution, particularly in the integrated distribution case. This significant

error can happen in the integrated case, as all that it counts is the cumulative distribution of the

data, so oscillations and deviations lower down can be hidden quickly if they smooth out when

summed together. This makes the importance of not relying on only the integrated distributions

incredibly clear, as it is only when the probability distribution is checked that the errors near

zero are seen. We note however, that plotting the level spacing distribution away from zero, good

agreement with the class A prediction is seen; with the conformation that the spectral mirror

symmetry has been broken in Table 7.11, there is then reasonable evidence that the system does

sit in the class A as predicted.

Worse, in the class AII in Figure 7.30, there is a large over-estimate of the first eigenvalue

occurring at x ≈ 0.5, which has the knock-on effect of causing the underestimate of all other

values due to the normalisation of the distribution. The poor agreement with the random matrix

prediction is surprising as the structure of the graph and the cut-bond phases are exactly the

same as the class D graph, except for swapping the phases between the αΓ and γΓ, and the class

D graph gives excellent agreement. Plotting the density of states for the graph around zero, it is

seen that it is oscillatory rather than constant - this is an issue, as it is unlikely it is an artefact of

the size of the graph. However, plotting the density of states far from zero, the oscillations have

disappeared, and the constant density of states is well approximated by the graph - as is the level

spacing distribution when that is calculated. It is possible that the issues close to zero are from

including γΓ(G,SU ∪ α, γ) and πΓ(G,SU ∪ α, γ), without sufficiently killing off the effects of the

spectral mirror symmetry on the first eigenvalue distribution. However we note that the spectral

mirror symmetry is provably broken given the check in Table 7.11, and the spacing distribution

does still match the AII class well.

Overall though, we conclude a success in showing all the Altland-Zirnbauer classes can be

realised out of ‘full’ Z2 × Z2-graded groups where A 6= ∅, C 6= ∅ and P 6= ∅.
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Figure 7.28: The results of the numerical simulations for the graph from Figure ??, taking the phases from
Table 7.9 for a predicted Altland-Zirnbauer class of A, and GUE statistics. The underestimate of < d(E) >H
in the range (−0.1, 0.25) causes a large error in the smallest eigenvalue distribution, even causing it to look
like the AII class in the integrated distribution. However, the level spacing distribution clearly shows the GUE
statistics.
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Figure 7.29: The results of the numerical simulations for the graph from Figure 7.27, taking the phases from
Table 7.9 for a predicted Altland-Zirnbauer class of AI, and GOE statistics.

172



−1.0 −0.5 0.0 0.5 1.0

λ

0.5

1.0

1.5

2.0

<
d(
λ)
>
H

Average Density of States,
72804 Eigenvalues

Class AII

Sim.

1000.0 1000.5 1001.0 1001.5 1002.0 1002.5 1003.0

λ

0.50

0.75

1.00

1.25

1.50

1.75

<
d(
λ)
>
H

Average Density of States,
59801 Eigenvalues

Class AII

Sim.

0.0 0.5 1.0 1.5 2.0

x

0.00

0.25

0.50

0.75

1.00

1.25

P
m
in

(x
)

Smallest Eigenvalue Distribution,
10000 Runs

Class A

Class AI

Class AII

Sim

0.0 0.5 1.0 1.5 2.0

x

0.0

0.2

0.4

0.6

0.8

1.0

I m
in

(x
)

Integrated Smallest Eigenvalue Distribution,
10000 Runs

Class A

Class AI

Class AII

Sim

0.0 0.5 1.0 1.5 2.0

x

−0.2

0.0

0.2

E
rr
or

Error in Smallest Eigenvalue Distributions,
10000 Runs

∆Pmin(x)

∆Imin(x)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

s

0.00

0.25

0.50

0.75

1.00

1.25

1.50

P
(s

)

Eigenvalue Spacing Distribution,
1001 Spacings

Class A

Class AI

Class AII

Sim.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

s

0.0

0.2

0.4

0.6

0.8

1.0

I(
s)

Integrated Spacing Distribution,
1001 Spacings

Class A

Class AI

Class AII

Sim.

0.0 0.5 1.0 1.5 2.0 2.5

s

−0.5

0.0

0.5

E
rr
or

Error in the Spacing Distributions, 1001
Spacings

∆P (s)

∆I(s)

Figure 7.30: The results of the numerical simulations for the graph from Figure 7.27, taking the phases from
Table 7.9 for a predicted Altland-Zirnbauer class of AII, and GSE statistics. Due to the oscillatory form of
the density of states around zero, the smallest eigenvalue statistics are poor, but given this behaviour vanishes
away from zero, and the constant < d(E) >H is correctly estimated, then the level spacing distribution gives
a good estimate for the correct class AII. The poorness of the smallest eigenvalue distribution is surprising, as
the graph is generated by taking the graph for the class D and interchanging α and γ, with the class D version
giving very good statistics.
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Figure 7.31: The results of the numerical simulations for the graph from Figure 7.27, taking the phases from
Table 7.9 for a predicted Altland-Zirnbauer class of AIII, and chGUE statistics.
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Figure 7.32: The results of the numerical simulations for the graph from Figure 7.27, taking the phases from
Table 7.9 for a predicted Altland-Zirnbauer class of C, and the associated random matrix ensemble statistics.
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Figure 7.33: The results of the numerical simulations for the graph from Figure 7.27, taking the phases from
Table 7.9 for a predicted Altland-Zirnbauer class of D, and the associated random matrix ensemble statistics.
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8. Conclusions and Outlook

The intent at the start of this thesis was to ascertain if the techniques of working with systems

with unitary commuting symmetries could potentially decrease the difficulty of realising the

Altland-Zirnbauer ensembles in the lab. These methods take a system without unitary commuting

symmetries, and which has a fixed global form of time-reversal T̂ and charge-conjugation Ĉ
symmetry so that it sits in one of the Altland-Zirnbauer classes BDI, CII, CI or DIII. Application

of unitary commuting symmetries to the system, and moving to generalised time-reversal and

charge-conjugation symmetries, then causes the spectra to split into sub-spectra which can have

a different Altland-Zirnbauer class to the base system without symmetries. It was asked that

given any form of initial T̂ and Ĉ, so to maximise the number applicable systems which might

be considered for testing, if it was possible to find a set of symmetry groups G to apply to the

system such that a subspace with each ensemble of Altland and Zirnbauer statistics existed.

It can be stated, that based on the results of this thesis, that it is indeed possible to find such

symmetry groups. Their existence and form were derived and proved in Chapter 5; while numeric

verification that they do indeed generate systems with each of ten ensembles in their statistics

was given for the specific example system of the Dirac Graph in Chapter 7.

As a review, the first three chapters covered the theory behind how quantum symmetries,

quantum chaos and random matrix statistics are linked.

In Chapter 2, the definitions of graded groups and the structure of their corepresentations

were discussed. The corepresentations varied from standard unitary representations in that they

could contain anti-linear and anti-unitary elements. Two types of graded group were considered

- the Z2-graded groups and the Z2 × Z2-graded groups. The corepresentations of the Z2 × Z2-

graded groups had the extra structure of being a super-vector space, so that elements could

be grading-preserving or grading-inverting. This led to the definition of its super-commutant,

which was identified as being one of the ten real super-division algebras by the Altland-Zirnbauer

Tenfold Way. A number of methods of identifying the class of a corepresentation were discussed,

including for projective corepresentations.

The notion of quantum symmetries as transforms of the projective Hilbert space preserving the

characteristic properties of the quantum system was then introduced in Chapter 3. Identifying

the symmetry group as a Z2 × Z2-graded group, the symmetries could be linked to operators

through a projective corepresentation. This allowed physical interpretations of the symmetry

operators to be made - they were either geometric, or generalised time-reversal, generalised charge-

conjugation, or generalised chiral symmetries. The existence of geometric symmetries caused the

energy level spectrum to split into independent sub-spectra, and the system into independent
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sub-systems. We noted that in the subspaces, the symmetry operators could only be local time-

reversal, charge-conjugation and chiral operators, and that the local Hamiltonian had to be a

member of the local symmetry group’s super-commutant. This linked the classification of the

structure of the Hamiltonian to the classification of a corepresentation according to the Altland-

Zirnbauer Tenfold Way, and provides the gateway to linking quantum systems to random-matrix

theory. The empirical evidence for the correspondance between the statistics of certain quantum

systems and random matrix theory was then discussed, and the necessary requirement for the

underlying classical system to be chaotic given according to the BGS-conjecture.

Chapter 4 then discussed the ten random matrix ensembles that a chaotic quantum system’s

statistics could match, describing the characteristic forms of their densities of states, spacing

distributions and smallest eigenvalue distributions.

Understanding the theory behind how symmetry groups create subspaces with random matrix

statistics matching the Altland-Zirnbauer class of a corepresentation, and having methods to

predict which statistics will be found for which symmetry group, the main question of the thesis

could begin to be answered. This started with defining a search algorithm to identify all Z2×Z2

graded groups in Chapter 5. By applying the classification methods to each identified Z2 × Z2-

graded group, an example of a symmetry group producing a subspace with the desired statistics

was found for each Altland-Zirnbauer class. This gave theoretical proof of the central question

of the thesis.

Testing the theory from Chapter 5 with numerical simulations was the aim of Chapters 6 and

7. First, the quantum graph - already having been used to build systems with limited forms of

symmetry groups by Joyner, Müller and Sieber - was introduced in Chapter 6 as a model for

a system with time-reversal type, but not charge-conjugation or chiral type symmetries. The

previous definitions of symmetry on a quantum graph were supplanted with the most general

definition of symmetry on a quantum graph, and an algorithm for identifying a quantum graph

symmetric under a general Z2-graded group given. The special structure of these graphs was

described, and the predictions of finding GUE, GOE and GSE statistics on the systems identified

by Chapter 5 tested. Good agreement was found, marking the first stage of numeric testing of

the predictions.

To test the rest of the predictions, the Dirac graph was introduced as a model. Following

work in the literature on defining their behaviour under time-reversal, their behaviour under

charge-conjugation was studied. Identifying the boundary conditions for the Dirac graph to

sit in the class DIII, the model was shown to be an applicable system for testing the central

theorem of the thesis. The definition of a symmetric Dirac graph was found in the most general

sense, and another algorithm given for taking a Z2×Z2-graded group and producing a matching

symmetric Dirac graph. Applying this to the symmetry groups identified in Chapter 5, allowed

the simulation of the characteristic distributions for the random matrix ensembles. Numerical

verification of finding the seven additional Altland-Zirnbauer ensembles in these graphs was then

given, completing the the goals of the thesis.

In terms of outlook, there are several obvious points. First is clearly experimental verification

of these results in the lab. For the systems described in Chapter 6, it is already known that the

base non-magnetic quantum graph can be built in the lab as a microwave network, [83]. This

has been used to build the quantum graph identified by Joyner, Müller and Sieber, [92], in the
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lab, [113, 133, 134, 135]. We note that there is the apparent issue that the graphs discussed

in Chapter 6 require the use of a magnetic potential on the wires to break the time-reversal

symmetry, however this is something that microwave networks have not been realised with, or

with an equivalent of to date. This would be an issue if it were not for the fact that switching to

a microwave network allows the time-reversal symmetry to be broken by working with microwave

circulators, [107], which break the symmetry by allowing travel down the wires in only one

direction. These uni-directional graphs have been used to find GUE statistics, [107], and very

recent work, [3], has identified a specific construction of a G = Z4, U = Z2 quantum graph with

GSE statistics through including multiple copies of a sub-graph with the direction of travel flipped

between different copies to create and control the generalised time-reversal symmetry. We note

the similarity to the structure of the quantum graphs with Z2-graded symmetry groups discussed

in Chapter 6, and posit that this is a sufficient replacement on the microwave network for the

magnetic potential. That is, when constructing the microwave network, directions of travel are

picked for the wires in the unitary sub-graph, and then everywhere where the magnetic potential

would be flipped, the direction of travel is flipped instead. This, we note, ties into the condition

on the forms of the vertex scattering matrices which can also break the time-reversal symmetry,

as enforcing uni-directionality on the bonds imposes form on the vertex scattering matrices.

Having a way to build generalised time-reversal symmetries into a quantum graph, there is

then the question of building Dirac graphs in the lab with generalised time-reversal and gen-

eralised charge-conjugation symmetries. We have already discussed how a Dirac graph may be

re-interpreted as a quantum graph with doubled bonds, and using the idea of switching from

magnetic bonds to uni-directional microwave wires gives a possible way to realise the random

matrix ensembles of the Altland-Zirnbauer classes in the lab. Switching the focus from magnetic

potentials to the vertex scattering matrices is also highly relevant and consistent with the general-

ised charge-conjugation case, as the enforcement of an element g in G being of charge-conjugation

type and not time-reversal type is all through the relation between the vertex scattering matrices

σ(e) and σ(g). Thus, there is promise in using microwave networks to implement the graphs

discussed in Chapter 7 through the use of carefully modulated vertex scattering matrices. This

will likely involve the use of a mix of circulators and methods of rotating phases within the wires

- which will raise the question of how ensembles of graphs can be easily generated - but it is

hopefully feasible to realise the systems described in Chapter 7 in the lab with this methodology.

Even if it isn’t, it is hopeful that the techniques for constructing systems with generalised time-

reversal and charge-conjugation symmetries could be applied to a more suitable model to see the

Altland-Zirnbauer classes in the lab.

Outside of experimental verification, there are a number of possible applications of the work

done here. First is the use of the graphs described within as a verification tool for chaotic

quantum systems - that is, given a system, its symmetry group can be found, and then a Dirac

graph showing the same statistics can be generated. This follows from the fact that the statistics

of the system are dependent only on the symmetry group, and it would allow for results checking,

or if a particular property was identified in the statistics of a system with a particular symmetry

group, the equivalent Dirac graph could be identified. This would be of particular use if the other

system was hard to compute results for, as the numerics needed to work with Dirac graphs are

fairly simple.
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The other thing to do would be to complete the semi-classical analysis of magnetic quantum

quotient graphs. This was started in Appendix D with the periodic orbit approximation of the

density of states being found and an algorithm for the speeding up of the calculation of the

periodic orbits of symmetric graphs being described. Further work would find the form factor

approximations and apply them to the graphs discussed in this thesis. This links into the work

done in [27, 28, 65, 102] on the spectral statistics of quantum graphs and their spin counterparts.

There is also the question of applying these results to areas of study outside of the stand-

ard field of Hermitian quantum chaos. The Altland-Zirnbauer classes are essential to studies in

condensed matter, and for super-conductors and topological-insulators insulators in particular,

[14, 37, 39, 143]. The symmetry class of the system defines important properties of the system

- including whether the system has an energy gap, whether two systems are topologically equi-

valent, universal conductance frequencies, the Chern winding number and creates the periodic

table of topological insulators among other things. Due to to periodic table of topological insu-

lators, understanding the symmetry classification also means understanding the limits of what

topological insulators can be built, and theoretically knowing what symmetry groups cause which

symmetry classes gives more information on where examples for different classes of topological

insulator can be searched for. This gives application to the tables in Appendix E in particu-

lar. It should also be noted that in many ways the field of condensed matter has pushed the

study of symmetric systems further than is used in random matrix theory, and this has led to

a disconnect between the areas that could need correcting. It is essential then to consider what

techniques developed in condensed matter could benefit random matrix theory, and whether key

questions of random matrix theory have in fact been previously answered in the condensed mat-

ter field. Examples of condensed matter work into the theory surrounding the Altland-Zirnbauer

classification include studies of the interaction of the Altland-Zirnbauer classification with crystal

structure, [145], and CPT symmetries, [81]; while papers which include more ‘pure’ or abstract

theory surrounding the theory of corepresentations include [37, 69]. This also includes additional

research into the experiments allowed for in condensed matter theory, and the possibilities for

testing random matrix predictions on them.

Finally, we note that the classification of Altland and Zirnbauer of Hermitian systems can be

considered to sit inside a classification of thirty-eight different types of non-Hermitian system,

[19, 95]. This classification is still based in the classification of the system’s symmetries but has

an expanded number of classes due to the fact H∗ 6= HT so there are more possible behaviours for

the symmetries within relation to the Hamiltonian, creating extra classes. This means additional

random matrix ensembles are possible in these systems. These non-Hermitian systems are seeing

a large amount of current study - see the many examples cited in [95] - as they make up dissipative

equivalents of Hermitian systems, [87], which are more physical than those with perfect closure

of the phase space; and several models in condensed matter, [95], and the study of symmetry in

these models is every bit as important as for their Hermitian counterparts as symmetry encodes

information about all of the same properties as it did for the Hermitian case. There is then a

question as to whether it would be possible to build a variant on quantum graphs that could

be used to demonstrate the non-Hermitian random matrix ensembles - we posit that given that

self-adjointness was enforced on the graph through the vertex boundary condition equations, a

different choice of boundary condition equation could create non-Hermitian graphs. This would

then require studying the process of sub-space creation and the symmetry decomposed basis
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for the non-Hermitian case, and the effect on creating the local symmetry groups. However, if

these example graphs are found, then they should allow every possible universal random matrix

ensemble for chaotic quantum systems to be realised, up to some special cases. This would be

very powerful, as it would give a tool for realising every random matrix ensemble with symmetry

connections, massively simplifying the search for example systems.
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A. Group Theory

We give here a primer on the abstract field of group theory, a topic whose basics are covered in

[53, 86, 99], while a broader and more detailed covering of the field can be found in [138].

In short, Group Theory studies the structure behind sets with multiplication rules. By lifting

from concrete sets with multiplication defined on them - such as the nth roots of unity, or n× n
invertible matrices - to studying the multiplication rules as abstract objects of their own, common

structures can be identified, and proofs given at a general level that can then be applied to specific

examples.

We begin with the formal definition of a group as a set with a multiplication rule that has an

element that acts trivially, always returns elements within the set, is invertible, and is independent

in the order which pairs in an expression are multiplied.

Definition A.0.1. A group (G, ·) is the set G of elements with a multiplication rule · : G×G→ G

that obeys the properties

Identity: ∃e ∈ G such that e · g = g · e = g ∀g ∈ G

Inverse: ∀g ∈ G, ∃g−1 ∈ G such that g · g−1 = g−1 · g = e

Closure: ∀g1, g2 ∈ G, g1 · g2 ∈ G.

Associativity: g1 · (g2 · g3) = (g1 · g2) · g3 ∀g1, g2, g3 ∈ G.

Given some group elements, combinations of their multiples g1g2 · · · ∈ G will be known as a

word. There will always be an infinite number of words which can be constructed from the group

elements, but by applying the multiplication map to turn pairs of elements into one element, it

can be seen that many words are in fact equivalent - for example, if g1 · g2 = g3 and g3 · g3 = e,

then the words g1g2g1g2 ≡ g3g3 ≡ e are all the same. This allows the set of unique words which

can be written using elements of G without being equivalent to be created, this set is exactly the

set of elements of G. In many cases, G will contain an infinite number of elements, but we will

be concerned only with those groups G that contain a finite amount.

Definition A.0.2. Let G be a group, if |G| <∞ then G is a finite group.

The fact that the set of unique words describes the element set of a group can be used to define

a group from a subset of elements. Taking a subset S of G as what is known as a generating set,

and defining all of the relations between them under multiplication allows all the unique words

which can be written using them to be found, which then describes a unique group based on this
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multiplication rule. The method of defining a group in this manner is known as taking the group

presentation.

Definition A.0.3. A generating set, is a subset S ⊂ G, such that every element of G can be

written as words using only elements of S and their inverses, ∀g ∈ G, g = a1a2 . . . an where for

each ai, either ai ∈ S or a−1
i ∈ S.

If |S| = min ({|Si| | Si generates G}) then S is a minimal generating set, however it is possible

to choose a generating set larger than the minimal.

Definition A.0.4. Given a generating set S of G, the relations R for S is the set of words

form-able from S and S−1 that are equal to the identity,

R =
{
a1a2 · · · | ai ∈ S or a−1

i ∈ S, a1a2 · · · = e}.

Definition A.0.5. Let G be a group, then given a generating set S of G and the relations R of

S the group presentation of G is 〈S|R〉.

To read a group presentation, all possible words using generators S are taken, using the

relations to simplify the generated elements and then removing any duplicates from the set.

Example A.0.6. Simple group presentations include,

Trivial Group = 〈e|〉 = {e}
C2 =

〈
u
∣∣u2 = e

〉
= {e, u}

Cn = 〈u|un = e〉 =
{
e, u, . . . , un−1

}
K =

〈
u, v
∣∣u2 = v2 = e, uv = vu

〉
= {e, u, v, uv}

D3 =
〈
u, v
∣∣u3 = v2 = e, vu = u2v

〉
=

{
e, u, u2, v, uv, u2v

}
There arises the issue that two different presentations can describe the same group, for example〈

u
∣∣u6 = e

〉
= C6 =

〈
a, b
∣∣a3 = b2 = e, ab = ba

〉
. Group homomorphisms will map one group to

another, and isomorphisms will identify identical group structures.

Group homomorphisms are functions between two groups that is compatible with each of their

multiplications.

Definition A.0.7. If (G, ·), (G′,×) are groups, a group homomorphism φ : G→ G′ is a function

such that

φ(g1)× φ(g2) = φ(g1 · g2) ∀g1, g2 ∈ G.

If φ is both injective and surjective, it is a group isomorphism and G ∼= G′.

More general functions f : G → C can also be defined on a group that are not necessarily

homomorphisms. While there are no universal properties that can be described for these f , there

are universal properties for the sums of their values over all of G. That is, left multiplying the

variable in f by h leaves the sum fixed.

Theorem A.0.8. Let G be be a finite group and f : G→ C a function. Then,∑
g∈G

f(g) =
∑
g∈G

f(hg) ∀h ∈ G.
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This is a side-effect of the closure of G under multiplication combined with summing over all

of G - left-multiplying the input variables by h merely rearranges the order the sum is taken,

which is why this is known as the Rearrangement Theorem.

Given a group, subsets of its elements can also fulfil the group definition by themselves, and

are known as subgroups.

Definition A.0.9. A subgroup H ⊂ G is a subset H of elements of G with the same multiplication

rule as G, with (H, ·) also meeting the Identity, Inverse and Closure requirements of being a group.

If |H| 6= 1, |G| then H is a proper subgroup.

Left multiplication of H by an element g ∈ G gives a subset of G’s elements called the left

coset of H in G.

Definition A.0.10. Let G be a group and H ⊂ G a subgroup, then the left coset of H in G for

g ∈ G is the set

gH = {g′ ∈ G | ∃h ∈ H, g′ = gh}

The left cosets have a number of properties, including the fact that they can be used to

partition G into subsets, each of which can be related back to the original subgroup by a single

element.

Proposition A.0.11. Let G be a group and H ⊂ G a subgroup. Then the following holds for

the left cosets of H,

1. All left cosets of H have the same size, ∀g ∈ G, |gH| = |H|.

2. Every element g ∈ G appears in a coset of H, ∀g ∈ G ∃g′ ∈ G such that g ∈ g′H

3. Two cosets g1H, g2H are either non-intersecting or are equal, g1H ∩ g2H 6= ∅ ⇐⇒ g1H =

g2H.

4. The unique cosets of H partition G, there exists a subset in G,

T = {gi ∈ G | giH ∩ gjH = ∅, ∪igiH = G}, whose union of cosets of H is G. It is usual

to choose g0 = e, and T is a transversal of G for H while [G : H] = |T | is called the index

of H in G.

Proof.

1. There is a homomorphism between H and gH given by φ(h) = gh, with an inverse φ−1(h) =

g−1h so that it is bijective. Thus |gH| = |H| ∀g ∈ G.

2. e ∈ H =⇒ g ∈ gH.

3. Assume that g1H ∩ g2H 6= ∅ but g1H 6= g2H so there ∃y ∈ g1H, y /∈ g2H without loss of

generality.

Then, ∃h1, h2, h
′
1 ∈ H such that g1h1 = x = g2h2 and y = g1h

′
1. As H obeys the require-

ment of group inverses, ∃h3 ∈ H such that h1 = h′1h3 and yh3 = x or that y = xh−1
3 .

Then y = g2h2h
−1
3 = g2h4 ∈ g2H which is a contradiction. Thus, the original statement

g1H ∩ g2H 6= ∅ ⇐⇒ g1H = g2H holds.
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4. We prove by construction, applying parts 2 and 3.

Order the elements of G =
{
g0 = e, g1, . . . , g|G|

}
, and start with T = {e}, P = H. Then

consider each of the gi in turn. If gi ∈ P , move onto gi+1. If gi /∈ P then take T = T ∪ gi
and P = P ∪ giH.

Once g|G| has been checked, then P = ∪t∈T tH and P a partition of G with T as its

transversal of G.

Corollary A.0.12. Let G be a finite group with subgroup H and transversal T , then G can be

written as

G =
⋃
t∈T

tH.

Element conjugation is another method to partition a group; this starts with the definition of

the conjugate of one element by another.

Definition A.0.13. For g, x ∈ G, the conjugate of g by x is gx = xgx−1.

This can be used to define the equivalence relation

g1 ∼ g2 ⇐⇒ ∃x ∈ G such that g2 = gx1

which then creates the conjugacy classes of the group G, as all equivalence relations create

equivalence classes.

Definition A.0.14. The conjugacy class Cg for g ∈ G is the set of elements of G conjugate to

g,

Cg = {g′ ∈ G | g ∼ g′}

and it is by definition invariant under conjugation,

g′x ∈ Cg ∀g′ ∈ Cg, x ∈ G

Some special subgroups of G are invariant under conjugation, and are called normal subgroups.

They will be essential for defining the groups with additional structure in Chapter 2.

Definition A.0.15. A Normal Subgroup N / G is a subgroup of G that is invariant under

conjugation by G,

∀n ∈ N, g ∈ G, ng ∈ N.

The cosets of N are now unions of the conjugacy classes of G.

A multiplication rule can be put onto cosets of a normal subgroup to form their own group,

known as the quotient group. This group will describe the structure around N that is built into

G.

Definition A.0.16. Let G be a finite group and N / G a normal subgroup, giving a transversal

T for the cosets of N in G, G = ∪t∈T tN . Then the quotient group G/N is defined on the cosets
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{tN | t ∈ T} with the multiplication rule · so that

(t1N) · (t2N) = (t1t2)N

The order is the index of N in G, |G/N | = [G : N ].

Normal subgroups, quotient groups and homomorphisms are all highly related in a way that

is described by the First Isomorphism Theorem.

Theorem A.0.17. Let G,G′ be groups and φ : G→ G′ a group homomorphism. Then,

� ker(φ) / G

� im(φ) ⊂ G′

� im(φ) ∼= G/ ker(φ)

There exist further isomorphism theorems described in [138] but they are not relevant here.

Finally, direct product and semidirect product groups give a way to combine two groups to

form a bigger group. First, the direct product group is defined by taking all possible pairs (g1, g2)

of elements with g1 ∈ G1 and g2 ∈ G2 and defining the multiplication as occuring on ech element

of the pair separately.

Definition A.0.18. Let (G1, ·), (G2,×) be two finite groups. Then their direct product group

G1 ×G2 is defined as ({(a, b) | a ∈ G1, b ∈ G2}, ∗) with the multiplication rule

(a1, b1) ∗ (a2, b2) = (a1 · a2, b1 × b2).

It has order |G1 ×G2| = |G1||G2|.

There are two ways of defining the semidirect product - the inner and out semidirect product.

The inner semidirect product takes a group and recognises when it is a semidirect product of two

subgroups; the outer semidirect product group uses two groups and a homomorphism to define a

new group which is the semidirect product of the base group.

Definition A.0.19. Let G be a group and N, K be two subgroups of G such that N is normal.

Then if,

� N ∩K = {e}, so the only common element in the group is the identity

� G =
⋃
k∈K kN , so that K provides a transversal of N in G.

G is a semidirect product of N by K and G = N oK.

Examples of semidirect products include the dihedral groups, Dn = Zn o Z2, and the altern-

ating groups on four elements, A4 = Z2
2 o Z3. The outer semidirect product does the inverse of

the inner semidirect product and starts with the subgroups and defines their supergroup through

the action of K on N :
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Definition A.0.20. Let N, K be groups and let θ : K → Aut(N) be a homomorphism. Then the

outer semidirect product group G = N oθ K is defined as the set of ordered pairs (n, k) ∈ N ×K
with the bilinear operator · defined as

(n1, k1) · (n2, k2) = (n1θ(k1)n2, k1k2)

There are many useful properties explored for the semidirect product group in [138]. The key

one in this thesis will be it application to splitting group extensions, as discussed in Section 2.4.
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B. Z2-Graded Vector Spaces and Algebras

Here we extend the concepts of linear algebra to vector spaces and algebras that have been graded

to form the super vector spaces and super algebras needed to describe the corepresentations of

Z2 × Z2-graded groups for the Altland-Zirnbauer Tenfold Way as per Chapter 2. More detailed

discussion is given in [93, 117, 165] which is where the material for this appendix is drawn from.

B.1 Z2-Graded Linear Algebra

We begin with the definition of graded vector spaces and their homomorphisms. In all cases,

the descriptor ‘super’ means that the relevant object has had a Z2-grading put on it. For vector

spaces this takes the following form:

Definition B.1.1. Let V be a vector space over the field K. Then V permits a Z2-grading and

is a super-vector space if and only if

V = V 0 ⊕ V 1

with V 0, V 1 respectively the even and odd subspace. V comes with the parity operator,

PV v =

v v ∈ V 0

−v v ∈ V 1

If V 0 and V 1 have finite dimensions m,n respectively so that V 0 ∼= Km and V 1 ∼= Kn then

V may be denoted as Km|n.

Vectors that live entirely in one of the subspaces are then known as homogeneous vectors,

and the subspace of V they sit within can be defined by their degree,

|v| =

0̄ v ∈ V 0

1̄ v ∈ V 1

, PV v = (−1)|v|v

which as indicator form of the parity operator PV .

When it comes to transformations between super-vector spaces, both graded and ungraded

homomorphisms between super-vector spaces exist:

Definition B.1.2. Let V,W be super-vector spaces, the space Hom(V,W ) of ungraded homo-

morphisms between V and W is the set of homomorphisms between V and W when considered
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as un-graded spaces that also commute with the parity operators of V,W ,

Hom(V,W ) = {T ∈ Hom(Vungraded,Wungraded) | TPV = PWT}

Definition B.1.3. Let V,W be super-vector spaces, the space Hom(V,W ) of Z2-graded homo-

morphisms between V and W is given by

Hom(V,W )0 = Hom(V 0,W 0)⊕Hom(V 1,W 1)

Hom(V,W )1 = Hom(V 0,W 1)⊕Hom(V 1,W 0)

so that Hom(V,W )0 ∼= Hom(V,W ) preserves the parity, and Hom(V,W )1 inverts it.

Usefully, if the bases for V,W are given in terms of the bases of V 0, V 1,W 0,W 1 as
(
V 0 V 1

)T
,(

W 0 W 1

)T
then Hom(V,W )0 and Hom(V,W )1 have the block-diagonal and block-off diagonal

forms

T ∈ Hom(V,W )0 ⇒ T =

A 0

0 B

, T ∈ Hom(V,W )1 ⇒ T =

 0 C

D 0

.
We also note that in the case W = V , and all the elements are invertible, then Hom(V, V ) has

the special name of the set of graded automorphisms, Aut(V ).

Tensor products of super-vector spaces can be defined:

Definition B.1.4. Let V,W be super-vector spaces, then the tensor product is

V ⊗W = {(v, w) | v ∈ V,w ∈W} with

(V ⊗W )0 = (V 0 ⊗W 0)⊕ (V 1 ⊗W 1)

(V ⊗W )1 = (V 0 ⊗W 1)⊕ (V 1 ⊗W 0)
, |(v, w)| = |v|+ |w|

The grading on V ⊗ W then depends on whether the homogeneous elements v, w of V,W

making up v ⊗ w have the same degree or not - if they do, |v ⊗ w| = 0 and the element is even;

if they don’t, |v ⊗ w| = 1 and the element is odd.

The major change from going liner algebra to super liner algebra is that commutativity in its

strongest sense is lost. Instead it is necessary to define super commutation, where the relation

between a set of operations and the same set of operations done in reverse depends on which of

the even and odd subspaces the homogeneous elements involved sit within. The first occurrence

of this is in the tensor product, where the isomorphism between V ⊗ W and W ⊗ V is not

v ⊗ w → w ⊗ v but

w ⊗ v = (−1)|v||w|v ⊗ w.

This is the form of expression which will be seen to replace all forms of commutation in linear

algebra, with the addition of the (−1)|v||w| often termed the ‘Koszul sign rule’, which will appear

commonly on super-objects.

There is now sufficient apparatus defined to introduce the super algebra, or Z2-graded algebra,
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Definition B.1.5. Let k be a field, and A be a super-vector space over k. Then equipping A with

the bilinear operator · : A ⊗ A → A, a1 · a2 = a1a2 forms the super-algebra with the grading of

homogeneous elements behaving under multiplication as

|a1 · a2| = |a1|+ |a2|.

The behaviour of the common properties of algebras - associativity, commutativity, centers,

tensoring, divisibility by non-zero elements, modules and simpleness - can be checked under

the shift to super-algebras. Associativity remains a possible property of super-algebras without

change:

Definition B.1.6. Let A be a Z2-graded algebra, if

(a1 · a2) · a3 = a1 · (a2 · a3) ∀a1, a2, a3 ∈ A

then A is an associative Z2-graded algebra.

However, as would be expected, commutation again becomes super-commutation between

elements, and the Koszul sign rule then reappears.

Definition B.1.7. Let A be a super-algebra. Let a, a′ ∈ A be elements, if

a · a′ = (−1)|a||a′|a′ · a

then a and a′ super-commute. If all pairs a, a′ ∈ A super-commute, then A is a super-commutative

algebra; otherwise the center Z(A) =
{
a ∈ A | a · a′ = (−1)|a||a′|a′ · a ∀a′ ∈ A

}
of A can be con-

sidered, and is defined as the subset of elements which do super-commute with all other elements

of A. If A is super-commutative, then the center equals the algebra, Z(A) = A.

Tensor products on super-algebras also gain contribution from the Kozul sign rule:

Definition B.1.8. Let A,A′ be super-algebras, then their graded tensor product A⊗̂A′ is defined

as the super-algebra defined over the super-vector space V = A ⊗ A′ with the bilinear operator ·
given by

(a1, a
′
1) · (a2, a

′
2) = (−1)|a′1||a2|(a1 · a2, a

′
1 · a′2)

In normal linear algebra, a simple algebra A is defined as an algebra where there are no

subspaces within it invariant under both left and right multiplication by all of the elements A,

as long as the bilinear operator on A is not trivially 0:

Definition B.1.9. Let A be an algebra over the field K, if a · a′ is non-zero for a, a′ 6= 0, and

there does not exist a non-trivial two-sided ideal L, that is a subset L < A such that ∀x, y ∈ L,

z ∈ A and c ∈ k then,

� x+ y ∈ L

� cx ∈ L

� z · x ∈ L and x · z ∈ L
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then A is simple.

An ideal is then the algebra equivalent of the normal subgroup in group theory, and the

requirement for simpleness equivalent to a group G having no normal subgroup that wasn’t

either the trivial group of G itself. The direct sum of a series of simple algebras is then known

as a semi-simple algebra. In the terms of super-algebras, a super-algebra is simple if there are no

non-trivial two-sided super-ideals:

Definition B.1.10. Let A be a super-algebra over the super-vector space V , if a · a′ is non-zero

for a, a′ 6= 0, and there does not exist a non-trivial two-sided super-ideal L, that is a subset L < A

such that ∀x, y ∈ L, z ∈ A and c ∈ k then,

� x+ y ∈ L

� cx ∈ L

� z · x ∈ L and x · z ∈ L

then A is simple.

Again, if A is not simple, but can be expressed as the direct sum of simple super-algebras,

then A is semi-simple.

A module M of an algebra A is a vector space where vectors in M can not only be multiplied by

a scalar, but there exists a bilinear map A×M →M that can be used to define the multiplication

of elements of M by A. This is the algebra equivalent of a representation of a group.

Definition B.1.11. Let A be an algebra, let M be a vector space. Then M is a left A-module

with the definition of the bilinear map × : A×M →M that is consistent with the bilinear operator

· on A,

� 1×m = m ∀m ∈M so the identity acts trivially.

� (x · y)×m = x× (y ×m) so the two operators are associative with respect to each other.

On super-algebras, a super-module picks up the requirement that it exists over a super-vector

space, and that it respects the multiplication rule on the degree of the gradings:

Definition B.1.12. Let A be a super-algebra and M be a super vector space. Then M is a left

super-module of A with the definition of a bilinear map × : A ×M → M that is both consistent

with the bilinear operator · on A and which respects the multiplication rule from A for the grading

of the homogeneous vectors,

� 1×m = m ∀m ∈M so the identity acts trivially.

� (x · y)×m = x× (y ×m) so the two operators are associative with respect to each other.

� |x×m| = |x|+ |m|.

Note that the super-algebra A when considered as the super-vector space it is defined over,

can always be taken as its own super-module. The link between modules of algebras and repres-

entations of groups continues to the idea of decomposability. A representation that wasn’t the
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direct sum of smaller representations was called irreducible, a super-module that isn’t a direct

sum of sub super-modules is simple:

Definition B.1.13. Let M be a super-module of the super-algebra A. Let M ′ ⊂ M be a subset

of M , if M ′ fulfils the requirements of being both a super-vector space, and being a super-module

of A then it is a sub-super-module of M .

If M has no non-trivial sub-super-modules, then it is a simple super-module of A; if it can be

written as the direct sum of simple super-modules, then it is a semi-simple super-module of A.

A standard algebra is described as a division algebra if it is possible to define division by all

elements within it except 0:

Definition B.1.14. Let D be an algebra over the field K. If for each a ∈ D and b ∈ D − 0,

there exists a unique element x ∈ D such that a = b · x, and a unique element y ∈ D such that

a = y · b, then D is a division algebra.

On super-algebras, the requirement for all non-zero elements to be divisible is relaxed to

include only the homogeneous elements:

Definition B.1.15. Let D be a super-algebra. If for each a ∈ D and b ∈ D − 0 such that a and

b are homogeneous, then there exists a unique homogeneous element x ∈ D such that = b · x, and

a unique homogeneous element y ∈ D such that a = y · b then D is a super-division algebra.

The associative super-division algebras over the field R will prove essential to understanding

the reasoning behind why the Altland-Zirnbauer classification contains only ten classes.

B.2 The Super Clifford Algebras

We now introduce examples of super-algebras. The simplest are Rn|0,Cn|0 and Hn|0 which are

super-algebras where only the even subspace is non-trivial, and contains one of Rn,Cn or Hn;

these behave exactly like their ungraded versions as the odd part is empty.

The other type of algebra which will need to be considered for the Altland-Zirnbauer classi-

fication are the Clifford algebras, [43]. Their ungraded form is given as:

Definition B.2.1. Let V be a vector space over the field K with a finite orthonormal basis {ei}
that is ordered with respect to the index i, having N elements. Let η : V ×V → V be defined with

reference to r ∈ N, s = N − r, as,

η(ei, ej) =


0 i 6= j

1 j ≤ r

−1 r < j ≤ s+ r

.

Then the Clifford algebra ClK+r,−s is defined as the algebra over V with the bilinear form ·
defined so that

ei · ej + ej · ei = (2η(ei, ej))1.
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The simplest example of a Clifford algebra is C which is equivalent to ClR+0,−1, with e1 = i

and e2
1 = −1. Other examples include R ∼= ClR+0,−0 and H ∼= ClR+0,−2.

There are also some notational quirks to take note of. The structure of the name ClK+r,−s used

here is to put the field the algebra is defined over in the superscript, and then the number r of

elements which square to +1 and the number s of elements which square to −1 in the subscript

along with the sign of their squares. There are other ways of arranging this information, including

ClK(r+, s−), [117], while sometimes instead of putting the field in the superscript, formatting

the text Cl is used - mainly to denote ClC as Cl - or if K = R, the reference to K can sometimes

be dropped altogether. Furthermore in the form we use, it is common to drop the prefix + from

+r in the subscript, though the − prefix is always kept in −s; also if one of r, s is zero, it is not

referenced in the subscript. Thus, ClR+0,−1 can be written Cl−1.

In order to apply the Clifford algebras as super-algebras, it is necessary to grade them. The

correct grading is given by [117]:

Definition B.2.2. Let ClKr,−s be a Clifford algebra over the field K. Then ClKr,−s may be con-

sidered a super-algebra under the grading derived from

|ei1 . . . ein | =

0 n = 2m

1 n = 2m+ 1

which for liner combinations of elements is

∣∣∣∣∣∣
∑
j

eij,1 . . . eij,nj

∣∣∣∣∣∣ =


0 nj = 2mj ∀j

1 nj = 2mj + 1 ∀j

inhomogeneous otherwise

This means that the elements are graded with respect to whether they are formed of an even

number of basis elements, or an odd number of basis elements.

The reason we care about the Clifford algebras is that they form most of the real associat-

ive super-division algebras, which allows the corepresentations of Z2 × Z2-graded groups to be

classified according to Section 2.3.1. The identification of the ten real associative super-division

algebras was done by Wall, [168], and while the proof that there are only ten of them is beyond

covering here, as is the method of identifying them, once the ten are known to be the following

set of Clifford algebras, each can be easily checked to be a super-division algebra relatively easily,

[117].

Theorem B.2.3. There are only ten real associative super-division algebras and these are C1|0,

R1|0, H1|0 and ClC1 , ClR±1, ClR±2 and ClR±3.

Proof. We only prove that each of the above real associative super-algebras is a division algebra,

leaving the proof that there are only ten of them to [168]. To do this, for each algebra, we identify

the inverse for each of the homogeneous elements.
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� Firstly, C1|0,R1|0,H1|0 are isomorphic to their ungraded versions as the odd part is empty,

and C,R and H are division algebras, so their graded counterparts are super-division al-

gebras.

� For ClC1 , the even homogeneous elements are c ∈ C, which have inverse c−1 due to being

in C. The odd homogeneous elements are given by ce1 with e2
1 = −1 and c ∈ C, so

(ce1)−1 = −c−1e1.

� For ClR±1 the even elements are r ∈ R, so their inverse is r−1 ∈ R. The odd homogeneous

elements are given by re1, r ∈ R and e2
1 = ±1, their inverse is then ±r−1e1.

� For ClR±2, the even elements are (x + ye1e2) and e1e2 = ±e2e1. As (e1e2)2 = 1, then

(x − ye1e2)(x + ye1e2) = x2 + y2 with x2 + y2 being invertible as a member of R. The

inverse of (x+ ye1e2) is then (x2 + y2)−1(x− ye1e2).

The odd elements are given by (xe1 + ye2), with (xe1 + ye2)2 = ±x2 ± y2 + (x − y)e1e2

which is a homogeneous even element, which by the first part has the inverse ((x2 + y2)2 +

(x+ y)2)−1(±(x2 + y2)− (x− y)e1e2). This gives the inverse of (xe1 + ye2) as ((x2 + y2)2 +

(x− y)2)−1(±(x2 + y2)− (x− y)e1e2)(xe1 + ye2)

� For ClR−3, the even elements are given by (w + xe1e2 + ye1e3 + ze2e3) and e1e2 = −e2e1,

e1e3 = −e2e3 and e3e2 = −e2e3. We note that the algebra generated by elements of this

form is equivalent to H, which is a division algebra, therefore all even homogeneous elements

are invertible.

The odd elements are given by (ae1 + be2 + ce3 + de1e2e3), multiplying this by e1, gives the

even homogeneous element (−a+be1e2+ce1e2−de2e3). Given this is even and homogeneous,

it must be invertible and have inverse (−a+ be1e2 + ce1e2 − de2e
−1
3 . The inverse of (ae1 +

be2 +ce3 +de1e2e3) then exists and is (−a+be1e2 +ce1e2−de2e
−1
3 e1. All odd homogeneous

elements then have inverses.

� For ClR−3, it is claimed that ClR−3
∼= H1,0⊗̂Cl−1. By the graded tensor product, the even

subspace then consists of the pairs (h, x) where h ∈ H and x ∈ R. As H is a division

algebra, there exists an inverse for h, h−1, as is also the case for x ∈ R. The inverse for

(h, x) is then (h−1, x−1).

Odd homogeneous elements are given by (h, xe1), which multiplying by (1, e1) gives−(h,−x),

which has the inverse −(h−1,−x−1). This gives the inverse of the odd homogeneous ele-

ments as −(h−1,−x−1)(1, e1).

Graded Clifford algebras have many other properties that have an impact on the Altland-

Zirnbauer classification, and other aspects of quantum theory that are linked to symmetry clas-

sifications such as the Bott periodicity clock, and the periodic table of topological insulators, but

these are outwith the scope of this thesis. Information on these aspects of the Clifford algebras

my be found in [8, 43, 111, 117, 165].
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C. Quantum Mechanics

Here we give formal definitions for important concepts in quantum theory - including the Hilbert

space, projective Hilbert space, operators and adjoint operators. We motivate the link between

classical and quantum physics that comes from deriving quantum mechanics from classical mech-

anics under the substitution of variables as operators, and the advantages and methods of decom-

posing the Hilbert space into sub-spaces, in particular into the form H = Hcharge⊗Hspin⊗Horbital

form which will be relied upon throughout the thesis.

There are many good introductions to quantum systems, with varying intentions of mathem-

atical purity. More physics-leaning ones include [9, 68]; a more mathematical treatment is given

in [75].

C.1 Quantum Systems

A quantum system is the name given to any problem studied under the assumption that some

form of quantum mechanics applies. That is, the system cannot be described under classical

mechanics as it is defined on the quantum length scale, and exhibits key quantum behaviour:

wave-particle duality, non-determinism and the uncertainty principle for example. Describing

quantum systems will require defining what a ‘state’ in the system means, how these states

evolve with time, and how they can be interacted with to retrieve measurements; a pathway

similar to defining classical mechanics is possible however, as quantum mechanics is derived from

Hamiltonian mechanics.

Firstly, a quantum system must be defined over a space, [155]:

Definition C.1.1. Let Q be a quantum system, then its Hilbert Space H is a complex vector

space, with vectors ψ and inner product 〈·, ·〉, such that

� 〈·, g〉 is a linear function for all g ∈ H.

� 〈f, g〉 = 〈g, f〉∗

� 〈f, f〉 ≥ 0 for all f ∈ H.

The norm shall be defined as ‖ψ‖ =
√
〈ψ,ψ〉.
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The common choice is H = L2(Rn), with the standard Euclidian measure, [68, 155]. This is

the space of functions φ : Rn → C for a given n such that∫
Rn
|φ(x)|2dx ∈ (−∞,∞)

is finite. Then the inner product is defined as

〈φ, ψ〉 =

∫
φ∗(x)ψ(x)dx.

When states are multidimensional, the standard choice is Lm2 (Rn), so the state is anm-dimensional

vector φ, with each entry a function from L2(Rn), with inner product

〈φ,ψ〉 =

∫
Rn
φ†(x)ψ(x)dx.

It is also useful to introduce the Dirac notation, ψ → |ψ〉. Vectors in H† are now denoted 〈ψ|
so that the inner product is 〈φ, ψ〉 = 〈φ|ψ〉.

The Hilbert space defines the space of possible states |ψ〉 that a quantum system can reside

in. As each state is a function, not a scalar point, immediately comes the fact that each state

defines a ‘wave-function’ not a particular fixed state, this ‘wave-function’ is generally considered

to be a function which under the action of operators, as defined in Section C.1.1, can be used

to generate a probability distribution over Rn for a measurement, by taking the absolute value

squared of wave-function. This is all according to the Copenhagen Interpretation, which is the

most generally accepted interpretation of quantum mechanics, [68].

Given that a absolute-value-square of a state is a probability distribution, there is a restriction

that it is normalised, ‖〈ψ|ψ〉‖2 = 1 which defines a physical or realisable state. Any non-physical

state can be turned into a physical state by dividing out the square root of its magnitude,

|ψ′〉 =
1√
‖ψ‖
|ψ〉 . (C.1)

Mapping states onto their physical versions creates a redundancy of states which are related

by scalar multiplication, it defines the ray

[ψ] = {|ψ′〉 ∈ H | |ψ′〉 = c |ψ〉 , c ∈ C− {0}} (C.2)

where every |ψ′〉 ∈ [ψ] differs only by a scalar multiple and can be mapped onto the same physical

state. If only the physical states are considered, then the redundant states are described by the

set

lψ = {|ψ′〉 ∈ H | |ψ′〉 = c |ψ〉 , c ∈ U(1)} |〈ψ,ψ〉|2 = 1

where the factors c describe a change of the phase of the state; these are again ‘essentially the

same’ state for many considerations.

To remove the redundancy, it is usual to work over the projective Hilbert space, rather than

the full Hilbert space, [117, 176]:
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Definition C.1.2. Let H be the Hilbert space of the quantum system Q. Then the projective

Hilbert space PH is defined as the space of rays,

PH = (H− {0})/C×.

It is possible to define a projection operator σ from H to PH,

σ : |ψ〉 → |σ(ψ)〉 = |Ψ〉 ∈ PH, σ : |ψ〉 → |ψ〉√
|〈ψ|ψ〉|

(C.3)

which also allows a representative state |Ψ〉 to be chosen for each ray.

If a system changes state, either due to time evolution, or spontaneously changing state due

to measurement, the inner product of of the two states gives the transition amplitude, and its

norm the transition probability to go from state Φ to state Ψ,

P (Φ→ Ψ) = |〈Ψ|Φ〉|2

Finally, if an orthonormal basis |ψn〉 exists for a Hilbert space, 〈ψm|ψn〉 = δmn, then any state

can be written as a linear combination of the basis states,

|φ〉 =
∑
n

cn |ψn〉 , cn = 〈φ|ψn〉 .

C.1.1 Operators, Measurements and Eigenstates

Having defined quantum states, it is now necessary to define methods to interact with them,

which is done through the use of operators, [175]:

Definition C.1.3. Let Q be a quantum system with Hilbert space H. An operator Ô is a map

on the Hilbert space, Ô : H → H, that is either linear, Ô(a |ψ〉 + b |φ〉) = aÔ |ψ〉 + bÔ |φ〉 or

anti-linear, Ô(a |ψ〉+ b |φ〉) = a∗Ô |ψ〉+ b∗Ô |φ〉.

Note how this definition allows operators to be anti-linear unlike the standard definition,

[9, 75], which allows only linear maps. This allowance of anti-linearity will be essential for

defining the operations of time-reversal, charge-conjugation and the chiral operator.

Given a set of orthonormal basis states |ψn〉 for the Hilbert space H, these can be used to

construct a matrix form for each operator on H. If a linear operator ÔL acts on the pure state

|ψn〉, then ÔL |ψn〉 must have a linear decomposition over the basis, [68],

ÔL |ψn〉 =
∑
m

OL,nm |ψm〉 , OL,nm =
〈
ψn

∣∣∣ÔLψm〉 = 〈ψn|ÔL|ψm〉 .

Iterating over n defines the N × N matrix OL, where N is the dimension of the Hilbert Space,

that describes the action of ÔL on the basis |ψn〉. The expressions 〈ψm|ÔL|ψn〉 are known as the

matrix elements of ÔL. The anti-linear operators ÔA also have a construction as linear matrix

operators L̂A combined with the action of complex conjugation to the right, K, ÔA = L̂AK. The
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unitary part can be expressed as a matrix with elements given by,

ÔA |ψn〉 =
∑
m

LA,nm |ψm〉∗ , LA,nm =
〈
ψn

∣∣∣L̂Aψm〉 = 〈ψn| L̂A
(
|ψm〉∗

)
.

It can be common in the physics literature, [30, 47, 48], to choose the orthonormal basis so that

the Hilbert space splits into a subspace H1 = span(|ψn〉), and its copy under a chosen anti-linear

operator Â, ÂH1 = span(|φn〉) = span(Â |ψn〉. A generic anti-linear operator can then be written

as ÔA = L′AÂ. This allows the matrix elements on the basis ( |ψn〉 |φn〉 )
T

to then be written as

the matrix operators,

OL =

 〈ψm|ÔL|ψn〉 0

0 〈φm|ÔL|φn〉

, OA =

 0 〈ψm|ÔA|φn〉
〈φm|ÔA|ψn〉 0

K (C.4)

Splitting up the Hilbert space into a subspace basis, and then its image under certain operators

will be a common technique throughout the thesis. More details on splits like this can be found

in the aforementioned citations, and in [24].

The matrix element is interpreted as having Ô act on the state |ψn〉. However, it is equally

valid to consider the operator acting on 〈ψn|. To do this, it is necessary to define the adjoint

operator of Ô, Ô†, [75]:

Definition C.1.4. Let Q be a quantum system with Hilbert space H and operator Ô.

In the case that Ô is bounded, so that there ∃C a constant,
∥∥∥Ôψ∥∥∥ ≤ C‖ψ‖ ∀ψ ∈ H then there

exists a unique operator Ô† : H† → H† such that〈
φ, Ôψ

〉
=
〈
Ô†φ, ψ

〉
∀φ, ψ ∈ H

with Ô† being the adjoint operator for Ô.

If Ô is unbounded, then it is defined only on a subspace dom(Ô) ⊂ H. The adjoint operator

Ô† has domain defined by the relation

φ ∈ dom(Ô†)⇐⇒
〈
φ, Ô·

〉
is bounded on dom(Ô)

and is defined so that the action of the adjoint operator on φ ∈ dom(Ô†) gives the state χ = Ô†φ

which is the unique state where

〈χ, ψ〉 =
〈
φ, Ôψ

〉
∀ψ ∈ dom(Ô)

In Dirac notation, the action of the adjoint operator on the states 〈ψ| is thus given by〈
Ôψ
∣∣∣ = 〈ψ| Ô†.

Matrix elements for the operators Ô, Ô† have the relation

〈ψm|Ô†|ψn〉 = 〈ψn|Ô|ψm〉∗ ⇐⇒
(
O†
)
mn

= (Onm)
∗

(C.5)
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or the matrix representations of Ô, Ô† have the obvious relation by the Hermitian Transpose,

O† =
(
OT
)∗

.

In certain cases, the operator and its adjoint are equal, [75],

Definition C.1.5. Let Q be a quantum system with Hilbert space H, with operator Ô and adjoint

operator Ô†. If dom(Ô†) = dom(Ô) and Ô†φ = Ôφ ∀φ ∈ dom(Ô) then Ô = Ô† and the operator

is self-adjoint or Hermitian.

Any measurement that can be made on a quantum system corresponds to some linear self-

adjoint operator Ô, with the possible values that the measurement can take being the eigenvalues

λ of Ô, Ô |ψλ〉 = λ |ψλ〉 with |ψλ〉 being a physical state. The necessity of being able to measure

only real values - as complex measurements would be unphysical - is guaranteed as self-adjacent

operators have only real eigenvalues. This is due to applying the relation 〈φ|ψ〉 = 〈ψ|φ〉∗ to the

states |ψλ〉 , Ô |ψλ〉,

λ = λ 〈ψλ|ψλ〉 =
〈
ψλ

∣∣∣Ôψλ〉 =
〈
Ôψλ

∣∣∣ψλ〉∗ = λ∗ 〈ψλ|ψλ〉∗ = λ∗

and λ = λ∗ ⇔ λ ∈ R.

Starting with a system in the state |φ〉, taking a measurement that returns the value λ causes

the system to spontaneously transition |ψλ〉. Given that the transition probability to go from |φ〉
to |ψλ〉 is |〈ψλ|φ〉|2, then the probability to measure λ must be

P (λ) = |〈ψλ|φ〉|2

which means that for this to have a non-zero probability, |ψλ〉 and |φ〉 can’t be orthogonal.

In the special case where the eigenvalues λ are discrete and countable, the eigenstates of a

linear operator Ô are orthonormal and span the Hilbert space, and they can be used to write a

generic state as a linear combination of the eigenstates,

|φ〉 =
∑
λ

cλ |ψλ〉

where
∑
λ |cλ|

2
= 1. The probability to measure λ is then P (λ) = |cλ|2. In this case, a basis

state will be known s a ‘pure state’, while linear combinations of pure states are known as ‘mixed

states’. This is as pure states |ψλ〉 will always measure λ, and mixed states |φ〉 can return any

measurement value whose eigenstates are part of the linear decomposition of |φ〉.
A similar construction of the Hilbert space as being spanned by the eigenvectors of a linear

operator with a continuous eigenvalue spectrum is possible, the numbered eigenstates becoming

a continuous function of eigenstates |ψλ〉 → |ψ(λ)〉, and swapping out the sum for an integral in

the linear decomposition. However, it will be assumed here that the eigenvalues are discrete and

countable, so that they can be labelled by the natural numbers.

Note that two linear operators Ô1 and Ô2 will rarely share an eigenbasis. If they don’t, then

if the sequence of measurements Ô1, Ô2, Ô1 is taken, it is probable that the values measured by

Ô1 in the first and second instance are different. Two operators will share an eigenbasis only if

they commute, [9],
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Lemma C.1.6. Let H be a Hilbert space with two operators Ô, Ô′. Define the two new operators

ÔÔ′ − Ô′Ô = [Ô, Ô′] as the commutator of Ô and Ô′, and ÔÔ′ + Ô′Ô =
{
Ô, Ô′

}
as the anti-

commutator of Ô and Ô′. Then if,

� [Ô, Ô′] |ψ〉 = 0 for all |ψ〉 ∈ H, Ô, Ô′ commute.

�

{
Ô, Ô′

}
|ψ〉 = 0 for all |ψ〉 ∈ H, Ô, Ô′ anti-commute.

Theorem C.1.7. Let Ô, Ô′ be linear operators on the Hilbert space H. Then they share an

eigenbasis if and only if they commute,

[Ô, Ô′] |ψ〉 = 0 ∀ |ψ〉 ∈ H

Proof. See [9]

This means that if an operator eigenbasis is being used to describe the Hilbert space, it is im-

portant to choose the right operator. For many applications, and for those applications discussed

here, the correct operator is the Hamiltonian Ĥ, the operator whose eigenvalues correspond to

the energy levels of the system,

Ĥ |ψn〉 = En |ψn〉 .

As would be implied by the name, the Hamiltonian Ĥ is the quantum equivalent of the

classical Hamiltonian, [9],

H(q,p) = T (q,p) + V (q,p),
d

dt
qk = {qk, H},

d

dt
pk = {pk, H} (C.6)

with the Poisson bracket being

{f, g} =
∑
j

∂f

∂qj

∂g

∂pj
− ∂f

∂pj

∂g

∂qj
.

Thus, the classical Hamiltonian describes not only the energy of a classical system, but also the

time-evolution of its variables.

The quantum Hamiltonian can be found by directly replacing classical variables with quantum

operators in the classical Hamiltonian, qi → q̂i, pi → p̂i. Then for a free particle in a potential,

the classical and quantum Hamiltonians are

H(q,p, t) =
1

2m

∑
j

p2
j + V (q,p, t)→ Ĥ({q̂k}, {p̂k}, t) =

1

2m

∑
j

p̂2
j + V ({q̂k}, {p̂k}, t). (C.7)

q̂k = qk, p̂k = −i~ ∂

∂qk
(C.8)

Note that this consideration of quantum mechanics assumes that operators outside of the

Hamiltonian are time-independent, while the states they act on are time-dependent |ψ, t〉; this

is known as the Schrödinger picture, [68]. A second time-dependent operator is allowed Û(t, t0),

derived from the Hamiltonian which ‘evolves’ the states through time,

i~
∂

∂t
Û(t, t0) = Ĥ(t)Û(t, t0), U(t, t0) |ψ, t0〉 = |ψ, t0 + t〉 (C.9)
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and which has the special form when the Hamiltonian is free of explicit time-dependence,

Û(t, t0) = exp
(
−iĤt/~

)
.

Finally, there are several quantum mechanical concepts associated to angular momentum.

The first is the orbital angular momentum operator, which is derived from the classical operator

L̂i = εijkq̂j p̂k

and describes the rotation of a particle’s centre of mass about an axis not through its centre of

mass. Classical rotation about the centre of mass axis is known as spin, and once again occurs in

quantum mechanics. However, in quantum mechanics, spin is an intrinsic quality of the particle,

not a factor of the dynamics of the system, and it is related to a magnetic moment of the particle,

[68], and which is quantised. Spin is associated to an operator in each dimension, defined by the

Dirac Algebra,

[Ŝj , Ŝk] = i~εijkŜi

and has the most common matrix representation in terms of the Pauli matrices,

Ŝk =
~
2
σk, σ1 =

0 1

1 0

, σ2 =

0 −i
i 0

, σ3 =

1 0

0 −1


From the three Ŝk operators, Ŝ2 can be defined,

Ŝ2 =
∑
k

Ŝ2
k

which shares an eigenbasis with Ŝ3, and has eigenstates |s,m〉, s ≥ 0 m ∈ [−s, s], m = −s + n,

n ∈ N so that, [68],

Ŝ2 |s,m〉 = ~2s(s+ 1) |s,m〉 , S3 |s,m〉 = ~m |s,m〉

with s representing the spin quantum number of the system, which can only take the values

s = p/2, p ∈ N, and the value of which is fixed by the type of particle in the system - particles

with spin s = (2p + 1)/2 are known as fermions and include the spin 1/2 electron and positron

and all six flavours of quarks, and the spin 3/2 ∆ baryon; particles with integer spin are known

as bosons and include the spin 0 photon, and the spin 1 proton and neutron. Note that the Pauli

matrix forms for Ŝk are valid for the spin-half systems, other representations of Ŝk must be used

for systems with other spin numbers.

With electrons, as s = 1/2, m can take only two values, m = ±1/2. This leads to the concept

of spin-up states |↑〉 = |1/2, 1/2〉, where m = 1/2 and the spin is aligned with the positive z-axis,

and spin-down states |↓〉 = |1/2,−1/2〉, where m = −1/2 and the spin is aligned with the negative

z-axis. In spaces where there are additional parameters, the spin up and down states can be used

to partition the Hilbert space into an ‘orbital’ part that sits over R3, a spin space which covers
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the spin-up and spin-down variants of the wave-function, and a charge-space, [14, 24, 73],

H = Hcharge ⊗Hspin ⊗Horbital, |ψ〉 = |ψcharge〉 ⊗

|↑〉
|↓〉

⊗ |ψorbital〉

where the vector ( |↑〉 |↓〉 )
T

is known as a spinor. The Hamiltonian can be expressed up on this

space by writing it in its second-quantised form, see [73], which takes the form of a sum over the

creation operators ĉ†a and annihilation operators ĉa,
{
ĉa, ĉ

†
b

}
= δab, {ĉa, ĉb} =

{
ĉ†a, ĉ

†
b

}
= 0,

Ĥ =
∑
a,b

ĉ†aha,bĉb +
1

2
ĉ†a∆a,bĉ

†
b +

1

2
ĉb∆

∗
a,bĉb

and expressed on (ψ↑, ψ↓, ψ
†
↑, ψ
†
↓) takes the form of the Bogoliubov-deGennes Hamiltonian, [14],

ĤBdG =

H0 − EF −iσy∆

iσy∆∗ EF −H∗0

. (C.10)

In another interpretation
∣∣ψl〉 forms particle solutions |p↑〉 and |p↓〉, while

∣∣∣ψ†l〉 forms anti-particle

or hole solutions, |h↑〉 and |h↓〉. Whether the solution
∣∣ψ†〉 is interpreted as an anti-particle or a

hole is entirely dependent on the physical set-up of the system - the anti-particle interpretation

is preferred in most cases, such as for the free particle; while the hole interpretation occurs

in conductors where all electron positions are filled except for a small number of holes, which

can then act as pseudo-particles, only with the opposite charge to the electron. Mathematically

however, the two interpretations are the same, and we use the pairs of terms particle/anti-particle

and particle/hole interchangeably.

With this clarified however, we can identifyHcharge as C2 when both particle and hole solutions

exist, with |p〉 = (1 0)T and |h〉 = (0 1)T , and C when only particle solutions exist. The reduction

to C in certain situations can occur for Hspin can also occur; if the system has integer spin

then Hspin = C; the above mentioned Hspin = C2 happens when s = 1/2, and |↑〉 = (1 0)T ,

|↓〉 = (0 1)T ); while fractional spin other than s = 1/2 will led to other spaces than Hspin = C2.

This leaves this breakdown of the Hilbert space incredibly flexible, and responsive to the set-up of

the system while still following a general formulation. This will allow a very useful breakdown of

time-reversal, charge-conjugation and chiral operators and what parts of the Hilbert space they

operate on in the main section of the Thesis in Chapters 2 and 3.

The operators q̂k, p̂k, L̂k, Ŝk then break down into operators in the subspaces as

q̂k → IHcharge
⊗ IHspin

⊗ q̂k (C.11)

p̂k → IHcharge
⊗ IHspin ⊗ p̂k (C.12)

L̂k → IHcharge
⊗ L̂k ⊗ IHorbital

(C.13)

Ŝk → IHcharge
⊗ Ŝk ⊗ IHorbital

(C.14)
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The two types of angular momentum operator can be combined, forming the total angular

momentum operator,

Ĵk = Ŝk + L̂k

which has the form on the Hilbert space H = Hcharge ⊗Hspin ⊗Horbital,

Ĵk → IHcharge
⊗ Ĵk ⊗ IHorbital

(C.15)

C.1.2 Degenerate Eigenvalues and Reducible Hilbert Spaces

As seen when denoting the spin eigenstates, it is useful to use the eigenvalue as the label for the

eigenstate, so if Ô |ψn〉 = λn |ψn〉, we relabel |ψn〉 → |λn〉 → |n〉 if there is an ordering on the

eigenvalues λn. This is fine in the case where all eigenvalues λn are non-degenerate, however when

there are degenerate eigenvalues, there will be multiple eigenstates |ψn〉 , |ψ′n〉 corresponding to a

single eigenvalue λn.

Again, as done with the spin eigenstates, it is still possible to label the states according to the

eigenvalue label, however an additional identifier must be used to order the different eigenstates,

|ψn〉 → |n, a〉 where a runs from 1 to the multiplicity of the eigenvalue λn. If Ô′ is a second

operator that commutes with the operator Ô defining the eigenbasis, its eigenstate labels can

be used to identify the different eigenstates. That is, if |ψn〉 , |ψ′n〉 share the same eigenvalue λn

under Ô, but have eigenvalues λ′a, λ
′
b under Ô′ respectively, then they can be labelled |n, a〉 and

|n, b〉 respectively too. If there are still degenerate labels, then sufficient additional operators

can be added to the set until each eigenstate is uniquely labelled by what is known as a set of

quantum numbers. The set of operators used to do this is known as complete set of operators.

Sates |n, a〉 which correspond to a eigenvalue λn define a subspace in the Hilbert space, [9],

Theorem C.1.8. Let H be a Hilbert space with operator Ô. Let the eigenstates |n, a〉 of Ô form

an eigenbasis for H. Either, there are no eigenvalues of Ô with multiplicity greater than one, and

the Hilbert space is irreducible; or there exists an eigenvalue λm with multiplicity greater than

one which defines the sub-Hilbert space Hm,

Hm = span({|m, a〉 : a ∈ [1, sm]})

and H = Hm ⊕H⊥m is a reducible Hilbert space.

This is very similar to the Theorem 2.1.8 for the reducibility of a representation. It is expected

then, that there is a concept of a completely reducible Hilbert space,

Theorem C.1.9. Let H be a Hilbert space with an orthonormal basis |m, a〉 given by the eigen-

states of the operator Ô. Let the eigenvalues λn each have multiplicity sn. Then each eigenvalue

λn generates a subspace Hn of the full Hilbert space spanned by the vectors |n, a〉 for a = 1, . . . sn,

and the Hilbert space can be completely decomposed into independent orthogonal subspaces,

H = ⊕nHn

Proof. The proof is the same as for Maschke’s Theorem. Let H be a Hilbert space, either it

is irreducible, or H = Hm ⊕ H⊥m. Then Hm,H⊥m are Hilbert spaces so the same reducibility
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argument applies. This continues, until all the Hilbert spaces in the decomposition of H are

irreducible, H = ⊕nHn.
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D. The Periodic Orbit Expansion for Symmet-

ric Graphs

In this appendix we return to two of the properties introduced in Chapter 4 as characterising the

ten random matrix ensembles described by Wigner, Dyson, Altland and Zirnbauer. These were

first the density of states,

d(k) =
∑

k′∈{kn}

δ(k − k′)

with the ensemble average being given by Equation 4.8 for the three Wigner-Dyson classes, and

Equations 4.11 to 4.20 for the Altland-Zirnbauer classes; and second, the counting function N(k),

N(k) =
∑

k′∈{kn}

θ(k − k′), N(k) =

∫ k

−∞
d(k′)dk′

for k the wave number, and thus, there being similar forms d(E) and N(E) for the energy itself.

These functions and methods of approximating them have been well studied in the general

quantum chaos literature, with one of the main techniques being the semiclassical approximation.

In this approximation, properties of the quantum system may be approximated by averaging their

values taken over a number of classical orbits; in particular the periodic orbits, [10, 71, 72]. This

leads to the approximation of d(E) in a general system by a form of the Gutzwiller Trace formula,

[71], which is given here in the specific case of the two dimensional quantum billiard, [119, 157],

d(E) =
−1

π
lim
η→0

Im

∫
Rn
G(r, r, E + iη)dnr

≈ mA

2π~2
+ Im

(
m

π~2k

∑
p

Lp(−1)np

rp
√
|trMp − 2|

eikLp+iπ/2

)
, k2 =

2mE

h2
.

The sum here is taken over all periodic orbits p in the billiard, the paths where there exists a

minimum time tp such that q(ntp + t) = q(t) and v(ntp + t) = v(t), ∀n ∈ N and ∀t ≤ tp so that

after t = tp, the orbit retraces its original path without deviation. If the total time the path

takes is Tp, and tp = Tp, then the orbit is primitive, otherwise the number of repetitions of the

primitive orbit is rp = Tp/tp. The length of the orbit is then Lp =
∮ Tp

0
|q̇(t)|dt, while np describes

the number of reflections against the boundary of the billiard, Mp the stability matrix of the

orbit, and A the size of the billiard.

The advantage of approximating d(E) semiclassically is that it allows other measures of the

spectral statistics to be approximated, universal features to be identified, and compared to the
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random matrix theory predictions, and this has been used to probe the standard Wigner-Dyson

BGS-Conjecture, forming one of the key techniques in attempting to justify or derive it, [70, 170].

Taking the Fourier transform of the two-point correlator of d(E) to define the form factor K(τ) of

the system - which has a characteristic form for each of the random matrix ensembles associated

to a Wigner-Dyson class of system - then it is well understood how the periodic orbits give a

leading term approximation of the expression of K2(τ) from random matrix theory, [21]. The first

correction term is also known to come from the periodic orbits - specifically from pairs of orbits

where the second orbit is equal to the first orbit, except that at a self-intersection point the orbit

has been cut apart and part of it reversed before the orbit is reconnected, creating a pair of orbits

that traverse most of their length parallel, except for a section where they run anti-parallel. These

are known as Sieber-Richter pairs of orbits, [147, 148]. Higher order corrections come from pairs of

orbits where there are more ‘encounters’ between them, where more self-intersection points have

had the splitting-reversing-reconnecting procedure applied, or else the self-intersection involves

more than two instances of the orbit passing through the point; the inclusion of these gives the

full form of the spectral form factor, [118, 120, 121, 122].

Despite having fully matched the spectral form factor in the Wigner-Dyson case through the

periodic orbit approximation, this method is currently still insufficient as a general proof of the

BGS-Conjecture as it applies only to the regime where semiclassical analysis is valid, and it does

not show there are not further corrections due to unconsidered pairs of orbits, which would move

the approximation away from the calculated random matrix prediction, [122]; nor does it cover

the case for many-body systems, [170]. Not being able to show there are no further corrections

is only a problem in the general case though, as it is known that in the specific example of the

quantum graph, the periodic orbit expansion is exact, [102, 130], which is why it is known that

the BGS-conjecture is true on the quantum graph.

Furthermore, to get a form factor that is characteristic for the Altland-Zirnbauer classes, it is

necessary to work with K1(τ) = FT (〈d(E)〉H), there has been some limited work on identifying

the periodic orbit contributions to K1(τ), and mainly on a spin variant of the quantum graph,

[64, 65, 66, 144].

Due to this, an expression for the periodic orbit expansion has been given for each variant on

the quantum graph that has been discussed in the literature, [27, 64, 65, 67, 102], to facilitate

either further semiclassical study of these graphs or numerically test the periodic orbit expansion

against the random matrix predictions. We continue this tradition, deriving the periodic orbit

approximation for the quotient graph derived from a magnetic Dirac graph. We also start the

process of numerically testing the periodic orbit approximation on the sorts of graphs used in

Chapters 6 and 7 by considering how periodic orbits can be identified on them - and as these

graphs are large, how symmetry can be used to increase the speed of doing so.

D.1 The Trace Formulae For Quantum Graphs

In Chapter 6 and 7, expressions for the density of states and the counting function were given in

terms of the secular equation,

N(k) = NWeyl(k)− 1

π
Im ln ζ(k + iε) = NWeyl(k)− 1

π
Im ln det (I− S(k + iε)T (k + iε))
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d(k) = dWeyl(k)− 1

π

d

dk
Im ln ζ(k + iε) = dWeyl − 1

π

d

dk
Im ln det (I− S(k + iε)T (k + iε))

Using the substitution ln det(A) = tr ln(A) and ln(I−A) = −∑∞n=1
1
nA

n, [67], then the

oscillating non-Weyl term of N(k) simplifies to

Nosc(k) =
1

π
Im

( ∞∑
n=1

1

n
tr Ξn(k + iε)

)
(D.1)

where Ξ(k) = S(k)T (k). In the scattering picture the effect of calculating the nth power of Ξ

is that (Ξn)ij describes the Gaussian wave-packet starting on the bond j, then scattering down

n bonds to finish on the bond i. The diagonal elements Ξnii then describe the periodic orbits

of length n, starting and ending on the bond i. These periodic orbits are a sequence of bonds

p = (b1b2 . . . bn) such that bi = [vi, vi+1], with bn+k ≡ bk and bn = [vn, v1], [18]. The period Tp

is defined as the minimum shift so that (bTp+1 . . . bnb1 . . . bTp) = (b1b2 . . . bn) and the repetition

number is rp = n/Tp ∈ N. The set of primitive periodic orbits of any length will be called P,

while Pn will be the primitive orbits of length n.

If the quantum graph has an m-dimensional wave-function on it, so that

ψb(xb) =
(
ψb,1(xb) . . . ψb,m(xb)

)T
, then the trace of Ξ is given by, [27, 67],

1

n
tr Ξn(k) = tr

∑
(b1...bn)∈P

∞∑
rp=1

1

rp

(
Sb1bn(k)Tbn(k)Sbnbn−1

(k)Tbn−1
(k) . . .

. . . Sb3b2(k)Tb2(k)Sb2b1(k)Tb1(k))
rp

where each Tbi , Sbi+1bi is a m×m matrix. Given that Tbi = pbi exp(i(k +Abi)Lbi)Im, where pbi

is the phase picked up by cutting the bond for the quotient graph, then this becomes, [67],

Nosc(k) = lim
ε→0

1

π
Im

∑
p∈P

∞∑
rp=1

ei(k+iε)rpLpΦ
rp
p Ψ

rp
p Arpp (k + iε)

rp

 (D.2)

where,

Φp =
∏
b∈p

eiAbLb , Ψp =
∏
b∈p

pb,

Ap(k + iε) = tr
(
Sb1bn(k + iε)Sbnbn−1

(k + iε) . . . Sbbb1(k + iε)
)
.

If the scattering matrix is independent of k, then by re-summing over rp and using the infinite

sum approximation of ln(1− x) as ln(1− x) =
∑∞
r=1 x

r/r, this can be rewritten as, [67],

N(k) = − lim
ε→0

1

π
Im
∑
p∈P

ln
(

1−ApΦpΨpe
i(k+iε)Lp

)
. (D.3)

Taking the derivative of this, then the Weyl part of the density of states can be written as a sum

over primitive periodic orbits by,

dWeyl(k) = lim
ε→0

1

π

d

dk
Im

∑
p∈P

∞∑
rp=1

ei(k+iε)rpLpΦ
rp
p Ψ

rp
p Arpp (k + iε)

rp


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= lim
ε→0

1

π
Re
∑
p∈P

∞∑
rp=1

Lpe
i(k+iε)rpLpΦrpp Ψrp

p Arpp

= lim
ε→0

Re
∑
p∈P

Lp
π

ΦpΨpApei(k+iε)Lp

1− ΦpΨpApei(k+iε)Lp

using the simplifications of [67] when S is independent of k to turn
∑∞
r=1 x

r = x/(1 − x) when

x < 1. This forms the periodic orbit trace formulae on the quantum graph, equivalent in function

to the Gutzwiller trace formulae, except it is now exact.

D.2 Identifying Periodic Orbits on Symmetric Graphs

We now come to consider the requirements to be able to numerically test the periodic orbit

approximation on quantum graphs by computing N(k), d(k) or K1(τ) using a number of periodic

orbits taken from a graph. To get good approximations of these values, it will be necessary to

identify all periodic orbits in the graph passing along up to 2|B| bonds as the graph equivalent to

requiring all periodic orbits up to the Heisenberg time for a general quantum system, [67]. Based

on the equations above, it will however be sufficient to identify only the primitive orbits.

The difficulty in identifying all primitive periodic orbits on a quantum graph is in finding an

algorithm that is both fast and memory efficient. On the complete n-graph, for example, it is

possible to be very RAM efficient by generating the set of length m-orbits as generating the set

of lists of vertices {(v1, v2, . . . , vm) | vi ∈ [0, n− 1], vi 6= vi−1} with the bond paths being defined

as (b1b2 . . . bm), bi = [vi, vi+1]. This can be done by a series of m for loops, which iterate over

[0, n− 1] for each entry vi so that it stores only m values at a time, however it stores each orbit

multiple times - m/r times - as it counts each rotation of the starting vertices as separate. This

makes it a computationally long program that is very heavy on the storage memory.

Here we demonstrate a method that uses combinations of simple periodic orbits to build all

of the non-simple orbits. We give a method of determining repeated orbits and filtering them out

to save on memory and to make sure there is no double counting in the trace formulae. These

algorithms will work on any graph, however they will still be slow on large graphs, specifically

those discussed in Chapters 6 and 7. To that end, we show how the symmetric structure of the

vertex-subgraph expanded quotient graph can be used to ‘fold’ the full graph into a smaller graph

for calculation.

D.2.1 Identifying Periodic Orbits

We begin with a general method of identifying all unique periodic orbits on a simple graph.

Firstly, we identify the bijection between representations of periodic orbits as lists of vertices and

as lists of bonds:

Definition D.2.1. Let Γ be a simple graph with vertex set V and bond set B. Let (b1 . . . bn) be

a sequence of n bonds bi ∈ B such that bi = [vi, vi+1] for i < n and bn = [vn, v1] for {vi} ⊂ V, so

that (b1 . . . bn) describes a length n-periodic orbit on Γ. Then the same orbit is described by the

vertex list (v1v2 . . . vn).
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(a) (b) (c)

Figure D.1: The figure-of-eight orbit in (a) can be split at the middle vertex into two distinct
simple orbits - the loop through the upper three vertices in (b); and the loop through the three
lower vertices in (c).

Alternatively, let (v1v2 . . . vn) be a sequence of n vertices vi ∈ V such that for each pair vi, vi+1,

there exists bi ∈ B such that bi = [vi, vi+1], with bn = [vn, v1]. Then (v1v2 . . . vn) describes the

same periodic orbit as (b1 . . . bn).

In terms of the algorithms developed below, it will be easier to work with the vertex repres-

entation of a periodic orbit. Note that the bijection holds only when Γ is simple, as otherwise

there exists a pair of bonds b = b′ = [i, j] and the identification of i, j → b is not unique.

We now add a second classification of the properties of a periodic orbit, identifying it as either

having a self-intersection, so it visits a vertex more than once, or having no self-intersections and

being simple, [102]. These simple orbits will prove to be the building blocks for constructing all

of the primitive orbits on the graph.

Definition D.2.2. Let Γ be a simple graph with periodic orbit p = (v1 . . . vn). Then if there are

no repeated vertices in p, 6 ∃i, j such that vi = vj, so each vertex is visited only once then p is a

simple or irreducible orbit. Otherwise, p is reducible.

Given a reducible periodic orbit where a single vertex v is repeated once,

p = (v1 . . . vivvi+2 . . . vjvvj+2 . . . vn), then the graph p forms a figure-of-eight orbit. If the loops

are cut apart at v where they intersect, as in Figure D.1, then p can be split into two simple

circular orbits. Rigorously, if an orbit p has a self-intersection at the v, then it can be decomposed

into two simple periodic orbits,

p = p1 ∪ p2, p1 = (v1 . . . vivvj+2 . . . vn), p2 = (vvi+2 . . . vj).

This process can be done for more complicated orbits where there are multiple repeated vertices,

and vertices repeated more than once. It can be done once, creating another two reducible orbits,

or it can be repeated until all orbits involved are simple - isolating a single repeated vertex in one

of the orbits, using this to partition the orbit in two, and taking the interior and exterior sections

of the partition as the decomposed form of this orbit in the full decomposition of p; heuristically

this suggests that simple orbit decomposition of reducible orbits is always possible, though it will

need defining rigorously. With the quantitative process of orbit decomposition, there are several

things to note though. First, as can be seen when considering the possible splits of the orbit
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(a) p ∪i,j p′ (b) p ∪i,(n−j) p̄′

Figure D.2: A comparison of the effect of adding the orbits p, p′ as p ∪i,j p′ and p ∪i,(n−j) p̄′,
forming a Sieber-Richter pair of orbits.

(1, 2, 3, 4, 2, 5, 3, 6),

p = (1, 2, 3, 4, 2, 5, 3, 6) =

(1, 2, 5, 3, 6) ∪ (2, 3, 4) split on 2 first

(1, 2, 3, 6) ∪ (3, 4, 2, 5) split on 3 first

(D.4)

the orbit decomposition is not unique, and highly dependent on the order in which the splits are

taken; this will carry over to the simple orbit decomposition. Second, just using the ∪ notation

may not be clear as to how the splits in the orbit have been taken, and how the full orbit should

be reconstructed. Splitting the orbit p = (1, 2, 3, 4, 1, 3, 5, 3, 6) on the outer pair of 3s, then the

decomposition is p = (3, 4, 1, 3, 5)∪(3, 6, 1, 2) but to recombine it, it is unclear when looking at the

decomposition without the information about the full orbit whether the second orbit (3, 6, 1, 2)

has been removed from the first occurrence of three in (3, 4, 1, 3, 5) or the second.

Thus, when we rigorously define the addition of two orbits - a definition implicit in the ability

to decompose orbits - we include a method to track where the insertion of the second orbit into

the first occurs:

Definition D.2.3. Let p = (v1v2 . . . vn) and p′ = (v′1v
′
2 . . . v

′
m) be two periodic orbits on the graph

Γ. Let vi = v′j. Then the addition of the orbits p∪i,j p′ inserts the orbit p′ starting at vj into the

orbit p at the point vi,

p ∪i,j p′ = (v1 . . . viv
′
j+1 . . . v

′
mv
′
1 . . . v

′
jvi+1 . . . vn) (D.5)

As an aside, we note that if p̄′ = (vnvn−1 . . . v1) is the reversal of the orbit so it is traced out

backwards, then p ∪i,j p′ and p ∪i,(n−j) p̄′ is one way to form a Sieber-Richter pair of orbits, as

seen in Figure D.2.

We are now in a position to start simplifying the problem of finding all the orbits of a graph.

We show that every reducible orbit can indeed be constructed out of simple orbits:

Theorem D.2.4. Let P be the set of primitive periodic orbits. Let S be the set of simple periodic

orbits. Then for every p ∈ P, there exists the sequences {sm} ∈ S, {im}, and {jm} such that

p = s1 ∪i1,j1 s2 ∪i2,j2 . . .
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Proof. This is the complete decomposition of p into simple orbits. Let p be a periodic orbit.

Either p is simple, or it is possible to find two vertices vi, vj ∈ p such that vi = vj . Then,

p = (v1 . . . vivj+1 . . . vn) ∪i,1 (vi . . . vj−1) = p1 ∪i,1 p2. Furthermore, either p1, p2 are simple, or

they can be decomposed as above. Applying this iteratively defines the complete eduction of p

into simple orbits.

This means that if all the simple orbits are known, then finding all orbits of length n is a case

of taking all possible sequences {si}, such that n =
∑
s∈{si} |s|, with the set of all possible ways

they can be combined and adding then them together.

This shifts the problem of calculating all periodic orbits to the problem of calculating all simple

periodic orbits. The simple orbits of a graph can be calculated by a number of algorithms, here

we use the simple cycles algorithm from networkx in Python, [74], which implements the method

of Johnson from [89]. Separating out P and S into subsets according to size, and considering P ′,
the set of orbits allowing non-primitive elements,

P ′n = {p ∈ P ′ | |p| = n} ⊂ P ′, Sn = {s ∈ S | |s| = n} ⊂ S

then knowing P ′2 . . .P ′n−1, the next set of periodic orbits, P ′n, can be constructed as

P ′n = Sn
⋃(
∪bn/2cm=2 ∪p∈P′m ∪p′∈P′n−m ∪i,j:vi=v′j ∪i,jp

′
)
.

This gives the algorithm for finding all orbits on G up to a specific length, while allowing

repetition in the orbit so rp ≥ 1. It is necessary to allow for rp > 1 in building the orbits, as

taking the combination with a second orbit may break the non-primitive nature of the orbit, for

example (1, 2, 1, 2) ∪2,1 (2, 3, 4) uses a non primitive orbit (1, 2, 1, 2) to make the primitive orbit

(1, 2, 3, 4, 2, 1, 2). Thus, non-primitive orbits should only be discarded at the very end of the

computation once all the desired sets P ′n have been found by using Pn = {p ∈ P ′n | rp = 1}.
What does need to be done at the end of computing each P ′n is discarding the non-unique

orbits to save on both memory and run time. Two orbits p, p′ are equivalent if |p| = |p′| = n and

there exists a shift of size m such that (v1 . . . vn) = (v′m . . . v
′
nv
′
1 . . . v

′
m−1) = p′m→, where p′m→

denotes a shift of the starting point of p′ m places to the right. It is possible to take every new

p added to P ′n and check that for each possible shift m, pm→ 6∈ P ′n. It is however faster to agree

upon a standardised presentation for an orbit - that is a way of choosing a standardised starting

point in the orbit - and transforming the orbit into this presentation before potentially adding

it to P ′n if it isn’t already included. We do this by taking the alphabetically smallest version of

pm→ under shifts m:

Definition D.2.5. Let p, p′ be two periodic orbits on a graph Γ of length n. Then, p ≤ p′ if the

sequance (v1, . . . , vn) comes before (v′1, . . . , v
′
n) alphabetically. That is, there ∃i ≤ n such that for

all j < i, vj = v′j and vi < v′i.

Definition D.2.6. Let p be a periodic orbit on Γ. Then the standard ordering of p, ps is defined

as ps = pm→ with m chosen so that ps ≤ pk→ for all k ∈ [1, n].

Checking if p is already included in P ′n is then a case of transforming each orbit into its

standard presentation before adding it to P ′n. As ps can be found by using built in algorithms
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to identify the minimum element k in p, then all entries of p equal to k, then comparing each of

the possible shifts required to get k as a starting element, this massively speeds up the checking

when compared to testing each individual shift.

Finally, to complete finding the set of primitive periodic orbits, it is only necessary to fil-

ter out the non-primitive orbits. This can be done by checking whether for each m | n,

p = ∪n/mi=1 (v1 . . . vm). Thus concludes the discussion on finding the periodic orbits of a general

graph.

D.2.2 Using Symmetry to Reduce Graph Size

We note again the necessity of computing all periodic orbits up to the Heisenburg length so that

n ≤ 2|B| in order to be able to get a good estimate of the values being approximated by the

periodic orbit expansion, [67]. For the sorts the sorts of graphs considered in Chapters 6 and

7, where the graphs contained between 46 and 136 bonds this is beyond prohibitively expensive

though - it would require finding all orbits with maximum length 92 or 272. Even the smallest

possible four-part graph consistent with the structure in Chapter 7, presented in Figure D.3a,

having 24 bonds requires orbits of up to length 48, yet it can take weeks to calculate just the

orbits of length 14.

The issue is that the algorithms used to generate the orbits scale poorly both in the number

of bonds on the graph, and in the number of orbits they have to calculate. For a graph with N

bonds, V vertices and S = |S| simple orbits, it takes O((N +V )(S+ 1)) time to identify all of S;

it is harder to estimate the exact scaling of the process of combining the simple orbits together

to form P ′n, however, it at a minimum scales as O(
∑bn/2c
m=2 |P ′m|

∣∣P ′n−m∣∣) based on the need to

loop through all pairs p, p′ in P ′m ⊗ P ′n−m for 2 ≤ m ≤ bn/2c, and this must be done for every

n ≤ 2|B|.
It is desirable then to look for a way to reduce the time these calculations take. It will

not be possible to reduce the maximum length of the orbits that need to be calculated, but we

will show that it is possible to find a smaller graph, Γfolded based on the full graph through

symmetry, and through the calculation of the orbits of Γfolded find all orbits the orbits on the

original graph. Due to the difference in size between Γ and Γfolded and the reduced number of

possible orbits however, there will be a generally approximately (|V|/|Vfolded|)2 factor speed-up

in the computation through reducing N , V and |S|. For the graphs considered in Chapter 6 and

7 this will work out as either fourfold, or sixteenfold depending on whether |TG| = 1 or |TG| = 2.

Recall the very regular structure of the vertex-expanded quotient graphs Γ(G,SU ∪TG)/(U, ρ)

from Chapter 7. If Γsg is the subgraph used to expand the vertices, then if |TG| = 1, then

Γ(G,SU ∪ TG)/(U, ρ) consists of two interlinked copies of Γsg; while if |TG| = 2, it contains four

interlinked copies of Γsg. An example where |TG| = 2 is provided in Figure D.3a.

This graph Γ(G,SU ∪TG)/(U, ρ) is symmetric under both α and γ as an abstract graph rather

than a Dirac graph, and if the vertex labels are chosen properly then the permutations on the

vertices by α and γ may be expressed by adding or subtracting kn as required to the vertex

labels, where n = |Vsg| and k ∈ N. In particular, if the vertex sub-graph has n vertices, then the

vertices of Γsg are labelled by 0 . . . n− 1; the vertices of αΓsg by n . . . 2n− 1; the vertices of γΓsg

by 2n . . . 3n − 1; and the vertices of αγΓsg by 3n . . . 4n − 1. It can then be seen that the vertex
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permutations induced by α and γ are given by,

α : v →

v + n v < 2n or 2n ≤ v < 3n

v − n n ≤ v < 2n or v ≥ 3n

(D.6)

α−1 : v →

v + n v < 2n or 2n ≤ v < 3n

v − n n ≤ v < 2n or v ≥ 3n

γ : v →

v + 2n v < 2n

v − 2n v ≥ 2n

(D.7)

γ−1 : v →

v + 2n v < 2n

v − 2n v ≥ 2n

Note that because α and γ are involutions in the quotient space, as discussed in Section 3.1.1,

then α−1 = α and γ−1 = γ.
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(a) An example of a vertex-subgraph expanded quo-
tient graph.

(b) An alternate visualisation of the graph in (a),
where each sub-graph is stacked along the z-axis.

(c) The projection of the graph in (b) onto the x − y
plane, so that the subgraphs merge into the complete
4 graph.

Figure D.3: A look at the method of constructing a four-part expanded quotient graph, (a), before stacking the
individual sub-graphs vertically, (b) and using projection to ‘fold’ it into the small graph in (c). In each case,
black bonds are from the vertex-subgraph, the red dashed bond are generated by α, and the blue dot-dashed
bonds are generated by γ.
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We consider now the process of defining Γfolded. Consider a graph with structure similar to

that in Figure D.3a, so it consists of interlinked copies of multiple copies of a graph Γsg. This may

be drawn in the x− y plane as is standard, or it may be drawn in three dimensions by stacking

each copy of Γsg along the z-axis as in Figure D.3b. Taking the projection of this graph onto the

x − y plane forms the graph like in Figure D.3c; formally this graph is found by applying the

projection operator Pfolding to the each of the vertices and bonds of Γ(G,SU ∪ TG)/(U, ρ) with

its action as,

Pfolding : v → v modn v ∈ V
Pfolding : b = [v1, v2]→ [v1 modn, v2 modn] b ∈ B

so that Γfolded = PfoldingΓ(G,SU ∪ TG)/(U, ρ), Vfolded = {Pfoldedv | v ∈ V} and

Bfolded = {Pfoldedb | b ∈ B} with repeated elements removed to make sure Γfolded is simple.

It is now a case of showing all orbits on Γ(G,SU ∪TG)/(U, ρ) can be found from the orbits on

Γfolded, and identifying the process of converting an orbit on Γfolded into an orbit on Γ(G,SU ∪
TG)/(U, ρ).

Note firstly though, that there are the relations on the size of Vfolded, Bfolded and Sfolded with

respect to V, B and S - |Vfolded| = |V|/2|TG|, |Bfolded| = |B|/2|TG| and |Sfolded| < |S|/2|TG| as

a simple orbit on the full graph Γ(G,SU ∪ TG)/(U, ρ) will not be simple on Γfolded if it passes

through both v and at least one of αv, γv or αγv on the full graph. This means that taking

the formula for the time scaling of the algorithm to find all the simple orbits, if time T is taken

for the full graph, time Tfolded < T/4|TG|2 is taken on the folded graph. This will lead to the

promised fourfold or sixteenfold speed up for calculating the simple orbits.

It is easy to show that every orbit on Γ(G,SU ∪ TG)/(U, ρ) appears as an orbit of Γfolded.

All that is needed is to apply the projection operator to each element of p(v1, . . . , vn), pfolded =

Pfoldingp = (Pfolding(v1), . . . , Pfolding(vn)). This means that if a way to invert the projection

operator, then orbits on Γfolded can be converted into orbits on Γ(G,SU ∪ TG)/(U, ρ), finding all

of the possible orbits.

Take an orbit p on the unfolded graph, in the three dimensional picture. It can move about

on a single copy of the subgraph, but if bαi and bγi are the bonds interlinking the different

subgraphs, then every time the orbit crosses one of these bonds, it will move up or down the

stack of subgraphs. We can use this to invert Pfolding.

Let bα,f = [va1, va2] = Pfoldingbαi ∀i be the bond in Γfolded associated to α, and bγ,f =

[vc1, vc2] = Pfoldingbγi ∀i be the bond associated to γ. Then recalling the definition of α and

γ in terms of the vertex permutations from Equations D.6 and D.7, Pfolding can be inverted by

taking an orbit pfolded and searching from the left of the orbit for the consecutive pairs of vertices

va1, va2, va2, va1, vc1, vc2 and vc2, vc1 and then each time one appears adding the appropriate

following transform,

pfolded = (v1, . . . , vi−1, va1, va2, . . . , vn)⇒ αi : pfolded → (v1, . . . , vi−1, va1, α(va2), . . . , α(vn))

pfolded = (v1, . . . , vi−1, va2, va1, . . . , vn)⇒ α−1
i : pfolded → (v1, . . . , vi−1, va2, α

−1(va1), . . . , α−1(vn))

pfolded = (v1, . . . , vi−1, vc1, vc2, . . . , vn)⇒ γi : pfolded → (v1, . . . , vi−1, vc1, γ(vc2), . . . , α(vn))

pfolded = (v1, . . . , vi−1, vc2, vc1, . . . , vn)⇒ γ−1
i : pfolded → (v1, . . . , vi−1, vc2, γ

−1(vc1), . . . , γ−1(vn)),
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to the inverse function of Pfolding for this specific orbit. This is equivalent to watching for the

orbit to cross the bond that would shift it up or down in the stack, and then using the vertex

permutation forms of α and γ to perform these shifts.

As an example for the graphs presented in Figure D.3, where bα,f = [0, 3] and bγ,f = [1, 2], the

orbit pfolded = (0, 3, 2, 1, 3, 0, 2, 1) may be transformed onto the full graph by γ−1
7 ◦α−1

5 ◦γ−1
3 ◦α1,

giving

p = γ−1
7 ◦ α−1

5 ◦ γ
−1
3 ◦ α1(0, 3, 2, 1, 3, 0, 2, 1)

= γ−1
7 ◦ α−1

5 ◦ γ
−1
3 (0, 7, 6, 5, 7, 4, 6, 5)

= γ−1
7 ◦ α−1

5 (0, 7, 6, 13, 15, 12, 14, 13)

= γ−1
7 (0, 7, 6, 13, 15, 8, 10, 9)

= (0, 7, 6, 13, 15, 8, 10, 1)

This allows the conversion of orbits on Γfolded into paths on the full graph - it is not yet

guaranteed that the unfolded orbit will end up as an orbit on the full graph, as the start and end

points of the unfolded path may end up on different copies of the subgraph and not link back up.

This is why a final check that for the unfolded path p = (v1, . . . vn) there exists b = [vn, v1] ∈ B.

If there does, then p provides an orbit, if it doesn’t then it can be discarded. We also note that

a non-primitive orbit on Γfolded may be primitive on Γ(G,SU ∪ TG)/(U, ρ) if it passes through

multiple copies of the subgraph - pfolded = (0, 2, 3, 0, 2, 3) which unfolds to p = (0, 2, 3, 4, 6, 7) is

an example. This gives another reason to not discard calculated repeated orbits when finding the

periodic orbits of Γsg before the end; discarding of the non-primitive orbits should only be done

after the unfolding.

The process of generating the orbits on Γfolded using the techniques in the section above and

unfolding them then gives all periodic orbits on Γ(G,SU ∪ TG)/(U, ρ) starting on the copy of

Γsg corresponding to the unitary subgraph. To finally get all orbits on Γ(G,SU ∪ TG)/(U, ρ),

it is necessary to apply each of the transformations α, γ and α ◦ γ to each calculated orbit,

shifting the starting points to αΓsg, γΓsg and αγΓsg respectively, removing any repeated orbits.

This will finally give all periodic orbits on Γ(G,SU ∪ TG)/(U, ρ). The fact that this increases the

number of orbits by approximately a factor of 2|TG| - ignoring the double counting of orbits which

sit over more than one copy of the subgraph - is why there is again an approximately fourfold

or sixteenfold speedup of the orbit-combination-process building the primitive orbits on Γfolded

instead of Γ(G,SU ∪ TG)/(U, ρ) by reducing the length of the lists P ′n.

We can now summarise the process of identifying all primitive orbits on a symmetric graph:

� Take the graph Γ(G,SU ∪ TG)/(U, ρ) and identify its image Γfolded under the projection

Pfolding.

� Identify the simple orbits Sfolded on Γfolded.

� Combine the simple orbits into the non-simple orbits on Γfolded to form the set of periodic

orbits P ′ which includes non-primitive orbits.

� Identify the unfolded path on Γ(G,SU ∪ TG)/(U, ρ) for each orbit in P ′. Discard any paths

which aren’t orbits.
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� Discard any non-primitive orbits on Γ(G,SU ∪ TG)/(U, ρ).

� For each orbit p, construct αp, γp and αγp, discarding any repeated orbits.

This process will be generalisable to other symmetric graphs, and not just the two-part and

four-part graphs generated by the vertex-expanded quotients of Cayley graphs for the Z2 and

Z2 × Z2-graded groups. This can be done by identifying the appropriate vertex permutation

transformations in line with the method used to define α and γ, forming the projection operator

Pfolding and its inverse out of the vertex permutation transformations.
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E. Classification of the Small Groups by the

Dyson and Altland-Zirnbauer Tenfold Ways

We give here the classification of the Z2-graded groups of size |G| ≤ 30 according to Dyson’s

Tenfold Way from Theorem 2.2.15; and the classification of the Z2 × Z2-graded groups of size

|G| ≤ 40 according to the Altland-Zirnbauer Tenfold Way from Theorem 2.3.12. This is where the

data required for the proofs in Chapter 5 to identify the minimal graded groups and irreducible

representations generating each Altland-Zirnbauer class comes from.

The tables are organised by the unitary commuting subgroups U - each table consists of the

character table of U on the left hand, and on the right, the possible graded groups G having

U / G, with the details of the partition. In the column below, corresponding to each irreducible

representation of U , is given the class of the corepresentation of G generated by the representation

of U and this particular choice of G and its partition. Note that for certain pairs of G and U ,

multiple partitions of G are possible, and each have been given.

As a reminder, a modified version of the GAP notation is used, so that Un|U | = (|U |, n) and

Gm|G| = (|G|, n), while the partition for a Z2 × Z2-graded group is described by,

Uk|U |, G
m
4|U |(n, p, q) −→

U = (|U |, k)

G = (4|U |,m)

U ∪ αU = (2|U |, n)

U ∪ γU = (2|U |, p)
U ∪ πU = (2|U |, q).

It is possible to translate from GAP notation to more descriptive group names by the application

of [49] or [124], which are databases of the small groups. They also provide presentations for

each of the groups which can be used to calculate the structure of G as a graded group, and to

identify what sorts of symmetries they involve.

GAP notation is also in use in the character tables, where E(n) denotes the nth root of unity,

E(n) = exp(2πi/n).

Finally, these classifications are given with the assumption that the system they apply to has

global time-reversal and charge-conjugation operators that are involutions. If at least one of T̂ , Ĉ
squares to −I then either the method of projective representations and universal covering groups

has to be used from Section 2.4, constructing G′ and then looking up G′ in the tables; or else if
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the corepresentations can be expressed over charge-spin-orbital space per Theorem 2.4.10, then

the tables below can still be applied to G, but after using the following substitutions, [24]:

T 2 C2 A AI AII AIII BDI CII D C CI DIII

I −I A AI AII AIII CI DIII C D BDI CII

−I I A AII AI AIII DIII CI D C CII BDI

−I −I A AII AI AIII CII BDI C D DIII CI

Now begins the classification of the small groups under the Dyson Tenfold, and Altland-

Zirnbauer Tenfold Ways.
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E.1 Classification of the Small Z2-Graded Groups by the Dyson

Tenfold Way

U1
1 C0 G1

2

Γ0 1 RI

U1
2 C0 C1 G1

4 G2
4

Γ0 1 1 RI RI

Γ1 1 −1 RII RI

U1
3 C0 C1 C2 G1

6 G2
6

Γ0 1 1 1 RI RI

Γ1 1 E(3) E(3)2 CI CIII2

Γ2 1 E(3)2 E(3) CI CIII2

U1
4 C0 C1 C2 C3 G1

8 G2
8

Γ0 1 1 1 1 RI RI

Γ1 1 −1 1 −1 RII RI

Γ2 1 i −1 −i CIII2 CIII2

Γ3 1 −i −1 i CIII2 CIII2

U1
4 G3

8 G4
8

Γ0 RI RI

Γ1 RI RI

Γ2 CI CII

Γ3 CI CII

U2
4 C0 C1 C2 C3 G2

8 G3
8

Γ0 1 1 1 1 RI RI

Γ1 1 −1 1 −1 RI RI

Γ2 1 1 −1 −1 RII RIII

Γ3 1 −1 −1 1 RII RIII

U2
4 G5

8

Γ0 RI

Γ1 RI

Γ2 RI

Γ3 RI
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U1
5 C0 C1 C2 C3 C4 G1

10

Γ0 1 1 1 1 1 RI

Γ1 1 E(5) E(5)2 E(5)3 E(5)4 CI

Γ2 1 E(5)2 E(5)4 E(5) E(5)3 CI

Γ3 1 E(5)3 E(5) E(5)4 E(5)2 CI

Γ4 1 E(5)4 E(5)3 E(5)2 E(5) CI

U1
5 G2

10

Γ0 RI

Γ1 CIII2

Γ2 CIII2

Γ3 CIII2

Γ4 CIII2

U1
6 C0 C1 C2 G4

12

Γ0 1 1 1 RI

Γ1 1 −1 1 RI

Γ2 2 0 −1 RI

U2
6 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 −1 1 −1 1 −1

Γ2 1 −1 E(3)2 −E(3)2 E(3) −E(3)

Γ3 1 −1 E(3) −E(3) E(3)2 −E(3)2

Γ4 1 1 E(3)2 E(3)2 E(3) E(3)

Γ5 1 1 E(3) E(3) E(3)2 E(3)2

U2
6 G1

12 G2
12 G4

12 G5
12

Γ0 RI RI RI RI

Γ1 RII RII RI RI

Γ2 CII CIII2 CI CIII2

Γ3 CII CIII2 CI CIII2

Γ4 CI CIII2 CI CIII2

Γ5 CI CIII2 CI CIII2

U1
7 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 E(7) E(7)2 E(7)3 E(7)4 E(7)5

Γ2 1 E(7)2 E(7)4 E(7)6 E(7) E(7)3

Γ3 1 E(7)3 E(7)6 E(7)2 E(7)5 E(7)

Γ4 1 E(7)4 E(7) E(7)5 E(7)2 E(7)6

Γ5 1 E(7)5 E(7)3 E(7) E(7)6 E(7)4

Γ6 1 E(7)6 E(7)5 E(7)4 E(7)3 E(7)2
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U1
7 C6 G1

14 G2
14

Γ0 1 RI RI

Γ1 E(7)6 CI CIII2

Γ2 E(7)5 CI CIII2

Γ3 E(7)4 CI CIII2

Γ4 E(7)3 CI CIII2

Γ5 E(7)2 CI CIII2

Γ6 E(7) CI CIII2

U1
8 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 −1 1 1 −1 −1

Γ2 1 i −1 1 −i i

Γ3 1 −i −1 1 i −i
Γ4 1 E(8) i −1 E(8)3 −E(8)

Γ5 1 −E(8) i −1 −E(8)3 E(8)

Γ6 1 E(8)3 −i −1 E(8) −E(8)3

Γ7 1 −E(8)3 −i −1 −E(8) E(8)3

U1
8 C6 C7 G1

16 G5
16 G6

16 G7
16

Γ0 1 1 RI RI RI RI

Γ1 1 −1 RII RI RI RI

Γ2 −1 −i CIII2 CIII2 CIII2 CI

Γ3 −1 i CIII2 CIII2 CIII2 CI

Γ4 −i −E(8)3 CIII2 CIII2 CIII1 CI

Γ5 −i E(8)3 CIII2 CIII2 CIII1 CI

Γ6 i −E(8) CIII2 CIII2 CIII1 CI

Γ7 i E(8) CIII2 CIII2 CIII1 CI

U1
8 G8

16 G9
16

Γ0 RI RI

Γ1 RI RI

Γ2 CI CI

Γ3 CI CI

Γ4 CIII1 CII

Γ5 CIII1 CII

Γ6 CIII1 CII

Γ7 CIII1 CII
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U2
8 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 −1 1 1 −1 −1

Γ2 1 1 −1 1 −1 1

Γ3 1 −1 −1 1 1 −1

Γ4 1 i 1 −1 i −i
Γ5 1 −i 1 −1 −i i

Γ6 1 i −1 −1 −i −i
Γ7 1 −i −1 −1 i i

U2
8 C6 C7 G2

16 G3
16 G4

16 G5
16

Γ0 1 1 RI RI RI RI

Γ1 1 −1 RI RI RI RII

Γ2 −1 −1 RII RIII RII RI

Γ3 −1 1 RII RIII RII RII

Γ4 −1 −i CIII2 CIII2 CI CIII2

Γ5 −1 i CIII2 CIII2 CI CIII2

Γ6 1 i CIII2 CI CII CIII2

Γ7 1 −i CIII2 CI CII CIII2

U2
8 G6

16 G10
16 G11

16 G12
16 G13

16

Γ0 RI RI RI RI RI

Γ1 RII RI RI RI RI

Γ2 RI RI RI RI RI

Γ3 RII RI RI RI RI

Γ4 CIII1 CIII2 CI CII CIII1

Γ5 CIII1 CIII2 CI CII CIII1

Γ6 CIII1 CIII2 CI CII CIII1

Γ7 CIII1 CIII2 CI CII CIII1

U3
8 C0 C1 C2 C3 C4 G7

16

Γ0 1 1 1 1 1 RI

Γ1 1 −1 1 1 −1 RIII

Γ2 1 1 −1 1 −1 RIII

Γ3 1 −1 −1 1 1 RI

Γ4 2 0 0 −2 0 RI

U3
8 G8

16 G11
16 G13

16

Γ0 RI RI RI

Γ1 RIII RI RI

Γ2 RIII RI RI

Γ3 RI RI RI

Γ4 RII RI RII
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U4
8 C0 C1 C2 C3 C4 G8

16

Γ0 1 1 1 1 1 RI

Γ1 1 −1 1 1 −1 RI

Γ2 1 1 −1 1 −1 RIII

Γ3 1 −1 −1 1 1 RIII

Γ4 2 0 0 −2 0 HI

U4
8 G9

16 G12
16 G13

16

Γ0 RI RI RI

Γ1 RI RI RI

Γ2 RIII RI RI

Γ3 RIII RI RI

Γ4 HII HII HI

U5
8 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 −1 1 1 −1 −1

Γ2 1 1 −1 1 −1 1

Γ3 1 −1 −1 1 1 −1

Γ4 1 1 1 −1 1 −1

Γ5 1 −1 1 −1 −1 1

Γ6 1 1 −1 −1 −1 −1

Γ7 1 −1 −1 −1 1 1

U5
8 C6 C7 G3

16 G10
16 G11

16 G14
16

Γ0 1 1 RI RI RI RI

Γ1 1 −1 RI RI RI RI

Γ2 −1 −1 RIII RI RI RI

Γ3 −1 1 RIII RI RI RI

Γ4 −1 −1 RII RII RIII RI

Γ5 −1 1 RII RII RIII RI

Γ6 1 1 RIII RII RIII RI

Γ7 1 −1 RIII RII RIII RI
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U1
9 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 E(3) 1 E(3)2 E(3) 1

Γ2 1 E(3)2 1 E(3) E(3)2 1

Γ3 1
−E(9)4 −
E(9)7

E(3) E(9)2 E(9)4 E(3)2

Γ4 1 E(9)4 E(3)
−E(9)2 −
E(9)5

E(9)7 E(3)2

Γ5 1 E(9)7 E(3) E(9)5
−E(9)4 −
E(9)7

E(3)2

Γ6 1 E(9)2 E(3)2 E(9)4
−E(9)2 −
E(9)5

E(3)

Γ7 1 E(9)5 E(3)2
−E(9)4 −
E(9)7

E(9)2 E(3)

Γ8 1
−E(9)2 −
E(9)5

E(3)2 E(9)7 E(9)5 E(3)

U1
9 C6 C7 C8 G1

18 G2
18

Γ0 1 1 1 RI RI

Γ1 E(3)2 E(3) E(3)2 CI CIII2

Γ2 E(3) E(3)2 E(3) CI CIII2

Γ3 E(9)5 E(9)7
−E(9)2 −
E(9)5

CI CIII2

Γ4 E(9)2
−E(9)4 −
E(9)7

E(9)5 CI CIII2

Γ5
−E(9)2 −
E(9)5

E(9)4 E(9)2 CI CIII2

Γ6
−E(9)4 −
E(9)7

E(9)5 E(9)7 CI CIII2

Γ7 E(9)7
−E(9)2 −
E(9)5

E(9)4 CI CIII2

Γ8 E(9)4 E(9)2
−E(9)4 −
E(9)7

CI CIII2

U2
9 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 E(3) 1 E(3)2 E(3) 1

Γ2 1 E(3)2 1 E(3) E(3)2 1

Γ3 1 1 E(3) 1 E(3) E(3)2

Γ4 1 E(3) E(3) E(3)2 E(3)2 E(3)2

Γ5 1 E(3)2 E(3) E(3) 1 E(3)2

Γ6 1 1 E(3)2 1 E(3)2 E(3)

Γ7 1 E(3) E(3)2 E(3)2 1 E(3)

Γ8 1 E(3)2 E(3)2 E(3) E(3) E(3)
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U2
9 C6 C7 C8 G3

18 G4
18 G5

18

Γ0 1 1 1 RI RI RI

Γ1 E(3)2 E(3) E(3)2 CIII2 CI CIII2

Γ2 E(3) E(3)2 E(3) CIII2 CI CIII2

Γ3 E(3) E(3)2 E(3)2 CI CI CIII2

Γ4 1 1 E(3) CIII1 CI CIII2

Γ5 E(3)2 E(3) 1 CIII1 CI CIII2

Γ6 E(3)2 E(3) E(3) CI CI CIII2

Γ7 E(3) E(3)2 1 CIII1 CI CIII2

Γ8 1 1 E(3)2 CIII1 CI CIII2

U1
10 C0 C1 C2 C3 G3

20 G4
20

Γ0 1 1 1 1 RI RI

Γ1 1 −1 1 1 RII RI

Γ2 2 0 E(5)2 +E(5)3 E(5) + E(5)4 RIII RI

Γ3 2 0 E(5) + E(5)4 E(5)2 +E(5)3 RIII RI

U2
10 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 −1 1 −1 1 −1

Γ2 1 −1 E(5)4 −E(5)4 E(5)3 −E(5)3

Γ3 1 −1 E(5)3 −E(5)3 E(5) −E(5)

Γ4 1 −1 E(5)2 −E(5)2 E(5)4 −E(5)4

Γ5 1 −1 E(5) −E(5) E(5)2 −E(5)2

Γ6 1 1 E(5)4 E(5)4 E(5)3 E(5)3

Γ7 1 1 E(5)3 E(5)3 E(5) E(5)

Γ8 1 1 E(5)2 E(5)2 E(5)4 E(5)4

Γ9 1 1 E(5) E(5) E(5)2 E(5)2

U2
10 C6 C7 C8 C9 G1

20 G2
20

Γ0 1 1 1 1 RI RI

Γ1 1 −1 1 −1 RII RII

Γ2 E(5)2 −E(5)2 E(5) −E(5) CII CIII2

Γ3 E(5)4 −E(5)4 E(5)2 −E(5)2 CII CIII2

Γ4 E(5) −E(5) E(5)3 −E(5)3 CII CIII2

Γ5 E(5)3 −E(5)3 E(5)4 −E(5)4 CII CIII2

Γ6 E(5)2 E(5)2 E(5) E(5) CI CIII2

Γ7 E(5)4 E(5)4 E(5)2 E(5)2 CI CIII2

Γ8 E(5) E(5) E(5)3 E(5)3 CI CIII2

Γ9 E(5)3 E(5)3 E(5)4 E(5)4 CI CIII2
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U2
10 G4

20 G5
20

Γ0 RI RI

Γ1 RI RI

Γ2 CI CIII2

Γ3 CI CIII2

Γ4 CI CIII2

Γ5 CI CIII2

Γ6 CI CIII2

Γ7 CI CIII2

Γ8 CI CIII2

Γ9 CI CIII2

U1
11 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 E(11) E(11)2 E(11)3 E(11)4 E(11)5

Γ2 1 E(11)2 E(11)4 E(11)6 E(11)8 E(11)10

Γ3 1 E(11)3 E(11)6 E(11)9 E(11) E(11)4

Γ4 1 E(11)4 E(11)8 E(11) E(11)5 E(11)9

Γ5 1 E(11)5 E(11)10 E(11)4 E(11)9 E(11)3

Γ6 1 E(11)6 E(11) E(11)7 E(11)2 E(11)8

Γ7 1 E(11)7 E(11)3 E(11)10 E(11)6 E(11)2

Γ8 1 E(11)8 E(11)5 E(11)2 E(11)10 E(11)7

Γ9 1 E(11)9 E(11)7 E(11)5 E(11)3 E(11)

Γ10 1 E(11)10 E(11)9 E(11)8 E(11)7 E(11)6

U1
11 C6 C7 C8 C9 C10 G1

22

Γ0 1 1 1 1 1 RI

Γ1 E(11)6 E(11)7 E(11)8 E(11)9 E(11)10 CI

Γ2 E(11) E(11)3 E(11)5 E(11)7 E(11)9 CI

Γ3 E(11)7 E(11)10 E(11)2 E(11)5 E(11)8 CI

Γ4 E(11)2 E(11)6 E(11)10 E(11)3 E(11)7 CI

Γ5 E(11)8 E(11)2 E(11)7 E(11) E(11)6 CI

Γ6 E(11)3 E(11)9 E(11)4 E(11)10 E(11)5 CI

Γ7 E(11)9 E(11)5 E(11) E(11)8 E(11)4 CI

Γ8 E(11)4 E(11) E(11)9 E(11)6 E(11)3 CI

Γ9 E(11)10 E(11)8 E(11)6 E(11)4 E(11)2 CI

Γ10 E(11)5 E(11)4 E(11)3 E(11)2 E(11) CI
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U1
11 G2

22

Γ0 RI

Γ1 CIII2

Γ2 CIII2

Γ3 CIII2

Γ4 CIII2

Γ5 CIII2

Γ6 CIII2

Γ7 CIII2

Γ8 CIII2

Γ9 CIII2

Γ10 CIII2

U1
12 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 −1 1 1 −1 1

Γ2 1 −i −1 1 i −1

Γ3 1 i −1 1 −i −1

Γ4 2 0 −2 −1 0 1

Γ5 2 0 2 −1 0 −1

U1
12 G4

24 G5
24 G7

24 G8
24

Γ0 RI RI RI RI

Γ1 RI RI RI RI

Γ2 CII CIII2 CIII2 CI

Γ3 CII CIII2 CIII2 CI

Γ4 HII HI HII HI

Γ5 RI RI RI RI

U2
12 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 −1 1 1 −1 −1

Γ2 1 −1 E(3)2 1 −E(3)2 −1

Γ3 1 −1 E(3) 1 −E(3) −1

Γ4 1 1 E(3)2 1 E(3)2 1

Γ5 1 1 E(3) 1 E(3) 1

Γ6 1 −i 1 −1 −i i

Γ7 1 i 1 −1 i −i
Γ8 1 −i E(3)2 −1 −E(12)11 i

Γ9 1 −i E(3) −1 −E(12)7 i

Γ10 1 i E(3)2 −1 E(12)11 −i
Γ11 1 i E(3) −1 E(12)7 −i
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U2
12 C6 C7 C8 C9 C10 C11

Γ0 1 1 1 1 1 1

Γ1 1 1 −1 −1 1 −1

Γ2 E(3) E(3)2 −E(3) −E(3)2 E(3) −E(3)

Γ3 E(3)2 E(3) −E(3)2 −E(3) E(3)2 −E(3)2

Γ4 E(3) E(3)2 E(3) E(3)2 E(3) E(3)

Γ5 E(3)2 E(3) E(3)2 E(3) E(3)2 E(3)2

Γ6 1 −1 −i i −1 i

Γ7 1 −1 i −i −1 −i
Γ8 E(3) −E(3)2 −E(12)7 E(12)11 −E(3) E(12)7

Γ9 E(3)2 −E(3) −E(12)11 E(12)7 −E(3)2 E(12)11

Γ10 E(3) −E(3)2 E(12)7 −E(12)11 −E(3) −E(12)7

Γ11 E(3)2 −E(3) E(12)11 −E(12)7 −E(3)2 −E(12)11

U2
12 G1

24 G2
24 G4

24 G5
24 G6

24 G9
24

Γ0 RI RI RI RI RI RI

Γ1 RII RII RI RI RI RI

Γ2 CII CIII2 CI CI CI CIII2

Γ3 CII CIII2 CI CI CI CIII2

Γ4 CI CIII2 CI CI CI CIII2

Γ5 CI CIII2 CI CI CI CIII2

Γ6 CIII2 CIII2 CII CIII2 CI CIII2

Γ7 CIII2 CIII2 CII CIII2 CI CIII2

Γ8 CIII1 CIII2 CII CIII1 CI CIII2

Γ9 CIII1 CIII2 CII CIII1 CI CIII2

Γ10 CIII1 CIII2 CII CIII1 CI CIII2

Γ11 CIII1 CIII2 CII CIII1 CI CIII2

U2
12 G10

24 G11
24

Γ0 RI RI

Γ1 RI RI

Γ2 CIII2 CIII2

Γ3 CIII2 CIII2

Γ4 CIII2 CIII2

Γ5 CIII2 CIII2

Γ6 CI CII

Γ7 CI CII

Γ8 CIII1 CIII1

Γ9 CIII1 CIII1

Γ10 CIII1 CIII1

Γ11 CIII1 CIII1

U3
12 C0 C1 C2 C3 G12

24 G13
24

Γ0 1 1 1 1 RI RI

Γ1 1 E(3)2 1 E(3) CI CIII2

Γ2 1 E(3) 1 E(3)2 CI CIII2

Γ3 3 0 −1 0 RI RI
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U4
12 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 −1 −1 1 1 −1

Γ2 1 −1 1 1 −1 1

Γ3 1 1 −1 1 −1 −1

Γ4 2 0 −2 −1 0 1

Γ5 2 0 2 −1 0 −1

U4
12 G5

24 G6
24 G8

24 G14
24

Γ0 RI RI RI RI

Γ1 RII RIII RIII RI

Γ2 RI RI RI RI

Γ3 RII RIII RIII RI

Γ4 RII RI RII RI

Γ5 RI RI RI RI

U5
12 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 −1 −1 1 1 −1

Γ2 1 −1 1 1 −1 −1

Γ3 1 1 −1 1 −1 1

Γ4 1 −1 −1 E(3)2 1 −E(3)2

Γ5 1 −1 −1 E(3) 1 −E(3)

Γ6 1 −1 1 E(3)2 −1 −E(3)2

Γ7 1 −1 1 E(3) −1 −E(3)

Γ8 1 1 −1 E(3)2 −1 E(3)2

Γ9 1 1 −1 E(3) −1 E(3)

Γ10 1 1 1 E(3)2 1 E(3)2

Γ11 1 1 1 E(3) 1 E(3)

U5
12 C6 C7 C8 C9 C10 C11

Γ0 1 1 1 1 1 1

Γ1 −1 1 1 −1 −1 1

Γ2 1 1 −1 −1 1 −1

Γ3 −1 1 −1 1 −1 −1

Γ4 −E(3)2 E(3) E(3)2 −E(3) −E(3) E(3)

Γ5 −E(3) E(3)2 E(3) −E(3)2 −E(3)2 E(3)2

Γ6 E(3)2 E(3) −E(3)2 −E(3) E(3) −E(3)

Γ7 E(3) E(3)2 −E(3) −E(3)2 E(3)2 −E(3)2

Γ8 −E(3)2 E(3) −E(3)2 E(3) −E(3) −E(3)

Γ9 −E(3) E(3)2 −E(3) E(3)2 −E(3)2 −E(3)2

Γ10 E(3)2 E(3) E(3)2 E(3) E(3) E(3)

Γ11 E(3) E(3)2 E(3) E(3)2 E(3)2 E(3)2
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U5
12 G7

24 G8
24 G9

24 G10
24 G14

24 G15
24

Γ0 RI RI RI RI RI RI

Γ1 RII RIII RII RIII RI RI

Γ2 RI RI RI RI RI RI

Γ3 RII RIII RII RIII RI RI

Γ4 CII CIII1 CIII2 CIII1 CI CIII2

Γ5 CII CIII1 CIII2 CIII1 CI CIII2

Γ6 CI CI CIII2 CIII2 CI CIII2

Γ7 CI CI CIII2 CIII2 CI CIII2

Γ8 CII CIII1 CIII2 CIII1 CI CIII2

Γ9 CII CIII1 CIII2 CIII1 CI CIII2

Γ10 CI CI CIII2 CIII2 CI CIII2

Γ11 CI CI CIII2 CIII2 CI CIII2

U1
13 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 E(13) E(13)2 E(13)3 E(13)4 E(13)5

Γ2 1 E(13)2 E(13)4 E(13)6 E(13)8 E(13)10

Γ3 1 E(13)3 E(13)6 E(13)9 E(13)12 E(13)2

Γ4 1 E(13)4 E(13)8 E(13)12 E(13)3 E(13)7

Γ5 1 E(13)5 E(13)10 E(13)2 E(13)7 E(13)12

Γ6 1 E(13)6 E(13)12 E(13)5 E(13)11 E(13)4

Γ7 1 E(13)7 E(13) E(13)8 E(13)2 E(13)9

Γ8 1 E(13)8 E(13)3 E(13)11 E(13)6 E(13)

Γ9 1 E(13)9 E(13)5 E(13) E(13)10 E(13)6

Γ10 1 E(13)10 E(13)7 E(13)4 E(13) E(13)11

Γ11 1 E(13)11 E(13)9 E(13)7 E(13)5 E(13)3

Γ12 1 E(13)12 E(13)11 E(13)10 E(13)9 E(13)8

U1
13 C6 C7 C8 C9 C10 C11

Γ0 1 1 1 1 1 1

Γ1 E(13)6 E(13)7 E(13)8 E(13)9 E(13)10 E(13)11

Γ2 E(13)12 E(13) E(13)3 E(13)5 E(13)7 E(13)9

Γ3 E(13)5 E(13)8 E(13)11 E(13) E(13)4 E(13)7

Γ4 E(13)11 E(13)2 E(13)6 E(13)10 E(13) E(13)5

Γ5 E(13)4 E(13)9 E(13) E(13)6 E(13)11 E(13)3

Γ6 E(13)10 E(13)3 E(13)9 E(13)2 E(13)8 E(13)

Γ7 E(13)3 E(13)10 E(13)4 E(13)11 E(13)5 E(13)12

Γ8 E(13)9 E(13)4 E(13)12 E(13)7 E(13)2 E(13)10

Γ9 E(13)2 E(13)11 E(13)7 E(13)3 E(13)12 E(13)8

Γ10 E(13)8 E(13)5 E(13)2 E(13)12 E(13)9 E(13)6

Γ11 E(13) E(13)12 E(13)10 E(13)8 E(13)6 E(13)4

Γ12 E(13)7 E(13)6 E(13)5 E(13)4 E(13)3 E(13)2
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U1
13 C12 G1

26 G2
26

Γ0 1 RI RI

Γ1 E(13)12 CI CIII2

Γ2 E(13)11 CI CIII2

Γ3 E(13)10 CI CIII2

Γ4 E(13)9 CI CIII2

Γ5 E(13)8 CI CIII2

Γ6 E(13)7 CI CIII2

Γ7 E(13)6 CI CIII2

Γ8 E(13)5 CI CIII2

Γ9 E(13)4 CI CIII2

Γ10 E(13)3 CI CIII2

Γ11 E(13)2 CI CIII2

Γ12 E(13) CI CIII2

U1
14 C0 C1 C2 C3 C4 G3

28

Γ0 1 1 1 1 1 RI

Γ1 1 −1 1 1 1 RI

Γ2 2 0 E(7) + E(7)6 E(7)2 +E(7)5 E(7)3 +E(7)4 RI

Γ3 2 0 E(7)2 +E(7)5 E(7)3 +E(7)4 E(7) + E(7)6 RI

Γ4 2 0 E(7)3 +E(7)4 E(7) + E(7)6 E(7)2 +E(7)5 RI

U2
14 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 −1 1 −1 1 −1

Γ2 1 −1 E(7)6 −E(7)6 E(7)5 −E(7)5

Γ3 1 −1 E(7)5 −E(7)5 E(7)3 −E(7)3

Γ4 1 −1 E(7)4 −E(7)4 E(7) −E(7)

Γ5 1 −1 E(7)3 −E(7)3 E(7)6 −E(7)6

Γ6 1 −1 E(7)2 −E(7)2 E(7)4 −E(7)4

Γ7 1 −1 E(7) −E(7) E(7)2 −E(7)2

Γ8 1 1 E(7)6 E(7)6 E(7)5 E(7)5

Γ9 1 1 E(7)5 E(7)5 E(7)3 E(7)3

Γ10 1 1 E(7)4 E(7)4 E(7) E(7)

Γ11 1 1 E(7)3 E(7)3 E(7)6 E(7)6

Γ12 1 1 E(7)2 E(7)2 E(7)4 E(7)4

Γ13 1 1 E(7) E(7) E(7)2 E(7)2
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U2
14 C6 C7 C8 C9 C10 C11

Γ0 1 1 1 1 1 1

Γ1 1 −1 1 −1 1 −1

Γ2 E(7)4 −E(7)4 E(7)3 −E(7)3 E(7)2 −E(7)2

Γ3 E(7) −E(7) E(7)6 −E(7)6 E(7)4 −E(7)4

Γ4 E(7)5 −E(7)5 E(7)2 −E(7)2 E(7)6 −E(7)6

Γ5 E(7)2 −E(7)2 E(7)5 −E(7)5 E(7) −E(7)

Γ6 E(7)6 −E(7)6 E(7) −E(7) E(7)3 −E(7)3

Γ7 E(7)3 −E(7)3 E(7)4 −E(7)4 E(7)5 −E(7)5

Γ8 E(7)4 E(7)4 E(7)3 E(7)3 E(7)2 E(7)2

Γ9 E(7) E(7) E(7)6 E(7)6 E(7)4 E(7)4

Γ10 E(7)5 E(7)5 E(7)2 E(7)2 E(7)6 E(7)6

Γ11 E(7)2 E(7)2 E(7)5 E(7)5 E(7) E(7)

Γ12 E(7)6 E(7)6 E(7) E(7) E(7)3 E(7)3

Γ13 E(7)3 E(7)3 E(7)4 E(7)4 E(7)5 E(7)5

U2
14 C12 C13 G1

28 G2
28 G3

28 G4
28

Γ0 1 1 RI RI RI RI

Γ1 1 −1 RII RII RI RI

Γ2 E(7) −E(7) CII CIII2 CI CIII2

Γ3 E(7)2 −E(7)2 CII CIII2 CI CIII2

Γ4 E(7)3 −E(7)3 CII CIII2 CI CIII2

Γ5 E(7)4 −E(7)4 CII CIII2 CI CIII2

Γ6 E(7)5 −E(7)5 CII CIII2 CI CIII2

Γ7 E(7)6 −E(7)6 CII CIII2 CI CIII2

Γ8 E(7) E(7) CI CIII2 CI CIII2

Γ9 E(7)2 E(7)2 CI CIII2 CI CIII2

Γ10 E(7)3 E(7)3 CI CIII2 CI CIII2

Γ11 E(7)4 E(7)4 CI CIII2 CI CIII2

Γ12 E(7)5 E(7)5 CI CIII2 CI CIII2

Γ13 E(7)6 E(7)6 CI CIII2 CI CIII2
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U1
15 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 1 E(5)4 1 E(5)4 E(5)3

Γ2 1 1 E(5)3 1 E(5)3 E(5)

Γ3 1 1 E(5)2 1 E(5)2 E(5)4

Γ4 1 1 E(5) 1 E(5) E(5)2

Γ5 1 E(3)2 1 E(3) E(3)2 1

Γ6 1 E(3) 1 E(3)2 E(3) 1

Γ7 1 E(3)2 E(5)4 E(3) E(15)7 E(5)3

Γ8 1 E(3)2 E(5)3 E(3) E(15)4 E(5)

Γ9 1 E(3)2 E(5)2 E(3) E(15) E(5)4

Γ10 1 E(3)2 E(5) E(3) E(15)13 E(5)2

Γ11 1 E(3) E(5)4 E(3)2 E(15)2 E(5)3

Γ12 1 E(3) E(5)3 E(3)2 E(15)14 E(5)

Γ13 1 E(3) E(5)2 E(3)2 E(15)11 E(5)4

Γ14 1 E(3) E(5) E(3)2 E(15)8 E(5)2

U1
15 C6 C7 C8 C9 C10 C11

Γ0 1 1 1 1 1 1

Γ1 E(5)4 E(5)3 E(5)2 E(5)3 E(5)2 E(5)

Γ2 E(5)3 E(5) E(5)4 E(5) E(5)4 E(5)2

Γ3 E(5)2 E(5)4 E(5) E(5)4 E(5) E(5)3

Γ4 E(5) E(5)2 E(5)3 E(5)2 E(5)3 E(5)4

Γ5 E(3) E(3)2 1 E(3) E(3)2 1

Γ6 E(3)2 E(3) 1 E(3)2 E(3) 1

Γ7 E(15)2 E(15)4 E(5)2 E(15)14 E(15) E(5)

Γ8 E(15)14 E(15)13 E(5)4 E(15)8 E(15)7 E(5)2

Γ9 E(15)11 E(15)7 E(5) E(15)2 E(15)13 E(5)3

Γ10 E(15)8 E(15) E(5)3 E(15)11 E(15)4 E(5)4

Γ11 E(15)7 E(15)14 E(5)2 E(15)4 E(15)11 E(5)

Γ12 E(15)4 E(15)8 E(5)4 E(15)13 E(15)2 E(5)2

Γ13 E(15) E(15)2 E(5) E(15)7 E(15)8 E(5)3

Γ14 E(15)13 E(15)11 E(5)3 E(15) E(15)14 E(5)4
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U1
15 C12 C13 C14 G1

30 G2
30 G3

30

Γ0 1 1 1 RI RI RI

Γ1 E(5)2 E(5) E(5) CIII2 CI CI

Γ2 E(5)4 E(5)2 E(5)2 CIII2 CI CI

Γ3 E(5) E(5)3 E(5)3 CIII2 CI CI

Γ4 E(5)3 E(5)4 E(5)4 CIII2 CI CI

Γ5 E(3) E(3)2 E(3) CI CIII2 CI

Γ6 E(3)2 E(3) E(3)2 CI CIII2 CI

Γ7 E(15)11 E(15)13 E(15)8 CIII1 CIII1 CI

Γ8 E(15)2 E(15) E(15)11 CIII1 CIII1 CI

Γ9 E(15)8 E(15)4 E(15)14 CIII1 CIII1 CI

Γ10 E(15)14 E(15)7 E(15)2 CIII1 CIII1 CI

Γ11 E(15) E(15)8 E(15)13 CIII1 CIII1 CI

Γ12 E(15)7 E(15)11 E(15) CIII1 CIII1 CI

Γ13 E(15)13 E(15)14 E(15)4 CIII1 CIII1 CI

Γ14 E(15)4 E(15)2 E(15)7 CIII1 CIII1 CI

U1
15 G4

30

Γ0 RI

Γ1 CIII2

Γ2 CIII2

Γ3 CIII2

Γ4 CIII2

Γ5 CIII2

Γ6 CIII2

Γ7 CIII2

Γ8 CIII2

Γ9 CIII2

Γ10 CIII2

Γ11 CIII2

Γ12 CIII2

Γ13 CIII2

Γ14 CIII2
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E.2 Classification of the Small Z2×Z2-Graded Groups by the Altland-

Zirnbauer Tenfold Way

U1
1 C0 G2

4(1, 1, 1)

Γ0 1 BDI

U1
2 C0 C1 G2

8(2, 1, 1) G2
8(1, 2, 1) G3

8(2, 1, 2) G3
8(2, 2, 1)

Γ0 1 1 BDI BDI BDI BDI

Γ1 1 −1 CI DIII CI BDI

U1
2 G4

8(1, 1, 1) G5
8(2, 2, 2)

Γ0 BDI BDI

Γ1 CII BDI

U1
3 C0 C1 C2 G4

12(1, 1, 2) G4
12(1, 2, 1) G4

12(2, 1, 1)

Γ0 1 1 1 BDI BDI BDI

Γ1 1 E(3) E(3)2 BDI AI D

Γ2 1 E(3)2 E(3) BDI AI D

U1
3 G5

12(2, 2, 2)

Γ0 BDI

Γ1 AIII

Γ2 AIII

U1
4 C0 C1 C2 C3 G5

16(2, 1, 1) G5
16(1, 2, 1)

Γ0 1 1 1 1 BDI BDI

Γ1 1 −1 1 −1 CI DIII

Γ2 1 i −1 −i AIII AIII

Γ3 1 −i −1 i AIII AIII

U1
4 G6

16(2, 1, 1) G6
16(1, 2, 1) G7

16(3, 1, 3) G7
16(3, 3, 1) G8

16(3, 1, 4) G8
16(3, 4, 1)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 CI DIII CI BDI CI BDI

Γ2 AIII AIII AI BDI AI CI

Γ3 AIII AIII AI BDI AI CI

U1
4 G8

16(4, 3, 1) G9
16(4, 1, 4) G9

16(4, 4, 1) G10
16(2, 2, 2) G11

16(2, 3, 3) G11
16(3, 2, 3)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI CI BDI BDI BDI BDI

Γ2 DIII AII CII AIII D AI

Γ3 DIII AII CII AIII D AI

U1
4 G12

16(2, 4, 4) G12
16(4, 2, 4) G13

16(2, 2, 2) G13
16(2, 4, 3) G13

16(2, 3, 4) G13
16(3, 2, 4)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 C AII AIII C D AI

Γ3 C AII AIII C D AI
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U2
4 C0 C1 C2 C3 G2

16(2, 2, 2) G3
16(5, 2, 2)

Γ0 1 1 1 1 BDI BDI

Γ1 1 −1 1 −1 CI CI

Γ2 1 1 −1 −1 CII CI

Γ3 1 −1 −1 1 DIII BDI

U2
4 G3

16(2, 5, 2) G4
16(2, 2, 2) G10

16(5, 2, 2) G10
16(2, 5, 2) G11

16(5, 2, 5) G11
16(5, 5, 2)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI DIII BDI BDI BDI BDI

Γ2 DIII CI CI DIII CI BDI

Γ3 DIII CII CI DIII CI BDI

U2
4 G11

16(5, 3, 3) G11
16(3, 5, 3) G12

16(2, 2, 2) G13
16(2, 3, 3) G13

16(3, 2, 3) G14
16(5, 5, 5)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 AI D CII AII C BDI

Γ3 AI D CII AII C BDI

U1
5 C0 C1 C2 C3 C4 G4

20(1, 1, 2)

Γ0 1 1 1 1 1 BDI

Γ1 1 E(5) E(5)2 E(5)3 E(5)4 BDI

Γ2 1 E(5)2 E(5)4 E(5) E(5)3 BDI

Γ3 1 E(5)3 E(5) E(5)4 E(5)2 BDI

Γ4 1 E(5)4 E(5)3 E(5)2 E(5) BDI

U1
5 G4

20(1, 2, 1) G4
20(2, 1, 1) G5

20(2, 2, 2)

Γ0 BDI BDI BDI

Γ1 AI D AIII

Γ2 AI D AIII

Γ3 AI D AIII

Γ4 AI D AIII

U1
6 C0 C1 C2 G14

24(4, 4, 4)

Γ0 1 1 1 BDI

Γ1 1 −1 1 BDI

Γ2 2 0 −1 BDI

U2
6 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 −1 1 −1 1 −1

Γ2 1 −1 E(3)2 −E(3)2 E(3) −E(3)

Γ3 1 −1 E(3) −E(3) E(3)2 −E(3)2

Γ4 1 1 E(3)2 E(3)2 E(3) E(3)

Γ5 1 1 E(3) E(3) E(3)2 E(3)2
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U2
6 G4

24(1, 1, 2) G4
24(1, 2, 1) G4

24(2, 1, 1) G5
24(1, 4, 2) G5

24(1, 2, 4) G5
24(2, 1, 4)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 CII CII CII DIII CII CII

Γ2 CII AII C DIII AII C

Γ3 CII AII C DIII AII C

Γ4 BDI AI D BDI AI D

Γ5 BDI AI D BDI AI D

U2
6 G6

24(4, 4, 2) G6
24(4, 2, 4) G6

24(2, 4, 4) G7
24(1, 1, 5) G7

24(1, 5, 1) G7
24(5, 1, 1)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI CI DIII CII DIII CI

Γ2 BDI AI D CII AII C

Γ3 BDI AI D CII AII C

Γ4 BDI AI D BDI AI D

Γ5 BDI AI D BDI AI D

U2
6 G8

24(1, 4, 5) G8
24(1, 5, 4) G8

24(5, 1, 4) G9
24(2, 2, 5) G9

24(2, 5, 2) G9
24(5, 2, 2)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 DIII DIII CI CII DIII CI

Γ2 DIII AII C AIII AIII AIII

Γ3 DIII AII C AIII AIII AIII

Γ4 BDI AI D AIII AIII AIII

Γ5 BDI AI D AIII AIII AIII

U2
6 G10

24(2, 5, 5) G10
24(5, 2, 5) G11

24(2, 2, 2) G14
24(4, 4, 5) G14

24(4, 5, 4) G14
24(5, 4, 4)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 DIII CI CII BDI BDI BDI

Γ2 AIII AIII AIII BDI AI D

Γ3 AIII AIII AIII BDI AI D

Γ4 AIII AIII AIII BDI AI D

Γ5 AIII AIII AIII BDI AI D

U2
6 G15

24(5, 5, 5)

Γ0 BDI

Γ1 BDI

Γ2 AIII

Γ3 AIII

Γ4 AIII

Γ5 AIII

U1
7 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 E(7) E(7)2 E(7)3 E(7)4 E(7)5

Γ2 1 E(7)2 E(7)4 E(7)6 E(7) E(7)3

Γ3 1 E(7)3 E(7)6 E(7)2 E(7)5 E(7)

Γ4 1 E(7)4 E(7) E(7)5 E(7)2 E(7)6

Γ5 1 E(7)5 E(7)3 E(7) E(7)6 E(7)4

Γ6 1 E(7)6 E(7)5 E(7)4 E(7)3 E(7)2
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U1
7 C6 G3

28(1, 1, 2) G3
28(1, 2, 1) G3

28(2, 1, 1) G4
28(2, 2, 2)

Γ0 1 BDI BDI BDI BDI

Γ1 E(7)6 BDI AI D AIII

Γ2 E(7)5 BDI AI D AIII

Γ3 E(7)4 BDI AI D AIII

Γ4 E(7)3 BDI AI D AIII

Γ5 E(7)2 BDI AI D AIII

Γ6 E(7) BDI AI D AIII

U1
8 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 −1 1 1 −1 −1

Γ2 1 i −1 1 −i i

Γ3 1 −i −1 1 i −i
Γ4 1 E(8) i −1 E(8)3 −E(8)

Γ5 1 −E(8) i −1 −E(8)3 E(8)

Γ6 1 E(8)3 −i −1 E(8) −E(8)3

Γ7 1 −E(8)3 −i −1 −E(8) E(8)3

U1
8 C6 C7 G16

32(5, 1, 1) G16
32(1, 5, 1) G17

32(5, 1, 1) G17
32(1, 5, 1)

Γ0 1 1 BDI BDI BDI BDI

Γ1 1 −1 CI DIII CI DIII

Γ2 −1 −i AIII AIII AIII AIII

Γ3 −1 i AIII AIII AIII AIII

Γ4 −i −E(8)3 AIII AIII AIII AIII

Γ5 −i E(8)3 AIII AIII AIII AIII

Γ6 i −E(8) AIII AIII AIII AIII

Γ7 i E(8) AIII AIII AIII AIII

U1
8 G18

32(7, 1, 7) G18
32(7, 7, 1) G19

32(7, 1, 9) G19
32(7, 9, 1) G19

32(9, 7, 1) G20
32(9, 1, 9)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 CI BDI CI BDI BDI CI

Γ2 AI BDI AI BDI BDI AI

Γ3 AI BDI AI BDI BDI AI

Γ4 AI BDI AI CI DIII AII

Γ5 AI BDI AI CI DIII AII

Γ6 AI BDI AI CI DIII AII

Γ7 AI BDI AI CI DIII AII

U1
8 G20

32(9, 9, 1) G36
32(5, 5, 5) G37

32(5, 6, 6) G37
32(6, 5, 6) G38

32(5, 5, 5) G38
32(5, 6, 6)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 BDI AIII AIII AIII AIII AIII

Γ3 BDI AIII AIII AIII AIII AIII

Γ4 CII AIII A A AIII A

Γ5 CII AIII A A AIII A

Γ6 CII AIII A A AIII A

Γ7 CII AIII A A AIII A
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U1
8 G38

32(6, 6, 5) G38
32(6, 5, 6) G39

32(5, 7, 7) G39
32(7, 5, 7) G40

32(5, 8, 8) G40
32(8, 5, 8)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 AIII AIII D AI D AI

Γ3 AIII AIII D AI D AI

Γ4 AIII A D AI A A

Γ5 AIII A D AI A A

Γ6 AIII A D AI A A

Γ7 AIII A D AI A A

U1
8 G41

32(5, 9, 9) G41
32(9, 5, 9) G42

32(5, 9, 7) G42
32(5, 8, 8) G42

32(5, 7, 9) G42
32(7, 5, 9)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 D AI D D D AI

Γ3 D AI D D D AI

Γ4 C AII C A D AI

Γ5 C AII C A D AI

Γ6 C AII C A D AI

Γ7 C AII C A D AI

U1
8 G42

32(8, 5, 8) G43
32(6, 8, 7) G43

32(6, 7, 8) G43
32(7, 6, 8) G43

32(8, 6, 7) G44
32(6, 9, 8)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 AI D D AI AI D

Γ3 AI D D AI AI D

Γ4 A A D AI A C

Γ5 A A D AI A C

Γ6 A A D AI A C

Γ7 A A D AI A C

U1
8 G44

32(6, 8, 9) G44
32(8, 6, 9) G44

32(9, 6, 8)

Γ0 BDI BDI BDI

Γ1 BDI BDI BDI

Γ2 D AI AI

Γ3 D AI AI

Γ4 A A AII

Γ5 A A AII

Γ6 A A AII

Γ7 A A AII
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U2
8 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 −1 1 1 −1 −1

Γ2 1 1 −1 1 −1 1

Γ3 1 −1 −1 1 1 −1

Γ4 1 i 1 −1 i −i
Γ5 1 −i 1 −1 −i i

Γ6 1 i −1 −1 −i −i
Γ7 1 −i −1 −1 i i

U2
8 C6 C7 G3

32(2, 5, 5) G3
32(5, 2, 5) G4

32(2, 5, 5) G4
32(5, 2, 5)

Γ0 1 1 BDI BDI BDI BDI

Γ1 1 −1 CI DIII CI DIII

Γ2 −1 −1 CII CI CII CI

Γ3 −1 1 DIII CII DIII CII

Γ4 −1 −i AIII AIII AIII AIII

Γ5 −1 i AIII AIII AIII AIII

Γ6 1 i AIII AIII AIII AIII

Γ7 1 −i AIII AIII AIII AIII

U2
8 G5

32(10, 5, 5) G5
32(5, 10, 5) G7

32(11, 6, 6) G7
32(6, 11, 6) G8

32(12, 6, 6) G8
32(6, 12, 6)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 CI DIII CI DIII CI DIII

Γ2 CI BDI CI BDI CI BDI

Γ3 BDI DIII BDI DIII BDI DIII

Γ4 AIII AIII AI D AII C

Γ5 AIII AIII AI D AII C

Γ6 AIII AIII AI D AII C

Γ7 AIII AIII AI D AII C

U2
8 G9

32(11, 5, 4) G9
32(11, 4, 5) G9

32(4, 11, 5) G10
32(12, 5, 4) G10

32(12, 4, 5) G10
32(4, 12, 5)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 CI BDI BDI CI BDI BDI

Γ2 CI CI DIII CI CI DIII

Γ3 BDI CI DIII BDI CI DIII

Γ4 AI BDI BDI AII DIII CI

Γ5 AI BDI BDI AII DIII CI

Γ6 AI CI DIII AII CII CII

Γ7 AI CI DIII AII CII CII

U2
8 G11

32(13, 2, 6) G11
32(13, 6, 2) G11

32(6, 13, 2) G12
32(2, 5, 5) G12

32(5, 2, 5) G13
32(5, 4, 4)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI CI DIII CI DIII DIII

Γ2 CI CI DIII DIII CI CI

Γ3 CI BDI BDI CII CII CII

Γ4 A AIII AIII AIII AIII C

Γ5 A AIII AIII AIII AIII C

Γ6 A AIII AIII AIII AIII D

Γ7 A AIII AIII AIII AIII D
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U2
8 G13

32(4, 5, 4) G14
32(5, 4, 4) G14

32(4, 5, 4) G15
32(5, 6, 6) G15

32(6, 5, 6) G21
32(10, 2, 2)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 CI DIII CI CII CII BDI

Γ2 DIII CI DIII CI DIII CI

Γ3 CII CII CII DIII CI CI

Γ4 AI D AI A A AIII

Γ5 AI D AI A A AIII

Γ6 AII C AII A A AIII

Γ7 AII C AII A A AIII

U2
8 G21

32(2, 10, 2) G22
32(10, 3, 3) G22

32(3, 10, 3) G23
32(10, 4, 4) G23

32(4, 10, 4) G24
32(10, 2, 2)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 DIII AI D CI DIII CI

Γ3 DIII AI D CI DIII CI

Γ4 AIII AIII AIII D AI AIII

Γ5 AIII AIII AIII D AI AIII

Γ6 AIII D AI C AII AIII

Γ7 AIII D AI C AII AIII

U2
8 G24

32(10, 4, 4) G24
32(2, 10, 2) G24

32(2, 4, 3) G24
32(2, 3, 4) G24

32(3, 2, 4) G24
32(4, 10, 4)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 CI DIII AII AII C DIII

Γ3 CI DIII AII AII C DIII

Γ4 C AIII AIII AIII AIII AI

Γ5 C AIII AIII AIII AIII AI

Γ6 D AIII C D AI AII

Γ7 D AIII C D AI AII

U2
8 G25

32(10, 2, 10) G25
32(10, 10, 2) G25

32(10, 3, 4) G25
32(10, 4, 3) G25

32(2, 3, 3) G25
32(2, 4, 11)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 CI BDI AI AI AII CII

Γ3 CI BDI AI AI AII CII

Γ4 AIII AIII AIII AIII AIII D

Γ5 AIII AIII AIII AIII AIII D

Γ6 AIII AIII D C D C

Γ7 AIII AIII D C D C

U2
8 G25

32(2, 11, 4) G25
32(3, 10, 4) G25

32(3, 2, 3) G25
32(11, 2, 4) G25

32(4, 10, 3) G26
32(2, 2, 2)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 DIII D C CI D CII

Γ3 DIII D C CI D CII

Γ4 D AIII AIII AI AIII AIII

Γ5 D AIII AIII AI AIII AIII

Γ6 D AI AI AI AII AIII

Γ7 D AI AI AI AII AIII
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U2
8 G26

32(2, 12, 4) G26
32(2, 4, 12) G26

32(2, 4, 4) G26
32(4, 2, 12) G26

32(4, 2, 4) G26
32(12, 2, 4)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 DIII CII AII CII C CI

Γ3 DIII CII AII CII C CI

Γ4 C D AIII AI AIII AII

Γ5 C D AIII AI AIII AII

Γ6 C C C AII AII AII

Γ7 C C C AII AII AII

U2
8 G27

32(11, 3, 3) G27
32(3, 3, 11) G27

32(3, 11, 3) G28
32(10, 4, 11) G28

32(10, 11, 4) G28
32(10, 3, 3)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 AI AIII D CI BDI AI

Γ3 AI AIII D CI BDI AI

Γ4 BDI D BDI D D D

Γ5 BDI D BDI D D D

Γ6 AI AI D C D AIII

Γ7 AI AI D C D AIII

U2
8 G28

32(11, 3, 4) G28
32(11, 4, 3) G28

32(11, 10, 4) G28
32(4, 11, 3) G28

32(3, 10, 3) G29
32(10, 4, 12)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 AI AI BDI D D CI

Γ3 AI AI BDI D D CI

Γ4 BDI AI AI D AI C

Γ5 BDI AI AI D AI C

Γ6 AI CI AI DIII AIII D

Γ7 AI CI AI DIII AIII D

U2
8 G29

32(10, 12, 4) G29
32(10, 4, 4) G29

32(3, 4, 12) G29
32(3, 4, 4) G29

32(3, 12, 4) G29
32(12, 10, 4)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 BDI AI AIII C D BDI

Γ3 BDI AI AIII C D BDI

Γ4 C C C BDI C AII

Γ5 C C C BDI C AII

Γ6 C AIII AI C CI AII

Γ7 C AIII AI C CI AII

U2
8 G29

32(12, 3, 4) G29
32(4, 3, 4) G29

32(4, 10, 4) G30
32(10, 4, 3) G30

32(10, 3, 4) G30
32(3, 10, 4)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 AI AIII D AI AI D

Γ3 AI AIII D AI AI D

Γ4 AII D AII AIII AIII AIII

Γ5 AII D AII AIII AIII AIII

Γ6 DIII AII AIII C D AI

Γ7 DIII AII AIII C D AI
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U2
8 G30

32(3, 4, 3) G30
32(3, 3, 4) G30

32(4, 4, 11) G30
32(4, 3, 3) G30

32(4, 11, 4) G30
32(11, 4, 4)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 C AIII AIII AII D AI

Γ3 C AIII AIII AII D AI

Γ4 BDI AI C BDI D AI

Γ5 BDI AI C BDI D AI

Γ6 C D AII AII DIII CI

Γ7 C D AII AII DIII CI

U2
8 G31

32(2, 3, 3) G31
32(2, 12, 11) G31

32(2, 11, 12) G31
32(3, 2, 3) G31

32(3, 12, 3) G31
32(3, 3, 12)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 AII DIII DIII C D AIII

Γ3 AII DIII DIII C D AIII

Γ4 AIII C D AIII CI AI

Γ5 AIII C D AIII CI AI

Γ6 D C D AI C D

Γ7 D C D AI C D

U2
8 G31

32(11, 2, 12) G32
32(2, 4, 4) G32

32(4, 2, 4) G32
32(4, 4, 4) G33

32(2, 4, 3) G33
32(2, 3, 4)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 CI AII C AIII AII AII

Γ3 CI AII C AIII AII AII

Γ4 AI AIII AIII C AIII AIII

Γ5 AI AIII AIII C AIII AIII

Γ6 AI C AII AII C D

Γ7 AI C AII AII C D

U2
8 G33

32(3, 2, 4) G33
32(3, 4, 4) G33

32(4, 4, 3) G33
32(4, 3, 4) G34

32(2, 11, 11) G34
32(11, 2, 11)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 C C AII AIII DIII CI

Γ3 C C AII AIII DIII CI

Γ4 AIII CI CI D D AI

Γ5 AIII CI CI D D AI

Γ6 AI D AII AII D AI

Γ7 AI D AII AII D AI

U2
8 G35

32(2, 4, 4) G35
32(2, 12, 12) G35

32(4, 2, 4) G35
32(4, 4, 12) G35

32(4, 12, 4) G35
32(12, 2, 12)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 CII DIII CII AIII D CI

Γ3 CII DIII CII AIII D CI

Γ4 D C AI C C AII

Γ5 D C AI C C AII

Γ6 C C AII AII CII AII

Γ7 C C AII AII CII AII
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U2
8 G35

32(12, 4, 4) G36
32(10, 5, 5) G36

32(5, 10, 5) G37
32(10, 5, 5) G37

32(10, 6, 6) G37
32(5, 10, 5)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI CI DIII CI CI DIII

Γ2 AI BDI BDI BDI BDI BDI

Γ3 AI CI DIII CI CI DIII

Γ4 AII AIII AIII AIII A AIII

Γ5 AII AIII AIII AIII A AIII

Γ6 CII AIII AIII AIII A AIII

Γ7 CII AIII AIII AIII A AIII

U2
8 G37

32(6, 10, 6) G38
32(13, 6, 5) G38

32(13, 5, 6) G38
32(5, 13, 6) G39

32(11, 5, 11) G39
32(11, 11, 5)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 DIII CI CI DIII CI BDI

Γ2 BDI BDI BDI BDI BDI BDI

Γ3 DIII CI CI DIII CI BDI

Γ4 A AIII A A AI BDI

Γ5 A AIII A A AI BDI

Γ6 A AIII A A AI BDI

Γ7 A AIII A A AI BDI

U2
8 G40

32(11, 5, 12) G40
32(11, 12, 5) G40

32(12, 11, 5) G41
32(12, 5, 12) G41

32(12, 12, 5) G42
32(13, 5, 13)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 CI BDI BDI CI BDI CI

Γ2 BDI BDI BDI BDI BDI CI

Γ3 CI BDI BDI CI BDI BDI

Γ4 AI CI DIII AII CII A

Γ5 AI CI DIII AII CII A

Γ6 AI CI DIII AII CII A

Γ7 AI CI DIII AII CII A

U2
8 G42

32(13, 13, 5) G43
32(11, 6, 13) G43

32(11, 13, 6) G43
32(13, 11, 6) G44

32(12, 6, 13) G44
32(12, 13, 6)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI CI BDI BDI CI BDI

Γ2 BDI BDI BDI BDI BDI BDI

Γ3 BDI CI BDI BDI CI BDI

Γ4 AIII AI AI D AII AII

Γ5 AIII AI AI D AII AII

Γ6 AIII AI AI D AII AII

Γ7 AIII AI AI D AII AII

U2
8 G44

32(13, 12, 6) G45
32(10, 10, 10) G46

32(10, 11, 11) G46
32(11, 10, 11) G47

32(10, 12, 12) G47
32(12, 10, 12)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 BDI BDI BDI BDI BDI BDI

Γ3 BDI BDI BDI BDI BDI BDI

Γ4 C AIII D AI C AII

Γ5 C AIII D AI C AII

Γ6 C AIII D AI C AII

Γ7 C AIII D AI C AII
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U2
8 G48

32(10, 10, 10) G48
32(10, 12, 11) G48

32(10, 11, 12) G48
32(10, 13, 13) G48

32(11, 10, 12) G48
32(13, 10, 13)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 BDI BDI BDI BDI BDI BDI

Γ3 BDI BDI BDI BDI BDI BDI

Γ4 AIII C D A AI A

Γ5 AIII C D A AI A

Γ6 AIII C D A AI A

Γ7 AIII C D A AI A

U2
8 G49

32(11, 13, 13) G49
32(13, 11, 13) G49

32(13, 13, 11) G50
32(12, 13, 13) G50

32(13, 12, 13) G50
32(13, 13, 12)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 BDI BDI BDI BDI BDI BDI

Γ3 BDI BDI BDI BDI BDI BDI

Γ4 AI D A AII C A

Γ5 AI D A AII C A

Γ6 AI D A AII C A

Γ7 AI D A AII C A

U3
8 C0 C1 C2 C3 C4 G39

32(11, 7, 7)

Γ0 1 1 1 1 1 BDI

Γ1 1 −1 1 1 −1 AI

Γ2 1 1 −1 1 −1 AI

Γ3 1 −1 −1 1 1 BDI

Γ4 2 0 0 −2 0 BDI

U3
8 G39

32(7, 11, 7) G40
32(11, 8, 8) G40

32(8, 11, 8) G42
32(13, 8, 7) G42

32(13, 7, 8) G42
32(7, 13, 8)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 D AI D AI AI D

Γ2 D AI D AI AI D

Γ3 BDI BDI BDI BDI BDI BDI

Γ4 BDI CI DIII CII DIII CI

U3
8 G43

32(11, 8, 7) G43
32(11, 7, 8) G43

32(13, 7, 7) G43
32(7, 11, 8) G43

32(7, 13, 7) G44
32(13, 8, 8)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 AI AI AI D D AI

Γ2 AI AI AI D D AI

Γ3 BDI BDI BDI BDI BDI BDI

Γ4 CI BDI DIII BDI CI CII

U3
8 G44

32(8, 13, 8) G46
32(11, 11, 11) G48

32(11, 13, 13) G48
32(13, 11, 13) G49

32(11, 13, 11) G49
32(11, 11, 13)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 D BDI BDI BDI BDI BDI

Γ2 D BDI BDI BDI BDI BDI

Γ3 BDI BDI BDI BDI BDI BDI

Γ4 CII BDI CI DIII CI BDI
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U3
8 G49

32(13, 11, 11) G50
32(13, 13, 13)

Γ0 BDI BDI

Γ1 BDI BDI

Γ2 BDI BDI

Γ3 BDI BDI

Γ4 DIII CII

U4
8 C0 C1 C2 C3 C4 G40

32(12, 8, 8)

Γ0 1 1 1 1 1 BDI

Γ1 1 −1 1 1 −1 BDI

Γ2 1 1 −1 1 −1 AI

Γ3 1 −1 −1 1 1 AI

Γ4 2 0 0 −2 0 DIII

U4
8 G40

32(8, 12, 8) G41
32(12, 9, 9) G41

32(9, 12, 9) G42
32(13, 9, 8) G42

32(13, 8, 9) G42
32(8, 13, 9)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI AI AI D

Γ2 D AI D BDI BDI BDI

Γ3 D AI D AI AI D

Γ4 CI CII CII CI BDI BDI

U4
8 G43

32(13, 8, 8) G43
32(8, 13, 8) G44

32(12, 9, 8) G44
32(12, 8, 9) G44

32(13, 9, 9) G44
32(8, 12, 9)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 AI D BDI BDI AI BDI

Γ2 BDI BDI AI AI BDI D

Γ3 AI D AI AI AI D

Γ4 BDI BDI CII DIII CI CI

U4
8 G44

32(9, 13, 9) G47
32(12, 12, 12) G48

32(12, 13, 13) G48
32(13, 12, 13) G49

32(13, 13, 13) G50
32(12, 12, 13)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 D BDI BDI BDI BDI BDI

Γ2 BDI BDI BDI BDI BDI BDI

Γ3 D BDI BDI BDI BDI BDI

Γ4 DIII CII DIII CI BDI CII

U4
8 G50

32(12, 13, 12) G50
32(13, 12, 12)

Γ0 BDI BDI

Γ1 BDI BDI

Γ2 BDI BDI

Γ3 BDI BDI

Γ4 DIII CI
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U5
8 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 −1 1 1 −1 −1

Γ2 1 1 −1 1 −1 1

Γ3 1 −1 −1 1 1 −1

Γ4 1 1 1 −1 1 −1

Γ5 1 −1 1 −1 −1 1

Γ6 1 1 −1 −1 −1 −1

Γ7 1 −1 −1 −1 1 1

U5
8 C6 C7 G2

32(10, 10, 10) G6
32(11, 3, 3) G6

32(3, 11, 3) G21
32(10, 10, 10)

Γ0 1 1 BDI BDI BDI BDI

Γ1 1 −1 CI CI BDI BDI

Γ2 −1 −1 CI CI DIII CI

Γ3 −1 1 BDI BDI DIII CI

Γ4 −1 −1 CII A A CII

Γ5 −1 1 DIII A A CII

Γ6 1 1 DIII A A DIII

Γ7 1 −1 CII A A DIII

U5
8 G22

32(14, 10, 10) G22
32(14, 3, 3) G22

32(10, 14, 10) G22
32(3, 14, 3) G23

32(10, 10, 10) G24
32(10, 3, 3)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 CI AI BDI D DIII AII

Γ3 CI AI BDI D DIII AII

Γ4 CI CI DIII DIII CI CI

Γ5 CI CI DIII DIII CI CI

Γ6 BDI AI DIII D CII AII

Γ7 BDI AI DIII D CII AII

U5
8 G24

32(3, 10, 3) G25
32(10, 11, 3) G25

32(10, 3, 11) G25
32(3, 10, 11) G25

32(11, 10, 3) G27
32(14, 3, 11)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI D BDI

Γ2 C AI AI D CI CI

Γ3 C AI AI D C CI

Γ4 DIII DIII CII CII BDI AI

Γ5 DIII DIII CII CII D AI

Γ6 C AII AII C CI AI

Γ7 C AII AII C C AI

U5
8 G27

32(14, 11, 3) G27
32(11, 14, 3) G27

32(11, 11, 11) G28
32(10, 11, 11) G28

32(11, 10, 11) G28
32(11, 3, 11)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 BDI BDI AI DIII CI AI

Γ3 BDI BDI AI DIII CI AI

Γ4 AI D AIII AI D AIII

Γ5 AI D AIII AI D AIII

Γ6 AI D D AII C C

Γ7 AI D D AII C C
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U5
8 G28

32(11, 11, 3) G29
32(10, 3, 3) G29

32(3, 10, 3) G30
32(10, 3, 11) G30

32(10, 11, 3) G30
32(3, 3, 11)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 AI CII CII AII AII AII

Γ3 AI CII CII AII AII AII

Γ4 D AI D CI BDI AIII

Γ5 D AI D CI BDI AIII

Γ6 AIII AII C AII AII C

Γ7 AIII AII C AII AII C

U5
8 G30

32(3, 11, 3) G30
32(11, 10, 3) G30

32(11, 3, 3) G31
32(3, 11, 3) G31

32(3, 3, 11) G33
32(3, 3, 3)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 AII C C AII AII AII

Γ3 AII C C AII AII AII

Γ4 D BDI AI AIII C AIII

Γ5 D BDI AI AIII C AIII

Γ6 AIII C AIII D AIII C

Γ7 AIII C AIII D AIII C

U5
8 G34

32(11, 11, 11) G45
32(14, 10, 10) G45

32(10, 14, 10) G46
32(14, 10, 14) G46

32(14, 14, 10) G46
32(14, 11, 11)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 AI BDI BDI BDI BDI BDI

Γ3 AI BDI BDI BDI BDI BDI

Γ4 AIII CI DIII CI BDI AI

Γ5 AIII CI DIII CI BDI AI

Γ6 D CI DIII CI BDI AI

Γ7 D CI DIII CI BDI AI

U5
8 G46

32(11, 14, 11) G47
32(10, 10, 10) G48

32(10, 11, 11) G48
32(11, 10, 11) G49

32(11, 11, 11) G51
32(14, 14, 14)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 BDI BDI BDI BDI BDI BDI

Γ2 BDI BDI BDI BDI BDI BDI

Γ3 BDI BDI BDI BDI BDI BDI

Γ4 D CII AII C A BDI

Γ5 D CII AII C A BDI

Γ6 D CII AII C A BDI

Γ7 D CII AII C A BDI
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U1
9 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 E(3) 1 E(3)2 E(3) 1

Γ2 1 E(3)2 1 E(3) E(3)2 1

Γ3 1 −E(9)4 −E(9)7 E(3) E(9)2 E(9)4 E(3)2

Γ4 1 E(9)4 E(3) −E(9)2 −E(9)5 E(9)7 E(3)2

Γ5 1 E(9)7 E(3) E(9)5 −E(9)4 −E(9)7 E(3)2

Γ6 1 E(9)2 E(3)2 E(9)4 −E(9)2 −E(9)5 E(3)

Γ7 1 E(9)5 E(3)2 −E(9)4 −E(9)7 E(9)2 E(3)

Γ8 1 −E(9)2 −E(9)5 E(3)2 E(9)7 E(9)5 E(3)

U1
9 C6 C7 C8 G4

36(1, 1, 2) G4
36(1, 2, 1) G4

36(2, 1, 1)

Γ0 1 1 1 BDI BDI BDI

Γ1 E(3)2 E(3) E(3)2 BDI AI D

Γ2 E(3) E(3)2 E(3) BDI AI D

Γ3 E(9)5 E(9)7 −E(9)2 −E(9)5 BDI AI D

Γ4 E(9)2 −E(9)4 −E(9)7 E(9)5 BDI AI D

Γ5 −E(9)2 −E(9)5 E(9)4 E(9)2 BDI AI D

Γ6 −E(9)4 −E(9)7 E(9)5 E(9)7 BDI AI D

Γ7 E(9)7 −E(9)2 −E(9)5 E(9)4 BDI AI D

Γ8 E(9)4 E(9)2 −E(9)4 −E(9)7 BDI AI D

U1
9 G5

36(2, 2, 2)

Γ0 BDI

Γ1 AIII

Γ2 AIII

Γ3 AIII

Γ4 AIII

Γ5 AIII

Γ6 AIII

Γ7 AIII

Γ8 AIII

U2
9 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 E(3) 1 E(3)2 E(3) 1

Γ2 1 E(3)2 1 E(3) E(3)2 1

Γ3 1 1 E(3) 1 E(3) E(3)2

Γ4 1 E(3) E(3) E(3)2 E(3)2 E(3)2

Γ5 1 E(3)2 E(3) E(3) 1 E(3)2

Γ6 1 1 E(3)2 1 E(3)2 E(3)

Γ7 1 E(3) E(3)2 E(3)2 1 E(3)

Γ8 1 E(3)2 E(3)2 E(3) E(3) E(3)
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U2
9 C6 C7 C8 G10

36(4, 3, 3) G10
36(3, 4, 3) G12

36(3, 3, 5)

Γ0 1 1 1 BDI BDI BDI

Γ1 E(3)2 E(3) E(3)2 AI BDI AIII

Γ2 E(3) E(3)2 E(3) AI BDI AIII

Γ3 E(3) E(3)2 E(3)2 BDI D BDI

Γ4 1 1 E(3) AI D AIII

Γ5 E(3)2 E(3) 1 AI D AIII

Γ6 E(3)2 E(3) E(3) BDI D BDI

Γ7 E(3) E(3)2 1 AI D AIII

Γ8 1 1 E(3)2 AI D AIII

U2
9 G12

36(3, 5, 3) G12
36(5, 3, 3) G13

36(4, 4, 5) G13
36(4, 5, 4) G13

36(5, 4, 4) G14
36(5, 5, 5)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 AIII AIII BDI AI D AIII

Γ2 AIII AIII BDI AI D AIII

Γ3 AI D BDI AI D AIII

Γ4 A A BDI AI D AIII

Γ5 A A BDI AI D AIII

Γ6 AI D BDI AI D AIII

Γ7 A A BDI AI D AIII

Γ8 A A BDI AI D AIII

U1
10 C0 C1 C2 C3 G12

40(3, 3, 4) G12
40(3, 4, 3)

Γ0 1 1 1 1 BDI BDI

Γ1 1 −1 1 1 CII DIII

Γ2 2 0 E(5)2 + E(5)3 E(5) + E(5)4 AIII D

Γ3 2 0 E(5) + E(5)4 E(5)2 + E(5)3 AIII D

U1
10 G12

40(4, 3, 3) G13
40(4, 4, 4)

Γ0 BDI BDI

Γ1 CI BDI

Γ2 AI BDI

Γ3 AI BDI

U2
10 C0 C1 C2 C3 C4 C5

Γ0 1 1 1 1 1 1

Γ1 1 −1 1 −1 1 −1

Γ2 1 −1 E(5)4 −E(5)4 E(5)3 −E(5)3

Γ3 1 −1 E(5)3 −E(5)3 E(5) −E(5)

Γ4 1 −1 E(5)2 −E(5)2 E(5)4 −E(5)4

Γ5 1 −1 E(5) −E(5) E(5)2 −E(5)2

Γ6 1 1 E(5)4 E(5)4 E(5)3 E(5)3

Γ7 1 1 E(5)3 E(5)3 E(5) E(5)

Γ8 1 1 E(5)2 E(5)2 E(5)4 E(5)4

Γ9 1 1 E(5) E(5) E(5)2 E(5)2
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U2
10 C6 C7 C8 C9 G4

40(1, 1, 2) G4
40(1, 2, 1)

Γ0 1 1 1 1 BDI BDI

Γ1 1 −1 1 −1 CII CII

Γ2 E(5)2 −E(5)2 E(5) −E(5) CII AII

Γ3 E(5)4 −E(5)4 E(5)2 −E(5)2 CII AII

Γ4 E(5) −E(5) E(5)3 −E(5)3 CII AII

Γ5 E(5)3 −E(5)3 E(5)4 −E(5)4 CII AII

Γ6 E(5)2 E(5)2 E(5) E(5) BDI AI

Γ7 E(5)4 E(5)4 E(5)2 E(5)2 BDI AI

Γ8 E(5) E(5) E(5)3 E(5)3 BDI AI

Γ9 E(5)3 E(5)3 E(5)4 E(5)4 BDI AI

U2
10 G4

40(2, 1, 1) G5
40(1, 4, 2) G5

40(1, 2, 4) G5
40(2, 1, 4) G6

40(4, 4, 2) G6
40(4, 2, 4)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 CII DIII CII CII BDI CI

Γ2 C DIII AII C BDI AI

Γ3 C DIII AII C BDI AI

Γ4 C DIII AII C BDI AI

Γ5 C DIII AII C BDI AI

Γ6 D BDI AI D BDI AI

Γ7 D BDI AI D BDI AI

Γ8 D BDI AI D BDI AI

Γ9 D BDI AI D BDI AI

U2
10 G6

40(2, 4, 4) G7
40(1, 1, 5) G7

40(1, 5, 1) G7
40(5, 1, 1) G8

40(1, 4, 5) G8
40(1, 5, 4)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 DIII CII DIII CI DIII DIII

Γ2 D CII AII C DIII AII

Γ3 D CII AII C DIII AII

Γ4 D CII AII C DIII AII

Γ5 D CII AII C DIII AII

Γ6 D BDI AI D BDI AI

Γ7 D BDI AI D BDI AI

Γ8 D BDI AI D BDI AI

Γ9 D BDI AI D BDI AI

U2
10 G8

40(5, 1, 4) G9
40(2, 2, 5) G9

40(2, 5, 2) G9
40(5, 2, 2) G10

40(2, 5, 5) G10
40(5, 2, 5)

Γ0 BDI BDI BDI BDI BDI BDI

Γ1 CI CII DIII CI DIII CI

Γ2 C AIII AIII AIII AIII AIII

Γ3 C AIII AIII AIII AIII AIII

Γ4 C AIII AIII AIII AIII AIII

Γ5 C AIII AIII AIII AIII AIII

Γ6 D AIII AIII AIII AIII AIII

Γ7 D AIII AIII AIII AIII AIII

Γ8 D AIII AIII AIII AIII AIII

Γ9 D AIII AIII AIII AIII AIII
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U2
10 G11

40(2, 2, 2) G13
40(4, 4, 5) G13

40(4, 5, 4) G13
40(5, 4, 4) G14

40(5, 5, 5)

Γ0 BDI BDI BDI BDI BDI

Γ1 CII BDI BDI BDI BDI

Γ2 AIII BDI AI D AIII

Γ3 AIII BDI AI D AIII

Γ4 AIII BDI AI D AIII

Γ5 AIII BDI AI D AIII

Γ6 AIII BDI AI D AIII

Γ7 AIII BDI AI D AIII

Γ8 AIII BDI AI D AIII

Γ9 AIII BDI AI D AIII
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