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Abstract: 

Introduction: Adiponectin (Ad) is a hormone secreted primarily by adipocytes and is known 

to have anti-inflammatory and protective effects on vascular endothelial cells specifically 

via the 5’ AMP-activated protein kinase (AMPK) signaling pathway. It is also known to 

protect against the development of albuminuria including in diabetes. Albuminuria is 

indicative of dysfunction of the glomerular filtration barrier of the kidney and therefore of 

the cells which make up the barrier: glomerular endothelial cells (GEnC) and podocytes. In 

particular, damage to the endothelial glycocalyx leads to an increase in albuminuria in 

disease states such as diabetes.  

Aim: The aim of this work is to determine whether Ad acts directly on GEnC and whether 

as a result it can protect the glycocalyx against inflammatory mediators implicated in 

diabetes. 

Methods: in vitro studies were performed in well-characterized conditionally immortalised 

human GEnC line (CiGEnC) and in sieved glomeruli from diabetic mouse models to 

investigate the effect of adiponectin on cell signaling and TNF-α-induced disruption of the 

glycocalyx.  

Results: The AMPK pathway was activated when CiGEnC were stimulated with globular 

adiponectin (gAd) through Adiponectin Receptor 1. High glucose and tumor necrosis factor-

α (TNF-α) inactivated this pathway but it was restored by co-treatment with gAd. By 

quantitative PCR (qPCR) and Western blot, I showed that there was an upregulation of 

syndecan-4 (SDC4), a glycocalyx proteoglycan, at both the mRNA (2.8 fold) and protein level 

(1.7 fold) in response to 2-hour treatment with 10ng/ml TNF-α. Adiponectin prevented this 

increase. There was also a significant increase (* p<0.05) in the mRNA expression of the 

metalloproteinase MMP2, which is known to induce the shedding of glycocalyx 

components, in response to TNF-α. Again, gAd prevented this increase. However, gAd 

treatment of CiGEnC in which MMP2 had been knocked down did not completely prevent 

the increase of SDC4 in response to TNF-α, suggesting that other MMPs might be involved.  

Conclusion: These findings show that adiponectin-induced signalling in CiGEnC protects the 

glycoclayx in vitro and ex vivo and therefore fully understanding these pathways has the 

potential to provide new therapeutic targets to decrease albuminuria in diabetes in vivo.  
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Chapter 1 Introduction 

1.1 The kidney   

 Introduction to the kidney 

The kidneys are two major retroperitoneal organs located towards the posterior muscular 

wall of the abdominal cavity. The principal function of the kidneys is the excretion of 

waste products, which result from muscle contraction and protein metabolism [1]. They 

have an integral role in blood filtration specifically, the excretion of metabolic waste 

products and water regulation. The rate of the filtration of the kidneys is 

125ml/min/1.73m2, equal to 180 litres in a day. The kidney is also responsible for 

regulation of blood pressure via renin production and sodium ion excretion [2] as well as 

secretion of hormones such as calcitriol and erythropoietin [3]. 

The basic structural and functional unit of the kidney is the nephron, approximately 1 

million of which are found in each kidney. The nephron is a group of capillaries knotted 

together to form a ball-like structure named the glomerulus which acts as a biological 

sieve by retarding the passage of plasma proteins while allowing relatively free flow of 

water and small solutes [4].  

The renal glomerulus consists of a group of specialized cells called podocytes, and these 

are separated from the glomerular endothelial cells (GEnC) by the glomerular basement 

membrane (GBM) (Figure 1.1). It is well-known that these three components (endothelial 

cells, GBM and podocytes) constitute the glomerular filtration barrier (GFB) [5]. These 

cells are considered important to renal function and often undergo pathophysiological 

changes with disease.  
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Figure 1.1 Basic structure of the kidney glomerulus and the GFB components 

A: A section of the glomerulus that shows its different components. B: A detailed section of the 
GFB, a specialized molecular sieve, that is composed of 3 layers: the endothelial cells with its 
glycocalyx, the GBM and specialized podocytes [6]. 

 

 Diabetic nephropathy 

Many chronic diseases are now considered a major cause of morbidity and mortality 

worldwide. Diabetes mellitus (DM), especially type 2 (also known as non-insulin 

dependent diabetes) (T2DM) along with its complications is an emerging epidemic as well 

as a major public health issue [7]. Diabetic nephropathy (DN) is one of the major 
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microvascular complications of diabetes and now the commonest cause of renal failure 

known as end-stage renal disease (ESRD) requiring renal replacement therapy [8]. DN is a 

clinical syndrome characterized by persistent albuminuria (>300mg/day) [9]. The 

pathophysiological mechanisms in the development of DN are multifactorial.  

Hyperglycemia is a necessary prerequisite for the structural and functional changes such 

as glomerular hyperfiltration, renal hypertrophy and microalbuminuria, followed by the 

development of GBM thickening, mesangial expansion, overt proteinuria and finally ESRD 

[10]. The filtration system can be damaged by excess glucose in the bloodstream thereby 

allowing the kidneys to filter more blood. This will put extra load on the nephrons causing 

them to lose their filtration capacity. A hallmark of DN is nodular glomerulosclerosis, 

which was described by Kimmelstiel and Wilson [4]. DM causes injury of all renal 

compartments, such as mesangial expansion, thickening of GBM and podocyte loss as 

shown in Figure 1.2. Altogether, these result in progressive albuminuria, reduction in 

glomerular filtration barrier (GFR), elevation of blood pressure and fluid retention. 

Advanced glycosylation end products (AGE) , activation of protein kinase C (PKC) and 

acceleration of the polyol pathway along with the hemodynamic alterations were 

considered as the main cause of renal injury in diabetes [8]. However, evidence has been 

provided that not only these factors are part of the pathophysiology of DN, but also the 

immune-mediated inflammatory processes [11]. Different cell types, such as leukocytes, 

monocytes, macrophages and adipocytes release different inflammatory molecules 

known as cytokines, adipokines or chemokines that are also implicated in the 

pathogenesis of DN [11]. The focus of this thesis is to discover a new marker that can 

define DN and help find ways in the treatment of DN through alleviating albuminuria 

specifically while looking at GEnC.  
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Figure 1.2 Normal kidney morphology and structural changes in diabetes mellitus 

A: A normal kidney glomerulus that shows the different components in a healthy state. B: A 
diabetic kidney glomerulus that shows the structural changes in the GFB such as the thickening of 
the glomerular basement membrane, foot processes effacement known as flattening, loss of 
podocytes with denuding of the glomerular basement membrane and mesangial matrix 
expansion. Adapted from [12]. 

 

 The glomerular filtration barrier (GFB) 

1.1.3.1  Introduction of GFB 

The GFB is a part of the glomerulus that acts as a selectively permeable sieve by 

preventing large proteins and macromolecules from leaving the blood whilst allowing 

unrestricted movement of water and small solutes.  As stated earlier, the GFB has a 

unique structure of three components as shown in Figure 1.3; a fenestrated GEnC, a 

central GBM and podocytes [13]. Every layer is highly specialised and is responsible for its 

own role in filtration specificity. In the next part, the function of each layer will be 

introduced, before highlighting the crosstalk between each layer [13]. 
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Figure 1.3 Schematic drawing showing the different components of the GFB  

Schematic drawing of components of the glomerular filtration barrier (GFB). Fenestrated 
glomerular endothelial cells (GEnC) form the luminal side of the sieve and facilitate the high flux 
of water and small molecules (blue arrows); glomerular basement membrane (GBM) in the 
middle, and the podocyte foot processes and slit diaphragms on the urinary side. The GEnC 
(including the fenestrae) are covered by a mesh-like, anionic layer of glycocalyx composed of sialic 
acid-rich glycoproteins and proteoglycans consisting of core proteins and attached branching 
glycosaminoglycan chains (mainly heparan sulphate and chondroitin sulphate) Adapted from [14]. 

 

1.1.3.2 Glomerular endothelial cells 

GEnC are highly specialized cells, which form a continuous inner layer of glomerular 

capillaries. The glomerulus begins filtration within the layer of fenestrated GEnC. They are 

specifically adapted to allow rapid filtration, with high hydraulic conductivity. The most 

distinctive physical feature of the endothelial layer is its perforated appearance, due to 

the presence of a 60-80nm fenestrae that cover it. The size of these pores allow for the 

passage of low molecular weight proteins such as albumin, with a size of around 80nm 

[15].  



 

36 
 

It is important to study human GEnC to enable complete understanding of glomerular 

diseases, glomerular filtration and response to glomerular injury. Hence, the first step 

which allow careful analysis of this individual cell type would be through in vitro cell 

culture. It had been difficult to grow human cells in culture, but our group has successfully 

rectified this problem by conditional immortalization technology. This was done as 

described by Satchell et al [16]. In brief, a primary culture human GEnC is generated and 

as tissue culture studies are limited with these due to early senescence, they were 

transformed into conditionally immortalized GEnC (CiGEnC) (see Chapter 2 Materials and 

Methods for more details). 

1.1.3.3 Glomerular Basement Membrane (GBM) 

The GBM is an extracellular matrix that separates the GEnC and podocytes. It is largely 

composed of four macromolecules commonly found in all basement membranes: laminin, 

collagen (type IV), nidogen, and heparan sulphate (HS) proteoglycan [1]. The GBM’s highly 

negative charge has long been considered a key player in GBM permselectivity. The most 

ubiquitous HS proteoglycan in the GBM is agrin, which imparts significant negative charge 

due to the presence of its sulphated glycosaminoglycans (GAG) side chains [17].  

1.1.3.4 Podocytes 

Podocytes are highly differentiated, specialised epithelial cells that wrap around the 

outside of glomerular capillaries. They consist of three segments: the cell body, major 

processes and foot processes [18]. The latter can be branched further into minor foot 

processes. The foot processes of multiple neighbouring podocytes interdigitate, forming 

specialised cell-to-cell junctions called slit diaphragms [19]. The diaphragm itself is created 

by a variety of different proteins including nephrin, zona-occludens-1 (ZO-1) and podocin 



 

37 
 

[20-22] which are expressed in podocytes and strengthen the filtration properties of the 

slit diaphragm.  These proteins, along with those in the podocyte actin cytoskeleton, are 

key to maintaining the structure and function of podocytes. A characteristic feature of 

many glomerular diseases is podocyte foot process effacement, a flattening of podocytes 

caused by disorganisation within the cytoskeleton [23].  Podocytes are rarely lost in 

healthy glomeruli and podocyte injury with reduced density is one of the features of 

diabetic kidney disease [7]. 

1.1.3.5 Cross Talk between podocytes, GBM and GEnC 

It is now believed that the GFB is not just a selectively permeable sieve, but it is more of 

a dynamic system where the several cells types affect each other. Hence, endothelial cells 

communicate with podocytes across the GBM. Altered paracrine communication 

between GEnC and neighbouring cells is thought to contribute towards the development 

of albuminuria.   

This was demonstrated in an in vivo model of diabetic mice deficient in endothelial nitric 

oxide (NO) synthase (e-NOS). It is an enzyme required for normal endothelial function 

that is present in the endothelium of the arterioles and capillaries of the glomerulus; 

podocytes do not express this enzyme [24]. It was shown that there was a podocyte injury 

and albuminuria in these e-NOS knockout diabetic mice [25]. Furthermore, laminar shear 

stress (LSS) is the result of the constant mechanical loading caused by blood pressure and 

flow. It has emerged that each component of the GFB is interdependent and in continual 

communication with its neighbours. Signalling crosstalk between the two cell types is vital 

for normal barrier function. One mode of crosstalk arises from the presence of vascular 

endothelial growth factor receptors (VEGF-Rs) and angiopoietin receptors on endothelial 

cells. The secretion and paracrine action of vascular endothelial growth factor A (VEGF-A) 
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and angiopoietin-1 (Ang-1) that are released by the podocyte are required for GEnC 

development and survival [26, 27]. Changes in the levels of these and other signalling 

proteins have been shown to cause changes in glomerular permeability [28]. 

Taken together these functions demonstrate the importance of the glomerular 

endothelium in the GFB. However, these are not the only functions and most of the other 

functions of the glomerular endothelium coincide with podocytes. 

 The endothelial glycocalyx 

1.1.4.1  Components and Structure   

The GEnC are covered with a filamentous surface layer known as the glycocalyx [29, 30]. 

The glycocalyx is best described as a heterogeneous structure consisting of core proteins 

such as syndecans or glypicans and decorated with GAG side chains forming a hydrated 

poly-anionic gel [31]. GAG are heteropolysaccharide chains consisting of repeating 

disaccharide units. There are five types of (GAG): HS, chondroitin sulfate (CS), dermatan 

sulfate (DS), keratan sulfate (KS) and hyaluronic acid (HA), but the most predominant 

GAGs in the endothelial glycocalyx are HS and CS [31]. HA is synthesised by hyaluronan 

synthases (HAS) such as HAS1, HAS2 or HAS3 and is composed of repeating disaccharide 

units of glucuronic acid and N-acetylglucosamine. It is the only non-sulfated GAG and does 

not bind covalently to any of the core proteins to form proteoglycan. It is mainly anchored 

to the cell surface by specific hyaluranan receptors [32]. Proteoglycans are proteins that 

contain specific sites where sulphated GAGs are covalently attached and then are 

transferred from endoplasmic reticulum to the Golgi apparatus [33]. Upon transfer, a 

series of highly regulated enzymatic reactions, beginning with chain elongation, and 

proceeding with a multitude of modifications, through monosaccharide epimerization 
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and sulphation, determine the final form of a GAG [33]. For example, HS mainly attaches 

to syndecan 1 and 4 (SDC1/SDC4). Synthesis of HS onto the proteoglycan-attached 

tetrasaccharide is initiated by the addition of N-acetylglucosamine by N-

acetylglucosaminyltransferase I [34]. The GAG chain then extends, containing repeating 

units of glucuronic or iduronic acid and glucosamine with modified regions being 

segmentally interspersed between larger unmodified units. SDC4 is a major HS 

proteoglycan and its removal accounts for a 38% reduction in HS and a 37% increase in 

albumin passage across cultured endothelial monolayers [35]. Chronic loss of SDC4 from 

the endothelial cell surface has also been linked to failure of microvascular angiogenesis 

in diabetes [36].  

Along with the proteoglycans, glycoproteins bearing acidic oligosaccharides and terminal 

sialic acids (SAs) are also prominent within the glycocalyx. The major glycoproteins are 

the endothelial cell adhesion molecules that consist of three families; the selectin family, 

the integrin family and the immunoglobulin family. Common examples of these are E-

selectin, P-selectin, integrin αVβ3, intercellular adhesion molecules 1 &2 (ICAM-1&2), 

vascular cell adhesion protein 1 (VCAM-1) and platelet endothelial cell adhesion molecule 

(PECAM-1) [31]. Soluble molecules are also embedded within the layers of proteoglycans 

and glycoprotein of the glycocalyx and are essential for the normal function of the layer. 

They are either derived from the endothelium or from the bloodstream, such as albumin 

which is essential for normal function of the layer in preserving the charge and selectivity 

of the permeability barrier [37]. 

1.1.4.2  Visualisation 

Rambourg et al. were the first group to provide evidence that cells are covered with a 

glycocalyx [38]. They used a silver methenamine labelling technique for detection of 
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glycoproteins to stain a variety of rat tissues. Afterwards, under the electron microscope, 

it was shown that nearly all cells are coated with a thin layer of the stained material [38]. 

Correspondingly, Luft et al. used the cationic dye ruthenium red that binds to acidic 

mucopolysaccharides and generates electron density in the presence of osmium tetroxide 

[39]. Whilst finding methods in studying the function of the glycocalyx is not easy, there 

are still ways one can quantify the endothelial glycocalyx components. For example, 

Alcian blue binding assays have been used in vivo on tissues to assess the negative charge 

generated by the glycocalyx [40]. However, this assay only quantifies the charge 

components remaining on the cell surface and does not directly measure the glycocalyx 

structure. Moreover, combining Alcian blue binding with electron microscopy has become 

a standard method in glycocalyx assessment. There are precautions that need to be 

considered while using Alcian blue as polysaccharides react poorly with standard electron 

microscopy post-fixation stains. Finally, when this label is introduced with a fixative such 

as glutaraldehyde, the glycocalyx can be reliably imaged [41-43]. Another technique being 

developed within our group is lectin staining. Lectins are specific carbohydrate-binding 

proteins that recognize highly specific sugar units and their 3D conformations. For 

example, wheat germ agglutinin (WGA) has been used to identify the glycocalyx [41, 44]. 

This lectin binds to sialic acid residues throughout the glycocalyx structure. Lectin staining 

appears to be more specific as new individual lectins are being identified and thus more 

likely to become a valuable tool with which to examine the glycocalyx [41]. Although 

technically difficult, there are now a few methods available with which to study the 

structure of the glycocalyx. This will allow us to further develop our knowledge and 

understanding of the glycocalyx as we discover more details about this unique structure. 
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1.1.4.3 Functions of the endothelial glycocalyx 

One of the major physiological functions of the endothelial glycocalyx is that it is an 

important determinant of vascular permeability [45]. It has the ability to limit access of 

certain molecules to the endothelial cell membrane, as has been demonstrated in small 

rat mesenteric arteries with the use of fluorescently labelled dextrans of various 

molecular weights, showing increasing permeability for smaller molecules [45]. It also 

functions as a mechanotransducer; endothelial cells line the inner surface of blood vessels 

and are continually exposed to different mechanical factors. The glycocalyx itself 

translates these mechanical forces to biochemical signals that lead to changes in 

metabolism, morphology and gene expression [46]. For example, an in vitro study using 

bovine aortic endothelial cells (BAECs) showed that the enzyme chondroitinase, 

employed to selectively degrade CS, did not inhibit the characteristic shear‐induced NO 

production, but treatment with hyaluronidase did [47]. Also, endothelial cells exposed to 

shear stress alter their production of NO, which is a notable vasodilator that modulates 

vascular tone. Any damage to the glycocalyx impairs these mechanisms and the 

endothelial response to shear stress [48]. The negatively charged mesh of the glycocalyx 

acts as a macromolecular sieve; it repels like-charged molecules, as well as white and red 

blood cells and platelets and excludes macromolecules larger than 70kDa [49]. 

1.1.4.4 Mechanisms of glycocalyx damage 

Endothelial dysfunction plays a major role in the development of nephropathy in diabetic 

subjects and it was shown to be common in DN subjects [50]. High glucose (HG) induces 

intracellular reactive oxygen species (ROS) via glucose metabolism and is considered a 

causal factor of endothelial dysfunction in diabetic patients [51]. However, because the 
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glycocalyx location is the interface between the endothelium and blood and as it is an 

important component in permeability, any direct damage to the glomerular endothelial 

glycocalyx would lead to albuminuria. For example, Salmon et al. suggested that loss or 

dysfunction of the endothelial glycocalyx contributes to increased microvascular 

permeability leading to albuminuria [44]. Glycocalyx damage is seen when tissues are 

ischaemic or hypoxic or under stress in diabetes or renal disease [52]. Figure 1.4 shows 

compounds or agents that can disrupt the glycocalyx.  

One of the earliest findings suggested the presence of a glycocalyx in culture, and the 

ability to disrupt it by enzymatic degradation. In vitro experiments on GEnC demonstrated 

that enzymatic removal of the glycocalyx increases albumin passage across the GEnC 

monolayer [30].  Hence, changes in the level of these enzymes in GEnC would affect the 

structure and function of the endothelial glycocalyx and therefore could have significant 

physiological effects. This has been shown in a study using tumor-necrosis factor (TNF-α) 

which induced the shedding of SDC1 and HS through the release of proteases and 

heparanases causing an increase in vascular permeability [53].  

Heparanase is a glucuronidase that is widely expressed in health and can be further 

induced during inflammatory responses [54]. It specifically cleaves the carbohydrate 

chains of HS to release smaller HS fragments. In in vitro podocytes and GEnC, heparanase 

secretion is increased in response to aldosterone and angiotensin II (AngII) which could 

be inhibited by spironolactone [55]. It has also been shown that heparanase is 

upregulated in several renal pathologies such as DN, IgA nephropathy and membranous 

nephropathy as well as in patients suffering from glomerular diseases [56]. 

Matrix Metalloproteinases (MMPs) are a family that contains up to 24 functionally and 

structurally related enzymes [57]. They all share a highly conserved catalytic domain 
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containing a zinc binding region. MMPs are generally expressed at a low level in health, 

however inflammatory cytokines such as TNF-α growth factors and hormones can all lead 

to rapid increase of the proteases [58]. They have been found to cleave syndecan 

ectodomains in human embryonic kidney cells [59, 60] and in CiGEnC [35]. The latter study 

demonstrated the effects of disruption of the glycocalyx by TNF-α showing an increase in 

SDC4 and HS mRNA levels in the culture medium, suggesting a TNF-α-induced shedding. 

Therefore, this highlights the fact that SDC4 proteoglycan can be targeted in future 

studies with the aim of restoring the glycocalyx by specific drugs [35]. Butler et al. have 

also shown that salt and aldosterone act together to damage the glycocalyx in vitro by 

reducing HS and SDC4 shedding [61]. While in vivo, MMP2 activity was increased with salt 

and aldosterone and this caused albuminuria. Finally, MMP-inhibitors preserved the 

glycocalyx and prevented albuminuria [61]. 
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Figure 1.4 Factors damaging and protecting the endothelial glycocalyx 

An illustrative drawing of GEnC with factors that damage the glycocalyx (upper part) layer and 

factors that help restoration of the glycocalyx (lower part). Damaging factors include VEGF-A 

(vascular endothelial growth factor A) and tumor necrosis factor A (TNF-). Restoration factors 

include vascular endothelial growth factor C (VEGF-C) 

 

1.1.4.5 Mechanisms of glycocalyx protection 

A critical question for the field is “how can the endothelial glycocalyx be protected?” 

Some of the possible treatments are also listed in the above figure (Figure 1.4). Schött et 

al. in a review, listed a few of the possible treatments that were linked to protecting the 

glycocalyx [62]. Searching through the literature, a few drugs have been shown to have 

the ability to either increase the synthesis of the glycocalyx or prevent its enzymatic 

degradation. For example, polyethylene glycol, NO [63], and TNF-α inhibitors [64] were 

used as antioxidants in animal studies, and these agents reduced oxidative stress, thereby 
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reversing glycocalyx damage. Several drugs used in renal medicine have recently been 

found to modify the glycocalyx directly [53, 65]. For example, sulodexide, a mixture of 

low-molecular weight GAG (heparan (80%) and dermatan sulfate (20%)), has been used 

to treat microvascular complications in diabetic patients [77]. Sulodexide can be given 

orally and is thought to provide precursors for GAG synthesis. Even though sulodexide 

therapy has been shown in increase depth of glycocalyx after 2-month therapy in 

diabetics, however, no longer lasting renal protection was detected in another study [66]. 

Unfortunately, there are only a few clinical studies targeting specifically the glycocalyx 

under hyperglycaemia/diabetes. However, several drugs that have been used clinically 

could mediate some of their effects through protecting the glycocalyx. For example, 

hydrocortisone, a glucocorticoid secreted by the adrenal cortex, binds to the 

glucocorticoid receptor and triggers a variety of important cardiovascular, metabolic, 

immunologic and homeostatic effects [67]. It has been shown by Chappell and co-workers 

that it is able to preserve the glycocalyx in coronary capillaries, sustaining the vascular 

barrier and reducing interstitial edema [67]. The same group demonstrated that 

hydrocortisone is also able to prevent glycocalyx shedding induced by TNF-α [53]. 

Overall, targeting to restore the glycocalyx would be a very intriguing approach to use 

because, to date, there are no medicines that can effectively and definitively rescue 

patients from diabetic complications. Experimentally, restoration of the glycocalyx has 

been demonstrated to be achievable and effective in blood vessels outside of the kidney 

in the coronary [84], pulmonary [85] and mesenteric microcirculation [16]. We have also 

demonstrated that the glycocalyx can be restored in glomeruli [46, 66, 86] which is key in 

targeting albuminuria.  
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1.2 Adipokines 

 Adipokines history 

Interest in adipose tissue has increased noticeably over the last 2 decades. Traditionally, 

this tissue was considered as just a storage organ for fat and energy. However, it has since 

been shown to be a metabolically active organ that has endocrine capabilities by 

synthesizing a wide range of hormones that regulate energy homeostasis along with other 

diverse biological functions [68]. There are two types of adipose tissue known as white 

and brown. The latter is mainly for thermogenesis and is almost absent in human adults. 

However, white adipose tissue functions are wider and much broader than brown adipose 

tissue [68]. The importance of white adipose tissue as an endocrine organ is underlined 

by the wide metabolic consequences of adipose tissue deficiency and excess [69]. A major 

step forward in the acknowledgment of the endocrine activity of adipose tissue occurred 

with the discovery of leptin in 1994 [70].  Indeed, the list of adipocyte-derived factors has 

been growing at an extraordinary pace.  This unlocked a whole field of adipokines that 

have pro-inflammatory and anti-inflammatory factors [70]. Although different 

adipocytes, such as leptin, have been identified and characterized, further evaluation is 

required to define their physiological roles. Adipokines are diverse in the aspects of 

function and structure. They can be grouped according to primary function;  classical 

cytokines such as TNF-α and interlukin-6 (IL-6), chemokines,  proteins which form part of 

the fibrinolytic system (PAI-1), proteins for blood pressure regulation (angiotensin), 

glucose homeostasis and insulin sensitivity (adiponectin and omentin) and regulation of 

appetite and satiety (leptin and vaspin) (Figure1.5) [68]. Table 1 summarizes the main 

functions of the above listed adipokines [71]. 
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Figure 1.5 List of Adipokines 

An illustrative figure that shows the different adipokines that the adipose tissue secretes such as 

adiponectin, IL-6, resistin, leptin, angiotensin and sex steroids. Adapted from [68]. 

 

A promising adipokine known as adiponectin, has an important role in metabolic 

processes such as carbohydrate and fatty acid metabolism [72]. Adiponectin also helps in 

the maintenance of normal function of blood vessels and protects against functional and 

structural disorders such as endothelial dysfunction and atherosclerosis. Clinical studies 

have demonstrated that hypoadiponectinemia is closely related to endothelial 

dysfunction, obesity and diabetes [73]. However, the link between adiponectin and DN 

has not been extensively studied. Specifically, the effect of adiponectin on GEnC and its 

glycocalyx in limiting albuminuria (thereby considering adiponectin as an endothelial 

glycocalyx therapeutic tool). 

 In cultured non-glomerular endothelial cells, adiponectin has been shown to exhibit 

various anti-inflammatory effects, in particular those that counter the adverse cellular 
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influences of increased oxidative stress or stimulation with cytokines such as TNF-α [74, 

75]. Another adipokine, TNF-α, was used in our model of experimental diabetes in vitro. 

TNF-α is thought to disrupt the GEnC barrier through effects on components of the 

glycocalyx such as SDC4 [35]. Therefore, I am going to focus on two adipokines, 

adiponectin (anti-inflammatory) and TNF-α (pro-inflammatory).  

 Tumor necrosis factor-α (TNF-α) 

TNF-α is a major pro-inflammatory cytokine that is produced by adipocytes, macrophages, 

mast cells and other immune cells and is capable of the induction of other inflammatory 

cytokines and chemokines. It is a 26kDa transmembrane protein that undergoes cleavage 

by a metalloproteinase known as a disintegrin and metalloproteinase domain-containing 

protein 17 (ADAM17) to release a 17kDa biologically active protein [76]. TNF-α itself 

inhibits leptin release from adipocytes [77]. It was one of the first adipose derived 

proteins that was dysregulated by obesity, inflammation and diabetes [78]. Hence, 

studies have shown that the mRNA levels of TNF-α are increased in metabolic disorders 

and positively correlate to insulin resistance; this is because TNF-α can impair insulin 

signalling in adipocytes [79]. Other studies have shown that chronic exposure to TNF-α 

decreased insulin-stimulated glucose uptake [75]. However, neutralizing TNF-α receptors 

improved insulin sensitivity in mice but not humans [75, 80]. In hepatocytes, TNF-α 

reduces expression of genes involved in glucose uptake and metabolism through protein 

phosphatase 2C and increases the expression of genes involved in de novo synthesis of 

cholesterol [81]. TNF-α exerts several effects and it can contribute to the development of 

DN through several mechanisms. In the kidney, substances such as Ang II and AGEs can 

increase the synthesis of TNF-α [82]. Increased production of TNF-α can also produce 

oxidative stress, through the activation of nicotinamide adenine dinucleotide phosphate, 
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(NADPH) in mesangial cells. Finally, TNF-α appears to have a direct apoptotic and 

cytotoxic effect on glomerular cells [83, 84]. 

 

Table 1 Functions of adipokines 

A table showing the adipokines discovered and their main functions. IL-6: Interleukin-6, PAI-1: 

Plasminogen activator inhibitor-1.  Adapted from [85].  

 

 Adiponectin 

1.2.3.1 History of adiponectin discovery 

After the discovery of leptin in 1994 and the fact that adipocytes do release specific 

hormones, Scherer et al. [86] identified a novel serum protein and named it Acrp30 

(adipocyte complement related 30kDa protein) due to its similarity to complement factor 
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C1q, and stated that its exclusively made in adipocytes and its secretion is enhanced by 

insulin [86]. The discovery started with a northern blot analysis that showed over 100-fold 

induction during mice adipocyte differentiation at mRNA level. Mouse Acrp30 encodes a 

protein that contains 247 amino acids with a 28kDa molecular weight [86]. Adiponectin 

has also different names such as adipose most abundant gene transcript (apM1), AdipoQ 

[87] and gelatin binding protein of 28kDa (GBP28) [88]. The evolution of adiponectin and 

its widely known functions are depicted in Figure 1.6. As shown in the below timeline, it 

has been of great interest to study adiponectin in order to understand its relation to 

diabetes and diabetes-related diseases. Indeed, there are few adiponectin review papers 

that allowed me to extract some of adiponectin actions, especially ones related to DN [89, 

90]. Hence the goal of this project is to decipher the role of adiponectin on GEnC and 

glycocalyx in health and disease as we understand further the mode of action of 

adiponectin via its receptors. 
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Figure 1.6 Timeline of the history of adiponectin and its main functions over the past 2 decades.  

A timeline that shows the evolution of adiponectin functions from 1995 from its discovery to 
considering it to increasing FA oxidation and protecting against atherosclerosis in the 2000s. 
Finally, adiponectin’s ability to reduce albuminuria in 2011 and protecting against DN in 2014.  
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1.2.3.2  Biological forms and structure 

The human adiponectin gene is located on chromosome 3q27 and encodes a protein of 

244-amino acids. It is composed of an amino-terminal collagenous domain signal 

sequence, a variable region and a carboxy-terminal globular domain. The basic form of 

the protein is a homotrimer of three 30kDa subunits (Figure 1.7) [91]. Post-translational 

modification plays a vital role for assembling adiponectin to form its functional oligomeric 

complexes. The first step of adiponectin multimerization is the formation of trimers 

through the non-collagenous globular domain. Then, disulphide bonds form between the 

collagenous domain of the trimers to become a low molecular weight (LMW) hexamers 

of 180kDa and a high molecular weight (HMW) of 16mers of >400kDa (Figure 1.7). 

Without the collagenous domain, the globular domain of adiponectin (gAd) can still 

trimerize but not into the higher order structures. The product of a proteolytic cleavage 

of a full length adiponectin (fAd) is gAd, that also circulates at physiological conditions 

and has biological activity [92]. All forms are found in the circulation but LMW and HMW 

are the predominant ones with the homotrimer nearly undetectable [89]. It circulates at 

high levels in human plasma accounting for approximately 0.01% (0.5-30μg/ml) of all 

plasma protein in normal individuals ~1000-fold higher than other hormones such as 

leptin and insulin [93]. Higher levels of adiponectin, specifically HMW, are found in 

females than males due to the amount of visceral fat [94].  
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Figure 1.7 Adiponectin molecular structures and different isoforms   

Monomeric adiponectin (upper panel) that consists of an amino-terminal collagenous domain and 

a carboxy terminal domain can trimerize to form low LMW adiponectin (lower panel). Two trimers 

can then combine to form middle molecular weight (MMW) hexamers. The trimers can form 12- 

or 18-mers with HMW. Figure adapted from [91]. 

 

Surprisingly, the 3-dimensional structure of gAd  has a striking homology to TNF-α and 

thus adiponectin has been subsequently named as a TNF superfamily member [86]. 

Despite the lack of homology at the primary amino acid sequence level, the structural 

features between TNF-α and adiponectin are highly conserved [86]. Both proteins form 

bell-shaped homotrimeric oligomers, and the evolutionary relationship between 

adiponectin and TNF family proteins suggests that the human adiponectin receptor may 

also be a member of the TNF receptor superfamily.  Different forms of adiponectin have 

relatively short half-life. The half-life of circulating adiponectin monomer  is 75 minutes 

as reported in a study in mice, while HMW 16mers had the half-life at 83 minutes [95]. 

The concentration of adiponectin is between 2-20µg/ml in healthy individuals and is 

usually measured by ELISA. It is cleared from the circulation primarily by the liver and 
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secondarily by the kidneys. Urinary adiponectin levels are measured by the low complex 

forms that can pass through the normal functioning GFB such as the monomers and 

dimers (30kDa subunits) [96].  

1.2.3.3  Physiological role of adiponectin 

Adiponectin has important roles in anti-inflammatory responses and metabolic 

regulation. Nowadays,  adiponectin is considered as a hormone by acting on peripheral 

target tissues through its receptors [89]. Adiponectin and insulin concentrations have 

been studied and established in different in vitro and in vivo models (mice, humans and 

other animals). Notably, adiponectin is known as an insulin-sensitizer, with anti-

inflammatory and anti-diabetic properties [97]. Adiponectin administration in wild type 

mice significantly decreased serum glucose levels after 4 hours. Furthermore, in obese 

mice, adiponectin mRNA levels are significantly lower than in lean mice [87]. This was also 

seen in between lean and obese human fat samples [87]. Adiponectin also lowers hepatic 

glucose production in cultured rat hepatocytes through inhibition of the major enzymes 

in gluconeogenesis, thereby making the liver a major target tissue for adiponectin [97]. 

Serum and mRNA levels of adiponectin were also reduced in mice with hyperglycemia and 

hyperinsulinemia. Finally, administration of adiponectin in lipoatrophic diabetic mice 

ameliorated hyperglycemia and hyperinsulinemia [72]. One specific study in rhesus 

monkeys showed that adiponectin was lowered in an obesity model that develops T2DM. 

It was also noted that the decrease preceded the onset of diabetes in the obese monkeys 

[98].  

The gAd can be purified from recombinant fAd by enzymatic cleavage using acetylated 

trypsin V from bovine pancreas [99].  A study was done to evaluate the effects of gAd and 

fAd in mice fed a high fat/sucrose diet. Administration of gAd decreased the levels of 
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glucose, free fatty acids (FFA) and triglycerides (TG) in mice fed a high fat/sucrose diet 

[99]. In contrast, fAd administration showed only transient effects on glucose, plasma FFA 

and TG. This suggested that purified gAd exhibited novel pharmacological properties for 

the regulation of glucose and lipid metabolism and that it is more potent than fAd [99]. 

Correspondingly, Yamauchi et al, also analysed which domain mediates the biological 

effects attributed to adiponectin [100]. They showed as well that gAd ameliorated 

hyperglycemia and hyperinsulinemia much more potently than fAd. Interestingly, they 

also recognized that gAd was present in serum in very low doses, suggesting that 

adiponectin undergoes cleavage to exert its effects [72]. Furthermore, chronic effects of 

adiponectin in in vivo models were generated by overexpressing adiponectin in transgenic 

obese mice (ob/ob). Globular adiponectin showed promising results including at least a 

partial amelioration of insulin resistance (IR) and diabetes [100].  

1.3 Adiponectin receptors 1 and 2 

 Introduction of adiponectin receptors 

Kadowaki et al. established a cDNA library of human skeletal muscle cells and identified a 

clone that had a strong affinity to gAd [92]. It was termed AdipoR1 for adiponectin 

receptor 1 and showed specific expression in skeletal muscle and liver. Human and mouse 

AdipoR1 share 96.8% identity. Another similar sequence was discovered and was termed 

AdipoR2 for adiponectin receptor 2 and it was exclusively found in the liver. Human and 

mouse AdipoR2 share 95.2% identity [92]. The two transmembrane receptors AdipoR1 

and AdipoR2 are located integrally in the cell membrane with seven transmembrane 

domains. They differ from any other G protein-coupled receptors (GPCR) in that they have 

their C-terminal located extracellularly while their N-terminal located intracellularly. This 
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opposite topology suggests that the AdipoRs represent a novel class of receptor structure 

[92].   

AdipoR1 is highly expressed in skeletal muscle and has high affinity for gAd while AdipoR2 

is highly expressed in the liver and has intermediate affinity for fAd and gAd [101]. As the 

isoforms have distinct distribution patterns in various tissues, it is likely that the biological 

effects of adiponectin will be tissue-specific [102].  AdipoR1 is shown to also be expressed 

in the different cell types of the kidney; GEnC, mesangial cells, epithelial cells, proximal 

tubular cells and podocytes [103, 104]. AdipoR2 is expressed in all kidney cell types but to 

a lesser extent than AdipoR1.  

An adaptor protein containing pleckstrin homology domain, phosphotyrosine binding 

(PTB) domain and leucine zipper motif (APPL) is considered one of the first identified 

adiponectin receptor binding proteins [105]. It has the ability to associate with both 

receptors through its PTB domain and therefore activates several downstream signalling 

pathways that exert metabolic effects in liver, muscle and endothelial cells [105]. APPL1 

expression was decreased in obese subjects and any deficiency of it will lead to systematic 

insulin resistance. Interestingly, a whole-body knockout of APPL1 impaired adiponectin 

signalling and resulted in insulin resistance [106]. Therefore, it is important to note that 

APPL1 is a critical mediator of adiponectin action.  

 Physiological and pathophysiological role of 

AdipoRs 

One of the earliest findings about the actions mediated by adiponectin receptors was 

shown in 2 different cell lines, 293T cells (human embryonic kidney cells) and C2C12 

myocytes (mice myoblast cells). Both cell lines expressed AdipoR1 and AdipoR2 on the 
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cell surface that enhanced binding of adiponectin [107]. Treating C2C12 myocytes with 

either gAd or fAd for 7h stimulated fatty-acid oxidation and glucose uptake. However, 

when AdipoR1 was silenced by specific small interfering siRNA,  it greatly reversed the 

above mentioned actions only when gAd but not fAd was administered suggesting that 

gAd’s actions are mediated through AdipoR1 [107]. Another study by Yamauchi and 

colleagues suggested that adiponectin receptors are decreased significantly in the liver of 

diabetic (db/db) mice compared to wild type mice [108]. Moreover, restoring AdipoR1 by 

an adenovirus by either 1.5 or 5-fold significantly improved insulin resistance and 

ameliorated diabetes in a dose-dependent manner. However, in adiponectin deficient 

db/db mice in which there was a disruption of the coding region of adiponectin, the 

restoration effect of AdipoR1 by either 1.5 or 5-fold was lost suggesting that the effect of 

the adiponectin receptors was due to increased adiponectin signalling. Furthermore, 

AdipoR1-knockout mice showed significantly impaired glucose tolerance and higher 

insulin levels which are signs of insulin resistance [108]. A double knockout of AdipoR1 

and AdipoR2 did not show reduced plasma glucose level when adiponectin was 

administered suggesting the importance of the receptors for the physiological properties 

of adiponectin in vivo. This study suggested that a downregulation of both receptors in 

obesity are involved in the development of insulin resistance and diabetes [108]. 

Therefore, it is important to understand the signalling pathways that are activated by the 

different forms of adiponectin via its receptors. While adiponectin actions are tissue-

specific, skeletal muscles and liver are the main adiponectin targets.  These actions, that 

were explained in detail in the previous part, are summarized as 1) increase in fatty acid 

oxidation and glucose utilization in skeletal muscle [109], 2) reduced TG content in the 

liver and muscle and improved in vivo insulin sensitivity. Particularly, adiponectin has anti-
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apoptotic effects in cardiac myocytes [110] and pancreatic β-cells [111], and alleviates 

oxidative stress in endothelial cells [112]  and podocytes [113].  

1.4 Adiponectin signalling pathways 

 The AMPK pathway 

A major signalling pathway of adiponectin is through the stimulation of 5’ AMP-activated 

protein kinase (AMPK). AMPK is a heterotrimeric kinase that has a catalytic subunit alpha 

and 2 regulatory subunits Beta β and Gamma γ [114]. AMPK is a serine/threonine kinase 

known also as a stress kinase and is regulated by the ratio of AMP:ATP [109]. It is 

considered as a cellular sensor and a major metabolic switch to initiate catabolic 

processes by activating ATP-producing pathways such as FA oxidation and shutting down 

anabolic processes such as hepatic gluconeogenesis. Other than AMP, AMPK is activated 

by several factors such as vigorous exercise, heat shock, starvation and hypoxia [115]. The 

catalytic alpha subunits contain 2 isoforms (α1 and α2) and they are expressed in different 

tissues. The AMPKα1 isoform is mostly predominant in skeletal muscle and adipose tissue, 

whereas the α2 isoform is expressed in higher levels in cardiomyocytes [116]. 

Remarkably, endothelial cells exhibit both α subunits with α2 being the predominant one. 

The AMPK pathway can be activated by its two major upstream kinases, the liver kinase 

B (LKB1) and Ca+2/calmodulin-dependent protein kinase kinase (CaMKKB). It is 

translocated from the cytosol to cell membrane to be activated. LKB1 is a 

serine/threonine and tumour suppressor kinase that has been shown to activate AMPK in 

response to stress by translocating it to cytosol [117]. LKB1 not only regulates AMPK but 

also 12 other kinases. In cells missing LKB1, such as HeLa cells, there is still some basal 

AMPK activity [118]. However, this can be increased by addition of a calcium and 
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therefore, the CaMKKB kinase can be responsible for AMPK activation. The anti-diabetic 

drug metformin has shown to increase and lead to the phosphorylation of LKB1 in 

endothelial cells [119].   

The main role of AMPK is to regulate energy homeostasis by balancing between glucose 

and lipid metabolism [114]. To date, there are few known activators of AMPK. Most 

importantly, a commercial AMPK agonist known as 5-Aminoimidazole-4-carboxamide 

ribonucleotide (AICAR) mimics the effects of AMP as permeable precursor to ZMP (AICAR 

monophosphate) and binds to the γ subunit of AMPK [120]. Also, metformin is known to 

activate AMPK to increase insulin sensitivity and glucose production. Other naturally 

occurring compounds include resveratrol which has also been shown to lead to AMPK 

activation [121]. One of the downstream effects of AMPK is the phosphorylation of acetyl 

CoA carboxylase (ACC) and hence inactivation of a metabolic rate-limiting enzyme 

involved in FA synthesis in which acetyl CoA is converted to malonyl CoA. Another 

downstream effect of AMPK is the phosphorylation of e-NOS thus stimulating NO 

production in endothelial cells, leading to beneficial vasoprotective effects [112].  

 Recent studies indicate that adiponectin stimulates the phosphorylation and activation 

of AMPK in skeletal muscle liver, endothelial cells and adipocytes leading to the regulation 

of glucose and fatty acid metabolism [120]. 

One of the major complications of diabetes is cardiovascular diseases and studies have 

shown that over two thirds of diabetic patients develop heart disease. Therefore, it is not 

surprising that adiponectin is involved in the regulation of cardiac function under diabetic 

conditions. One of the early studies by Walsh and colleagues found that adiponectin 

deficiency leads to worsening of cardiac hypertrophy [122]. AMPK activity is also 

stimulated in the heart by adiponectin while suppressing extracellular signal-regulated 
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kinases (ERK) activation. Overproduction of adiponectin by adenovirus ameliorates 

cardiac hypertrophy and cardiac function [122]. In vitro studies have also shown that 

adiponectin reduces cardiac cell growth thereby highlighting the role of adiponectin in 

cardiomyocytes [122]. HUVEC are human umbilical vein endothelium cells that are widely 

used in in vitro studies. Treatment of gAd in HUVEC induced AMPK phosphorylation at the 

α1 subunit and it was maximum after 15 minutes [123]. 

In the kidney, the pattern of AMPK catalytic subunit expression shows that α1 is the 

predominant α isoform [115]. Although the regulatory β2 is predominant in rat kidneys, 

the β1 is the dominant form in mice [124, 125]. Specifically, it was shown that the α1 

subunit of AMPK is ubiquitously expressed throughout the kidney. Activation of the AMPK 

pathway appeared to be of importance in the maintenance of normal renal physiology 

[126]. Many factors are involved in the regulation of renal AMPK including salt and water, 

adiponectin, diabetes, ischemia, inflammation and endothelial function. Our focus here 

is adiponectin and its relation to renal AMPK [115]. The AMPK catalytic subunits α1 and 

α2 subunits are expressed on mesangial, glomerular endothelial cells and podocytes 

[103]. 

Sharma et al. studied the AMPK pathway in conditionally immortalized mouse podocytes 

[113]; gAd treatment increased phosphorylation of AMPK in normal glucose conditions. 

Glucose concentration of 25mM (considered as HG) reduced AMPK activity, and this was 

reversed by treatment with gAd [113]. Ex vivo treatment of isolated rat glomeruli was also 

carried out to assess the role of gAd on AMPK activity. Indeed, the phosphorylation of 

AMPK was effectively increased by gAd as well as AICAR [103]. The effect of adiponectin 

on AMPK activity was also evaluated on human mesangial cells that were treated with 

adiponectin, and the phosphorylation of AMPK peaked at 15min [127]. These data show 
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that adiponectin can switch anabolic processes and control oxidative stress in the 

glomerulus through the AMPK pathways in order to contribute to normal renal function.   

Since there is little work on the role of adiponectin on GEnC, one of the main goals of this 

thesis is to determine the effect of adiponectin on different signalling pathways including 

the AMPK pathway in the CiGEnC and isolated glomeruli. Figure 1.8 shows an illustrated 

diagram of pathways of how adiponectin mediates a cascade of signalling pathways, and 

how it is related to the insulin signalling pathway.  

 

Figure 1.8  Schematic representation of adiponectin signalling pathways. 

A Schematic diagram of adiponectin signal transduction associating a cross talk with the insulin 
signaling pathway: Adiponectin and insulin interact with their respective receptors, which prompt 
a cascade of signaling events. Metabolic actions of insulin are largely carried out by PI3K/AKT 
pathway, resulting in increased lipogenesis and glucose uptake via GLUT4. The interaction of 
adiponectin with its receptors AdipoR1/2 starts with binding with APPL then its upstream kinases 
(LKB1 and CaMMKK) that results in the activation of multiple signaling pathways including IRS1/2, 
AMPK and p38 MAPK. This increases FA oxidation through ACC, vasodilation through e-NOS 
activation and glucose uptake via p38 and Akt. AdipoR2 also activates the peroxisome 
proliferator-activator alpha (PPARα) to further activate acyl CoA oxidase (ACO). Adapted from 
[128] 

 



 

62 
 

  The PPARα pathway 

Another key regulator in lipid metabolism is the peroxisome proliferator-activator alpha 

(PPARα). It is a nuclear receptor protein that is mostly expressed in tissues that derive 

most of their energy from fatty acid oxidation such as liver, skeletal muscle, heart and 

kidney [114]. AdipoR2 appears to be related more closely with the activation of PPARα 

pathways that encourage energy dissipation and the inhibition of oxidative stress. 

AdipoR2 is expressed at higher levels in liver and adipose tissue. Adiponectin can 

drastically increase the expression and activity of PPARα thereby promoting fatty acid 

oxidation in skeletal muscles [107]. Similarly, in the liver, adiponectin also upregulates 

different PPAR-α target genes including CD36, which mainly modulates fatty acid uptake 

and metabolism [107]. Moreover, AdipoR2-induced activation of PPARα promotes fatty 

acid catabolism by upregulating genes involved in fatty acid transport, binding and 

activation, and peroxisomal and mitochondrial fatty acid oxidation. PPARα-mediated 

gene transcription enhances mitochondrial oxidative capacity to reduce oxidative stress 

and further contributes to decreased lipid accumulation in the target organ [44]. 

However, in this project, the PPARα pathway will not be investigated due to its limited 

information of PPARα signalling in the kidney. 

 The p38 mitogen activated protein kinase (MAPK) 

pathway 

The p38 mitogen activated protein kinase (MAPK) is a major kinase in the MAPK family 

and studies suggest that this pathway also plays a role in adiponectin signalling [129]. The 

p38 MAPK pathway is activated by inflammatory cytokines and plays a vital role in 

activating immune responses [129]. Hypoxia and metabolic stress such as muscle 
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contraction are known activators for p38 MAPK activity. Similarly, AMPK is also activated 

during most of these physiological conditions, thereby suggesting a crosstalk between 

AMPK and p38 MAPK pathways. Yamauchi et al. showed that gAd increased the 

phosphorylation of AMPK and ACC and p38 MAPK in C2C12 myocytes [107]. Consistently 

in an independent study, it was also shown that in C2C12 myocytes, adiponectin 

stimulated not only the phosphorylation of AMPK but also p38 MAPK, thereby promoting 

glucose uptake and fatty acid oxidation in muscle cells [105]. The p38 MAPK pathway has 

not been studied thoroughly in the kidney in relation to adiponectin, so in this thesis I will 

investigate whether gAd mediates p38 MAPK activation in CiGEnC.  

 The Akt pathway  

Insulin binds to its main membrane receptors and exerts its biological actions via the 

phosphatidylinositol 3-kinase (PI-3 kinase) and MAPK signalling pathways. This leads to 

the membrane translocation of glucose transporter 4 (GLUT4) and glucose uptake in 

skeletal muscles [24].  Activation of the PI3K/Akt pathway controls several downstream 

functions, which may be dependent on cell type [130, 131]. The anti-apoptotic responses 

mediated by increased Akt signalling may also involve the regulation of mitochondrial 

processes [132]. 

The effects of adiponectin on Akt phosphorylation has also been shown to be tissue 

specific. In cultured cardiomyocytes, adiponectin pre-treatment protected the cells from 

a palmitate-induced apoptosis. Hence, this shows that adiponectin can activate Akt 

pathway in cardiomyocytes to prevent apoptosis [133]. Furthermore, in cultured 

pancreatic β-cells, adiponectin also stimulates Akt phosphorylation as well as insulin, used 

as a positive control [134]. Finally, in skeletal muscle, adiponectin induces tyrosine 



 

64 
 

phosphorylation of  insulin receptor substrate 1 (IRS1) and Akt, thereby increasing insulin 

sensitivity [135]. To date, the effect of gAd on phosphorylation of Akt has not been 

integrated in renal studies and specifically albuminuria. Therefore, the effects on the Akt 

pathway will be examined in response to gAd in CiGEnC.   

1.5 The role of adiponectin in the kidney 

It has been well-established the relationship between adiponectin and metabolic diseases 

such as obesity, type 2 diabetes and cardiovascular diseases [136]. The main question 

here is how adiponectin is related to albuminuria and the development or progression of 

diabetes into DN? Since albuminuria is considered as an early sign of progressive renal 

disease with or without diabetes, the influence of adiponectin on the initiation of 

albuminuria is of high clinical significance. Throughout the literature, there are only a few 

studies deciphering the role of adiponectin in renal physiology [137], and a few examples 

and studies that have tried to link adiponectin and renal diseases will be discussed. 

The low molecular weight of adiponectin monomers and dimers is small enough to cross 

a functioning GFB, thereby adiponectin can be quantified in urine of healthy subjects [96]. 

However, patients with albuminuria also have adiponectin trimers in their urine due to 

increased GFB permeability, and it was reported that also HMW adiponectin is detected 

in proteinuria subjects [104]. Adiponectin has been implicated in exerting beneficial renal 

effects against the development and progression of albuminuria in diabetic and non-

diabetic renal diseases [113, 138, 139]. More precisely, the effects were through the 

activation of AMPK in the kidney. Low adiponectin levels prior to a kidney transplant is a 

major risk factor to developing new-onset diabetes. Obesity and low adiponectin 
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predisposed the patients in developing diabetes. Hence, this also shows the protective 

effect of adiponectin in patients receiving renal transplantation [140]. 

Sharma et al. were one of the first to determine the importance of adiponectin on 

albuminuria [113]. Compared to wild type mice, adiponectin deficient mice demonstrated 

increased albuminuria, but this was normalised when adiponectin was administered. 

Specifically, they examined glomerular podocytes in the knockout mice model, and found 

that their foot processes were fused but that they regained their normal foot process 

architecture with adiponectin [113]. Also, through an in vitro differentiated podocyte 

monolayer, albumin permeability was greatly reduced by the addition of adiponectin. 

Secondly, Ohashi et al. studied partial nephrectomy (5/6) in which there is hypertrophy, 

podocyte injury, glomerular fibrosis and eventually proteinuria [138]. Adiponectin 

knockout mice with partial nephrectomy worsened these features but exogenous 

adiponectin attenuated the adverse changes in renal structure [138]. A different model 

of kidney damage in podocytes was induced by apoptosis through targeted activation of 

caspase-8 (POD-ATTAC) [141]. These POD-ATTAC mice exhibited aspects of human renal 

disease, such as foot process effacement, mesangial expansion, and glomerulosclerosis 

[141]. These mice were crossed with either mice lacking or overexpressing adiponectin. 

POD-ATTAC knockout adiponectin mice developed albuminuria and renal failure; 

conversely, the POD-ATTAC overexpressed adiponectin mice recovered more rapidly and 

exhibited less interstitial fibrosis. Finally, this shows that adiponectin is a renoprotective 

protein even after podocyte injury [141]. Table 2 shows other examples of the expression 

of adiponectin and receptors in different diseases, some of which were explained above 

[90] 
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Table 2 Changes in expression of adiponectin and receptors in patients or animal models [141] 

The relationship between adiponectin and metabolic diseases such as obesity, T2D and 

cardiovascular diseases is well-established. A critical question here is how adiponectin 
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related to albuminuria and the development and progression of DN? Since albuminuria is 

considered as an early sign of progressive renal disease with or without diabetes, the 

influence of adiponectin on the initiation of albuminuria is of high clinical significance. 

Throughout the literature, there are only a few studies deciphering the role of adiponectin 

in renal physiology. It has been shown that hypoadiponectinemia in T2D patients will 

possibly predispose them to albuminuria because of the decreased renoprotective effects 

of adiponectin [142, 143]. That is, the lower the adiponectin levels, the higher the 

possibility of progression to albuminuria [98]. Of many cytokines, adiponectin, but no 

other inflammatory markers, has been shown to be significantly related to development 

of diabetes in Indians and Japanese subjects [144, 145]. These findings propose that 

hypoadiponectinemia directly contributes to the regulation of glucose homeostasis and 

decreased insulin sensitivity observed in diabetes. The table below (Table 3) [90] outlines 

the different prospective studies done in animal models, whether diabetic or obese and 

how adiponectin and/or receptors levels are correlated between these groups. 
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Table 3 Functions of adiponectin and receptors in diabetic animal models  
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Nakamaki et al. injected an adenovirus to overexpress adiponectin in streptozotocin (STZ) 

diabetic-induced rats to show that proteinuria was reduced in comparison to rats with no 

overexpression of adiponectin [139]. They also demonstrated that nephrin, a crucial 

podocyte protein for proper GFB function, was increased in the overexpressed mice. It is 

noteworthy to say that low nephrin contributes to the development of proteinuria in 

diabetic nephropathy. Therefore, the upregulation of nephrin mRNA appears to be 

redirecting adiponectin in a pathway to decrease albuminuria. 

These above-mentioned studies are a starting point to demonstrate the beneficial effects 

of adiponectin regarding the reduction of albuminuria. Although these were carried out 

in rodent experimental settings, the relevance to the human situation should be 

interpreted with care.  However, not all these studies were representative of a T2D model 

that develops nephropathy, our long-termed aim is to show adiponectin effects in a T2D 

model with progressive albuminuria. Hence, adiponectin will act directly on GEnC to 

protect the glycocalyx from further damage and alleviate albuminuria. 

1.6 Rationale of the study 

The burden caused by hyperglycemia and insulin resistance on T2D can result in immediate 

metabolic injuries such as tissue inflammation and oxidative stress in the kidney [146]. This 

burden can result in one of the major complications of diabetes. Thus, the prevention of an 

increased GFR and albuminuria is of great interest in providing for new therapeutic targets 

for DN. Despite massive efforts to discover the key mechanisms of DN, the clinical trials 

done to date have been unsuccessful. At present, angiotensin-converting enzyme (ACE) 

inhibitors and angiotensin receptor blockers (ARBs) are the only therapeutic agents 

approved for the treatment of DN [147]. However, it has been shown that the GEnC 
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glycocalyx, which forms part of a healthy GFB, is reduced in DN and that restoration of this 

structure may prevent further damage and leak of albumin [148]. Therefore, the present 

study focused on examining the potential of adiponectin as an agent capable of modifying 

the glycocalyx in DN models. 

Adiponectin has recently gained publicity because of its antidiabetic and anti-atherogenic 

effects. Several studies have demonstrated that hypoadiponectinemia is associated with 

insulin resistance [142], endothelial dysfunction [73, 149], obesity [87], coronary heart 

disease [110] and hypertension [150]. It is also discussed that there is a downregulation of 

serum adiponectin in T2D patients that may predispose an individual to development of 

albuminuria [151, 152]. This suggests that replenishment with exogenous adiponectin may 

be a targeted and effective strategy for the prevention of progression of diabetes to DN. 

Of adiponectin beneficial effects, its insulin sensitizing effect is the most studied. 

Adiponectin is known to increase glucose uptake, restore energy levels by increasing fatty 

acid oxidation and other major catabolic pathways [89]. Adiponectin actions are mediated 

through its major receptors AdipoR1 and AdipoR2. These receptors start a cascade of 

signalling especially through the AMPK signalling pathway which is also known to be 

modified in diabetic conditions. To date, the role of AMPK in the kidney acting through the 

GEnC has not been determined.  

The fact that lower plasma adiponectin contributes to development of diabetic 

microvascular complications through endothelial dysfunction is still under investigation 

[153]. However, in the literature, different researchers have shown that adiponectin can 

exert beneficial renal effects in diabetes-induced models [72, 154]. Over expressing 

adiponectin resulted in amelioration of diabetes and albuminuria [126] whilst a knockdown 

of adiponectin worsened the symptoms and resulted in proteinuria [155] .   
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Protecting the endothelial glycocalyx specifically is an exciting novel approach to limit the 

extent of DN and hence albuminuria. It has been shown that several agents can protect 

against damage to the glycocalyx in GEnC (whether in culture or in db/db animal models) 

[148, 156]. Although it has never been shown that adiponectin can affect the glycocalyx 

directly, the aim of this work is to prove that the components of the glycocalyx that are 

altered in diabetic conditions or models, can be modified and hence protected with 

adiponectin.  

In conclusion, this project will elucidate the role that adiponectin plays on GEnC and its 

glycocalyx in health and disease. This will be directly assessed through its receptors to 

understand the adiponectin signalling pathway in GEnC. Moreover, the endothelial 

glycocalyx will be assessed particularly to define the damage that occurs in diabetes and 

whether adiponectin is a valid candidate to restore this damage.  
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1.7 Hypothesis  

These observations have led to the hypothesis that adiponectin contributes to the 

maintenance of the GFB through direct actions on GEnC and its glycocalyx in experimental 

diabetes. 

 

Specific objectives:  

1. To define expression of adiponectin system components (adiponectin and 

receptors) in different cultured GEnC conditions and isolated glomeruli of a db/db 

mice model (Chapter 3) 

 

2. To understand how adiponectin orchestrates its effects on cultured GEnC and 

isolated glomeruli through its receptors, thereby activating signalling pathways 

under normal and experimental conditions (Chapter 4) 

 

3. To define the protective effects of adiponectin on the glycocalyx against 

experimental diabetes (Chapter 5) 
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Chapter 2 Material and Methods  

2.1 Materials and chemicals  

All materials were purchased from Sigma Aldrich unless otherwise stated. Antibodies and 

primers and other related chemicals are listed in the Appendix. Materials and methods of 

more specialised techniques are detailed in their relevant chapters 

2.2 In vitro work 

 Conditionally immortalised glomerular endothelial 

cells (CiGEnC)  

Bristol Renal has previously generated CiGEnC lines which were isolated from non-

diseased kidneys that were not suitable for transplants [16]. Briefly, primary GEnC were 

transduced with a temperature sensitive simian virus 40 large tumour antigen (SV40LT) 

construct and human telomerase (hTERT). This allows immature CiGEnC to proliferate at 

temperature of 33°C and then become quiescent and fully differentiate at 37°C, a non-

permissive temperature for 3-5 days before using them. Monolayers of GEnC were 

cultured in EBM-2MV media which contains basal medium (Lonza, #3156) supplemented 

with 5% foetal bovine serum (FBS) and the EGM2-MV bullet kit (Lonza, #4147) 

(hydrocortisone, fibroblast growth factor (FGF), insulin-like growth factor-1 (IGF-1), 

human epidermal growth factor (hEGF), and ascorbic acid.  
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 Conditionally immortalised podocytes (CiPod) 

Conditionally immortalized human podocyte cell lines (CiPod) have been also developed 

in our lab in which kidneys were isolated from non-diseased kidneys [157]. Podocytes 

were cultured in RPMI-1640 media with 5mM L-glutamine (Thermo Fisher Scientific). 

RPMI-1640 media was further supplemented with a penicillin/streptomycin antimicrobial 

agent at 1% of the final media volume (Sigma P4333) [157].  FBS at 10% of media volume 

(Sigma F9665) was also added into the media. These cells proliferate at 33oC. In contrast 

to the GEnC, CiPod need 9-12 days to fully differentiate at 37oC, in which they enter 

growth arrest and express specific protein markers of differentiated in vivo podocytes, 

including nephrin and podocin. 

 Cell culture 

Tissue culture was performed under sterile conditions in a Microflow Biological Safety 

Cabinet (Holten Laminar; Thermo Scientific, Denmark). All solutions and equipment were 

purchased sterile from the manufacturer or sterilised by autoclaving. Materials and 

solutions that were not purchased in a pre-sterilized state were decontaminated via 

autoclaving at the University of Bristol in-house facility. Tissue culture plastic flasks, plates 

and serological pipettes were obtained from Greiner Bio-One and Corning (UK). Glass 

pipettes and tips were purchased respectively from Fisher and Star-lab (UK). Cells were 

maintained in incubators at either 33°C or 37°C with 5% CO2 incubator for proliferation 

and differentiation respectively.   
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 Passage of cells 

If differentiation of the cells was not required, they were split or passaged when a 

confluency of 80% was reached. Cell culture media was aspirated from the culture flask 

and cells were washed twice with 3-4ml phosphate buffered saline (PBS) ((mM): 137.5 

NaCl; 2.68 KCl; 10 Na2HPO4; 1.76 KH2PO4; pH 7.4, prepared in dH2O) before 2ml of 0.25% 

trypsin-EDTA for GEnC or 1% Trypsin-EDTA for podocytes  was added. The flask was then 

incubated at 33°C for 3-5min until cells could be detached by gentle flask tapping (1-

3min).  Fresh media was then added to the flask at a 1:1 ratio and the cells were 

centrifuged for 3min at 1500g. The supernatant was discarded, and the pellet 

resuspended with 4ml of media for a ratio of 1:4.  Every 1ml of the cell suspension was 

put in a new T75 plate with 9ml of media.   

 Cell freezing and thawing 

The re-suspended cells from above were added to an equal volume of freeze solution 

(80% FBS and 20% dimethyl sulphoxide (DMSO, Sigma, # D8418) in a cryovial. This was 

frozen slowly using isopropanol filled boxes at -80°C. After 24-48h, cells were transferred 

to liquid nitrogen for long term storage. To revive cells, the cryovial was held under a 

warm tap to defrost quickly. As soon as it was thawed, cells were transferred to a flask 

containing appropriate culture media. The flask was incubated for at least 24h at 33°C to 

allow cells to attach before changing the media, as DMSO is toxic. Cells in culture were 

routinely examined using a Nikon TMS phase contrast inverted microscope and culture 

medium was changed every 2 to 3 days until the cells were sufficiently confluent for 

passage into new vessels. 
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2.3 Treatment of GEnC and podocytes 

For the different cell treatments, serum-free conditions were applied eliminate any 

possible confounding factors in the serum. Therefore, treatments were set up using cells 

that had been subjected to serum starvation. Culture media was removed and replaced 

with serum-free media (SFM) 3h prior to treatment unless otherwise stated. 

 High glucose stimulation 

When the CiGEnC and CiPod were ready for treatment, high glucose concentration was 

prepared at 20mM and 14mM respectively, to give a final concentration of 25mM. A 

media containing normal glucose concentration for the appropriate cell type brought up 

to 25mM glucose with the addition of L-glucose was used as an osmotic control. Cells 

were treated in a time-dependent manner for 2, 6 and 24h for short-term exposure and 

2, 7 and 14 days for long-term exposure with high glucose unless otherwise stated. After 

stimulation, the cells were lysed as described in the upcoming section. 

 Globular adiponectin stimulation 

In order to investigate the effects of human recombinant gAd (PeproTech #450-21) on 

CiGEnC/CiPod, a range of different concentrations were tested to determine the optimum 

dosage of gAd within CiGEnC. A gAd concentration of 2.5µg/ml was the optimum 

concentration to be used after the dose-dependent experiment. Control cells were not 

treated with adiponectin. The phosphorylation of different signalling proteins, including 

AMPK-α, ACC, Akt and p38 MAPK, within the cells in response to gAd was analysed by 

Western blot.  
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 TNF-α stimulation  

In order to disrupt the endothelial glycocalyx of cultured GEnC, TNF-α was used as a model 

of the inflammatory aspect of the diabetic milieu, as suggested by Ramnath at al [35], at 

a concentration of 10ng/ml. Similarly, a range of different time points (1, 2, 4 and 24h) 

were used to determine the optimum time frame needed for the glycocalyx to be 

disrupted by shedding its main components. Co-treatment of TNF-α and gAd was done by 

preparing both at final concentrations in the suggested volume of media.  

2.4 Protein extraction  

 Cell lysate preparation 

After the designated treatments were completed, cells were extracted at the end of a 

culture experiment to generate a protein lysate for use in Western blot. Culture media 

was removed from the cells using a pipette and the cells were rinsed twice with ice-cold 

PBS. The low temperature minimises the proteolysis, dephosphorylation and 

denaturation that occur at room temperature. A commercial protein lysis buffer known 

as cold radio immunoprecipitation assay buffer (RIPA) (ThermoFisher Scientific # 89900) 

was added at 150μl per 1 well of cells in a 6-well plate or 300μl for cells in T25 flasks. 

Protease inhibitor cocktail (Sigma Aldrich, #8340) and phosphatase inhibitor cocktail 2 

(Sigma Aldrich #5726) was added to the flask (the ratio used was 10μl of protease and 

phosphatase inhibitor solution per 1ml of RIPA buffer as recommended by the supplier). 

The cells were then removed from the flask with a cell-scraper (Sarstedt), transferred to 

1.5ml micro centrifuge tube (Fisher) and then centrifuged at 13000rpm for 10min at 4°C. 

The supernatant lysate was transferred into a fresh Eppendorf and then snap-frozen using 

liquid nitrogen and stored in a -80°C freezer.  
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2.5 Western blot 

  Introduction to Western blot 

Western blot aims to separate proteins by size using SDS and individual proteins of 

interest are stained identified using specific antibodies. Equipment used for this 

technique was acquired from Bio-Rad Laboratories, Hemel Hempstead, UK unless stated 

otherwise. This technique was used to assess the effect of recombinant gAd on the 

phosphorylation of different signalling proteins in both GEnC and podocyte cultures. 

Vertical plate Western blot apparatus using a mini-gel system was used. Glass plates, 

combs and spacers were sprayed with 70% ethanol and dried thoroughly before 

assembly, ensuring that potential leaks were eliminated.  

 Preparation and loading of protein samples  

Laemmli sample buffer was added to samples at a 1:4 ratio to the sample volume. 

Samples were then heated in a heat block at 90°C for 10 minutes to denature proteins 

before loading. The same volume of each sample was added to the wells of the gel 

alongside a single well loaded with approximately 3μl of a protein marker ladder (Blue 

Wide Range Protein Ladder, Cleaver scientific, #47).  Electrophoresis was performed at 

150V in 1x running buffer (see Appendix for recipe) until the dye front had reached the 

bottom of the gel.  

 Wet transfer  

Proteins were transferred (transfer buffer, recipe in Appendix) from the polyacrylamide 

gel to a PolyVinylidine DiFluoride (PVDF, Millipore, UK) membrane using Trans-blot wet 
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blotting apparatus. The transfer was carried out at 240mA current for 90min. An ice pack 

was placed in the tank to prevent overheating of the system as well as a magnetic stirrer 

to maintain an even buffer temperature and ion distribution. Once transfer was 

completed (indicated by the visibility of the ladder marker on the transfer membrane) the 

membrane was removed and transferred into a box. 

 Immunoblotting  

The membrane was then incubated in blocking solution (5 % BSA in 1x TBS-T (15.4mM 

Tris HCl pH 7.6, 137mM NaCl, 0.1% Tween 20)) for 1h at room temperature. Primary 

antibodies (list in Appendix) were then added after blocking. Primary antibodies were 

selected to target the protein of interest on the blot and were added to the membrane at 

a concentration of 1:1000 in BSA (3%) (unless otherwise specified) overnight at 4°C to 

reduce off-target binding. The membrane was then washed 5 times with TBST (each time 

for 5min) to remove unbound primary antibody. A secondary antibody (list in Appendix) 

(targeting the primary antibody) conjugated to horseradish peroxidase (HRP) was then 

made up at 1:10,000 in BSA (3%) and added to the washed membrane for 1h at room 

temperature. Excess secondary antibody was then removed with another 5 washes with 

TBST (each time for 5min). 

 Chemiluminescence imaging  

Chemi-luminescence imaging was then employed. Luminal and Femto peroxidase 

(Western ECL Substrate, Biorad Clarity) were added in equal volumes (500µl each) to the 

membrane and the signal analysed using an Amersham imager 600 system. Any 

subsequent densitometry was performed using ImageJ 1.43m software. 
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2.6 Messenger RNA (mRNA) gene expression  

 Total RNA extraction from cultured cells 

In order to investigate effects on gene expression at the mRNA level, RNA was extracted 

from cultured cells under the different conditions. Cell monolayers were lysed directly in 

6-well plates or T25 or flasks once cells had been thermoswitched after reaching 80% 

confluence. Cells were washed once in sterile PBS and cellular RNA extracted using a 

RNeasy mini kit (Qiagen #74104) according to manufacturer’s instructions. The samples 

were stored at -80oC if not used immediately.  

The concentration of RNA was calculated, and quality determined (A260/A280) by using 

a Nano drop system (Thermo Scientific, Waltham, USA). An A260/280 between 1.8 and 

2.0 was considered a good quality of RNA concentration.  The system was standardised 

using nuclease free water and RNA levels were measured at a wavelength of 260nm. 

 First-strand complementary DNA (cDNA) synthesis 

by high capacity reverse transcription 

 Complementary DNA was produced using a high capacity RNA to cDNA kit (Applied 

Biosystems, #4387406) according to the manufacturer’s instructions. One microgram of 

RNA was converted at a time. A RT buffer mix of 10µl, 1µl of enzyme mix with 1µg of RNA 

that was diluted to a total of 9µl with nuclease free H2O was used for the 20μl reaction. 

Eppendorfs were then put in a PCR thermocycler and underwent heating at 37°C for 1h 

followed by 95°C for 5min before cooling down to 4°C. The samples were then stored at 

-20°C or used for real-time PCR directly.  
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 Quantitative polymerase chain reaction (qPCR)  

Quantitative polymerase chain reaction (qPCR) is one of the most powerful and sensitive 

gene analysis techniques available. It is used for a broad range of applications including 

detection and quantification of mRNA expression. qPCR measures PCR amplification as it 

occurs. The SYBR® Green dye is used as a fluorescent reporter molecule to monitor the 

accumulation of PCR product relative to an endogenous housekeeping gene. As the 

quantity of target amplicon increases, so does the amount of fluorescence emitted from 

the fluorophore. In this project, qPCR was used to quantify a wide variety of mRNA 

expressions in CiGEnC and CiPod (Primer table in Appendix). Master mix was made by 

mixing 5.5µl of SYBR Green (Sigma, #S-4438), 0.8µl primer mix (10μM) and 2.7µl of DEPC 

water. One microliter of cDNA was added to 9μl master mix for each well of the 96-well 

qPCR plate (Sarstedt, #72.1981.202). Real-time PCR was performed using a StepOnePlus 

Real-Time PCR System (Applied Biosystem).  For all samples, a primer set for human β-

actin or GAPDH was used as the normalisation standard housekeeping gene.  

Melt curve analysis was performed to confirm the specificity of the PCR-product. Briefly, 

each primer set would have 1 melting point at a specific temperature that would 

determine the specificity of the primers to the genes of interest. RT-PCR results were 

analysed using StepOnePlusTM v2.1. software. Fluorescence data from each sample was 

analysed with the comparative threshold cycle (CT) method (∆∆CT also written 2∆∆CT 

method). Genes of interest values were normalised to the -actin value for each sample. 

Within each experiment, the expression of the genes of interest were calculated relative 

to the value in untreated controls which was taken as 1.  
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2.7 Immunofluorescence (IF) 

Cells were treated with fluorescently labelled antibodies to detect proteins of interest 

using immunofluorescent imaging. All incubations were performed at room temperature. 

Cells were seeded onto glass coverslips (Fisher, UK) in a 6-well plate (Cell star UK, 657160) 

at 1x 105 cells/cm2.  After 5 days of thermoswitching to 37oC, the cells were washed once 

with PBS and fixed in 4% paraformaldehyde in PBS (Alfa Aesar UK, J61899) for 15min. 

Fixative was removed from the cells by three washes with PBS and the cells were then 

permeabilised (when needed) in a solution of 0.2% Triton X-100 in PBS for 10min followed 

by another wash in PBS. Cells were then incubated with blocking solution containing 5% 

normal goat serum (Sigma UK, G9023), 1% BSA (Fischer Scientific UK, BPE 9701-100) and 

0.1% Triton X-100 in PBS for 30min. Cells were then washed three times with PBS before 

incubation with primary antibody of interest diluted 1:100 in blocking solution for 1h. 

Following that, the cells were washed three times in PBS and then incubated in the dark 

with appropriate secondary antibodies for 1h. The antibodies were either Alexa Fluor 488 

Goat anti-mouse (Life technologies UK, #A11001) or Alexa Fluor 488 Goat anti-rabbit (Life 

technologies UK, #A11008) at a dilution of 1:500 in blocking solution. Finally, the 

coverslips were washed three times in PBS and mounted with Vectashield mounting 

medium (H-1200) with DAPI (4',6-diamidino-2-phenylindole) (Vectashield; Vector 

Laboratories, UK). Mounted coverslips were examined by fluorescent microscopy using 

the Leica DMI 6000B microscope. The resulting images are presented with original 

magnifications indicated. Within each experiment identical microscope and camera 

settings were used so that images can be directly compared. 



 

83 
 

2.8 Statistics 

Graph and statistics were done using GraphPad Prism and p values of less than 0.05 were 

considered significant. For comparing differences between two groups, unpaired t-test 

with Welch’s corrections was performed. One-way or two-way analysis of variance 

(ANOVA) was performed with post-hoc Bonferroni’s analysis. Experiments were 

performed independently at least 3 times (n=3) with each repeat in triplicate for qPCR 

and Western blot results.  

2.9 In vivo studies 

 UK animal declaration unit  

All animals were handled in accordance with the University of Bristol’s institutional 

guidelines and procedures approved by the UK Home Office in accordance with the 

Animals (Scientific Procedures) Act 1986. All experimental procedures were covered by 

Dr. Rebecca Foster’s project licence PPL 30/3048 and on my own personal licence (39440).  

 Lean and db/db mice  

Db/db and lean mice on the C57BLKS/6 background were obtained from Charles River. 

They were transported to the University of Bristol experimental housing facility and 

arrived at 6 weeks of age. (For more details, this part is explained in Chapter 3, section 

3.2.2.2) 



 

84 
 

 Wild type mice 

Wild type mice that were housed at Level 0 in the Dorothy Hodgkin building (DHB) and 

not needed by other groups were kindly given to me to be used to determine adiponectin 

system components by an mRNA and protein expression profile. They were aged between 

10 to 12 weeks.  

 Harvesting of organs  

Animals were culled according to Home Office Code of Practice -The Humane Killing of 

Animals under Schedule 1 to the Animals (Scientific Procedures) Act 1986. After applying 

schedule 1 culling to the wild type mice which is done in a carbon dioxide (CO2) chamber, 

the animal was put in a supine position and was cut open using sterilized surgical 

instruments to harvest several organs such as liver, adipocytes, muscle and kidneys. 

2.9.4.1 Protein Extraction  

Tissues were collected, immediately frozen in liquid nitrogen and stored at -80oC until use. 

Upon thawing, tissue was washed 5 times in PBS in 1.5ml eppendorfs. The final PBS wash 

was then removed and replaced with 1ml of tissue lysis buffer (Bio Basic Inc. #BSP006) 

followed by mechanical homogenisation for 5min. The tissue suspension was 

subsequently incubated in lysis buffer in the cold room at 4oC on a rotator for 1h, before 

further homogenisation. The samples were then centrifuged at 16,000g for 30min at 4°C. 

Protein samples were stored at -80oC, until required. 
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2.9.4.2 RNA extraction 

The extraction steps were carried out the same way as cultured cells, using RNeasy mini 

kit (Qaigen) with the addition of one step that allowed the tissue to be homogenized with 

the lysis buffer using a mechanical homogenizer to disrupt the membranes and allow 

extraction of RNA. The samples were stored at -80oC if not used immediately.  

 Others  

Further animal experiments such as glomeruli sieving, and treatments are explained in 

detail in their respective chapters and sections. 
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Chapter 3 Adiponectin and Receptors 

Expression in GEnC 

3.1 Introduction 

A major complication of diabetes, DN, is characterized by microalbuminuria (>30mg/day) 

and an impaired GFR (GFR <60 mL/min/1.73 m2) [9]. During the last two decades, 

adiponectin has been identified as an insulin-sensitizer, an anti-inflammatory and 

vasoprotective adipokine [86]. Serum adiponectin levels are correlated with increasing 

age in healthy individuals and a rise of 1µg/ml of adiponectin has been observed for every 

10 years of age [94]. However, low levels of adiponectin and dysregulation of receptor 

expression has been evident in a number of diseases (obesity, IR, chronic kidney disease 

(CKD), and types 1 and 2 diabetes) [80, 90, 158]. Importantly, adiponectin has been 

observed to exert beneficial renal effects by protecting against albuminuria in rodent 

experiments [90].  

As mentioned before, adiponectin’s main mode of action is through its receptors, 

AdipoR1 and AdipoR2. It has become clear that the receptors were also dysregulated in 

disease states especially in T2D with or without nephropathy [108]. First, the receptors 

expression is dependent on tissue of origin; that is, it can vary between one organ and 

another. For this project, I am interested in the level of expression in renal cells, and most 

specifically GEnC. However, I will also look at CiPod. It has been observed that both 

receptors were expressed in renal tissues (human and mice) [137]. The importance of the 

adiponectin system was established in renal tissues of T2D with nephropathy [159-161]. 

Specifically, the receptors’ mRNA expression was found to be reduced in the cortex of  
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db/db mouse  [160, 161]. This potentially results in reduced adiponectin sensitivity and a 

downregulation of AdipoR1 or AdipoR2 related signalling pathway in the kidneys. 

Therefore, isolated glomeruli from human and mouse will also be checked for adiponectin 

receptors in control and diabetic kidneys. On the other hand, an agonist of AdipoRs 

restored diabetes-induced decrease in level of expression of renal AdipoRs mouse to the 

levels present in controls [162]. This resulted in an increase of insulin sensitivity and 

reduction of glucose intolerance as well as improvement in the survival rate of diabetic 

mice [162].  

The aim of this chapter was to identify the expression of adiponectin system components 

(adiponectin and receptors) in CiGEnC, CiPod and isolated glomeruli in health and disease.   

a- To determine the mRNA and protein expression of AdipoRs in CiGEnC and CiPod 

by qPCR and Western blot. 

b- To determine the localization of AdipoR1 in human kidney sections as well as in 

CiGEnC. 

c- To explore the effect of a diabetic milieu (HG and TNF-α) on adiponectin 

receptors in CiGEnC and CiPod. 

d- To work on a db/db model to assess the expression of adiponectin and 

adiponectin receptors in whole kidney lysates and sieved glomeruli. 

3.2 Methods 

  qPCR validation of primers 

Total RNA was extracted from cultured CiGEnC or CiPod as described in the Chapter 2. 

One µg of RNA was converted to cDNA. Then, serial dilutions of the cDNA were performed 
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at 1:10, 1:100, 1:1000 and 1:1000. The sequences of primer sets used are detailed in the 

Appendix. For each set of primers, a melt curve was created to assess the specific 

detection of a single product shown by a single peak on the melt curve analysis. In 

addition, the standard curve and the efficiency of each primer was performed and 

evaluated by the value of R2 that should be between 0.90 and 1.10 calibration curve. The 

efficiency of the PCR amplification was calculated by plotting the CT values of each dilution 

against the log of the cDNA input. The slope of the standard curve estimates the PCR 

amplification efficiency of the PCR reaction using the following equation: (10(-1/slope) –1). 

Figure 3.1 shows the standard curves of the genes that are to be assessed in this chapter.  

They all showed a great fit into the line with an R2 between 0.90 and 1.10. This suggests 

that all the primers were validated and are specific for the gene of interest. 
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Figure 3.1 Standard curve of PCR amplification efficiency for human and mice adiponectin and 

its receptors and β-actin control primers 

Graphs A to H represents the standard curve of each, human and mouse -actin, adiponectin, 

AdipoR1 and AdipoR2. The initial cDNA concentration (1µg) was used and then serial dilutions of 

1 in 10 were performed. Standard curves were plotted as CT values vs. log of cDNA. R2 is the 

correlation coefficient that define the fitness of the curves. y is the formula of the line in the form 

of y=ax+b. The curves were relative to n=1.  
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 Kidney tissue 

3.2.2.1 Human source 

Human kidney tissue for this study was obtained from kidneys retrieved for 

transplantation but not subsequently used for clinical reasons. Full ethical approval for 

the use of these specimens was obtained. Table 4 shows the details of the control 

transplant kidneys.  Sieving of kidney tissue for glomeruli was carried out in a laminar flow 

hood (MSC/BIO -Envair 89 Rossendale Lancs UK). The kidney was kept on ice during the 

whole sieving process. 

It is rare for diabetic kidney organs to be transferred to our renal unit. However, 2 diabetic 

kidneys were obtained, but no clinical data were available. 

 

Table 4 Characteristics of human donor kidneys 

Age and characteristics of the ‘transplant’ kidneys unsuitable for transplantation but consented 

for research use. Kidney cortex was processed for sections for IF of adiponectin receptors and for 

sieving of glomeruli.  
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3.2.2.2 Diabetic mice 

At present no single mouse model meets the requirements to study all the pathologies 

within the spectrum of diabetes and models most suited to the aim of each study must 

be identified. For the purposes of this study, the C57BLKS/J db/db mice mouse model of 

diabetes was chosen to be the most suitable model in terms of diabetic mice which are 

prone to nephropathy [163]. This model is characterised by a mutation in the receptor for 

leptin (adipocyte-derived hormone that regulates satiety and food intake) leading to 

defective leptin signalling  [164]. Lack of leptin signalling in the hypothalamus leads to 

constant hyperphagia and obesity with resulting high leptin and insulin levels. This mouse 

strain develops hyperglycaemia by 8 weeks of age [165] and kidney hypertrophy is evident 

at 16 weeks. As for albuminuria, which is an index used to confirm nephropathy, it can 

start as early as 8 weeks and persists until 16-24 weeks of age [165, 166]. Matched 

controls for these animals are the non-diabetic, lean C57BLKS/J-db/+. This model was 

used to determine the expression levels of adiponectin and adiponectin receptors in the 

GEnC of the kidney. The db/db and lean mice were purchased from Charles River for Dr. 

Yan Qiu for her ongoing project concerning diabetic cardiomyopathy. She performed the 

animal work including ordering them and checking their weight and glucose levels (as 

seen in Figure 3.2). The db/db mice were confirmed to be diabetic from their respective 

glucose levels (from 16mM and above). After using the mice for assessment of heart 

function, the kidneys were made available for this project. One kidney cortex was divided 

for subsequent protein and RNA extraction (as shown in Chapter 2 sections 2.7.4.1 and 

2.7.4.2 respectively). Five db/db and lean cortexes were then used for qPCR and WB.  



 

93 
 

 

Figure 3.2 Body weight and glucose levels of db/db and lean mice. 

A: Graph showing the characteristics of lean and db/db mice in which there is an increase 

in body weight from 6w to 12w in db/db mice when compared to lean controls. B: An 

increase in blood glucose in db/db mice started at 7w and all mice were hyperglycaemic 

(diabetic) by 9w. 
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3.2.2.3 Sieving of glomeruli 

The kidney (human or mouse) was collected and placed in sterile, ice-cold PBS before 

starting the sieving process. The renal cortex from the human kidney was cut into smaller 

pieces and pushed sequentially with the plunger of a 20ml syringe through wetted 

sequential metal sieves with pores of 425μm, 180μm and 125μm. Ice-cold PBS was used 

to wash the tissue through each sieve. Human glomeruli were collected from the 125µm 

sieve. Whilst, the mouse kidney was cut in half and then in smaller cubes and pushed 

through the graded mouse sieves with the plunger of 5ml syringe. Mouse kidney cortex 

was pushed through another sieve (75µm) and glomeruli were collected from the last 

sieve and transferred to a 50ml falcon tube as shown in Figure 3.3. The suspension was 

spun at 3000 rpm for 5min at 4oC to form a pellet of glomeruli. Supernatant was discarded 

and glomeruli were either treated first or re-suspended in protein or RNA lysis buffer.  
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Figure 3.3 A schematic diagram showing the process of sieving mouse glomeruli  

A simplified diagram that shows the steps of sieving glomeruli. Renal cortex is cut into smaller 

pieces and put on the 425µM sieve whilst pushing them through a plunger and washing with PBS. 

Gradient sieving is used whilst pushing large and medium debris through 180µM and 125µM 

respectively, until reaching to the last sieve, the 75µM where the glomeruli are collected. 

 

 RNA extraction from glomeruli 

3.2.3.1 Optimization techniques 

Whilst optimizing the RNA extraction from mice glomeruli, it was discovered that very 

little to no RNA was obtained just by putting them in RNA lysis buffer (RLT) as per the 

manufacturer’s instructions. Therefore, this technique was adapted by adding an extra 
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step. To aid lysis, a mechanical lysis step was performed. The glomeruli with the lysis 

buffer in an eppendorf was repeatedly drawn through a 30-gauge needle under high 

pressure. This additional mechanical stress ensured the glomeruli were broken into 

smaller pieces allowing the buffer RLT to contact all cells of the glomerulus. This improved 

dramatically the RNA yields 

The low yield of RNA initially meant that samples were not obtained from the first batch 

of littermate-controlled animals and thus the first successful extraction was carried out in 

db/db mice which unfortunately did not have matched littermate controls. In this case 

wild type mice were used as controls. In subsequent experiments mice with appropriately 

matched littermate controls were available so were used. This is detailed in the results 

section. 

 Protein extraction from glomeruli 

The glomeruli (human or mice) in PBS were centrifuged at 3000 rpm for 5min to form a 

pellet. The supernatant media was removed, and PBS was added to wash the glomeruli 

and then re-centrifuged at same speed and time. The glomeruli were re-suspended in 

tissue lysis buffer and kept for 30min on a rotator in the cold room (4oC). To ensure that 

the same problem with the RNA did not occur for the protein, the glomeruli in the lysis 

buffer were put in a 12-well plate and mechanical stress was added by using by using a 

1ml plunger of a syringe. This was used to disrupt the glomeruli and to aid protein 

extraction. The samples were then centrifuged at 16,000g for 20min at 4°C. Protein 

samples were either stored at -80°C or Western blot was performed to quantify relative 

protein expression.  
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  Statistical analysis 

Experiments were performed independently at least 3 times (n=3) with each repeat in 

triplicate for qPCR results. qPCR data were calculated as relative quantification (RQ) to 

the unstimulated control sample. Data were normalised to housekeeping gene: β-actin 

and plotted as mean 2-ΔΔCT of each triplicate. For comparing  data between two different 

groups, unpaired t-test with Welch's correction was used.  Data with more than 2 groups 

were analysed by one-way ANOVA with post hoc Bonferroni analysis to allow for multiple 

comparisons. 

3.3 Results 

  Glomerular endothelial cells do not express 

adiponectin 

The first aim of this project was to determine the expression of adiponectin using qPCR 

and Western blot, in human glomerular cells using human tissue, (from organs not used 

for transplants) CiGEnC and CiPod and sieved mouse and human glomeruli. Kidney lysates 

were prepared from tissue taken from the renal cortex and medulla. The fat surrounding 

the kidney (perinephric fat) was used as a positive control. CiGEnC and CiPod were grown 

in T25 flasks and then thermoswitched for 5 and 10 days respectively prior to RNA or 

protein extraction.  

Primers for human adiponectin were purchased from Eurofins for qPCR. The results from 

the qPCR data from different tissues/cells are depicted in Figure 3.4. The comparison of 

the 2-(ΔΔCT) calculation demonstrated no mRNA expression for adiponectin in either the 

whole kidney cortex, CiGEnC or CiPod (figure 3.4A). Semi-quantitative estimation of 
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adiponectin protein level expression in cellular lysates of tissues and renal cells was 

determined using Western blot. An anti-adiponectin antibody (CST #C45B10) was used 

for detection. Figure 3.4B shows that the Western blot generated a band at 27kDa 

consistent with the expression of adiponectin only in the adipocyte sample. Although a 

faint band was seen in the cortex lysate, this might be a false positive due to impurities 

being introduced from the surrounding fat during the protein extraction.  
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Figure 3.4 Expression levels of adiponectin in kidney tissue/cells 

A: qPCR analysis graph representing the mRNA expression of adiponectin between human kidney 

tissue such as adipocytes or kidney cortex or glomeruli (gloms) and cells (GEnC and Pods). Data 

are plotted as the mean 2-(ΔΔCT) of each triplicate with mean. n= 3, one-way ANOVA, p>0.05 ns. 

post hoc analysis (Bonferroni). B and C: Representative western blot and densitometry 

demonstrating kidney lysates with adipocytes as a positive control normalised to β-actin loading 

control. Bars represent means ±SEM, n=3, one-way ANOVA, p>0.05 ns when compared to 

adipocyte column.  post hoc analysis (Bonferroni).  
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  Glomerular endothelial cells express AdipoR1 

AdipoR1 is one of the main receptors for adiponectin. Specific mRNA primers for AdipoR1 

were purchased from Eurofins and the respective efficiency curve was evaluated as 

shown in Figure 3.1C. The expression of AdipoR1 mRNA was demonstrated in CiGEnC and 

CiPod, kidney cortex tissue and sieved glomeruli (Figure 3.5A). The highest expression for 

AdipoR1 appeared in the sieved glomeruli. 

 At the protein level, an antibody of AdipoR1 was purchased from abcam (#126611). 

Western blot showed the expression of AdipoR1 with a single band at 44kDa (Figure 3.5B) 

in all samples tested. Again, an adipose tissue sample was used as a positive control.  

In addition, IF experiments were performed to complete the profile of expression of 

AdipoR1 in CiGEnC. Figure 3.6 shows that the staining pattern of AdipoR1 is mainly 

distributed within the cytoplasm and peri-nuclear area of CiGEnC.  

The localization of AdipoR1 was also detected in frozen human kidney cortex sections. 

Immunofluorescence staining was performed on AdipoR1 (green). It displayed a similar 

pattern as the cultured cells (Figure 3.7). 
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Figure 3.5 Expression of AdipoR1 in kidney tissues/cells 

A: qPCR analysis graph representing the mRNA expression of AdipoR1 between human kidney 

tissue such as adipocytes or kidney cortex or glomeruli (gloms) and cells (GEnC and Pods). Data 

are plotted as the mean 2-(ΔΔCT) of each triplicate with mean. n= 4, one-way ANOVA, ** p< 0.01, 

*** p <0.001 compared to adipocytes post hoc analysis (Bonferroni).  C: Representative Western 

blot demonstrating kidney lysates with adipocytes as a positive control normalised to β-actin 

loading control.  
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Figure 3.6 Immunofluorescence of AdipoR1 expression in CiGEnC 

Primary antibody AdipoR1 (green) with counterstaining for DAPI (nuclei in blue). Peri-nuclear and 

cytoplasmic staining of AdipoR1 in CiGEnC. A negative control was used for specificity of antibody. 

Images shown are at x10 magnification. 
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Figure 3.7 IF on human cortex sections for AdipoR1 

Primary antibody AdipoR1 (green) with counterstaining for DAPI (nuclei in blue). Peri-nuclear and 

cytoplasmic staining of AdipoR1 in human kidney sections. Left panel: Images shown are at x10 

magnification. Right panel: Images shown are at x40 magnification 

DAPI

AdipoR1

Overlay Overlay

AdipoR1

10X 40X

DAPI



 

104 
 

 Glomerular endothelial cells express AdipoR2 

The expression of AdipoR2 mRNA was also determined by qPCR. AdipoR2 was expressed 

by CiGEnC and there were no significant differences between the cell types tested (Figure 

3.8A). Western blot analysis also showed a single band at 43kDa corresponding to the 

protein expression of AdipoR2 among all the tissues and cell lysates tested (Figure 3.8B). 

The pattern of AdipoR2 protein expression by IF appeared to be peri nuclear in CiGEnC 

(Figure 3.9). However, it was difficult to optimize the AdipoR2 antibody in human tissue 

sections and time constraints meant that I was unable to assess AdipoR2 pattern.  
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Figure 3.8 Expression of AdipoR2 in kidney tissues/cells 

A: qPCR analysis graph representing the mRNA expression of AdipoR2 between human kidney 

tissue such as adipocytes or kidney cortex or glomeruli (gloms) and cells (GEnC and Pods). Data 

are plotted as the mean 2-(ΔΔCT) of each triplicate with mean. n= 3, one-way ANOVA, p>0.05 ns post 

hoc analysis (Bonferroni).  B: Representative western blot for AdipoR2 demonstrating kidney and 

cell lysates with adipocytes as a positive control normalised to β-actin loading control.  
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Figure 3.9 Immunofluorescence of AdipoR2 in CiGEnC. 

Primary antibody AdipoR2 (green) with counterstaining for DAPI (nuclei in blue). Peri-nuclear 

staining of AdipoR2 in CiGEnC. An IgG control was used to detect background staining Images 

shown are at x10 magnification. 

 

 AdipoR1 vs AdipoR2 mRNA expression 

Comparing between the two receptors in CiGEnC and CiPod, figure 3.10 shows that 

AdipoR1 is the predominant receptor in CiGEnC. However, in podocytes the receptors do 

not vary significantly.  
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Figure 3.10 AdipoR1 vs AdipoR2 mRNA expression in CiGEnC and CiPod 

qPCR data analysis showing the mRNA expression of AdipoR1 and AdipoR2 in CiGEnC and CiPod. 

Data are plotted as the mean 2-(ΔΔCT) of each triplicate with mean.  AdipoR1 is more dominant in 

CiGEnC than AdipoR2. No differences in AdipoR1 between CiGEnC and CiPod.  n=3, unpaired t test 

was used between the different receptors in each cell type*p<0.05 and p>0.05 ns.  

 

  AdipoR1 and AdipoR2 mRNA expression in human 

diabetic glomeruli 

After the efficient RNA extraction of sieved glomeruli in control and diabetic human tissue 

samples, mRNA expression was measured. As seen in figure 3.11A, AdipoR1 mRNA was 

decreased up to 40% and AdipoR2 around 20% in the diabetic samples compared to 

control. Since there were only 2 samples in the diabetic group, a statistical data output 

could not be obtained. However, this suggests that there are differences in receptor 

expression between control and diabetic samples. 
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Figure 3.11 AdipoR1 and AdipoR2 mRNA expression are decreased in human diabetic glomeruli 

A and B: mRNA data analysis between control and diabetic human sieved glomeruli of AdipoR1 

and AdipoR2 (n=2). Data are plotted as the mean 2-(ΔΔCT) of each triplicate with mean and 

normalized to β-actin loading control. 

 

  Effect of high glucose on the expression of 

AdipoR1 mRNA in CiGEnC and CiPod 

After confirming that adiponectin receptors are expressed in CiGEnC as well as in CiPod, 

the next question considered was whether external stimulus such as high glucose can 

alter the expression of these receptors in either cell type. A concentration of 25mM of 

glucose was chosen to stimulate the cells based on the scientific literature data and has 

been utilised in many published works as a reference dose to mimic a HG environment on 

endothelial cells as well as other types of cells [167-169]. 

 A short and long exposure of HG was carried out in CiGEnC and CiPod and the level of 

AdipoR1 assessed. Figure 3.12A and D shows the short exposure of 2h, 6h and 24h of 
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AdipoR1 on CiGEnC and CiPod. Using qPCR, a significant downregulation by HG was shown 

after only 6h and this remained consistent for 24h at the mRNA levels for CiGEnC. 

However, in CiPod, the AdipoR1 mRNA expression did not change over 24h. An osmotic 

control was used to determine the effects of a concentrated solution at the 24h time 

point.  The high inactive L-glucose concentration is considered an isomer of the active D-

Glucose isomer but cannot be degraded within the cell; it only causes a high osmolarity 

environment. As seen in figure 3.12C, the L-glucose treatment caused an increase in 

AdipoR1 which was the opposite of the high D-glucose. This suggests that the decrease at 

24h was a result of the effect of high glucose and not an osmolarity effect.  

A longer exposure of HG was also done to further mimic a diabetic environment. For 

CiGEnC, the three time points chosen were 2D, 7D and 14D (D for days). The expression 

of AdipoR1 mRNA was further decreased by almost 60% after 14D exposure to high 

glucose (p<0.001). In CiPod, however, different time points were chosen due to the longer 

period of thermoswitching (9-12d for CiPod vs. 3-5d for CiGEnC). Due to a worry about 

the cells dying after a long period of incubation, time points of 2D, 4D and 7D were used 

for CiPod. There were significant decreases in AdipoR1 after 2D and 4D by almost 50% 

and a more prominent downregulation after 7D (almost 65%).  
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Figure 3.12 Decrease in AdipoR1 mRNA with respect to HG in CiGEnC and CiPod 

A and B: qPCR analysis of AdipoR1 in CiGEnC treated with high glucose (25mM) over a short time 

course of 2h, 6h and 24h (hours) (A) and long-time course of 2D,7D and 14D (days) (B).  C: qPCR 

analysis of AdipoR1 in CiGEnC treated with 25mM D-glucose and L-glucose for 24h. D and E:  qPCR 

analysis of AdipoR1 in CiPod treated with high glucose (25mM) over a short time course of 2h, 6h 

and 24h (hours) (D) and long-time course of 2D,4D and 7D (days) (E). Data are plotted as the mean 

2-(ΔΔCT) of each triplicate with mean (±SEM). β-actin used as the housekeeping gene control. n=3, 

one-way ANOVA, ** p < 0.01, *** p <0.001 post hoc analysis (Bonferroni). 
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  Effect of high glucose on the expression of 

AdipoR2 mRNA in CiGEnC and CiPod. 

Similarly, the mRNA expression of AdipoR2 was also evaluated in both cell lines at 

different time points as indicated in Figure 3.13. However, there was no changes in 

AdipoR2 mRNA with short-term exposure to HG in either cell types (Figure 3.13A and D). 

Also, the osmolarity check was done with respect to AdipoR2 (Figure 3.13C). There were 

also no visible changes.  Longer exposure to HG, resulted in a significant decrease in 

AdipoR2 after both 7D (by 40%) and 14D (by 40%). In CiPod, the decrease in AdipoR2 was 

more rapid and started as early as 2D by almost 30% and resulted in a 50% loss after 7D.  
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Figure 3.13 Decrease in AdipoR2 mRNA with respect to HG in CiGEnC and CiPod 

A and B: qPCR analysis of AdipoR2 in CiGEnC treated with high glucose (25mM) over a short time 

course of 2h, 6h and 24h (hours) (A) and long-time course of 2D,7D and 14D (days) (B).  C: qPCR 

analysis of AdipoR2 in CiGEnC treated with 25mM D-glucose and L-glucose for 24h. D and E:  qPCR 

analysis of AdipoR2 in CiPod treated with high glucose (25mM) over a short time course of 2h, 6h 

and 24h (hours) (D) and long-time course of 2D,4D and 7D (E). Data are plotted as the mean 2-

(ΔΔCT) of each triplicate with mean. β-actin used as the housekeeping gene control. n=3, one-way 

ANOVA, ** p < 0.01, *** p <0.001 post hoc analysis (Bonferroni). 
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  Effect of TNF-α on AdipoR1 and AdipoR2 in 

CiGEnC 

Another component of the diabetic milieu was analysed. CiGEnC were treated with TNF-

α in a time-dependent manner. Figure 3.14A showed that AdipoR1 was significantly 

decreased after 2h (by 25%) and 4h (by 35%). However, AdipoR2 mRNA was not changed 

with TNF-α stimulation for as long as 4h (Figure 3.14B) 
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Figure 3.14 Decrease in AdipoR1 but not AdipoR2 mRNA with respect to TNF-α in CiGEnC 

A: qPCR analysis of AdipoR1 in CiGEnC treated with TNF-α (10ng/ml) over a short time course of 

1h, 2h and 4h (hours).  B: qPCR analysis of AdipoR2 in CiGEnC treated with TNF-α (10ng/ml) over 

a short time course of 1h, 2h and 4h (hours). Data are plotted as the mean 2-(ΔΔCT) of each triplicate 

with mean. β-actin used as the housekeeping gene control. n=3, one-way ANOVA, ** p < 0.01, 

*** p <0.001 post hoc analysis (Bonferroni). 
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  Expression of adiponectin and receptors in mice  

After analysing that adiponectin and receptors are expressed and changed in CiGEnC in 

unstimulated and stimulated conditions, we therefore confirmed these findings in a wild 

type healthy mice model. Wildtype mice were sacrificed, and the adipose tissue, liver, 

muscle and kidneys were harvested. RNA was extracted as detailed in Chapter 2. Initial 

findings show that in wildtype mice, adiponectin mRNA is not expressed in either the 

kidney or in glomeruli (Figure 3.15A). It was shown that AdipoR1 is mainly expressed in 

muscular tissues and to a lesser extent in the liver (Figure 3.15B). Importantly, kidneys 

were also shown to express AdipoR1. The liver expresses the most amount of AdipoR2 

while muscle and kidneys also demonstrate expression although to a much smaller 

amount (Figure 3.15C). 
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Figure 3.15 Expression of adiponectin and its receptors in different mouse tissues 

A, B and C: qPCR analysis graph representing the mRNA expression of adiponectin, AdipoR1 and 

AdipoR2 between mice tissues. Data are plotted as the mean 2-(ΔΔCT) of each triplicate with mean.  

β-actin used as the loading control. n=3, one-way ANOVA, * p< 0.05, ***p<0.001 compared to 

adipocytes post hoc analysis (Bonferroni). 
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 Variations in adiponectin receptors in diabetic 

mice  

The next stage was to determine whether the expression of the adiponectin receptors 

expression changes in a diabetic mice model. As explained in the methods section of this 

chapter, initially wild type and db/db mice were sacrificed, and adipose tissue and the 

kidneys were harvested. RNA was extracted using the standard protocol. In adipocytes, 

adiponectin mRNA levels are downregulated in db/db mice when compared to wt/wt 

mice (Figure 3.16A). However, the expression of the adiponectin receptors (R1 and R2) 

did not change between the wild type and diabetic mice adipocytes (Figure 3.16B&C). 

The kidneys from the diabetic and non-diabetic-wildtype mice were used to sieve 

glomeruli. As explained in the methods section, RNA and protein from the ex vivo 

glomeruli were then extracted. At the mRNA level (Figure 3.17A), there was a 

downregulation of AdipoR1 in the sieved glomeruli (40%). This was confirmed at the 

protein level by Western blot which also showed a significant decrease in AdipoR1 protein 

levels in the diabetic mice (Figure 3.17C and E).  

Importantly, when a second db/db cortex lysates was compared with their bone fide lean 

matched littermate controls, a downregulation of AdipoR1 at both the mRNA (by 50%) 

and protein level (by 40%) was observed (Figure 3.17B, D and F).  

AdipoR2 levels were also compared between the diabetics and non-diabetic groups. In 

the sieved glomeruli, mRNA levels of AdipoR2 was significantly reduced in the diabetic 

mice (by 30%) (Figure 3.18A). This decrease was even more significant at the protein level 

(40%) (Figure 3.18C and D). In whole kidney lysates, similar significant decreases in 

AdipoR2 at both mRNA and protein levels were observed (Figure 3.18B, E and F).  
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Figure 3.16 Decrease in adiponectin mRNA but not its receptors in the adipocytes of db/db mice 

A, B and C: qPCR analysis graphs representing the mRNA expression of adiponectin, AdipoR1 and 

AdipoR2 in adipocytes between wildtype and diabetic mice (n=4). Data are plotted as the mean 

2-(ΔΔCT) of each triplicate with mean. β-actin used as the loading control. n=4, unpaired t test, 

*p<0.05 
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Figure 3.17 Decrease in AdipoR1 mRNA and protein in glomeruli and kidney cortex lysates in 

db/db mice 

A:  qPCR analysis graph representing the mRNA expression of AdipoR1 in ex-vivo sieved glomeruli 

in diabetic mice and B: in whole cortex lysates in diabetic mice. Data are plotted as the mean 2-

(ΔΔCT) of each triplicate with mean. unpaired t test, *p <0.05 ***p <0.001. C and D: Representative 

western blot for 2 repeats and densitometry (for n=4) of AdipoR1 in ex-vivo sieved glomeruli in 

diabetic mice. (compared to wild type).  E and F: Representative densitometry (for n=5) of AdipoR1 

whole cortex lysates in diabetic mice. (compared to lean ones). Normalized to β-actin loading 

control, points represent means ±SEM, n=4, unpaired t test, ** p < 0.01, ***p <0.001. 
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Figure 3.18 Decrease in AdipoR2 mRNA and protein in glomeruli and kidney cortex lysates in 

db/db mice 

A:  qPCR analysis graph representing the mRNA expression of AdipoR2 in ex-vivo sieved glomeruli 

in diabetic mice. (compared to wild type) and B: in whole cortex lysates in diabetic mice. 

(compared to lean ones).  n= 4 repeats each in triplicate. Data are plotted as the mean 2-(ΔΔCT) of 

each triplicate with mean. unpaired t test, *p<0.05.  C and D: Representative western blot for 2 

repeats and densitometry (for n=4) of AdipoR2 in ex-vivo sieved glomeruli in diabetic mice. 

(compared to wild type).  E and F: Representative densitometry (for n=4) of AdipoR2 whole cortex 

lysates in diabetic mice. (compared to lean ones). Normalized to β-actin loading control, points 

represent means ±SEM, unpaired t test, *p<0.05 **p<0.01 
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3.4 Discussion 

Adiponectin is an adipose tissue-specific molecule that gained a lot of interest in the last 

2 decades. First, it was shown that it makes up to almost 0.01% of plasma proteins within 

ranges from 5 to 10µg/ml in healthy humans [151]. Importantly, adiponectin plasma 

levels were shown to be lower in type 2 diabetic patients [170] as well as in obese patients 

[158]. Furthermore, in specific renal injury (subtotal nephrectomy), hypoadiponectinemia 

contributed to the exacerbation of renal injury suggesting that replenishing with 

adiponectin might be therapeutically beneficial in renal disorders [138]. Remarkably, 

adiponectin levels correlate inversely with weight and body mass index [88]. Although the 

mechanism of reduced adiponectin levels has not been clear yet in these metabolic 

disorders, we will try to understand more the relationship of adiponectin and receptors 

in diabetic kidney-related diseases. 

Since the adiponectin gene is expressed solely in both white and brown adipocytes, one 

of our first findings corroborated this fact. We showed that adiponectin is not expressed 

nor secreted in any of the healthy unstimulated renal cells (glomeruli and podocytes) at 

both protein and mRNA levels. This is consistent with other studies that showed that the 

secretion of adiponectin is exclusive to adipose tissue [88, 158]. It is worth mentioning 

that adiponectin expression was not assessed in damaged/stimulated CiGEnC. 

Additionally, Ohashi et al. showed abundant staining for adiponectin in the glomeruli of a 

kidney of wild type mice after subtotal (5/6) nephrectomy but not in the control mice with 

fully functional kidneys [138]. 

Since adiponectin has been reported to exert beneficial renal outcomes, such as  

protecting against the development and progression of albuminuria in mice models [113, 
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138, 139], questions arose around its two main receptors and their role in these benefits. 

First, adiponectin receptors were found to be expressed by the four cell types in the 

kidney; the GEnC, podocytes, proximal tubular cells and mesangial cells [137]. Therefore, 

the work in this chapter studied the expression levels of the adiponectin receptors in 2 

types of cells in the kidney (GEnC and podocytes), as well as how the expression levels are 

altered in diabetes.  

We demonstrated that AdipoR1 and AdipoR2 were expressed at both the mRNA and 

protein level in unstimulated human CiGEnC as well as CiPod.  In GEnC there was a lower 

level of expression of AdipoR2 compared to AdipoR1 whereas expression levels were 

comparable in podocytes. This data was consistent with studies by Cammisotto et al. 

[125] and Sharma et al. [113], in GEnC and podocytes respectively, that reported lower 

expression of AdipoR2 in GEnC.  

There are a few studies demonstrating adiponectin receptors’ expression in adipose 

tissue or skeletal muscle of T2D patients [171, 172]. These showed that AdipoR1 

expression was downregulated in skeletal muscle of diabetic patients compared to 

controls while AdipoR2 was not affected [172]. In adipose tissue, there was no significant 

difference in the expression of either AdipoR1 nor AdipoR2 between lean controls and 

T2D patients [171]. However, there is very little information in the literature concerning 

the expression of adiponectin receptors in the kidneys of T2D patients. One study showed 

that in human diabetic kidneys, there is a decreased intraglomerular AdipoR1 and 

AdipoR2 expression [162]. In our study, mRNA data analysis showed that there was a 

decreased level of AdipoR1 and AdipoR2 (n=2) in human diabetic kidneys. 

A recent study showed that mRNA levels of AdipoR1 and AdipoR2 were decreased in 

db/db renal cortex and primary human GEnC with HG [20]. In order to understand the 
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role of renal adiponectin receptors in DN, we investigated the expression levels of 

AdipoR1 and AdipoR2 in vitro in a simulated diabetic milieu environment. CiGEnC and 

CiPod were cultured in 25mM glucose medium for various time periods. Interestingly, the 

results in this chapter showed that stimulation with HG resulted in a different profile of 

AdipoR1 and AdipoR2 in the two cell types. In CiGEnC, AdipoR1 mRNA expression 

significantly decreased after HG stimulation in 6h and was still decreased at 24h in 

comparison to unstimulated control cells. Whereas AdipoR2 mRNA expression was not 

significantly affected by HG even after 24h.  However, during a long-time exposure of HG, 

AdipoR2 expression finally decreased after 7D and lasted till 14D. AdipoR1 mRNA levels 

also showed a significant decrease after 7D and 14D of 25mM glucose.  In comparison, 

whilst CiPod also demonstrated a down-regulation of AdipoR1 and AdipoR2 mRNA with 

HG stimulation, it took a longer time frame for the decrease to become apparent (after 

2,4 and 7D). These observations are in line such as the one by Park et al. which reported 

a decrease in AdipoR1 and AdipoR2 in commercial human GEnC after 72h with HG 

induction [159].  

The in vitro findings were then replicated in an in vivo animal model. For the purposes of 

this study, the db/db mice model of diabetes was chosen to further study the role of 

adiponectin and its receptors in this model. First, adiponectin mRNA levels were 

determined in wild type mice in which there is no history of diseases or complications. 

Our results showed that, in contrast to adipocytes, adiponectin was not present in kidney, 

liver or muscles. Results also show that in the adipocytes of db/db mice, adiponectin is 

significantly downregulated when compared to wild type mice. This is consistent with a 

study that demonstrated that adiponectin plasma levels were reduced in db/db mice 



 

124 
 

[158]. One explanation would be that the secretion of adiponectin from adipocytes may 

be downregulated in the insulin-resistant state which is depicted in the db/db model. 

Furthermore, it is known that AdipoR1 is highly expressed in skeletal muscle while 

AdipoR2 is highly expressed in the liver under physiological conditions [107, 151]. In this 

study, it was shown that wild type kidneys express AdipoR1 and AdipoR2 although to a 

lesser extent to that seen in skeletal muscle and liver. There is evidence that the 

adiponectin receptor levels are altered in other cell types in the 2 types of diabetes. For 

example, in type 1 diabetes, it is shown that skeletal muscle AdipoR1 mRNA was increased 

[173], while it was decreased in type 2 diabetes patients [174]. Similarly, both receptors 

are decreased significantly in the liver of db/db mice compared to wild type mice [72]. In 

contrast, cardiac AdipoR1 expression was decreased in both type 1 and type 2 diabetes 

[161, 175]. However, in this study, we were interested in the receptor expression in db/db 

cortex tissue and specifically isolated glomeruli. Importantly, AdipoR1 was decreased in 

the glomeruli and cortex of db/db mice. This is consistent with a study that found that 

renal AdipoR1 mRNA is decreased in both types of diabetes in rats and mice with 

nephropathy  [161, 176]. This might suggest that two factors are playing a role here, high 

glucose levels and renal insufficiency, that is significantly decreasing AdipoR1 mRNA and 

protein expression levels.  Moreover, the data about AdipoR2 in renal tissue remains 

controversial. For example, in type 1 and type 2 diabetes (with DN), AdipoR2 mRNA was 

not changed at all in renal tissues [161, 176]. However, there was a significant decrease 

of AdipoR2 in the glomeruli and cortex of db/db mice in our study. Another study also 

showed a significant reduction of AdipoR2 in db/db mice with DN when compared to their 

lean control mice [159].  
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3.5 Conclusion 

The reason we are emphasizing on the role of adiponectin receptors is because any 

reduction or downregulation of adiponectin receptors in DN kidneys may result in 

reduced adiponectin sensitivity that might affect the protective role of adiponectin in 

renal physiology. Their location, specifically within the glomerulus, suggests that both 

adiponectin receptors may change renal physiology and any pathological changes related 

to diabetes and kidney diseases. 

Therefore, in the following chapters, further experiments exploring the influences of 

AdipoR1 and AdipoR2 will be assessed to better understand how it affects renal function 

and the adiponectin signalling pathway. Adiponectin treatments in injured CiGEnC will be 

done to understand more the potent effects of adiponectin under stressful conditions. 

The role of the receptors will be assessed individually by specific adiponectin receptor 

knockdowns in cultured CiGEnC to decipher changes in signalling pathways. 
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Chapter 4 Activation of Signalling Pathways 

with Adiponectin 

4.1 Introduction  

Due to its role as an adipose tissue hormone that can exert important biological activities, 

the effects of adiponectin have been the focus of much research in different target tissues 

such as skeletal muscle and liver over the past 20 years [68]. The way adiponectin exerts 

its effects in different targeted tissues, as well as the major signalling pathways involved, 

were discussed in detail in the introduction to this thesis. Specifically, adiponectin has 

anti-apoptotic effects in cardiac myocytes [110] and pancreatic β-cells [111], and 

alleviates oxidative stress in endothelial cells [112] and podocytes [113]. However, it has 

not been studied specifically in GEnC. Therefore, one of the aims of this project is to 

decipher the role of adiponectin in GEnC. As discussed in Chapter 1, several signalling 

pathways has been activated by adiponectin. Importantly, the AMPK pathway and its 

downstream effect, ACC. There is activation and phosphorylation of AMPKα in skeletal 

muscle liver, endothelial cells and adipocytes leading to the regulation of glucose and 

fatty  acid metabolism [120]. Specifically, adiponectin has been involved in 

phosphorylating AMPKα in renal rat glomeruli and its effect was mediated specifically by 

AdipoR1 [103]. Furthermore, other pathways have been activated in myocytes by gAd 

such as p38 MAPK pathway [102] and Akt pathway [133]. However, it has not been 

assessed specifically in GEnC. In the previous chapter, I established that adiponectin 

receptors are expressed in CiGEnC as well as in human and mouse glomeruli. Therefore, I 

wanted to determine how adiponectin implements its effects in GEnC (cultured or 

isolated glomeruli) via its receptors, and which signalling pathways are activated. 
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Specifically, it is of great importance to determine which receptor is responsible for the 

activation. A few studies have showed the role of the receptors in other tissues. A model 

of whole body AdipoR1-knockout in mice showed an impaired glucose tolerance and a 

decreased phosphorylation of AMPK in the liver, even in the presence of adiponectin, 

whilst AdipoR2 knockout mouse exhibited insulin resistance and decreased PPARα 

expression [108]. More importantly, a double receptor knockout mouse resulted in 

abolition of adiponectin binding and actions, leading to both marked glucose intolerance 

and insulin resistance [108]. Although these actions were not GEnC-specific, they do point 

to the importance of both receptors in diabetes. Studies that investigated the distribution 

of adiponectin receptors and their function in the kidney, suggested that the activation of 

the receptors could prevent and ameliorate DN [160]. Therefore, an AdipoR1 and AdipoR2 

knockdown in CiGEnC, in vitro, could be used to study how adiponectin is exerting its’ 

biological effects. Then, I wanted to show whether adiponectin treatment on CiGEnC 

could reverse changes in signalling cascades under stressful conditions. In fact, it has been 

shown that HG conditions reduced AMPK activity and it was restored by gAd in mouse 

podocytes [113]. However, the effect of adiponectin on GEnC in diabetic conditions is not 

well known.  

 

The aim of this chapter is to understand how adiponectin exerts its effects on cultured 

GEnC and isolated glomeruli to activate several signalling pathways through its receptors, 

in health and disease conditions. 

a- To show the activation of signalling pathways in response to exogenous gAd in 

CiGEnC and in ex vivo human and mice glomeruli.  



 

129 
 

b- To investigate the role of AdipoR1 and AdipoR2 in activating intracellular signalling 

pathways by knocking down either AdipoR1 or AdipoR2.  

c- To investigate how adiponectin signalling pathways are modified by changes 

induced by high-glucose conditions (25mM) and TNF-α (10ng/ml) in CiGEnC. 

d- To compare the different signalling effects of gAd in glomeruli from lean and 

db/db mice. 
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4.2 Methods 

 Knockdown of AdipoR1 and AdipoR2 in CiGEnC 

Short hairpin RNA (shRNA) sequences are usually encoded in a DNA vector that can be 

introduced into cells via plasmid transfection or viral transduction. Optimal gene 

knockdown is a requirement for understanding how the gene is involved in a certain 

pathway and how vital its function is within the cell. The shRNA constructs of each 

AdipoR1 and AdipoR2 were purchased from Dharmacon Horizon Inspired cell solutions. 

Each kit provided 3 different shRNA sequences that targeted the named gene plus a 

scrambled control shRNA. They were stored immediately at -80oC and avoided any 

freeze/thaw cycle prior to usage.  

4.2.1.1 Detection of puromycin concentration 

To generate a fully transduced population of cells, it is crucial to determine the minimum 

amount of antibiotic required to kill 100% non-transduced cells over a certain period. It is 

well known that non-viral cells are puromycin resistant. This is done by performing a kill 

curve to determine the optimal puromycin concentration needed to eliminate non-

transduced cells.  A dose-response experiment (kill curve) was done where the cells were 

subjected to increasing amounts of antibiotic to determine the minimum antibiotic 

concentration needed to kill all the cells over the course of 2 to 5 days. For puromycin, 

the optimal concentration is the lowest concentration that kills 100% of non-transduced 

cells and shows maximal survival of transduced cells in 48-72h. Therefore, a dose 

response experiment of puromycin (0.1, 0.5, 1, 2 and 5µg/ml) was carried out on CiGEnC. 

The below graph shows the death curve of increasing puromycin concentration on 
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CiGEnC. The lowest concentration that killed 100% of the cells over a 3-day period was 

calculated to be 0.8µg/ml.  

 

Figure 4.1 Puromycin death curve 

Increasing concentration of puromycin (0.1, 0.5, 1, 2 and 5µg/ml) was given to the cells every 
24h (changed 3 times during 72h) and then cells were counted to determine the live % of cells 
after 3 days.  

 

4.2.1.2 Titration of virus by serial dilution  

The titration of each shRNA was performed as indicated in the table below. Briefly, CiGEnC 

were grown in a 6-well plate over a period of 2 days at 33oC (40% confluent). The media 

was then changed to SFM with polybrene at 575µl in the first well, 500µl in wells 2 to 5, 

and 400µl in well 6.  The whole shRNA vial (25µl) was put in the first well to bring up the 

total to 600µl. By means of serial dilutions, 100µl was titrated each time into the next well 

(for a total of 500µl of media) as shown in figure 4.2.  This step was crucial to ensure that 

the concentrated virus will not destroy all the cells at once.  After 4h, 1ml of EBM-2MV 

media was added in each well and left for 48h at 33oC. The cells were then observed under 
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the microscope to check if they were Green Fluorescent Protein (GFP)-tagged, hence 

ensuring that the virus is integrated within the cells.  

 

Figure 4.2 Titration of virus into wells 

A schematic diagram that shows the serial dilution of the virus into the wells (D1-D6)  

 

4.2.1.3 Selection of cells by puromycin 

To ensure that the virus has been integrated into the CiGEnC to generate a stable 

knockdown cell line, it is important to get rid of the non-transduced CiGEnC. Therefore, 

after the 48h virus period from the step above, media was changed in each well to a media 

with puromycin (0.8µg/ml) for 3 consecutive days.  

4.2.1.4 Trypsinization of virus cells and storage 

Before splitting the cells in the wells and plating them into new flasks, the cells were 

checked again under the microscope. This confirmed that the first, with the most 

concentrated virus, well had no viable cells. The 6th well (D6) was discarded because it 
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had the least concentration of the virus (according to the titration method as seen in 

figure 4.2. The other 4 wells were washed with PBS before adding 0.25% trypsin-EDTA. 

The same method was conducted regarding splitting and storing as mentioned in sections 

2.2.4 and 2.2.5 in chapter 2.  

4.2.1.5 Validation of knockdown 

Further RNA and protein were extracted from each shRNA variant to determine the 

percentage of knockdown of gene expression. RNA and protein analyses were done by 

qPCR and Western blot as mentioned in chapter 2 sections 2.4 and 2.5. The results are 

explained in the next section.  

  Treatment with gAd, HG and TNF-α 

CiGEnC and CiPod (when applicable) were treated with gAd (2.5µg/ml) at different time 

points in SFM (unless otherwise stated) before further protein extraction. Cells were also 

treated with TNF-α and HG (with or without gAd) as previously described (10ng/ml and 

25mM respectively) [35, 177].  

  Ex-vivo glomeruli treatments 

Glomeruli were isolated as previously described in Chapter 3, section 3.2.2.3 and 

treatments were given as follows: human and mouse glomeruli were treated with gAd (in 

SFM), for the time points suggested, in a water bath at 37oC and subsequently RNA and 

protein were extracted as detailed in Chapter 3, sections 3.2.3 and 3.2.4.  
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4.3 Results 

 Adiponectin stimulates p-AMPK-α in a dose-

dependent and time-dependent manner in CiGEnC 

In order to understand how gAd exerts its effects on CiGEnC, initially both a dose response 

and time course of adiponectin treatment was carried out (Figure 4.3). According to a 

review of the literature, the physiological level of gAd is around 2.5μg/ml [113]. 

Therefore, a dose response between 0 and 25μg/ml and a time response between 0 and 

24h as carried out. As described in Chapter 1, the AMPK pathway has a major role in 

adiponectin signalling. Treatment of CiGEnC with gAd caused a sustained phosphorylation 

of threonine 172 in the α subunit of AMPK (AMPKα1) in a dose-dependent manner as 

seen by densitometry analysis of the western blots with an expected size of 62kDa. The 

effect peaked with a 2.5 and 2.7-fold rise after 30min at 2.5 and 10μg/ml respectively 

(Figure 4.3A and B).  Although both concentrations yielded a similar increase in the 

phosphorylation of AMPK, for future experiments, unless otherwise stated, a 

concentration of 2.5μg/ml was used since it represents a more physiological 

concentration. A time course experiment was then carried out to determine whether gAd 

stimulates the phosphorylation of AMPK in a time-dependent manner. Results from these 

experiments showed that phosphorylation was sustained even after 1, 2 and 4h but then 

returned to almost basal levels after 24h (Figure 4.3C and D) 
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Figure 4.3 A dose and time-dependent effect of gAd in CiGEnC on AMPK pathway 

A: Representative western blot demonstrating the concentration dependent effect of gAd (1, 2.5, 

10, and 25μg/ml) and its densitometry (B) that confirmed the phosphorylation of AMPK in 

response to gAd in a dose-dependent manner. C: Representative western blot demonstrating the 

time dependent effect of gAd at 2.5μg/ml (0.5, 1, 2, 4, 24h) in CiGEnC on AMPK-α phosphorylation 

and its densitometry (D): Densitometry was performed on 3 representative blots from 3 

independent repeats (n=3) showing levels of protein of interest normalised to β-actin loading 

control. Bars represent means ±SEM, n= 3, one-way ANOVA, ** p < 0.01 *** p <0.001. post hoc 

analysis (Bonferroni). 

 

 Adiponectin stimulates the AMPK and ACC 

pathway in CiPod. 

The AMPK pathway and its downstream target ACC were also investigated in human 

CiPod. The CiPod were treated at different time points at a concentration of 2.5μg/ml 

(Figure 4.4). As predicted, the phosphorylation of AMPK-α was also significantly increased 
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about 3-fold after 30min. However, the phosphorylation of ACC was only significant after 

1h (2-fold) but not 30min. 

 

Figure 4.4 Adiponectin activates and phosphorylates AMPKα and ACC in CiPod. 

A and B: Representative western blot demonstrating gAd (2.5ug/ml) effects in a timely manner 

(0, 15, 30 and 60 minutes) in CiPod on AMPK and ACC phosphorylation respectively. C and D: 

Densitometry confirmed the phosphorylation of AMPK and ACC in response to gAd at a maximum 

after 30min for AMPK and 60min for ACC. Densitometry was performed on 3 representative blots 

from 3 independent repeats (n=3) showing levels of phosphorylated protein of interest 

normalised to β-actin loading control, bars represent means ±SEM, one-way ANOVA, ** p < 0.01, 

*** p <0.001, post hoc analysis (Bonferroni).  

 

 Adiponectin activates several signalling pathways 

in CiGEnC 

The effect of gAd administration can help us understand how adiponectin signalling is 

mediated in CiGEnC through different signalling pathways. As discussed above, the major 

signalling pathway activated by gAd is the AMPK pathway and one of its downstream 
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effects, ACC. Therefore, a different time course of exogenous gAd at 2.5μg/ml was done 

in CiGEnC to determine not only phosphorylation levels but also their total protein 

expression. There was a significant increase (3.5-fold,) in p-AMPK-α after 30min (Figure 

4.5A and B). Similarly, there was also an increase in the phosphorylation of ACC with a 

notable 2.8-fold rise after 30min (Figure 4.5C and D). 

Furthermore, to study the underlying mechanism of gAd in glucose metabolism, we 

investigated the role of the Akt signalling pathway. One of the major phosphorylation 

sites on Akt is the serine at 473 generating p-Akt, which leads to activation of this enzyme 

and resultant downstream effects such as increased glucose uptake into the cell. As 

expected, the phosphorylation of Akt at ser473 was significantly increased by 3-fold after 

30min treatment with gAd (Figure 4.5E and F).  

It is also well known that the p38 MAPK pathway is activated in muscle cells after 

adiponectin binding to its receptors [47]. Therefore, the phosphorylation of p38 in CiGEnC 

upon treatment with gAd was also studied. Adiponectin treatment led to a significant 

increase in the phosphorylation of p38 MAPK which peaked after 30min (Figure 4.5G and 

H).  
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Figure 4.5 Adiponectin stimulates AMPK, ACC, Akt and p38MAPK phosphorylation in CiGEnC 

A, C, E,G: Representative western blot demonstrating time course of gAd effects ( 0, 15, 30 and 

60min) in CiGEnC on phospho AMPK, ACC, Akt and P38 MAPK and their respective total levels. B, 

D,F,H: Densitometry confirmed the phosphorylation of AMPK, ACC, Akt and P38 MAPK  in 

response to gAd which peaked after 30 minutes. Densitometry was performed on 3 

representative blots from 3 independent repeats (n=3) showing levels of protein phosphorylation 

of interest normalised to their respective totals then β-actin loading control, bars represent 

means ±SEM, one-way ANOVA, *p <0.05, **p < 0.01. post hoc analysis (Bonferroni).  
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 Are the effects of gAd mediated by AdipoR1 

and/or AdipoR2 in CiGEnC?  

It was shown in Chapter 3 that both adiponectin receptors are expressed in CiGEnC 

therefore, I determined whether the signalling pathways activated in CiGEnC by gAd are 

dependent on AdipoR1 and/or AdipoR2, or there are other factors contributing to the 

increased phosphorylation of certain proteins.  

 

Figure 4.6 Confirmation of AdipoR1 knockdown by shRNA in CiGEnC at mRNA and protein levels. 

A: qPCR data analysis highlighting the decreased expression of AdipoR1 mRNA in CiGEnC using 3 

different shRNA constructs. One-way ANOVA,**p<0.01, *** p <0.001 post hoc analysis 

(Bonferroni) B: qPCR data analysis showing AdipoR2 mRNA expression was not affected by the 3 

shRNA of AdipoR1 (ANOVA, ns p>0.05) C:  Representative western blot demonstrating the 

knockdown extent of AdipoR1 in shRNA v726 D: Densitometry confirmed the knockdown of 

AdipoR1 protein expression in CiGEnC. Data normalised to β-actin loading control, bars represent 

means ±SEM, n= 3, unpaired t test, ** p <0.01.  
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As described in the methods, shRNA sequences can be used for knockdown studies. Three 

different commercially available shRNA sequences were tested in CiGEnC. Knockdown 

was confirmed using qPCR for the detection of mRNA expression. As seen in figure 4.6A, 

there was a significant decrease (70-80%) in AdipoR1 mRNA using all the shRNA variants 

most notably with v726. It is also worth pointing out that AdipoR2 mRNA levels were not 

significantly affected by any of the variants of the AdipoR1 KD shRNA used (Figure 4.6B). 

At the protein level, there was also a significant knockdown (60%) using the AdipoR1 v726 

variant (Figure 4.6C and D). Therefore, for future AdipoR1 knockdown studies, shRNA 

v726 cells were used.  

As for AdipoR2, there was also a significant mRNA knockdown (60-80%) of AdipoR2 using 

all the different shRNA variants tested and specifically v939 (Figure 4.7A). Although 

significant knockdown was observed at the mRNA level for all shRNA, knockdown at 

protein expression was only observed in shRNA v939(Figure 4.7C and D). Importantly, 

there was no change in the AdipoR1 mRNA (ns p>0.05) in the AdipoR2 knockdown cells 

suggesting that the knockdown was specific for AdipoR2 and not AdipoR1 (Figure 4.7B). 
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Figure 4.7 Confirmation of AdipoR2 knockdown by shRNA in CiGEnC at mRNA and protein level. 

A: qPCR data analysis highlighting the decreased expression of AdipoR2 mRNA using 3 different 

shRNA knockdown CiGEnC of AdipoR2. One-way ANOVA,**p<0.01, *** p <0.001 post hoc analysis 

(Bonferroni) B: qPCR data analysis showing AdipoR1 mRNA expression not affected by the 3 

shRNA knockdown of AdipoR2 (ANOVA, ns p>0.05) C: Representative western blot demonstrating 

the knockdown extent of AdipoR2 in shRNA v939 D: Densitometry  showed significant knockdown 

of AdipoR2 protein expression in v939 shRNA . Data normalised to β-actin loading control, scatter 

dot represent means ±SEM, n= 3, unpaired t test, *p <0.05 

 Adiponectin effects are dependent on AdipoR1 

Following the knockdown of AdipoR1 and AdipoR2 in CiGEnC, the knockdown cells were 

treated with gAd at 2.5μg/ml for 30min and the responses compared to scrambled control 

cells. As shown in figure 4.8A, there was an activation and phosphorylation of AMPK (2.4-

fold) and ACC (2.1-fold) in the scrambled controls as predicted. However, there was a 
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significant decrease in phosphorylation of AMPKα and ACC in AdipoR1 v726 knockdown 

CiGEnC when treated with gAd for 30min (compared to 30min scrambled controls). 

Meanwhile, in the AdipoR2 knockdown CiGEnC, there was no change in phosphorylation 

of AMPKα and ACC suggesting that AMPK pathway is independent of AdipoR2 but might 

be still operating via AdipoR1 in CiGEnC.  

 

Figure 4.8 Adiponectin signalling through AMPK and ACC is impaired in AdipoR1 and not 

AdipoR2 knockdown cells. 

A: Representative western blot demonstrating gAd effects in a scrambled control, AdipoR1 and 

AdipoR2 knockdown on AMPK and ACC phosphorylation. B and C: Densitometry showing the 

extent of phosphorylation of AMPK and ACC in the 3 cell lines after 30min. Data normalised to β-

actin loading control, dots represent means ±SEM, n= 3, one-way ANOVA, *p <0.05, ***p <0.001 

when compared to 0min scrambled control, and ^^p <0.01, ^^^p<0.001 when compared 

to 30min scrambled. post hoc analysis (Bonferroni). 
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 Effect of high glucose on adiponectin signalling 

pathways. 

In order to induce diabetic conditions in vitro, CiGEnC were cultured in either 5.5mM or 

25mM of glucose for 48h. Figure 4.9 shows the effects of high glucose and gAd in CiGEnC 

on signalling proteins. In unstimulated cells, HG significantly decreased the 

phosphorylation of AMPKα (Figure 4.9B) and ACC (Figure 4.9C) but not p38 MAPK (Figure 

4.9E) and led to elevated levels of p-Akt. (Figure 4.9D). As shown before, there was a 

significant increase in all phospho-proteins after 30min of gAd in cells cultured in normal 

glucose. However, after the culture of CiGEnC for 48h in HG and the last 30min with gAd, 

p-AMPK, p-ACC and p-p38 were still activated by gAd but to a lesser extent. As for the 

phosphorylation of Akt, the treatment of gAd for 30min after HG for 48h did not add any 

further to the observed increase in the p-Akt levels.  
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Figure 4.9 Adiponectin reversed decreases of phosphorylation of AMPK, ACC and p38 in high 

glucose induced CiGEnC 

A: Representative western blot and densitometry of p-AMPK, p-ACC, p-Akt and p-P38 proteins (B, 

C, D and E) demonstrating gAd (2.5 μg/ml) effects in normal (5mM) and HG (25mM) for 48h after 

30min. Data normalised to their respective totals then β-actin loading control, dots represent 

means ±SEM, n>3, one-way ANOVA, * p <0.05, ** p < 0.01 ***p<0.001. post hoc analysis 

(Bonferroni). 
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 Effect of TNF-α on adiponectin gAd on signalling 

pathways. 

Another way of inducing diabetic conditions is the treatment of CiGEnC with TNF-α, which 

is a component of the inflammatory milieu. Therefore, the effects of TNF-α with or 

without gAd were also evaluated. The dose of TNF-α was chosen according to a study 

previously done within the group [35]. Briefly, CiGEnC were either treated with TNF-α at 

10ng/ml and/or gAd at 2.5µg/ml for 2h. Figure 4.10 represents the Western blots and the 

respective densitometry. As shown in Figure 4.10, TNF-α induction for 2h led to a 

significant decrease in both p-AMPKα and p-ACC.  Adiponectin treatment reversed this 

decrease.  
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Figure 4.10 Adiponectin reversed decreases of phosphorylation of AMPK and ACC in TNF-α 

induced CiGEnC 

A: Representative western blot and densitometry (B and C) demonstrating gAd (2.5μg/ml) effects 

CiGEnC co-treated with or without TNF-α (10ng/ml) for 2h. Data normalised to their respective 

totals then β-actin loading control, bars represent means ±SEM, n= 3, one-way ANOVA, **p<0.01 

***p<0.001. post hoc analysis (Bonferroni).  

 

 AMPK-α subunit is expressed in human and mice 

cortex 

Different subunits of AMPK are expressed differently in tissues. Therefore, I wanted to 

confirm the alpha subunit of AMPK is expressed in human and mice cortex. Figure 4.10A 

shows the phosphorylation of AMPK at alpha subunit in both human and mice kidney 

cortex lysates. Furthermore, we showed that the phosphorylation of AMPK-α is disrupted 
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and decreased in db/db kidney lysates of mice when compared to lean controls (Figure 

4.11B). 

 

Figure 4.11 Expression of p-AMPK-α in human and mice cortex lysates  

A:  Representative western blot demonstrating p-AMPK-α subunit in human and wild type 

mouse cortex. B: Representative western blot showing the expression of p-AMPK-α in 

lean vs db/db mice cortex. C: Densitometry confirmed the decrease in phosphorylation of 

AMPK-α in db/db cortex. Densitometry was performed on 4 representative blots from 

independent repeats (n=4) showing levels of protein of interest normalised to β-actin 

loading control, dots represent means ±SEM, unpaired t test, * ***p<0.001 

 Adiponectin stimulates p-AMPK-α in human and 

mice glomeruli  

Since gAd stimulated signalling pathways in in vitro cultured cells, the next step was to confirm 

the effects in ex vivo sieved glomeruli. Briefly, ex vivo glomeruli were sieved from healthy 
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human and lean mice kidney tissue as described in Chapter 3 section 3.2.2.3. Following that, 

they were incubated with gAd at 2.5μg/ml for the specified time points (0, 0.5, 1 and 2h). 

Western blot analysis revealed that the activation of AMPKα was significantly increased after 

30min in human glomeruli (2-fold) (Figure 4.12A and C). In isolated mice glomeruli, the 

phosphorylation of AMPKα was seen after 30min and peaked at 1h (2-fold) (Figure 4.12B and 

D) 

 

 

 

Figure 4.12 Adiponectin stimulates phosphorylation of  AMPK-α  in human and mice ex vivo 

glomeruli 

A and B:  Representative western blot demonstrating gAd effects at different time points 

(0, 0.5,1 and 2h) in human (A) and mice (B) ex vivo glomeruli on AMPK phosphorylation. 

C and D: Densitometry confirmed the phosphorylation of AMPK in response to gAd at a 

maximum after 0.5h for human and at both 0.5h and 1h for mice for AMPK. Densitometry 
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was performed on 3 representative blots from independent repeats (n=3) showing levels 

of protein of interest normalised to β-actin loading control, dots represent means ±SEM, 

one-way ANOVA, * p <0.05, ** p < 0.01, post hoc analysis (Bonferroni).  

 

 Functional response of gAd on diabetic ex vivo 

glomeruli  

Following AMPKα phosphorylation by gAd in ex vivo control mouse glomeruli, I sought to 

determine whether this is also seen in diabetic glomeruli. As described in the methods, 

db/db mice were culled, and kidneys were harvested. Following that, the glomeruli were 

sieved and then treated with gAd for 1h at 37oC in a water bath. The extraction of protein 

was also done according to the protocol described. Figure 4.13 shows the western blots 

and their respective densitometry.  
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Figure 4.13 Adiponectin stimulates the phosphorylation of AMPK-α in ex vivo db/db glomeruli 

Representative western blot demonstrating gAd at 2.5ug/ml effects after 1 hr in wt/wt (n=4) (A) 

and db/db (n=4) (B) ex vivo glomeruli on AMPK phosphorylation. C and D: Densitometry 

confirmed the phosphorylation of AMPK in response to gAd at a maximum after 1h for wild type 

(ANOVA, * p<0.05) and db/db (ANOVA, **p<0.01). Data normalised to β-actin loading control, 

dots represent means ±SEM, n= 4, one-way ANOVA, * p <0.05, ** p < 0.01, post hoc analysis 

(Bonferroni).  

 

Densitometry shows that the phosphorylation of AMPKα is decreased in diabetic when 

compared to control glomeruli (Figure 4.13C). Furthermore, as shown also previously in 

Figure 4.12, gAd treatment for 1h increased p-AMPKα almost 2-fold in wild type glomeruli 

(Figure 4.13D). Interestingly, this increase of p-AMPKα was magnified up to 8-fold in 

diabetic glomeruli gAd treatment for 1h (Figure 4.13E).  
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4.4 Discussion  

The aims of this chapter were to determine the exogenous effect of gAd on the 

phosphorylation of proteins reported to be involved in adiponectin downstream signalling 

pathways in other cells or tissues. One of the major pathways is the AMPK pathway, a 

major metabolic switch that senses an increase in the ratio of AMP:ATP. This pathway is 

known to be activated by gAd in various tissues as liver, skeletal muscle and also 

cardiomyocytes [103, 173, 178]. This study is the first to have investigated the different 

signalling pathways induced by gAd in CiGEnC. The data shows promising results, in which 

there is an activation of more than one of the major pathways in GEnC in response to gAd. 

Exogenous gAd treatment on CiPod is also shown to activate the AMPK pathway 

suggesting that its effects on renal cells are not GEnC specific. Increased phosphorylation 

of AMPK-α in response to gAd has also been reported previously in conditionally 

immortalized mouse podocytes [113]. Nevertheless, for the purpose of this thesis, 

subsequent work focused on its roles in GEnC only.  

One the downstream molecules of the AMPK pathway, ACC, was also investigated. ACC is 

the rate limiting enzyme in fatty acid synthesis that is inhibited by phosphorylation and 

activated by dephosphorylation[179]. Treatment of gAd in CiGEnC resulted in an 

increased phosphorylation of ACC, hence inhibiting fatty acid synthesis, thereby 

increasing energy expenditure. In contrast, high concentration of insulin in the fed state 

results in low levels of p-ACC [180]. This regulation promotes fatty acid oxidation in the 

fasted state when there are low levels of AMP and inhibits it in the fed state when there 

is enough energy in the form of ATP [179]. 
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In addition to the AMPK pathway, adiponectin can also mediate a signalling cascade 

through the p38 MAPK pathway. It is considered as a major kinase in the MAPK family and 

plays essential roles in regulating inflammation and immune responses [181]. It is also a 

notable phospho-signalling cascade which is regulated by insulin [182]. Therefore, the 

effects of the phospho-protein p38 upon gAd stimulation were studied, even though the 

molecular mechanism underlying adiponectin-stimulated p38 MAPK activation remains 

largely unknown. The p38 MAPK was phosphorylated in CiGEnC when stimulated with 

gAd and the rise was noticeable after only 30min.   

While insulin is an anabolic hormone promoting synthesis of fatty acids, glycogen and use 

of ATP, adiponectin through its major activator AMPK, results in catabolic processes such 

as fatty acid oxidation to increase ATP formation [102]. However, in tissues requiring 

glucose regulation, AMPK and insulin work in increasing glucose uptake through increased 

GLUT4 translocation to the plasma membrane[183]. Studying other signalling pathways 

that may define gAd as an insulin sensitizer might be the answer to the hypothesis 

proposed.  As mentioned before, insulin receptor activation leads to the phosphorylation 

of Akt at Ser 473 through the insulin-Akt pathway [24]. Akt activation is responsible for 

the downstream effect such as increased glucose uptake into the cell. Taking that into 

account, the effects of gAd on the activation of Akt were studied. There was a robust 

phosphorylation of Akt that peaked with a 3-fold rise at 30min. Insulin as well as gAd can 

activate Akt, thereby we can speculate that they both work synergistically to increase 

glucose uptake specifically in CiGEnC.  

Initial reports show that silencing AdipoR1 and/or AdipoR2 abolished any downstream 

signalling in  human glomerular cells [159], rat myocytes [184] and hepatocytes [185]. In 

human GEnC, AMPK activation was decreased when AdipoR1 was silenced by small 
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interfering RNA (siRNA). However, it was restored after treatment with an adiponectin 

receptor agonist (AdipoRon) [159]. Still, it is unknown if AdipoR1 or AdipoR2 or other 

factors are the driver of gAd’s effect on GEnC. Therefore, to further elucidate the 

molecular events involved in CiGEnC by adiponectin through its receptors I knocked down 

AdipoR1 or AdipoR2 by lentiviral transduction. The results showed that knocking down 

AdipoR1 but not AdipoR2 attenuated the gAd-induced AMPK and ACC activation. 

Similarly, these pathways were also reduced in rat myocytes when AdipoR1 was knocked-

out [184]. Furthermore, overexpression of AdipoR1 in C2C12 myocytes was associated 

with increased phosphorylation of AMPK, ACC and p38 MAPK upon stimulation with gAd 

[102]. In contrast to the observed role of AdipoR1 in AMPK activation, other groups 

demonstrated the involvement of AdipoR2 in the activation of AMPK signalling [186]. 

However, we could not observe the same effects in CiGEnC by AdipoR2.Therefore, from 

the results that I have showed, I can suggest that adiponectin actions in CiGEnC are via 

AdipoR1.  

After showing that gAd can activate several signalling pathways in unstimulated CiGEnC 

majorly through AdipoR1, the next step was to determine the role of adiponectin in a 

diseased model to be able to identify adiponectin as a protective marker against diseases. 

Supporting evidence suggests that the AMPK pathway mediates initiation of kidney 

disease induced by chronic high glucose and is considered one of the key molecules to be 

dysregulated during DN [126]. Prior to any major experiments that will be done in an in 

vivo diabetic animal model, it was essential to establish what happens on the intracellular 

level by the different components of diabetes. Therefore, the effects of HG and TNF-α 

were tested separately. Although HG downregulates AMPK activity in renal cells, the 

underlying mechanism is largely unknown. For example, HG environments decreased the 
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phosphorylation of AMPKα in rat glomerular epithelial cells but metformin and AICAR 

reversed this p-AMPKα reduction [126].  In this study, I showed a significant decrease in 

p-AMPKα and p-ACC under HG conditions in CiGEnC. However, gAd treatment restored 

the phosphorylation of AMPK-α and ACC under HG conditions. Decreased AMPK and ACC 

activity is associated with increased synthesis of FA and accumulation of TG in chronic 

kidney disease [187]. Thus, by increasing the phosphorylation of AMPK and ACC, we could 

thereby assume that adiponectin might play a beneficial role in protecting against kidney 

disease. Furthermore, other pathways are also dysregulated in DN. Specifically, high levels 

of p38 MAPK have been reported in diabetic complications such as DN [182]. However, 

the results show that the induction of HG for 48h did not change the levels of p-p38. In 

contrast, a few studies have demonstrated that p38 MAPK is stimulated by HG in different 

cell types such as mesangial cells [188] and  HUVEC [189]. The one noticeable difference 

was the incubation period. For instance, in HUVEC, they were incubated for 72h and 

increase in levels of phosphorylated p38 MAPK protein was seen [189]. Another study 

showed that this increase was shown after 7 days of HG in human mesangial cells but not 

for a shorter time [188]. However, we could not see similar increase in p-p38 in CiGEnC in 

the presence of HG, and this might be partially due to the differences in the timing of 

activation. Moreover, the addition of adiponectin did have a marginal increased effect on 

phosphorylated levels of p38 in the presence of HG with respect to control.  

The PI3K/ Akt signaling pathway plays a main role in controlling cell proliferation, survival 

and motility. Our study shows that HG increased the activation of p-Akt. These results are 

similar to previous studies that showed that HG affects the Akt pathway in other renal 

cells such as mesangial cells [190] and proximal tubular cells [168]. Adding gAd to HG does 

not further increase p-Akt levels. The reasons are still unknown and further investigations 
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are needed to understand adiponectin effect in NG and HG on Akt levels. However, it is 

well documented that adiponectin works as an insulin sensitizer, although maybe not 

directly through its major pathway, the PI3K/Akt pathway. Ongoing experiments will focus 

more on the AMPK pathway as a major pathway for adiponectin signalling but not p38 

MAPK or Akt pathways.  

Other than HG, the model of TNF-α simulation is widely used to mimic the effects of 

inflammation induced stress in diabetes and other diseases [191]. Endothelial cells are 

known to be  extremely sensitive to the effects of pro-inflammatory cytokines such as 

TNF-α [192]. Therefore, treatments for 2h with TNF-α were used as a model to stress 

CiGEnC as suggested by Ramnath et al. [35]. To understand the mechanism of TNF-α with 

gAd, we further explored the AMPK and ACC pathway in CiGEnC. Our results indicated 

that TNF-α treatment reduced AMPK and ACC phosphorylation levels, however, gAd 

attenuated the inhibitory effects of TNF-α on their phosphorylation levels. A decrease or 

inhibition of the phosphorylation of AMPK in the presence of TNF-α  has been also shown 

in different cell lines including human fibroblasts, [193] adipocytes [194], C2C12 

myoblasts [195] and HUVEC [196]. But no further explorations were done in these studies. 

Therefore, this study is the first to demonstrate that gAd attenuates the TNF-α-induced 

effect on AMPK signalling pathway in CiGEnC. Demonstrating that adiponectin can protect 

GEnC from external stimuli at the molecular level might help finding new methods in the 

treatment of diabetic nephropathy.  

At this stage in the project, to further demonstrate or understand gAd mode of action, I 

performed ex-vivo experiments using isolated healthy human and mouse glomeruli. 

These were then treated with gAd as described. It showed that gAd exerts its effects on 

p-AMPK-α after 30min in human and mice glomeruli. However, it increased further in 
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mice glomeruli after 1h. It is noteworthy to mention that gAd also activated p-AMPKα in 

isolated rat glomeruli after 1h of incubation and this action was directly mediated through  

AdipoR1 [103].  

Similarly, diabetic ex vivo glomeruli were treated with gAd to assess the we AMPK 

pathway. The db/db mice are hyperglycaemic and insulin-resistant, hence glucose levels 

are already abundant. The results showed a downregulation of phosphorylation of 

AMPKα in the db/db glomeruli when compared to controls. However, when replenished 

with gAd, there was a robust increase in p-AMPK-α. Activation of AMPK in DN models has 

proven beneficial by different drugs such as the anti-diabetic drug,  metformin, which 

activated AMPK [197]. Hence, the phosphorylation of renal AMPK by gAd could be an 

encouraging and reliable approach to treat and manage DN. A few reports show that renal 

AMPK phosphorylation is reduced in db/db mice [126, 165]. The signals that alter the 

activity of AMPK in a diabetic kidney are still unknown, but this might include changes in 

the AMP:ATP ratios.  

4.5 Conclusion  

In conclusion, gAd can exert its effects positively on CiGEnC via the AMPK pathway 

through one of its major receptors, AdipoR1. Moreover, this pathway was inhibited in 

diabetic conditions, such as HG or TNF-α-induced conditions. Additionally, gAd reversed 

this reduction in AMPK and ACC phosphorylation.  

Having established how gAd exerts its effects on CiGEnC, the last aim of this project is to 

understand gAd extended effects on the endothelial glycocalyx while in a disease state. 

This will be discussed in the last results chapter.  
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Chapter 5 Adiponectin can modify CiGEnC 

glycocalyx Components  

5.1 Introduction 

The previous chapter focused on the signalling pathways that are activated by adiponectin 

through its receptors in GEnC and in ex vivo isolated glomeruli. The results from chapters 

3 and 4 demonstrated that TNF-α and HG treatments (components of the diabetic milieu) 

reduced adiponectin receptor availability and dysregulated the AMPK and ACC pathway. 

These changes were attenuated by gAd treatment. This led to the question as to whether 

adiponectin could implement its effects on albuminuria in part by modulating the 

glomerular endothelial glycocalyx through regulation of components known to be altered 

by HG [177] and TNF-α [198], in diabetes. Under normal conditions the GFB, which 

consists of GEnC and its glycocalyx, GBM and podocytes, prevents the passage of albumin 

into the urine [199]. However, it is known that diabetes causes disruption to all 

components of the filtration barrier, but GEnC and glycocalyx dysfunction are particularly 

implicated in the early phases [200]. This leads to albuminuria, a measure of kidney 

damage. To date, there are no studies of the actions of adiponectin on the glomerular 

endothelial glycocalyx. However, there is evidence that adiponectin may have effects on 

this structure. Sharma et al. demonstrated that knockout of adiponectin in mice caused 

albuminuria [113]. Secondly, albuminuria was reduced in diabetic rats overexpressing 

adiponectin in comparison to wild type diabetic rats [139]. These findings imply that 

adiponectin may regulate GFB and, due to the importance of the endothelial glycocalyx 

in regulating albuminuria, it is crucial to determine whether adiponectin affects this 

structure.   
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Modification of the glycocalyx is an attractive therapeutic target for treatment of several 

types of vascular diseases.  In fact, the restoration of the glycocalyx has been achieved 

and shown to be  effective in the myocardial vascular endothelium by hydrocortisone 

[67], and blood vessels by metformin [197]. More importantly for this study, it has been 

demonstrated by our group that the glycocalyx can be also restored in GEnC by VEGFA165b 

[43], VEGFC [156] and by Ang-1 [148]. In this chapter, adiponectin was tested in vitro, to 

assess whether its mechanism of action (the restorative effect) was through the 

glycocalyx.  

The degradation of the glycocalyx leads to releasing of its components into the plasma. 

Several components mediate this disruption in inflammatory states such as TNF-α [35] 

and salt and aldosterone [61] and has proven to be a very useful model for studying the 

regulation of this structure in vitro. For example, the increase in TNF- leads to the 

activation of MMPs that are known to cleave proteoglycans directly from the endothelial 

membrane. Therefore, this model allows for the study of the shedding of glycocalyx 

components such as GAG and proteoglycans as previously demonstrated by our group 

[35, 61]. As mentioned in the main introduction, GAG predominantly comprise the 

sulphated HS, CS, DS and KS, and also non-sulphated HA. Examples of proteoglycans are 

glypicans and syndecans. Syndecans, specifically, are of great interest due to their crucial 

role in development, cell proliferation and differentiation and wound healing [201]. The 

ectodomain of syndecans is constantly shed in cultured cells as a result of normal 

turnover. However, shedding is increased in pathophysiological conditions [201]. Hence 

syndecan shedding may be used as an index of glycocalyx dysfunction. Of the 4 main 

syndecans, SDC1 and SDC4 are prominent in the glomerulus. Using a custom designed 

TLDA, which enabled analysis of various glycocalyx components and regulatory enzymes, 
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our group has identified that SDC4 was mostly highly expressed in CiGEnC and freshly 

isolated human GEnC [35]. It was also shown to be the most significant syndecan altered 

by an external stimulus (TNF-α) suggesting a particular relationship between them [35]. 

The process of shedding itself is highly regulated and involves the direct action of enzymes 

which are members of the MMP family and commonly described as sheddases [201]. 

Preliminary data has suggested that of the MMPs, that differ widely in structure and 

function, MMP2 and MMP9 play an important role in the response to TNF-α [201]. MMP 

activity is hard to detect in healthy subjects but not in pathophysiological conditions such 

as wound healing [201]. Therefore, GAGs, SDC4 and MMP2/9 were measured to assess 

glycocalyx damage and whether this can be repaired by adiponectin. 

 

The aim of this chapter is to delineate the role of adiponectin as a modifier of the 

endothelial glycocalyx in GEnC by 

a-  showing that adiponectin protects from TNF-α-induced, MMP-mediated damage of 

glycocalyx SDC4, in CiGEnC 

b-  translating the work done in cultured cells to ex-vivo glomeruli in a db/db mouse 

model. 

 

 



 

160 
 

5.2  Methods 

 qPCR validation of primers 

Primers for SDC4, TNF-α, MMP2 and MMP9 were validated as explained in Chapter 3, 

section 3.2.1. Figure 5.1 shows the standard curves for these genes. They all show a good 

fit into the line with an R2 between 0.90 and 1.10. This confirms that all the primers were 

validated and are specific for the gene of interest. 

 Alcian blue assay 

An Alcian blue colorimetric assay was used to quantify the number of sulphated GAG shed 

into the cultured media from the surface of CiGEnC. The dye used is a tetracationic 

structure that carries isothiouronium groups (positively charged) that bind to the sulphate 

groups (negatively charged) present on GAG side chains.  Briefly, the cells were grown to 

confluency and then thermoswitched for 3-5 days. The media was then changed to SFM 

for a minimum of 2h. TNF-α (10ng/ml) was applied to the cells for 1 or 2h (as for previously 

optimised laboratory protocols). The media was then harvested and centrifuged at 800g 

for 3min to remove cellular debris. The supernatant was added to a freshly prepared 

solution of 0.4% Alcian blue (Sigma-Aldrich, A5268) in 0.5M sodium acetate (Sigma-

Aldrich, S2889), 30mM magnesium chloride hexahydrate (Sigma-Aldrich, m2670) and 

2.8% of sulphuric acid (Sigma-Aldrich, 339741). The acidity (pH~2) minimises interference 

from non-glycosaminoglycan molecules. Absorbance at 490nm was measured after 

15min incubation. The formation of complexes between GAGs in the cell supernatant and 

Alcian blue causes a reduction in absorbance. The linear relation between GAG mass and 

decreased absorption of 490nm by Alcian blue solution was used to quantify supernatant 

GAG content, referenced to known concentrations (0 to 500µg/ml) of CS (considered as a 
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main GAG) standards (chondroitin sulphate sodium salt from shark cartilage, C4384-1G 

Sigma-Aldrich). 

 TNF-α, HG and gAd stimulation 

CiGEnC were treated with TNF-α or HG as previously described (10ng/ml and 25mM 

respectively) [35, 177]. A time course of TNF-α was done with times 1, 2, 4 and 24h. As 

for HG, the time points were 2,7 and 14D.  SFM was used for the TNF-α treatments in the 

short-term exposure, while full media was used for HG treatments due to longer time 

points. To examine the effect of gAd in TNF-α environment, a co-treatment group is 

suggested in which TNF-α at 10ng/ml and gAd at 2.5µg/ml are premixed in SFM first then 

added to the cells.  

 Wild type, lean and diabetic mouse source 

The batch of mice in Chapter 3 section 3.2.2.2 (lean and db/db), was used in the section 

5.3.2 for various mRNA gene expression. Whilst the wild type mice from section 2.9.3 was 

used as littermate controls for the db/db glomeruli whenever applicable. 

5.2.4.1 Adipocyte RNA Extraction 

As mentioned in Chapter 2 section 2.9.4, the adipose tissue was also harvested from both 

wild type and db/db mice and RNA was extracted according to the protocol outline in 

section 2.9.4.2 

5.2.4.2 Ex-vivo glomeruli treatments 

After glomeruli were sieved from db/db and wt/wt mice as mentioned in Chapter 3 

section 3.2.2.3, they were treated with gAd at 2.5µg/ml (in SFM) for 2h in a water bath at 
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37oC and subsequently RNA and protein were extracted as detailed in Chapter 3 sections 

3.2.3 and 3.2.4. 

 

Figure 5.1 Standard curve of PCR amplification efficiency for certain human and mice primers 

The initial cDNA concentration (1µg) was used and then serial dilutions of 1in 10 were performed. 

Standard curves were plotted as CT values vs. log of cDNA. R2 is the correlation coefficient that 

define the fitness of the curves (0.90-1.10 is considered a best fit). y is the formula of the line in 

the form of y=ax+b 
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  MMP2 and MMP9 knockdown in CiGEnC 

The knockdown of MMP2 and MMP9 was carried in the same way as AdipoR1/AdipoR2, 

as detailed in Chapter 4 section 4.2 

5.3 Results 

 Adiponectin and TNF-α mRNA expression in db/db 

mice 

In diabetes, there is an imbalance in the production of pro-inflammatory and anti-

inflammatory molecules, due to excess levels of glucose [68]. Therefore, to understand 

the relationship between adipokines in diabetes, the mRNA levels of adiponectin (an anti-

inflammatory adipokine) and TNF-α (a pro-inflammatory adipokine) were measured in 

the adipocytes of diabetic mice. Figure 5.2A showed that adiponectin mRNA was 

downregulated significantly in adipocytes of db/db mice. In contrast, TNF-α mRNA was 

significantly upregulated (4-fold). Therefore, this suggests that in diabetes the levels of 

these 2 adipokines are inversely proportional to one another.  
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Figure 5.2 Adiponectin but not TNF-α mRNA is downregulated in adipocytes of db/db mice 

qPCR analysis showing the mRNA expression of adiponectin is decreased (A), while mRNA 

expression of TNF-α (B) is increased in db/db adipocytes. Data are plotted as the mean 2-(ΔΔCT) of 

each triplicate with mean. GAPDH used as the loading control. n=4, unpaired t test, *p<0.05, 

**p<0.01 

 

 Gene expression in db/db mouse renal cortex  

In order to confirm that there is a dysfunctional glycocalyx in diabetes, several genes 

known to be important in regulating the glycocalyx were measured. Figure 5.3 shows that 

the mRNA expression of TNF-α, SDC4, MMP2 and MMP9 mRNA were all increased in the 

kidney cortex of db/db mice when compared to lean controls. 
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Figure 5.3 Messenger RNA expression of glycocalyx-related genes is upregulated in cortex tissue 

of db/db mice 

qPCR analysis showing the mRNA expression of TNF-α (A), SDC4 (B), MMP2 (C) and MMP9 (D) 

are increased in cortex tissue of db/db mice. Data are plotted as the mean 2-(ΔΔCT) of each triplicate 

with mean. GAPDH used as the loading control. n=5, unpaired t test, ***p<0.001 

 Gene expression associated with glycocalyx 

dysfunction in db/db mouse glomeruli 

Similarly, the expression of the genes mentioned above were also measured in sieved 

glomeruli from db/db mice. The results were comparable to those seen in the cortex; 

Figure 5.4 shows the mRNA expression of TNF-α, SDC4, MMP2 and MMP9 mRNA were all 
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upregulated in the glomeruli of db/db mice when compared to wild type controls. This 

suggests that the glomeruli expressing high levels of MMP2 and MMP9 also expressed 

high levels of glomerular SDC4 mRNA. These data would be consistent with the possibility 

that SDC4 mRNA upregulation is a consequence of increased MMPs. 

 

Figure 5.4 Messenger RNA expression of glycocalyx-related genes is upregulated in glomeruli 

of db/db mice 

qPCR analysis showing the mRNA expression of TNF-α (A), SDC4 (B), MMP2 (C) and MMP9 (D) 

are increased in glomeruli of db/db mice. Data are plotted as the mean 2-(ΔΔCT) of each triplicate 

with mean. GAPDH used as the loading control. n=4, unpaired t test, ***p<0.001 
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 TNF-α but not HG upregulates SDC4 mRNA 

expression 

After demonstrating the upregulation of the genes associated with glycocalyx dysfunction 

in a diabetic animal model, the components of a diabetic milieu were then tested 

separately in cultured cells.  Hence, the effect of TNF-α and HG on the mRNA expression 

of SDC4 was investigated using qPCR. TNF-α significantly increased the mRNA for 

proteoglycan SDC4 after just 1h by 2-fold. It was increased 3-fold by 2h and 4h). By 24h, 

SDC4 mRNA levels returned towards baseline (Figure 5.5A). In contrast, HG did not 

significantly change the mRNA levels of SDC4 at any of the time points tested although 

there was a trend towards an increase over time (Figure 5.5B). 

 

Figure 5.5 TNF-α but not HG increased SDC4 mRNA expression in CiGEnC 

A: qPCR analysis of time-course for TNF-α showing an increase in SDC4 mRNA levels after 1,2, 4 

and 24h. B: qPCR analysis of time-course for HG (25mM) showing no changes in SDC4 mRNA 

levels. Data are plotted as the mean 2-(ΔΔCT) of each triplicate with mean. GAPDH used as the 

housekeeping gene control. One-way ANOVA, *p<0.05, ** p<0.01, ***p <0.001 post hoc analysis 

(Bonferroni). 
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 TNF-α but not HG upregulates MMP2 and MMP9 

mRNA expression 

Having established that a key component of the glycocalyx (SDC4) was upregulated in 

response to TNF-α exposure, I next investigated potential mechanisms of glycocalyx loss. 

We have previously shown that MMP2 and MMP9 cause the shedding of SDC4 by cleaving 

the ectodomain near the cell surface [201]. TNF-α treatment at 10ng/ml for 2h and 4h 

significantly upregulated MMP2 mRNA by 2.9-fold (Figure 5.6A). MMP9 mRNA levels were 

also upregulated at 2h by 2-fold and 4h by 2.7-fold (***p<0.001).  Similar to the results 

for SDC4, HG did not change the expression of MMP2 and MMP9 even after 14 days of 

HG treatment (Figure 5.6C and D). Therefore, the HG experiments were discontinued and 

only further TNF-α treatments were conducted. 
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Figure 5.6 TNF-α but not HG increased MMP2 and MMP9 MRNA expression in CiGEnC 

A and C: MMP2 (A) and MMP9 (C) mRNA is increased after 2h and 4h exposure to TNF-α. B and 

D:  MMP2 (B) and MMP9 (D) mRNA is not changed during long exposure to HG. Data are plotted 

as the mean 2-(ΔΔCT) of each triplicate with mean. GAPDH used as the housekeeping gene control. 

One-way ANOVA, *p<0.05, ** p<0.01, *** p <0.001 post hoc analysis (Bonferroni). 
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 Alcian blue colorimetric binding assay: protocol 

optimization 

It has been previously demonstrated by our group that human CiGEnC express an 

endothelial glycocalyx that contributes to barrier properties [30, 40]. To investigate 

whether TNF-α treatment induces the shedding of glycocalyx GAG, an Alcian blue 

colorimetric assay was used. First, a standard curve with known CS concentration was 

carried out (figure 5.7A).  
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Figure 5.7 Alcian Blue Assay: Standard curves and GAG concentration measurement in TNF-α 

treatments in CiGEnC 

A: Standard curve of Chondroitin Sulfate (CS). Serial dilutions from 0ug/ml- 500ug/ml. This is 

acquired using the Alcian blue assay B: Supernatant GAG concentration of TNF-α treated CiGEnC 

for 1h and 2h (***p<0.001) (unpaired t test, ***p<0.001, n=4). GAG concentration derived from 

the CS standard curve by extrapolation. 

 

Concentrations ranging from 0-500µg/ml was achieved by serial dilutions of the highest 
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38.73±2.911μg/ml and became significantly higher with 2h TNF-α to 75.83±6.081μg/ml 

(Figure 5.7B). This shows an increase of GAG shedding into the media after 2h of TNF-α 

application.  

 Adiponectin decreases shedding of GAG in CiGEnC 

The protective effect of gAd treatment on the release of GAG from the surface of CiGEnC 

was then examined. Co-treatment of TNF-α with gAd for 2h resulted in a significant 

decrease in the TNF-α induced shedding (36.04±3.083μg/ml compared to TNF-α only 

treated cells (85.54±9.985μg/ml)) (figure 5.8). 

 

Figure 5.8 Adiponectin decreased GAG shedding after TNF-α treatments 

Supernatant GAG concentration of TNF-α treated CiGEnC with or without the effect of gAd for 2h.  

One-way ANOVA, ***p < 0.001, post hoc analysis (Bonferroni), n=4. 
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 Adiponectin decreases SDC4 mRNA and protein in 

TNF-α induced CiGEnC 

After verifying that TNF-α treatments increased SDC4 mRNA, the co-treatment of gAd 

with TNF-α was applied to determine the effect of gAd on SDC4 mRNA. After 1h, the 

increase in SDC4 (2-fold) with TNF-α was not reduced significantly by gAd (1.8-fold) 

(Figure 5.9A). However, after 2h, the increase in SDC4 mRNA with TNF-α (2.5-fold) was 

significantly reduced when TNF-α was co-treated with gAd (1.3-fold) (Figure 5.9B). It is 

worth mentioning that gAd treatment alone did not alter the SDC4 mRNA expression. 

Similarly, the expression of SDC4 was evaluated by Western blot under different 

conditions. There was an increase in SDC4 expression with TNF-α within 1h and 2h (Figure 

5.9A and B). However, this increase was only reduced when gAd was co-treated with TNF-

α for 2h and not 1h (Figure 5.9B). Likewise, gAd did not change the SDC4 surface 

expression on its own for either 1h or 2h. 
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Figure 5.9 Adiponectin restored SDC4 mRNA and protein expression after TNF-α treatments in 

CiGEnC  

A and B: qPCR analysis of SDC4 mRNA levels in CiGEnC treated with TNF-α and/or gAd for 1h (A) 

and 2h (B). Data are plotted as the mean 2-(ΔΔCT) of each triplicate with mean. GAPDH used as the 

housekeeping gene control. C and D: Representative western blot analysis of SDC4 protein levels 

in CiGEnC treated with TNF-α and/or gAd for 1h (C) and 2h (D). SDC4 has 2 bands; glycosylated 

form: 37kDa and unglycosylated form: 22kDa. Western blot analysis was done on the two bands. 

E and F: Densitometry was performed on 3 representative blots from 3 independent repeats (n=3) 

showing levels of protein of interest normalised to β-actin loading control. Data represent means 

±SEM, one-way ANOVA, *p<0.05 ** p <0.01 *** p < 0.001. post hoc analysis (Bonferroni). 
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 Adiponectin decreases SDC4 mRNA in db/db 

isolated glomeruli 

To confirm the physiological relevance of the results above, in a diabetic animal model, 

ex-vivo glomeruli from wt/wt and db/db mice were isolated as explained in the materials 

and methods. In the untreated db/db glomeruli there was an increase in SDC4 (3.5-fold). 

However, in the gAd treated db/db glomeruli, the increase in SDC4 mRNA was significantly 

reduced (1.5-fold) (Figure 5.10). Treatment of gAd on wt/wt glomeruli did not alter SDC4 

mRNA expression. 

 

Figure 5.10 Adiponectin restores SDC4 mRNA expression in db/db glomeruli  

qPCR analysis of SDC4 mRNA in ex-vivo sieved glomeruli in db/db mice treated with gAd for 2h. 

The db/db group with gAd showed less SDC4 expression than without gAd. Data are plotted as 

the mean 2-(ΔΔCT) of each triplicate with mean. GAPDH used as the housekeeping gene control. 

One-way ANOVA, n=4 **p<0.01, ** p < 0.001, post hoc analysis (Bonferroni). 
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 Adiponectin protects from TNF-α induced MMP2 

and MMP9 mRNA upregulation in CiGEnC 

It was shown earlier that MMP2 and MMP9 were upregulated in diabetic glomeruli and 

in TNF-α treated CiGEnC. To investigate whether gAd reduced the expression of these 

mediators, qPCR was carried out.  The increase of MMP2 mRNA caused by TNF-α was 

ameliorated when gAd was co-treated with TNF-α (Figure 5.11A). In contrast, the increase 

in MMP9 mRNA by TNF-α was not significantly affected by gAd as seen in Figure 5.11B.  

 

Figure 5.11 Adiponectin restored MMP2 but not MMP9 mRNA expression after TNF-α 

treatments 

A and B: qPCR analysis of MMP2 (A) and MMP9 (B) mRNA levels in CiGEnC treated with TNF-α 

and/or gAd. Data are plotted as the mean 2-(ΔΔCT) of each triplicate with mean. GAPDH used as the 

housekeeping gene control. One-way ANOVA, *p<0.05, ** p < 0.01, *** p <0.001 post hoc analysis 

(Bonferroni). 
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First, I attempted to knockdown MMP9 gene in CiGEnC. Unfortunately, the knockdown 

itself was not successful. As seen in Figure 5.12, the 2 constructs remained unchanged 

compared to the scrambled control.  

 

Figure 5.12 Knockdown analysis of MMP9 in CiGEnC 

qPCR data analysis showing insignificant KD of MMP9 in CiGEnC using 2 different shRNA 

constructs. Data are plotted as the mean 2-(ΔΔCT) of each triplicate with mean. GAPDH used as the 

housekeeping gene control. one-way ANOVA, ns p>0.05 post hoc analysis (Bonferroni). 
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Figure 5.13 Knockdown of MMP2 in CiGEnC is confirmed at mRNA and protein levels 

A: qPCR data analysis highlighting the decreased expression of MMP2 mRNA in CiGEnC using 3 

different shRNA constructs. Data are plotted as the mean 2-(ΔΔCT) of each triplicate with mean. 

GAPDH used as the housekeeping gene control. One-way ANOVA, *** p <0.001 post hoc analysis 

(Bonferroni). B: Representative western blot demonstrating the knockdown extent of MMP2 in 

all shRNA constructs D: Densitometry for MMP2 was calculated for the two bands and showed 

significant knockdown of MMP2 protein expression. Data normalised to β-actin loading control, 

dots represent means ±SEM, one-way ANOVA, *** p < 0.001. post hoc analysis (Bonferroni) 
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 Effect of TNF-α on MMP2 and SDC4 mRNA 

expression in MMP2 knockdown CiGEnC 

To confirm that the activity of MMP2 caused SDC4 shedding following TNF-α exposure, 

mRNA expression of SDC4 was repeated in the MMP2 knockdown CiGEnC. Scrambled 

control and knockdown were treated with TNF-α for 2h and MMP2 and SDC4 mRNA were 

analysed. Figure 5.14A showed that as expected, the MMP2 mRNA expression was 

reduced by 60% in TNF-α stimulated MMP2 knockdown CiGEnC. Interestingly SDC4 levels 

were significantly reduced by 50% in both MMP2 knockdown unstimulated and TNF-α 

stimulated CiGEnC. This suggests that the actions of TNF-α on SDC4 are MMP2 dependent 

(Figure 5.14B). However, there might be other MMPs involved in this process. 
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Figure 5.14 TNF-α effect on MMP2 and SDC4 mRNA expression in MMP2 knockdown CiGEnC 

A: qPCR data analysis highlighting the decreased expression of MMP2 mRNA in unstimulated and 

in TNF-α stimulated cells in MMP2 knockdown. B: SDC4 mRNA is decreased in unstimulated cells 

and in TNF-α stimulated cells. Data are plotted as the mean 2-(ΔΔCT) of each triplicate with mean. 

GAPDH used as the housekeeping gene control.  n=3, unpaired t test, * p< 0.05, ** p < 0.01, 

***p<0.001  
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 Adiponectin did not attenuate SDC4 mRNA 

expression in TNF-α induced MMP2 knockdown CiGEnC 

After establishing that SDC4 mRNA levels were reduced by TNF-α and MMP2, the 

protective effect of gAd was examined in MMP2 knockdown CiGEnC. As seen in Figure 

5.15, even though there was still a residual effect of TNF-α on SDC4 levels in MMP2 

knockdown, it was not altered by adiponectin suggesting there may be other mechanisms 

involved other than MMP2. 

 

Figure 5.15 Adiponectin did not attenuate SDC4 mRNA expression in TNF-α induced MMP2 

knockdown CiGEnC   

qPCR analysis of SDC4 mRNA levels in MMP2 KD treated with TNF-α and/or gAd. MMP2 KD cells 

exhibited less SDC4 mRNA expression.  Data are plotted as the mean 2-(ΔΔCT) of each triplicate with 

mean. GAPDH used as the housekeeping gene control. One-way ANOVA, ** p < 0.01, *** p <0.001 

post hoc analysis (Bonferroni) 
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5.4 Discussion 

As explained in the main introduction, the over-secretion of pro-inflammatory adipokines 

(such as TNF-α,) and hyposecretion of anti-inflammatory adipokines (adiponectin, leptin) 

may be a major mechanism involved in lifestyle-related diseases, including T2DM, 

hypertension and atherosclerosis [68]. In fact, studies have shown less adiponectin 

plasma levels in obese [158] and diabetes type 2 human subjects [151] and in a diabetic 

animal model (db/db mice) [202]. As expected, our results showed a similar pattern; 

adiponectin mRNA expression was downregulated in db/db adipocytes. TNF-α has been 

shown to be dysregulated and linked to type 2 diabetes [78, 198]. It has also been shown 

to be an indicator of endothelial dysfunction and an upregulation was observed in db/db 

mice hearts, suggesting coronary endothelial dysfunction [198, 203]. Similarly, we 

showed that TNF-α mRNA was increased in db/db adipocytes as well as in the glomerulus. 

TNF-α-induced expression of adhesion molecules has been shown to be attenuated by 

adiponectin treatment in human aortic endothelial cells (HAECs) [74].  

Both adiponectin and TNF-α are affected in diabetes. Analysis of qPCR data confirmed the 

alteration of glomerular gene expression in db/db mice. This work was performed using 

RNA because a much smaller quantity of sieved glomeruli is needed compared to protein 

extraction. However, measuring RNA has obvious limitations and so discoveries should be 

validated at the protein level. The genes that I have studied are key components of the 

glycocalyx, specifically SDC4. In db/db kidney lysates and sieved glomeruli, SDC4 mRNA 

levels were shown to be increased up to 8-fold and 4-fold respectively. Similarly, SDC4 

mRNA levels were increased in cardiomyocytes of diabetes-induced rats [204]. According 

to the literature, there are some candidate sheddases for SDC4 shedding, including MMP2 
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and MMP9 and several of the ADAM family [201]. The gene expression changes that I 

have shown suggest that the increases in MMP2 and MMP9 may contribute to the 

glomerular SDC4 mRNA upregulation. Likewise, the in vivo results were similar to the work 

done in cultured GEnC; Similarly, I also found that SDC4, MMP2 and MMP9 mRNA are 

increased in response to TNF-α treatments (one of the components in a diabetic 

environment). This observation was based on earlier work done by Ramnath et al. had 

suggested that SDC4 mRNA in CiGEnC was increased by TNF-α and it is mediated by 

MMP9. This translates to a role of SDC4 in glycocalyx integrity. Similar results were 

observed in cardiomyocytes [205], smooth muscles [206] and HUVEC [207] where an 

upregulation of SDC4 mRNA levels was seen in response to TNF-α. Hyperglycemic 

conditions, on the other hand, had no effect on SDC4, MMP2 and MMP9 mRNA. This was 

also validated in a similar study in GEnC where SDC4 levels remain unaffected in high 

glucose conditions [208]. However, further studies are needed to verify the link between 

shedding of proteoglycans and diabetes. 

An important role of the glycocalyx is to preserve the endothelial function as 

demonstrated by a number of studies on enzymes in vitro [40] and in vivo [209]. Other 

than SDC4, we also know that GAG are a part of glycocalyx components. Several papers 

published by our group have underlined the importance of the integrity of the glycocalyx 

and how shedding of SDC4 and GAG can affect this function. For example, it has been 

demonstrated that enzymatic removal of GAG increased macromolecular passage in 

CiGEnC measured using trans epithelial electrical resistance (TEER) [40]. GAG can be shed 

in response to different stimuli such as reactive oxygen species (ROS) [30], TNF-α [35, 53] 

and hyperglycemia [177].  In fact, as demonstrated by Padberg et al. the endothelial 

glycocalyx damage during CKD is mainly associated to shedding of glycocalyx components 
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[210]. The effect of TNF-α in CiGEnC in vitro has been demonstrated by Ramnath et al. 

showing that TNF-α increased GAG release in the media [35]. In this study, I confirmed 

that sulphated GAGs are shed in response to TNF-α. This was a time-dependent effect 

(after 2h but not 1h). One of the limitations using the Alcian blue assay is that the 

treatments must be done in SFM because the complete medium contains GAG which 

masks the effect of our treatments. For this reason, no higher time points were done 

except 1h and 2h which showed significant changes in SDC4 levels. The absence of serum 

in the media can cause the cells to behave in a different way; therefore, GAG shedding 

might be altered. Therefore, due to the long exposure of HG to the cells, SFM conditions 

were not achieved and GAG release was not measured in the HG conditions. However, it 

has been proven by Singh et al. that a decreased synthesis of GAG and increased 

permeability was a result of high glucose conditions in CiGEnC [177].   

Given that glycocalyx components are being released and genes being dysregulated, I 

thought adiponectin could be a candidate for modification and even restoration strategies 

of the glycocalyx in the future. The effect of adiponectin was first investigated to see if it 

can inhibit the release of sulphated GAGs caused by TNF-α in the media to protect the 

glycocalyx. The result was promising; gAd attenuated the release of GAG in the medium 

induced by TNF-α. This is the first time that gAd has been shown to inhibit the release of 

GAG caused by an external stimulus. Secondly, adiponectin treatments attenuated the 

increase in SDC4 mRNA and protein levels in response to TNF-α in CiGEnC and in ex-vivo 

db/db mice glomeruli. Therefore, I have shown that gAd had a beneficial effect on GEnC 

in decreasing SDC4 level during stressful conditions induced by TNF-α and in db/db 

glomeruli. However, the mechanism of action of adiponectin in inhibiting the release of 

GAGs or decreasing SDC4 levels is yet unclear. The fact that adiponectin can protect the 
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glycocalyx may provide an explanation for its ability to decrease albuminuria in diabetes 

[137, 211] 

 Since MMPs control SDC4 levels, I also decided to check adiponectin effects on MMPs 

mRNA expression in TNF-α stimulated cells. So far, little is known about the direct effect 

of adiponectin on MMP in disease states. However, it is known that gelatinases (MMP2 

and MMP9) in general, are highly expressed in fatty regions and atherosclerotic plaques 

compared to normal regions of the vessel [212]. Furthermore, it was shown that women 

with metabolic syndrome (MS) had increased activity of circulating MMP2 accompanied 

with lower levels of adiponectin [58].  Hence, an inverse relationship between adiponectin 

and MMPs might exist and it would be possible to make interventions to avoid future 

complications. Therefore, we investigated how increases in MMPs levels in an 

inflammatory state (TNF-α) can be reduced in GEnC by adiponectin. Indeed, gAd was 

shown to be effective by reducing MMP2 levels but not MMP9. In hyperlipidemia 

subjects, adiponectin also resulted in decreased MMP2 and MMP9 activity [213]. To date, 

MMP2 and adiponectin has never been correlated in kidney diseases. Therefore, our 

study would be the first to correlate MMP2/9 and adiponectin in TNF-α induced GEnC. To 

further increase the knowledge about the MMP2/9 complex with adiponectin, 

knockdown of MMP2 was carried out using shRNA. Firstly, successfully silencing the 

MMP2 gene, I was able to show that SDC4 mRNA was regulated by MMP2 levels in which 

SDC4 shedding was mediated by MMP2. Secondly, the results showed that gAd had no 

effect on TNF-α induced shedding of SDC4 in MMP2 knockdown CiGEnC. This did not 

exclude a role for MMP9 in the actions of TNF-α on SDC4 mRNA effect, or in fact other 

MMPs in the increase in SDC4 mRNA. Finally, the question about the effect of gAd 

treatment on SDC4 levels in MMP2 knockdown was not fully addressed. The next stage 

https://www.sciencedirect.com/topics/medicine-and-dentistry/gelatinase
https://www.sciencedirect.com/topics/medicine-and-dentistry/fatty-streak
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will be to investigate MMP2 protein levels and activity in the absence or presence of both 

TNF-α and adiponectin.  

5.5 Conclusion 

In this results chapter, I wanted to pinpoint that modifying the glycocalyx by adiponectin 

would be a critical step in altering disease states. I saw changes in important genes in a 

diabetic animal model. I was then able to use cell culture (CiGEnC) models and show that 

increases in the genes were only mirrored by TNF-α but not by HG. Furthermore, 

adiponectin blocked the rises of gene expression in isolated db/db glomeruli as well as 

the TNF-α effects in CiGEnC. Finally, MMPs might be involved in this pathway but I need 

to ensure this by attempting more experiments addressing the MMP involvement in the 

SDC4 shedding, such as measuring their activity and their protein expression. Therefore, 

adiponectin can be considered as a tool in changing the constituents of components of 

the glycocalyx. However, it was not enough to label adiponectin as marker for albuminuria 

due to incomplete data and a future work (discussed in the last chapter) should be done 

in order to support these findings.  
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Chapter 6 Overall Discussion and Conclusions 

6.1 Achievement of objectives 

The role of adipocytes as an endocrine organ that secretes several adipokines, specifically 

adiponectin, has become of increasing interest over the past two decades in the race to 

discover new therapeutic targets for diabetes and metabolic syndrome [75]. Adiponectin 

has important metabolic effects on glucose and lipid metabolism, both directly, in an 

tissue-specific manner, or indirectly, by  amelioration of insulin sensitivity [214]. 

There is increasing evidence for adiponectin being renoprotective and so understanding 

the mechanism of action of this adipokine in the kidney may lead to new therapeutic 

strategies for the treatment of DN. The main aim of this project was to determine whether 

adiponectin acts on GEnC and whether it can protect the glycocalyx against inflammatory 

mediators implicated in diabetes.  

Data from this thesis provides strong evidence that adiponectin contributes to GFB 

maintenance through direct actions on GEnC and its glycocalyx in experimental diabetes. 

6.2 Summary of aims of chapter 3 

The main aim of chapter 3 was to determine the levels of components of the adiponectin 

system in GEnC under normal and experimental diabetes conditions.  

In summary the results showed that adiponectin is not secreted by either GEnC or 

podocytes under normal conditions (Table 5). However, adiponectin receptors are 

present on GEnC and podocytes and their expression are altered in diabetic conditions. 

Importantly, mRNA expression of AdipoR1 and AdipoR2 in CiGEnC was significantly 
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decreased under hyperglycemic conditions as summarized in Table 6. Similarly, renal 

cortex expression was also decreased in a type 2 diabetic animal model (db/db). The 

presence of AdipoR1 and AdipoR2 on GEnC and the fact that their levels are altered by 

high glucose suggests that adiponectin and its’ receptors may be involved in DN. Also, the 

low expression of adiponectin in the db/db mice confirms other studies; 

hypoadiponectinemia exists in obesity and diabetes [87, 142].  

After establishing that expression levels of the adiponectin receptors were altered in 

diabetes, it was then important to understand how adiponectin exerts its actions in 

cultured and in vivo GEnC by initiation of different signalling pathways through these 

receptors. 

 

Table 5 Summary of results of Chapter 3-Part 1 

A table showing the differences between adiponectin and receptors in CiGEnC, CiPod and sieved 

glomeruli at the mRNA and protein level. (- means absence, + means presence) 
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Table 6 Summary of results of Chapter 3-Part 2 

A table showing the effects of HG on AdipoR1 and AdipoR2 in CiGEnC and CiPod and diabetes in 

glomeruli. (*p< 0.05, **p<0.01, ***p<0.001) 

 

6.3 Summary of aims of chapter 4 

Chapter 4 focused on identifying key adiponectin signalling pathways in cultured and in 

vivo GEnC (1) and determining whether these are mediated by AdipoR1 or AdipoR2 (2). 

In fact, adiponectin resulted in the phosphorylation of several protein kinases that are 

crucial in cellular metabolism. Firstly, the phosphorylation of AMPK-α was significantly 

increased in CiGEnC and human and mouse sieved glomeruli as summarized in Table 7. 

This pathway is a major stress pathway activated by an increased AMP:ATP ratio. That is, 

most of the anabolic processes such as gluconeogenesis and lipid synthesis are inactivated 
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while major catabolic pathways such as  glucose uptake into cells and fatty acid oxidation 

are increased [114]. The latter is due to increased phosphorylation of ACC by AMPK. 

During diabetes, the AMPK pathway is impaired due to excess glucose and insulin 

resistance and hence, there is less phosphorylation of AMPK-α. Treatment with 

adiponectin in experimental diabetes such as HG and in db/db glomeruli preserved the 

phosphorylation of AMPK-α, highlighting the potent activity of adiponectin in these 

conditions (Table 8). Other pathways were also activated by gAd, such as the Akt and p38 

MAPK pathways, under normo-glycemic conditions (Table 7). However, their role was not 

clear in a diabetic environment, and hence they were not further investigated in isolated 

glomeruli.  

The second objective was to determine which receptor was most likely to be mediating 

the actions of adiponectin in GEnC. After the successful knockdown of AdipoR1 in CiGEnC, 

the phosphorylation of AMPK-α was again re-analysed (Table 7). The results showed that 

AdipoR1 but not AdipoR2 is the main receptor contributing to the activation of p-AMPKα 

in response to treatment of GEnC by adiponectin. Hence, this suggests that gAd acts on 

GEnC via AdipoR1 to initiate a series of downstream signalling to protect the integrity of 

the cells.  
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Table 7 Summary of results of Chapter 4-Part 1 

A table showing the different phosphorylation profile in the presence of gAd in cultured cells and 

knockdown cells (ns p>0.05, *p<0.05, **p<0.01, ***p<0.001, ND: Not Determined) 
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Table 8 Summary of results of Chapter 4-Part 2 

A table showing the level of phosphorylation of key protein kinases under diabetic conditions 

(TNF-α or HG) in the presence or absence of gAd in cultured cells and isolated glomeruli (ns 

p>0.05, *p<0.05, **p<0.01, ***p<0.001, ND: Not Determined) 

 

6.4 Summary of aims of chapter 5 

The first two chapters demonstrated that adiponectin signals in GEnC via activation of 

AdipoR1. Due to the importance of the endothelial glycocalyx in regulating the biology of 

these cells, then the last aim was to determine whether adiponectin can directly protect 

the components of this structure in vitro. To test this, CiGEnC were cultured under 

diabetic conditions. TNF-α is a well characterised diabetic inflammatory mediator that can 

damage the glomerular endothelial glycocalyx [35]. Adding adiponectin in such conditions 
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allowed us to understand the beneficial effects actions of this adipokine on glycocalyx 

components. Firstly, adiponectin was able to enhance the glycocalyx of CiGEnC in vitro by 

decreasing the shedding of sulphated GAGs in the presence of TNF-α. Secondly, the 

effects of gAd on SDC4 expression was also promising. SDC4 expression (at both the mRNA 

and protein level) was upregulated in TNF-α induced conditions. Importantly, this was 

reversed back to almost normal levels when gAd was administered as summarized in 

Table 5. Interestingly, gAd also attenuated increases in MMP2 but not MMP9 mRNA in 

TNF-α induced media. Finally, knockdown of MMP2 resulted in less SDC4 shedding in TNF-

α conditions suggesting a direct relationship between MMP2 and SDC4. Future work 

should be done to fully understand the link between the adiponectin and the SDC4-MMP2 

pathway. Further evidence for a link between adiponectin and SDC4 was achieved by ex 

vivo treatment of sieved glomeruli with gAd. Importantly, diabetic sieved glomeruli 

treated with gAd showed less SDC4 mRNA expression than untreated diabetic glomeruli 

(Table 9). This showed one of most important regulators of the endothelial glycocalyx was 

protected by adiponectin treatment in diabetes. Future work should be focused on 

determining the effect of adiponectin on other glycocalyx components. Table 9 shows the 

prominent results of chapter 5. 
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Table 9 Summary of results of chapter 5 

A table showing the protective effects of gAd in maintaining the glycocalyx when disturbed in 
CiGEnC or in diabetic glomeruli.  

 

6.5 Conclusions from the study  

This project has highlighted significant beneficial effects of adiponectin on the cell biology 

of GEnC. A summary of the findings from this work are as follows:   

1- Adiponectin is not expressed in cultured GEnC or sieved glomeruli.  

2- AdipoRs are expressed in CiGEnC and their levels are regulated under 

experimental diabetic conditions and in experimental animal models of diabetes. 

3- Cultured GEnC are responsive to gAd, which activates several key signalling 

pathways including AMPK, ACC, Akt and p38 MAPK pathways. 
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4- Adiponectin activates the AMPK pathway in sieved human and mouse glomeruli. 

5- The activation of AMPK is a result of downstream signalling through AdipoR1 but 

not AdipoR2.  

6- HG and TNF-α conditions decreased AMPK and ACC signalling but gAd restored 

their activation. 

7- Diabetic mouse glomeruli exhibit less AMPK signalling but gAd restored this 

activation 

8- TNF-α but not HG conditions increased the expression of SDC4, MMP2 and MMP9 

9- Adiponectin protected from the shedding of sulphated GAGs caused by TNF-α 

conditions. 

10- Adiponectin decreased compensatory upregulation of glycocalyx component, 

SDC4, and its mediator MMP2 caused by TNF-α induction. 

11- In diabetic glomeruli, gAd protected from the increase of SDC4 mRNA expression. 

A schematic diagram that reflects all the main conclusions and results are shown in this 

below diagram.  
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Figure 6.1 A schematic diagram summarizing the main findings of the project 

A schematic diagram showing the main results of this project; the restoration of the glycocalyx 
after TNF-α induction in CiGEnC by gAd (1) and the activation of several pathways in CiGEnC such 
as AMPK, ACC, Akt and p38 MAPK pathway and that it is mediated by AdipoR1 (2a). AdipoR1 and 
AdipoR2 levels are decreased in obesity, diabetes, IR and nephropathy in GEnC. 2b: the effect of 
gAd in HG and TNF-α conditions on restoring p-AMPKα levels.  
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6.6 Limitations and future work 

Despite accomplishing the goals of this project, several issues arose during this project. 

Firstly, the commercial production of the endothelial growth media used was paused for 

4 months during the project. Therefore, time was taken up establishing the experimental 

system with another media (from EBM-2MV from Lonza media to MCDB 131 medium 

from Gibco #10372019) to match the conditions as the previously obtained data. 

However, all the results that was the outcome of CiGEnC treated with the Gibco media 

was excluded from this thesis, and experiments were repeated when the original media 

was available again.  

Another limitation of this project was the lack of a control littermate for the db/db mice. 

Usually with a diabetic mice model (C57BLKsJ-db/db), the ideal littermate control would 

be the lean ones. However, in the comparison of glomeruli gene expression, I used wild 

type mice due to unavailability of the lean mice. 

Other limitations include some of which are being addressed by future work. For example, 

the glycocalyx studies are missing essential IF staining. Although SDC4 mRNA and protein 

was detected, it would have added value if SDC4 staining pattern on CiGEnC with or 

without TNF-α/gAd was also checked. Along with the Alcian blue assay technique that 

detects GAGs released in the media, an HS ELISA on the supernatant media would also 

complete the profile of glycocalyx components (GAGs, HS and SDC4). As for the MMP2 

knockdown studies, we only measured MMP2 mRNA expression levels, but it would have 

been clearer if I investigated the protein levels as well as activity of MMP2.  

The effects of adiponectin on GEnC barrier properties was also part of the in vitro cellular 

work. The electrical cell-substrate impedance sensor system (ECIS) measures impedance 
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in real time. Any decrease in impedance means that water and small solute passage 

increases across the CiGEnC monolayer hence, there is an increase in permeability. The 

study was rather incomplete due to low repeat number and inconsistent results.  

The work presented suggests a protective role for adiponectin in GEnC. The next stage 

would be to assess the effect of adiponectin on albuminuria in a T2D mouse model. This 

will be achieved by using the C57BLKS/J-db/db mouse as a model of type 2 diabetes [163]. 

By over-expressing adiponectin (using adenovirus) in mice it will be possible to determine 

whether adiponectin reduces albuminuria [215]. Lean mice treated with control 

adenovirus only will act as a non-diabetic control group. Adenoviral overexpression of 

adiponectin for 10 days has previously been sufficient to reduce albuminuria in 

adiponectin knockout mice [113]. Therefore, adenoviral vectors expressing adiponectin 

or control will be injected into the tail vein of db/db mice at 10 weeks of age. Serum 

adiponectin levels, blood glucose and albuminuria will be measured at baseline and at 3-

day intervals for 2 weeks.  After 2 weeks, animals will be sacrificed. Before sacrifice, blood 

and urine will be taken to measure glucose and albuminuria respectively. For every 

animal, once a stable anaesthesia is achieved, the abdominal aorta will be exposed with 

a midline laparotomy followed by abdominal aorta cannulation. At this point, one of the 

kidneys will be perfused with 4% glutaraldehyde and processed for light and electron 

microscopy (EM) analysis in order to detect changes in glycocalyx thickness. The other 

kidney will be used to study the albumin glomerular permeability coefficient (PS’alb). 

Using this novel technique [216] that was developed by Desideri et al. in our lab, it is 

possible to detect glomerular permeability changes associated with the reduction of the 

glycocalyx thickness. Finally, this will complete the profile about restoring the glycocalyx 

in in vivo studies, and not only in vitro studies as I have done on CiGEnC. 
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6.7 Clinical significance 

One third of T2DM patients will develop kidney disease (DN), which is detected by 

albuminuria as a result of an impaired glomerular permeability [146]. Good glycaemic 

control and current treatments (insulin, metformin, ACE, ARB) can decelerate the 

progression of DN [217]. However, to date, there are still limited treatments that can 

efficiently save these patients from vascular complications. Therefore, innovative 

therapeutic advances are essential to target early endothelial dysfunction in diabetes. 

The focus of this project was to investigate the beneficial effects of adiponectin to provide 

early protection of GEnC. This work identified the mode of action of adiponectin on GEnC 

under pathophysiological conditions (diabetic conditions); adiponectin protects the GEnC 

in HG conditions by activating major signalling pathways via AdipoR1.  

The glycocalyx is disturbed not only in DN but also other nephropathies such as 

glomerulosclerosis and ischaemia-reperfusion [218] as well as in renal transplant patients 

[219]. The glycocalyx is also damaged in other kidney related diseases including 

atherosclerosis [220] and sepsis. Therefore, restoring the glycocalyx reduces glomerular 

albumin leak.  
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6.8 Adiponectin and receptors as therapeutic targets for 

DN 

Available data shows that adiponectin is renoprotective and, therefore, a rational 

approach for developing new therapeutics would be to find ways to enhance adiponectin 

effects by either increasing adiponectin plasma levels or by stimulating adiponectin 

receptors to increase adiponectin sensitivity [136]. This will lead to protective metabolic 

effects via downstream signalling pathways. In fact, several compounds are known to 

increase circulatory adiponectin in pathophysiological states as seen in Figure 6.2. 

Thiazolidinediones (TZD) are a class of heterocyclic compounds used as an anti-

hyperglycemic drug for the treatment of T2DM [221]. Several studies have shown that 

TZDs directly upregulate adiponectin gene transcription through the activation of PPARγ 

in adipocytes, thereby promoting adipocyte differentiation. For example, rosiglitazone 

treatment greatly reduced albumin excretion rate AER in diabetics and this decrease has 

been associated with increased serum adiponectin levels [222] (Figure 6.2). TZD was used 

to treat mice with an ablated podocyte function, showing that recovery of injured 

podocytes was seen by increasing adiponectin serum levels [136]. Also, in adiponectin 

deficient ob/ob mice, rosiglitazone did not improve the glucose tolerance while in ob/ob 

mice there was a substantial improvement in glucose tolerance [222]. Therefore, this 

shows that significant glucose tolerance after treatment with rosiglitazone is totally 

dependent on the presence of adiponectin [223]. Hence, this supports the approach of 

promoting adiponectin therapeutically. Overall, TZD effects on DN might be directly 

related to upregulating adiponectin levels.  
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Sensitizing adiponectin receptors is also of therapeutic importance. The elucidation of the 

mechanisms in which these receptors become activated is of great importance to the 

future improvements of diabetes and its complications. In 2013, Okada et al discovered a 

small molecule as an AdipoR agonist and named it AdipoRon [224]. Primarily, AdipoRon 

was shown to bind directly to both receptors and thus activating AMPK in skeletal muscle 

and liver of WT mice. Furthermore, in obese mice, AdipoRon significantly reduced glucose 

and insulin levels and this effect was dependent on the presence of both receptors, since 

a double knockout mice did not have attenuate of hyperglycaemia and hyperinsulinemia 

[224]. Consistently, in a db/db mice model, AdipoRon administration greatly reduced 

glucose, insulin and lipid accumulation in just 2 weeks. Surprisingly, the effects of 

AdipoRon was as quick and potent as of that of adiponectin. There was also an up-

regulation of phospho-AMPKα and PPARα in the treated db/db mice. In cultured GEnC 

and podocytes, AdipoRon treatments had equivalent results to that seen in vivo; there 

was an inhibition in lipid-induced endothelial dysfunction, one of the common mediators 

of diabetic nephropathy, through the activation of AMPK and PPARα signalling [224]. 

Taken all together, the protective role of AdipoRon against the development and 

progression of diabetic nephropathy appears to occur through a direct action on the renal 

cells, particularly in GEnC and podocytes.   

In future years, AdipoR-activating compounds is expected to be an important aspect in 

therapeutic models for the treatment of diabetes and its complications, thus contributing 

to a healthy life expectancy. 
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Figure 6.2 Schematic diagram of adiponectin sensitizers and downstream effects of increasing 

adiponectin levels. 

Adiponectin can be sensitized by several compounds such as TZD, ARBs, ACE-I and factors such as 
exercise and caloric restriction. This will lead to increase in AdipoRs (also by AdipoRon). Increase 
in sensitivity might lead to decrease in Obesity, IR and diabetes with or without nephropathy.  

 

Despite mentioning all the beneficial effects of adiponectin in different tissues or organs, 

there are a number of questions to address. Initially, adiponectin circulating levels are 

abundantly high and it accounts for 0.01% of total plasma proteins [136]. Therefore, there 

would be consequences in providing excess adiponectin. For example,  adiponectin may  
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promote angiogenesis and  adipogenesis associated with the growth of tumours and 

weight gain respectively [72]. Furthermore, infertility can result from chronically high 

adiponectin levels [225]. Finally, it has been suggested that circulating fAd indirectly 

inhibit bone mass by increasing insulin sensitivity [226]. These consequences will need to 

be addressed when establishing a strategy to upregulate adiponectin and its receptors. 

Human trials where adiponectin is given as a treatment in diabetic patients has not been 

done yet or even approved. However, adiponectin research is increasing at a fast pace, 

and together with the work from this thesis suggest that targeting adiponectin pathways 

especially in GEnC may provide novel therapeutic targets for DN and other diabetic 

diseases.  
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