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Abstract 

 

Maternal smoking has known adverse effects on fetal development. However, research on the 

association between maternal smoking during pregnancy and offspring intellectual disability 

(ID) is limited, and whether any associations are due to a causal effect or residual confounding 

is unclear.  

The association was investigated using two intergenerational cohorts, each with over 1 million 

individuals with data held in the Danish and Swedish registers, and using a prospectively 

collected pregnancy cohort of approximately 15,000 mother and child pairs in the United 

Kingdom. Observational analyses were performed in each cohort using regression analyses 

adjusted for potential confounders. Sibling comparisons, negative control analyses, and 

Mendelian randomisation (MR) were used to provide evidence about the causal nature of the 

association. Simulation studies were conducted to investigate the nature of biases arising from 

assortative mating in the negative control design and from the proportion of missing data in 

multiple imputation analyses, a method to account for missing data.   

Observational analyses provided evidence for an increased risk of ID in children of mothers 

who smoked during pregnancy. Sibling comparison models decomposed this population 

averaged effect to reveal a null within-family effect while negative control analyses showed 

comparable effect estimates for maternal and paternal smoking during pregnancy. MR analyses 

also did not provide evidence of a causal effect.  

The results of analyses contained within this thesis are not consistent with a causal effect of 

maternal smoking during pregnancy on offspring risk of ID. By combining evidence across 

different analysis methods, results suggest that prior observational associations were the result 

of unmeasured genetic or environmental characteristics of families in which the mother smokes 

during pregnancy.  

 

 

 



ii 

 

Dedication and acknowledgements 

 

I would like to start by thanking my supervisors. Dheeraj, your encouragement and optimism 

throughout have made this journey far easier than it otherwise would have been. Your ability to 

sift the good ideas from the bad has helped sway me from many a rabbit hole and is something I 

hope to eventually learn. Jon and Stan, I’d like to thank you for giving so much of your time, 

knowledge and patience. In this you allowed me to develop some very rough and scattered ideas 

into fully formed projects which I am now very proud of. It has been a pleasure working with all 

of you these last four years.  

To Rachael Hughes and Kate Tilling, thank you for your work, guidance and support on my 

first publication. This was my first real taste of research and I thoroughly enjoyed it. I will 

always be blown away by the detail of your knowledge about data that aren’t there. To Diana 

Schendel and Amy Kalkbrenner, thank you for making me feel so at home in Aarhus and for all 

the work you put in to making the research visit happen. To Cecilia Magnusson, Micke 

Lundberg and Christina Dalman, thank you for your hospitality in Stockholm and for jumping 

through hoops to get me access to the Swedish registry data. To Richard Thomas and Andrew 

Boyd, thank you for your work and persistence in making the ALPSAC data linkage a reality.  

I’d like to thank many colleagues and fellow PhD students including Alexandra Creavin, 

Amanda Ly, Christina Dardani, Doretta Caramaschi, Hannah Jones, Hannah Sallis, Hein 

Heuvelman, Jamie Robinson, Jazz Croft, Kayleigh Easey, Maki Morinaga, Ryan Langdon, Tom 

Battram, and Viktor Ahlqvist. I have learned so much from each of you. 

Thank you to everyone at the University of Bristol Spartans Basketball Club, particularly Sam 

Davis, for providing me with something to focus on outside of work. To the Junto – Cameron, 

James and Shaun – thank you for listening and for your balanced advice. To Emily Sanderson, 

Jess Laidlaw and Rob Larson, you are three of the kindest people I know. Thank you for always 

being that way. To Das Monkeys – Cameron, Harvey, Matt, Scott and Tom – our trips 

simultaneously delayed the completion of this work and kept it going. I am very grateful to have 

known each of your for so long. Paul Moore requested to feature in this thesis. He contributed 

the occasional pint and pretended to fall asleep when I described my work to him. It’s been a 

pleasure knowing him also. 

Finally, and most importantly, to Mum, Dad and Lauren, I hope you already know how grateful 

I am to each of you for everything along the way. Thank you for reading through my work and 

for listening when it wasn’t going all that well. Thank you for helping me get to where I am 

today.  



iii 

 

Author’s declaration 

 

I declare that the work in this dissertation was carried out in accordance with the requirements 

of the University's Regulations and Code of Practice for Research Degree Programmes and that 

it has not been submitted for any other academic award. Except where indicated by specific 

reference in the text, the work is the candidate's own work. Work done in collaboration with, or 

with the assistance of others, is indicated as such. Any views expressed in the dissertation are 

those of the author. 

 

SIGNED:  Paul Madley-Dowd    DATE:  1st October 2020 

  



iv 

 

Publications  

 

The work carried out as part of this thesis has contributed to the following publications: 

Published 

• Madley-Dowd P., Hughes R., Tilling K., and Heron J., The proportion of missing data 

should not be used to guide decisions on multiple imputation. Journal of clinical 

epidemiology, 2019. 110: p. 63-73. DOI: https://doi.org/10.1016/j.jclinepi.2019.02.016 

• Madley-Dowd P., Rai D., Zammit S., and Heron J., Simulations and directed acyclic 

graphs explained why assortative mating biases the prenatal negative control design. 

Journal of clinical epidemiology, 2020. 118: p. 9-17. DOI: 

https://doi.org/10.1016/j.jclinepi.2019.10.008 

• Madley-Dowd P., Kalkbrenner A.E., Heuvelman H., Heron J., Zammit S., Rai D., and 

Schendel D., Maternal smoking during pregnancy and offspring intellectual disability: 

sibling analysis in an intergenerational Danish cohort. Psychological medicine, 2020: p. 

1-10.  DOI: https://doi.org/10.1017/S0033291720003621  

Being revised following review 

• Madley-Dowd P., Lundberg M., Heron J., Zammit S., Ahlqvist V.H., Magnusson C., 

and Rai D., Maternal smoking and smokeless tobacco use during pregnancy and 

offspring development: sibling analysis in an intergenerational Swedish cohort. 

International journal of epidemiology.  

Planned papers 

• Madley-Dowd P., Zammit S., Heron J., Boyd A., Thomas R., and Rai D., Intellectual 

disability in the children of the Avon longitudinal study of parents and children.   

• Madley-Dowd P., Zammit S., Heron J., Boyd A., Thomas R., and Rai D., Maternal 

smoking in pregnancy and offspring intellectual disability: a causal analysis in the Avon 

Longitudinal Study of Parents and Children 

Additional publications not included in this thesis 

• Kalkbrenner A.E., Meier S.M., Madley-Dowd P., Ladd-Acosta C., Daniele Fallin M., 

Partner E., and Schendel D., Familial confounding of the association between maternal 

smoking in pregnancy and autism spectrum disorder in offspring. Autism research, 

2020. 13: p. 134-144. DOI: https://doi.org/10.1002/AUR.2196   

https://doi.org/10.1016/j.jclinepi.2019.02.016
https://doi.org/10.1016/j.jclinepi.2019.10.008
https://doi.org/10.1017/S0033291720003621
https://doi.org/10.1002/AUR.2196


v 

 

Contributions to publications with content used in this thesis  

 

The proportion of missing data should not be used to guide decisions on multiple 

imputation. 

CRediT authorship contribution statement from article: 

- Paul Madley-Dowd: Conceptualization, Methodology, Software, Formal analysis, Investigation, 

Writing – original draft, Visualization. Rachael Hughes: Conceptualization, Methodology, 

Writing - review & editing, Supervision. Kate Tilling: Conceptualization, Methodology, Writing-

review & editing, Supervision. Jon Heron: Conceptualization, Methodology, Writing - review & 

editing, Supervision. 

 

Simulations and directed acyclic graphs explained why assortative mating biases the 

prenatal negative control design. 

CRediT authorship contribution statement from article:  

- Paul Madley-Dowd: Conceptualization, Methodology, Software, Formal analysis, Investigation, 

Writing - original draft, Visualization. Dheeraj Rai: Conceptualization, Methodology, Writing - 

review & editing, Supervision. Stanley Zammit: Conceptualization, Methodology, Writing - 

review & editing, Supervision. Jon Heron: Conceptualization, Methodology, Writing - review & 

editing, Supervision. 

 

Maternal smoking during pregnancy and offspring intellectual disability: sibling analysis 

in an intergenerational Danish cohort. 

CRediT authorship contribution statement: 

- Paul Madley-Dowd: Conceptualization, Methodology, Software, Formal analysis, Investigation, 

Writing - original draft, Visualization. Amy E. Kalkbrenner: Conceptualization, Methodology, 

Writing - review & editing, Supervision. Hein Heuvelman: Methodology, Writing - review & 

editing, Supervision. Jon Heron: Methodology, Writing - review & editing, Supervision. Stan 

Zammit: Methodology, Writing - review & editing, Supervision. Dheeraj Rai: Conceptualization, 

Methodology, Writing - review & editing, Supervision. Diana Schendel: Conceptualization, 

Methodology, Writing - review & editing, Supervision.      

  



vi 

 

Table of contents 

 

Chapter 1 Introduction ................................................................................................................. 1 

1.1 – Intellectual disability ............................................................................................... 1 

1.1.1 – Definition ................................................................................................. 1 

1.1.2 – Epidemiology of ID ................................................................................. 3 

1.2 – Biological plausibility of the association between maternal smoking during 

pregnancy and offspring ID ................................................................................. 3 

1.3 – Epidemiological literature ....................................................................................... 5 

1.3.1 – Maternal smoking in pregnancy and offspring risk of ID ....................... 9 

1.3.2 – Evidence of confounding factors ........................................................... 12 

1.4 – Investigation aims and thesis outline ..................................................................... 16 

PART 1: METHODOLOGICAL CONSIDERATIONS ....................................................... 17 

Chapter 2 Establishing causation through triangulation of evidence: an overview of 

methodological approaches ............................................................................................ 18 

2.1 – Establishing causality from an observational study............................................... 19 

2.1.1 – Causal effects ........................................................................................ 19 

2.1.2 – Relating observational analyses to a randomised control trial .............. 23 

2.2 – Bias in observational studies ................................................................................. 24 

2.2.1 – A brief introduction to directed acyclic graphs ..................................... 24 

2.2.2 – Counterfactuals and directed acyclic graphs ......................................... 25 

2.2.3 – Confounding bias................................................................................... 26 

2.2.4 – Selection bias ......................................................................................... 27 

2.2.5 – Information bias..................................................................................... 28 

2.2.6 – Missing data bias ................................................................................... 31 

2.3 – Assessment of causal inference methods ............................................................... 32 

2.3.1 – Negative control design ......................................................................... 32 

2.3.2 – Mendelian randomisation ...................................................................... 36 

2.3.3 – Sibling comparison designs ................................................................... 39 

2.3.4 – Cross-context comparison ..................................................................... 44 



vii 

 

2.4 – Chapter summary .................................................................................................. 45 

Chapter 3 Assessing the influence of assortative mating in the negative control design .......... 46 

3.1 – Directed acyclic graphs ......................................................................................... 47 

3.2 – Simulation study ................................................................................................... 50 

3.2.1 – Methods ................................................................................................ 50 

3.2.2 – Results ................................................................................................... 52 

3.3 – Discussion ............................................................................................................. 57 

3.4 – Conclusions and chapter summary ....................................................................... 59 

Chapter 4 Accounting for bias from missing data when the proportion of missing data is large

 ....................................................................................................................................... 60 

4.1 – Background ........................................................................................................... 60 

4.2 – Simulation study ................................................................................................... 62 

4.2.1 – Methods ................................................................................................ 62 

4.2.2 – Results ................................................................................................... 64 

4.3 – Applied example ................................................................................................... 69 

4.3.1 – Ethical approval .................................................................................... 69 

4.3.2 – Methods ................................................................................................ 69 

4.3.3 – Results ................................................................................................... 71 

4.4 – Discussion ............................................................................................................. 74 

PART 2: EMPIRICAL INVESTIGATIONS ......................................................................... 77 

Chapter 5 Maternal smoking during pregnancy and offspring intellectual disability: sibling 

analysis in an intergenerational Danish cohort .............................................................. 78 

5.1 – Methods ................................................................................................................ 79 

5.1.1 – Ethics approval ..................................................................................... 79 

5.1.2 – Cohort for analysis ................................................................................ 79 

5.1.3 – Exposure definition: maternal smoking during pregnancy ................... 81 

5.1.4 – Outcome definition: intellectual disability ............................................ 81 

5.1.5 – Comorbid autism spectrum disorder and attention deficit hyperactivity 

disorder definition ................................................................................ 82 

5.1.6 – Covariate and confounder definitions ................................................... 82 



viii 

 

5.1.7 – Assessment of missing data ................................................................... 83 

5.1.8 – Statistical analysis ................................................................................. 83 

5.2 – Results ................................................................................................................... 86 

5.2.1 – Description of the cohort ....................................................................... 86 

5.2.2 – Assessment of missing data ................................................................... 89 

5.2.3 – Primary analyses of the association between maternal smoking and 

offspring ID .......................................................................................... 90 

5.2.4 – Positive control analyses of the association between maternal smoking 

and offspring low birth weight ............................................................. 91 

5.2.5 – Secondary analyses ................................................................................ 91 

5.2.6 – Sensitivity analyses ............................................................................... 92 

5.3 – Discussion ............................................................................................................. 94 

5.4 – Conclusions and chapter summary ........................................................................ 96 

Chapter 6 Maternal smoking and smokeless tobacco use during pregnancy and offspring 

development: sibling analysis in an intergenerational Swedish cohort .......................... 97 

6.1 – Methods ................................................................................................................. 98 

6.1.1 – Cohort definition ................................................................................... 98 

6.1.2 – Exclusion criteria ................................................................................. 100 

6.1.3 – Exposure definition: maternal smoking and snus use during pregnancy

 ............................................................................................................ 100 

6.1.4 – Outcome definitions ............................................................................ 100 

6.1.5 – Covariate and confounder definitions.................................................. 101 

6.1.6 – Statistical analysis ............................................................................... 102 

6.2 – Results ................................................................................................................. 104 

6.2.1 – Description of the cohort ..................................................................... 104 

6.2.2 – Missing data assessment ...................................................................... 105 

6.2.3 – Primary analyses .................................................................................. 106 

6.2.4 – Secondary analyses .............................................................................. 107 

6.2.5 – Sensitivity analyses ............................................................................. 108 

6.3 – Discussion ........................................................................................................... 113 



ix 

 

6.3.1 – Strengths and limitations ..................................................................... 114 

6.4 – Conclusions and chapter summary ..................................................................... 115 

Chapter 7 Applying the negative control design and Mendelian Randomisation to the Avon 

Longitudinal Study of Parents and Children ................................................................ 116 

7.1 – Identifying individuals with intellectual disability ............................................. 117 

7.1.1 – Cohort specification ............................................................................ 117 

7.1.2 – Derivation of a multi-sourced variable for intellectual disability ....... 119 

7.1.3 – Exclusion criteria ................................................................................ 122 

7.1.4 – Assessment of the validity of the ID variables ................................... 123 

7.1.5 – Deciding how to define intellectual disability for analysis ................. 124 

7.2 – Methods for assessing the association between maternal smoking during 

pregnancy and offspring ID ............................................................................ 128 

7.2.1 – Ethical approval .................................................................................. 128 

7.2.2 – Definition of exposure to smoking during pregnancy ........................ 128 

7.2.3 – Covariate variable definitions ............................................................. 129 

7.2.4 – Genotype information ......................................................................... 130 

7.2.5 – Observational analyses........................................................................ 130 

7.2.6 – Negative control analyses ................................................................... 131 

7.2.7 – Multiple imputation procedure ........................................................... 131 

7.2.8 – Mendelian randomisation analyses ..................................................... 133 

7.3 – Results ................................................................................................................. 134 

7.3.1 – Cohort descriptives ............................................................................. 134 

7.3.2 – Missing data assessment for complete case analysis .......................... 138 

7.3.3 – Observational analysis ........................................................................ 142 

7.3.4 – Negative control analysis .................................................................... 143 

7.3.5 – Mendelian randomisation analysis ...................................................... 145 

7.4 – Discussion ........................................................................................................... 147 

7.4.1 – Strengths and limitations ..................................................................... 148 

7.5 – Chapter conclusions and summary ..................................................................... 151 

Chapter 8 Discussion ............................................................................................................... 152 



x 

 

8.1 – Triangulation of evidence across empirical chapters ........................................... 154 

8.2 – Comparison with the current literature ................................................................ 156 

8.3 – Strengths and limitations ..................................................................................... 157 

8.4 – Future research .................................................................................................... 160 

8.5 – Conclusion ........................................................................................................... 162 

References ................................................................................................................................ 163 

Appendices ............................................................................................................................... 189 

Appendix A – Supplementary material to Chapter 3 ................................................... 189 

A.1 - Calculation of the pair sexual isolation index ........................................ 189 

A.2 – Repetition of the simulation study using a binary outcome................... 191 

A.3 – Supplementary figure ............................................................................ 195 

A.4 – Simulation study of a negative control design with assortative mating and 

error in the negative exposure ............................................................ 196 

Appendix B – Supplementary material to Chapter 4 .................................................... 199 

B.1 – The fraction of missing information (FMI) ........................................... 199 

B.2 – Justification for the number of imputations used ................................... 200 

B.3 – Calculation of performance statistics for the simulation study .............. 201 

B.4 – Empirical SE of the MI exposure coefficient against FMI - Figure 1 

separated by panels of percentage missing data ................................. 203 

B.5 – Performance statistics for the exposure coefficient in the simulation study

 ............................................................................................................ 204 

B.6 – FMI and efficiency gains were not sensitive to whether the auxiliary 

variable was included in the missingness mechanism ........................ 208 

B.7 – Missing data in included and excluded sample for the applied example

 ............................................................................................................ 209 

B.8 – Missing data pattern in the applied example .......................................... 209 

B.9 – Applied example exposure coefficient results for the unadjusted model

 ............................................................................................................ 210 

B.10 – Simulation study using a binary outcome ............................................ 211 

Appendix C – Supplementary material to Chapter 5 .................................................... 219 

C.1 – Methods ................................................................................................. 219 



xi 

 

C.2 – Results ................................................................................................... 220 

Appendix D – Supplementary material to Chapter 6 ................................................... 232 

D.1 – Methods ................................................................................................. 232 

D.2 – Results ................................................................................................... 235 

D.3 – Reanalysis of snus use in pregnancy-SGA association without exclusions 

that may lead to bias .......................................................................... 250 

Appendix E – Supplementary material to Chapter 7 ................................................... 252 

E.1 – Methods ................................................................................................. 252 

Personal Reflections ................................................................................................................ 258 

 

  



xii 

 

List of tables 

 

Table 1-1: Summary of previous studies on the association between maternal smoking during 

pregnancy and offspring ID .............................................................................................. 6 

Table 3-1: Frequency of observations falling into each category of maternal and paternal smoking, 

and the quantity of assortative mating, measured using the IPSI. .................................... 50 

Table 4-1. Description of the Imputation Models Used for Both MCAR and MAR Data. ......... 64 

Table 4-2. Percentage Reduction in Empirical SE and Bias Compared to CCA for MCAR and 

MAR Results of the Exposure Coefficient in the Simulation Study. ............................. 66 

Table 4-3. Imputation Models for the Applied Example, Bristol, United Kingdom, 1991-2007.

 ........................................................................................................................................ 70 

Table 4-4: Variable Description, Including the Proportion of Missing Data and Relationship with 

Observed and Missing Values in the Outcome Variable for the Applied Example, Bristol, 

United Kingdom, 1991-2007. ......................................................................................... 72 

Table 5-1: Concordance of exposure in Medical Birth Register against National Patient Register

 ........................................................................................................................................ 81 

Table 5-2: Characteristics of the sample by maternal smoking during pregnancy (exposure) status.

 ........................................................................................................................................ 87 

Table 5-3: Primary analysis of the association between maternal smoking and offspring 

intellectual disability. ..................................................................................................... 90 

Table 5-4: Positive control analysis of the association between maternal smoking and offspring 

low birthweight. .............................................................................................................. 91 

Table 5-5: Distribution of ID across secondary analysis categories ............................................ 93 

Table 6-1: Cohort characteristics by exposure status during pregnancy ................................... 104 

Table 6-2: Primary analysis of the association between exposure and offspring ID. ................ 106 

Table 6-3: Primary analysis of the association between exposure and offspring SGA. ............ 107 

Table 6-4: Secondary analysis of the association between exposure timing and offspring ID. 109 

Table 6-5: Secondary analysis of the association between exposure timing and offspring SGA.

 ...................................................................................................................................... 110 

Table 6-6: Sensitivity analysis assuming all those who had younger siblings who were exposed 

to smoking were also exposed themselves. .................................................................. 111 

Table 6-7: Sensitivity analysis of a restricted cohort of the first two pregnancies study period.

 ...................................................................................................................................... 112 

Table 7-1: Distribution of IQ for each source of ID. ................................................................. 125 

Table 7-2: Cross tabulation of ID obtained from each source. .................................................. 126 

Table 7-3: Descriptive statistics across categories of consent. .................................................. 127 



xiii 

 

Table 7-4: Descriptive statistics of the cohort separated by maternal smoking status .............. 136 

Table 7-5: Cross tabulation of maternal and partner smoking during pregnancy ..................... 137 

Table 7-6: Descriptive statistics for missing data in any variable for observational and negative 

control analyses ............................................................................................................ 139 

Table 7-7: Counts of missing data in each variable separated by the number of missing variables

 ..................................................................................................................................... 141 

Table 7-8: Results of the observational analyses using a  binary exposure. ............................. 142 

Table 7-9: Results of the sensitivity analyses for the different methods of imputing the outcome.

 ..................................................................................................................................... 143 

Table 7-10: Results of the negative control analyses. ............................................................... 144 

Table 7-11: MR primary and sensitivity analysis estimates ..................................................... 145 

Table 8-1: Summary of empirical chapters ............................................................................... 153 

 

  



xiv 

 

List of figures 

 

Figure 2-1: DAG of the relationship between exposure (X) and outcome (Y), both of which are 

influenced by confounders that are measured (C) or unmeasured (U). The box around C, 

means that we condition, or adjust, for this variable in models.. ................................... 27 

Figure 2-2: DAGs of the relationship between exposure (X) and outcome (Y), conditioned upon 

the variable S which is either a common effect of the exposure and outcome (as in part a) 

or is a common effect of the exposure/outcome and an ancestor variable for the 

outcome/exposure (as in part b). .................................................................................... 28 

Figure 2-3:DAGs of the relationship between exposure X and outcome Y, measured with error eX 

and eY respectively to give the observed values X* and Y*. The relationship between 

each of these variables provide error structures that are a) independent non-differential, 

b) dependent non-differential or c) and d) independent differential (see the main text for 

a description of these terms. Dependent differential error (not shown) is also possible.30 

Figure 2-4: DAGs of the negative control design which compares the association between 

maternal exposure (M) and outcome (Y) to paternal exposure (P) and outcome. The 

associations can be influenced by confounding from measured (C) and unmeasured 

confounders (as in part a) and by error in the exposure and outcome (as in part b). ...... 35 

Figure 2-5: DAG of the assumptions made in a Mendelian randomisation analysis in which a 

genetic variant (Z) is used as a proxy for the exposure (X). Z is not caused by confounding 

factors or causes (U) of the outcome (Y) and only influences the outcome via the 

exposure. Here // has been used to indicate that the path between variables should not 

exist. ............................................................................................................................... 37 

Figure 2-6: DAGs of the relationship between variables in the sibling design. Xj, Yj and Cj are the 

exposure, outcome and non-shared confounders of child j respectively. U are shared 

confounders. FC , FX and FY are familial factors influencing the non-shared confounders, 

exposure and outcome respectively of both children in the family. ............................... 43 

Figure 3-1: Directed acyclic graphs (DAG) of the associations between variables in a negative 

control design with assortative behaviours. Refer to the text for descriptions of what (i), 

(ii) and (iii) represent. M is maternal smoking during pregnancy, P is paternal smoking 

during pregnancy, Y is the offspring outcome. CM and CP are maternal and paternal 

specific confounders respectively. SC and Sexp are variables indicating mate selection 

based upon confounding variables and upon the exposure variable. SC and Sexp are collider 

variables that when controlled for (such as when a couple have a child) induce correlation 

between the maternal and paternal confounders/exposures............................................ 49 



xv 

 

Figure 3-2: Plots of bias against quantity of assortative behaviour for continuous outcome data 

for a) the maternal coefficient and b) the paternal coefficient. Error bars are 95% Monte 

Carlo confidence intervals across simulations. Sample size for data shown is 10,000. . 54 

Figure 3-3: Plot of the mean difference across simulations of maternal and paternal β coefficients 

against the quantity of assortative mating. 95% confidence bands are the mean lower and 

upper CI for the difference, produced using bootstrapping. We present the difference 

between the coefficients of the maternal and paternal only models (red band) and the 

mutually adjusted model (blue band) for sample sizes of 100, 1 000 and 10 000. ........ 55 

Figure 3-4: Plots of bias against quantity of assortative mating for continuous outcome data with 

a maternal and paternal effect for a) the maternal coefficient and b) the paternal 

coefficient. Error bars are 95% Monte Carlo confidence intervals across simulations. 

Sample size for data shown is 10,000. ........................................................................... 56 

Figure 4-1: Empirical SE of the MI exposure coefficient plotted against FMI for simulated MCAR 

data. Error bars are 95% confidence intervals based on Monte Carlo standard errors across 

simulations. FMI = fraction of missing information; SE = standard error..................... 67 

Figure 4-2: Bias of the CCA and MI exposure coefficient plotted against the proportion of missing 

data for simulated MAR data. Error bars are 95% confidence intervals based on Monte 

Carlo standard errors across simulations. MI = multiple imputation; FMI = fraction of 

missing information; SE = standard error ...................................................................... 68 

Figure 4-3: Estimate, standard error and FMI for the exposure coefficient in the applied example 

adjusted analysis model. Reduction in SE is relative to CCA. CCA=complete case 

analysis; FMI= fraction of missing information; SE = standard error. .......................... 73 

Figure 5-1: Flowchart of cohort derivation. ................................................................................ 80 

Figure 5-2: Plot of the prevalence of intellectual disability for each age in 2017. ..................... 89 

Figure 5-3: Plot of the prevalence of intellectual disability at ages 6-18 for each cohort year. .. 89 

Figure 5-4: Logistic GEE analyses of the association between maternal smoking during pregnancy 

and offspring ID repeated in each year group category ................................................. 94 

Figure 6-1: Flowchart of cohort derivation. Note: an additional 4147 excluded from SGA analyses 

due to missing SGA values. These were not removed as the unobserved values may be 

related to weight for gestational age which is on the hypothesised causal path from 

smoking to ID. ............................................................................................................... 99 

Figure 7-1: Flowchart of cohort derivation ............................................................................... 118 

Figure 7-2: Two-sample MR estimates based on the ratio method for individual SNPs. Plots are 

for smoking initiation (left)  and cigarettes per day (right)  for the outcome possible ID.

 ..................................................................................................................................... 146 

Figure 7-3: Plots of the SNP-outcome association against SNP-exposure association for each 

smoking behaviour (left: smoking initiation; right: number of cigarettes smoked per day) 



xvi 

 

and outcome. Fitted lines show the estimates of the different MR methods that collate 

effects across all SNPs.................................................................................................. 147 

  



xvii 

 

List of Abbreviations 

  

ADHD Attention deficit hyperactivity disorder 

ALSPAC Avon Longitudinal Study of Parents and Children 

AOI Association of interest 

ASD Autism spectrum disorder 

BMI Body mass index 

CAG Confidential advisory group 

CCA Complete case analysis 

CI Confidence interval 

DAG Directed acyclic graph 

DPR Danish psychiatric registry 

DSM-5 Diagnostic And Statistical Manual Of Mental Disorders, 5th Edition  

DSM-IV Diagnostic And Statistical Manual Of Mental Disorders, 4th Edition 

FCS Fully conditional specification 

FMI Fraction of missing information 

GEE Generalised estimating equation 

GP General practitioner 

GSCAN GWAS and sequencing consortium of alcohol and nicotine 

GWAS Genome wide association study 

HES Hospital episode statistics 

ICD International classification of disease 

ICD-10 International classification of diseases, version 10  

ICD-8 International classification of diseases, version 8 

ID  Intellectual disability 

IDI Identification of developmental impairments 

InSIDE Instrument strength independent of direct effect 

iPSYCH Integrative psychiatric research consortium 

IQ Intelligence quotient 

IRAS Integrated research application system 

IVW Inverse variance weighted 

LISA Longitudinal integration database for health insurance and labour 

market studies 

MAR Missing at random 

MBR Medical birth registry 

MCAR Missing completely at random 

MCS Millennium cohort study  



xviii 

 

MGR Multi-generation register 

MHSDS Mental health services data set 

MI Multiple imputation 

MICE Multivariate imputation using chained equations 

MNAR Missing not at random 

MR Mendelian randomisation 

nAChR Nicotinic acetylcholine receptors  

NCA Negative control association 

NCDS National child development study 

NPR National patient registry 

OR Odds ratio 

PDD Pervasive developmental disorders 

PLASC Pupil level annual school census 

PRS Polygenic risk score 

SD Standard deviation  

SE Standard error 

SEN Special educational needs 

SES Socioeconomic status 

SGA Small for gestational age 

SNP Single nucleotide polymorphism 

SUTVA Stable unit treatment value assumption 

UKSeRP UK secure eResearch platform 

WAIS Weschler abbreviated scale of intelligence 

WISC Weschler intelligence scale for children 

 

 



   

1 

 

 

Chapter 1 Introduction 
 

 

Smoking in pregnancy is reported in at least 10% of pregnancies in Europe as of 2010 [1]. It has 

a well-established causal relationship with low birthweight [2-9] and a more tentative 

association with other poor pregnancy and offspring health outcomes such as pregnancy 

complications [10] and sudden infant death syndrome [11]. Establishing which offspring health 

outcomes are caused by maternal smoking in pregnancy may (i) provide insight as to which 

disease burdens may be reduced through smoking cessation initiatives, (ii) aid in understanding 

the mechanisms by which these conditions occur and (iii) create the opportunity for mothers to 

have an informed choice about the potential consequences of deciding to, or not to, give up 

smoking during pregnancy.  

An association between maternal smoking during pregnancy and offspring risk of intellectual 

disability has been suggested in the literature. In this chapter I define intellectual disability, 

describe the biological plausibility of the association and review the body of epidemiological 

evidence. As will be shown, the causal nature of such an association is unclear and requires 

further study.   

 

 

1.1 – Intellectual disability 

1.1.1 – Definition 

The outcome of interest in this thesis is offspring intellectual disability (ID). ID is defined as 

having an arrested or incomplete development of the mind alongside functional impairment in 

facets that contribute to overall intelligence such as cognition, language and social ability [12]. 

ID manifests during the developmental period and is not the result of later changes to the brain 

as a result of injury or disease. 

There are several challenges in defining ID in practice, particularly in relation to the language 

used. Several terms are used in the UK including learning disability, learning difficulties, 

developmental disorder (or delay) and special educational needs [13]. Confusion can arise as 

these phrases are components of other, separate concepts. For example specific learning 

disability refers to dyslexia or dyscalculia, while learning difficulty can refer to intellectual 
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disability or a specific learning disability. It is important to note that those with ID may also 

have a specific learning disability. Further challenges arise in the definitions used between 

studies based in different global regions. In the USA the phrase “intellectual disability” carries 

the same meaning as “learning disability” in the UK, while use of the phrase “learning 

disability” in the USA refers to what would be described as a “specific learning disability” in 

the UK.  

In a healthcare setting, several diagnostic criteria including the International Classification of 

Diseases, Version 10 (ICD-10) [12] and Diagnostic and Statistical Manual of Mental Disorders, 

4th edition (DSM-IV) [14] define ID using an intelligence quotient (IQ) score of less than 70, 

equivalent to 2 standard deviations (SD) less than the population average of 100, alongside 

functional impairments. The Diagnostic and Statistical Manual of Mental Disorders, 5th Edition 

(DSM-5) [15], states that IQ tests will generally be measured with an error of around 5 points 

and therefore scores between 65 and 75 may indicate ID. The definition used will greatly affect 

the prevalence of ID in studies. Cooper et al. [16] note that statistically, 2.5% of people in the 

population would be expected to lie in the region of IQ scores between 70 and 75 which is 

greater than the 2.28% prevalence of ID expected using a cut off that is two SDs below the 

population average. The educational system in the UK uses an even less stringent cut off, IQ 

less than 85 (equivalent to 1 standard deviation lower than the population average), to indicate 

“mild learning difficulty” [17, 18]. 

It has been argued that ID should not be defined on the basis of IQ test scores alone [18, 19] due 

to the instability of the measure on the basis of mood and fatigue, potential to be influenced by 

learning or rehearsal, and tests that are largely centred around Western cultural understanding 

that may have important implications, particularly for migrants. The ICD-10 and DSM-5 also 

use social functioning and age of onset for diagnosis. Those who have an IQ less than 70 but are 

able to function without assistance by this definition are not considered to have ID in relation to 

clinical services. Cooper et al. [16] provide examples such as living independently and holding 

a job as meeting this criteria of functioning without assistance. Such a definition means that ID 

is not necessarily stable throughout the life. Those with ID do learn throughout the lifetime, and 

some of those who may require significant support during school age years may go on to learn 

to live independently.   

There is inherent heterogeneity in the concept of ID which may differ by the way that ID has 

been defined. As a result investigations into the aetiology of ID may not be comparable where 

different definitions have been used.  
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1.1.2 – Epidemiology of ID 

The global prevalence of ID is approximately 1% according to a meta-analysis of 52 population 

based studies [20]. As described above, this estimate is likely to reflect people with a severe 

enough ID to receive clinical services. Prevalence differs by country and is strongly influenced 

by socioeconomic development and methods of data capture, though whether this is the result of 

differing distributions of the determinants of ID or differences in diagnostic practice is unclear. 

People with ID may require different pathways of care, such as health care and social care, and 

therefore multi-source case ascertainment may help capture the full population of ID as in other 

neurodevelopment conditions [21, 22].  

Individuals with ID have been found to suffer from poor long-term outcomes and inequalities 

compared to the general population including socioeconomic disadvantage [23, 24], increased 

mortality [25] and worse access to, and effectiveness of, health care [26-29]. Comorbidities are 

common, particularly with other neurodevelopmental conditions such as Attention Deficit 

Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD). Recent evidence has 

suggested that severe ID may represent a distinct condition to mild and moderate ID, which in 

turn may represent the extreme low of the normal range of the IQ spectrum [30]. 

 

 

1.2 – Biological plausibility of the association between 

maternal smoking during pregnancy and offspring 

ID 

The key biological mechanisms by which maternal smoking during pregnancy may cause 

offspring intellectual disability include: (i) hypoxia-ischemia induced brain damage and (ii) 

alterations to normal fetal brain development following changes in the activation of nicotinic 

acetylcholine receptors (nAChR). A reduction in the availability of oxygen in the blood 

(hypoxia) can lead to tissue damage [31]. Cells in the brain are particularly susceptible to 

hypoxic damage in comparison to those in the rest of the body. A restriction in blood flow 

(ischemia) will lead to hypoxia, however hypoxia can also result from other causes. Smoking 

has been found to be associated with reduced uterine blood flow [32, 33] and increases in fetal 

blood concentrations of carboxyhaemoglobin [34], the result of carbon monoxide binding to 

haemoglobin which prevents oxygen from being transported. Exposure to maternal smoking 

during pregnancy may therefore lead to hypoxic damage to fetal brain tissue via two separate 

mechanisms.  
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Nicotine, the psychoactive component in tobacco smoke, has been shown to cross the placenta 

and expose the fetus at higher concentrations than the mother [35, 36]. Once nicotine has 

reached the fetus it acts on nAChR which, in animal models, have been shown to influence 

developmental processes in the brain including neurogenesis, migration, differentiation, and 

synaptogenesis (see the review by Dwyer et al. [37]). Nicotine exposure has been found to 

affect fetal brain development even in the absence of fetal growth restriction [38] suggesting 

that the influence of nicotine is targeted to the brain.  

Chan and colleagues [39], however, state that the field is unclear as to whether the biological 

consequences of maternal smoking in pregnancy are due to nicotine or to the effects of cigarette 

smoke. They argue that of the many chemical compounds in cigarette smoke, no single 

component is likely to be responsible for all pathology. Oxidative stress in the brain, known to 

be caused by cigarette smoking, has been shown to block activation of nAChRs [40]. Nicotine, 

in contrast, may activate or inactivate nAChRs dependent on the dose, duration and type of 

receptor [37]. The mechanism by which exposure to cigarette smoking in pregnancy influences 

changes in brain development may therefore be a complex interplay of activation and 

inactivation of nAChRs by the components and consequences of smoking and via other yet 

unidentified pathways.  

The evidence supporting an influence of maternal smoking during pregnancy on changes to fetal 

brain development largely comes from animal models. The generalisability of this evidence to 

an effect in humans is limited due to: (i) differences in the exposure administered in 

experiments versus that seen in practice among smokers (i.e. continuous versus intermittent 

exposure), (ii) differences in the brain structure of animals from humans and (iii) differing 

developmental periods of the brain, for example the third trimester of human fetal development 

corresponds to the postnatal period in rats [41].  

In the human based literature, a number of studies have shown that smoking in pregnancy is 

associated with reduced head circumference at birth (collated in the review by Ekblad and 

colleagues [42]), though this is a particularly crude measure of brain changes as a result of 

smoking during pregnancy. Evidence for structural and functional smoking related brain 

changes has been collated in a literature review by Bublitz and Stroud [43]. Reductions in fetal 

brain volumes associated with maternal smoking in pregnancy were found  in areas such as the 

cerebellum [44, 45], frontal lobe [44, 46], parietal lobe [46], ventricular system [45], corpus 

callosum [47-49] and cerebral cortex in general [50]. Analysis of functional changes among 

people exposed to smoking during pregnancy showed increased activation in the brainstem in 

response to auditory stimuli [51, 52] as well as greater activation in the frontal [53], temporal 

[53-55], parietal [53] and occipital lobes [54] and the cerebellum [53] in response to executive 

function tasks involving inhibition, attention and memory. Given that the age of brain 
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measurement in some of these studies was in adolescence or young adulthood, these findings 

show that smoking during pregnancy can lead to persistent functional brain changes [46-50, 53-

55].  

Brain imaging work has suggested a particular role of the frontal lobe in contributing to 

intelligence and perceptual impairment in individuals with ID [56, 57] while a substantial body 

of work has suggested that ID results from changes to synaptic function [58] which would 

implicate a wider range of brain areas in the development of ID. Exposure to maternal smoking 

during fetal brain development may therefore lead to widespread and propagating changes in the 

brain that may functionally manifest themselves as ID or other neurodevelopmental disorders. 

Fully understanding the mechanisms by which maternal smoking during pregnancy influences 

risk of offspring ID is not necessary to establish whether an association reflects a causal effect, 

though if causality exists, knowledge of the mechanisms may be useful in guiding treatment in 

order to reduce the effects.  

 

 

1.3 – Epidemiological literature 

The evidence for an association between exposure to maternal smoking during pregnancy and 

persistent differences in brain structure and function has led to a great scientific interest in 

whether smoking in pregnancy is also associated with changes in offspring cognition and 

behaviour.  Systematic reviews of the neurodevelopmental literature [59, 60] have shown 

consistent findings for associations of exposure with poor academic achievement [61-65] and 

behavioural problems in children [66-68], in particular ADHD [69]. Inconsistent effects of 

exposure to smoking during pregnancy have been found for offspring intelligence [61, 70-76], 

memory [66, 72, 73, 77-79], attention and executive function [66, 71, 72, 77, 79-82]. The causal 

nature of these associations remains unclear and may be accounted for by bias in effect 

estimates. In recent years evidence has been collated that suggests the absence of an association 

between smoking in pregnancy and offspring ASD [83-87]. 

The majority of epidemiological research in this area to date has focused on variations in IQ 

within the normal range [61, 70-76]. Very low IQ has at times been used to exclude participants 

in smoking studies [e.g. 88, 89], thus preventing exploration of association in this region of the 

distribution of intelligence. Less is therefore known about the potential impact of smoking 

during pregnancy on the risk of more severe and debilitating cognitive impairments, such as 

those present in ID. Below, I provide a review of the available evidence, specific to the 

association between maternal smoking in pregnancy and offspring risk of ID. This is followed 

by a gathering of evidence for the potential confounders for the association. 
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Table 1-1: Summary of previous studies on the association between maternal smoking during pregnancy and offspring ID 

Study Study design Population Sample size 

Exposure 

definition Definition of ID  

Definition of 

control Estimate (95% CI) Estimate measure 

Drews et al.  

1996 

Case-control Children aged 10, 

born in the 

Metropolitan 

Atlanta area 

between 1975 and 

1976 

221 cases, 400 

controls 

Retrospectively 

collected smoking 

at any time during 

pregnancy 

IQ < 70 on the 

most recent 

psychometric test 

Random selection 

of children of the 

same age and area 

attending public 

school 

1.74 (1.21-2.50) 

unadjusted 

1.56 (1.01-2.41) 

adjusted for 

confounders 

Odds ratio 

Roeleveld et al.  

1992 

Case-control Referrals to the 

Paediatric or Child 

Neurology 

departments of the 

Nijmegen 

University 

Hospital 

(Netherlands) or to 

nearby 

rehabilitation 

centres 

306 cases, 322 

controls 

Retrospective 

collection of 

average number of 

cigarettes smoked 

per day in 

pregnancy 

ICD-9 code 317-

319 with IQ less 

than 80 and no 

specific cause 

Children with 

congenital 

physical handicaps 

of known cause 

1.1 (0.8-1.5) 

unadjusted 

Odds ratio 

Mann et al.  

2009 

Prospective birth 

cohort 

Births between 

1996 and 2002 in 

the South Carolina 

Medicaid billing 

records 

134,596 births 

(1089 cases) 

Tobacco use in 

pregnancy 

recorded on birth 

certificate 

(i) ICD-9 code 

317-319 in the 

Medicaid billing 

records, or (ii) 

record of mental 

handicap in data 

file from the 

department of 

education, or (iii) 

enrolment in 

services from the 

department of 

disabilities and 

special needs 

 
1.00 (0.94-1.07) 

unadjusted 

Odds ratio 
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Study Study design Population Sample size 

Exposure 

definition Definition of ID  

Definition of 

control Estimate (95% CI) Estimate measure 

Mann et al.  

2013 

Prospective birth 

cohort 

Births between 

2000 and 2007 in 

the South Carolina 

Medicaid billing 

records 

165,311 births 

(629 cases) 

Tobacco use in 

pregnancy 

recorded on birth 

certificate 

(i) ICD-9 code 

317-319 on at 

least 5 unique 

occasions in the 

Medicaid billing 

records, or (ii) 

record of mental 

handicap in data 

file from the 

department of 

education, or (iii) 

enrolment in 

services from the 

department of 

disabilities and 

special needs 

 
1.14 (1.07-1.22) 

unadjusted 

Odds ratio 

Huang et al.  

2016 

Meta analysis Drews et al., 

Roeleveld et al., 

Mann et al. and 

Mann et al. 

- - - - 1.10 (1.06, 1.15) Odds ratio 

Braun et al.  

2009 

Case-control Children living 

within the  US 

based Centres for 

Disease Control 

and Prevention’s 

Autism and 

Developmental 

Disability 

Monitoring 

Network that were 

age 8 in 2002 or 

2004 

965 cases, 104,607 

controls 

Tobacco use in 

pregnancy 

recorded on birth 

certificate 

IQ < 70 in health 

or education 

records or written 

letter from 

clinician based on 

previous 

psychometric 

testing if no IQ 

data available 

Children of the 

same age within 

the surveillance 

network 

1.52 (1.27, 1.83) 

unadjusted 

1.12 (0.92-1.36) 

adjusted for 

confounders 

Risk ratio 
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Study Study design Population Sample size 

Exposure 

definition Definition of ID  

Definition of 

control Estimate (95% CI) Estimate measure 

Lundberg et al.  

2010 

Prospective birth 

cohort 

Singleton males 

born between 

1883 and 1988 

with Nordic 

mothers 

205,777 births 

(~15,000 cases) 

Smoking in 

pregnancy (1-9 

cigarettes per day, 

10+ cigarettes per 

day) recorded in 

the Swedish 

medical birth 

register 

Score <= 2 on the 

Swedish conscript 

intellectual 

performance test  

 
1.70 (1.63-1.78) 

unadjusted 

1.27 (1.19-1.34) 

adjusted for 

confounders 

Odds ratio for 1-9 

cigarettes per day 

Hirvonen et al.  

2017  

Prospective birth 

cohort 

Finnish infants 

born alive between 

1991 and 2008 

who were alive at 

one year of age 

and had no major 

congenital 

anomalies 

1,018,256 infants 

(3814 cases) 

Smoking in 

pregnancy 

recorded in the 

Finnish medical 

birth registry 

ICD-9 (codes 317-

319) or ICD-10 

(code F70-F79) in 

the hospital 

discharge register 

or reimbursement 

register of the 

social insurance 

institution by the 

age of 7 years old 

 
1.40 (0.84-2.31) 

<32 weeks 

0.22 (0.03-1.64) 

32-33 weeks 

1.94 (1.31-2.86) 

34-36 weeks 

1.31 (1.13-1.47) 

37-41 weeks 

1.03 (0.60-1.78) 

≥42 weeks 

Hazard ratio for 

each gestational 

length category 

(<32 weeks, 32-33 

weeks, 34-36 

weeks, 37-41 

weeks, ≥42 

weeks) 
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1.3.1 – Maternal smoking in pregnancy and offspring risk of ID 

A limited number of studies have investigated the association between maternal smoking during 

pregnancy and offspring ID (see Table 1-1 for a summary). In this section I will critically 

appraise each of these studies with particular emphasis on evaluating potential epidemiological 

biases.  

Early studies, including Drews et al. [90] and Roeleveld et al. [91], used a case-control design to 

assess the association. Drews et al. used the Metropolitan Atlanta Developmental Disabilities 

Study [92] to identify 221 cases and separately sampled 400 controls randomly from the same 

population.  Roeleveld et al. selected 306 cases and 322 controls from referrals to the Paediatric 

or Child Neurology departments of the Nijmegen University Hospital (Netherlands) or to 

nearby rehabilitation centres. Drews et al. found increased odds of ID for those exposed to 

maternal smoking during pregnancy (unadjusted OR = 1.74; 95% CI = 1.21-2.50;  adjusted OR 

= 1.56; 95% CI = 1.01-2.41) while Roeleveld et al. found no association between exposure and 

outcome (unadjusted OR = 1.1; 95% CI = 0.8-1.5). Roeleveld et al. did, however, find increased 

odds of ID among children of fathers who smoked a cigar or pipe during pregnancy (OR = 2.4; 

95% CI = 1.2-5.1), potentially suggesting a role of second-hand smoke, though the definition of 

the unexposed group is unclear in their writeup. 

Both studies made use of retrospective collection of exposure information through parental 

interview. This method of collection leads to a high risk of information bias as a result of case 

status influencing the error in the exposure measurement (commonly referred to as recall bias). 

This would occur when parents of affected children think more carefully about the different 

exposures and behaviours that they believe may have had an influence on disease development 

than parents of unaffected children. Roeleveld and colleagues argue that by using controls who 

had congenital disorders with known cause this would reduce information bias as the births and 

upbringing of case and control children were more likely to be similar than if healthy controls 

were used. This argument may not hold as, if a known cause has been identified for the 

congenital anomaly, then the parents may be less likely to thoroughly examine the possibility of 

other causes. Further, sampling both cases and controls from hospital referrals may lead to the 

possibility of selection bias, specifically in the form described in Berkson’s seminal work [93]. 

Snoep et al. [94] note that if the exposure (here maternal smoking during pregnancy) does not 

itself lead to a hospital referral, and it seems unlikely that it would, then the resulting bias will 

be eliminated. However, they also state that indirect Berkson’s bias may occur if the exposure 

causes the disease used to define controls or if the exposure has a common cause with the 

diseases used to define controls. Smoking in pregnancy has been associated with pregnancy 

complications [10] which may themselves lead to congenital anomalies. It is therefore possible 

that Roeleveld’s study suffers from Berkson’s bias that makes the cases and controls more 
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similar, thereby masking any effect. In contrast, Drews et al.’s sampling strategy meant that 

controls were sampled from the population that gave rise to the cases, thereby preventing 

selection bias. A final advantage of the study by Drews et al. was that they measured 

socioeconomic status (SES) by census block group of the home address reported on the birth 

certificate. This would reduce information bias in this confounding variable.  

Two studies investigating the aetiology of ID used overlapping birth cohorts obtained  from the 

South Carolina Medicaid billing health services [95, 96]. The first study [95] took 134,596 

births between 1996 and 2002 to investigate the effect of trichomoniasis in pregnancy on ID 

while the second [96] took 165,311 births between 2000 and 2007 to investigate the effect of 

maternal diabetes mellitus at any time on ID. Neither study specifically investigated the effect 

of smoking in pregnancy on ID, however, both had data on prospectively collected tobacco use 

in pregnancy. The cell counts in the descriptives table of each study can be used to obtain 

unadjusted odds ratios of 1.00 (95% CI = 0.94-1.07) and 1.14 (95% CI = 1.07-1.22) 

respectively. Interpretation of these effect estimates should be made with caution given that no 

effort has been made to adjust for confounding factors. The differing effect sizes in the two very 

similar cohorts may be the result of slightly different definitions of ID (see Table 1-1).  

The combined evidence of all four of the above studies was compiled in a meta-analysis [97] 

which suggested a small increase in the risk of ID with exposure to maternal smoking during 

pregnancy (OR = 1.10; 95% CI = 1.08-1.23). The bias in each of the above studies is not 

addressed by combining the statistical associations in a meta-analysis. The conclusion of this 

meta-analysis therefore must also be taken with caution and further evidence is required. Better 

evidence has been obtained from more recent studies that suggested an influence of 

confounding in the association.   

Braun et al. [98] performed a large US-based case-control study of 8 year olds where controls 

were sampled from the population under surveillance for ID and maternal smoking status during 

pregnancy was ascertained prospectively. In this study an elevated risk of ID (defined as an 

IQ<70 on recent psychometric testing; unadjusted OR = 1.52; 95% CI = 1.27-1.83) was strongly 

attenuated after adjustment for the confounders maternal age, race, marital status, education, 

parity and child sex (adjusted OR = 1.12; 95% CI = 0.92-1.36). An elevated risk for males 

whose mothers smoked more than 20 cigarettes a day was found following adjustment for 

confounders (OR = 1.77; 95% CI = 1.20- 2.62); no other adjusted associations were suggested. 

This may suggest that offspring sex modifies any effect of smoking in pregnancy on risk of ID. 

However, using sensitivity analyses the authors suggest that this association may be the result of 

unmeasured confounding. In a sub-cohort of children from North Carolina, Braun et al. 

compared the odds of ID in children exposed to 20+ cigarettes per day during pregnancy to the 

odds in children of non-smokers. Here they showed an adjusted association between smoking 
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20+ cigarettes per day and offspring risk of ID (OR = 1.75; 95% CI = 1.12-2.74). Further 

adjustment for linked area level income at the time of birth lead to attenuation of the association 

(OR = 1.57; 95% CI = 1.00-2.46). The authors use this finding to suggest that the associations 

found for high dosages may still be subject to confounding bias that has not been adequately 

controlled for.  

Another study attempted to make use of the genetics and environment shared between siblings 

to account for unmeasured confounding. In a cohort of over 160,000 male Swedish conscripts, 

Lundberg et al. [99] assessed the association between prospectively reported maternal smoking 

in pregnancy and Swedish military conscript intelligence test score (mean=5, SD=2). A score of 

≤2 was defined as poor intellectual performance. The authors note that individuals with such a 

score would struggle to cope with basic educational programmes, which seems comparable to 

the definition of ID stated in this chapter, though it should be noted that the prevalence of poor 

intellectual performance was much higher (~10%). Given that those already diagnosed with ID 

may be less likely to be invited for conscription the score of ≤2 may not represent the whole 

spectrum of ID. Increased odds of poor intellectual performance were found for moderate (1-9 

cigarettes per day) and heavy (10+ cigarettes per day) smoking during pregnancy before and 

after adjustment for maternal age, height and BMI, maternal and paternal education and 

socioeconomic category, family situation, birth order and age at conscription. However, in an 

analysis of just under 13,000 full sibling pairs from the same cohort, Lundberg et al. compared 

the odds ratios of combinations of smoking across sibling pregnancies to not smoking in either 

pregnancy separately for the older and younger sibling. The analysis is an example of a negative 

control outcome comparison [8, 100, 101] where you would expect to find a stronger effect for 

smoking in the first pregnancy only for first born children and a stronger effect for smoking in 

the second pregnancy only for second born children if a causal effect exists. The results showed 

increased odds of poor intellectual performance for both siblings if the mother smoked only 

during the first pregnancy and a null association for both siblings if the mother smoked only 

during the second pregnancy. This finding was therefore not consistent with a causal effect and 

instead may suggest the association is due to familial confounding. Lundberg et al. also 

compared within-family and between-family estimates [102, 103] (described in further detail in 

Chapter 2) of the association between maternal smoking in pregnancy and offspring intellectual 

performance in the sibling sub-cohort. In this analysis they found that mothers who smoked 

during a larger proportion of their pregnancies had children with lower average intellectual 

performance after adjustment for confounders (i.e. a negative between-family estimate). They 

found that individuals who were exposed to maternal smoking during pregnancy were not likely 

to have different intellectual performance than their unexposed siblings (i.e. a null within-family 

estimate). This finding supports the results of the first sibling analysis, that the association 

between maternal smoking during pregnancy and offspring ID reflects a relationship between 
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factors related to smoking in pregnancy and offspring ID, but not necessarily a causal effect of 

smoking on ID itself.   

Most recently, Hirvonen et al. [104] used a sample of over one million individuals from Finnish 

national registry data to assess the risk of offspring ID associated with various gestational 

lengths. They provided stratified estimates of the association between smoking in pregnancy 

and ID at each gestational length investigated. Associations between smoking in pregnancy and 

intellectual disability were found in term and late preterm pregnancies but not very/moderate 

preterm pregnancies. This may suggest that late preterm and term gestation are more sensitive 

periods, potentially due to time specific windows of fetal brain development [105, 106]. 

Smoking could therefore have an impact depending on the timing of the exposure with a greater 

impact later in pregnancy than earlier on. No association was found for individuals born post 

term however which is inconsistent with this interpretation, as these children would also have 

been exposed during the potential critical window. Issues exist with the analyses and 

presentation of results in this study. Notably, there was no control for socioeconomic status 

which is likely to be an important confounding factor and may have biased effect estimates. 

Further the results suffer from “the Table 2 Fallacy” [107] in which presenting all covariate 

coefficients adjusted for each other leads to difficult and often mistaken interpretation of effect 

estimates. Here the effects of smoking are adjusted for factors such as birth weight and 

pregnancy complications which are potential mediators of the association between smoking in 

pregnancy and offspring ID. Such an adjustment strategy can lead to underestimation of the size 

of a causal effect [108]. 

 

1.3.2 – Evidence of confounding factors 

All observational research is susceptible to confounding bias which can lead to misleading 

conclusions. Confounder bias describes where there exists a common cause of exposure and 

outcome (discussed in detail in Chapter 2). The prior literature has suggested that the 

association between maternal smoking and offspring ID is likely to be at least partly attributable 

to confounding. Below, I describe the evidence for the presence of common causes (also 

referred to as confounders) of maternal smoking during pregnancy and offspring 

neurodevelopmental outcomes generally. 

Several aspects of smoking behaviours have been suggested to be socially patterned. In their 

review of the social determinants of smoking, Hiscock et al. [109] highlight that smoking is 

more prevalent among those with lower socioeconomic position in most studies of developed 

countries using measures such as education, income, manual occupation, neighbourhood 

deprivation, single parenting and car and home ownership. Similar rates of quit attempts have 
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been found between social classes but those of higher SES are more likely to be successful in 

their quit attempts. A review of the literature on smoking and cessation in pregnancy [110] 

suggests that these socioeconomic patterns are relevant to the prenatal period.  

Abnormal neurodevelopment is also socially patterned; associations have been found between 

childhood poverty, brain structure and academic performance [111] and between parental 

education and IQ with offspring IQ at age 5 [112]. Lower early life socioeconomic position has 

been suggested to reduce performance on measures of executive function, such as working 

memory and planning, taken early in life and persisting into middle childhood [113].  

Socioeconomic status is therefore a likely common cause of both smoking in pregnancy and 

offspring neurodevelopment.  

The socioeconomic confounding structure may be changing, however. The prevalence of 

smoking in pregnancy has been decreasing and the socioeconomic patterning has been getting 

stronger over time. Sellers et al. [114] compared smoking behaviour in pregnancy and its 

socioeconomic correlates between The National Child Development Study (NCDS), a UK 

based birth cohort beginning in 1958 and The Millennium Cohort Study (MCS), another UK 

based birth cohort beginning in the year 2000. The comparison showed that, in the UK, smoking 

in pregnancy has become less common in the 40 years between the cohorts but also that those 

who smoke are more likely to experience socioeconomic adversity as measured by home 

ownership, marital status, maternal education, manual occupation and age at birth. Given that 

identification and diagnoses of conditions such as ADHD, ASD and pervasive developmental 

disorders (PDD) have been increasing over time as well [115-117], this may make year of birth 

an important confounding factor.  

Sellers et al. [114] exploited these changes over time to suggest an influence of confounding on 

the association between maternal smoking in pregnancy and offspring neurodevelopment and 

cognition. Using low birth weight (<2500g) as a positive control outcome (described further in 

Chapter 2), they compared the strength of associations in the NCDS with the MCS for the 

effects of smoking in pregnancy on offspring low birth weight and neurodevelopmental and 

cognitive outcomes including symptoms of conduct disorder and hyperactivity and scores for 

maths and reading. They found consistent effects of maternal smoking in pregnancy on low 

birth weight across the two cohorts born approximately 40 years apart but found greater effects 

of smoking on the cognitive measures (specifically conduct disorder and hyperactivity 

symptoms and reading scores) in the later cohort. This comparison suggests that the association 

between maternal smoking in pregnancy and offspring low birth weight is not influenced by 

changes in the determinants of smoking while the association between maternal smoking in 

pregnancy and offspring neurodevelopment is. The association with neurodevelopment is 
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therefore likely to be at least partly explained by socioeconomic confounders which have had 

increasing influence over time. 

Factors other than socioeconomic status may also play a role as confounders of the association 

between maternal smoking during pregnancy and offspring cognition. Parental psychiatric 

disorders, immigration status, age at birth and parity are all associated with both smoking 

behaviours during pregnancy and offspring neurodevelopment. 

Smoking behaviour has been found to be correlated with psychiatric disorders generally, both in 

the population as a whole [118] and among pregnant women [119]. It is unclear as to which of 

these factors would cause the other, or whether they both have a common cause. This is 

important for determining whether psychiatric disorders lie on a confounding or mediatory 

pathway of the association between maternal smoking and offspring neurodevelopment. There 

is some evidence from longitudinal studies that one’s own smoking is associated with worse 

mental health [120], however if a causal effect of own smoking on mental health does exist, it is 

likely to happen over a prolonged period of time, before the pregnancy period. Conversely, 

psychiatric disorders may causally influence rates of smoking specific to the pregnancy period 

as those with a mental illness have been found to have lower rates of smoking cessation than 

those without [121] and therefore may find it harder to quit smoking when they get pregnant. It 

therefore seems sensible to treat maternal psychiatric disorders as a confounder and not a 

mediator.  

Maternal psychiatric history may also be associated with offspring neurodevelopment as a result 

of shared genetics between parent and child [122] or as a result of an adverse early environment 

for the child who’s parent suffers from mental illness [123]. If those who have psychiatric 

disorders are more likely to smoke during pregnancy and are also more likely to have children 

with a psychiatric disorder or ID then this would bias effect estimates to show an increased risk 

of ID even if no causal effect exists.  

A growing body of literature has started to show that children of immigrant mothers have a 

greater risk of being diagnosed with several neurodevelopmental conditions compared to the 

offspring on non-immigrant mothers [124]. In two European based studies, smoking rates of 

pregnant immigrant mothers tended to differ from that of the native population  [125, 126]. The 

socioeconomic patterning of smoking also differed between immigrant and non-immigrant 

mothers. Maternal migration status may therefore bias associations between maternal smoking 

during pregnancy and offspring neurodevelopment in a direction that is dependent on whether a 

population sample contains migrants who smoke more or less than the non-migrant population. 

For example, in a cohort in which migrant mothers were less likely to smoke but more likely to 

have offspring with a neurodevelopmental disorder, the association would be biased so that 

smoking would appear protective if migrant status was not accounted for (under the scenario 
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that there was no causal relationship between smoking during pregnancy and offspring 

neurodevelopmental disorders).  

Younger mothers have been shown to be more likely to smoke, to smoke more often and more 

heavily across a number of cohorts [110]. Very young mothers (those under the age of 20) are 

much less likely to quit smoking than mothers of other ages. The association between parental 

age at birth and offspring neurodevelopment is complex with younger maternal age and older 

paternal age associated with increased risk of several offspring neurodevelopmental disorders 

including ID and behavioural disorders [127, 128]. Maternal and paternal age are strongly 

correlated, however, meaning that it is hard to conclude with confidence that the disorders are 

related specifically to maternal or paternal age or to a large difference between the two. Further, 

maternal and paternal age at birth may indicate socioeconomic status as younger parenthood 

tends to reflect lower socioeconomic backgrounds. Parental age may therefore proxy for the 

influence of socioeconomic effects while also having an influence itself on associations between 

smoking in pregnancy and offspring neurodevelopment.  

Pregnant women who are smokers are less likely to quit smoking with each subsequent 

pregnancy [110]. Increasing parity also has a long-established association with lower 

intelligence scores that is independent of family size and is consistent across socioeconomic 

position [129, 130]. The association between parity and intelligence may not be causal and 

instead could reflect the influence of social rank within a family, as evidenced by a study in 

which no difference was found in the IQs of first born children as compared to second born 

children whose elder siblings had died. The role of parity as a confounding factor is therefore 

unclear. Complex relationships exist between the availability of resources and parity, however. 

As the number of children in a family increases, the available familial resources need to be 

distributed among a greater number of family members. Conversely, greater parity is correlated 

with greater parental age which is in turn associated with increasing wages [131]. Parity may act 

as a proxy variable for resource availability during pregnancy and therefore capture some of the 

confounding influence of socioeconomic position.  

Finally, it is difficult to separate the possible effect of smoking in pregnancy from the effect of 

alcohol consumption during pregnancy. Alcohol and tobacco consumption are commonly 

comorbid in pregnancy [132]. Given that heavy alcohol use in pregnancy can lead to fetal 

alcohol syndrome, [133] which has several neurodevelopmental consequences including 

intellectual disability [134], an association between smoking during pregnancy with 

neurodevelopmental outcomes may simply reflect an effect of alcohol consumption. Alcohol 

use in pregnancy should therefore be accounted for when modelling the influence of smoking.  

In summary, the association between maternal smoking during pregnancy and offspring 

neurodevelopment is likely to be confounded by several factors, including parental 
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socioeconomic status, age at birth, alcohol use in pregnancy, parity, psychiatric history, 

immigration status and year of birth. Any attempts to assess the causal effect of smoking in 

pregnancy on offspring neurodevelopment will need to account for these variables. As 

demonstrated by the sibling studies in the previous section, unmeasured cofounding may still be 

occurring in the association and therefore this list of confounders may well be incomplete.  

 

1.4 – Investigation aims and thesis outline 

This thesis sets out to test the hypothesis that maternal smoking during pregnancy is associated 

with increased risk of offspring ID. I aim to provide evidence of the causal nature of the 

association through triangulation of different causal inference methods. Part 1, consisting of 

Chapters 2, 3 and 4, sets out and develops methodological considerations of the investigation. In 

Chapter 2 I describe the different methods that were used in this investigation and, using 

directed acyclic graphs (DAGs), explain the biases that each method is likely to suffer from. In 

Chapter 3 I use DAGs supported by simulations to explore how assortative mating between 

parents may bias the negative control design, one of the causal inference methods implemented. 

In Chapter 4 I explore how the proportion of missing data affects bias and efficiency of 

estimates obtained from multiple imputation analyses.  

Part 2 of this thesis, comprising of Chapters 5, 6 and 7, describes empirical investigations of the 

association between maternal smoking during pregnancy and offspring ID. In Chapter 5 sibling 

comparisons are used to hold fixed shared familial factors in a cohort derived from Danish 

registry data. Chapter 6 also employs sibling comparisons, this time using Swedish registry 

data, to examine the influence of smoking and snus (a moist smokeless form of tobacco) use in 

pregnancy on offspring risk of ID. The comparison between smoking and snus allows for 

insight to be gained into the mechanism by which smoking may act upon offspring 

development. Another comparison between associations with ID versus with fetal growth 

restriction is used as a positive control analysis to test the ability of the methods used to detect a 

causal effect where one is expected. In Chapter 7, data from the Avon Longitudinal Study of 

Parents and Children is used to present the results of observational and causal inference 

methods that include the negative control design and Mendelian Randomisation.  

I conclude this thesis in Chapter 8, where I collate the evidence across the different studies, 

highlighting what this evidence shows in terms of the causal nature of the association between 

maternal smoking in pregnancy and offspring intellectual disability. I identify the gaps that 

remain in the literature following this work and attempt to suggest what further work could be 

realistically performed to address these.  
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Chapter 2 Establishing causation through 

triangulation of evidence: an 

overview of methodological 

approaches 
 

 

Although the best way to establish causality is to use an experimental design, the ethics and 

feasibility of conducting a randomised control trial that investigates the influence of maternal 

smoking during pregnancy on offspring intellectual disability would be prohibitive. A trial that 

randomised pregnant women to a smoking arm when smoking is a known teratogen would not 

be morally acceptable. Randomising pregnant women to a smoking cessation intervention 

would be more palatable, but the follow up of a sufficient sample size over a period extending 

well into the offspring’s adolescence would be prohibitively expensive. Observational analyses 

using data from established prospective cohorts are the most appropriate alternative. However, 

such analyses are susceptible to biases from several sources that can lead to erroneous 

conclusions. Triangulation of evidence has therefore been recommended [135].  

Triangulation in aetiological epidemiology describes “the practice of strengthening causal 

inferences by integrating results from several different approaches, where each approach has 

different (and assumed to be largely unrelated) key sources of potential bias” [135]. Each 

methodological approach implemented to investigate a research question relies on assumptions 

which may lead to specific biases. By carefully selecting approaches that have complementary 

strengths and limitations, our confidence in results and conclusions can be improved. Consistent 

findings across approaches provides stronger evidence to suggest that an association is causal 

and not the result of any single approach-specific bias. In contrast, inconsistent findings can 

provide insight as to the broader relationship between variables in a network and inform future 

research as to what the biases are and how they may be accounted for.   

To investigate the association between maternal smoking in pregnancy and offspring intellectual 

disability I will use traditional observational analyses and causal inference techniques including 

the negative control design, Mendelian randomisation, sibling comparison designs and cross-

context comparisons. The assumptions and biases of each approach need to first be identified to 

assess whether the weaknesses of each study are addressed by the strengths of the others. It is 

then possible to identify which weaknesses remain and thereby whether the conclusions formed 

from the triangulation approach are still susceptible to biases. In this chapter I describe how 
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causality can be established from observational data and provide a description of each causal 

inference approach used, the key assumptions made, the key sources of bias and, where 

possible, the expected direction of that bias.  

 

 

2.1 – Establishing causality from an observational study 

Before the causal inference methods can be assessed I will set out how causality can be 

established from observational data and describe the different forms of bias that need to be 

addressed. This description has been guided by the unfinished (at the time of writing) work of 

Hernán and Robins [136] and framed in the context of investigating my specific research 

question of whether maternal smoking during pregnancy (the exposure, for this section a binary 

variable denoted by 𝑋) causally influences the offspring’s risk of developing intellectual 

disability (ID; the outcome denoted by the binary variable 𝑌). 

 

2.1.1 – Causal effects 

To determine with certainty if a causal effect exists we would require counterfactual 

information [136], recording for each individual their counterfactual outcome under the scenario 

in which they were exposed to smoking during pregnancy (𝑌𝑥=1) and comparing this to their 

counterfactual outcome under the scenario in which they were not exposed (𝑌𝑥=0). An effect 

can be obtained for each individual, 𝑖, by checking whether their outcome under the exposed 

scenario is not equal to their outcome under the unexposed scenario (i.e. 𝑌𝑖
𝑥=1 ≠ 𝑌𝑖

𝑥=0). A 

population-averaged causal effect could also be obtained across all individuals, for example as a 

ratio of the probability of developing ID in the scenario in which all individuals were exposed, 

relative to the probability of developing ID in the scenario in which no individuals were 

exposed,  

𝑃𝑟(𝑌𝑥=1 = 1)

𝑃𝑟(𝑌𝑥=0 = 1)
, 

also known as a risk ratio. An odds ratio could also be calculated as,  

𝑃𝑟(𝑌𝑥=1 = 1)/𝑃𝑟(𝑌𝑥=1 = 0)

𝑃𝑟(𝑌𝑥=0 = 1)/𝑃𝑟(𝑌𝑥=0 = 0)
. 

If either of these measures was not equal to 1, this would indicate a causal effect for the 

population. An assessment of counterfactuals must obviously be left to the realm of science 
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fiction given that we cannot know an individual’s outcome under both the exposed and 

unexposed scenarios.  

More feasibly a clinical trial could be performed in which pregnant women were randomised 

either to smoke or to not smoke during pregnancy and their offspring followed up to determine 

if they developed intellectual disability. Here we would only have information on the observed, 

randomly assigned exposure value and the corresponding observed outcome. As a result, 

individual-level causal effects cannot be calculated, and the population-averaged effect 

measures now no longer assess the causal effect and instead provide a measure of association 

based on conditional probabilities. The risk ratio now becomes the ratio of the probability of 

developing ID, only among those who were exposed to smoking during pregnancy, relative to 

the probability of developing ID among those who were not exposed to smoking during 

pregnancy,  

𝑃𝑟(𝑌 = 1|𝑋 = 1)

𝑃𝑟(𝑌 = 1|𝑋 = 0)
. 

Hernán and Robins describe explicitly the difference between a measure of causation versus 

association. They state that causation is defined as “a different risk in the same population under 

two different treatment values” whereas association is defined as “a different risk in two disjoint 

subsets of the population determined by the individuals’ actual treatment” [136]. Based on these 

definitions it can be seen why the risk ratio for the counterfactual data is causal whereas the risk 

ratio for the randomised control trial is associational.  

 

2.1.1.1  – Exchangeability  

Some associational effect measures, including the risk ratio, are equivalent to causal effect 

measures provided a set of assumptions hold. The first of these assumptions is exchangeability. 

Exchangeability states that the counterfactual outcome is independent of the observed exposure 

(𝑌𝑥 ⊥ X for all 𝑥). The exchangeability assumption means that the risk of developing ID in the 

exposed group is the same as the risk of developing ID in the unexposed group if the unexposed 

group had in fact been exposed. In other words, the exposed and unexposed groups must be 

comparable in terms of their risk of developing ID that is not attributable to the exposure itself. 

Randomisation of women to smoke or not to smoke during pregnancy would ensure that the 

exchangeability assumption held and enable measures of association to reflect causal effects 

(provided several further conditions that are not discussed in detail here are met, including that 

randomisation was followed, the sample was sufficiently large, adequate concealment of 

allocation and blinding has been used and that there is no differential loss to follow up).  
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In some trials the randomisation procedure can be influenced by factors that also influence the 

outcome of interest. Hernán and Robins give a hypothetical example of patients who are in 

critical condition being randomised to receive a heart transplant with a greater probability than 

patients who are not in critical condition. The outcome of interest in their example, death, is also 

influenced by whether the patient is in critical condition. Exchangeability does not hold in this 

conditionally randomised trial as the untreated group, had they been treated, would not have the 

same risk of the outcome as the treated group because the treated group are more likely to be in 

critical condition. Exchangeability may hold, however, within levels of a factor, 𝐿 (i.e. 𝑌𝑥 ⊥

X | 𝐿). This is known as conditional exchangeability. In the example provided by Hernán and 

Robins, exchangeability holds among those who are in critical condition due to the 

randomisation procedure; the same is true among those who are not in critical condition. By 

conditioning on this factor, we can ensure that measures of association, such as the risk ratio 

shown below, are still equivalent to measures of causal effect within subpopulations: 

𝑃𝑟(𝑌 = 1|𝑋 = 1,  𝐿 = 𝑙)

𝑃𝑟(𝑌 = 1|𝑋 = 0,  𝐿 = 𝑙)
. 

In the context of my research question I may hypothetically decide, perhaps due to amoral 

tendencies, to randomise socioeconomically disadvantaged mothers to smoke with greater 

probability than mothers who are not disadvantaged. As socioeconomic disadvantage is related 

to the risk of the offspring developing ID, unconditional exchangeability does not hold. 

However, within levels of disadvantage (i.e. 𝑙 = 1 for the disadvantaged group and 𝑙 = 0 for the 

non-disadvantaged group) those who are treated will have the same risk of ID as those who 

were not treated, under the scenario they had been treated. Conditional exchangeability, 

therefore, holds within each level of socioeconomic disadvantage. An estimate of the 

population-averaged causal effect (i.e. the unconditional or marginal risk ratio) can be obtained 

by taking a weighted average of the causal effect estimates in the two subpopulations.  

 

2.1.1.2  – Positivity   

The next condition required for estimation of a causal effect from a randomised control trial is 

positivity. The positivity condition states that there is a probability greater than zero for each 

individual of experiencing each level of the exposure group. For a conditionally randomised 

experiment the probability of being assigned to each exposure group must be greater than zero 

within each stratum defined by the variable conditioned upon (Pr(𝑋 = 𝑥|𝐿 = 𝑙) > 0). Further, 

positivity is required for all variables that need to be conditioned upon for exchangeability to 

hold.  
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2.1.1.3  – Consistency  

Next is the consistency assumption which states that the observed outcome for each exposed 

individual is equal to their counterfactual outcome under the scenario that they had been 

exposed (i.e. 𝑌𝑥 = 𝑌 for every individual with 𝑋 = 𝑥). The opposite for the unexposed group is 

also true. This assumption ties the theoretical counterfactual outcome to the realisable observed 

outcome and relies on a precise definition of the counterfactual outcome which is achieved by 

creating a detailed specification of the levels 𝑥 of exposure 𝑋. This is also known as the “no-

multiple-versions-of-treatment” component of the Stable Unit Treatment Value Assumption 

(SUTVA) framework of causality developed by Rubin [137].  

 

2.1.1.4  – No interference 

The final condition states that the counterfactual outcome of an individual is not influenced by 

the treatment status of others [138]. This condition is known as the “no interference” 

assumption and is the second component of the SUTVA framework. It is required as the causal 

effect of treatment on outcome is not well defined in the presence of interference.  

 

2.1.1.5  – Non-collapsibility 

Even when all conditions have been met, a causal effect cannot be estimated using all measures 

of association. The odds ratio is susceptible to an issue known as noncollapsibility that can 

prevent a causal effect being estimated. Noncollapsibility occurs when an unconditional 

population-averaged measure cannot be estimated as the weighted average of the conditional 

measures. For risk ratios the unconditional population-averaged effect will always lie between 

the values of the conditional measures and is therefore collapsible. In contrast, the unconditional 

population-averaged odds ratio may lie outside the bounds of the values of the conditional 

measures (i.e. the unconditional effect may be larger than the largest value of the conditional 

effect or may be smaller than the smallest value of the conditional effect). This property means 

that, even when conditional exchangeability holds, the population-averaged odds ratio cannot 

easily be estimated as a combination of the conditional odds ratios and therefore a causal effect 

estimate cannot be obtained (see the example by Greenland et al. in Table 1 [139]). Provided 

that the outcome is rare, however, it can be shown that the odds ratio approximates the risk ratio 

(proof given by Greenland in [140]), hence the influence of noncollapsibility is also reduced 

under this scenario. It has been highlighted that the outcome must be rare within all levels of 𝐿 

and not simply rare in the population as a whole [136].  
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2.1.2  – Relating observational analyses to a randomised control trial 

As highlighted in the opening of this chapter, a randomised control trial would not be ethical to 

conduct. Provided the conditions of exchangeability, positivity, consistency and a lack of 

interference hold, then analysis of observational data can conceptually be thought of as being 

equivalent to a randomised control trial and a causal effect measure can be identified. The 

definitions of these conditions are the same for observational studies as they are for randomised 

control trials, however, the feasibility of these conditions in an observational study are more 

difficult due to the lack of experimental control. Exchangeability in observational studies, and 

its relationship to types of systematic bias is explored in detail below in Section 2.2  

In a randomised control trial positivity occurs by design, in part by making those individuals for 

whom positivity would be untenable, ineligible for inclusion. Positivity is harder to ensure in an 

observational study. In an observational setting, the conditioning set 𝐿 required for conditional 

exchangeability, is likely to contain several factors. This can lead to many strata, some of which 

may contain a set of individuals with a zero probability of experiencing the exposure. This can 

be checked empirically, however, by testing whether there are exposed and unexposed 

individuals at every level of 𝐿 (i.e. across all combinations of adjusted variables). 

In an observational setting the exposure is not applied uniformly to all those who experience it. 

As a result, the definition of the levels of exposure as a binary measure may not be precise 

enough for consistency to hold. The current epidemiological literature presented in Chapter 1 

suggested that timing of exposure and the quantity of cigarettes smoked may both influence the 

risk of developing ID. It may be possible that the offspring of a mother who smoked early in 

pregnancy but then quit would not develop ID, while that same offspring would develop ID if 

their mother smoked throughout pregnancy. The consistency condition would not hold here as 

in both cases the mother smoked during pregnancy, but the observed outcome is not the same 

(𝑌𝑥 does not always equal the same value of 𝑌 despite 𝑥 = 1 in both scenarios). A similar 

argument could be made regarding the quantity of cigarettes smoked during pregnancy. Factors 

such as timing and dosage of exposure therefore need to be accounted for when defining levels 

of binary exposure variables for consistency to hold and causal effects to be estimated. 

I have now set out a general framework by which measures, including the risk ratio and odds 

ratio, under very specific conditions, can be used to estimate a causal effect of an exposure on 

an outcome in a study of observational data.   
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2.2 – Bias in observational studies 

In this section I will describe the scenarios under which bias is likely to occur in observational 

studies. Bias under the null is of particular importance here. It describes the estimation of an 

association between the exposure and outcome even when no causal effect exists. Bias of any 

kind can be detrimental as it can lead to the over, or underestimation of the true influence of an 

exposure in the risk of disease which can have important consequences for policy decisions. The 

biases to be described are known as confounding bias, selection bias, information bias and 

missing data bias. As will be seen, the concepts of confounding and selection bias are closely 

related to the concept of exchangeability which has already been covered.  

 

2.2.1 – A brief introduction to directed acyclic graphs 

To aid in this description I will make use of directed acyclic graphs (DAG) [141]. The 

explanation of how DAGs function will make use of the following: 

DAG (i) -   𝐴 → 𝐵 → 𝐶 

DAG (ii) -  𝐴 ← 𝐵 → 𝐶 

DAG (iii) - 𝐴 → 𝐵 ← 𝐶 

DAG (iv) - A → 𝐵 → 𝐶 

DAG (v) -  A ← 𝐵 → 𝐶 

DAG (vi) - A → 𝐵 ← 𝐶 

For those unfamiliar with DAGs, they are directed, meaning that all edges between nodes 

indicate the direction of the causal relationship between those variables, and acyclic, meaning 

you cannot follow the path extending from a node back to that node (no variable can cause 

itself). The absence of an edge between nodes means that it is assumed that there is an absence 

of a causal relationship between those nodes. Known common causes of any two variables must 

be included within the graph. DAGs can be used to establish whether any two variables that do 

not have a direct connection between them are associated (also referred to as 𝑑-connected) or 

are independent (𝑑-separated). Three rules guide 𝑑-connection and 𝑑-separation [141]:  

Rule 1. Unconditional separation – 𝐴 and 𝐶 are 𝑑-connected if there is an unblocked 

path between them.  

Here a path is any set of consecutively connected nodes, irrespective of the direction of the 

edges connecting those nodes. The path is unblocked if there are no collider nodes (i.e. a  node 

with two arrows both directed towards it). For example, 𝐴 and 𝐶 are 𝑑-connected in the DAGs 

(i) and (ii), but are 𝑑-separated in DAG (iii) because 𝐵 is a collider node/variable.  
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Rule 2. Blocking by conditioning – 𝐴 and 𝐶 are 𝑑-connected, conditioned on a set of 

nodes 𝑍 if there is a collider-free path between 𝐴 and 𝐶 that traverses no 

member of 𝑍. If no such path exists, then 𝐴 and 𝐶 are 𝑑-separated or 

“blocked” by 𝑍.  

DAGs use a square around a variable to indicate that the variable has been conditioned upon. 

Using Rule 2 it can be seen that 𝐴 and 𝐶 are 𝑑-separated in DAGs (iv) and (v) as the path is 

blocked by the set 𝑍 which consists of a single variable 𝐵.   

Rule 3. Conditioning on a collider – If a collider is a member of the conditioning set 

𝑍, or has a descendant in 𝑍, then it no longer blocks any path that traces this 

collider.  

Rule 3 means that 𝐴 and 𝐶 are 𝑑-connected in DAG (vi) as 𝐵 is a collider variable that has been 

conditioned upon. Similarly, if there was a variable 𝐷 that was caused by 𝐵, and we conditioned 

upon 𝐷, then 𝐴 and 𝐶 would also be 𝑑-connected in this situation.  

 

2.2.2  – Counterfactuals and directed acyclic graphs 

The concepts of exchangeability and DAGs were developed under two separate frameworks of 

causal inference: the counterfactual and causal-graph frameworks respectively. The two 

frameworks do not overlap perfectly, however an attempt to identify and justify commonality 

between them has been attempted by Flanders and Eldridge [142]. Their work highlighted that 

the following claims hold:   

Claim 1. The presence of exchangeability and faithfulness result in the absence of a 

biasing path. 

Here faithfulness is used to define whether the relationships between variables in a DAG (i.e. 𝑑-

connectedness and 𝑑-separation) are reflected in the statistical dependencies between those 

variables. A biasing path is defined as a path between exposure and outcome that is unblocked 

by controlled collider variables or uncontrolled non-collider variables. This path must be 

undirected, in that the arrows on the path are in both directions (such as is the case in DAG (ii) 

described in Section 2.2.1 ). This is in contrast to a directed path from exposure to outcome, in 

which all arrows flow in the same direction (such as DAG (i)). Claim 1 means that, provided a 

DAG truly reflects the data observed in the real world, if exchangeability holds, we should not 

be able to find a biasing path from exposure to outcome.  

Claim 2. Absence of a biasing path implies exchangeability.  
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Claim 2 is, in essence, the reverse of Claim 1, though Flanders and Eldridge provide separate 

mathematical proofs for both claims and the proof for claim 2 does not require some of the 

subtler details of faithfulness, related to setting specific values for parameters, that I have not 

attempted to describe here. Claim 2 therefore implies that we can use DAGs to infer 

exchangeability.  

Claim 3. Absence of a biasing path and presence of consistency implies no bias.  

The final claim presented here (several more are presented by Flanders and Eldridge) states that 

the combination of the absence of a biasing path, and therefore exchangeability, and presence of 

consistency will lead to no bias of the exposure-outcome association measure, which therefore 

reflects the causal effect measure. This claim seems incomplete however based on our 

understanding of required identifiability assumptions laid out in Section 2.1 . It stands to reason 

that positivity and lack of interference should also hold within the DAG for causal effects to be 

identified.   

 

2.2.3 – Confounding bias 

Confounding bias occurs when there is a set of determinants, 𝐿, of the exposure that also 

influence the risk of the outcome. This results in the counterfactual risk of developing the 

outcome not being independent of the actual exposure: 𝐿 influences the probability of the 

exposure and the outcome meaning that those who were exposed do not have the same risk of 

developing the outcome as those who were not exposed in the counterfactual scenario that they 

were exposed. Conditioning on the full set 𝐿 would ensure conditional exchangeability (i.e. 

𝑌x ⊥ 𝑋 | 𝐿), however, in observational data not all confounding variables will have been 

identified or measured. The full set 𝐿 contains the subsets 𝐶, measured confounding variables, 

and 𝑈, unmeasured confounding variables. A DAG of this scenario is presented in Figure 2-1. 

In this DAG both variables, 𝐶 and 𝑈 are determinants of the exposure and outcome (there is an 

arrow from the confounding variable to the exposure and to the outcome) and therefore create 

biasing pathways along 𝑋 ← 𝐶 → 𝑌 and 𝑋 ← 𝑈 → 𝑌. The biasing pathway 𝑋 ← 𝐶 → 𝑌 can be 

blocked by conditioning on 𝐶 (i.e. 𝑋 ← 𝐶 → 𝑌), however the path 𝑋 ← 𝑈 → 𝑌 cannot be 

blocked as there is no recorded information on 𝑈. This can prevent our use of conditional 

exchangeability in obtaining an unbiased estimate of the causal effect (i.e. our associational 

measure does not reflect the causal effect measure).  

The size of the bias in the associational effect measure from the causal effect measure is a 

function of the size and direction of the associations of the confounder with each of the 

exposure and the outcome. Inaccurate measurement of confounding variables can limit the 

amount of confounding bias that is accounted for by adjustment.  
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Confounding bias need not strictly be the result of a single determinant of the exposure and 

outcome. For example a third variable 𝐴 may be related to 𝐶 such that a biasing path could be 

created along either 𝑋 ← 𝐶 ← 𝐴 → 𝑌 or alternatively 𝑋 ← 𝐴 → 𝐶 → 𝑌. Both pathways 

provide examples of confounding bias. If 𝐴 is observed then controlling for either 𝐶 or 𝐴 would 

block the biasing pathway and provide conditional exchangeability. Where 𝐴 is not observed 

then only 𝐶 can be conditioned upon. 

In Chapter 1 I have described how the literature suggests that the association between maternal 

smoking in pregnancy and offspring ID is likely to be confounded. Further evidence suggests 

that previous studies have been unable to control for all confounding and that residual 

confounding remains, possibly due to potential confounders not having been identified. Other 

methods than simple conditioning (also known as adjustment) must therefore be used to account 

for this confounding.  

 

 

2.2.4 – Selection bias 

Selection bias occurs when conditioning on a variable, or set of variables, 𝑆, leads to a lack of 

exchangeability. It can be seen in Figure 2-2a that 𝑋 and 𝑌 are both determinants of 𝑆. If 𝑆 is 

not conditioned on, then it blocks the path 𝑋 → 𝑆 ← 𝑌, as it is a collider variable (see Rule 2 of 

DAGs in Section 2.2.1 ) and only the path 𝑋 → 𝑌 remains unblocked. Conditioning on 𝑆 opens 

a biasing pathway along 𝑋 → 𝑆 ← 𝑌. Here unconditional exchangeability holds but conditional 

exchangeability does not. Where 𝑆 represents selection into a study it is conditioned on by 

 

Figure 2-1: DAG of the relationship between exposure (X) and outcome (Y), both of which are influenced by 

confounders that are measured (C) or unmeasured (U). The box around C, means that we condition, or adjust, for 

this variable in models..   

X Y 

U 

C 
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default as we are looking at the effect of exposure on outcome only among those who are in our 

study population. More complicated examples can also occur such as that shown in Figure 2-2b 

where selection is influenced by both 𝑋 and a second variable 𝐴 that influences the outcome, 

thereby leading to the open biasing pathway 𝑋 → 𝑆 ← 𝐴 → 𝑌.  Conditioning on 𝐴 would close 

this biasing pathway, however, if we are unaware of 𝐴’s relationship with selection into a study 

or haven’t measured 𝐴, then we are unable to do so. 

When creating a cohort of individuals to study, ensuring that the selected cohort is 

representative of the population of interest aids in reducing selection bias. In DAG terms, a 

representative sample of the population will have as few variables as possible that point to 𝑆, 

selection, and therefore the chance of a biasing pathway existing as a result of conditioning on 𝑆 

is reduced. In a counterfactual framework, if the sample is not representative of the total 

population, then even if exchangeability held for the total population, it would likely not among 

the selected sample. 

 

 

2.2.5  – Information bias 

Variables are frequently measured with error that can lead to bias in effect estimates under 

specific scenarios. Error terms are often ignored in DAGs but can be represented easily based on 

the works of Hernán and Cole [143] and Shahar [144]. In Figure 2-3a the values 𝑋∗ and 𝑌∗ are 

used to represent the value of the exposure, 𝑋, and outcome, 𝑌, that are observed with error, 𝑒𝑋 

and 𝑒𝑌. Analysis is based on assessing the association between the observable 𝑋∗ and 𝑌∗, which 

represents the underlying association of the true values of the exposure and outcome, 𝑋 and 𝑌. 

In this example the error structure is independent as the error terms do not have a common 

cause and non-differential as the error terms are not influenced by other variables in the 

 

Figure 2-2: DAGs of the relationship between exposure (X) and outcome (Y), conditioned upon the variable S which 

is either a common effect of the exposure and outcome (as in part a) or is a common effect of the exposure/outcome 

and an ancestor variable for the outcome/exposure (as in part b). 

a) b) 
X Y 

S 

Y 

A  

X 

S  
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network. This error structure can lead to information bias, but will not lead to bias under the 

null. 

Information bias under the null will occur when the error terms are either dependent, or the error 

structure is differential. Where error terms are produced by the same mechanism (they have a 

common cause on a DAG) they will be dependent (see Figure 2-3b). Such would be the case if 

the same person reported information on the exposure and the outcome. As a result there is an 

open biasing pathway from 𝑋∗ to 𝑌∗ along 𝑋∗ ← 𝑒𝑋 ← 𝑒𝑋Y → 𝑒𝑌 → 𝑌∗, where 𝑒𝑋𝑌 is the 

common cause of 𝑒𝑋 and 𝑒𝑌. This type of information bias can be reduced by using different 

sources for the ascertainment of exposure and outcome.  

Differential error can occur in the exposure or the outcome (see Figure 2-3c for an example of 

independent differential exposure error and Figure 2-3d for an example of independent 

differential outcome error). Differential exposure error, where the probability of exposure 

misclassification is influenced by the outcome, will lead to an open biasing pathway from 𝑋∗ to 

𝑌∗ along 𝑋∗ ← 𝑒𝑋 ← 𝑌 → 𝑌∗. Even if no association between exposure and outcome exists (i.e. 

no arrow from X to Y), an association between 𝑋∗ and 𝑌∗ may still be estimated due to bias 

from this pathway. If 𝑋 → 𝑌 does exist, then the point estimate of the association between 𝑋∗ 

and 𝑌∗ may be biased away from the value of the point estimate for the association between 𝑋 

and 𝑌 due to the same biasing path. Differential outcome error occurs when the probability of 

outcome misclassification is influenced by the exposure. The corresponding biasing pathway is 

opened along the path 𝑌∗ ← 𝑒𝑌 ← 𝑋 → 𝑋∗.   

Differential exposure error is unlikely in the context of my research question provided that I use 

prospectively collected information on maternal smoking during pregnancy. Failure to do so 

could lead to mothers of children who have developed ID systematically reporting their 

smoking during pregnancy with greater (or perhaps lesser) accuracy than the mothers who do 

not have a child who developed ID. This is commonly referred to as recall bias. Similarly, 

differential outcome error seems unlikely as the temporal distance between exposure to smoking 

and diagnosis of ID mean that smoking in pregnancy is unlikely to directly influence 

measurement error in the outcome.  

More complex scenarios could exist where an external factor creates an association between 

exposure/outcome and error. Indirect paths from 𝑌 to 𝑒𝑋 or from 𝑋 to 𝑒𝑌 could be created if 

determinants or descendants of the exposure/outcome are also determinants of measurement 

error in the outcome/exposure. Several examples can be thought of such as (i) a genetic 

propensity for intellectual disability in the mother could influence the accuracy of her self-report 

of smoking during pregnancy, (ii) lower socioeconomic status, which predicts increased 

smoking, may influence access to professional assessments of intellectual disability which could 
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in turn lead to misclassification of the outcome and (iii) potential consequences of exposure to 

smoking such as reduced lung function may increase contact with medical services which may 

increase the likelihood of an accurate assessment of intellectual disability. As with confounder 

bias, if the cause of the error is unknown or unmeasured then we will be unable to adjust for it 

in analyses, which would block the biasing pathway. Methods beyond simple adjustment 

strategies will need to be used to account for information bias from differential error structures 

that involve indirect pathways.   

 

  

Figure 2-3:DAGs of the relationship between exposure X and outcome Y, measured with error eX and eY respectively 

to give the observed values X* and Y*. The relationship between each of these variables provide error structures that 

are a) independent non-differential, b) dependent non-differential or c) and d) independent differential (see the main 

text for a description of these terms. Dependent differential error (not shown) is also possible.         

X Y 

X* Y* 

eX eY 

X Y 

X* Y* 

eX eY 

X Y 

X* Y* 

eX eY 

X Y 

X* Y* 

eX eY 
eXY a) b) 

c) d) 



 

31 

 

2.2.6 – Missing data bias 

Missing data can lead to selection bias under specific circumstances as a result of conditioning 

upon whether the data has been observed. Bias arising in this way is almost inevitable in 

epidemiological studies and is therefore worth specific mention. Using Rubin’s terminology 

[145], reasons for missing data (also referred to as missingness) are classified as: missing 

completely at random (MCAR) where the probability of missingness  does not depend on either 

observed or missing data, missing at random (MAR) where conditional on the observed data the 

probability of missingness is independent of unobserved data and missing not at random 

(MNAR) where the probability of missingness is dependent on unobserved data even after 

conditioning on observed data.  

It is commonly believed that analysis using only data with non-missing values for all variables 

(complete case analysis; CCA) is unbiased only in the case where the missing data mechanism 

[146] is MCAR. This has been shown not to be the case; CCA can be unbiased in instances 

where data are MAR or MNAR [147-149]. Recent work by Hughes et al. [150] showed that for 

linear regression the exposure coefficient is biased when the probability of missingness in any 

variable depends on the outcome variable, and for logistic regression, when the probability of 

missingness in any variable is dependent on the outcome and the exposure.  

Where CCA is biased, other methods such as multiple imputation (MI) [151-154] or inverse 

probability weighting [155] can be used. MI requires that the data be MCAR or MAR, though 

has the benefit that the probability of missingness can be explained by auxiliary data that is not 

included in the analysis model [156]. This is useful in cases where the MAR assumption is 

fulfilled by mediator variables for the exposure outcome association, inclusion of which in the 

analysis model would remove the portion of the effect of exposure on outcome that acts via the 

mediator. It is often impossible to verify that the data are MAR, however, and expert knowledge 

of the patterns of missing data is required. My recent work (reproduced in Chapter 4) displayed 

that MI analyses in which the data are not MAR show increasing amounts of bias with 

increasing proportions of missing data [157]. While we argued that the proportion of missing 

data should not be used to guide decisions on MI, we also concluded that sufficient auxiliary 

information must be available to fulfil the MAR assumption and avoid bias using this method.  

Previous work in the Avon Longitudinal Study of Parents and Children (ALSPAC) has shown 

that increased probability of drop out from the cohort study is predicted by low socioeconomic 

status, maternal smoking in pregnancy and by having a neurodevelopmental disorder [158]. 

Missing data are therefore dependent on both the exposure and outcome and CCA is likely to be 

biased. If missing data in the outcome variable is more likely among those who have the 

outcome, for example if having ID made attendance at study clinics prohibitive, then the data 
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are MNAR and MI will also be biased. Methods other than MI are likely to be needed to address 

the biases that arise from missing data.  

 

 

2.3 – Assessment of causal inference methods 

I have described in Section 2.2 how different forms of bias arise in epidemiological studies. 

Some, but not all, of these biases can be addressed by careful choice of which variables to 

condition upon (adjust for in regression models) and when and how each variable is measured. 

The presence of variables in the causal network that are unmeasured or are unknown causes of 

the exposure, outcome, or error of the measurement of either/both can lead to bias that cannot be 

addressed by conditioning on measured variables. In this section I will describe methods that 

attempt to address such biases, including the negative control design, Mendelian 

randomisations, sibling comparison designs and cross context comparisons. Other methods for 

causal inference such as marginal structural models and propensity scores could be used 

(described here [159]) but were not implemented as part of this thesis. 

 

2.3.1  – Negative control design 

In biological research the negative control design is implemented to test whether factors other 

than the treatment of interest may have led to a causal interpretation of experimental results (see 

the work by Lipsitch et al. [100] for examples). The design compares the magnitude of an 

estimate of a treatment-outcome association against the estimate of another association (the 

negative control association) in which either the treatment, or the outcome, has been replaced 

with a variable such that the new association is not plausibly causal via the hypothesized 

mechanism.  

The negative control design has been adapted for use in epidemiological research [8, 100, 101, 

160]. In this setting the negative control design concedes that bias in the estimate of the causal 

effect is inevitable, however, it exploits the fact that different associations may be biased to the 

same extent. Provided the association of interest (AOI) and the negative control association 

(NCA) share similar biasing pathways the two estimates can be compared. The bias away from 

the causal effect estimates of both associations should be influenced to the same extent by these 

biasing pathways. If the effect estimate of the AOI is substantially more extreme than that of the 

NCA then this provides evidence in favour of the association being causal in nature. 

Interpretation of the association estimates of the AOI and NCA themselves is therefore not the 

primary purpose of this design, only the comparison of the two. It is left to the researcher to 
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subjectively interpret whether the size of the difference in estimates is clinically meaningful. 

Bootstrapping can be used to create a confidence interval to allow for statistical testing of this 

difference. 

Negative control designs can be used to assess whether prenatal exposures are causally related 

to outcomes via an in-utero pathway. Here the association of maternal exposure with an 

outcome (the AOI) is compared to the association of the paternal exposure with the same 

outcome (the NCA).  Early applications of the design assessed the association of maternal 

smoking in pregnancy on offspring low birthweight (see the commentary by Keyes et al. [161] 

for a brief history) while more recent examples using ALSPAC are provided by Taylor et al. 

[162] and Richmond et al. [163]. These studies respectively assessed whether maternal smoking 

in pregnancy is associated with offspring depression and whether maternal body mass index 

(BMI) is associated with methylation of the offspring HIF3A gene. The paternal exposure may 

have an in-utero effect, such as would be the case in the first example where passive smoking or 

changes in sperm quality as a result of smoking may influence offspring depression. It has been 

argued by Davey Smith, however, that associations arising by such different mechanisms are 

unlikely to be equal in magnitude to that of the association with the maternal exposure [8]. 

 

2.3.1.1  – Assumptions of the negative control design 

A DAG of the negative control design assessing the causal nature of a prenatal exposure is 

presented in Figure 2-4. The DAG is split into two parts to reflect biasing pathways from 

confounding bias and from information bias. It should be noted the DAG additionally includes 

bidirectional arrows, ↔, to show that two variables have common causes that for simplicity are 

not shown in the DAG, but the result of which is an open path between the two variables. In 

context of my research question, the variables 𝑀 and 𝑃 are the true values of maternal and 

paternal smoking during pregnancy, Y is offspring intellectual disability, and 𝐶 and 𝑈 are 

measured and unmeasured confounding respectively.  The variables 𝑀∗, 𝑃∗ and 𝑌∗ are the 

observed values of 𝑀, 𝑃 and 𝑌 measured with error 𝑒𝑀, 𝑒𝑃 and 𝑒𝑌 respectively. In the design, 

we are comparing the sum of all paths from 𝑀 to 𝑌 to the sum of all paths from 𝑃 to 𝑌. For this 

comparison to be useful in informing whether the association between M and Y is causal, the 

following assumptions are made: 

Asumption 1. The bias from path 𝑀 ← 𝑈 → 𝑌 should be approximately equivalent to 

P  ← 𝑈  → 𝑌 (see Figure 2-4a). 

Asumption 2. The bias from 𝑀∗ ← 𝑒𝑀 ↔ 𝑌 → 𝑌∗ should be approximately equivalent to 

𝑃∗ ← 𝑒𝑃 ↔ 𝑌 → 𝑌∗ (see Figure 2-4b). 
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Asumption 3. The bias from 𝑌∗ ← 𝑒𝑌 ↔ 𝑀 should be approximately equivalent to 𝑌∗ ←

𝑒𝑌 ↔ 𝑃 (see Figure 2-4b). 

Assumption 1, describing the equivalence of biasing paths arising from unmeasured 

confounding, may not be reasonable in the context of smoking during pregnancy. Societal 

norms mean that a mother who smokes in pregnancy may be more likely to suffer judgement 

from her peers than if the father smokes during the same pregnancy. It is therefore possible that 

the smoking behaviour of mothers are on average more likely to change than fathers in response 

to becoming pregnant. Though the confounding structures of maternal and paternal smoking 

may usually be similar, they may not be so during the period of pregnancy. 

Assumptions 2 and 3 describe biasing pathways arising from information bias. In Section 2.2.5  

I described how information bias via direct routes can be minimised, and provided these 

approaches are taken for both the maternal and paternal associations assumption 2 and 3 should 

hold. In the same section I also described three scenarios by which information bias could arise 

via indirect routes. Each of these scenarios would likely affect both the maternal and paternal 

associations equally and hence assumption 2 and 3 would likely hold.  

 

2.3.1.2 – Further considerations 

Measurement error in the exposure or negative exposure has been shown to bias the estimate of 

the difference in maternal and paternal association sizes even in the absence of a biasing 

pathway. Sanderson et al. [164] used simulations to show that bias in the estimate of the 

difference will arise if there is greater error in the measurement of the exposure than the 

negative exposure (or vice versa). If there is no effect of the exposure or negative exposure on 

the outcome, then the estimate of the difference will be unbiased if there is equivalent error in 

both measures. However, when there is an effect of the exposure on the outcome, but no effect 

of the negative exposure, equivalent rates of error in both measures will lead to an 

underestimate of the difference in association sizes. This finding is important in guiding the 

choice of measure for maternal and paternal smoking during pregnancy. Paternal smoking 

during pregnancy is often recorded either via self-report or via maternal report. Where smoking 

is reported by a second individual, as in the case of maternal report of paternal smoking, this 

may increase the rate of error in paternal smoking measures while error in maternal smoking 

remains unchanged. The work by Sanderson et al. shows that this may bias the estimate of the 

difference in association sizes. I am therefore encouraged to make use of paternal self-report, 

though it is important to note that increased perceived stigma of maternal than paternal smoking 

during pregnancy may lead to greater error in maternal report of maternal smoking than the 

error in paternal report of paternal smoking. 
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The design requires two further conditions for the comparison of maternal to paternal smoking 

in pregnancy to be valid. First, the exposure and negative exposure should be measured on the 

same scale and second, the timing of the exposure and the negative exposure must be equivalent 

so that the comparison is relevant.  

In summary the negative control design makes no attempt to control for biases in the maternal 

and paternal associations that are the result of unknown or unmeasured variables. Instead the 

design assumes the two associations to be equivalently biased and looks to assess the difference 

in size between them. Assortative mating has been highlighted as a potential issue for the 

negative control design and a method for resolving this has been proposed [101]. This issue and 

its proposed solution will be explored in depth in Chapter 3 using DAGs and a simulation study.  

 

 

 

Figure 2-4: DAGs of the negative control design which compares the association between maternal exposure 

(M) and outcome (Y) to paternal exposure (P) and outcome. The associations can be influenced by confounding 

from measured (C) and unmeasured confounders (as in part a) and by error in the exposure and outcome (as in 

part b). 
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2.3.2 – Mendelian randomisation 

Where an exposure-outcome association is biased by confounding factors, variables that 

strongly predict the exposure but are not associated with the confounding factors can be used as 

proxies for the exposure to mitigate the influence of the confounding and allow a causal effect 

to be estimated. Such an analysis is known as an instrumental variable analysis and the variables 

used to proxy the exposure are known as instruments. Mendelian randomisation (MR) [165, 

166] describes a form of instrumental variable analysis in which the instruments are genetic 

variants, otherwise known as single nucleotide polymorphisms (SNPs). Mendel’s laws of 

segregation and independent assortment mean that MR can be thought of as emulating the 

randomisation process in clinical trials.  

 

2.3.2.1  – MR assumptions  

MR relies on three key assumptions (see Figure 2-5 for a visual guide): 

Asumption 1. The instrument, 𝑍, is strongly associated with the exposure, 𝑋 

Asumption 2. The instrument does not have a common cause with the outcome (i.e. is not 

associated with confounder variables, 𝑈) 

Asumption 3. The instrument influences the outcome, 𝑌, only via its influence on the 

exposure 

Provided these assumptions hold, a test of the null hypothesis, that there is no causal effect of 

exposure on outcome, can be performed. Verification of this set of assumptions is not 

straightforward, however.  

Fulfilment of Assumption 1 has largely relied on the strength of association of SNPs with the 

exposure obtained from genome wide association studies (GWAS) where a genome wide 

significance threshold of p < 10-8 has been employed as a cut off. Smoking has been suggested 

to be strongly influenced by genetic variation [167] and a recent GWAS of smoking behaviours 

in 1.2 million individuals (the GSCAN study [168]) has revealed a number of variants 

associated with smoking initiation and number of cigarettes smoked per day at the required 

genome-wide significance threshold. Relying on the strength of association in GWAS studies is 

naïve however, as recent work by Morris et al. has identified that these associations may be 

biased as a result of population stratification, dynastic effects and assortative mating [169]. 

Population stratification, describing systematic differences in allele frequencies between 

subgroups of a population, is frequently accounted for in GWAS by restricting to a homogenous 

population (for example restricting only to members of one race) and adjusting for the first 10-

20 principal components of genotype, which capture differences in allele frequency between 

subpopulations. It has been highlighted that genetic associations still reflect geographic 
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structure, and therefore potentially population stratification, even after the first 100 principal 

components have been adjusted for in models [170]. Dynastic effects, where offspring 

phenotype is influenced by inherited genetics as well as directly by the realised phenotype of the 

parents, and assortative mating, where parents select each other based upon phenotype, can also 

lead to biased estimates of genotype-phenotype associations. Morris et al. suggest that GWAS 

should use family-based designs instead of focusing on samples of unrelated individuals in 

order to account for these effects. Until such GWAS have been performed we must use GWAS 

data with potentially biased associations, keeping in mind the effects this bias may have on MR 

analyses. 

The biasing effect of population stratification can lead to violation of Assumption 2, the 

independence assumption. When the subgroups of the population with differing allele frequency 

are defined by a determinant of the outcome, the relationship between the instrumental variable 

and the outcome is confounded. Assessment of whether the independence assumption is 

plausible can be performed by investigating the relationship between the genetic variants and 

the determinants of the outcome [171].  

Figure 2-5: DAG of the assumptions made in a Mendelian randomisation analysis in which a genetic variant (Z) is 

used as a proxy for the exposure (X). Z is not caused by confounding factors or causes (U) of the outcome (Y) and 

only influences the outcome via the exposure. Here // has been used to indicate that the path between variables 

should not exist. 

Z 

U 

Y X 

// 

// 

Assumption 1: Z is robustly associated with X 

Assumption 2: Z is not associated with U 

Assumption 3: Z influences Y only through X 
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Assumption 3, the exclusion restriction criteria, can be violated as a result of horizontal 

pleiotropy [171], where genetic variants result in multiple processes that can cause the outcome, 

at least one of which does not act via the exposure of interest. For example genetic variants for 

educational attainment also predict smoking behaviour [172] and therefore may show up as hits 

in a GWAS of smoking behaviours. These maternal SNPs for educational attainment could 

influence the risk of offspring ID independently of the mother’s smoking behaviour thereby 

violating Assumption 3.  

 

2.3.2.2 – MR implementation  

MR can be implemented using summary statistics from two independent GWAS, one for the 

exposure and one for the outcome, in what is known as two-sample MR [173, 174]. Here the 

causal effect of exposure on outcome can be obtained for each SNP contained in both GWAS by 

using a ratio of the beta coefficient for the exposure relative to the beta coefficient for the 

outcome. Where both exposure and outcome are binary, this is a ratio of the mean change in 

log-odds of the outcome with each allele for a given SNP, relative to the mean change in log-

odds of the exposure with each allele for the SNP. An average effect across all available SNPs 

can then be obtained using the inverse variance weighted (IVW) method [173].  

Sensitivity analyses, such as fitting MR Egger [175, 176], weighted median [177, 178] and 

weighted mode [179] estimators can be used to explore whether the IVW estimate is biased by 

violations to the MR assumptions. Each of these estimators makes different modifications to the 

MR assumptions and can therefore be used collectively to provide information about potential 

bias [135]. 

MR-Egger relaxes Assumption 3, allowing and correcting for the presence of horizontal 

pleiotropy (i.e. the genetic variant influences the outcome via a path other than through the 

exposure). Using multiple genetic variants as instruments, MR-Egger fits a weighted linear 

regression model of the SNP-outcome coefficients, obtained from GWAS, on the SNP-exposure 

coefficients with an intercept term. If the intercept were constrained to zero, this model would 

produce a coefficient for the SNP-exposure term that is equal to the IVW estimate. MR-Egger 

does not constrain the intercept to zero. If there is no horizontal pleiotropy then the intercept 

term would be equal to zero as when the SNP-exposure association is zero there should also be 

no change in the outcome. A non-zero intercept therefore estimates the average influence of all 

SNPs on the outcome via pathways other than via the exposure. This means that MR-Egger 

produces a causal effect estimate of the influence of exposure on outcome (the MR-Egger beta 

coefficient) adjusted for horizontal pleiotropy. This estimate is consistent even if all SNPs 

violate the exclusion restriction criteria.  
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The MR-Egger method assumes that violations of the exclusion restriction criteria are as a result 

of a direct effect of the SNP on the outcome and not via confounders [135]. This is known as 

the InSIDE assumption (instrument strength independent of direct effect). The presence of 

confounding would lead to correlation between the SNP-exposure association and the quantity 

of the SNP-outcome association not mediated by the exposure which would prevent a causal 

estimate from being obtained. Further, inclusion of the intercept term comes at the cost of 

statistical power to detect an effect. This is why MR-Egger is used as a sensitivity analysis and 

not a primary analysis.  

The weighted median estimator takes the 50th percentile of the ratio estimates, weighted by the 

inverse of the variance [135]. The method assumes that at least 50% of the SNPs are valid 

instruments (they meet Assumption 1-3) and that no single SNP contributes more than 50% of 

the weight.  The weighted mode estimator takes the most common causal effect estimate as the 

causal effect of exposure on outcome. 

In summary, MR is another powerful method for dealing with confounding by making use of 

the natural randomisation of genetic variants at conception. Exchangeability holds for the 

association between the genetic predictors of the exposure and the outcome, provided the set of 

MR assumptions hold. Verification of all assumptions is not possible, however methods to 

assess their plausibility have been referred to.   

 

2.3.3  – Sibling comparison designs 

Siblings provide the setting for a natural experiment of the influence of a prenatal exposure. 

They share 50% of their genetics on average and in most cases share a common environment 

during development. The sibling comparison is therefore useful for causal inference as it 

provides a method for controlling for unmeasured genetic and environmental confounding that 

is shared between the siblings without actively adjusting for the confounding variables in 

models.  

 

2.3.3.1  – Within-family and between-family effects 

Early work by Begg and Parides [102] and by Carlin and colleagues [103] decomposed 

population-averaged effects into within-family and between-family effects by taking the average 

exposure value between siblings (the family-averaged exposure) and then including coefficients 

for both the individual-level exposure (within-family effect) and family-averaged exposure 

(between-family effect) in regression models as  

g(E[𝑌𝑗|𝑋𝑗, �̅�]) = β0 + β𝑊𝑋𝑗 + β𝐵�̅�, 
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where 𝑗 denotes the sibling contained within a family, β𝑊 is the within-family effect, β𝐵 is the 

between-family effect, 𝑔(. ) is the link function and 𝐸[. ] is the expectation operator.  

The regression models can take the form of generalised estimating equations (GEE) or random 

effects models in order to account for the correlation within families. Begg and Parides [102] 

note that the coefficient of the individual-level exposure in a regression model (β𝑊) will be the 

same regardless of whether the exposure is centred on the family averaged exposure or not (i.e. 

β𝑊 will be the same if the term β𝑊(𝑋𝑗 − �̅�) is used in place of the term β𝑊𝑋𝑗). In contrast the 

coefficient of the family-averaged exposure (β𝐵) will change based on these two model 

formulations. Thinking of the within-family effect as the effect on the outcome of a unit 

deviation of the individual exposure value from the family-averaged exposure value can be 

useful in conceptualising how the model works.   

If for example we were looking at the effect of birthweight on ID, the within-between model 

attempts to answer the question, what is the effect of a unit increase in birthweight on ID, given 

that the mother tends to have offspring of a certain weight on average. Certain factors that 

influence the risk of ID may also influence the mother’s tendency to have larger or smaller 

children on average, thereby confounding the association between the two. By looking at the 

deviation of the individual birthweight from the family-averaged birthweight we can assess the 

influence of birthweight on ID, unconfounded by the factors that influence the family-averaged 

birthweight. 

In context of the current research question, in which we assess the influence of maternal 

smoking during pregnancy on offspring ID, the family-averaged exposure can be thought of as a 

maternal propensity to smoke during pregnancy. Here, the within-between model asks the 

question, what is the influence of being exposed to maternal smoking during pregnancy given 

the mother’s propensity to smoke during pregnancy (which is influenced by shared familial 

confounding factors, while the individual deviation from this propensity is not). Carlin and 

colleagues [103] briefly argue that, when the exposure is binary as is the case here, and only 2 

siblings are used in each family, the family-averaged exposure can only take the values 0, ½ or 

1 and therefore is not meaningful. It may therefore make more sense to use families of greater 

size to allow the family-averaged exposure to take a greater range of values and therefore more 

accurately reflect a propensity for smoking during pregnancy.   

Sjölander and colleagues later established a more complete mathematical framework for 

estimating a causal effect from the sibling design, formalising the key component of the within-

between model that, by including the between-family effect in a model, the within-family effect 

becomes adjusted for all shared confounders [180]. In their work they highlighted that for 

binary exposures it would be more accurate to interpret the within-family effect (in the absence 
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of non-shared confounders between siblings) as a causal effect within the exposure-discordant 

subpopulation. This is because only members of the exposure-discordant subpopulation 

contribute any information to the within-family effect coefficient. Families in which the mother 

smoked in all pregnancies, or in no pregnancies, will have no variation in the deviation from the 

family-averaged exposure, and therefore cannot contribute to the causal effect. For ease of 

terminology, I will continue to refer to the causal effect within the exposure-discordant 

subpopulation as the “within-family effect”, however it should be kept in mind that this is not 

strictly accurate.  

 

2.3.3.2  – Considerations of within-between models 

Sjölander’s paper further showed, using a series of equations, that within-between models need 

to adjust for the non-shared confounders of both the index child and the sibling in order to 

produce an unbiased estimate of the within-family effect [180]. This is because adjustment of 

the individual-level exposure for the family-averaged exposure, �̅�, is equivalent to conditioning 

the index child’s exposure on the sibling’s exposure. Using DAG notation, and denoting 

subscript 𝑗 = 1 as the index child, subscript 𝑗 = 2 as the sibling of the index child, 𝑈 as an 

unobserved shared confounder and 𝐶 as an observed non-shared confounder, conditioning on 𝑋2 

opens a path from the index child’s exposure to the sibling’s non-shared confounder along 𝑋1 ←

𝑈 → 𝑋2 ← 𝐶2, and from the index child’s outcome to sibling’s non-shared confounder along 

𝑌1 ← 𝑈 → 𝑋2 ← 𝐶2 (see Figure 2-6a). The sibling’s non-shared confounder, 𝐶2, therefore 

becomes a confounder of the association between the index child’s exposure and outcome, 𝑋1 

and 𝑌1.  

Using simulations, Sjölander and colleagues went on to show that adjusting for the non-shared 

confounder of the index child but not the non-shared confounder of the sibling lead to a constant 

level of bias. In comparison, adjusting for no non-shared confounders lead to bias that was 

proportional to the strength of the association between the non-shared confounder and the 

outcome. This means that where the effect of the non-shared confounder on the outcome is 

weak, adjusting for the non-shared confounders of the index child only, will lead to more bias 

than not adjusting for any non-shared confounders. Adjusting for both siblings non-shared 

confounder variables resulted in no bias, irrespective of the strength of the association between 

the non-shared confounder and the outcome. 

The same research group, this time lead by Frisell, later showed that familial correlation 

between siblings in the exposure variables and in the confounder variables can influence the 

bias arising from only conditioning on the non-shared confounder of the index child [181]. They 

note that in a within-between model there is selection on siblings that are discordant for the 
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exposure. Because the exposure values for the siblings are different, this implies that the non-

shared causal variables of the exposure (i.e. the non-shared confounding variables) are more 

likely to take different values, therefore leading to an increase in the association between the 

exposure and the confounder than in the general population.  

Using the DAG in Figure 2-6b, in which 𝐹𝐶, 𝐹𝑋 and 𝐹𝑌 are familial factors that respectively 

influence the values of the confounders, exposure and outcome in siblings within a family, 

Frisell and colleagues state that conditioning on 𝑋1, which occurs by default in the within-

between regression model, leads to negative correlation between 𝐶1 and 𝑋2 as a result of the 

path 𝐶1 → 𝑋1 ← 𝐹𝑋 → 𝑋2. If 𝑋2 is equal to 0 then 𝐹𝑋 is also likely to take value 0 (i.e. if the 

second sibling was not exposed then the mother’s propensity to smoke is likely to be lower). 

This means that 𝑋1 (index child) has an increased probability of also taking the value 0 (not 

exposed), but if in spite of this 𝑋1 takes the value 1 (exposed), as is restricted to in the exposure 

discordant population, it means that 𝐶1 has an overriding influence on the value of 𝑋1.  

In contrast a positive correlation is induced between 𝐶1 and 𝑋2 along the path 𝐶1 ← 𝐹𝐶 → 𝐶2 →

𝑋2. If 𝑋2 is equal to 0, this decreases the probability that 𝐶2, 𝐹𝐶 and ultimately 𝐶1 are equal to 1 

(and vice versa). Restricting to the exposure discordant sample (where 𝑋1 ≠ 𝑋2), this decreases 

the influence of confounding on exposure (i.e. a smaller association between 𝐶1 and 𝑋1).  

There are therefore opposing effects of quantity of confounding of the within-family effect 

estimate that are created by the size of the sibling correlation in exposure values (represented by 

the strength of association of 𝐹𝑋 with 𝑋1 and 𝑋2) and the sibling correlation in non-shared 

confounders (represented by the strength of association of 𝐹𝐶 with 𝐶1 and 𝐶2). Using 

simulations, Frisell and colleagues displayed that if the confounders are perfectly correlated 

then there is no bias (as the non-shared confounders would instead be shared confounders). If 

the correlation in the confounders is greater than the correlation in exposures (strength of 

influence of 𝐹𝐶 is greater than influence of 𝐹𝑋), then bias in within-family effect estimate is less 

than the bias in the crude effect estimate of a standard regression model. Finally, if the 

correlation in confounders is less than the correlation in exposures (strength of influence of 𝐹𝐶 is 

less than influence of 𝐹𝑋), then the bias in the within-family effect estimate, adjusting for the 

index child’s non-shared confounders only, will be greater than the bias in a crude effect 

estimate.   
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Figure 2-6: DAGs of the relationship between variables in the sibling design. Xj, Yj and Cj are the exposure, outcome 

and non-shared confounders of child j respectively. U are shared confounders. FC , FX and FY are familial factors 

influencing the non-shared confounders, exposure and outcome respectively of both children in the family.     
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A final consideration of the sibling design is its potential to be biased by carry-over effects. 

Carry-over effects occur when the exposure or outcome of one sibling has a causal influence on 

the exposure or outcome of another sibling [182]. The current research question may be 

particularly susceptible to carry-over effects. For example, exposure of the first sibling to 

smoking during pregnancy may influence the second sibling’s risk of developing ID if smoking 

has long term reproductive health consequences for the mother that influence the offspring’s 

risk of ID. Conversely, exposure of the second sibling to smoking during pregnancy may 

increase the risk of ID in the first sibling if exposure to second-hand smoke early in life 

increases the risk of ID. A final plausible scenario is that if the first sibling develops ID, and the 

mother thinks this may be related to her smoking behaviour in pregnancy, she may be less likely 

to smoke during a second pregnancy. Sjölander and colleagues highlight that several logical 

tests can be performed to rule out whether carry-over effects are biasing effect estimates, but, in 

their words, cannot “rule-in” if carry effects are present [182]. 

In summary sibling designs are a useful tool for addressing bias from unmeasured shared 

confounders between siblings. These designs are susceptible, however, to increased bias as a 

result of incorrect conditioning of non-shared confounders in regression models and from carry-

over effects that need to be accounted for when designing analyses and interpreting results.   

 

2.3.4  – Cross-context comparison 

Cross-context comparisons may be useful for informing about the nature of a null result or 

conversely investigating the mechanisms by which a causal effect could occur. In this section I 

will describe how a positive control comparison and comparison with a second method of 

nicotine delivery will be used in my investigation.   

The association between smoking in pregnancy and offspring fetal growth restriction has strong 

evidence of being causal in nature from complementary causal inference designs [8, 9, 183]. If 

using the same causal inference methods, an association is found for fetal growth restriction but 

not ID then this will support the interpretation that observational associations with ID are the 

result of residual confounding. This type of comparison will be referred to as a positive control 

analysis.  

If a causal effect of smoking in pregnancy on ID does exist, then a cross-context comparison 

between the associations of snus use and smoking in pregnancy with offspring ID can be used to 

investigate whether effects are the result of nicotine or the combustible components of cigarette 

smoke. Snus is a moist, smokeless tobacco that is increasingly being used as a smoking 

cessation aid in Sweden [184, 185], with some suggestion that it is more successful as an aid to 

stop smoking than nicotine patches or gum [186, 187]. Snus delivers nicotine in quantities that 
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are comparable to cigarette smoke though with slower absorption and higher plasma nicotine 

concentration over an extended period [184, 188].  

 

 

2.4 – Chapter summary 

In this chapter I have established how causal effects can be obtained from counterfactuals, 

clinical trials and observational studies, highlighting the importance of the underlying 

assumptions. Violation of these assumptions, particularly the exchangeability assumption, can 

lead to several forms of bias, including confounding, selection, information and missing data 

bias, which have been described using DAGs. In observational studies these biases can be 

harder to prevent due to the lack of experimental control.  

Several causal inference methods have also been described which aim to account for bias, with a 

strong focus on accounting for confounding. The negative control design compares two 

associations that suffer equivalently from confounding, one of which is not expected to reflect a 

causal relationship. Mendelian randomisation uses the natural randomisation of genetic variants 

at conception to mimic the randomisation process used in clinical trial designs, thereby 

improving the balance of the distribution of confounding factors between the exposed and 

unexposed groups. Finally, the sibling design holds fixed all confounders that are shared 

between siblings and therefore provides a way of accounting for a portion of unmeasured 

confounding bias. Each of these methods suffer from their own potential biases, described in 

detail in the sections above. These analysis specific biases mean that the conclusions of each 

analysis cannot be taken in isolation. Triangulation of consistent evidence across each study 

design is required to establish whether there is a causal effect of maternal smoking in pregnancy 

on offspring risk of developing ID. 
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Chapter 3 Assessing the influence of 

assortative mating in the negative 

control design 
 

The contents of this chapter have been published in the following peer reviewed journal article: 

- Madley-Dowd P., Rai D., Zammit S., and Heron J., Simulations and directed acyclic graphs 

explained why assortative mating biases the prenatal negative control design. Journal of clinical 

epidemiology, 2020. 118: p. 9-17. DOI: https://doi.org/10.1016/j.jclinepi.2019.10.008  

 

In Chapter 2 I highlighted that the results of the negative control design may be influenced by 

assortative mating. Positive assortative mating describes the tendency for individuals to mate 

with a partner who has the same value of a given characteristic as themselves while negative 

assortative mating describes preference for mates with a differing value on the characteristic to 

one’s own value [189].  

Smoking [190-193], alcohol use [190, 191, 194-199], caffeine use [191] and body mass index 

(BMI) [200-202] have all been suggested to be characteristics correlated within pairs as a result 

of positive assortative mating; these characteristics are also commonly examined as in-utero 

exposures in negative control designs. Exposure characteristics may be similar within a pair due 

to (i) mate selection based on the characteristic itself (e.g. a non-smoking individual may limit 

their selection of partner to non-smokers as they do not want to be exposed to smoke) or (ii) 

selection based on determinants of the characteristic (e.g. age, education, and psychiatric and 

personality traits influence smoking behaviours and may also be selected upon by individuals 

choosing a partner [201, 203-209]). Evaluation of the evidence of the nature of exposure 

characteristics being similar between parents is beyond the scope of this chapter, however, I 

believe this work will show that the impact of scenarios (i) and (ii) are similar in the context of 

negative control designs. 

The most common approach in a negative control design of a prenatal exposure is to run three 

models (irrespective of additional models adjusting for potential confounders). Model 1 assesses 

the association between maternal exposure and outcome. Model 2 assesses the association 

between paternal exposure and outcome. Model 3 mutually adjusts both maternal and paternal 

exposure for each other. The maternal and paternal effect estimates are then compared against 

each other between Model 1 and 2 and also within Model 3. 

https://doi.org/10.1016/j.jclinepi.2019.10.008
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The value of comparing estimates within Model 3 over comparing estimates between Models 1 

and 2 is mentioned briefly in the appendices of Lipsitch et al.’s early description of the negative 

control design’s use in epidemiology [100] and in Davey Smith’s letter to the editor regarding 

this paper [101]. Why this is the case has not been adequately demonstrated or discussed in the 

literature so far. In this chapter I aim to explain the importance of interpreting the difference in 

effect sizes obtained from the mutually adjusted model (Model 3) where exposure and negative 

exposure are influenced by assortative mating, using directed acyclic graphs (DAGs) and a 

simulation study to guide the explanation.  

 

3.1 – Directed acyclic graphs 

I motivate the remainder of this chapter using an example that is closely aligned to the research 

question of the overall thesis. The example compares the influence of maternal smoking during 

pregnancy (the exposure) to the influence of paternal smoking during pregnancy (the negative 

exposure) on offspring intelligence quotient (IQ) score (the outcome). Figure 3-1 shows DAGs 

of the relationship between variables. Here 𝑀 is maternal smoking during pregnancy, 𝑃 is 

paternal smoking during pregnancy and 𝑌 is the offspring outcome. 𝐶𝑀 and 𝐶𝑃 are sets of 

confounding variables for the maternal and paternal associations with the outcome. Mate 

selection influenced by the exposure variable is represented by 𝑆𝑒𝑥𝑝 while selection influenced 

by confounding variables is represented by 𝑆𝐶. As any of several possible mates could have 

been selected, 𝑆𝑒𝑥𝑝 and 𝑆𝐶 can be considered to be random variables. When a couple has a child 

together then mate selection has occurred, the couple have selected each other, and this variable 

can be considered as having been controlled upon (represented by the box drawn around the 

variable). 𝑆𝑒𝑥𝑝 and 𝑆𝐶 are collider variables, therefore controlling for them will lead to 

correlation between maternal and paternal exposure variables and maternal and paternal 

confounder variables. For simplicity in this DAG I have assumed that paternal smoking during 

pregnancy is not causally associated with offspring outcome. The DAGs presented here are an 

adaptation of the initial DAGs of the negative control design created by Lipsitch et al. [100] 

(presented in Chapter 2 as Figure 2-4a) with the change that confounding shared between 𝑀 and 

𝑃 is ignored and non-shared confounding between the two is included. Figure 3-1(i) shows a 

simplified example where the exposure behaviour is selected on. Confounding is ignored in this 

example. Only one variable, 𝑀, directly connects to the outcome. A single backdoor pathway 

exists that connects 𝑃 to 𝑌 (along P → 𝑆𝑒𝑥𝑝 ← 𝑀 → 𝑌). The paternal coefficient of the paternal 

only model (Model 2) will be biased by the backdoor path. Mutual adjustment for 𝑀 and 𝑃 in a 

single model (as in Model 3) will close this backdoor path and eliminate the bias for the paternal 
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coefficient. No backdoor paths exist for 𝑀. As a result, the maternal coefficient of both the 

maternal only model (Model 1) and the mutually adjusted model (Model 3) will be unbiased. 

Figure 3-1(ii) provides an example in which the correlation between maternal and paternal 

exposure behaviour is caused by mate selection based on determinants of these exposures, 

confounders for the association of maternal and paternal smoking with offspring outcome. The 

association of 𝐶𝑀 with 𝑀 and with 𝑌 is assumed to be equivalent to the association of 𝐶𝑃 with 𝑃 

and with 𝑌. In this example maternal and paternal smoking during pregnancy share some but 

not all backdoor paths to the outcome. Three variables directly connect to the outcome: 𝑀, 𝐶𝑀 

and 𝐶𝑃. Backdoor paths along 𝐶𝑀 → 𝑌 and 𝐶𝑃 → 𝑌 exist for both 𝑀 and 𝑃 (e.g. 𝑀 ← 𝐶𝑀 → 𝑌;  

𝑀 ← 𝐶𝑀 → 𝑆𝐶 ← 𝐶𝑃 → 𝑌;  𝑃 ← 𝐶𝑃 → 𝑌; 𝑃 ← 𝐶𝑃 → 𝑆𝐶 ← 𝐶𝑀 → 𝑌). An additional backdoor 

path exists for P that does not exist for M, via confounding variables (𝑃 ← 𝐶𝑃 → 𝑆𝐶 ← 𝐶𝑀 →

𝑀 → 𝑌). As a result, there will be additional bias for the negative control association (NCA) in 

Model 2 that will not occur for the association of interest (AOI) in Model 1. By mutually 

adjusting for 𝑀 and 𝑃 the additional backdoor paths for 𝑃 will be closed. 𝑀 and 𝑃 will then 

have the same backdoor paths again ensuring that the biasing of the AOI and NCA are once 

again equivalent in Model 3.  

Figure 3-1(iii) combines the examples shown in Figure 3-1(i) and Figure 3-1(ii), showing the 

situation in which correlation in exposure behaviours is due to selective mating based on both 

the exposure and the confounder variables.  The backdoor paths that exist for 𝑃 but not 𝑀 now 

include both 𝑃 ← 𝐶𝑃 → 𝑆𝐶 ← 𝐶𝑀 → 𝑀 → 𝑌 and 𝑃 → 𝑆𝑒𝑥𝑝 ← 𝑀 → 𝑌 which will lead to 

greater bias for the NCA than the AOI. Mutual adjustment for both 𝑀 and 𝑃 will close both of 

these backdoor paths leading to equivalent bias of the AOI and the NCA thereby making them 

comparable for the purpose of interpreting whether a causal effect may exist.  
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Figure 3-1: Directed acyclic graphs (DAG) of the associations between variables in a negative control design with 

assortative behaviours. Refer to the text for descriptions of what (i), (ii) and (iii) represent. M is maternal smoking 

during pregnancy, P is paternal smoking during pregnancy, Y is the offspring outcome. CM and CP are maternal and 

paternal specific confounders respectively. SC and Sexp are variables indicating mate selection based upon 

confounding variables and upon the exposure variable. SC and Sexp are collider variables that when controlled for 

(such as when a couple have a child) induce correlation between the maternal and paternal confounders/exposures.  
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3.2 – Simulation study 

3.2.1  – Methods 

3.2.1.1  – Part 1: Simulation study of the influence of assortative mating on conclusions from 

the negative control design 

I empirically tested how assortative mating can influence the results and conclusions from a 

negative control design using a simulation study. The study was motivated by the same example 

as for the DAG in Figure 3-1i such that shared backdoor paths along confounder variables were 

ignored so that only the 𝑃 → 𝑆𝑒𝑥𝑝 ← 𝑀 → 𝑌 backdoor path exists.  

I first simulated a binary exposure (maternal smoking in pregnancy, 𝑀), a binary negative 

exposure (paternal smoking in pregnancy, 𝑃) and assortative mating between the two. I 

simulated each exposure-pair to fall within one of the four categories of maternal and paternal 

smoking combinations. I fixed the prevalence of maternal smoking during pregnancy at 24% (to 

mimic the prevalence observed in ALSPAC) and allowed the prevalence of paternal smoking to 

vary across settings as I varied the extent to which smoking was assortative. Assortative mating 

was quantified using the pair sexual isolation index (IPSI, see Appendix A.1 for formula) [210, 

211], a commonly used measure in evolutionary biology literature that ranges from -1 to 1. 

Values closer to 0 indicate no assortative mating while values closer to 1 indicate a mating pair 

are more likely to be similar on the chosen characteristic. I investigated IPSI values between 0 

and 0.8, derived from the frequency in each smoking combination category (see Table 3-1). I 

did not consider negative assortative mating (IPSI<0) as most assortative traits that are used as 

prenatal exposures in negative control designs display positive, not negative, patterns of 

assortative mating.  

 

 

Table 3-1: Frequency of observations falling into each category of maternal and paternal smoking, and the quantity 

of assortative mating, measured using the IPSI. 

Frequency in category (%) IPSI value  

(quantity of assortative 

mating) 

1) No parent 

smokes 

2) Mother only 

smokes 

3) Father only 

smokes 

3) Both parents 

smoke 

38.0 12.0 38.0 12.0 0.0 

45.6 9.6 30.4 14.4 0.2 

53.2 7.2 22.8 16.8 0.4 

60.8 4.8 15.2 19.2 0.6 

68.4 2.4 7.6 21.6 0.8 
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I then simulated a continuous outcome, which in the context of the research question was 

labelled “IQ score”. I simulated a normal distribution with mean 0 and variance 1 for the 

children who were unexposed to maternal smoking in pregnancy and a normal distribution with 

mean μM true and variance 1 for those exposed to maternal smoking in pregnancy. The value of 

μM true was varied between -5 and 5 in increments of 1. There was no effect of paternal 

smoking for all simulation settings. 

Three linear regression models were fitted to the simulated data: 

Model 1 -  g(E[𝑌|𝑀]) = β0 + β𝑀𝑀 

Model 2 -  g(𝐸[𝑌|𝑃]) = β0 + β𝑃P 

Model 3 -  𝑔(𝐸[𝑌|𝑀, 𝑃]) = β0 + β𝑀𝑀 + β𝑃𝑃 

Model 1, the maternal only model, regressed the outcome on maternal smoking only. Model 2, 

the paternal only model, regressed the outcome on paternal smoking only. Finally Model 3, the 

mutually adjusted model, regressed the outcome on both maternal and paternal smoking. I 

calculated the difference between βM and βP, the coefficients for maternal and paternal 

smoking, between Model 1 and 2 and again within Model 3. Confidence intervals for these 

differences were produced using bootstrapping with 1000 replications.  

Across 1000 simulations I investigated sample sizes of 100, 1000 and 10,000. I measured the 

average bias of βM and βP and their Monte-Carlo standard error across simulations using the 

simsum command in Stata [212]. I calculated the average difference between βM and βP, as well 

as the average lower and upper bound of the confidence interval of the difference, across 

simulations. 

I repeated the simulation study using a binary outcome. The findings did not differ substantially 

from those for a continuous outcome and are presented in Appendix A.2. 

 

3.2.1.2  – Part 2: Simulation study of a negative control design with assortative mating where 

the negative exposure influences the outcome independently of the exposure 

In part 1 of the simulation study I have assumed that the negative exposure has no influence on 

the outcome. For some exposures the negative exposure may have an independent effect on the 

outcome. For example, paternal smoking may influence offspring neurodevelopment through a 

prenatal effect (reduced sperm quality), antenatal effect (exposing the mother to smoke) or a 

post-natal effect (exposing the offspring to smoke). I therefore investigated how this scenario 

would influence the estimates of each model in the presence of assortative mating.  

I repeated the simulation study, this time including an association between paternal exposure to 

smoking and the outcome. The outcome for this analysis was generated by simulating normal 



 

52 

 

distributions (all with variance 1) with mean 0 for children who were unexposed to maternal or 

paternal smoking in pregnancy, mean μm true for those exposed to maternal but not paternal 

smoking in pregnancy, mean 2 for those exposed to paternal but not maternal smoking in 

pregnancy and mean μm true  + 2 for those exposed to maternal and paternal smoking in 

pregnancy. Paternal smoking increased the outcome score by a value of 2 for all simulation 

settings and, as before, the value of μm true was varied between -5 and 5 in increments of 1.  

 

3.2.2  – Results 

3.2.2.1  – Part 1: Simulation study of the influence of assortative mating on conclusions from 

the negative control design  

The bias of coefficient estimates against IPSI is displayed in Figure 3-2. Part (i) of the figure 

shows that the maternal coefficient is unbiased in both Model 1 (maternal only model) and  

Model 3 (mutually adjusted model) for all quantities of assortative mating. This is true for 

positive and negative μM true values. Part (ii) of the figure shows there is no bias for the paternal 

coefficient in Model 3 but there is increasing absolute bias for Model 2 (paternal only model) 

with increasing assortative mating. No bias is observed at an IPSI of 0. This represents the case 

where 𝑆𝑒𝑥𝑝 does not exist and so there is no backdoor path along 𝑃 → 𝑆𝑒𝑥𝑝 ← 𝑀 → 𝑌.  

A designed increase in the outcome in response to maternal smoking led to positive bias of the 

paternal coefficient in Model 2 while a designed decrease in the outcome in response to 

maternal smoking led to negative bias of the paternal coefficient. As a result, the modelled 

difference between the maternal and paternal coefficients from Model 1 and 2 would be smaller 

than the true difference when assortative mating occurs. I show this empirically in Figure 3-3 

where I display the mean difference across simulations (and corresponding mean 95% CI for 

this difference) between the maternal and paternal coefficient against the IPSI for different 

sample and effect sizes. As the quantity of assortative mating increased the difference in 

coefficients between Model 1 and 2 tended towards 0. The difference in coefficients within 

Model 3 were unaffected by assortative mating and accurately estimated the true difference.  

As the quantity of assortative mating increases the collinearity between the maternal and 

paternal coefficient within Model 3 increases also. This can be problematic, particularly when 

the sample size is small. In Figure 3-3 the width of the confidence interval for the difference 

between coefficients within Model 3 becomes larger with increasing assortative mating. For 

small effect sizes this could lead to the conclusion of a null difference when one in fact does 

exist (see row 2, column 1 of the figure which shows a sample size of 100 and true difference of 

1).  



 

53 

 

 

3.2.2.2 – Part 2: Simulation study of a negative control design with assortative mating where 

the negative exposure influences the outcome independently of the exposure 

In part 2 of the simulation study I consider a scenario in which there is an independent effect of 

paternal smoking in pregnancy on the outcome. Again, this example is like that displayed in 

Figure 3-1i, but with an additional arrow from P to Y. The AOI and NCA now have the same 

backdoor paths, but where before only the NCA was biased by the effect size of the AOI, now 

both the AOI and NCA will be biased by each other where there is assortative mating in the 

exposure/negative exposure. Mutual adjustment for M and P can again eliminate this bias (but 

not bias by unadjusted confounding structures).  

In the simulations I show that the introduction of a paternal effect leads to bias in the maternal 

coefficient in the presence of assortative mating for models that do not employ mutual 

adjustment (see Figure 3-4). The bias increases with increasing assortative mating. Bias in 

maternal β is the same for true maternal effect size of -5 as it is for +5 while the bias in the 

paternal β appears unchanged compared to that of the data where there is no paternal effect. 

This suggests that the size and direction of bias for each coefficient is dependent on the size and 

direction of the effect size of the other coefficient and not on the coefficient’s own effect size. 

Models with mutual adjustment display no bias for either estimate in any setting. 

Despite the introduction of bias to the maternal coefficient for the maternal only model (data in 

part 2) compared to data where there is no paternal effect on the outcome (data in part 1), there 

was little change in the pattern of results for the difference in coefficients between the data in 

part 1 and 2. Supplementary Figure A.3-1 (see Appendix A.3) shows the mean difference across 

simulations between the maternal and paternal coefficient against the IPSI for the data in part 2. 

Comparison with Figure 3-3 shows very similar findings. This suggests that conclusions drawn 

from the maternal only and paternal only models will be influenced similarly by assortative 

mating in data where there is a paternal effect (NCA present) and where there is no paternal 

effect (null NCA).  
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Figure 3-2: Plots of bias against quantity of assortative behaviour for continuous outcome data for a) the maternal coefficient and b) the paternal coefficient. Error bars are 95% Monte Carlo 

confidence intervals across simulations. Sample size for data shown is 10,000.  
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Figure 3-3: Plot of the mean difference across simulations of maternal and paternal β coefficients against the quantity of assortative mating. 95% confidence bands are the mean lower and upper CI for 

the difference, produced using bootstrapping. We present the difference between the coefficients of the maternal and paternal only models (red band) and the mutually adjusted model (blue band) for 

sample sizes of 100, 1 000 and 10 000.
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Figure 3-4: Plots of bias against quantity of assortative mating for continuous outcome data with a maternal and paternal effect for a) the maternal coefficient and b) the paternal coefficient. Error bars 

are 95% Monte Carlo confidence intervals across simulations. Sample size for data shown is 10,000. 



 

57 

 

3.3 – Discussion 

In the negative control design, correlation between the exposure and negative exposure as a 

result of assortative mating leads to biased effect estimates where the two exposures have not 

been mutually adjusted for one another. The effect estimate of one exposure is biased by the 

“other” exposure (i.e. the effect size of the AOI leads to bias in the effect estimate of the NCA 

and vice versa). Assortative mating can therefore lead to more similar effect estimates between 

the exposure and negative exposure. This may lead to the erroneous conclusion that there is no 

causal effect when one may exist. Mutual adjustment resolves this by blocking the backdoor 

pathway that exists via the “other” exposure. However, when the quantity of assortative mating 

is high the strong correlation between exposure and negative exposure leads to large standard 

errors for mutually adjusted model coefficients as a result of high collinearity between the two 

variables. This is particularly true when the sample size is small. This makes the size of the 

difference between the AOI and NCA more ambiguous by enlarging the confidence interval.  

An important assumption of the negative control design is that the confounding structure of the 

AOI is equivalent or shared with that of the NCA. It is also important to remember that 

confounders that have not been accounted for in models or that have not been well measured 

will still lead to bias. An alternative approach to dealing with assortative mating has been 

suggested in which the father’s association is modelled only in families where the mother does 

not smoke [213]. A possible pitfall of this approach is that it may change the distribution of 

confounding factors across levels of maternal and paternal smoking behaviour in the dataset 

used for analysis, leading to bias even after mutual adjustment. As the AOI and NCA would no 

longer share the same confounding structure the two associations would be biased to different 

extents by confounders and so comparison of the two may not be useful. I would argue that 

mutual adjustment in a dataset that includes all families is a better strategy as it maintains 

equivalent confounding structures while blocking backdoor paths resulting from assortative 

mating. 

Mutual adjustment is not able to resolve non-linear combinatory effects of exposure and 

negative exposure. There is evidence for differences in the smoking behaviours between couples 

who are concordant and discordant for smoking during pregnancy [193]. Concordant couples 

are likely to smoke when their partner is present while the smoking partner in a discordant 

couple is likely to smoke more cigarettes per day than in concordant couples. This is not 

something I have assessed in this study as I have only used a binary measure of smoking which 

would not have the ability to capture quantity of smoking. The influence on risk of outcome 

when using such a binary variable may therefore not be accurately represented by a model using 

a simple linear combination of maternal and paternal effect, as is done in the mutually adjusted 

model. It may be better to use categories of smoking concordance between parents (equivalent 
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to using an interaction term between exposure and negative exposure) to account for non-linear 

combinatory effects. However, if these categories are different to one another in underlying 

confounding structure then the negative control design may not be appropriate for this research 

question.  

For simplicity I did not include confounding variables in the simulations. Where confounding 

variables are selected upon in assortative mating or are strongly correlated with a variable that is 

selected upon, the maternal and partner values are likely to correlate highly. The value of the 

maternal confounding variable may then be used as a proxy for the partner variable. Where 

there is low correlation between maternal and partner confounding variables and both are 

important predictors of the outcome, both may need to be included in the set of adjustment 

variables. To my knowledge the influence of this adjustment strategy on the bias of maternal 

and paternal association estimates has not been tested empirically. It is possible that adjustment 

for maternal but not paternal confounding variables may result in the NCA containing more bias 

than the AOI. Inclusion of confounding variables into the simulation study would have provided 

the opportunity to investigate whether imbalanced adjustment of maternal and paternal non-

shared confounding variables influences the bias of point estimates. Recent debate on using 

paternal exposure as a negative control has highlighted the importance of including non-shared 

confounders between parents in models [214-216] and expanding Lipsitch et al.’s initial DAG 

of the negative control design [100] to reflect both shared and non-shared confounder variables. 

Brew and colleagues have suggested based on these expanded models that mutual adjustment 

may open biasing paths for the AOI and NCA as a result of the exposure/negative exposure 

being collider variables for shared and non-shared confounder variables [217]. These backdoor 

paths could be closed by controlling for the non-shared confounders of both parents provided 

they are measured.  

Contamination effects, where one partners’ behaviour influences the other were also not 

considered in the simulation study (for example, shared meals between partners may lead to 

correlation in BMI and changes in BMI [200] or one partner may convince the other partner to 

give up smoking). Brew et al. mention that mutual adjustment is commonly used to address the 

issue of contamination of exposure between partners, however, they make no attempt to 

investigate the appropriateness of the strategy in this situation [217]. This may be a more 

complicated scenario than that presented in this study, potentially requiring a different solution 

to resolve, and requires further investigation.  

I did not consider the influence of measurement error in the DAGs or simulation study. This is a 

pertinent issue as in some cohorts the mother provides information on both her own and her 

partners exposure; the latter may suffer more from measurement error. Sanderson et al. [164] 

have shown that measurement error in the exposure or negative exposure will lead to biased 
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effect estimates (see Section 2.3.1 in chapter 2 for further detail). In Appendix A.4 I explored 

how the introduction of measurement error to the negative exposure variable can influence the 

conclusions of a negative control study in the context of an exposure affected by assortative 

mating. Briefly, error in a binary negative exposure can lead to bias by artificially increasing or 

decreasing the correlation between the exposure and negative exposure. 

 

 

3.4 – Conclusions and chapter summary 

When performing a negative control study in the presence of assortative mating, the estimates 

used for interpretation should be those of the mutually adjusted model, though this will not 

resolve all issues of the negative control design. I would suggest that future studies using 

paternal exposure as a negative control should perform a literature review to assess whether the 

exposure, negative exposure and relevant determinant variables may be involved in mate 

selection.  
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Chapter 4 Accounting for bias from missing 

data when the proportion of missing 

data is large 
 

The contents of this chapter have been published in the following peer reviewed journal article: 

- Madley-Dowd P., Hughes R., Tilling K., and Heron J., The proportion of missing data should 

not be used to guide decisions on multiple imputation. Journal of clinical epidemiology, 2019. 

110: p. 63-73. DOI: https://doi.org/10.1016/j.jclinepi.2019.02.016  

 

The work in this chapter has been published in the Journal of Clinical Epidemiology [218] and 

is reproduced here. The work was a mini-project conducted at the start of the PhD with the 

intention of dispelling canards held by many reviewers in social science fields that multiple 

imputation should not be used where there is a substantial proportion of missing data. The Avon 

Longitudinal Study of Parents and Children, used in an empirical example in this study and also 

later used in Chapter 7 of the thesis, contains a large proportion of missing data that could bias 

complete case analyses. The current chapter is included in the thesis as a justification for 

applying multiple imputation methods to a dataset in which there is substantial missing data in 

order to reduce bias in effect estimates.  

 

 

4.1 – Background  

Missing data is a common problem in epidemiology, and participant drop out can substantially 

reduce the sample size available for analysis even in initially large cohorts. Missing data (also 

referred to as missingness) may cause bias and will always cause a reduction in efficiency.  

Analyses that account for missing data must consider the reasons for missingness (known as a 

missingness mechanism). Using Rubin’s terminology [145], reasons for missing data are 

classified as: missing completely at random (MCAR) where the probability of missingness  does 

not depend on either observed or missing data, missing at random (MAR) where conditional on 

the observed data the probability of missingness is independent of unobserved data and missing 

not at random (MNAR) where the probability of missingness is dependent on unobserved data 

even after conditioning on observed data. Readers may wish to refer to [219] or [220] for 

intuitive explanations of these terms. 

https://doi.org/10.1016/j.jclinepi.2019.02.016
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A common approach [221] (and the default in most statistical packages) for dealing with 

missing data is complete case analysis (CCA), which restricts the analysis to individuals with 

complete data. An alternative to CCA, is multiple imputation (MI) [222, 223] which 

creates 𝑚 copies of the dataset, replacing the missing values in each dataset with independent 

random draws from the predictive distribution of the missing values under a specific model (the 

imputation model). The analysis model is then fitted to each imputed dataset and the multiple 

results are combined into one inference using Rubin’s rules [222]. The imputation model should 

contain all variables in the analysis model [224-226] as well as any interactions between 

variables [227]. The imputation model can additionally include variables not included in the 

analysis model, which are known as auxiliary variables. These are included to make the MAR 

assumption (required in the standard implementation of MI to produce unbiased estimates) more 

plausible, and to provide information about the missing values [156].  

Researchers in a variety of fields often ask what proportion of missing data warrants the use of 

MI [151-154].  Varying guidance exists; in the literature 5% missingness has been suggested as 

a lower threshold below which MI provides negligible benefit [228]. In contrast one online 

tutorial has stated that 5% missing data is the maximum upper threshold for large datasets [229]. 

Statistical guidance papers have stated that bias is likely in analyses with more than 10% 

missingness and that if more than 40% data is missing in important variables then results should 

only be considered as hypothesis generating [230, 231].  

The above suggested cut off points, with respect to specified proportions of missing data, have a 

limited evidence base to support them. A small number of studies have investigated bias and 

efficiency in datasets with increasing proportions of missing data. This has commonly been 

done with a maximum of 50% missing data in studies that showed increasing variability of 

effect estimates with increased missingness [232-234]; mixed results were found for bias. 

Where more than 50% missingness has been investigated, the use of auxiliary variables has 

often not been examined [235, 236]. Evidence of how varying quantities of missing data and 

auxiliary information jointly affect estimates obtained from MI is lacking in the literature as a 

result. The influence of the proportion of missing data on bias and efficiency (measured jointly 

using mean squared error) was shown to depend on the type of missingness (MCAR, MAR or 

MNAR) [235] and which variable (outcome, exposure or confounder) is missing [236].  Where 

both more than 50% missingness and auxiliary variables have been used the study sample size 

was very small (N≤200) thus limiting the applicability of results to larger epidemiological 

studies [237]. 

The proportion of missing data is a common measure of how much information has been lost 

because of missing values in a dataset. However, it does not reflect the information retained by 

auxiliary variables. Alternative measures such as the fraction of missing information (FMI) may 
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be more useful as a tool for determining potential efficiency gains from MI. The FMI is a 

parameter specific measure that is able to quantify the loss of information due to missingness, 

while accounting for the amount of information retained by other variables within a dataset 

[156, 238]. The FMI, derived from MI theory [222, 239], can be interpreted as the fraction of 

the total variance (including both between and within imputation variance, see Appendix B, 

section B.1) of a parameter, such as a regression coefficient, that is attributable to between 

imputation variance, for large numbers of imputations 𝑚. Values of FMI range between 0 and 1. 

A large FMI (close to 1) indicates high variability between imputed datasets; that is, the 

observed data in the imputation model does not provide much information about the missing 

values.  

In this chapter, I have conducted a simulation study to show 1) that MI can be used to provide 

unbiased estimates with improved efficiency compared to CCA at any proportion of missing 

data, and 2) the utility of the FMI as a guide to the likely efficiency gains from using MI. I then 

use an applied example to show the influence of auxiliary information on the FMI, examining 

the association between maternal smoking during pregnancy and offspring intelligence quotient 

(IQ) score at age 15 using the Avon Longitudinal Study of Parents and Children (ALSPAC). 

Finally, I present a discussion of the findings and conclusions. 

 

 

4.2 – Simulation study 

4.2.1  – Methods  

Via simulations, I compare FMI and the proportion of missing data to measure gain in 

information from MI compared to CCA, in scenarios with different available auxiliary 

information and amounts of missing data. The simulated datasets are motivated by a prospective 

cohort study where all baseline data are available, but some follow up data are missing.  

 

4.2.1.1  - Data model  

I simulated data from a multivariate normal distribution where all variables had a mean of 0 and 

a standard deviation of 1. Each simulated dataset contained 1000 observations on continuous 

variables outcome 𝑌, exposure 𝑋 and auxiliary variables 𝑍1 − 𝑍11. All variables were correlated 

with Y and all variables except Y had zero correlation with each other. The correlation between 

𝑌 and 𝑋 was 0.6, 𝑌 and 𝑍1 − 𝑍2 was 0.4, 𝑌 and 𝑍3 − 𝑍7 was 0.2 and finally between 𝑌 and 

𝑍8 − 𝑍11 was 0.1.  
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Missingness was simulated under an MCAR mechanism to examine the benefit of MI to 

improve efficiency in the absence of bias, and an MAR mechanism to further examine bias 

reduction. The MCAR missingness mechanism removed the first 𝑝 observations such that 
𝑝

𝑛
 

gives the required proportion of missing data. MAR missingness was simulated under a logistic 

regression model using 

logit(λ𝑖) = α + Z1𝑖 + 𝑋𝑖. 

The value of α was manipulated for the different simulation settings to provide the required 

proportion of missing data on average across datasets. 

 

4.2.1.2  – Analysis model  

For each simulation setting and imputation model the following linear regression analysis model 

was used:  

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 +  𝜀𝑖 , 

where 𝛽0 (true value equal to 0) and 𝛽1 (true value equal to 0.6) are the intercept and exposure 

coefficient respectively, and 𝜀𝑖 are independently and identically distributed random errors with 

distribution 𝑁(0, 𝜎2).  

Each simulated dataset was analysed using CCA and MI. Where data were simulated as MCAR 

both MI and CCA are valid models [149]. For MAR data, with missingness dependent on X and 

Z1, CCA is biased unless both X and Z1 are included in the analysis model. For MAR data, MI is 

valid provided both X and Z1 are included in the imputation model. MI was performed using the 

Stata [240] package mi impute. The analysis model, and the combination across imputed 

datasets using Rubin’s rules, was implemented via Stata’s mi estimate.  

 

4.2.1.3  – Imputation models  

Five imputation models were considered for both MCAR and MAR data (see Table 4-1). All 

models contained the variables included in the analysis model and used linear regression to 

impute the missing outcome. Model 1 contained no auxiliary information. Models 2-5 contained 

increasing quantities of auxiliary information, achieved by increasing the number of 𝑍 variables 

included in the imputation model. The squared coefficient of multiple correlation with the 

outcome variable, 𝑅𝑌
2, was used as a measure of the quantity of auxiliary information. This 

reflects a sum of the independent contributions of each auxiliary variable to the imputation 

model.   
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For each imputation model 1000 imputations were run. FMI is a highly variable estimate at low 

numbers of imputations [241] hence the need for a large number of imputations. See Appendix 

B.2 for why I chose 1000 imputations. 

 

 

Table 4-1. Description of the Imputation Models Used for Both MCAR and MAR Data.  

Imputation model  Variables included 𝑅𝑌
2 a 

1 (least auxiliary information) Y, X 0.36 

2 Y, X, Z3 0.40 

3 Y, X, Z1 0.52 

4 Y, X, Z1-4 0.76 

5 (most auxiliary information) Y, X, Z1-11 0.92 

a 𝑅𝑌
2, the total coefficient of multiple correlation with the outcome 𝑌 for all variables included in the imputation 

model, is displayed as a measure of the strength of the auxiliary information in each imputation model 

 

 

4.2.1.4  – Comparisons 

I repeated the simulation study for 1%, 5%, 10%, 20%, 40% 60%, 80% and 90% missing data. 

For all scenarios, I generated 1000 independent simulated datasets. Separately for the exposure 

coefficient and the constant coefficient, I compared the complete case analysis and multiple 

imputation analyses with respect to the bias, empirical standard error and FMI of the coefficient 

estimates. Bias and empirical standard error were estimated using the simsum command in Stata 

[212], and FMI was calculated using Stata’s mi estimate. I report the median value and 

interquartile range of the FMI across simulations. Further measures are described and presented 

in Appendix B.3 along with formulae for all performance statistics. 

 

 

4.2.2  – Results 

Figure 4-1 displays the empirical SE of the MI exposure coefficient against the FMI, according 

to proportions of missing data (see Appendix B.4 for presentation of the data separated by 

panels of percentage missing data, which demonstrates that for any given proportion of missing 

data, the empirical SE increases as the FMI increases – with this association being most 

noticeable at high proportions of missing data). For every value of the proportion of missing 

data, the FMI for models with no auxiliary information was approximately equal to the 
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proportion of missing data. The FMI decreased with increasing quantities of auxiliary 

information. For different proportions of missing data but similar FMI values the empirical SE 

of MI coefficient estimates was approximately the same. For example, compare model 2 for 

40% missing data (FMI=0.38, empirical SE=0.032) with model 4 for 60% missing data 

(FMI=0.37, empirical SE=0.031) and model 5 for 80% missing data (FMI=0.35, empirical 

SE=0.030). A second example is given by the comparison of model 1 for 60% missing data 

(FMI=0.60, empirical SE=0.039), model 4 of 80% missing data (FMI=0.63, empirical 

SE=0.041) and model 5 of 90% missing data (FMI=0.56, empirical SE=0.039) while a third 

example is given by model 2 for 80% missing data (FMI=0.79, empirical SE=0.055) and model 

4 for 90% missing data (FMI=0.78, empirical SE=0.054). This indicates that the FMI is a good 

measure of estimate precision while the proportion of missing data is not.    

Table 4-2 displays the percentage reduction in empirical SE compared to CCA for each MI 

model. Increasing auxiliary information in the imputation model led to increasing gains in 

efficiency (greater reduction in empirical SE) with greater effects seen at larger proportions of 

missing data. For low proportions of missing data there was little efficiency gain from MI even 

for the model with the largest quantity of added auxiliary information.   

Figure 4-2 shows that for CCA there are increasing levels of bias in estimating the exposure 

coefficient with increasing proportions of missing data. A single exception to this occurs at 90% 

missing data which may be due to increased variability of the estimate. For MI, no bias was 

observed at any proportion of missing data provided the imputation model included all variables 

related to missingness (models 3-5). These findings provide an example of valid estimates from 

properly specified MI at much larger proportions of missing data than current guidance [231] 

advises. When the imputation model did not include these variables (models 1-2) then the 

magnitude of bias was similar to that of CCA.  

All performance statistics for the exposure coefficient across simulations of MCAR and MAR 

data are presented in Appendix B.5. With respect to FMI and efficiency of the MI estimates, the 

results for the MAR scenario followed the same patterns as noted for the MCAR scenario. The 

results of FMI and efficiency gains were similar when missingness depended on the auxiliary 

variable and when missingness did not depend on the auxiliary variable (presented in Appendix 

B.6).  
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Table 4-2. Percentage Reduction in Empirical SE and Bias Compared to CCA for MCAR and MAR Results of the 

Exposure Coefficient in the Simulation Study.  

  

% Reduction in SE compared to CCA c 

% Reduction in bias 

compared to CCA d 

% Missing Imputation model a b MCAR data MAR data MAR data 

1 1: R2=0.36 (No aux info) 0.00% -0.01% 1.46% 

 2: R2=0.40 0.16% 0.24% 1.91% 

 3: R2=0.52 0.24% 0.11% 79.03% 

 4: R2=0.76 0.55% 0.41% 79.54% 

 5: R2=0.92 

 

0.52% 0.58% 81.42% 

5 1: R2=0.36 (No aux info) 0.02% -0.03% 0.16% 

 2: R2=0.40 0.19% 0.03% -1.26% 

 3: R2=0.52 1.04% 0.93% 97.92% 

 4: R2=0.76 1.99% 2.63% 94.91% 

 5: R2=0.92 

 

1.57% 3.64% 93.74% 

10 1: R2=0.36 (No aux info) -0.05% -0.06% 0.40% 

 2: R2=0.40 0.37% 0.75% -0.35% 

 3: R2=0.52 0.58% 1.12% 97.38% 

 4: R2=0.76 2.59% 4.61% 96.73% 

 5: R2=0.92 

 

2.89% 6.76% 96.41% 

20 1: R2=0.36 (No aux info) 0.03% -0.05% -0.19% 

 2: R2=0.40 1.08% 1.03% -0.65% 

 3: R2=0.52 2.59% 3.42% 97.94% 

 4: R2=0.76 8.28% 7.94% 97.33% 

 5: R2=0.92 

 

10.53% 10.26% 97.29% 

40 1: R2=0.36 (No aux info) 0.05% -0.06% -0.21% 

 2: R2=0.40 2.00% 1.25% 0.10% 

 3: R2=0.52 5.37% 5.06% 97.84% 

 4: R2=0.76 15.56% 14.11% 98.56% 

 5: R2=0.92 

 

21.10% 22.86% 98.64% 

60 1: R2=0.36 (No aux info) -0.04% -0.02% 0.21% 

 2: R2=0.40 2.55% 1.68% 0.02% 

 3: R2=0.52 5.48% 6.74% 99.77% 

 4: R2=0.76 21.02% 18.45% 99.43% 

 5: R2=0.92 

 

31.59% 31.96% 98.22% 

80 1: R2=0.36 (No aux info) -0.03% -0.14% 0.00% 

 2: R2=0.40 2.16% 1.57% 1.34% 

 3: R2=0.52 8.18% 9.86% 96.47% 

 4: R2=0.76 27.56% 28.21% 99.62% 

 5: R2=0.92 

 

45.88% 44.66% 98.77% 

90 1: R2=0.36 (No aux info) 0.03% 0.11% 0.04% 

 2: R2=0.40 1.40% 2.18% 0.89% 

 3: R2=0.52 12.44% 8.86% 99.97% 

 4: R2=0.76 34.82% 33.76% 95.78% 

 5: R2=0.92 

 

53.09% 52.96% 98.73% 

CCA – Complete case analysis; MAR – Missing at random; MCAR – Missing completely at random; SE – Standard 

error 
a R2 refers to the squared coefficient of multiple correlation which is used as a measure of auxiliary information 
b Models 1 and 2 do not include all variables in the missingness mechanism and so are biased (as expected) for the 

MAR data. Models 3-5 do include all variables in the missingness mechanism and so are unbiased (as expected). 
c Calculated using 100 × (seCCA – seMI)/seCCA where seCCA and seMI are the empirical standard error of the CCA model 

and the MI model respectively 
d Calculated using 100 × (abs(biasCCA)-abs(biasMI))/abs(biasCCA) where abs(.) is a function giving the absolute value 

and biasCCA and biasMI are the bias of the CCA model and the MI model respectively.  
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Figure 4-1: Empirical SE of the MI exposure coefficient plotted against FMI for simulated MCAR data. Error bars are 95% confidence intervals based on Monte Carlo standard errors across 

simulations. FMI = fraction of missing information; SE = standard error. 
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Figure 4-2: Bias of the CCA and MI exposure coefficient plotted against the proportion of missing data for simulated MAR data. Error bars are 95% confidence intervals based on Monte Carlo 

standard errors across simulations. MI = multiple imputation; FMI = fraction of missing information; SE = standard error 
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4.3 – Applied example 

4.3.1  – Ethical approval 

Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and 

the Local Research Ethics Committees - http://www.bristol.ac.uk/alspac/researchers/research-

ethics/. 

 

4.3.2  – Methods 

Data were taken from ALSPAC [242, 243] which recruited 14,541 pregnant women resident in 

Avon, UK with expected dates of delivery 1st April 1991 to 31st December 1992. Of these 

pregnancies, there were 13,988 children who were alive at 1 year of age. Please note the study 

website contains details of all the data that is available through a fully searchable data dictionary 

(http://www.bristol.ac.uk/alspac/researchers/our-data/).  

I investigated the relationship between a binary measure of maternal smoking during pregnancy, 

self-reported at 18 weeks gestation and offspring IQ measured using the Wechsler Abbreviated 

Scale of Intelligence at age 15 years [244]. The substantive analysis was a linear regression of 

offspring IQ at age 15 on maternal smoking in pregnancy. I shall refer to this as the 

“unadjusted” analysis. I also considered an “adjusted” analysis which controlled for the possible 

confounders maternal age, parity and education and offspring sex.  

In order to simplify this illustrative example, observations were removed if they had missing 

data for any of the confounders. The justification for this decision is that these variables were 

measured at the start of the study and if they were missing then the participant was likely to be 

missing data in most other variables. Appendix B.7 shows excluded participants with missing 

values in the confounders were more likely to have a larger number of missing variables for the 

outcome, exposure and auxiliary variables. This exclusion criteria left a total sample size of 𝑛 =

11911. Among the included participants the exposure was fully observed. See Appendix B.8  

for the patterns of missing data for the outcome and auxiliary variables. 

The auxiliary variables used in imputation models were IQ at age 8 measured using the 

Wechsler Intelligence Scale for Children - III [245], intelligibility and fluency at age 9 

measured using the Children’s Communication Checklist [246], a binary indicator of ever 

having learning difficulties, and, measured in school year 6, the child’s teacher-reported maths 

and literacy streaming groups as well as the score from a maths assessment.  

I performed chained equations imputation [247] using Stata’s mi impute chained command with 

1000 imputations. I used this large number of imputations to ensure that a reliable estimate of 

http://www.bristol.ac.uk/alspac/researchers/research-ethics/
http://www.bristol.ac.uk/alspac/researchers/research-ethics/
http://www.bristol.ac.uk/alspac/researchers/our-data/
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the FMI was obtained. Twelve imputation models with differing amounts of auxiliary 

information were investigated. A description of the variables included in each model is 

displayed in Table 4-3. Model A contains only the confounders in the adjusted model, model B-

E include one auxiliary variable each.  Model F includes one variable each for the maths and 

literacy streaming groups. Models G-L include differing combinations of auxiliary variables.  

The same imputation models were used for the unadjusted and adjusted analyses. For a given 

analysis model, an imputation model was defined as containing auxiliary variables if it included 

variables that were not in the analysis model. So, for the unadjusted analysis every imputation 

model contained auxiliary variables, whereas for the adjusted analysis, the simplest imputation 

model contained no auxiliary variables.  

 

 

Table 4-3. Imputation Models for the Applied Example, Bristol, United Kingdom, 1991-2007. 

Model Variables included a % missing data 

A No extra variables 

 

62.47% 

B IQ at age 8 

 

66.64% 

C Intelligibility and fluency at age 9 

 

66.68% 

D Maths assessment score 

 

76.59% 

E Learning difficulties 

 

78.84% 

F Streaming for maths and English 

 

81.75% 

G IQ at age 8 and intelligibility 

 

69.34% 

H IQ at age 8 and maths assessment 

 

79.11% 

I IQ at age 8, intelligibility and maths assessment 

 

80.62% 

J IQ at age 8, intelligibility, maths assessment and LD 

 

84.17% 

K IQ at age 8, intelligibility, maths assessment and streaming groups 

 

86.42% 

L IQ at age 8, intelligibility, maths assessment, LD and streaming groups 86.51% 
a All models additionally contained IQ at age 15, a binary measure of maternal smoking in pregnancy and the set of 

all confounders. Continuous variables (IQ at age 8 and 15, intelligibility and maths assessment score) were imputed 

using a linear regression model, binary variables (sex and learning difficulties) were imputed using logistic 

regression, and ordinal variables (maternal age and education, parity and maths and literacy streaming group) were 

imputed using ordinal logistic regression.  
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4.3.3 – Results 

Table 4-4 shows that the proportion of missing data in the outcome variable was 62%, with all 

auxiliary variables having a lower proportion of missing data.  IQ at age 8 and maths assessment 

score explained the most variance in the outcome. Intelligibility and ever having learning 

difficulties were the weakest predictors. The exposure and all confounder and auxiliary 

variables were associated with the likelihood of missingness in the outcome variable. 

The results for the estimate, standard error, FMI and percentage reduction in SE compared to 

CCA for the exposure coefficient of the adjusted linear regression are presented in Figure 4-3. 

The estimated association between maternal smoking and IQ is further from the null when the 

imputation model includes more variables. The estimates provided by the CCA model would 

lead to different conclusions to those provided by MI model H-L. 

Figure 4-3 shows that for the exposure coefficient, the MI standard errors for most imputation 

models were smaller than that of CCA; models A, C and E are exceptions displaying slight 

increases, likely due to these models containing low levels of auxiliary information. No model 

led to larger FMI than that of model A which included no auxiliary information.  

Including more than one auxiliary variable in the imputation model had inconsistent influence 

on FMI and SE for the exposure coefficient. For example, the addition of intelligibility to model 

B (see model G) lead to increased FMI and a reduced gain in efficiency versus CCA, as 

measured by percentage reduction in SE. The addition of the maths assessment score to model 

B (see model H) lead to the greatest estimate precision and lowest FMI. Once intelligibility had 

been added to model H (see model I-L) further addition of variables to the model could not 

achieve the efficiency gains observed in model H. It is possible that this is because missing 

information in intelligibility led to increased variability that could not be counteracted by 

introducing further information about missing outcomes via the inclusion of more auxiliary 

variables. The confidence intervals of the exposure coefficient estimates overlap for all 

imputation models investigated. 

Comparison of Figure 4-3 with the figure in Appendix B.9 shows that greater reductions in 

efficiency, relative to CCA, were made when the analysis model was an unadjusted model. This 

is because confounders are likely to explain some of the covariation between the exposure and 

outcome as well as some of the missingness in the outcome. The remaining unexplained 

variation that is available to be accounted for by auxiliary variables is therefore less in the 

adjusted models.  
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Table 4-4: Variable Description, Including the Proportion of Missing Data and Relationship with Observed and 

Missing Values in the Outcome Variable for the Applied Example, Bristol, United Kingdom, 1991-2007. 

Variable Type % 

missing 

data 

𝑅2 with outcome 
a 

 

OR for missing 

data in outcome 
b 

95% CI b 

IQ at age 15 

 

Continuous 62.47    

Maternal 

smoking in 

pregnancy 

 

Binary  0.00 0.01 2.18 1..98, 2.39 

Maternal age Categorical 

- ≤ 24 years  

- 25-29 years 

- 30-34 years  

- ≥ 35 years  

0.00 0.04  

Reference 

0.57 

0.42 

0.41 

 

 

Reference 

0.51, 0.64 

0.38, 0.47 

0.35, 0.47 

Parity Categorical 

- 0  

- 1 

- 2  

- ≥ 3  

0.00 0.01  

Reference 

1.18 

1.46 

2.06 

 

 

Reference 

1.09, 1.29 

1.30, 1.64 

1.72, 2.48 

Sex Binary 

- female 

- male  

0.00 <0.01  

Reference 

1.27 

 

 

Reference 

1.18, 1.37 

Maternal 

education 

Categorical 

- Vocational 

- CSE/O level 

- A 

level/Degree  

0.00 0.11  

Reference 

0.91 

0.45 

 

 

 

Reference 

0.80, 1.05 

0.39, 0.52 

IQ at age 8 Continuous  44.49 0.37 0.98 

 

0.98, 0.98 

Intelligibility 

and fluency at 

age 9 

 

Continuous  37.96 0.01 0.95 0.93, 0.97 

Maths 

assessment 

score 

 

Continuous  44.39 0.24 0.15 0.12, 0.19 

Ever had 

learning 

difficulties 

 

Binary  48.57 0.08 2.02 1.75, 2.33 

Maths 

streaming group 

Ordinal 

- lowest 

- middle  

- highest  

52.76 0.20  

Reference 

0.58 

0.42 

 

 

Reference 

0.50, 0.69 

0.36, 0.49 

Literacy 

streaming group 

Ordinal 

- lowest 

- middle  

- highest  

55.03 0.16  

Reference 

0.59 

0.39 

 

Reference 

0.50, 0.69 

0.33, 0.45 

CCA – complete case analysis; CI – Confidence interval; IQ – Intelligence quotient; OR – Odds ratio; R2 – variance 

explained in the outcome 
a Regressed IQ at age 15, on each variable with no adjustment for other variables. CCA analysis was used in all 

models. 
b Using logistic regression, the odds of having a missing value for the outcome were regressed on each variable with 

no adjustment for other variables. CCA analysis was used in all models.
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Figure 4-3: Estimate, standard error and FMI for the exposure coefficient in the applied example adjusted analysis model. Reduction in SE is relative to CCA. CCA=complete case analysis; FMI= 

fraction of missing information; SE = standard error.  
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4.4 – Discussion  

This study showed that at all proportions of missingness in the outcome there is benefit to using 

MI in terms of reducing bias and improving efficiency, and that FMI can be used as a better 

guide to the efficiency gains to be made from MI than the proportion of missing data. I found 

that, compared to CCA, MI with auxiliary information improved efficiency of effect estimates 

at any proportion of missing data.  Provided the imputation model was correctly specified and 

included all variables related to missingness then MI eliminated bias when data were MAR 

regardless of the amount of missing data. CCA was always biased because the analysis model 

did not include all variables related to missingness [149, 223, 248]. The simulations (both 

MCAR and MAR) revealed that similar FMI values can result from datasets with differing 

proportions of missing data if they have differing amounts of auxiliary information. In models 

with the same FMI, the empirical SE was approximately equal despite the different proportions 

of missing data. The biggest factor affecting the gain in precision of effect estimates from using 

multiple imputation is therefore not the proportion of missing data but instead the FMI. 

The results of the applied example show that auxiliary information influences the standard error 

and FMI of effect estimates in a real world dataset. The example also demonstrates that the 

introduction of extra variables to the imputation model, without reducing the FMI, can be 

harmful to the precision of model estimates. This can likely be explained by the additional 

missing data in the auxiliary variable leading to a loss in estimate precision. Out of all models 

tested I would recommend the use of model J because it had the lowest FMI and included more 

variables that predicted missingness than model H which had an equivalent FMI. Model L 

additionally included the streaming group variables, which also predicted missingness, but there 

was very little difference in the coefficient estimate compared to model J while its FMI was 

greater than model J. 

An inclusive strategy of auxiliary variables has been suggested as preferable to a restrictive 

strategy to try to include all variables that may be associated with the missingness mechanism 

[249]. Using too many auxiliary variables is harmful, however, when the sample size is small 

[250]. This leads to a ratio of observed values to model parameters that is close to unity which 

in turn leads to poor model fit. Where the sample size is large an inclusive strategy of auxiliary 

variables is acceptable – however the results show that the FMI should be checked to see 

whether missing data in auxiliary variables decreased efficiency (as in the applied example). 

Those variables which make the MAR assumption plausible should always be included in the 

imputation model.  

The simulation study was limited by its single sample size, simple analysis model and that I 

considered missingness in only one variable. In real world datasets auxiliary variables are often 
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correlated, which will reduce the independent contribution of each variable to the imputation 

model but may aid in prediction of missing values in an auxiliary variable itself. Missingness 

often occurs in several variables within a dataset, although this should not bias the estimate of 

the effect of exposure on outcome, provided missingness is not related to the outcome (for 

CCA) or that all variables are MAR (for MI) [149]. Sample size has been shown to influence 

efficiency gains obtained via MI for binary outcomes [237] with smaller sample sizes associated 

with smaller gains at equivalent proportions of missing data. It is possible that greater efficiency 

gains could be achieved at the smaller proportions of missing data than was observed in this 

study if a greater sample size was used. Bias reduction has also been found to be greater with 

increasing sample size for longitudinal data [234]. Finally, I have only investigated correctly 

specified MI – if the imputation model is incorrectly specified, the bias may not be completely 

removed, or could even be larger than in the CCA [226, 227, 251]. In practice, the variables 

related to missingness are seldom known with certainty.  

Further work needs to investigate the applicability of the results to models with binary and time 

to event outcomes. Logistic regression sometimes differs to linear regression with regard to 

missing data; for example, logistic regression is more robust to bias in the presence of missing 

data [147]. In Appendix B.10 I display a simple example of the simulation study for a binary 

outcome. For MI of a logistic regression analysis model, the simulation results show that the 

FMI is reduced with increasing auxiliary information, which was also shown by the results of 

the simulation study for the linear regression model. More thorough investigation is warranted. 

This study is the first to investigate the influence of increasing auxiliary information on bias and 

efficiency of MI analyses at proportions of missing data greater than 50% missingness. Studies 

that have looked at large proportions of missing data, in the absence of auxiliary information, 

have also shown MI to reduce bias and improve efficiency over CCA [235, 236]. These studies 

highlighted the importance of a properly specified imputation model to reducing bias. 

For MI to be valid, the data must be MAR (given the variables in the imputation model), and 

both analysis and imputation models must be correctly specified. This may be harder to 

investigate as the number of participants with complete data (rather than the proportion of the 

sample with missing data) decreases. For example, investigating whether interactions or non-

linearities need to be included in the imputation model will be harder as the number of complete 

cases gets smaller. However, the complete case analysis also depends on the analysis model 

being correctly specified, and data being MAR given the variables in the analysis model. These 

assumptions will be similarly hard to investigate as the number of complete cases decreases. 

Thus, where conclusions are being drawn from a small number of complete cases, I recommend 

sensitivity analyses to explore a range of plausible analysis and imputation models, as well as 

the impact of deviations from MAR [226, 252].  
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These results have important implications for epidemiologists, and reviewers, for the conduct 

and reporting of analysis on incomplete data. The results imply that researchers should consider 

whether all the variables related to missingness can plausibly be included in the imputation 

model (to limit bias), and then whether there are auxiliary variables that can lower the FMI (to 

improve efficiency). I recommend that all papers reporting results of analyses with incomplete 

data show: a table of characteristics of those with complete data vs those with incomplete data 

(to assess factors associated with missingness) and a table showing variables associated with 

incomplete variables (to assess auxiliary information). The FMI of multiple imputation analyses 

should be reported, along with a discussion of whether it is plausible that all variables related to 

missingness have been included in the imputation models. 

A key finding of this study is that the proportion of missing data should not be used as a guide 

to whether to use MI (or CCA) or not – I have shown that correctly specified MI can reduce bias 

and improve efficiency for analysis of MAR data at any proportion of missingness. If the 

imputation model cannot be correctly specified, then alternatives to MI such as inverse 

probability weighting [155] or study-specific sensitivity analysis may be preferable. This work 

shows that the FMI provides better insight into the amount of information retained using MI 

than does the proportion of missing data. It may be useful to check the FMI when adding 

auxiliary variables to an imputation model to see which variables are not adding information 

(e.g. due to the proportion of missing data in an auxiliary variable). 
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Chapter 5 Maternal smoking during pregnancy 

and offspring intellectual disability: 

sibling analysis in an 

intergenerational Danish cohort 
 

The contents of this chapter have been published in the following peer reviewed journal article: 

- Madley-Dowd P., Kalkbrenner A.E., Heuvelman H., Heron J., Zammit S., Rai D., and Schendel 

D., Maternal smoking during pregnancy and offspring intellectual disability: sibling analysis in 

an intergenerational Danish cohort. Psychological medicine, 2020: p. 1-10. DOI:  

https://doi.org/10.1017/S0033291720003621  

 

In Chapter 1 I described that a systematic review has suggested that smoking during pregnancy 

is associated with a small increase in the risk of offspring intellectual disability (ID) [97], 

though the studies included did not adequately account for confounding or information bias. 

Two better quality studies not included in the review found an association between smoking in 

pregnancy and offspring risk of ID but both suggested that this may be the result of residual 

confounding [98, 99]. Further triangulation of evidence from different causal inference 

techniques is required to establish whether such an interpretation is likely [135, 160, 253]. In 

contrast, the association between smoking in pregnancy and offspring fetal growth restriction 

has strong evidence of being causal in nature from complementary causal inference designs [8, 

9, 183]. This latter association can be used as a positive control for smoking in pregnancy and 

offspring ID. By this I mean that, using the same causal inference methods, if an association is 

found for fetal growth restriction but not ID then this will support the interpretation that 

observational associations with ID are the result of residual confounding.  

Important questions are outstanding in the current literature, including whether the association 

between maternal smoking and offspring ID differs by offspring gender or with the presence of 

other comorbid disorders, and whether timing and dosage of exposure are associated with 

changes in the strength of association. In the first empirical chapter of this thesis I aimed to 

investigate the association between maternal smoking during pregnancy and risk of ID in 

offspring, and assess causality, using data from a large Danish population-based cohort with 

data available on parents and siblings. Secondary aims were to investigate the association 

among subgroups (separated by severity of ID, comorbid ASD and ADHD, gender) and the 

associations for different timings and dosages of exposure. 

https://doi.org/10.1017/S0033291720003621
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5.1 – Methods 

5.1.1 – Ethics approval 

This study was approved by the Danish Scientific Ethics Committee, the Danish Health Data 

Authority, the Danish Data Protection Agency and the Danish Neonatal Screening Biobank 

Steering Committee. Consent from individuals for this register-based study using anonymised 

data was not required. 

 

5.1.2  – Cohort for analysis 

The study cohort consisted of all individuals born in Denmark between January 1st 1995 and 

December 31st 2012 (n=1 337 491). After excluding children not born in Denmark, those who 

died or emigrated before the age of 1, those who had a missing link to a maternal or paternal 

identifier and those who had a known genetic or metabolic cause of intellectual disability (see 

Table C.1.1-1 in Appendix C), the remaining sample included 1 119 146 individuals (study flow 

chart in Figure 5-1). The cohort and analytic variables were defined using several registry 

datasets linked by a unique identification number [254]: the Danish Medical Birth Registry 

(MBR) [255], the Danish Psychiatric Registry (DPR) [256], the Danish National Patient 

Registry (NPR) [257] and Statistics Denmark registries of education [258] and income [259].  

Most clinical contacts related to intellectual disability occurred in an outpatient setting. I 

therefore defined the start year of the cohort as 1995 when the DPR and NPR started recording 

outpatient contact in addition to inpatient admissions. I selected 2012 as the end year for 

inclusion in the cohort to allow a minimum of 4 years follow up until the latest date for 

available data, 10th of April 2017. The youngest and oldest members of the cohort were 

followed up until approximately 4.3 and 22.3 years of age respectively.  
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Figure 5-1: Flowchart of cohort derivation.  

Total Population of Denmark born 01 

Jan 1995 -31 Dec 2012, 

N = 1 337 491 (100.00%) 

N with ID = 10 963 (100.00%) 

Excluded for (not mutually exclusive categories):  

• Born outside of Denmark = 167 743 (12.54%) 

• Not alive at 1 year of age = 8476 (0.63%) 

• Emigrated before 1 year of age = 8038 (0.60%) 

Total excluded = 184 040 (13.76%) 

Total ID excluded = 808 (7.37%) 
Sample remaining = 1 153 451 (86.24%) 

ID remaining = 10 155 (92.63%) 

Primary analysis 

Sample remaining = 1 066 989 (79.78%) 

ID remaining = 8051 (73.44%) 

Sample remaining = 1 119 146 (83.68%) 

ID remaining = 8622 (78.65%) 

Sample remaining = 1 124 076 (84.04%) 

ID remaining = 9702 (88.50%) 

Excluded for (not mutually exclusive categories):  

• Missing maternal identity = 1741 (0.13%) 

• Missing paternal identity = 29 375 (2.20%) 

Total excluded = 29 375 (2.20%) 

Total ID excluded = 453 (4.13%) 

Excluded for having a single gene or 

chromosomal disorder:  

Total excluded = 4930 (0.37%) 

Total ID excluded = 1080 (9.85%) 

Excluded for having missing covariates:  

Total excluded = 52 157 (3.90%) 

Total ID excluded = 571 (5.21%) 

Timing analysis 

Sample remaining = 946 171 (70.74%) 

ID remaining = 6570 (59.93%) 

Dosage analysis 

Sample remaining = 141 195 (10.56%) 

ID remaining = 1898 (17.31%) 

Excluded for:  

• Born before 1997 = 120 815 (9.03%) 

• Unknown smoking cessation status = 3 

(<0.01%) 

Total excluded = 120 818 (9.03%) 

Total ID excluded = 1481 (13.51%) 

Excluded for:  

• Mother was a non-smoker = 780 015 

(58.32%) 

• Mother was a smoker but had no dosage 

information = 24 961 (1.87%) 

Total excluded = 804 976 (60.19%) 

Total ID excluded = 4672 (42.62%) 
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5.1.3 – Exposure definition: maternal smoking during pregnancy 

Information about maternal smoking during pregnancy was obtained from the MBR, abstracted 

from midwife interviews at the first antenatal contact. A dichotomous smoking variable (yes/no) 

is available for births between 1995 and 1996. From 1997 additional information on duration 

(i.e. whether they stopped smoking and whether smoking cessation was before or after the first 

trimester) and number of cigarettes smoked per day (up to 5 cigarettes, 6-10 cigarettes, 11-20 

cigarettes, >20 cigarettes) was added. Reporting of the additional duration and dosage data did 

not occur until late 1997 and took a few years to reach >95% completeness [255]. 

I created a dichotomous smoking variable that indicated smoking at any time during pregnancy. 

The validity of the MBR smoking measure is supported by correlations between the MBR 

maternal smoking data and biomarkers of smoking-related methylation in new-born offspring 

[260]. I created a categorical timing variable among those born from 1997 onwards with 

available data (n=946,171) that indicated whether mothers did not smoke during pregnancy, 

smoked but gave up before the end of the first trimester or smoked beyond the end of the first 

trimester. Finally, I created a continuous dosage variable, where data were available 

(n=141,195), that indicated the number of cigarettes smoked per day using the lower bound of 

the dosage groups (i.e. 1, 6, 11 or 21 cigarettes smoked per day). 

I assessed the reliability of the dichotomous smoking measure by comparing smoking status 

during pregnancy in the MBR against the NPR. Where data were available in the NPR, over 

99% of smokers identified in the NPR were also recorded as smokers in the MBR, while 0.01% 

of non-smokers in the NPR were classified as smokers in the MBR (see Table 5-1). Smokers, 

according to the MBR, were more likely to have missing data in the NPR than were non-

smokers (OR=1.82; 95% CI=1.80-1.84). 

 

 

Table 5-1: Concordance of exposure in Medical Birth Register against National Patient Register 

 NPR value 

MBR value Smokers, N(%) Non-smokers, N(%) Missing value, N(%) 

Smoker  142737 (99.99) 969 (0.13) 54671 (26.68) 

Non-smoker  14 (0.01) 718327 (99.87) 150271 (73.32) 

 

 

5.1.4  – Outcome definition: intellectual disability 

ID was defined as having an ICD-10 [12] code of F70-F79 (F70: mild ID, F71: moderate ID, 

F72: severe ID, F73: profound ID, F78 other ID, F79: unspecified ID), recorded as a primary or 
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secondary diagnosis in either the DPR or the NPR. After exclusions (see Figure 5-1), 8051 cases 

(0.75% of included persons during the included follow-up period) were identified.  

 

5.1.5  – Comorbid autism spectrum disorder and attention deficit 

hyperactivity disorder definition 

Matching the definition used by the Lundbeck Foundation Initiative for Integrative Psychiatric 

Research (iPSYCH) consortium [261], individuals with the ICD-10 diagnosis codes F84.0, 

F84.1, F84.5, F84.8 and F84.9 were identified as having ASD. Individuals with the diagnosis 

codes F90.0 were identified as having ADHD. Where iPSYCH used diagnoses from only the 

DPR, I also used diagnoses from the NPR.  

 

5.1.6  – Covariate and confounder definitions 

The covariates and confounders adjusted for in statistical models were child sex, parity, mother 

and father’s age, education and income in the year of the child’s birth, the psychiatric history of 

mother and father prior to the child’s birth and mother and father’s country of origin. Full 

details of variable definitions can be found below.  

Parental age at the time of the child’s birth was derived from the parent’s date of birth contained 

in the CRS. Highest educational attainment of either parent was obtained from Danish education 

registers and derived into a categorical variable separated into primary education (6-16 years 

old), general/vocational education (post 16 education) and higher education (university level of 

any duration). Parental country of origin was grouped according to the following locations: 

Denmark (including Greenland), Africa, Americas (North and South), Europe, Middle East, 

Oceania (Asia and Australia) and Scandinavia. 

Parental income was obtained from the Statistics Denmark registry of income [259]. I used a 

variable for total personal income, excluding calculated rental value of own housing and before 

interest deduction [262]. From this variable I took the mean value of both parent’s income in the 

year of the child’s birth. If income data was missing for one parent, then the value was taken as 

the non-missing parent’s income. I then divided the mean income by the number of children in 

the family at the pregnancy’s conclusion (e.g. if 1 child was already in the family and this 

pregnancy was with twins then the mean income was divided by 3) to create a child adjusted 

mean income. For 82 children with unknown multiplicity I assumed the children to be 

singletons. I then created deciles of the child adjusted mean income among all families with 

non-missing covariate data (i.e. the final sample) for each year.  
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For parental psychiatric history I derived indicator variables for diagnoses of affective disorders, 

anxiety disorders, psychotic disorders and substance use disorders (excluding nicotine related 

disorders; ICD-10 code F17) in either the DPR or the NPR for each parent at any time before 

the child’s birth. As the diagnostic system used in Denmark changed from ICD-8 to ICD-10 in 

1994 I used the conversion table presented by Pederson et al. [263] to convert between the two 

classification systems. The diagnosis codes used to derive the indicator variables are presented 

in Table C.1.2-1 in Appendix C.  

Data on maternal and paternal identity were obtained from the MBR to ensure that the 

biological mother is identified; using the maternal identifier from other sources may lead to 

adoptive parents being identified, for example, which would create error in the potentially 

confounding variables. For the paternal identifier, this is who the biological mother says is the 

father of the child and may not represent the biological father of the child. It may be another 

woman in the case of same sex couples. I do not believe that misidentification of the biological 

father will be an issue within this study. Instead, provided that the paternal identifier identifies 

the partner of the biological mother during her pregnancy, this should capture information 

relevant to the environment of the developing foetus, and hence the identified confounding 

structures.  

 

5.1.7  – Assessment of missing data 

There were little missing data (overall 3.9%, 52 157 individuals) due to missing exposure, 

confounder or covariate variables (n remaining=1,066,989 individuals from 658,335 families). I 

assessed whether any measured variable predicted whether a value would be excluded from the 

cohort using complete case logistic regression of a binary indicator for exclusion on each 

variable separately with no adjustment.  

 

5.1.8  – Statistical analysis 

All analyses were performed using R version 3.4.3 [264]. Following descriptive analyses, the 

primary analyses involved logistic regression of ID on maternal smoking in pregnancy. The 

family structure present within the cohort means that the data violates the assumption of 

independence between observations which can lead to underestimation of standard errors. I 

therefore used generalised estimating equations (GEE)[265], with an exchangeable correlation 

structure for mother and father combinations. This means the analyses accounted for 

correlations between full siblings, but half siblings, cousins and other relations were treated as 

independent. All models (including those referred to as unadjusted) were adjusted for child’s 
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grouped year of birth (1995-1997, 1998-2000, 2001-2003, 2004-2006, 2007-2009, 2010-2012) 

to account for cohort effects and the differing length of follow up across birth years. 

 

5.1.8.1 – Primary analysis 

I ran the following four models (ignoring the term for child’s grouped year of birth): 

Model 1 -  g(E[𝑌𝑗|𝑋𝑗]) = β0 + β𝑃𝑋𝑗, 

Model 2 -  g(E[𝑌𝑗|𝑋𝑗, 𝐶𝑗]) = β0 + β𝑃𝑋𝑗 + β𝐶𝐶𝑗, 

Model 3 -  g(E[𝑌𝑗|𝑋𝑗, �̅�]) = β0 + β𝑊𝑋𝑗 + β𝐵�̅�, 

Model 4 -  g(E[𝑌𝑗|𝑋𝑗, �̅�, Cj]) = β0 + β𝑊𝑋𝑗 + β𝐵�̅� + β𝐶𝐶𝑗, 

Model 1 did not adjust for any variables (other than grouped year of birth). Model 2 was 

adjusted for covariates and confounders. Model 3 adjusted for family-averaged smoking by 

including a term equal to the proportion of pregnancies in the family in which the mother was 

recorded as having smoked, thus making use of model formulation 2 suggested by Begg and 

Parides [102], but without other covariates. Model 4 adjusted for all covariates, confounders and 

the family-averaged smoking variable. Model 1 and 2 therefore provide population averaged 

effect estimates (β𝑃) while Model 3 and 4 provide both within-family (β𝑊) and between-family 

effect estimates (β𝐵; see Section 2.3.3 for an explanation of these terms).  

 

5.1.8.2  – Positive control analysis 

To test the validity of this approach I performed a positive control analysis in which I repeated 

the analyses using birthweight instead of ID, an outcome that is well established as having a 

causal relationship with maternal smoking in pregnancy. I repeated the four primary analysis 

models using low birthweight as the outcome, defined as a birthweight of less than 2500g 

(4.73% of included persons). Birthweight (mean value=3948g, SD=590g) was obtained from 

the MBR for 1,062,474 individuals (99.6% of the primary analysis sample).  

 

5.1.8.3  – Secondary analysis  

In secondary analyses I assessed the association between maternal smoking and offspring ID for 

different severities of ID and comorbidities of ID with ADHD and ASD. I also assessed 

differences in effect size based on sex, smoking timing and dosage.  

To assess whether there was a pattern of increasing effect sizes across the severity of diagnosed 

ID, I performed an unadjusted multinomial logistic GEE model of a categorical variable of 

highest severity of ID recorded (6 levels: F70, F71, F72, F73, F78/F79, no ID) on maternal 
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smoking during pregnancy with no ID as the reference category. Adjusted analyses could not be 

performed due to model convergence issues.  

To assess whether comorbidity of ID with ADHD and ASD influenced the association between 

smoking in pregnancy and ID, I performed unadjusted and confounder adjusted analyses using a 

multinomial logistic GEE model of a categorical variable of comorbidity of ID and ASD (4 

levels: ID only, ASD only, ID and ASD, No ID or ASD) on maternal smoking during 

pregnancy, using no ID or ASD as the reference category. This was repeated for comorbidity of 

ID with ADHD.  

To assess whether the associations between smoking in pregnancy and offspring ID were 

influenced by offspring sex I tested an interaction term between maternal smoking and offspring 

sex. I performed these analyses unadjusted and adjusted for covariates and confounders.     

To assess the impact of timing of maternal smoking exposure, I performed unadjusted and 

confounder adjusted logistic GEE models of ID on the categorical smoking variable of whether 

the mother gave up smoking during the first trimester of pregnancy. To assess the impact of 

number of cigarettes (dose), I repeated the four primary analyses models among those who 

continued to smoke throughout pregnancy and had dosage data available using the number of 

cigarettes smoked per day as the independent variable. A family-averaged dosage variable was 

created by taking the mean number of cigarettes smoked across each pregnancy a mother had 

for which dosage data were available.  

 

5.1.8.4 – Sensitivity analysis  

In sensitivity analyses I assessed whether results were robust to: (i) measurement error in the 

outcome; (ii) collinearity between the individual and family-averaged exposures; (iii) differing 

lengths of follow up between cohort years; and (iv) potential biases arising from smoking 

patterns in the cohort.  

I re-ran the primary analyses using a more stringent criterium for ID, defined as having at least 

two F70-F79 diagnoses recorded in either the DPR or the NPR. A total of 4,452 cases 

(prevalence = 0.42%) were identified using this definition. I did this in order to examine 

whether the results were robust to measurement error in the outcome.  

I tested whether my conclusions were influenced by collinearity between the individual and 

family-averaged exposures. Strong polychoric correlation existed between the individual and 

family-averaged exposures ( =0.996). I used an individual level exposure centred on the family-

averaged exposure (corresponding to Begg and Parides’ model 3 [102]) to induce orthogonality 

between the individual and family-averaged exposures ( =-0.008). Models 3 and 4 were 
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repeated using this new exposure variable. This sensitivity analyses also serves the purpose of 

showing that the within-family effect estimate is the same whether the exposure is entered into 

the model uncentred (as 𝑋𝑗) or centred on the family-averaged exposure (as 𝑋𝑗 − �̅�; see the 

description in Section 2.3.3) 

I assessed whether differing lengths of follow up between cohort years influenced my 

conclusions as younger individuals at the end of follow up may have had less opportunity to be 

diagnosed with ID. I therefore repeated the four primary analysis models among sub-cohorts 

that were grouped by birthyear. I also repeated the four primary analysis models using Cox 

regression in the survival R package [266, 267]. The Cox models assessed the influence of 

maternal smoking in pregnancy (binary) on the time in days from birth to the first diagnosis of 

ID (defined as the first recorded start date of contact with services with a diagnostic code for 

ID). Individuals who died or emigrated were censored at the date of death or first emigration. 

Robust standard errors were used for family clusters. 

To check for biases arising from smoking patterns in the cohort (see below) I performed 

additional sensitivity analyses in which I repeated the primary analyses using three restricted 

cohorts. These cohorts were (i) a cohort of single-child families only (n=175,043; n with 

ID=1,533), (ii) a cohort of multiple-child families only (n=891,946; n with ID=6,517) and (iii) a 

cohort of multiple-child families in which all children were born after the start of the cohort 

(n=801,109; n with ID=5,007).  

 

 

5.2 – Results 

5.2.1  – Description of the cohort 

Characteristics of the study cohort are displayed in Table 5-2. Maternal smoking was reported in 

18.6% of pregnancies and was associated with lower maternal and paternal age at pregnancy, 

lower parental education, being in a lower decile of income, and increased parity. All 

psychiatric disorders were more common in smokers and their partners compared to families in 

which the mother did not smoke during pregnancy. The prevalence of maternal smoking during 

pregnancy decreased over time.  
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Table 5-2: Characteristics of the sample by maternal smoking during pregnancy (exposure) status. 

Characteristic Smokers Non-smokers p-value a 

Total, N (%) 198 377 (18.6) 868 612 (81.4)  

Maternal age, mean (SD) 28.7 (5.26) 30.1 (4.64) <.001 

Paternal age, mean (SD) 31.4 (6.16) 32.7 (5.58) <.001 

Highest parental education, N (%)   <.001 

- Primary 46 456 (23.4) 60 817 (7.0)  

- General/vocational 110 361 (55.6) 351 798 (40.5)  

- Higher 41 560 (21.0) 455 997 (52.5)  

Income decile, median (IQR) 4 (1-6) 5 (2-7) <.001 

Maternal country of origin, N (%)   <.001 

- Denmark 181 453 (91.5) 746 737 (86.0)  

- Africa 844 (0.4) 16 286 (1.9)  

- Americas 700 (0.4) 5313 (0.6)  

- Europe 8474 (4.3) 37 821 (4.4)  

- Middle East 2000 (1.0) 23 403 (2.7)  

- Oceana 2045 (1.0) 27 073 (3.1)  

- Scandinavia 2861 (1.4) 11 979 (1.4)  

Paternal country of origin, N (%)   <.001 

- Denmark 180 019 (90.7) 751 091 (86.5)  

- Africa 1339 (0.7) 17 641 (2.0)  

- Americas 728 (0.4) 4898 (0.6)  

- Europe 10 165 (5.1) 39 870 (4.6)  

- Middle East 2989 (1.5) 27 359 (3.1)  

- Oceana 1162 (0.6) 18 884 (2.2)  

- Scandinavia 1975 (1.0) 8869 (1.0)  

Maternal Psychiatric history, N (%)    

- Affective disorder 5398 (2.7) 12 945 (1.5) <.001 

- Anxiety disorder 12 527 (6.3) 27 332 (3.1) <.001 

- Psychotic disorder 1953 (1.0) 3119 (0.4) <.001 

- Substance use disorder 8433 (4.3) 9587 (1.1) <.001 

Paternal Psychiatric history, N (%)    

- Affective disorder 1868 (0.9) 4840 (0.6) <.001 

- Anxiety disorder 5245 (2.6) 12 158 (1.4) <.001 

- Psychotic disorder 1440 (0.7) 3537 (0.4) <.001 

- Substance use disorder 9554 (4.8) 15 985 (1.8) <.001 

Child sex, N (%)   .22 

- Female 96 406 (48.6) 423 450 (48.8)  

- Male 101 971 (51.4) 445 162 (51.2)  

 

Parity, N (%)   <.001 

- 0 85 111 (42.9) 376 648 (43.4)  

- 1 69 489 (35.0) 331 010 (38.1)  

- 2 31 007 (15.6) 121 489 (14.0)  

- 3+ 12 770 (6.4) 39 465 (4.5)  

 

 

Cohort year, N (%)   <.001 

- 1995-1997 47 205 (23.8) 133 189 (15.3)  

- 1998-2000 42 271 (21.3) 139 861 (16.1)  
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Characteristic Smokers Non-smokers p-value a 

- 2001-2003 34 592 (17.4) 143 239 (16.5)  

- 2004-2006 29 781 (15.0) 150 893 (17.4)  

- 2007-2009 24 601 (12.4) 153 931 (17.7)  

- 2010-2012 19 927 (10.0) 147 499 (17.0)  
a t-tests were performed for normally distributed continuous variables, Wilcoxon rank sum tests were performed for 

non-normally distributed continuous variables, and χ2 tests were performed for binary/categorical variables.  

 

 

5.2.1.1 – Smoking patterns in the cohort 

As parity increased, changes in smoking from one pregnancy to the next were less likely to 

occur (see Table C.2.1-1 in Appendix C). For children with parity>1, an index child was less 

likely to have ID if their mother had smoked in neither the index pregnancy or the previous 

pregnancy and was more likely to have ID if their mother had smoked in either pregnancy (see 

Table C.2.1-2).  

I present a cross tabulation of the family-averaged exposure variable against case status for ID 

in Table C.2.1-3. Exposure discordance within a family (i.e. a family-averaged exposure value 

not equal to 0 or 1) was present for 66,798 individuals (6.3% of the primary analysis sample), 

across 28,748 different families (4.4% of all families in the primary analysis sample). 

207,121 families (31.46% of all families in the primary analysis sample) had a child born before 

the cohort start date. Information on such children was not observed and so not included in the 

family-averaged variable; the family-averaged variable in such families may contain error as a 

result. Families with a child excluded for being born before the cohort start date were less likely 

to have exposure discordance and were more likely to have all siblings exposed than families in 

which all children were born after the cohort start date (see Table C.2.1-4).  

Only-children were more likely to be exposed to smoking in pregnancy than the first-born child 

of families with multiple children in the cohort (see Table C.2.1-5). This pattern held true when 

stratifying separately on birthyear and maternal age indicating that single and multiple-child 

families may not be comparable.   

 

5.2.1.2  – Patterns of intellectual disability over time 

By taking a snapshot of prevalence by age in 2017, Figure 5-2 shows that the prevalence 

increased with age up to an age of 18 where it started to level off. Prevalence was higher among 

males than females at all ages. The prevalence of ID at ages 6-18 years of age for each cohort 

year is displayed in Figure 5-3. Prevalence remained approximately steady at each age over 

time, though some cohort years (e.g. 1999) have slightly greater prevalence at all ages. 
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Figure 5-2: Plot of the prevalence of intellectual disability for each age in 2017. 

 

 

 

Figure 5-3: Plot of the prevalence of intellectual disability at ages 6-18 for each cohort year. 

 

 

5.2.2  – Assessment of missing data 

Results of the missing data assessment can be viewed in Table C.2.2-1 (Appendix C). 

Individuals with a diagnosis of intellectual disability had increased odds (OR=1.46; 95% 

CI=1.34-1.59) of being excluded for having missing data. Individuals whose mother smoked 
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during pregnancy had lower odds (OR=0.67; 95% CI=0.64-0.70) of exclusion for missing data 

in other covariates compared to those whose mothers did not smoke. Missingness was driven 

largely by missing maternal smoking data; 74% of those excluded for having missing data 

(3.5% of the total sample) had missing exposure information (see Table C.2.2-2). In Table 

C.2.2-3 and C.2.2-4 I present the distribution of missing data in the smoking variable across 

cohort year group and parity. These tables show that most of the missing data in the smoking 

variable was in the years 1995-2000 and that there was slightly more missing data for children 

with greater parity.  

 

5.2.3  – Primary analyses of the association between maternal smoking and 

offspring ID  

Maternal smoking during pregnancy was associated with increased odds of ID in unadjusted 

analysis (see Table 5-3; OR=1.91, 95% CI=1.82, 2.00). This was attenuated following 

adjustment for covariates and confounders (OR=1.35, 95% CI=1.28, 1.42). The within family 

effect, obtained from the model adjusted for the family-averaged smoking variable, was found 

to be null before and after adjustment for confounders; before (OR=0.91, 95% CI=0.78, 1.06), 

after (OR=0.93, 95% CI=0.79, 1.09). The between-family effect showed increased odds of ID 

before and after confounder adjustment.  

 

 

Table 5-3: Primary analysis of the association between maternal smoking and offspring intellectual disability. 

Model Coefficient O.R. 95% CI 

Unadjusted - Population-averaged 

 

1.91 1.82, 2.00 

Adjusted for confounders a - Population-averaged 

 

1.35 1.28, 1.42 

Adjusted for family smoking 

variable 

- Within-family 0.91 0.78, 1.06 

 - Between-family 

 

2.25 1.92, 2.63 

Adjusted for confounders a and 

family smoking variable 

- Within-family 0.93 0.79, 1.09 

 - Between-family 1.51 1.28, 1.79 
a Adjusted for child sex, parity and year of birth, mother and father’s age, education and income in the year of the 

child’s birth, the psychiatric history of mother and father prior to the child’s birth and mother and father’s country of 

origin. 
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5.2.4 – Positive control analyses of the association between maternal 

smoking and offspring low birth weight 

In the positive control analyses (see Table 5-4) I found that maternal smoking in pregnancy was 

associated with increased odds of low offspring birthweight that was slightly attenuated after 

adjustment for confounders. Both the within-family effect and between-family effect showed 

notable attenuation of the association between maternal smoking and low birthweight 

association, although all estimates remained consistent with increased odds of low birthweight 

before and after confounder adjustment.  

 

Table 5-4: Positive control analysis of the association between maternal smoking and offspring low birthweight. 

Model Coefficient O.R. 95% CI 

Unadjusted - Population-averaged 

 

1.88   1.85, 1.92 

Adjusted for confounders a - Population-averaged 

 

1.74   1.70, 1.77 

Adjusted for family smoking 

variable 

- Within-family 1.21   1.14, 1.27 

 - Between-family 

 

1.64   1.54, 1.74 

Adjusted for confounders a and 

family smoking variable 

- Within-family 1.06   1.00, 1.13 

 - Between-family 1.73   1.61, 1.85 
a Adjusted for child sex, parity and year of birth, mother and father’s age, education and income in the year of the 

child’s birth, the psychiatric history of mother and father prior to the child’s birth and mother and father’s country of 

origin. 

 

 

5.2.5  – Secondary analyses  

Descriptives of the prevalence of ID across the characteristics investigated in secondary 

analyses are presented in Table 5-5. The highest severity diagnosis received by cohort members 

was most often mild or unspecified ID (F70 and F78/9). There was a higher prevalence of ID 

among those with ASD or ADHD than those without. The prevalence of ID was higher among 

those whose mother continued to smoke after the 1st trimester than those whose mothers quit 

during the first trimester or who did not smoke. A pattern of increasing prevalence of ID with 

greater numbers of cigarettes smoked per day during pregnancy was also observed. 

Tables for all secondary analyses are presented in Section C.2.3 of Appendix C. In unadjusted 

analyses maternal smoking during pregnancy was associated with mild, moderate and 

unspecified ID (Table C.2.3-1). The odds for the association with mild ID were greater than 

those for moderate ID. Analyses for comorbidity with ASD and ADHD are presented in Table 

C.2.3-2 and Table C.2.3-3 respectively. In unadjusted analyses, all combinations of ID with 

ASD and combinations of ID with ADHD showed an association of increased odds among 
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those exposed to maternal smoking in pregnancy. Following adjustment for confounders and 

family averaged exposure, the within-family effects for all comorbidity combinations were null.   

I found no evidence for an interaction between smoking in pregnancy and offspring sex which 

suggests that there is no difference in effect size between male and female offspring. (Table 

C.2.3-4). After adjustment for confounders, stopping smoking in the first trimester did not differ 

from not smoking during pregnancy in terms of odds of ID, whereas continuing smoking after 

the first trimester showed increased odds of ID (Table C.2.3-5). Dosage analyses showed a 5% 

increase in odds of ID for each additional cigarette smoked per day (Table C.2.3-6). This effect 

was attenuated to a 3% increase following adjustment for confounders. A null within-family 

effect was found in all models that adjusted for the family-averaged dose. The between-family 

effect was a 6% increase in odds per cigarette smoked per day on average across pregnancies, 

holding fixed the number smoked in each individual pregnancy. This attenuated to a 3% 

increase after adjustment for confounders. 

 

5.2.6 – Sensitivity analyses 

Sensitivity analyses (tables presented in Section C.2.4 of in Appendix C) showed that the results 

were not substantially influenced by using a stricter definition of the outcome variable, by 

strong correlation between the individual-level and family-averaged exposure variables or by 

differing lengths of follow up between cohorts.  

Replication of the primary analyses with a stricter ID outcome definition is presented in Table 

C.2.4-1. The results closely resemble those of the primary analyses though ORs were slightly 

smaller, and CIs were slightly wider.  

Assessment of whether collinearity of the individual and family-averaged exposure variables 

influenced results is presented in Table C.2.4-2. The within-family effect estimate of the 

exposure centred on the family averaged exposure is consistent with that from the primary 

analyses in which the exposure is not centred.  

I assessed whether length of follow up influenced the results of analyses. The four primary 

analyses models, repeated for each cohort year group, show that in all year groups except 1995-

1997 and 2010-2012 there was a null within-family effect and a between-family effect that 

displayed increased odds of ID with increasing family averaged smoking (see Figure 5-4; values 

displayed in the figure are presented in Table C.2.4-3). In the 1995-1997 group there was a null 

between-family effect while in the 2010-2012 group the standard errors of both effects were 

large, suggesting low power to detect an effect. The Cox proportional hazards models provide 

results that are consistent with those obtained from the logistic GEE models (see Table C.2.4-4).  



 

93 

 

The results of analyses in a sample restricted to single-child families showed lower adjusted 

ORs for smoking in pregnancy compared to the primary analyses (see Table C.2.4-5). In 

comparison, when the sample was restricted to multiple child families, results were comparable 

to those of the primary analyses.  

 

 

Table 5-5: Distribution of ID across secondary analysis categories 

Category ID, N(%) No ID, N(%) 

Severity analysis a   

- F70 4,436 (55.10) - 

- F71 1,288 (16.00) - 

- F72 451 (5.60) - 

- F73 176 (2.19) - 

- F78/9 1,700 (21.11) - 

   

Comorbidity analysis b   

- ASD   

- Yes 2,840 (13.58) 18,075 (86.42) 

- No 5,211 (0.50) 1,040,863 (99.50) 

- ADHD   

- Yes 2,033 (9.87) 18,565 (90.13) 

- No 6,018 (0.58) 1,040,373 (99.42) 

   

Sex difference analysis b   

- Females 2,680 (0.52) 517,176 (99.48) 

- Males 

 

5,371 (0.98) 541,762 (99.02) 

Timing analysis b   

- Non-smoker 4,469 (0.57) 775,546 (99.43) 

- Stopped smoking during the first trimester 115 (0.67) 16,972 (99.33) 

- Continued smoking after the first trimester 

 

1,986 (1.33) 147,083 (98.67) 

Dosage analysis b   

- Smoked up to 5 cigarettes per day 399 (0.92) 43,169 (99.08) 

- Smoked 6-10 cigarettes per day 713 (1.35) 52,263 (98.65) 

- Smoked 11-20 cigarettes per day 642 (1.63) 38,731 (98.37) 

- Smoked more than 20 cigarettes per day 144 (2.73) 5,134 (97.27) 
a Column percentage 
b Row percentage 
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Figure 5-4: Logistic GEE analyses of the association between maternal smoking during pregnancy and offspring ID 

repeated in each year group category 

 

 

5.3 – Discussion 

Using a large population-based cohort I have provided evidence that the association between 

maternal smoking during pregnancy and offspring ID is not consistent with a causal 

relationship. Instead the association appears to be driven by residual confounding. The primary 

analyses showed that when population averaged associations were decomposed into within-

family and between-family effects there was no influence of individual exposure to smoking in 

pregnancy on the risk of ID. Associations were instead driven by family-level differences in 

maternal smoking behaviour.  

The consistency of results between primary and sensitivity analyses provide evidence that 

conclusions were robust to (i) measurement error in the outcome variable (ii) collinearity 

between the individual and family- averaged exposure variables, (iii) differing lengths of follow 

up between cohort year groups and (iv) potential biases arising from patterns of smoking in the 

cohort. I validated my analysis approach by performing a positive control analysis in which low 

birthweight was used as an outcome. Here a causal relationship was expected [8, 9]. I found a 

small within-family effect suggesting that once family-level differences in exposure were 

accounted for there was a small increase in the risk of low birthweight for those exposed to 

smoking in pregnancy.  
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In secondary analyses I found unadjusted associations with milder and unspecified forms of ID 

but not more severe forms which may suggest that milder ID is more susceptible to 

environmental exposures than more severe ID. I also found an effect of exposure timing that 

could suggest a sensitive period of exposure. Both results need to be treated with caution. 

Severity may have been measured with substantial error as the unspecified severity group made 

up the second largest of all groups. Every case in this unspecified diagnosis group belongs to 

one of the specified diagnosis categories, however, the proportion in each is unclear. Each 

association estimate in the severity analysis may therefore be biased to an unknown extent. 

Regarding the timing analysis, I am not aware of a parameterization that would allow the 

separation of effects into within and between-family effects for a categorical variable and so 

was not able to control for family-level differences in smoking cessation during pregnancy. The 

effect of exposure timing may therefore simply reflect familial confounding. Further, smoking 

cessation during pregnancy is commonly misreported [268] and may be attempted multiple 

times. The measure of smoking cessation may therefore not adequately capture the timing of 

exposure during pregnancy. 

It is likely that associations with maternal smoking in pregnancy reported in prior studies were 

due to residual confounding. Braun et al. [98] found strong attenuation of their confounder 

adjusted association following further adjustment for area level socioeconomic information 

obtained from data linkage. Comparison with this study suggests that linked data is not always 

sufficient to account for confounding structures. Further accounting for family structure as in 

the analyses that estimated a within-family effect, and analyses performed by Lundberg et al. 

[99], appear to consistently demonstrate that associations between maternal smoking in 

pregnancy and offspring IQ/ID are unlikely to be causal.   

Study strengths included the large population-based sample size which reduced the risk of 

selection bias and improved generalisability. Extensive data linkage allowed for adjustment for 

many confounding variables and for the derivation of family- averaged exposure variables 

which allowed for understanding of residual confounding.  

This study has several limitations. I used registry data, and some misclassification in the 

recording of exposures and outcomes cannot be ruled out. This would be a limitation in any 

large-scale record linkage study. I had information on a range of potential confounding factors 

although I was unable to study the role of some potentially relevant factors such as gestational 

diet quality, alcohol or substance misuse during pregnancy or the role of passive smoke 

exposure to the mother during pregnancy, or to the child following birth. Although there were 

little missing data (3.9%), since those excluded were also more likely to have ID, complete case 

analysis may be biased towards the null compared to a fully observed dataset. Finally, I note 
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that the reported between-family effect is likely to be imprecise due to the small cluster size of 

families [102]. 

The between-family effect showed increased odds of ID for families in which the mother tended 

to smoke in more pregnancies, holding fixed individual level exposure to smoking. Exploring 

the between-family effect by investigating correlates of the family-averaged smoking variable 

further may inform more about the residual confounding structure and what additional variables 

need to be adjusted for in studies of maternal smoking in pregnancy. Instrumental variable 

approaches such as Mendelian Randomisation [166, 269, 270] may be informative in 

exploration of the residual confounding structure as they would specifically assess the influence 

of the mother’s predisposition to smoking behaviours. This is likely to be comparable to the 

family-averaged smoking variable. The family-averaged exposure variable may, however, 

reflect genetic confounding in that a genetic propensity for maternal smoking may be associated 

with offspring ID via pleiotropic mechanisms rather than via maternal smoking in pregnancy. 

For example, polygenic risk scores (PRS) for ADHD, which are likely to correlate with genetic 

risk of ID due to the high prevalence of comorbidity, have been found to predict smoking 

behaviour [271, 272]. In this case standard Mendelian Randomisation would not be appropriate 

due to violation of the exclusion restriction criteria (the assumption that an instrument is 

associated with the outcome only via the exposure) [171] and extensions such as multivariable 

Mendelian Randomisation would be required [273]. 

 

 

5.4 – Conclusions and chapter summary 

Based on the consistent findings of no association between maternal smoking and ID across the 

primary, secondary and sensitivity analyses in family-based analytic approaches, this study 

provides evidence against a causal effect of maternal smoking during pregnancy on offspring 

intellectual disability. The persistent between-family effect in the absence of a within-family 

effect in adjusted analyses provides evidence in support of the role of residual confounding. A 

lack of causal effect of maternal smoking in pregnancy on offspring ID should not be 

interpreted as meaning that smoking in pregnancy is safe. It has a range of other demonstrable 

negative health consequences and these results should not distract from the sustained efforts 

requires to reduce its prevalence. 
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Chapter 6 Maternal smoking and smokeless 

tobacco use during pregnancy and 

offspring development: sibling 

analysis in an intergenerational 

Swedish cohort 
 

The contents of this chapter are currently being revised following peer review as a submission to the 

International Journal of Epidemiology 

 

The Swedish registries, like the Danish registries analysed in Chapter 5, can be linked to make  

intergenerational cohorts that contain information on socioeconomic characteristics, pregnancy 

and birth characteristics and medical diagnoses throughout life. In addition to information on 

exposure to smoking during pregnancy, the Swedish registries also contain information on 

exposure to a form of moist smokeless tobacco known as snus. They therefore provide an 

opportunity to (i) replicate the findings of Chapter 5 in an independent dataset with a lower 

prevalence of smoking through the use of several causal inference techniques including sibling 

comparisons and a positive control comparison with fetal growth restriction, and (ii) compare 

the effect of smoking during pregnancy to an alternative, non-combustible method of nicotine 

consumption.  

If a causal effect of smoking in pregnancy on intellectual disability (ID) does exist, then a cross 

context comparison between the associations of snus use and smoking in pregnancy with 

offspring ID can be used to investigate whether effects are the result of nicotine or the 

combustible components of cigarette smoke. Snus is a moist, smokeless tobacco that is 

increasingly being used as a smoking cessation aid in Sweden [184, 185], with some suggestion 

that it is more successful as an aid to stop smoking than nicotine patches or gum [186, 187]. 

Snus delivers nicotine in quantities that are comparable to cigarette smoke though with slower 

absorption and higher plasma nicotine concentration over an extended period [184, 188].  

The association between snus use in pregnancy and offspring fetal growth restriction is of 

public health relevance itself as it may guide whether snus has potential to be a smoking 

alternative during pregnancy for those who have difficulties with cessation. Limited research 

has been performed on snus use in pregnancy though evidence of associations with preterm 

delivery [274, 275], offspring born small for gestational age (SGA) [276] and stillbirth [277, 

278] have been suggested. Research into snus use in pregnancy and offspring fetal growth 
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restriction has provided mixed results. Two previous studies investigating snus use in pregnancy 

and risk of offspring born SGA provided no evidence for an association [278, 279] while 

another found evidence of increased odds of SGA for those who used snus before and early into 

pregnancy relative to no use of tobacco products [276]. None of these studies made use of 

causal inference methods and may be susceptible to the effects of unmeasured confounding.  

In this chapter I aimed to (i) use conventional analyses to investigate whether maternal smoking 

in pregnancy is associated with offspring risk of intellectual disability,  (ii) use sibling analyses 

to investigate whether such associations can be accounted for by characteristics shared between 

siblings, (iii) use positive control and cross context comparisons to learn more about the nature 

of the association, and (iv) investigate whether snus use in pregnancy influences fetal growth 

restriction.  

 

 

6.1 – Methods 

6.1.1  – Cohort definition 

The study cohort consisted of all individuals born in Sweden between January 1st, 1999 and 

December 31st 2010 (n=1,181,264; see Figure 6-1). Information contained in national registries 

was linked to cohort members and their parents. The registries included the Swedish Medical 

Birth Registry (MBR) [280], the National Patient Registry (NPR) [281] and the Swedish 

Longitudinal Integration Database for Health Insurance and Labour Market Studies (LISA) 

[282]. Data on maternal and paternal identity was obtained from the Swedish Multi-Generation 

Register (MGR) [283]. 

Most clinical contacts related to intellectual disability occur in an outpatient setting. The NPR 

started recording outpatient contact in addition to inpatient admissions in 2001 [281]. By 

defining the start year of the cohort as 1999 I was able to capture snus use in pregnancy from its 

earliest recording in the MBR while also capturing diagnoses from 2 years of age onwards for 

the oldest members in the cohort and from an earlier age for all other cohort members. The end 

of 2010 was selected as the cut-off for inclusion in the cohort to allow a minimum of 4 years 

follow up until the end of 2014. The youngest and oldest members of the cohort were followed 

up until approximately 4 and 14 years of age respectively.  
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Figure 6-1: Flowchart of cohort derivation. Note: an additional 4147 excluded from SGA analyses due to missing 

SGA values. These were not removed as the unobserved values may be related to weight for gestational age which is 

on the hypothesised causal path from smoking to ID. 

Excluded for (not mutually exclusive categories):  

• Single gene or chromosomal disorder  

o N excluded = 5,885 (0.50%) 

o N excluded with ID = 1,525 

(16.17%) 

o N excluded with SGA = 618 (2.47%) 

 

• Followed up for less than 4 years 

o N excluded = 9,160 (0.78%) 

o N excluded with ID = 44 (0.47%) 

o N excluded with SGA = 266 (1.46%) 

 

• Multiple birth  

o N excluded = 33,558 (2.84%) 

o N excluded with ID = 372 (3.94%) 

o N excluded with SGA = 0 (0.00%) 

Sample remaining = 1,133,297 (95.94%) 

ID remaining = 7,546 (80.00%) 

SGA remaining = 24,127 (96.25%) 

Sample remaining = 1,132,473 (95.87%) 

ID remaining = 7,533 (79.86%) 

SGA remaining = 24,090 (96.10%) 

Excluded for having missing 

covariates:  

N excluded = 824 (0.07%) 

N excluded with ID = 13 (0.14%) 

N excluded with SGA = 37 (0.15%) 

Excluded for missing exposure data 

• Missing smoking data  

o N excluded = 49,308 (4.17%) 

o N excluded with ID = 368 (3.90%) 

o N excluded with SGA = 1,142 

(4.56%) 

 

• Missing snus data 

o N excluded = 57,454 (4.86%) 

o N excluded with ID = 524 (5.55%) 

o N excluded with SGA = 1,493 

(5.96%) 

 

Total N excluded = 58,385 (4.94%) 

Total N excluded with ID = 541 (5.74%) 

Total N excluded with SGA = 1,516 (6.05%) 

Sample remaining = 1,074,088 (90.93%) 

ID remaining = 6,992 (74.12%) 

SGA remaining = 22,574 (90.05%) 

Total Population born in Sweden 

between 01 Jan 1999 - 31 Dec 2010 

with an identified biological mother: 

N = 1,181,264 (100%) 

N with ID = 9,433 (100%) 

N with SGA = 25,068 (100%) 
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6.1.2 – Exclusion criteria 

Individuals were excluded from the cohort if they had less than 4 years follow up (e.g. if the 

individual died before the age of 4 or had spent less than 4 years living in Sweden; n=5885), had 

a genetic or chromosomal abnormality associated with ID that was identified using ICD-10 

diagnoses [12] in the NPR (specific diagnosis codes provided in section D1.1 of Appendix D; 

n=9160) or were part of a multiple birth pregnancy (i.e. twins or triplets etc.; n=33 558). 

 

6.1.3 – Exposure definition: maternal smoking and snus use during 

pregnancy 

Information about maternal smoking and snus use during pregnancy was obtained from the 

MBR for three time points: i) three months prior to pregnancy, ii) at the first antenatal contact 

(commonly around 10 weeks of pregnancy) and iii) at 30-32 weeks pregnancy. Missing 

smoking and snus values at each timepoint were imputed based on non-missing values at other 

time points in the same pregnancy. Details of the imputation procedure are detailed in Appendix 

D (section D.1.2).  

Two binary variables were created, one for smoking and one for snus use which indicated 

maternal use at any point during pregnancy (i.e. either at first antenatal contact or at 30-32 

weeks). Categorical variables for the timing of exposure were created to indicate those whose 

mothers’ (i) never smoked/used snus, (ii) used only before pregnancy, (iii) quit during 

pregnancy or (iv) used throughout pregnancy. 

Individuals were excluded from analyses if they were missing the binary smoking (n=49 308) or 

snus (n=57 454) variables. The total number excluded for missing exposure data was 58 385. 

 

6.1.4  – Outcome definitions 

6.1.4.1  – Intellectual disability (ID) 

A binary indicator of ID was defined as having an ICD-10 code of F70-F79, recorded as a 

primary or secondary diagnosis in the NPR.  

 

6.1.4.2  – Fetal growth restriction 

Z-scores of birthweight for gestational age were obtained using the Swedish sex-specific 

reference curve for normal fetal growth [284]. The MBR contains a binary indicator for being 

SGA, defined as having a z-score value less than -2 (i.e. 2 standard deviations below the mean 

birthweight for a given gender and gestational age).  
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6.1.5  – Covariate and confounder definitions 

The covariates and confounders adjusted for included child sex and parity, highest education 

level of either parent at the time of birth, quintiles of income adjusted for family size at the time 

of birth, any maternal or paternal psychiatric disorders before the birth of the child and maternal 

country of origin and age at birth. Individuals were excluded from analyses if they were missing 

data on any of the covariate or confounder variables (n=824). Specific details of the confounder 

derivations are described below. 

 

6.1.5.1  – Child sex and parity 

Child sex was defined as the biological sex assigned at birth. Parity was grouped into a 

categorical variable with 3 levels: 1, 2 and 3+.  

 

6.1.5.2  – Parental education  

Parental educational attainment was obtained from the Swedish LISA (Longitudinal integration 

database for health insurance and labour market studies) database [282]. Education was grouped 

into 3 levels: High school; Gymnasium (age 16-18, equivalent to A levels in the UK); 

University level. The highest level of either parent at the time of the child’s birth was used.  

 

6.1.5.3  – Parental income 

Household income in the year of the child’s birth was obtained from the Swedish LISA database 

[282]. The value was adjusted for family size and placed into quintiles for each year in order to 

account for inflation.  

 

6.1.5.4  – Parental psychiatric disorders 

Indicator variables were derived for diagnoses of anxiety disorders, depressive disorders, 

psychotic disorders and substance use disorders (excluding nicotine related disorders) in the 

NPR [281] at any time before the child’s birth; see Table D.1.3-1 in Appendix D for the list of 

ICD-9 and ICD-10 codes used to define these disorders. Due to the low prevalence of each 

disorder in the cohort I combined the indicator variables into a single variable of any psychiatric 

disorder at any time before the child’s birth. 
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6.1.5.5  – Maternal country of origin 

Maternal country of origin was be obtained using the MGR [283]. The variable was categorised 

into the following levels: Sweden; Scandinavia (Denmark and Finland); Europe; Middle East; 

Americas (North and South America); Asia; Africa; Oceania.  

 

6.1.5.6  – Parental age at birth 

Parental age at the time of the child’s birth was derived from the parent and child’s date of birth 

and included as a continuous variable.   

 

6.1.6  – Statistical analysis  

6.1.6.1  – Primary analyses 

I repeated the following analyses for the outcomes SGA and ID and the exposures maternal 

smoking in pregnancy and maternal snus use in pregnancy. For each exposure-outcome 

combination I used logistic regression. To account for cohort effects of differing lengths of 

follow up I adjusted for year of birth in all models using an outcome of ID, even those referred 

to as unadjusted. 

I ran four models for each exposure-outcome combination. Model 1 was unadjusted for any 

covariates. Model 2 adjusted for covariates and confounders. Model 3 adjusted for family level 

smoking/snus use by including a term equal to the proportion of pregnancies in the cohort in 

which the mother was recorded as having smoked/used snus, thus making use of model 

formulation 2 suggested by Begg and Parides [102]. Model 4 adjusted for all covariates, 

confounders and the family level smoking/snus variable.  

Adjustment for a family averaged exposure effect, as in model 3 and 4, allows the calculation of 

within-family (coefficient of the individual level exposure) and between-family (coefficient of 

the family level exposure) effects of smoking on child outcomes. The within-family effect is 

robust against confounders that are shared between the siblings. Failing to find a within-family 

effect after adjustment for the family-averaged exposure variable is consistent with familial 

confounding and there being no causal effect of the exposure on the outcome [102, 103].  

The family structure present within the cohort meant that the data violates the assumption of 

independence between observations which can lead to underestimation of standard errors. All 

models were therefore run using generalised estimating equations (GEE) with exchangeable 

correlation structures for family groups identified by having the same mother. This means that 

the analyses accounted for correlations between siblings. Full and half siblings were treated 

equivalently. Cousins and other relations were treated as independent. 
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6.1.6.2  – Secondary analyses 

I assessed whether timing of exposure was associated with the outcomes using four models, 

repeated for the outcomes ID and SGA. Model 1 and 2, performed unadjusted and adjusted for 

confounders respectively, were logistic regressions using GEE of the outcome on the categorical 

timing exposure. Model 3 and 4, again performed unadjusted and adjusted for confounders 

respectively, were conditional logistic regressions of the outcome on the categorical timing 

exposure, conditional on family grouping. Model 1 and 2 therefore provide population-averaged 

estimates while Model 3 and 4 provide within-family estimates.  

 

6.1.6.3  – Sensitivity analyses 

An assessment of potential biases in sibling designs highlighted that the exposure discordant 

group, which drives the within-family estimate, is more likely to contain exposure 

misclassification than the population as a whole [181]. This is because mothers are likely to 

behave similarly across pregnancies (see section B1 of Appendix B) and if a single sibling is 

misclassified then all members of that family will incorrectly become part of the exposure 

discordant group. As a result, the within-family estimate may be biased. To test this, I replaced 

the exposure status of those not exposed to maternal smoking in pregnancy (i.e. “not exposed” 

was changed to “exposed”) if the mother smoked in later pregnancies. Here I have assumed that 

it is unlikely that a mother would start smoking in later pregnancies and therefore that the earlier 

born individuals may be misclassified; this pattern of misclassification has been hypothesised 

previously [285]. The family averaged exposure was recalculated using the new exposure values 

of each family member and the primary analyses were repeated. It should be noted that families 

with a sibling whose exposure was edited were no longer exposure discordant and therefore did 

not contribute to the within-family coefficient estimate. Further, the change in exposure status 

was more likely for children of mothers with lower parity than higher parity. 

It is possible that differing patterns of change in smoking status may have differing influences 

on the within-family estimate. To test this, I performed a second sensitivity analysis in which I 

restricted the sample to include only the first two members of each family included in the cohort 

(single children were also included in the analysis as they contribute to the between-family 

estimate).  Analyses were then run on this dataset as a whole (restricted cohort 1) and then 

repeated with further restriction of the exposure discordant group to only those in which the 

mother stopped smoking in the second pregnancy (restricted cohort 2). This was repeated again, 

restricting the exposure discordant group to those in which the mother started smoking in the 

second pregnancy (restricted cohort 3). 
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6.2 – Results 

6.2.1  – Description of the cohort 

Descriptive statistics of the cohort, separated by smoking status and by snus use, are presented 

in Table 6-1. Maternal smoking in pregnancy was more prevalent in the cohort than snus use in 

pregnancy (8.76% vs. 1.37%). Both smoking and snus use were socially patterned, however the 

strength of that social patterning was greater for smokers. Smokers were more likely to have 

low or mid-level education and low income while snus users were more likely to have mid-level 

education and mid-level income. Both smokers and snus users were more likely to have a 

psychiatric disorder diagnosis before the birth of their child. Smokers (mean: 28.8 years; SD: 

5.95) were younger on average than non-smokers (mean: 30.73 years; SD: 5.00). In comparison, 

the average age of snus users (mean: 30.4 years; SD: 5.51) was closer to non-users (mean: 30.6 

years; SD: 5.11). Further descriptive results separated by categories of family-level 

smoking/snus use, by timing of smoking/snus use, and by patterns of change in smoking status 

across pregnancy, can be viewed in Appendix D, Section D.2.1.  

 

Table 6-1: Cohort characteristics by exposure status during pregnancy 

 N(%) 

Variable Level Non-smokers Smokers Non-snus users Snus users 

Total 
 

979949 (100.00) 94139 (100.00) 1059398 

(100.00) 

14690 (100.00) 

  
Intellectual 

disability 

No 974013 (99.39) 93083 (98.88) 1052533 (99.35) 14563 (99.14) 

 Yes 5936 (0.61) 1056 (1.12) 6865 (0.65) 127 (0.86) 

 

Small for gestational 

age 

No 958347 (97.80) 89851 (95.45) 1033866 (97.59) 14332 (97.56) 

Yes 18608 (1.90) 3966 (4.21) 22257 (2.10) 317 (2.16) 

 

Sex Female 476381 (48.61) 45547 (48.38) 514816 (48.60) 7112 (48.41) 
 

Male 503568 (51.39) 48592 (51.62) 544582 (51.40) 7578 (51.59) 

  
Parity 1 437416 (44.64) 40127 (42.63) 471244 (44.48) 6299 (42.88) 
 

2 364099 (37.15) 29042 (30.85) 388035 (36.63) 5106 (34.76) 
 

3 or more 178434 (18.21) 24970 (26.52) 200119 (18.89) 3285 (22.36) 

  
Highest parental 

education 

High 

School 

36052 (3.68) 13891 (14.76) 49300 (4.65) 643 (4.38) 

Gymnasium 380608 (38.84) 63754 (67.72) 436102 (41.17) 8260 (56.23) 
 

University 563289 (57.48) 16494 (17.52) 573996 (54.18) 5787 (39.39) 

  
Adjusted family 

income 

1 102675 (10.48) 18678 (19.84) 119926 (11.32) 1427 (9.71) 

2 194158 (19.81) 32984 (35.04) 223192 (21.07) 3950 (26.89) 
 

3 221203 (22.57) 21894 (23.26) 239088 (22.57) 4009 (27.29) 
 

4 232245 (23.70) 14094 (14.97) 243171 (22.95) 3168 (21.57) 
 

5 229668 (23.44) 6489 (6.89) 234021 (22.09) 2136 (14.54) 

  
No 953227 (97.27) 86834 (92.24) 1026271 (96.87) 13790 (93.87) 
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 N(%) 

Variable Level Non-smokers Smokers Non-snus users Snus users 

Maternal anxiety 

diagnosis 

Yes 26722 (2.73) 7305 (7.76) 33127 (3.13) 900 (6.13) 

  
Maternal depression 

diagnosis 

No 961429 (98.11) 89311 (94.87) 1036732 (97.86) 14008 (95.36) 

Yes 18520 (1.89) 4828 (5.13) 22666 (2.14) 682 (4.64) 

  
Maternal psychosis 

diagnosis 

No 976973 (99.70) 93250 (99.06) 1055651 (99.65) 14572 (99.20) 

Yes 2976 (0.30) 889 (0.94) 3747 (0.35) 118 (0.80) 

  
Maternal addiction 

diagnosis 

No 968978 (98.88) 88135 (93.62) 1043047 (98.46) 14066 (95.75) 

Yes 10971 (1.12) 6004 (6.38) 16351 (1.54) 624 (4.25) 

  
Any maternal 

psychiatric 

diagnosis 

No 933451 (95.26) 80569 (85.59) 1000960 (94.48) 13060 (88.90) 

Yes 46498 (4.74) 13570 (14.41) 58438 (5.52) 1630 (11.10) 

 

  
Any paternal 

psychiatric 

diagnosis 

No 946080 (96.54) 84825 (90.11) 1017158 (96.01) 13747 (93.58) 

Yes 33869 (3.46) 9314 (9.89) 42240 (3.99) 943 (6.42) 

  
Any maternal 

neurodevelopmental 

diagnosis 

No 978680 (99.87) 93377 (99.19) 1057456 (99.82) 14601 (99.39) 

Yes 1269 (0.13) 762 (0.81) 1942 (0.18) 89 (0.61) 

 

 

Any paternal 

neurodevelopmental 

diagnosis 

No 978447 (99.85) 93381 (99.19) 1057190 (99.79) 14638 (99.65) 

Yes 1502 (0.15) 758 (0.81) 2208 (0.21) 52 (0.35) 

 

 

Maternal country of 

origin 

Africa 29336 (2.99) 918 (0.98) 30146 (2.85) 108 (0.74) 

Americas 10549 (1.08) 658 (0.70) 11147 (1.05) 60 (0.41) 
 

Asia 30982 (3.16) 1470 (1.56) 32234 (3.04) 218 (1.48) 
 

Europe 47505 (4.85) 7662 (8.14) 54962 (5.19) 205 (1.40) 
 

Middle East 55131 (5.63) 4542 (4.82) 59480 (5.61) 193 (1.31) 
 

Oceania 422 (0.04) 26 (0.03) 443 (0.04) 5 (0.03) 
 

Scandinavia 15363 (1.57) 2228 (2.37) 17380 (1.64) 211 (1.44) 
 

Swedish 790661 (80.68) 76635 (81.41) 853606 (80.57) 13690 (93.19)  

Birth year 1999-2001 209614 (21.39) 20946 (22.25) 228179 (21.54) 2381 (16.21) 
 

2002-2004 239147 (24.40) 28067 (29.81) 263148 (24.84) 4066 (27.68) 
 

2005-2007 248260 (25.33) 22508 (23.91) 267039 (25.21) 3729 (25.38) 
 

2008-2010 282928 (28.87) 22618 (24.03) 301032 (28.42) 4514 (30.73) 

  
Any maternal 

smoking in 

pregnancy 

No   966623 (91.24) 13326 (90.71) 

Yes 

 

 

  

  92775 (8.76) 1364 (9.29) 

 

  

Any maternal snus 

use in pregnancy 

No 966623 (98.64) 92775 (98.55)   

Yes 13326 (1.36) 1364 (1.45)   

 

 

6.2.2  – Missing data assessment 

Descriptive tables of the patterns of missing data are presented in Appendix D, section D.2.2. 

Missing data in covariates (see Table D.2.2-1) was socially patterned with those with lower 
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income and education and those born in later cohort years more likely to be excluded for having 

a missing covariate. Missing data in the exposure (see Table D.2.2-2) was more likely in those 

with lower income and less likely for those born in later cohort years. Smokers were more likely 

to have been excluded for having missing snus data and vice versa. Both diagnosis of ID and 

being born SGA were associated with increased risk of exclusion for missing covariate and 

exposure data.  

 

6.2.3  – Primary analyses 

Table 6-2 shows the results for the primary analyses using offspring ID as an outcome. 

Conventional analyses (i.e. Models 1 and 2) showed that both smoking and snus use in 

pregnancy were associated with increased odds of ID following adjustment for confounders. 

When separated into within-family and between-family effects, there was evidence of between-

family but not within-family effects of smoking and snus use in pregnancy before and after 

adjustment for confounders.   

The results of the primary analyses using offspring SGA as the outcome are presented in Table 

6-3. Smoking in pregnancy was associated with a population-averaged increased odds of 

offspring SGA after adjustment for confounders. Model 3 and 4 showed that smoking in 

pregnancy was associated with increased odds of SGA for both the within-family and between-

family effects. Snus use in pregnancy was not associated with offspring SGA in any model. For 

most models, the confidence intervals for estimates of the effect of snus use were not 

compatible with that of smoking, suggesting that the absence of an association between snus use 

and SGA was not the result of a lack of power for a rarer exposure. 

 

 

 

Table 6-2: Primary analysis of the association between exposure and offspring ID. 

  Smoking in pregnancy Snus use in pregnancy 

Model Coefficient O.R. a 95% CI O.R. a 95% CI 

1 - Conventional unadjusted b Population-averaged 1.80 (1.68-1.92) 1.37 (1.14-1.64) 

2 - Conventional adjusted c Population-averaged 1.24 (1.16-1.33) 1.28 (1.07-1.53) 

3 - Within-between unadjusted b, d Within-family 0.92 (0.74-1.14) 0.89 (0.61-1.31) 
 

Between-family 2.12 (1.68-2.66) 1.72 (1.12-2.62) 

4 - Within-between adjusted c, d Within-family 0.92 (0.75-1.14) 0.88 (0.60-1.31) 
 

Between-family 1.39 (1.11-1.75) 1.59 (1.04-2.45) 

a Estimates produced using a total sample size of 1,074,088 individuals from 705,862 families including 6,992 cases 

of ID.   
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b Model adjusted for year of birth. 

c Model adjusted for year of birth, sex, parity, highest parental education, income, parental psychiatric history, 

maternal country of origin and maternal age at birth. 

d Model adjusted for family averaged exposure. 

 

 

Table 6-3: Primary analysis of the association between exposure and offspring SGA. 

  Smoking in pregnancy Snus use in pregnancy 

Model Coefficient O.R. a 95% CI O.R. a 95% CI 

1 - Conventional unadjusted Population-averaged 2.26 (2.18-2.34) 1.02 (0.91-1.14) 

2 - Conventional adjusted b Population-averaged 2.18 (2.10-2.27) 1.05 (0.93-1.17) 

3 - Within-between unadjusted c Within-family 1.67 (1.49-1.87) 1.01 (0.81-1.27) 
 

Between-family 1.40 (1.24-1.59) 1.02 (0.78-1.32) 

4 - Within-between adjusted b, c Within-family 1.43 (1.27-1.62) 1.07 (0.84-1.36) 
 

Between-family 1.61 (1.41-1.84) 0.97 (0.74-1.28) 

a Estimates produced using a total sample size of 1,070,772 individuals from 704,487 families including 22,574 cases 

of SGA.   

b Model adjusted for year of birth, sex, parity, highest parental education, income, parental psychiatric history, 

maternal country of origin and maternal age at birth. 

c Model adjusted for family averaged exposure. 

 

 

6.2.4  – Secondary analyses 

The results for offspring ID are presented in Table 6-4. An exposure-duration-response of 

increased odds of ID was found for smoking and using snus later into pregnancy in conventional 

models only (Models 1 and 2). In conditional logistic models that calculated within-family 

estimates of the exposure-ID association, no association was found for smoking for any 

exposure timing. Within-family estimates of the snus use-ID association showed evidence of 

decreased odds of ID among those who quit using snus during pregnancy compared to those 

who did not use snus at any time.  

Table 6-5 shows the results of the timing analyses for offspring SGA as the outcome. Smoking 

longer into pregnancy was associated with a duration-responsive increase in odds of offspring 

SGA in conventional and conditional logistic analyses (Models 1-4). For smoking (Model 2) 

and snus use (Models 1 and 2) in pregnancy, there was evidence for a reduced risk of offspring 

SGA in conventional models for mothers who gave up using before pregnancy compared to 

those who did not use snus at any time. There was no other evidence for an association between 

snus use and offspring SGA.  
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6.2.5 – Sensitivity analyses 

In the first sensitivity analysis I tested whether the results would be influenced by exposure 

misclassification in the exposure discordant group. The results are presented in Table 6-6. There 

were 7126 individuals who were reported as not exposed to smoking had their exposure status 

changed (0.66% of unexposed individuals). 13,178 individuals (34.68% of exposure discordant 

individuals) from 5547 families (35.45% of exposure discordant families) who had been classed 

as exposure discordant became exposure concordant in the sensitivity analysis. Comparison of 

the results of the sensitivity analysis with the primary analysis shows that occurrence of the 

extreme hypothetical situation, in which all unexposed individuals with exposed younger 

siblings were misclassified, would only influence the results of the SGA within-between model 

that was not adjusted for confounders. No other models showed notable changes to parameter 

estimates.  

In the second sensitivity analysis I tested whether there were differing effects for those who 

started smoking between pregnancies versus those who stopped smoking between pregnancies 

by applying different restrictions to the cohort. Table 6-7 indicates that the different patterns of 

change in smoking across pregnancies may have slightly different strengths of association; the 

within-family estimates of Model 4 across restricted cohorts show that those who stopped 

smoking between pregnancies had a smaller OR than those who started smoking between 

pregnancies. This was true for ID and SGA. These differences in effect size were not large 

enough to substantially change the conclusions from the analyses.  
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Table 6-4: Secondary analysis of the association between exposure timing and offspring ID. 

  Smoking in pregnancy Snus use in 

pregnancy 

Model Coefficient O.R. a 95% CI O.R. b 95% CI 

1 - Conventional unadjusted c 

(population-averaged estimates) 

Non-user 1.00  1.00  

User before pregnancy only 1.04 (0.96-1.13) 0.76 (0.60-

0.97) 

 Quit during pregnancy 1.40 (1.19-1.64) 1.05 (0.75-

1.47) 

 Used late into pregnancy 1.79 (1.65-1.95) 2.05 (1.53-

2.76) 

2 - Conventional adjusted c, d 

(population-averaged estimates) 

Non-user 1.00  1.00  

User before pregnancy only 0.90 (0.82-0.98) 0.85 (0.67-

1.08) 

 Quit during pregnancy 1.04 (0.89-1.22) 1.02 (0.73-

1.43) 

 Used late into pregnancy 1.17 (1.07-1.28) 1.82 (1.36-

2.45) 

3 - Unadjusted conditional logistic c 

 

(within-family estimates) 

Non-user 1.00  1.00  

User before pregnancy only 0.93 (0.76-1.15) 0.87 (0.54-

1.41) 

 Quit during pregnancy 0.95 (0.64-1.39) 0.43 (0.19-

0.96) 

 Used late into pregnancy 1.07 (0.76-1.51) 1.18 (0.52-

2.68) 

4 - Adjusted conditional logistic c, d 

 

(within-family estimates) 

Non-user 1.00  1.00  

User before pregnancy only 0.91 (0.73-1.13) 0.91 (0.56-

1.47) 

 Quit during pregnancy 0.93 (0.63-1.38) 0.41 (0.18-

0.93) 

 Used late into pregnancy 1.02 (0.72-1.44) 1.10 (0.49-

2.52) 
a Estimates conventional models produced using a total sample size of 1,054,561 individuals from 696,247 families 

including 6,696 cases of ID. Estimates for conditional logistic models produced using a total sample size of 8,493 

individuals including 3,644 cases of ID.   

b Estimates for conventional models produced using a total sample size of 1,068,173 individuals from 703,231 

families including 6,946 cases of ID. Estimates for conditional logistic models produced using a total sample size of 

8,879 individuals including 3,797 cases of ID.   

c Model adjusted for year of birth. 

d Model adjusted for year of birth, sex, parity, highest parental education, income, parental psychiatric history, 

maternal country of origin and maternal age at birth. 
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Table 6-5: Secondary analysis of the association between exposure timing and offspring SGA. 

  Smoking in pregnancy Snus use in 

pregnancy 

Model Coefficient O.R. a 95% CI O.R. b 95% CI 

1 - Conventional unadjusted  

(population-averaged estimates) 

Non-user 1.00  1.00  

User before pregnancy only 1.04 (0.99-1.09) 0.82 (0.73-0.92) 

Quit during pregnancy 1.46 (1.34-1.60) 0.92 (0.75-1.11) 

 Used late into pregnancy 2.42 (2.31-2.53) 0.98 (0.77-1.23) 

2 - Conventional adjusted c 

(population-averaged estimates) 

Non-user 1.00  1.00  

User before pregnancy only 0.90 (0.86-0.94) 0.78 (0.70-0.88) 

 Quit during pregnancy 1.30 (1.19-1.42) 0.92 (0.76-1.12) 

 Used late into pregnancy 2.37 (2.26-2.48) 1.04 (0.82-1.32) 

3 - Unadjusted conditional logistic  

(within-family estimates) 

Non-user 1.00  1.00  

User before pregnancy only 1.76 (1.54-2.01) 1.17 (0.86-1.58) 

Quit during pregnancy 2.00 (1.56-2.56) 1.11 (0.72-1.71) 

 Used late into pregnancy 2.86 (2.29-3.56) 1.10 (0.56-2.14) 

4 - Adjusted conditional logistic c 

(within-family estimates) 

Non-user 1.00  1.00  

User before pregnancy only 0.96 (0.83-1.11) 0.92 (0.66-1.29) 

 Quit during pregnancy 1.13 (0.86-1.48) 1.28 (0.79-2.07) 

 Used late into pregnancy 1.79 (1.41-2.26) 1.54 (0.75-3.16) 

a Estimates for conventional models produced using a total sample size of 1,051,383 individuals from 694,917 

families including 21,628 cases of SGA. Estimates for conditional logistic models produced using a total sample size 

of 22,093 individuals including 10,049 cases of SGA.   

b Estimates for conventional models produced using a total sample size of 1,064,837 individuals from 701,858 

families including 22,431 cases of SGA. Estimates for conditional logistic models produced using a total sample size 

of 23,066 individuals including 10,473 cases of SGA.  

c Model adjusted for year of birth, sex, parity, highest parental education, income, parental psychiatric history, 

maternal country of origin and maternal age at birth. 
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Table 6-6: Sensitivity analysis assuming all those who had younger siblings who were exposed to smoking were also exposed themselves. 

   Primary analyses Sensitivity analyses 

Outcome Model Coefficient O.R. 95% CI O.R. 95% CI 

Intellectual disability a 1 - Conventional unadjusted c Population-averaged 1.80 (1.68-1.92) 1.80 (1.68-1.92) 

 2 - Conventional adjusted d Population-averaged 1.24 (1.16-1.33) 1.24 (1.16-1.33) 

 3 - Within-between unadjusted c, e Within-family 0.92 (0.74-1.14) 0.90 (0.68-1.18) 

 Between-family 2.12 (1.68-2.66) 2.11 (1.58-2.81) 

 4 - Within-between adjusted d, e Within-family 0.92 (0.75-1.14) 0.90 (0.68-1.18) 

 Between-family 1.39 (1.11-1.75) 1.42 (1.06-1.89) 

       

Small for gestational age b 1 - Conventional unadjusted Population-averaged 2.26 (2.18-2.34) 2.21 (2.14-2.29) 

 2 - Conventional adjusted d Population-averaged 2.18 (2.10-2.27) 2.11 (2.03-2.19) 

 3 - Within-between unadjusted e Within-family 1.67 (1.49-1.87) 2.39 (2.07-2.76) 

 Between-family 1.40 (1.24-1.59) 0.92 (0.79-1.07) 

 4 - Within-between adjusted d, e Within-family 1.43 (1.27-1.62) 1.37 (1.18-1.60) 

 Between-family 1.61 (1.41-1.84) 1.60 (1.36-1.87) 

a Estimates produced using a total sample size of 1,074,088 individuals from 705,862 families including 6,992 cases of ID.   

b Estimates produced using a total sample size of 1,070,772 individuals from 704,487 families including 22,574 cases of SGA.   

c Model adjusted for year of birth. 

d Model adjusted for year of birth, sex, parity, highest parental education, income, parental psychiatric history, maternal country of origin and maternal age at birth. 

e Model adjusted for family averaged exposure.
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Table 6-7: Sensitivity analysis of a restricted cohort of the first two pregnancies study period. 

   

Restricted dataset of 1st two 

children in cohort (Restricted 

cohort 1) a 

Discordant sample restricted to 

those who stop smoking in second 

pregnancy (Restricted cohort 2) b 

Discordant sample restricted 

to those who start smoking in 

second pregnancy (Restricted 

cohort 3) c 

Outcome Model Coefficient O.R. 95% CI O.R. 95% CI O.R. 95% CI 

Intellectual disability 

 

1 - Conventional unadjusted d Population-averaged 1.77 (1.65-1.90) 1.80 (1.67-1.93) 1.88 (1.75-2.02) 

2 - Conventional adjusted e Population-averaged 1.23 (1.14-1.32) 1.23 (1.14-1.33) 1.27 (1.17-1.37) 

 3 - Within-Between unadjusted d, f Within-family 0.87 (0.69-1.11) 0.74 (0.55-1.01) 1.03 (0.71-1.51) 

 Between-family 2.20 (1.71-2.82) 2.58 (1.89-3.52) 1.86 (1.27-2.73) 

 4 - Within-Between adjusted e, f Within-family 0.88 (0.70-1.11) 0.74 (0.54-1.00) 1.08 (0.75-1.56) 

 Between-family 1.45 (1.13-1.85) 1.74 (1.27-2.38) 1.18 (0.82-1.71) 

Small for Gestational 

age 

1 - Conventional unadjusted  Population-averaged 2.27 (2.19-2.36) 2.37 (2.28-2.46) 2.29 (2.21-2.39) 

2 - Conventional adjusted e Population-averaged 2.17 (2.09-2.26) 2.20 (2.11-2.29) 2.27 (2.17-2.36) 

 3 - Within-Between unadjusted f Within-family 1.61 (1.42-1.82) 2.24 (1.92-2.60) 0.87 (0.71-1.07) 

 Between-family 1.47 (1.29-1.68) 1.06 (0.91-1.25) 2.74 (2.23-3.37) 

 4 - Within-Between adjusted e, f Within-family 1.40 (1.22-1.59) 1.31 (1.11-1.54) 1.59 (1.27-1.98) 

 Between-family 1.64 (1.43-1.89) 1.77 (1.49-2.10) 1.45 (1.16-1.81) 

a Estimates produced using a total sample size of 967,361 individuals for ID analyses and 964,371 individuals for SGA analyses (cases of ID = 6,352; SGA = 20,952).   

b Estimates produced using a total sample size of 957,371 individuals for ID analyses and 954,411 individuals for SGA analyses (cases of ID = 6,265; SGA = 20,712).   

c Estimates produced using a total sample size of 949,535 individuals for ID analyses and 946,604 individuals for SGA analyses (cases of ID = 6,219; SGA = 20,484).    

d Model adjusted for year of birth. 

e Model adjusted for year of birth, sex, parity, highest parental education, income, parental psychiatric history, maternal country of origin and maternal age at birth. 

f Model adjusted for family averaged exposure. 
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6.3 – Discussion 

The results of this study provide evidence that supports a causal role of smoking but not snus 

use in offspring fetal growth restriction, as measured by SGA, and no evidence of a causal 

influence of smoking and snus use in pregnancy on risk of offspring ID. Both population-

averaged and within-family effect estimates suggested a role of smoking on fetal growth 

restriction. The within-family effect can be interpreted as meaning that individual level 

exposure to maternal smoking in pregnancy, holding fixed shared familial genetics and 

environment, is associated with being born SGA. In comparison, no association was found 

between snus use in pregnancy and offspring fetal growth restriction, even in unadjusted 

conventional models. Maternal smoking and snus use in pregnancy were both associated with 

increased population-averaged odds of ID. In both cases this was shown to be driven by the 

between-family effect and not the within-family effect; a finding that is not consistent with a 

causal effect.  

The results of the timing analyses supported the conclusions of the causal nature of each 

exposure-outcome association. A duration-response was found for the within-family effect 

estimates of smoking in pregnancy and offspring SGA but not for any other investigated 

association. I did however obtain some unusual results for those who quit smoking or snus use. 

Compared to no use, giving up smoking or snus before or during pregnancy was associated with 

reduced odds of SGA and ID in some models. While a protective effect of nicotine at critical 

time points may be possible, I believe that these results could potentially be explained by the 

characteristics of mothers who are able to quit using an addictive substance at an important time 

in order to benefit their child’s health.  

This study strengthens the current body of evidence for a causal effect of maternal smoking in 

pregnancy on fetal growth restriction and provides strong support to the suggestion that the 

association between smoking in pregnancy and offspring ID is the result of residual 

confounding [98, 99]. To my knowledge, no prior research has investigated the association 

between prenatal exposure to snus and offspring ID.  

This study used a similar Swedish cohort and an identical definition of SGA to the studies by 

Baba et al [276], who found an association between maternal snus use in pregnancy and 

offspring born SGA, and Wikström et al [278] who did not. The biggest difference between the 

sample in this study and that of Baba et al was the exclusion criteria; we excluded those with 

metabolic, genetic and chromosomal abnormalities where they did not. It is possible that these 

exclusion criteria lead to the differences in associations found if either these disorders play a 

mediatory role in the association or if they are common effects of snus use in pregnancy and 

being born SGA and thereby introduce collider bias towards the null. I repeated the snus 
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analysis without these exclusion criteria. The results (presented in section D.3 of Appendix D) 

show no substantial difference from those presented in the primary and secondary analyses 

which suggests that different exclusion criteria did not lead to the difference in findings. 

  

6.3.1  – Strengths and limitations 

The present study suffers from limitations that all registry-based studies are subject to, including 

potential misclassification, missing data and residual confounding. Sensitivity analysis (i) in 

Table 6-6 suggested that the results would not be substantially changed if there were high levels 

of exposure misclassification in the exposure-discordant group, though I only tested one 

scenario of exposure misclassification.  

Complete case analysis was used, which may be biased for logistic regression when the missing 

data is related to both the exposure and the outcome [150], as is the case for this dataset. 

Previous work has shown that there is smaller bias at smaller proportions of missing data [218]. 

The small quantity of missing data in the dataset may limit the bias, however the strong 

associations between smoking/snus use status and missing data for snus use/smoking data may 

have led to greater quantities of bias. Given that smokers/snus users and those with ID were 

both more likely to have been excluded for missing data this may have biased the association 

towards the null.  

This study attempted to account for residual confounding by using a sibling design which holds 

fixed shared familial genetics and environment. I was unable to easily control for the non-shared 

confounders of siblings, which have been shown to bias the results of sibling designs [181], due 

to the varying size of families. The antenatal nature of the associations that I am investigating, 

however, mean that the non-shared confounders will be limited to changes in environment 

between pregnancies as the mother’s genetics will not change. Sibling designs are also subject 

to bias from carry-over effects, where the outcome of the first sibling influences the exposure of 

the second sibling [182]. The difference in effect estimates between cohorts that restricted to 

specific patterns of changes in smoking between pregnancies (sensitivity analysis (ii) in Table 

6-7) was small suggesting a limited influence of bias from carry-over effects.  

A key strength of this study is the relationship between the associations investigated. There is 

strong evidence for a causal effect of smoking in pregnancy on fetal growth restriction while the 

causal nature of the association between smoking in pregnancy and ID is unclear. I found 

evidence using within-between models of a causal influence of smoking in pregnancy on fetal 

growth restriction but not ID. As this is in line with previous findings the former association can 

be thought of as a positive control of the latter association, thereby strengthening confidence in 

the evidence produced for the non-causal influence of exposure to maternal smoking in 
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pregnancy on offspring ID. Further, had a causal effect been suggested, comparison of the 

influence of smoking and snus use in pregnancy on offspring ID would have provided a cross 

context comparison which could have been useful for identifying if nicotine or combustible 

components of smoking were involved in biological mechanisms.  

 

6.4 – Conclusions and chapter summary 

This study has provided no evidence for a causal effect of smoking or snus use in pregnancy on 

risk of offspring ID, instead suggesting that associations are the result of residual confounding. 

Further no evidence was found for a causal effect of snus use in pregnancy on risk of offspring 

being born SGA however a causal effect of smoking in pregnancy on offspring SGA was 

supported. Neither finding suggests that smoking or snus use in pregnancy is safe. Smoking in 

pregnancy has well established negative effects on offspring health while research into snus use 

in pregnancy is in its infancy. Further assessments of the health costs and benefits of snus use in 

pregnancy relative to smoking need to be performed before guidance can be given regarding 

whether snus use is a suitable alternative to smoking or even whether it should be used as a 

cessation aid during this period.  
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Chapter 7 Applying the negative control design 

and Mendelian Randomisation to the 

Avon Longitudinal Study of Parents 

and Children 
 

 

So far in this thesis I have set out the evidence for an association between maternal smoking 

during pregnancy and offspring risk of intellectual disability (ID), that this association is 

potentially the result of confounding factors and that further investigation is required (Chapter 

1). I have established how we can investigate the causal nature of such an association using 

observational data (Chapter 2), investigated how assortative mating can bias results from the 

negative control design (Chapter 3) and how the proportion of missing data influences bias and 

efficiency of multiple imputation (MI) analysis (Chapter 4). In the last two chapters I used 

sibling comparisons to investigate the overarching research question using Danish and Swedish 

registry data.  

The current chapter aims to use a UK based cohort study, the Avon Longitudinal Study of 

Parents and Children (ALSPAC) to further investigate the association using observational, 

negative control and Mendelian Randomisation (MR) analyses. The cohort, described in greater 

detail below, contains a wealth of data on mother, partner and child collected from pregnancy 

onwards. Genetic information has also been recorded on both mother and child providing a rare 

opportunity to explore the cross generational genetic associations that are required for 

implementing MR to assess the causal nature of intergenerational exposure-outcome 

associations.  

For this chapter the term paternal is replaced with partner as not all partners in ALSPAC are the 

biological father of the child. It has been argued that when the exposure is a behaviour, such as 

smoking, whether the partner is the biological father is not important to the negative control 

design [8]. Where the exposure is biological, such as body mass index, non-paternity may be of 

greater relevance. 

The chapter is set out as follows. First I explore the data available within the ALSPAC study to 

create an appropriate, well defined measure of ID. Multiple measures, from different time points 

and from different sources, are available for each participant of the cohort. A core focus of the 

investigation in this chapter revolved around creating a multi-sourced indicator variable that 
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could overcome some of the difficulties in defining ID as highlighted in Chapter 1. Previous 

studies of neurodevelopmental conditions have shown that multi-source methods of identifying 

cases may reduce measurement error [21, 22]. This is followed by description of the methods 

and results of the investigation into the causal nature of the association of maternal smoking 

during pregnancy and offspring risk of ID. An attempt is then made to triangulate across the 

evidence from the three analysis methods.  

 

 

7.1 – Identifying individuals with intellectual disability 

7.1.1 – Cohort specification 

The ALSPAC cohort [242, 243] recruited 14,541 pregnant women resident in Avon, UK with 

expected dates of delivery 1st April 1991 to 31st December 1992. The core sample of 

pregnancies (also referred to as phase I) contained a total of 14,676 fetuses that resulted in 

14,062 live births; 13,988 of these children were alive at 1 year of age. Data has been collected 

on the cohort since its inception and is still ongoing. 

Attempts were made to bolster the initial core sample with eligible cases who had failed to join 

the study originally. These attempts were made in 1999 when the oldest children were 

approximately 7 years of age (phase II recruitment), opportunistically from 1999-2012 (phase 

III) and then from 2012 onwards with specific focus on recruiting second generation 

pregnancies (phase IV) [286]. Children recruited during phases II-IV were not included in 

analyses in this study as pregnancy information would be recorded retrospectively, increasing 

the risk of information bias.  

There were 15,659 total ALSPAC mother-child pairs across phase I-IV recruitment. Of these, 

795 had no NHS number and so could not be linked to the UK Secure eResearch Platform 

(UKSeRP) where the data were held, 1 participant withdrew consent at this stage. Of the 

remaining, 931 were not recruited during phase I, 68 were not alive at 1 year of age and 355 

were not singleton births. This left a sample of 13,509 mother child pairs. A cohort flow 

diagram is presented in Figure 7-1, that describes the exclusion process for each stage of the 

study.  
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Figure 7-1: Flowchart of cohort derivation 

Excluded for:  

Total excluded =  2,150 (13.73%) 

• No NHS number:   795 (5.08%) 

• Withdrawal of consent:  1 (0.01%) 

• Recruited after phase 1:  931 (5.95%) 

• Not alive at age 1:  68 (0.43%) 

• Not singleton birth:  355 (2.27%) 

 
Sample remaining = 13,509 (86.27%) 

Full data sample used in multiple 

imputation analyses 

N = 13,489 (86.14%) 

Total ALSPAC sample 

N = 15,659 (100%) 

Excluded for having genetic, metabolic 

or chromosomal abnormalities:  

Total excluded = 20 (0.13%) 

• Free text data:  8 (0.05%)  

• GP records:  5 (0.03%) 

• HES data:  9 (0.06%) 

Complete case data sample for 

observational analysis with binary 

exposure  

N = 5,307 (33.89%) 

Complete case data sample for 

observational analysis with count 

exposure 

N = 5,298 (33.83%) 

Excluded for having missing outcome, maternal 

exposure or maternal covariate data (not mutually 

exclusive categories):  

Total excluded (binary analyses) =  8,182 (52.25%) 

Total excluded (count analyses) =  8,191 (52.31%) 

• Missing outcome (IQ at age 8): 6,684 (42.68%) 

• Missing exposure (binary):    787 (5.03%) 

• Missing exposure (count):    840 (5.36%) 

• Missing data in covariates:     4,621 (29.51%) 

Excluded for having missing partner exposure or 

partner covariate data (not mutually exclusive 

categories):  

Total additionally excluded (binary analyses) = 1,914 

(12.22%) 

Total additionally excluded (count analyses) =  1,964 

(12.54%) 

• Missing partner exposure (binary): 1,122 

(7.17%) 

• Missing partner exposure (count):  4,128 

(26.36%) 

• Missing data in partner covariates: 8,325 

(53.16%) 

Complete case data sample for 

observational analysis with binary 

exposure  

N = 3,393 (21.67%) 

Complete case data sample for 

observational analysis with count exposure 

N = 3,343 (21.35%) 
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7.1.2 – Derivation of a multi-sourced variable for intellectual disability  

It was anticipated that having ID may lead to reduced or discontinued participation in the 

ALSPAC cohort. This would give rise to a missing not at random (MNAR) missing data pattern 

(see Chapter 2 for an explanation of missing data patterns) that was dependent on the outcome 

variable. Such a pattern would lead to bias under complete case analysis [150]. I therefore 

attempted to create a multi-sourced indicator variable for ID that made use of data recorded as 

part of the ALSPAC study as well as data from external linked sources. The linked data was 

intended to retain information on those who no longer participated in ALSPAC, thereby 

reducing bias from missing data, and increasing the accuracy of the measure of ID.  

Data from ALSPAC sources included measures of IQ taken at age 8 and 15 and free text fields 

in child-based questionnaires where the responder could record additional information. The 

linked sources included statements of special educational needs recorded in the Pupil Level 

Annual School Census (PLASC), Read codes related to ID recorded in General Practitioner 

(GP) records, International Classification of Disease (ICD) [12] diagnosis codes contained in 

Hospital Episode Statistics (HES) data and interactions with mental health services for reasons 

related to ID held in the Mental Health Services Data Set (MHSDS). Data linkage has 

previously been undertaken in the Identification of Developmental Impairments (IDI) project 

led by Emond [287] which identified neurodevelopmental disorders up to a maximum age of 11 

years using ICD-10 diagnoses. Further details of each source of information is provided in the 

subsections below as well as the derivation of the outcome variable used for analyses. 

At the time of writing, linked health records (including GP records, HES data and MHSDS data) 

were only available for individuals who had explicitly consented for linkage to data records. 

Beginning in November 2017, I began the process of a Confidentiality Advisory Group (CAG) 

application [288] to obtain access to the information of those who had not explicitly consented 

to data linkage via use of Section 251 of the National Health Service Act 2006 [289]. The CAG 

application, submitted by the ALSPAC data linkage team [290], via the Integrated Research 

Application System [291] (CAG reference: 20.CAG/0056; IRAS project ID: 268410), has been 

provisionally supported subject to satisfactory responses to requests for further information and 

compliance. At the time of analysis (July 2020) full approvals were still not in place and based 

on previous experience full access to non-explicit consenters data are likely to require several 

additional months. As a result linked health records for non-explicit consenters (described 

herein as the Section 251 sample) were not included. 
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7.1.2.1  – IQ scores 

IQ at age 8 years was measured using the Wechsler Intelligence Scale for Children - III [245] as 

part of a half day battery of mainly psychological and psychometric testing. IQ at age 15 years 

was measured using the Wechsler Abbreviated Scale of Intelligence [244] as part of a 4 hour 

battery of testing. Data was available for 6,613 (50.43%) of individuals at age 8 and for 4,869 

(36.04%) of individuals at age 15. From the IQ scores binary variables were created indicating 

if IQ was below 70 at each age. A second variable was created indicating a less stringent cut off 

of IQ below 85, equivalent to one population standard deviation below the population average 

of 100.  

 

7.1.2.2  – Free text fields  

ALSPAC contains free text responses to many questions answered by participants and their 

guardians. For example, at age 9 guardians of participant children were asked whether the 

children had been identified as having any particular problems at school and to describe in text 

each type of school problem. A search was performed across all free text fields contained in 

ALSPAC for terms related to ID (see Table E.1.1-1 in Appendix E for the search terms used and 

number of hits). A review of all free text responses for each individual identified with relevant 

free text fields (n=208) was performed to check if the text indicated whether the child was likely 

to have ID or not. Any queries were checked by a clinician who specialises in 

neurodevelopmental disorders (Dr Dheeraj Rai). The search terms identified several individuals 

who had specific learning difficulties such as dyslexia or difficulties specific to maths and 

literacy ability; the terms also identified individuals who were explicitly stated to not having a 

learning disability. Neither of these groups were classified as having ID. Following the review 

of all free text fields for each identified individual, 97 individuals were classed as having ID and 

111 individuals were classed as not having ID. Free text data was available for 12,104 

individuals in the sample.   

 

7.1.2.3  – Pupil level annual school census statements of special educational needs 

Statements of special educational needs (SEN) for cognition and learning needs [292] were used 

to indicate ID. These statements were recorded in 2003/4 when the vast majority of the sample 

children were in school years 6-8 (ages 11-13). The cognition and learning needs category 

include those with a statement for moderate to profound learning difficulties, but also includes 

individuals with specific learning difficulties related to problems learning to read, write, spell or 

manipulate numbers. This latter group is not of interest to the research question in this thesis. 

The data available to researchers is a binary indicator of all those who have a SEN statement 

included within the cognition and learning needs category, including both those with specific 
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(not of interest) and non-specific (of interest) learning difficulties. To attempt to address this 

issue, teacher reports of specific learning difficulties, recorded during approximately the same 

time period, were used to supplement the information. Individuals whose teacher reported a 

specific learning difficulty were edited to have an indicator of not having ID according to the 

PLASC. It should be acknowledged that some people who have an intellectual disability may 

also have a specific learning difficulty such as dyslexia but I decided to take the most 

conservative approach to identify cases.   

Data on the PLASC is available for 11,458 (81.5%) of the 14,062 live born children in the core 

ALSPAC sample. Those who did not have a PLASC record either did not attend state school in 

England (includes those attending independent schools, schools outside of England or those 

educated at home) or could not be matched (for example if their name was changed without 

ALSPAC being informed). Absence of PLASC information may therefore be associated with 

socioeconomic variables. Data were available for 9,695 (71.8%) of the sample for analysis.  

 

7.1.2.4  – GP records  

GP records contain information in the form of read codes [293, 294]. These are a hierarchically 

coded thesaurus of clinical terms that have been in use by the NHS since 1985. The codes are 

entered into a computerised system by clinicians or practice staff from general practice or 

secondary care consultations. A list of version 2 read codes was created by checking for terms 

related to intellectual disability or its synonyms using the UK Read Browser, previously 

accessible from NHS digital’s Technology Reference data Update Distribution. The list of read 

codes identified was cross checked against a list of codes selected in a previous study looking at 

incidence of mental illness and challenging behaviour in individuals with ID [295]. Terms that 

appeared in either list were used (see Table E.1.1-2 in Appendix E for the read codes used). 

Data was available for 4,659 individuals (34.5% of the analysis sample) who had explicitly 

consented, pending for 7,001 (51.8%) who required a S251 approval and completely 

unavailable for 1,849 (13.7%) individuals.  

 

7.1.2.5  – Hospital episode statistics 

Details of all admissions, attendances at accident and emergency and any outpatient 

appointments at NHS hospitals in England are collected in the HES database [296]. The HES 

dataset recorded all diagnoses up until 1995 using ICD-9 and all diagnoses in subsequent years 

as ICD-10 codes [12, 297]. Diagnoses of 317-319 (ICD-9) and F70-F79 (ICD-10) made during 

hospital interactions were used to indicate ID (full list presented in Appendix E, Table E.1.1-3). 

Data availability was the same as for GP records.  
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7.1.2.6  – Mental health services data set  

The MHSDS collects data on all interactions between patients and specialist secondary mental 

health care services [298]. Patients are assigned to mental health clusters using the Health of the 

Nation Outcome Scales [299] which can be used to indicate the nature of the mental health care. 

Information regarding intellectual disability can be found within care clusters 18-21 which 

relate to cognitive impairment. All individuals that had more than one recorded final clinician 

allocated cluster related to cognitive impairment were indicated as having ID. Less than 5 cases 

were indicated using this method. All were contained within cluster 18.  

MHSDS data was only available for 58 individuals (0.4% of the total sample) who had a 

relevant read code found in GP records or ICD code found in HES data. The sample for who 

MHSDS data was available was therefore a subsample of the explicitly consenting sample of 

4,659 individuals defined in Section 7.1.2.4 . 

 

7.1.2.7  – IDI project 

The IDI project has been described in detail elsewhere [287]. Briefly, the project identified 

individuals in the ALSPAC cohort with any form of developmental delay determined by ICD-

10 diagnosis codes between 1991 and 2003 (maximum possible age 13). These diagnoses were 

obtained from computerised medical records of NHS trusts in the local Bristol area (North 

Bristol Trust, United Bristol Healthcare Trust, Weston Area Health Trust and Royal United 

Hospital, Bath). The codes F70-F79 were used to select those with a diagnosis of ID.  

It was not possible to determine the exact overlap between the IDI project sample and the 

analysis sample of the current project. This was due to the data retained from the IDI project 

only containing information on those who had an identified ICD-10 diagnosis and not all those 

for whom medical records were available at the time of the project. The documentation for the 

IDI project (which can be obtained from the ALSPAC useful data repository) states that 13,898 

of the 14,062 live born individuals who make up the core ALSPAC sample were eligible for the 

IDI project. It was therefore assumed that data was available on IDI diagnoses for all 

participants.    

 

7.1.3  – Exclusion criteria 

Individuals who had a genetic, metabolic or chromosomal abnormality that was associated with 

ID were excluded from analyses as this is a group in which ID is likely regardless of exposure 

to maternal smoking during pregnancy. These disorders were identified using free text 

information, GP records and HES data. The free text records of individuals with text relevant to 
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ID were screened for mentions of known genetic causes of ID. Read codes and ICD codes for 

genetic disorders related to ID were obtained from GP records and HES data respectively. A list 

of the codes used is presented in Table E.1.2-1 in Appendix E. If a participant had any of these 

codes they were excluded from the data. In total 20 participants were excluded for genetic, 

metabolic or chromosomal abnormalities (8 using free text data, 5 using GP records and 9 using 

HES data) leaving a sample of 13,489 participants. There was low concordance between sources 

of information; only 2 (10%) of these individuals met the exclusion criteria based on 

information from more than one source.  

 

7.1.4  – Assessment of the validity of the ID variables 

The information available to create a multi-sourced indicator of ID were therefore the following 

eight items:  

1. An IQ less than 70 at age 8 

2. IQ less than 70 at age 15 

3. Free text fields that suggest the child has ID 

4. A statement of SEN for cognitive and learning needs 

5. A relevant read code from linked GP records 

6. A relevant ICD-9 or ICD-10 diagnosis code from HES data 

7. Multiple records indicating use of learning disability care services in the MHSDS 

8. An ICD-10 diagnosis found in the IDI project  

The distribution of IQ scores for those with ID indicated by each source of information is 

presented in Table 7-1. The mean IQ at age 8 was less than 70 among those who were indicated 

as having ID from the IDI project and from HES data but was greater than 70 for those with ID 

indicated from free text data, SEN statements and GP records. This may suggest that different 

severities of ID are being identified by the different sources of information or may indicate that 

some sources contain substantial measurement error and are therefore identifying individuals 

who are within the normal range of IQ. This measurement error is likely to be amplified in 

health records data since data is only available for explicit consenters and those with lower IQs 

are by definition less likely to be able to provide explicit consent. Table 7-2 shows that there 

was low concordance for ID between sources. Again, this could be due to low agreement 

between sources as to what counts as ID but could also signify poor overlap in available data 

between sources.  

Consenter status for linked health records (GP records, HES data and MHSDS data) may also 

influence the ability to identify cases of ID. Table 7-3 presents the number of variables available 

to identify ID, as well as average IQ scores at age 8 and 15, across categories of consent status. 
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The section 251 group had on average fewer available sources of information (excluding linked 

health data sources) than the explicit consenters. The section 251 group also had lower average 

IQ scores at age 8 and 15 than the explicit consenters. This may suggest that the section 251 

group contains more severe cases of ID than the explicit consenters, some of which may not be 

being picked up due to lack of availability of linked health data.  

 

7.1.5  – Deciding how to define intellectual disability for analysis 

The assessment of validity for the different ID variables has highlighted that some variables 

may contain substantial measurement error while others may be missing the more severe cases 

of ID due to consent status. Further time than is allowed by the PhD programme is required to 

obtain the legal approval for the use of the section 251 sample’s health records and investigate 

more thoroughly which variables can be used to derive a valid ID variable. As a result, the 

intended approach of creating a multi-sourced variable for ID could not be integrated into this 

thesis.  

Instead, I decided to use an IQ of less than 70 at age 8 to define ID in this investigation, using 

MI to account for missing data. As has been highlighted, those with missing data in this variable 

are likely to have lower IQ, thereby resulting in a MNAR missing data pattern that could bias 

analyses. Previous work by Cornish et al. [300] has used linked data as auxiliary information for 

missing IQ data in ALSPAC to improve the validity of the missing at random (MAR) 

assumption of MI analyses. The approach was shown to reduce bias and improve efficiency of 

estimates in their simulation study. Full details of the MI procedure can be found in the Methods 

section below. 

 The chosen approach runs counter to the suggestions of O’Brien that IQ testing alone without 

information on functional impairments should not be used to indicate ID [18]. The results of this 

chapter should therefore be interpreted with caution and used as an exemplar to demonstrate the 

approaches until further work including the section 251 sample is possible.  
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Table 7-1: Distribution of IQ for each source of ID. 

   IQ at age 8 IQ at age 15 

Source Description 

N with 

ID 

N with IQ 

data  <70 70-84  ≥85 Mean (SD)  

N with IQ 

data <70  70-84  ≥85 Mean (SD) 

Free text Free text data in ALSPAC questionnaires 

indicating ID 

 

82 34 12 

(35.29) 

13 

(38.24) 

9 

(26.47) 

75.74 

(17.507) 

27 10 

(37.04) 

11 

(40.74) 

6 

(22.22) 

73.81 

(14.597) 

SEN 

statement 

Statement of special educational needs 

from the PLASC 

 

297 76 22 

(28.95) 

28 

(36.84) 

26 

(34.21) 

80.17 

(16.158) 

46 15 

(32.61) 

17 

(36.96) 

14 

(30.43) 

78.41 

(16.198) 

GP records A read code related to ID found in GP 

records 

 

31 20 6 

 (30.00) 

6 

 (30.00) 

8 

 (40.00) 

83.2 

(24.054) 

20 7 

 (35) 

a a 77.25 

(16.457) 

HES data An ICD-9 or ICD-10 diagnosis recorded in 

HES data 

 

≤5 ≤5    63.33 

(16.921) 

    a 

MHSDS 

data 

Multiple records indicating use of learning 

disability care services 

 

≤5     a     a 

IDI data ICD-10 diagnosis identified 110 23 17 

(73.91) 

≤5 ≤5 

  

63.04 

(12.115) 

14 8 

(57.14) 

≤5 ≤5 

  

64.21 

(10.772) 
a Count too low to be presented. For columns indicating a count the value may be 0. 
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Table 7-2: Cross tabulation of ID obtained from each source. 

ID Source Total 

with 

data 

available 

Total 

with ID 

from 

source 

IQ < 70 at 

age 8 

IQ < 85 at 

age 8 

IQ < 70 at 

age 15 

IQ < 85 at 

age 15 Free text 

SEN 

statement 

GP Read 

code 

HES ICD 

9/10 

diagnosis 

MHSDS 

code 

IDI project 

ICD-10 

diagnosis 

IQ < 70 at age 8 

 

6805 113  113 (100) 20 (17.70) 50 (44.25) 12 (10.62) 22 (19.47) 6 ( 5.31) ≤5 ≤5 17 (15.04) 

IQ < 85 at age 8 

 

6805 804 113 (14.05)  68 ( 8.46) 271 (33.71) 25 ( 3.11) 50 ( 6.22) 12 ( 1.49) ≤5 ≤5 22 ( 2.74) 

IQ < 70 at age 15 

 

4862 134 20 (14.93) 68 (50.75)  134 (100) 10 ( 7.46) 15 (11.19) 7 ( 5.22) ≤5 ≤5 8 ( 5.97) 

IQ < 85 at age 15 

 

4862 1147 50 ( 4.36) 271 (23.63) 134 (11.68)  21 ( 1.83) 32 ( 2.79) 10 ( 0.87) ≤5 ≤5 13 ( 1.13) 

Free text 

 

12084 82 12 (14.63) 25 (30.49) 10 (12.20) 21 (25.61)  13 (15.85) 8 ( 9.76) ≤5 ≤5 27 (32.93) 

SEN statement 

 

9679 297 22 ( 7.41) 50 (16.84) 15 ( 5.05) 32 (10.77) 13 ( 4.38)  9 ( 3.03) ≤5 ≤5 39 (13.13) 

GP Read code 

 

4646 31 6 (19.35) 12 (38.71) 7 (22.58) 10 (32.26) 8 (25.81) 9 (29.03)  ≤5 ≤5 10 (32.26) 

HES ICD-9/10 

diagnosis 

4646 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5  ≤5 ≤5 

MHSDS code 

 

58 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5  ≤5 

IDI ICD-10 code 13489 110 17 (15.45) 22 (20.00) 8 ( 7.27) 13 (11.82) 27 (24.55) 39 (35.45) 10 ( 9.09) ≤5 ≤5  

Percentages in each row are out of the total with ID from source 

Where counts are ≤5, the count may be equal to 0 
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Table 7-3: Descriptive statistics across categories of consent. 

Statistic Explicit consenter Section 251 Explicit non-consenter No data linkage available 

N 4646 

 

7001 346 1503 

Mean (SD) number of ID variables available a 4.30 (0.88) 

 

3.26 (0.99) 3.30 (0.97) 2.02 (0.78) 

Median (IQR) number of ID variables available a 5 (4-5) 

 

3 (3-4) 3 (3-4) 2 (2-2) 

N (%) with available IQ score at age 8 3678 (79.16) 

 

2586 (36.94) 242 (69.94) 299 (19.89) 

Mean (SD) IQ score at age 8 107.81 (15.97) 

 

100.10 (15.96) 103.28 (17.54) 98.39 (15.57) 

N (%) with available IQ score at age 15 3300 (71.03) 

 

1303 (18.61) 164 (47.40) 96 (6.39) 

Mean (SD) IQ score at age 15 96.16 (12.90) 90.56 (12.57) 93.16 (12.46) 87.88 (12.82) 
a Sources of data included were IQ at age 8 and 15, free text data, SEN statement and diagnosis in the IDI project (i.e. excluded linked health data) in order to be able to compare across consenter status. 
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7.2 – Methods for assessing the association between 

maternal smoking during pregnancy and offspring 

ID 

7.2.1  – Ethical approval 

Ethical approval for the study (project B3010) was obtained from the ALSPAC Ethics and Law 

Committee and the Local Research Ethics Committees - 

http://www.bristol.ac.uk/alspac/researchers/research-ethics/. 

 

7.2.2  – Definition of exposure to smoking during pregnancy 

Maternal smoking is reported at several time points during pregnancy in ALSPAC. At 18 weeks 

gestation both mothers and partners were asked the following questions: 

 

Question 1. Have you ever been a smoker? 

Question 2. Have you now stopped smoking? 

Question 3. How many times per day did you smoke in the first 3 months of your 

pregnancy? (For the partner questionnaire this question was worded as “How 

many times per day did you smoke at the start of your partner’s pregnancy?” 

but treated equivalently) 

Question 4. How many times per day did you smoke in the last 2 weeks? 

 

This time point was selected because it is the only time point at which both maternal and partner 

smoking were reported, and it uses identical phrasing for all questions but one.  

Binary measures of smoking in pregnancy were created for both mother and partner. Smokers 

were defined as having met Condition 1 or 2 below while a non-smoker was defined as having 

met neither condition provided data was available for at least one of the conditions: 

 

Condition 1. Reported “yes” to Question 1 and had not reported “yes” to question 2 (i.e. 

reported “no” or left Question 2 missing). 

Condition 2. The number of cigarettes reported per day in Question 3 or 4 was greater than 

0. 

 

A continuous measure of the number of times smoked per day obtained from question 4 (i.e. 

gestational weeks 16-18). This was captured in categories (0, 1-4, 5-9, 10-14, 15-19,20-24, 25-

http://www.bristol.ac.uk/alspac/researchers/research-ethics/
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29, 30+). The lowest number from each category was used to create a conservative estimate of 

maternal/partner self-report 

ALSPAC also contains maternal report of partner smoking at 18 weeks gestation. Mothers were 

asked “Does your partner smoke?” and “If yes, about how many times per day does your partner 

smoke at the moment?” with responses captured in the same categories as for the mother’s own 

smoking (except with no option for 0 cigarettes smoked at the moment). This may cause issue 

as the partner may be a smoker but have given up smoking during the pregnancy period. 

Previous work, however, has shown high concordance between partner’s self-report and 

maternal report of partner smoking but low concordance for quantity of smoking [301]. 

Maternal report was therefore used to impute missing partner smoking status (but not quantity) 

where possible. Here there is a potential trade off in the negative control design between bias 

from increased error in the paternal report and bias from missing data.  

 

7.2.3  – Covariate variable definitions 

The variables used as covariates in models were the following:  

1. Child sex assigned at birth 

2. Maternal age at the time of birth  

3. Maternal parity 

4. Maternal depressive symptoms at 18 weeks gestation  

5. Maternal alcohol use recorded at 18 weeks gestation 

6. Maternal reported financial difficulties recorded at 32 weeks gestation 

7. Maternal education recorded at 32 weeks gestation 

8. Maternal occupational class recorded at 32 weeks gestation 

Maternal age was grouped as under 25, 25-29, 30-34 and 35 or over. Parity was grouped as 0 

(nulliparous), 1, or 2 or greater. Maternal depressive symptoms were measured using the 

Edinburgh Postnatal Depression Scale. A cut off of 12 was used to create a binary indicator  as 

this has previously been shown to have a high correlation with depression [302]. Maternal 

alcohol use was included as a binary measure indicating the report of any alcohol use. 

Financial difficulties during pregnancy were recorded on a scale from 0-15 with 15 indicating 

maximum financial difficulty. Mothers were asked “how difficult at the moment do you find it 

to afford these items?” for each of food, clothing, heating, rent or mortgage and things you will 

need for the baby. A score greater than 9 was used to indicate that financial difficulties were 

experienced during pregnancy. This score reflected the 10% of the sample that reported the 

greatest financial difficulty. 
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Maternal education was grouped as vocational, CSE/O level and A level/degree. Maternal 

occupational class was grouped into manual or non-manual occupation according to the 

definitions provided by the 1991 British Office of Population Census Surveys job codes) [303].  

Categorical variables were used in the place of continuous variable for maternal age at birth, 

maternal depressive symptoms, and financial difficulties. This was done to allow for the 

possibility of non-linear associations between these variables and the outcome.  

The covariates were grouped together for the purpose of investigating different model 

adjustment strategies. Maternal characteristics included maternal age at birth, parity, maternal 

depressive symptoms, and maternal alcohol use during pregnancy. Socioeconomic 

characteristics included financial difficulties, education, and occupational class. Child sex was 

included with maternal characteristics during adjustments.  

Equivalent partner covariates were collected and derived in the same manner as for maternal 

covariates. Partner education, depression and alcohol use were all reported by the partner at 18 

weeks gestation using the same questions/measures as for the mother. Partner occupational class 

was reported by the mother at the same time as reporting her own occupational class.  

 

7.2.4  – Genotype information 

Data on maternal genetic information was extracted from the ALSPAC genetic database [243]. 

Genotyping of ALSPAC mothers was performed using the Illumina human660W-quad at 

Centre National de Génotypage and genotypes were called using the Illumina GenomeStudio 

algorithm. Quality control was undertaken using PLINK (v1.07) on an initial set of 10,015 

subjects and 557,124 directly genotyped SNPs. SNPs were removed if they had a proportion of 

missing data greater than 5%, had a Hardy-Weinberg-Equilibrium p-value lower than 10-6 or 

had a minor allele frequency less than 1%. Samples were excluded if they had greater than 5% 

missing data, had indeterminate X chromosome heterozygosity or had extreme autosomal 

heterozygosity. The quality control process is described in further detail elsewhere [304]. SNP 

imputation was carried out against the 1000 Genome Project database [305]. Quality control and 

SNP imputation were undertaken by the ALSPAC team before access was granted to the data. 

 

 

7.2.5  – Observational analyses  

All analyses were performed using R version 3.5.3 [306]. Logistic regression models of 

outcome (IQ at age 8 less than 70) on exposure were repeated for the binary measure of 
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smoking in pregnancy and the number of cigarettes smoked per day. Models were performed 

using four adjustment strategies: (i) unadjusted, (ii) adjusted for maternal characteristics 

(maternal age at birth, parity, maternal depressive symptoms, maternal alcohol use during 

pregnancy and child sex), (iii) adjusted for socioeconomic factors (financial difficulties, 

education, and occupational class) and (iv) adjusted for both maternal characteristics and 

socioeconomic factors.  

 

7.2.6  – Negative control analyses 

Logistic regression models of IQ at age 8 less than 70 on maternal and partner smoking during 

pregnancy, mutually adjusted for each other, were fitted using the same four adjustment 

strategies as for the observational analyses. The models were repeated for the binary and count 

forms of the exposure variable.   

 

7.2.7 – Multiple imputation procedure 

All observational analyses and negative control analyses were conducted as complete case 

analyses and repeated using multiply imputed data. MI was implemented in order to account for 

the substantial missing data in outcome and covariate variables and reduce consequent bias. 

Previous work has shown that, provided the data meet the MAR assumption, MI can produce 

unbiased results even at large proportions of missing data [157] (see Chapter 4).   

Data were imputed using fully conditional specification (FCS) [156, 307]; this method is also 

commonly  known as multivariate imputation using chained equations (MICE) and was carried 

out using the R package ‘mice’ [308] with 100 imputations and 5 iterations (to check 

convergence of parameter estimates). The exposure, outcome and all maternal and paternal 

covariates were included in the imputation model in order to maintain consistency between the 

imputation model and the most complex analysis model (the fully adjusted negative control 

model). Each variable was included as a predictor of all other variables. Binary variables 

(maternal and partner smoking status during pregnancy, financial difficulties, depression and 

alcohol use) were imputed using logistic regression, unordered categorical variables (maternal 

and partner occupational class) were imputed using multinomial logistic regression, ordered 

categorical variables (parity group and age group) were imputed using proportional odds 

models, and numeric variables (maternal and partner count exposure variables) were imputed 

using predictive mean matching.  

As socioeconomic variables were often missing (see the missing data assessment in Section 

7.3.2 ), two auxiliary variables for socioeconomic status were also included in the imputation 
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model. These were home ownership status and present maternal marital status which were both 

recorded at 6 weeks gestation. Homeownership status was grouped as (i) owned/mortgaged, (ii) 

rented from the council,  (iii) privately rented, or (iv) other. Maternal marital status was grouped 

as (i) never married, (ii) previously married but not currently married (this included those who 

were widowed, separated and divorced), (iii) those who were in their first marriage, and (iv) 

those who were in their second or third marriage. Data on homeownership and marital status 

were available for 12,580 (93.3%) and 12,636 (93.7%) of the analysis sample respectively.  

Missing data in the outcome variable, IQ at age 8 less than 70, was imputed using all exposure 

and covariate data. Indicator variables for ID from free text information, SEN statements and 

IDI project diagnoses were all included in the imputation model as auxiliary variables. Each of 

these three auxiliary variables had substantially less missing data than IQ at age 8, were likely to 

predict the missing IQ scores, thereby reducing error in the model, and most importantly were 

likely to predict the probability of having a missing value in IQ score, aiding the likelihood of 

meeting the MAR assumption and reducing bias from missing data [156]. 

The outcome was a binary variable derived from an underlying continuous variable. Several 

options for the imputation of this variable are available. The variable could be (i) imputed as a 

continuous variable and then dichotomised, (ii) imputed directly as a binary variable or (iii) the 

continuous form of the variable is imputed and then the binary form derived passively in the 

imputation procedure. It should be noted that for method (i) the imputation model is not 

compatible with the analysis model while for methods (ii) and (iii) the imputation and analysis 

models are compatible. Compatibility with the analysis model is widely regarded as a 

requirement for valid MI estimates [309, 310]. However, a recent simulation study has shown 

that for outcome variables, imputing as a continuous variable, then dichotomising (i.e. method 

(i)) leads to less bias than dichotomising then imputing (method (ii)), particularly as the quantity 

of missing data increases [311]. Passive imputation (method (iii)) has the advantage over the 

other methods in that it imputes the continuous measure, and so should be unbiased, while 

maintaining compatibility between the imputation and analysis models. Neither method (ii) or 

(iii) would converge in practice however and therefore I imputed IQ at age 8 as a continuous 

variable using a linear regression model and dichotomised post imputation. 

To test whether lack of compatibility between imputation and analysis models for the outcome 

variable substantially altered conclusions, a sensitivity analysis across the three different 

methods of imputation was conducted. For each method I used a simplified version of the 

imputation model to aid in convergence of the models. The simplified imputation model 

included only the outcome, the maternal binary exposure, the maternal covariate variables and 

the auxiliary variables. The observational analyses were then repeated for each outcome 

imputation method.  
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In contrast to the findings for a dichotomised outcome variable, deriving a binary covariate 

variable from a continuous variable post imputation can lead to substantial bias in effect 

estimates [312]. Imputing the binary form of the variable only in the imputation model was 

shown not to exhibit such bias. I therefore imputed covariate variables in the form that the were 

to be used in the analysis model. This was done under the assumption that the findings for 

binary variables extrapolate to unordered and ordered categorical variables, which has not been 

investigated so far.  

 

7.2.8 – Mendelian randomisation analyses 

Two-sample MR [173, 174] was used to investigate the causal nature of the association between 

maternal smoking during pregnancy and offspring intellectual disability. The two-sample MR 

framework combines summary statistics for SNP-exposure associations and for SNP-outcome 

associations. Summary statistics for smoking initiation and number of cigarettes smoked per day 

were obtained from analyses of the GWAS and Sequencing Consortium of Alcohol and 

Nicotine (GSCAN) [168]. SNPs below a p-value threshold of 10-8 were extracted to proxy for 

these respective exposure phenotypes.  

To my knowledge, no GWAS has so far been performed that assesses the association between 

maternal genetic variants and offspring phenotypic ID. To produce summary statistics for SNP-

outcome associations, logistic regression models of offspring ID (defined as IQ at age 8 less 

than 70) were fitted against the number of copies of maternal alleles for a given SNP using 

ALSPAC data. Regression models were fitted separately for each SNP identified in the GSCAN 

study. Data were restricted to mothers of European ancestry to prevent potential bias from 

population stratification. Each model was adjusted for offspring sex and the first 20 principal 

components. Imputation of missing outcome data was not performed in the GWAS analyses. 

The SNP-exposure and SNP-outcome summary statistics were harmonised to ensure that the 

same strand of DNA (and therefore the same allele) was used in each association. Palindromic 

SNPs - genetic variants in which the alleles are also corresponding nucleotide pairs - can 

negatively impact harmonisation. For example, a variant with alleles adenine and thymine (A/T) 

on one strand of DNA will correspond to the same pair of nucleotides on the opposing strands, 

making it difficult to determine the reference strand used in each association. In these situations, 

the effect allele frequencies were used to inform which strand was used for palindromic SNPs 

by manually checking whether the frequency in each data source was approximately equal. 

However, it is not possible to determine the reference strand if an effect allele frequency is close 

to 50% [174] – the allele frequency on the opposing strand will be too similar to confidently 

determine which strand was the reference. Therefore, all palindromic SNPs in which either 
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GSCAN or ALSPAC had an effect allele frequency between 40% and 60% were removed to 

avoid using SNPs with an ambiguous effect allele. Allowing such alleles to remain in analyses 

may bias estimates if the incorrect allele is identified as the reference allele.   

Analyses were conducted using R code developed as part of the MR-Base project [313]. The 

causal effect of smoking behaviour (repeated for smoking initiation and number of cigarettes 

smoked per day) on offspring ID was obtained for each SNP identified in GSCAN as having 

p<10-8 using a ratio of the beta coefficient from the SNP-outcome association relative to the 

beta coefficient from the SNP-exposure association. This is a ratio of the mean change in log-

odds of ID with each allele for a given SNP, relative to the mean change in units of smoking 

behaviour per allele for the SNP (the units of smoking behaviour were risk of smoking initiation 

and number of cigarettes smoked per day). An average effect across all SNPs was obtained 

using the inverse variance weighted (IVW) method [173].  

In sensitivity analyses MR-Egger [175, 176] weighted median [177, 178] and weighted mode 

[179] estimators were fit to check for consistency with the IVW estimate. Deviation from the 

IVW estimate would indicate that the MR assumptions described in Chapter 2 (Section 2.3.2) 

may have been violated.  

 

 

7.3 – Results  

7.3.1  – Cohort descriptives  

Descriptives of the cohort separated by maternal and partner smoking status during pregnancy 

are presented in Table 7-4. The table shows that 25.2% of participants were exposed to maternal 

smoking during pregnancy, 68.9% were not exposed and 5.83% had no exposure data available. 

Maternal smokers were more likely to be younger, have prenatal depression symptoms, have 

used alcohol during pregnancy, have a lower level of education, have a manual occupation and 

to have experienced financial difficulties during pregnancy.  

Exposure to partner smoking was more common than to maternal smoking (36% vs. 25%), 

though was more often missing . Partners tended to smoke more cigarettes per day than mothers 

if they did smoke (median number smoked [inter quartile range]: 10 [5-20] vs 5 [0-10]). The 

overall pattern of confounder distributions between smokers and non-smokers were similar 

between mothers and partners for most characteristics; smokers tended to be younger, have 

depression during pregnancy, have a lower education, a manual occupation and have 

experienced financial difficulties. The actual distributions were not similar, however, as partners 

tended to be older than mothers, were more likely to have been educated to A/level or degree 
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standard, and work a manual job. It is unclear whether this disparity is due to actual differences 

in the distributions or due to substantially lower responses from partners than mothers. Partners 

were much less likely to respond to questions on alcohol consumption and depression. The 

number of partners reporting depression were substantially lower for partners than mothers 

while alcohol use was more common among partners. A cross tabulation of maternal and 

partner smoking is presented in Table 7-5, which shows that there is positive assortative mating 

between parents (IPSI = 0.41; see Chapter 3 for further details on IPSI).   
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Table 7-4: Descriptive statistics of the cohort separated by maternal smoking status 

 Maternal Partner 

 Non-smoker Smoker Missing data Non-smoker Smoker Missing data 

Total, N (%) 

 

9298 (68.93) 3404 (25.24) 787 (5.83) 7453 (55.25) 4914 (36.43) 1122 (8.32) 

Number of times smoked per day, Median (IQR) 

 

- 5 (0-10) - - 10 (5-20) - 

Child Sex, N (%)       

    Female 4574 (49.19) 1593 (46.8) 367 (46.63) 3637 (48.8) 2373 (48.29) 524 (46.7) 

    Male 

 

4724 (50.81) 1811 (53.2) 420 (53.37) 3816 (51.2) 2541 (51.71) 598 (53.3) 

Parity, N (%)       

    0 4119 (44.3) 1491 (43.8) 0 (0) 3304 (44.33) 2102 (42.78) 204 (18.18) 

    1 3315 (35.65) 1029 (30.23) 0 (0) 2660 (35.69) 1614 (32.84) 70 (6.24) 

    >= 2 1741 (18.72) 786 (23.09) 0 (0) 1377 (18.48) 1088 (22.14) 62 (5.53) 

    Missing 

 

123 (1.32) 98 (2.88) 787 (100) 112 (1.5) 110 (2.24) 786 (70.05) 

Age, N (%)       

    < 25 1609 (17.3) 1321 (38.81) 344 (43.71) 324 (4.35) 441 (8.97) 40 (3.57) 

    25-39 3742 (40.25) 1202 (35.31) 263 (33.42) 1557 (20.89) 911 (18.54) 56 (4.99) 

    30-34 2895 (31.14) 647 (19.01) 127 (16.14) 1786 (23.96) 761 (15.49) 39 (3.48) 

    >= 35 1052 (11.31) 234 (6.87) 53 (6.73) 1113 (14.93) 559 (11.38) 24 (2.14) 

    Missing 

 

0 (0) 0 (0) 0 (0) 2673 (35.86) 2242 (45.62) 963 (85.83) 

Depression, N (%)       

    No 7682 (82.62) 2416 (70.98) 0 (0) 5728 (76.85) 3407 (69.33) ≤5 

    Yes 933 (10.03) 686 (20.15) 0 (0) 174 (2.33) 208 (4.23) ≤5 

    Missing 

 

683 (7.35) 302 (8.87) 787 (100) 1551 (20.81) 1299 (26.43) 1119 (99.73) 

Alcohol use in pregnancy, N (%)       

    No 4366 (46.96) 1332 (39.13) 0 (0) 275 (3.69) 181 (3.68) ≤5 

    Yes 4824 (51.88) 2034 (59.75) 0 (0) 5544 (74.39) 3364 (68.46) ≤5 

    Missing 

 

108 (1.16) 38 (1.12) 787 (100) 1634 (21.92) 1369 (27.86) 1119 (99.73) 

Education, N (%)       

    Vocational 772 (8.3) 376 (11.05) 37 (4.7) 418 (5.61) 365 (7.43) ≤5 

    CSE/O level 4385 (47.16) 1988 (58.4) 190 (24.14) 2235 (29.99) 1943 (39.54) a 

    A level/ Degree 3576 (38.46) 605 (17.77) 55 (6.99) 3229 (43.32) 1234 (25.11) ≤5 
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 Maternal Partner 

 Non-smoker Smoker Missing data Non-smoker Smoker Missing data 

    Missing 

 

565 (6.08) 435 (12.78) 505 (64.17) 1571 (21.08) 1372 (27.92) 1097 (97.77) 

Occupation, N (%)       

    Non-manual 6169 (66.35) 1505 (44.21) 101 (12.83) 4152 (55.71) 1650 (33.58) 91 (8.11) 

    Manual 1200 (12.91) 685 (20.12) 49 (6.23) 2363 (31.71) 2152 (43.79) 151 (13.46) 

    Missing 

 

1929 (20.75) 1214 (35.66) 637 (80.94) 938 (12.59) 1112 (22.63) 880 (78.43) 

Financial difficulties, N (%)       

    No 7904 (85.01) 2397 (70.42) 192 (24.4) 6420 (86.14) 3677 (74.83) 396 (35.29) 

    Yes 629 (6.76) 497 (14.6) 44 (5.59) 466 (6.25) 598 (12.17) 106 (9.45) 

    Missing 765 (8.23) 510 (14.98) 551 (70.01) 567 (7.61) 639 (13) 620 (55.26) 

a - Data greater than 5 but cannot be presented 

Note that values labelled as ≤5 may include 0 

 

 

 

Table 7-5: Cross tabulation of maternal and partner smoking during pregnancy 

  Maternal smoking status, N (%) 

  Non-smoker Smoker 

Partner smoking status Non-smoker 6344 (71.24) 9255 (30.08) 

Smoker 2561 (28.76) 2150 (69.92) 

IPSI value = 0.41 
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7.3.2 – Missing data assessment for complete case analysis 

The distributions of exposure, outcome and covariate variables among participants with no 

missing data in any variables as compared to participants with data missing in at least one 

variable are presented in Table 7-6. Using complete case analysis would lose 61% of 

observations to missing data in any variable for observational analyses. This increased to 75% 

when paternal variables were included, as in the negative control analyses.  

Table 7-6 can be used to identify associations with the probability of being a missing value and 

therefore guide understanding of the likely biases that would arise in complete case analyses. 

Odds ratios for missing data in any variable were produced using unadjusted logistic regression 

models. IQ <70 at age 8 was associated with increased odds of being a missing value. Smokers 

and heavier smokers were also more likely to be excluded from complete case analyses for 

missing data. Younger mothers, those with greater parity, those with depression, and those with 

a manual occupation were also more likely to have missing data. Those who used alcohol and 

those who had A levels or a degree were less likely to have missing data in any variable.  

There were some differences between mothers and partners in the strength of the relationship 

between variables and being excluded from complete cases analyses for missing data in the 

negative control analyses. Mothers were more likely than partners to be excluded for missing 

data in another variable if they were smokers (maternal OR [95 % CI] = 2.53 [2.28-2.81], 

partner OR [95 % CI] = 1.94 [1.78-2.11]). Partners were less likely to have missing data if they 

drank alcohol during pregnancy whereas for mothers there was no association between alcohol 

consumption and exclusion from complete case analyses. The association with missing data was 

similar between mothers and partners for all other covariates.  

Table 7-7 shows the number of observations with missing data in each variable separated by the 

number of variables missing. Data are presented for observations with at least one missing value 

(i.e. only observations excluded from complete case analysis). This table can be used to show 

the co-occurrence of missing data in multiple variables. Of those excluded from complete case 

analysis maternal smoking was missing 4% of the time and was never missing on its own. No 

IQ information was available for 37% of those excluded from complete case analysis. 

Socioeconomic variables were often missing (ranging from 8% for maternal education to 21% 

for occupation) and were commonly missing together. Maternal depression, alcohol use and 

child parity were also frequently missing. 
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Table 7-6: Descriptive statistics for missing data in any variable for observational and negative control analyses 

 Observational analysis Negative control analysis 

 Non-missing,  

N (%) 

Missing,  

N (%) OR (95% CI) a 

Non-missing,  

N (%) 

Missing,  

N (%) OR (95% CI) a 

Total 

 

5307 (39.34) 8182 (60.66) - 3393 (25.15) 10096 (74.85) - 

Outcome       

    IQ at age 8 < 70 

 

65 (1.22) 48 (3.20) 2.67 (1.83-3.89) 29 (0.85) 84 (2.46) 2.93 (1.91-4.48) 

Exposure       

    Maternal smoking (Yes) 923 (17.39) 2481 (33.55) 2.40 (2.20-2.61) 513 (15.12) 2891 (31.06) 2.53 (2.28-2.81) 

    Maternal smoking quantity among smokers b 5 (0-10) 5 (0-15) 1.08 (1.07-1.09) 3 (0-10) 5 (0-10) 1.09 (1.08-1.11) 

    Partner smoking (Yes)    976 (28.77) 3938 (43.88) 1.94 (1.78-2.11) 

    Partner smoking quantity among smokers b 

 

   10 (1-15) 10 (5-20) 1.04 (1.04-1.05) 

Covariates       

Child sex       

    Female 2638 (49.71) 3896 (47.62) Ref 1688 (49.75) 4846 (48.00) Ref 

    Male 

 

2669 (50.29) 4286 (52.38) 1.09 (1.01-1.17) 1705 (50.25) 5250 (52.00) 1.07 (0.99-1.16) 

Parity       

    0 2651 (49.95) 2959 (41.25) Ref 1784 (52.58) 3826 (42.10) Ref 

    1 1873 (35.29) 2471 (34.44) 1.18 (1.09-1.28) 1162 (34.25) 3182 (35.01) 1.28 (1.17-1.39) 

    >= 2 

 

783 (14.75) 1744 (24.31) 2.00 (1.81-2.20) 447 (13.17) 2080 (22.89) 2.17 (1.93-2.44) 

Maternal age       

    <25 687 (12.95) 2587 (31.62) Ref 418 (12.32) 2856 (28.29) Ref 

    25-29 2151 (40.53) 3056 (37.35) 0.38 (0.34-0.42) 1386 (40.85) 3821 (37.85) 0.40 (0.36-0.45) 

    30-34 1810 (34.11) 1859 (22.72) 0.27 (0.25-0.30) 1181 (34.81) 2488 (24.64) 0.31 (0.27-0.35) 

    >= 35 659 (12.42) 680 (8.31) 0.27 (0.24-0.31) 408 (12.02) 931 (9.22) 0.33 (0.29-0.39) 

Partner age       

    <25    188 (5.54) 617 (14.63) Ref 

    25-29    1087 (32.04) 1437 (34.07) 0.40 (0.34-0.48) 

    30-34    1181 (34.81) 2488 (24.64) 0.31 (0.27-0.35) 

    >= 35 

 

   822 (24.23) 874 (20.72) 0.32 (0.27-0.39) 

Maternal Depression       

    No 4755 (89.60) 5343 (83.35) Ref 3069 (90.45) 7029 (84.44) Ref 
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 Observational analysis Negative control analysis 

 Non-missing,  

N (%) 

Missing,  

N (%) OR (95% CI) a 

Non-missing,  

N (%) 

Missing,  

N (%) OR (95% CI) a 

    Yes 552 (10.40) 1067 (16.65) 1.72 (1.54-1.92) 324 (9.55) 1295 (15.56) 1.75 (1.53-1.99) 

Partner Depression       

    No    3293 (97.05) 5845 (95.40) Ref 

   Yes    100 (2.95) 282 (4.60) 1.59 (1.26-2.00) 

Maternal Alcohol Use       

    No 2323 (43.77) 3375 (46.56) Ref 1496 (44.09) 4202 (45.86) Ref 

    Yes 2984 (56.23) 3874 (53.44) 0.89 (0.83-0.96) 1897 (55.91) 4961 (54.14) 0.93 (0.86-1.01) 

Partner Alcohol Use       

    No    95 (2.80) 361 (6.04) Ref 

    Yes 

 

   3298 (97.20) 5613 (93.96) 0.45 (0.36-0.56) 

Maternal Race       

    Non-White 86 (1.63) 225 (3.40) Ref 42 (1.24) 269 (3.16) Ref 

    White 5203 (98.37) 6383 (96.60) 0.47 (0.36-0.60) 3342 (98.76) 8244 (96.84) 0.39 (0.28-0.53) 

Partner Race       

    Non-White    43 (1.27) 230 (3.82) Ref 

    White 

 

   3335 (98.73) 5789 (96.18) 0.32 (0.23-0.45) 

Maternal Occupation       

    Non-Manual 4471 (84.25) 3304 (75.06) Ref 2921 (86.09) 4854 (76.85) Ref 

    Manual 836 (15.75) 1098 (24.94) 1.78 (1.61-1.97) 472 (13.91) 1462 (23.15) 1.86 (1.66-2.09) 

Partner Occupation       

    Non-Manual    2277 (67.11) 3616 (50.46) Ref 

    Manual 

 

   1116 (32.89) 3550 (49.54) 2.00 (1.84-2.18) 

Maternal Education       

    Vocational 435 (8.20) 750 (11.23) Ref 272 (8.02) 913 (10.63) Ref 

    CSE/ O level 2412 (45.45) 4151 (62.17) 1.00 (0.88-1.13) 1448 (42.68) 5115 (59.54) 1.05 (0.91-1.22) 

    A level/Degree 2460 (46.35) 1776 (26.60) 0.42 (0.37-0.48) 1673 (49.31) 2563 (29.83) 0.46 (0.39-0.53) 

Partner Education       

    Vocational    224 (6.60) 559 (9.23) Ref 

    CSE/ O level    1230 (36.25) 2972 (49.08) 0.97 (0.82-1.15) 

    A level/Degree 

 

 

   1939 (57.15) 2525 (41.69) 0.52 (0.44-0.62) 

Financial Difficulties       
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 Observational analysis Negative control analysis 

 Non-missing,  

N (%) 

Missing,  

N (%) OR (95% CI) a 

Non-missing,  

N (%) 

Missing,  

N (%) OR (95% CI) a 

    No 4954 (93.35) 5539 (87.15) Ref 3207 (94.52) 7286 (88.10) Ref 

    Yes 353 (6.65) 817 (12.85) 2.07 (1.82-2.36) 186 (5.48) 984 (11.90) 2.33 (1.98-2.74) 
a ORs for being a missing value across levels of the variable  

b Values presented for this row are median (IQR) and OR represents the change in odds of being a missing value for a 1 cigarette per day increase among smokers only 

 

 

Table 7-7: Counts of missing data in each variable separated by the number of missing variables 

 Number of missing variables, N (%) a  

Missing variable 1 2 3 4 5 6 7 8 Total 

Total 4549 1446 437 839 254 121 97 439 8182 

IQ at age 8 3561 (78.28) 1342 (92.81) 198 (45.31) 764 (91.06) 240 (94.49) 104 (85.95) 36 (37.11) 439 (100.00) 6684 (36.53) 

Maternal smoking 0 (0.00) 0 (0.00) 0 (0.00) 42 (5.01) 119 (46.85) 90 (74.38) 97 (100.00) 439 (100.00) 787 (4.30) 

Child sex 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

Parity b 70 (1.54) 82 (5.67) 34 (7.78) 51 (6.08) 138 (54.33) 97 (80.17) 97 (100.00) 439 (100.00) 1008 (5.51) 

Maternal age 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

Maternal depression 212 (4.66) 283 (19.57) 199 (45.54) 203 (24.20) 219 (86.22) 120 (99.17) 97 (100.00) 439 (100.00) 1772 (9.69) 

Maternal alcohol use 15 (0.33) 36 (2.49) 28 (6.41) 57 (6.79) 145 (57.09) 116 (95.87) 97 (100.00) 439 (100.00) 933 (5.10) 

Maternal occupation 664 (14.60) 1090 (75.38) 426 (97.48) 797 (94.99) 148 (58.27) 119 (98.35) 97 (100.00) 439 (100.00) 3780 (20.66) 

Maternal education 8 (0.18) 24 (1.66) 155 (35.47) 658 (78.43) 126 (49.61) 33 (27.27) 62 (63.92) 439 (100.00) 1505 (8.23) 

Financial difficulties 19 (0.42) 35 (2.42) 271 (62.01) 784 (93.44) 135 (53.15) 47 (38.84) 96 (98.97) 439 (100.00) 1826 (9.98) 

a Percentage for each column sums to 100 × the number of missing variables.  

b Example table interpretation: 4549 individuals have data missing in 1 variable only, 70 of those have data missing in the parity variable. 1446 individuals have data missing in 2 variables, for 82 

individuals, one of those variables is parity.  
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7.3.3  – Observational analysis 

The results of the observational analyses for both binary and count exposure are presented in 

Table 7-8. Both complete case analysis and MI analysis found unadjusted associations of 

increased odds of ID among those exposed to maternal smoking during pregnancy. Adjustment 

for maternal characteristics and socioeconomic characteristics led to attenuation in the 

association. This attenuation was greater for socioeconomic characteristics, suggesting 

socioeconomic position plays a larger role in confounding the association.  

The results for the count exposure mirrored those found for the binary exposure. In MI analyses 

offspring were 1.05 times as likely to have ID for each additional cigarette their mother smoked 

per day during pregnancy. This association attenuated once maternal and socioeconomic 

characteristics had been accounted for. Again, the attenuation following adjustment for 

socioeconomic characteristics was greater than for maternal characteristics.  

 

 

Table 7-8: Results of the observational analyses using a  binary exposure. 

 OR (95% CI) 

Model Complete case analysis Multiple imputation analysis 

Binary exposure a 
  

Unadjusted 1.43 (0.80-2.56) 1.85 (1.38-2.40) 

Adjusted for maternal characteristics 1.30 (0.72-2.37) 1.35 (0.98-1.86) 

Adjusted for socioeconomic characteristics 1.04 (0.57-1.89) 1.24 (0.90-1.69) 

Adjusted for all confounders 1.05 (0.57-1.92) 1.10 (0.79-1.52) 

Count exposure (cigarettes per day) b 
  

Unadjusted 1.03 (0.97-1.09) 1.05 (1.03-1.07) 

Adjusted for maternal characteristics 1.02 (0.96-1.08) 1.03 (1.00-1.05) 

Adjusted for socioeconomic characteristics 1.00 (0.94-1.06) 1.02 (0.99-1.05) 

Adjusted for all confounders 1.00 (0.94-1.06) 1.01 (0.99-1.04) 

a Binary exposure: N for complete case analysis = 5,307, N for multiple imputation analysis = 13,489 

b Count exposure: N for complete case analysis = 5,298, N for multiple imputation analysis = 13,489 
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Table 7-9: Results of the sensitivity analyses for the different methods of imputing the outcome. 

 
Impute then dichotomise Impute as binary Passive imputation 

Model OR (95% CI) FMI OR (95% CI) FMI OR (95% CI) FMI 

Binary exposure a       

Unadjusted 1.72 (1.23-2.40) 0.384 1.62 (1.06-2.47) 0.602 1.73 (1.24-2.42) 0.392 

Adjusted for maternal 

characteristics 
1.31 (0.92-1.89) 0.414 1.32 (0.85-2.04) 0.587 1.32 (0.93-1.88) 0.396 

Adjusted for socioeconomic 

characteristics 
1.07 (0.74-1.54) 0.407 1.02 (0.63-1.64) 0.639 1.09 (0.75-1.57) 0.423 

Adjusted for all 

confounders 
0.98 (0.67-1.43) 0.421 0.98 (0.61-1.57) 0.622 0.99 (0.68-1.44) 0.421 

a N for all multiple imputation analysis = 13,489 

 

 

The sensitivity analyses for the different methods of imputing the outcome are presented in 

Table 7-9. Imputing the outcome as continuous then dichotomising (as is done in the primary 

analysis) provided consistent estimates with passive imputation suggesting that incompatibility 

of the imputation and analysis model has not substantially influenced the conclusions of the 

primary analyses. The results of these sensitivity analyses, which used a simplified imputation 

model, were all slightly attenuated towards the null compared to the primary analyses. Imputing 

the outcome as binary directly lead to greater attenuation than for the other models and also 

wider confidence intervals. The wider confidence intervals seem to be attributable to greater 

between imputation variance as evidenced by the greater FMI than for the other two methods 

(see the Chapter 4 for an explanation of the FMI).  

 

 

7.3.4   – Negative control analysis 

In complete case analyses the effect estimates for both the binary and count forms of the 

exposure suggested that maternal smoking was associated with increased odds of ID in 

offspring while partner smoking was protective (see Table 7-10). The maternal estimate was 

approximately twice the size of the partner estimate for the unadjusted and all adjusted models 

for the binary exposure. The ratio of maternal to paternal estimates was even greater for the 

count form of the exposure. These estimates, if true, would suggest a causal role of maternal 

smoking during pregnancy. 

The MI analyses produced estimates that were in contrast to those of the complete case 

analyses. Both maternal and partner smoking during pregnancy were found to be associated 

with increased odds of ID, though both associations were attenuated following adjustment for 
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maternal and partner covariates. The effect estimates for maternal and partner smoking were 

approximately equal in all models. This instead suggests a non-causal role of maternal smoking 

in pregnancy on offspring ID and suggests that the results found using complete case analysis 

were the result of selection bias due to missing data. 

 

 

Table 7-10: Results of the negative control analyses. 

 Complete case analysis Multiple imputation analysis 

Model 

Maternal OR 

 (95% CI)  

Paternal OR  

(95% CI) 

Maternal OR 

 (95% CI)  

Paternal OR  

(95% CI) 

Binary exposure a     

Unadjusted - complete case data 1.71  

(0.69-4.24) 

0.82  

(0.36-1.90) 

1.59  

(1.15-2.18) 

1.47  

(1.10-1.98) 

Adjusted for maternal characteristics 1.53  

(0.61-3.82) 

0.73  

(0.32-1.70) 

1.20  

(0.85-1.68) 

1.24  

(0.92-1.68) 

Adjusted for socioeconomic characteristics 1.17  

(0.47-2.94) 

0.58  

(0.24-1.36) 

1.08  

(0.78-1.50) 

1.07  

(0.79-1.44) 

Fully adjusted for confounders 1.19  

(0.47-2.98) 

0.55  

(0.23-1.30) 

0.99  

(0.71-1.39) 

1.03  

(0.76-1.39) 

Count exposure (cigarettes per day) b     

Unadjusted - complete case data 2.21  

(1.01-4.81) 

0.82  

(0.45-1.49) 

1.03  

(1.01-1.06) 

1.03  

(1.01-1.04) 

Adjusted for maternal characteristics 1.96  

(0.88-4.39) 

0.77  

(0.42-1.40) 

1.01  

(0.99-1.04) 

1.02  

(1.00-1.03) 

Adjusted for socioeconomic characteristics 1.67  

(0.74-3.76) 

0.61  

(0.32-1.14) 

1.01  

(0.98-1.04) 

1.01  

(0.99-1.02) 

Fully adjusted for confounders 1.61  

(0.71-3.67) 

0.61  

(0.33-1.15) 

1.00  

(0.98-1.03) 

1.00  

(0.99-1.02) 

All models are mutually adjusted for maternal and paternal exposure 

a Binary exposure: N for complete case analysis = 3393, N for multiple imputation analysis = 13489 

b Count exposure: N for complete case analysis = 3343, N for multiple imputation analysis = 13489
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7.3.5  – Mendelian randomisation analysis 

No association between SNP and ID met genome wide significance. The average number of 

observations available in models was 4218.6 (SD = 209.6; range = 2,562-4,346).  

The SNP rs76460663, which was found to be associated with smoking initiation in the GSCAN 

study, was removed from further analysis as the ALSPAC GWAS produced an effect estimate 

for the association with ID that was over 2400% bigger than the next largest effect estimate and 

was measured with substantial error (rs76460663 log odds ratio=15.3, SE=640.8). The SNP was 

looked up on the National Human Genome Research Institute’s GWAS catalogue (URL: 

https://www.ebi.ac.uk/gwas/variants/rs76460663) which showed that it has only been identified 

as a top hit in the GSCAN study, and not in any other GWAS.  

A forest plot of MR ratio estimates of the SNP-outcome association to the SNP-exposure 

association, sorted on effect size, for the associations of ID with SNPs for smoking initiation 

and with SNPs for number of cigarettes smoked per day is presented in Figure 7-2. Every eighth 

SNP is presented for smoking initiation due to the number of SNPs tested. The plot shows 

substantial overlap in confidence intervals for all SNPs tested, suggesting that there was little 

heterogeneity in effects. This is supported by the p-value for Cochran’s Q statistic [314] being 

greater than 0.1 which was also the case for the collation of results for each combination of 

smoking behaviour and outcome definition (smoking initiation, p=0.897; cigarettes per day, 

p=0.539).  

Combined statistics across all SNPs for the influence of each smoking behaviour on ID are 

presented in Table 7-11 (see Figure 7-3 for plots of individual SNP-outcome associations 

against SNP-exposure associations with fitted lines for each MR method). The IVW estimate 

showed little or no evidence of an effect of smoking initiation by the mother on offspring ID. 

Each of the sensitivity analyses (MR-Egger, weighted median and weighted mode) were 

consistent with the interpretation of the IVW method. For number of cigarettes smoked per day, 

the IVW estimate and all sensitivity analyses also showed no evidence for an effect of maternal 

smoking behaviour on offspring risk of ID. The confidence intervals of these estimates were 

very wide showing that error in the models was high.  

 

Table 7-11: MR primary and sensitivity analysis estimates 

  Smoking initiation Cigarettes per day 

Test Parameter Log OR (95% CI) p-value Log OR (95% CI) p-value 

IVW beta -0.24 (-1.43 - 0.95) 0.691 2.55 (-0.75 -   5.84) 0.126 

MR-Egger beta -3.46 (-8.90 - 1.98) 0.211 2.36 (-6.50 - 11.22) 0.594 

MR-Egger alpha 0.06 (-0.04 - 0.17) 0.233 0.00 (-0.18 -   0.19) 0.963 

Weighted median beta -0.44 (-2.17 - 1.34) 0.636 2.31 (-2.37 -   7.43) 0.356 

Weighted mode beta -1.49 (-7.80 - 4.82) 0.643 2.07 (-5.10 -   9.25) 0.574 

https://www.ebi.ac.uk/gwas/variants/rs76460663
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Smoking initiation Cigarettes per day 

Figure 7-2: Two-sample MR estimates based on the ratio method for individual SNPs. Plots are for smoking 
initiation (left)  and cigarettes per day (right)  for the outcome possible ID.  
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Figure 7-3: Plots of the SNP-outcome association against SNP-exposure association for each smoking behaviour 

(left: smoking initiation; right: number of cigarettes smoked per day) and outcome. Fitted lines show the estimates of 

the different MR methods that collate effects across all SNPs.  

 

 

7.4  – Discussion 

Both observational and negative control designs suggested that any association between 

maternal smoking during pregnancy and offspring ID is driven by confounding. The 

observational analyses found unadjusted associations that were largely attenuated by adjustment 

for socioeconomic factors and to a lesser extent by maternal characteristics including alcohol 

use and depression. Once selection bias from missing data had been accounted for by MI, the 

negative control design suggested that maternal and paternal effect estimates were equivalent in 

all unadjusted and adjusted models, providing evidence against a causal role of maternal 

smoking in  pregnancy in the development of ID. These findings are consistent with previous 

literature that shows that maternal smoking during pregnancy is associated with offspring ID 

(e.g. the studies by Drews et al. [90] and Mann et al. [96]) but that once bias from confounding 

has been adequately accounted for this association is attenuated to a null effect (as evidenced by 

Braun et al. [98] and Lundberg et al. [99]). 
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Evidence from MR models was less clear. All confidence intervals suggested that the effect 

estimates were consistent with a null effect. However, the estimate provided by analysis that 

combined across genetic variants suggested an increase in the risk of ID (as measured by IQ at 

age 8 less than 70) with each cigarette smoked per day. This was supported by sensitivity 

analyses that relaxed different aspects of the MR assumptions and analyses that showed more 

extreme effects among the offspring of mothers who actually smoked during pregnancy. Given 

the findings of the other analysis methods in this study, the somewhat ambiguous findings of the 

MR models are likely to reflect a null effect.  

The current study highlights that while causal inference methods are able to account for biases 

in a way that observational analyses can not, they are still susceptible to their own biases that 

can result in misleading conclusions. In the negative control analyses, complete case analysis 

found a greater risk of ID for the maternal coefficient than the partner coefficient. The partner 

coefficient seemed to suggest a protective effect of partner smoking during pregnancy. This 

pattern of results is likely the result of selection bias from missing data. Partner exposure and 

covariate data was missing more often than maternal data which may suggest that the causes of 

missing data, or at least the strength of association, may differ between parents which in turn 

could lead to differing directions of bias for the two coefficients. Here MI was important for 

removing bias from missing data and leading to a conclusion that maternal and partner smoking 

coefficients were equivalent, providing evidence against a causal role of smoking in pregnancy 

on the development of ID. 

 

7.4.1  – Strengths and limitations  

This study benefited from multiple approaches being applied in the same dataset which can aid 

in triangulation where results are in agreement with each other. Here, comparison across 

methodologies enabled inference to the most likely conclusion where one of the three did not 

provide clear evidence for a single conclusion.   

The ALSPAC dataset provided a rare opportunity to explore cross generational associations 

between maternal genetic variants and offspring outcomes. No GWAS of maternal genetics and 

offspring ID outcomes was available to be used in two-sample MR and therefore a targeted 

GWAS had to be conducted. The relatively small sample size of ALSPAC was a severe 

limitation for this method, however. As genetic variants for complex traits (such as smoking 

behaviour or ID) tend to have small individual effects, sample sizes for GWAS need to be into 

the hundreds of thousands with several thousand available cases in order to be adequately 

powered. The lack of power lead to extremely wide confidence intervals that prevented clear 
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interpretation of whether consistent effect estimates across primary and sensitivity analyses 

truly reflected a causal effect or were due to chance.  

Other, one-sample methods of MR could have been employed using a polygenic risk score for 

smoking behaviours in the mother. These methods would also have suffered from power issues 

and would likely have been more susceptible to weak instrument bias than using the GSCAN 

GWAS which contained data from 1 million individuals. Methodology for one-sample MR has 

not been developed to the extent that two-sample MR has, and fewer sensitivity analyses are 

available to explore whether the MR assumptions hold. A further issue of the approach taken in 

this study is that the ALSPAC study is contained within the consortia of cohorts comprising 

GSCAN [168]. The exposure and outcome genetic summary statistics were therefore not 

produced from two entirely independent samples and therefore may suffer bias such as winner’s 

curse whereby the strongest association in a sample of associations is usually overestimated 

[173, 315]. ALSPAC made up only a small fraction of the GSCAN sample, which may mean 

that any such biases would be small in size.   

A key strength of the study was the ability to use auxiliary information from the widespread 

data collected by ALSPAC in order to supplement missing information in MI analyses. Data 

were most often missing in the outcome variable and socioeconomic variables. Here it was 

assumed that those with lower IQ and greater socioeconomic challenge would be more likely to 

have missing data. This assumption was supported by the missing data assessment, though it 

should be noted that this assessment itself may be biased by the absence of values not observed 

and may also reflect confounded associations, not true causal effects of variables on missing 

data. The MAR assumption was made more plausible for the outcome variable by using 

auxiliary variables with limited missing data that were initially intended for use in the multi-

sourced indicator of ID. The MAR assumption was also made more plausible for missing 

socioeconomic variables through the use of home ownership and marital status as auxiliaries. 

Provided that the MAR assumption has been met, the bias from missing data will be reduced 

even in the presence of substantial quantities of missing data [157]. This assumption is not 

verifiable however, and it should also be noted that when data is not MAR based on the analysis 

model variables and all auxiliaries, then increasing proportions of missing data do lead to 

increasing quantities of bias (see Chapter 4, Figure 4-2).  

The chosen method of implementing MI may have issues also. The choice to impute the 

outcome as a continuous variable then dichotomise post imputation was made based on a single 

simulation study that suggested that bias is introduced when the outcome is imputed as a binary 

variable directly [311]. This is in opposition to the position of the majority of authors working 

on the implementation of MI who state that the imputation model should be compatible with the 

analysis model. It is possible that imputation of the outcome is a special case though I can find 
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no argument as to why this would be so. The decision to use this approach was also made out of 

necessity, as attempts to impute the outcome as a binary variable lead to issues of model 

convergence, a problem that has also been reported in simulations focusing on the 

dichotomisation of continuous covariates [312]. Other modelling strategies were investigated, 

including the use of substantive model compatible fully conditional specification (SCMFCS) 

which allows imputation only from models that are compatible with the analysis model (also 

referred to as the substantive model by the authors) [316]. This method has been shown not to 

exhibit the bias of the post imputation derivation method while also not experiencing the 

numerical issues of the binary variable imputation method. SMCFCS does not allow derivations 

to be applied to the outcome variable, or for multiple forms of the analysis model to be stated 

(i.e. with and without dichotomisation). This approach was therefore not suitable for the present 

analysis and the post imputation dichotomisation approach was taken for the outcome.  

Although I have aimed to demonstrate a complementary approach to answering the research 

question using data from a longitudinal cohort, the results and conclusions of this chapter as a 

whole need to be viewed with caution. One of the largest limitations of this study was that the 

outcome, ID, was a dichotomised variable derived from IQ scores. Statisticians have long 

argued against the use of such variables due to the loss of information from the original to the 

derived variable. From a more clinical perspective, diagnosis of  ID requires more information 

than simply using a cut off based on an IQ score and relies heavily on the functional ability and 

independence of the individual (see Chapter 1, Section 1.1.1).  

The IDI project diagnosis variable could have been used as an alternative outcome definition for 

all analyses. On the surface, this variable had less missing data (assumed none) and so would 

not be influenced by selection bias. However, bias from missing data in this variable may be 

replaced with differential information bias. Diagnosis should be thought of as the measurement 

of the underlying concept of ID that is observed with error (referred to as 𝑌∗ in Chapter 2). The 

potential exists for diagnosis to be influenced by confounding factors if those from more 

affluent backgrounds are more likely to have parents who push primary care clinicians for a 

referral for diagnosis or they attend schools which have greater resources to initiate 

investigations of ID in a student.  

A better method of ID definition would be to use multiple sources of information, each with 

their own susceptibility for bias, to create a combined variable that assesses intelligence and 

functional ability, as was attempted at the start of this chapter. Delays in obtaining data and the 

incompleteness of the obtained data (due to not having section 251 approval) prevented this 

approach being used. Further work, post PhD, will be undertaken to explore the development of 

such a variable once data become available. Further exploration of the ALPSAC resource will 
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be required in this work to improve the assessment of functional ability that is currently lacking 

in the sources of information for ID obtained so far.  

 

7.5 – Chapter conclusions and summary 

The results of analyses in this chapter suggest that the association between maternal smoking 

during pregnancy and offspring risk of ID can be accounted for by confounding structures and 

selection bias from missing data. Confidence in any conclusion is limited, however, by the 

quality of the outcome definition used. Further work is needed to develop the study presented 

here once data from the Section 251 sample becomes available, which should improve the 

validity of the outcome measure used.  

An important consideration to take forward from this chapter is that causal inference methods 

are heavily influenced by their own sources of bias that can lead to dramatically different 

conclusions (i.e. the difference between the complete case and MI analyses of the negative 

control design). Care needs to be taken to address these sources of bias and not simply accept 

the results of causal inference technique on the statement that the method was designed to 

address the biases of observational designs.  
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Chapter 8 Discussion 
 

 

I began this thesis by defining intellectual disability (ID), stating the issues surrounding its 

measurement, establishing the presence of an association between maternal smoking during 

pregnancy and offspring risk of ID and highlighting that the current evidence suggests that this 

association may be driven by confounding factors (Chapter 1). In Chapter 2 I established how a 

causal estimate can be obtained from an observational analyses, the methods to be used in the 

theses and the biases that can arise. In Chapters 3 and 4 I used simulation studies to further 

investigate bias in epidemiological analysis methods, first assessing how assortative mating may 

bias the negative control design and then showing that multiple imputation (MI) analysis is 

valid even at high proportions of missing data, provided that data are missing at random (MAR). 

In the empirical assessment of the causal nature of the association (see Table 8-1 for a summary 

of findings), Chapter 5 and Chapter 6 employed the use of sibling designs to account for shared 

genetic and environmental confounding in families in Danish and Swedish registry data while in 

Chapter 7 I used the negative control design and Mendelian randomisation to attempt to account 

for unmeasured confounding in the Avon Longitudinal Study of Parents and Children 

(ALSPAC).  

In this chapter I discuss and triangulate across the evidence produced for the overarching 

question of whether maternal smoking during pregnancy causally influences offspring risk of 

intellectual disability. I explore the strengths and limitations of the approaches used and attempt 

to highlight further work needed in the area.  
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Table 8-1: Summary of empirical chapters 

Chapter Dataset used Methods used Summary of findings 

5 Danish 

registers 

-Traditional 

epidemiological models 

(logistic regression) 

- Sibling comparisons 

- Positive control 

analysis (ID vs. 

birthweight) 

- Increased odds of ID among mothers who 

smoked in traditional models (adjusted OR 

[95% CI] = 1.35 [1.28-1.42])  

- Sibling analysis showed null within-family 

effect of smoking on offspring ID (OR [95% 

CI] = 0.93 [0.79-1.09]) 

- Within-family effect showed increased odds of 

low birthweight among offspring of children 

who smoked (OR [95% CI] = 1.06 [1.00-1.13]) 

 

6 Swedish 

registers 

-Traditional 

epidemiological models 

(logistic regression) 

- Sibling comparisons 

- Cross context 

comparison (smoking vs. 

snus) 

- Positive control 

analysis (ID vs. born 

SGA) 

- Increased odds of ID among mothers who 

smoked in traditional models (adjusted  OR 

[95% CI] = 1.24 [1.16-1.33])  

- Sibling analysis showed null within-family 

effect of smoking on offspring ID (adjusted OR 

[95% CI] = 0.92 [0.75-1.14]) 

- Within-family effect showed increased odds of 

offspring born SGA among children who’s 

mother smoked in pregnancy (adjusted OR 

[95% CI] = 2.43 [1.27-2.62]) 

- Null within-family effect of snus use in 

pregnancy on offspring ID (adjusted OR [95% 

CI] = 0.88 [0.60-1.31]) and SGA (adjusted OR 

[95% CI] = 1.07 [0.84-1.36]) 

 

7 ALSPAC -Traditional 

epidemiological models 

(logistic regression) 

- Negative control 

(maternal vs. partner 

smoking) 

- Mendelian 

randomisation 

- Multiple imputation 

- No association between smoking in pregnancy 

and offspring ID after accounting for missing 

data and adjusting for confounders (OR [95% 

CI] = 1.10 [0.79-1.52])  

- Equivalent maternal  ID (OR [95% CI] =0.99 

[0.71-1.39]) and partner (OR [95% CI] =1.03 

[0.76-1.39]) associations with offspring ID  

- No association found using MR analysis of 

SNPs for smoking initiation or cigarettes 

smoked per day 
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8.1 – Triangulation of evidence across empirical chapters 

Using data from the Danish registers I found increased odds of ID among mothers who smoked 

during pregnancy in unadjusted conventional models and in conventional models that adjusted 

for potential confounders. In sibling comparison models no evidence for a within-family effect 

was found, providing evidence that, holding fixed the shared environmental and genetic factors 

between siblings, individual level exposure to smoking during pregnancy did not influence the 

odds of offspring ID. These models provided evidence of a between-family effect, showing 

increased odds of ID in the families in which mother’s tended to smoke during a greater 

proportion of their pregnancies, holding fixed the individual exposure to smoking during 

pregnancy. This pattern of results suggested that the evidence from observational/conventional 

models can be attributed to the determinants of smoking that differ between families as opposed 

to a causal effect of smoking during pregnancy.  

Results of analyses on data from Swedish registers supported the findings of analyses on Danish 

data, with comparable effect estimates across all models. This is despite differing prevalence of 

maternal smoking in pregnancy between the two cohorts (18.6% in Denmark vs. 8.8% in 

Sweden), which may also reflect different confounding structures. The Swedish study further 

showed a similar pattern of results when snus as opposed to smoking was the method of 

nicotine exposure, suggesting that the pattern of results is not sensitive to the method of nicotine 

administration.  

Investigations using both Danish and Swedish data were supported by a positive control 

analysis, replacing the outcome of ID with an outcome of fetal growth restriction. This was used 

to demonstrate the validity of the within-between modelling approach for an outcome in which 

there already exists good evidence for a causal role of smoking during pregnancy. In each 

positive control analysis a within-family and between-family effect of smoking during 

pregnancy was found supporting a causal role of smoking during pregnancy on offspring fetal 

growth restriction, but also highlighting that some of the observational association can be 

accounted for by family-level and not individual-level determinants of smoking during 

pregnancy.    

Differences in the effect sizes of the positive control analyses were found between the Danish 

and Swedish data, however. The two studies used different definitions of the outcome which 

may account for this difference. The Danish study defined fetal growth restriction as birthweight 

less than 2500g which was approximately equivalent to 2.5 standard deviations (SD) below the 

unconditional population mean of the sample. The Swedish study instead defined fetal growth 

restriction as 2 SD below the mean birthweight for a given gender and gestational age. The 
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difference in estimates between the two are likely the result of different cut offs and the Swedish 

outcome being conditioned upon gender and gestational age.   

Findings in ALSPAC also showed increased odds of offspring ID  among those exposed to 

maternal smoking in pregnancy in unadjusted regression models. These associations did not 

survive adjustment for maternal and socioeconomic characteristics. The largest difference 

between the ALSPAC cohort and the Danish and Swedish cohorts were the size of the cohorts 

and the definition of ID. The lower power of the smaller ALSPAC cohort may have led to an 

inability to detect effects in adjusted models. Due to the inability to obtain all linked data for the 

ALSPAC cohort, I decided to define ID based on IQ as opposed to on medical diagnoses, as 

was the case for the Danish and Swedish studies. The underlying construct of the outcome may 

therefore differ between the studies, with ALSPAC potentially containing greater measurement 

error in this variable, which could have led to the lack of evidence for increased odds of ID 

among children of maternal smokers in adjusted models in ALSPAC. Alternatively, the 

measures adjusted for in ALSPAC models may have better captured confounding than the 

measures used in the Danish and Swedish registers. ALSPAC used detailed questionnaires with 

data collected for the purpose of research. In comparison, the measures from registry data are 

routinely collected data that were repurposed for research and so may be less able to capture 

information on confounding.  

The results of negative control analyses in ALSPAC supported the results of the sibling 

comparisons in previous chapters once bias from missing data had been accounted for. Similarly 

sized unadjusted and adjusted effect estimates were found for maternal and partner coefficients 

which provided evidence against a causal role of maternal smoking during pregnancy in the 

development of offspring ID. This is based on the assumption of equivalent bias for maternal 

and partner effect estimates and that partner smoking should have no, or at least a weaker effect 

than maternal smoking given that maternal smoking should deliver a greater dosage of nicotine 

and combustible components to the fetus than partner smoking. The first of these assumptions 

was potentially untenable, as evidenced by the descriptive statistics provided in the chapter. 

Attempts were made to account for this by adjusting for both parents confounder variables to 

control for non-shared confounding.  

Increasing odds of ID with increased dose of exposure would be expected if smoking during 

pregnancy were to have a causal influence. Dosage analyses in both the Danish and ALSPAC 

studies suggested that increased dosage of maternal smoking during pregnancy did not causally 

influence risk of offspring ID. The Danish study found no evidence of a non-null within-family 

effect of increasing number of cigarettes smoked per day. In the ALSPAC study a null adjusted 

observational effect estimate was found alongside similar effect sizes for maternal and partner 

number of cigarettes smoked per day.  
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The timing of exposure might also be expected to influence the risk of ID if an association were 

causal. Timing analyses were conducted in the Danish and Swedish studies. The Danish work 

investigated the effect of stopping or continuing smoking after the first trimester as compared to 

not smoking at all. Here a greater effect was found for smoking late into pregnancy than quitting 

in the first trimester in both unadjusted and adjusted models. These analyses did not account for 

shared unmeasured confounders however. The Swedish study compared smoking before 

pregnancy only, quitting during pregnancy and use late into pregnancy as compared to no use at 

all. In this study an increasing effect size was found for increasing length of use in pregnancy, 

however, this attenuated to a null effect in models that accounted for shared unmeasured 

confounders (the conditional logistic regression models). Based on the evidence of the better 

quality model from the Swedish study, this suggests that the timing of exposure to smoking 

during pregnancy does not influence the offspring’s risk of ID.  

MR analyses in Chapter 7 also did not support a causal role of maternal smoking in pregnancy 

on offspring risk of ID. Here the quality of evidence was low. The ALSPAC sample size was 

too low to detect SNP-outcome associations with adequate precision meaning that true causal 

effects may be hidden by large estimate standard errors. Further, the GWAS used for the SNP-

exposure associations was not specific to pregnancy meaning that the lack of evidence for a 

non-null association could reflect no influence of increased smoking behaviours across the 

mother’s life course, but does not rule out an influence of smoking specific to the pregnancy 

period. 

Overall, the combined evidence across all analyses presented in this thesis do not support a 

causal role of smoking during pregnancy on the offspring’s risk of ID. Once confounding has 

been adequately accounted for by analysis design the association attenuated to reveal a null 

effect.  

 

8.2 – Comparison with the current literature  

Results reported in this thesis do not support the results of the recent meta-analysis that 

suggested a small increase in the risk of ID among children of mothers who smoked during 

pregnancy [97].  Instead, the results support the findings of Braun et al. [98] and Lundberg et al. 

[99], that associations using conventional epidemiological analyses do not adequately account 

for the influence of unmeasured confounding and therefore reflect biased estimates. I have 

further provided evidence against an influence of timing of exposure as may be suggested by the 

findings of Hirvonen et al. [104].  
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A number of studies have used sibling designs to investigate the consequences of smoking 

during pregnancy [65, 317, 318]. These studies provided evidence for causal effects of smoking 

during pregnancy on birthweight, preterm birth and being born small for gestational age, 

supporting the results of positive control analyses in Chapters 5 and 6. Of importance, these 

studies did not find evidence for a causal influence of smoking upon cognitive measures such as 

academic achievement and general cognitive ability or neurodevelopmental outcomes such as 

conduct problems. Authors of studies using other causal inference methods such as MR and the 

negative control design have come to similar conclusions, that the available evidence suggests 

that smoking during pregnancy is associated with pregnancy outcomes but possibly not more 

complex later life outcomes such as cognition [319],  depression [319, 320] and BMI [101, 

319].  

With regard to ID specifically, it has been suggested by Reichenberg and colleagues that that the 

factors influencing the mild end of ID spectrum are the same as those that influence the normal 

distribution of IQ, while severe ID may influenced by a distinct set of risk factors [30]. It is 

possible that if Reichenberg’s theory holds then severe ID could be caused by rare de novo 

mutations, which smoking during pregnancy has been suggested as risk factor for [321, 322]. 

This theory was examined briefly in Chapter 5 by looking at the association of maternal 

smoking during pregnancy with different severities of ID. Smoking was associated with milder 

but not more severe ID, though analyses were unadjusted and a large proportion of the 

diagnoses had an unspecified severity. In all cohorts used in this thesis, individuals with genetic 

disorders related to ID were excluded from analyses, preventing assessment of associations 

between maternal smoking during pregnancy and severe offspring ID resulting from de novo 

mutations. This therefore remains an area of research that could be explored further.  

 

 

8.3 – Strengths and limitations 

Specific strengths and weaknesses of each study design have been described and addressed in 

the chapters in which analyses took place. Here I present the strengths and weaknesses of the 

thesis as a whole.  

A key strength of this thesis was the use of different analysis methods to investigate the research 

question, each of which suffered from biases in different ways, as highlighted in Chapter 2. 

Further I used three different cohorts originating from three different countries each with their 

own confounding structures. The data from these cohorts was obtained in different ways and for 

different purposes. The registry data of Denmark and Sweden was routinely collected data while 
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the ALSPAC data was collected for the purpose of research. This would lead to different 

selection pressures for continuing contribution of data for participants contained within each 

cohort. For example, collection of outcome data would occur provided an individual was in 

contact with health services in the Danish and Swedish cohorts, whereas ascertainment of the 

outcome via response to questionnaires and clinics may be reduced in ALSPAC participants 

among some subgroups such as those who have ID. In spite of all of these differences, 

consistent findings were obtained across the different analysis methods in each of the cohorts. 

This raises the confidence in my conclusion that smoking does not causally influence offspring 

risk of intellectual disability.  

Another key strength of this thesis is that biases were not just identified but were investigated in 

detail using simulation studies. Work from this thesis has contributed to the scientific literature 

regarding the nature of bias surrounding assortative mating and its influence on the results of the 

negative control design of a prenatal exposure (Chapter 3) and on the influence of the 

proportion of missing data on the bias of complete cases analyses and improperly specified 

multiple imputation models (Chapter 4). These studies provided the opportunity to explore the 

biases first hand and use the results to guide analysis strategies in later empirical work 

(implemented in Chapter 7). Questions were left unanswered in these simulation studies, for 

example how might assortative mating influence bias from non-shared confounding in the 

negative control design. Despite not having evidence on the potential consequences of this, the 

work made me aware of the issue and was used to inform methods used to account for it based 

on the knowledge already developed. Regarding this specific example, I chose to control for 

both maternal and paternal confounders in the negative control design.  

The thesis has been a learning process, and as such not all analyses have been conducted 

perfectly due to developing knowledge combined with time pressures. For example in Chapter 2 

I highlighted that effect estimates of within-between models of sibling studies are biased when 

non-shared confounders are not accounted for [180]. While it is not possible to account for 

unmeasured non-shared confounding, measured non-shared confounders could have been 

adjusted for in models if only two siblings had been included per family. A trade-off existed 

between using the largest sample size possible and obtaining an estimate as close to the true 

value of the within-family effect (i.e. an unbiased estimate). In Danish and Swedish analyses I 

opted for the largest sample size possible although lower sample sizes may have been sufficient. 

Using data from overseas cohorts came with time limitations, particularly with the 

implementation of the General Data Protection Regulation part way through writing 

(implemented May 2018) which limited access to personal data across the European Union and 

European Economic Area [323]. My understanding of the importance of non-shared 

confounding did not develop until after I had completed analyses and was no longer able to 
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access the Danish and Swedish datasets. Given the opportunity, I would consider revising the 

analyses to use only two siblings, thereby prioritising reduction of bias over sample size. 

Selecting which measured non-shared confounders to adjust for would require further thought 

as many of the potential candidates, such as parental income, education and psychiatric history 

are likely to remain constant due to the often relatively short time between pregnancies. It is 

also important to note that further considerations would have to be made regarding which 

siblings to select so as to not introduce new bias from patterns of selection. It is likely that as 

my understanding of epidemiology and bias continues to develop, I will look back at the work 

contained in this thesis and conclude that many of the decisions made could be improved.  

Timing was also an issue in the use of linked data in the UK based ALSPAC cohort. The 

process to obtain the linked health records was long and data were not accessible until very late 

into the project. Even when linked data were accessed, individuals who were more likely to 

have ID (those unable to provide explicit consent) did not have health records data available. 

This meant that the selection biases that the approach of creating a multiply sourced variable 

aimed to address, still afflicted the study. When creating the multi-sourced variable using the 

available data it seemed that the measure would not be valid on the basis that the selected 

sources were identifying ID in individuals with IQ higher than the cut off of 70 used in 

diagnostic measures, though here it may have been better to focus on indicators of functional 

ability that underly the definition of ID. There was insufficient time remaining after health 

records access to fully explore developing this variable. A pragmatic decision had to be taken 

for the form of the outcome variable so that the overarching research question could be 

investigated. This led to the multiple imputation approach using some of the sources of 

information for ID as auxiliary variables to inform about reasons for missing data and reduce 

bias. With greater time the outcome variable for the ALSPAC study could be developed further 

to improve the validity of results in the chapter. My intention is to carry this forward in the next 

stages of my research career, though when the necessary data will be available is unclear.  

Survival of the fetus through pregnancy and to an age where ID can be diagnosed is a potential 

source of bias that was not addressed by any of the methods implemented in this thesis. This 

issue is referred to as “immortal time bias” by some [324] and as “survival bias” by others [325, 

326]. In analyses, sometimes explicitly and sometimes by default, I have selected those that 

have survived to an age where they can be assessed for ID, thereby conditioning on survival. As 

smoking has been suggested to be a risk factor for spontaneous abortion [327, 328] this leads to 

the potential for collider bias if the outcome is also associated with survival via an indirect 

pathway, for example by a common cause of survival and ID such as genetic variants or 

socioeconomics [329]. It has been suggested that controlling for such common causes of 

fetal/child survival and the outcome of interest can reduce such survival bias [325]. Some of 
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these may have been accounted for by controlling for measured confounders or by using sibling 

comparisons. However, not all of these common causes will have been measured and exclusion 

of siblings who did not survive to term from the calculation of family-averaged exposure may 

have limited control for shared confounders. The consequences of fetal/child survival is 

beginning to be discussed in the literature but further work needs to be undertaken to consider 

the consequences to estimates obtained from causal inference methods such as the sibling 

design, negative control design and Mendelian randomisation.  

 

 

8.4 – Future research  

The overarching evidence produced from the studies presented in this thesis, combined with that 

of the wider literature suggests that associations between smoking during pregnancy and 

offspring intellectual disability do not reflect causal effects. They instead reflect residual 

confounding not accounted for by analysis methods. Determining the factors that drive this 

residual confounding would inform further research as to what additional variables need to be 

adjusted for in analyses and may also further our understanding of the aetiology of ID.  

Determining the extent to which this residual confounding is environmental or genetic in nature, 

or the result of important interactions between the two, may be a useful starting point. Sibling 

studies are not able to provide evidence of this nature, however quasi-experimental methods that 

exploit family structure to vary the degree to which individuals are genetically similar to one 

another could be used [330]. For example the association of smoking in pregnancy and ID can 

be compared between full (50% genetics shared on average) and half siblings (25% shared) and 

between cousins whose mothers are full siblings (12.5% genetics shared between the cousins; 

maternal full cousins) or half siblings (6.25% shared; maternal half cousins). If the association 

decreases in strength as the genetic similarity between family members increases then this 

implicates a role of genetics in driving the confounding. Such a design could feasibly 

implemented in the Danish and Swedish registries. D’Onofrio and colleagues noted that such a 

finding would not prove a role of genetics, due to the increasingly different environments 

between family relations with increasingly different genetics, though would provide evidence in 

favour of this conclusion [65]. In contrast, evidence for environmental causes of the 

confounding would be provided by consistent association strength between analyses of 

decreasingly genetically related individuals. Such analyses would be a natural follow-up to the 

work presented in Chapters 5 and 6. 
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It should be noted that different strategies were employed for defining families in the Danish 

(Chapter 5) and Swedish (Chapter 6) sibling comparison studies. For the Danish cohort only full 

siblings were included in families, while for the Swedish cohort both full siblings and half 

siblings who shared the same mother were included in a family unit. The within-family effect 

will reflect slightly greater control for shared genetics in the Danish than Swedish study as a 

result of the different definitions of family structure. Similar estimates for the within-family 

effect were found between the two chapters which may suggest that there is little evidence of 

genetic confounding. The definitions of family structure did overlap, however, meaning that any 

differences between the two would be expected to be very small, and larger genetic differences 

such as restricting to half siblings, maternal full cousins and maternal half cousins in separate 

analyses would be required to investigate the genetic nature of residual confounding thoroughly. 

Mendelian randomisation (MR) techniques are under utilised in investigations of prenatal 

exposures and offspring cognitive and neurodevelopmental outcomes, largely due to the absence 

of large scale intergenerational genome wide association studies (GWAS) for these outcomes. 

This absence meant that in Chapter 7 SNP-outcome associations had to be modelled using 

ALSPAC data. The resulting summary statistics had low power which, in turn, severely reduced 

the power of MR analyses so that null results could not meaningfully be distinguished between 

a lack of evidence for a causal effect or an inability to detect an effect. Adequately powered MR 

analyses that could provide useful evidence of the causal nature of prenatal exposure and 

offspring cognitive outcomes would likely require creation of a consortia across cohorts that had 

comparable measures of the outcome and also had available data on maternal genetics. Such 

consortia have been created for other outcomes such as birthweight [331] and could therefore 

feasibly be extended to cognitive outcomes. Issues are likely to arise where the outcome has 

been measured using different methods and at different time points across component cohorts of 

the consortium.  

An important step for further research is to create more consistent definitions of ID across 

studies. The regional differences in terminology (see Section 1.1.1 for a description) and 

different criteria used between studies may lead to heterogeneity of the concept of ID that could 

slow progress of research into its aetiology. Many studies, including the definition used in 

Chapter 7 of this thesis, have not adequately captured information on functional ability. This 

information is important in order to accurately reflect that not all those with an IQ less than 70 

are severely negatively impacted. Investigation of the aetiology of functional impairments may 

in fact be more important than investigations into IQ given that these impairments are more 

likely to negatively impact the individuals life experience and provide societal cost as a result of 

support needs.  
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8.5 – Conclusion 

In conclusion, maternal smoking in pregnancy is associated with increased odds of ID but, using 

triangulation across multiple analytical methods, this association does not appear to be causal in 

nature. Effect estimates of the association produced using traditional methods were likely biased 

by residual confounding. The exact nature of the confounding is unknown but further 

investigation may reveal important determinants of ID and guide decisions on what information 

should be recorded when designing future cohorts.  

While the evidence produced does not suggest that smoking during pregnancy causes ID, this 

finding does not suggest that smoking in pregnancy is safe. Smoking in pregnancy should still 

be avoided as evidence from positive control analysis found associations with fetal growth 

restriction that did appear to be causal. Fetal growth restriction reflects global changes as a 

consequence of exposure that may in turn point to more specific negative effects for the child. 

Continued effort needs to be made to reduce the prevalence of smoking during pregnancy which 

remains high in some countries.  
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Appendices 
 

 

Appendix A – Supplementary material to Chapter 3 

A.1 - Calculation of the pair sexual isolation index 

The pair sexual isolation index (IPSI) [210, 211] is calculated as  

𝐼𝑃𝑆𝐼 =
(𝑃𝑆𝐼𝑎𝑎 − 𝑃𝑆𝐼𝑎𝑏 − 𝑃𝑆𝐼𝑏𝑎 + 𝑃𝑆𝐼𝑏𝑏)

(𝑃𝑆𝐼𝑎𝑎 + 𝑃𝑆𝐼𝑎𝑏 + 𝑃𝑆𝐼𝑏𝑎 + 𝑃𝑆𝐼𝑏𝑏)
, 

where  

𝑃𝑆𝐼𝑎𝑎 =
(𝑎𝑎)𝑡

(𝑎𝑎+𝑎𝑏)(𝑎𝑎+𝑏𝑎)
, 

𝑃𝑆𝐼𝑎𝑏 =
(𝑎𝑏)𝑡

(𝑎𝑎+𝑎𝑏)(𝑎𝑏+𝑏𝑏)
, 

𝑃𝑆𝐼𝑏𝑎 =
(𝑏𝑎)𝑡

(𝑎𝑎+𝑏𝑎)(𝑏𝑎+𝑏𝑏)
, 

𝑃𝑆𝐼𝑏𝑏 =
(𝑏𝑏)𝑡

(𝑏𝑎+𝑏𝑏)(𝑎𝑏+𝑏𝑏)
, 

and the frequency values 𝑎𝑎, 𝑎𝑏, 𝑏𝑎 and 𝑏𝑏 are taken from the cells in Table A.1-1. The 

frequencies and derivations used to calculate the IPSI for each level of assortative mating in the 

simulation study are presented in Table A.1-2.  
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Table A.1-1: Frequency values used to calculate the IPSI statistic. 

  Maternal value  

  Non-smoker Smoker Total 

Paternal value 
Non-smoker aa ab aa + ab 

Smoker ba bb ba + bb 

 Total aa + ba ab + bb t 

 

 

Table A.1-2: Values of each stage of the IPSI statistic calculation for each level of assortative mating.  

aa ab ba bb t aa + ab ba + bb aa + ba ab + bb PSIaa PSIab PSIba PSIbb IPSI numerator IPSI denominator IPSI 

38 12 38 12 100 50 50 76 24 1 1 1 1 0 4 0 

45.6 9.6 30.4 14.4 100 55.2 44.8 76 24 1.086957 0.724638 0.892857 1.339286 0.808747412 4.04373706 0.2 

53.2 7.2 22.8 16.8 100 60.4 39.6 76 24 1.15894 0.496689 0.757576 1.767677 1.672352666 4.180881664 0.4 

60.8 4.8 15.2 19.2 100 65.6 34.4 76 24 1.219512 0.304878 0.581395 2.325581 2.658820193 4.431366988 0.6 

68.4 2.4 7.6 21.6 100 70.8 29.2 76 24 1.271186 0.141243 0.342466 3.082192 3.86966953 4.837086913 0.8 
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A.2 – Repetition of the simulation study using a binary outcome 

A.2.1 – Methods 

Exposure information was derived in the same way as for the continuous outcome. A binary 

outcome, Y, was then created with prevalence close to 10%. The outcome was designed to have 

an association with the maternal smoking value, but not the paternal smoking value. Designed 

maternal smoking odds ratio (DMOR) values between 0.5 and 3 were tested in 0.25 increments.  

For each observation, 𝑖,    

α𝑖 =  
𝑒𝑥𝑝(β0 + β𝑚 𝑡𝑟𝑢𝑒𝑀𝑖)

𝑒𝑥𝑝(β0 + β𝑚 𝑡𝑟𝑢𝑒𝑀𝑖) + 1
, 

was derived such that 𝛽𝑚 𝑡𝑟𝑢𝑒 was equal to the log of the DMOR value and β0 was a constant 

coefficient equal to -log(0.9/0.1). A random uniform variable, 𝜏,  between 0 and 1 was drawn 

for each observation. If 𝜏𝑖 < 𝛼𝑖 then the observation was defined as having the outcome (i.e. 

𝑌𝑖 = 1) otherwise the observation did not have the outcome (i.e. 𝑌𝑖 = 0).  

The same models were produced as for the continuous outcome but using logistic regression 

instead. Sample sizes of 1 000, and 10 000 were used as samples of 100 led to model 

convergence issues. The same performance statistics as for the continuous outcome were used 

with one exception. For the linear models the mean difference in maternal and paternal 

coefficients over simulations was taken. Instead, for the logistic models the ratio of the maternal 

OR to the paternal OR for exposure to smoking in pregnancy is presented. This statistic was 

produced by taking the mean of the difference in maternal and paternal coefficients over 

simulations on the log scale, as these were normally distributed, and then exponentiated to 

provide the ratio of ORs. As the paternal OR is equal to 1 the true value of the ratio of ORs will 

always be equal to the DMOR. 95% confidence intervals were also created using bootstrapping 

of the difference on the log scale. The bounds of the confidence interval were averaged over 

simulations and then exponentiated.   

 

A.2.2 – Results  

The bias of coefficient estimates against the quantity of assortative mating for logistic 

regression models are displayed in Figure A.2-1. As for the linear models the maternal 

coefficient is unbiased in both the maternal only model and the mutually adjusted model for all 

quantities of assortative mating (see part (i) of the figure). This is true for DMOR values that 

had positive and negative associations with the outcome. There is no bias for the paternal 

coefficient in the mutually adjusted model but there is increasing absolute bias for the paternal 

only model with increasing assortative mating (see part (ii) of the figure).  
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Figure A.2-2 shows the mean ratio of the ORs against the quantity of assortative mating for 

different sample and effect sizes. The results presented here closely resemble those of the linear 

models. The ratio of ORs for the maternal only and paternal only models tend towards the null 

(i.e. 1, indicating no difference between the two ORs) as assortative mating increases. The point 

estimate of the ratio of ORs obtained from the mutually adjusted model is not influenced by 

assortative mating, however, the confidence interval for the difference increases as a result the 

maternal and paternal exposure variables reflecting more similar information. This change to the 

width of the confidence interval is more noticeable at smaller sample sizes than larger sample 

sizes.  

 



 

193 

 

 

Figure A.2-1: Plots of bias against percentage assortative behaviour for binary outcome data for a) the maternal coefficient and b) the paternal coefficient. Error bars are 95% Monte Carlo confidence 

intervals across simulations. Sample size for data shown is 10,000. Note the large difference in Y-axis scale between the two plots.  
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Figure A.2-2: Plot of the mean ratio of ORs across simulations of maternal and paternal β coefficients against the percentage of assortative mating for binary outcome data. 95% confidence bands are 

the mean lower and upper CI for the difference, produced using bootstrapping. Presented here is the difference between the coefficients of the maternal and paternal only models (red band) and the 

mutually adjusted model (blue band) for sample sizes of 1000 and 10 000. 
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A.3 – Supplementary figure 

 

Figure A.3-1: Plot of the mean difference across simulations of maternal and paternal β coefficients against the percentage of assortative mating for data in which maternal and paternal smoking have 

independent effects. 95% confidence bands are the mean lower and upper CI for the difference, produced using bootstrapping. Presented here is the difference between the coefficients of the maternal 

and paternal only models (red band) and the mutually adjusted model (blue band) for sample sizes of 100, 1 000 and 10 000.
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A.4 – Simulation study of a negative control design with assortative mating 

and error in the negative exposure 

A.4.1 - Methods 

Measurement error in the exposure or negative exposure has previously been shown to lead to 

biased effect estimates [164]. I investigated error in the negative exposure in the context of 

assortative mating. Frequently in a cohort study maternal report of paternal behaviours are used 

as a proxy for paternal self-report. Where this occurs, there will likely be an increase in the error 

for the negative exposure but not the exposure.  

I repeated part 1 of the simulation study for continuous data only with the addition of error to 

the negative exposure/paternal smoking value. No error was added to the exposure/maternal 

smoking value. Again, I did not repeat the simulation study for the binary exposure due to the 

potential for non-collapsibility to influence the findings. Three types of error were considered: 

1) Random error in the paternal smoking value, 2) over-reporting of assortative mating (where 

mothers report that their partner has the same exposure behaviour more often than is true) and 3) 

over-reporting of assortative mating among maternal smokers only. The quantities of error 

considered were 5%, 10% and 20%.  

 

A.4.2 – Results 

Figure E1 shows the bias in the paternal coefficient against percentage assortative mating for 

each error type and error quantity. None of the error types introduces influenced the mutually 

adjusted models. Randomly adding error to the paternal exposure (error type 1) reduced bias in 

the paternal only model at larger quantities of assortative mating compared to data without 

error. The more error the more bias was reduced. This is likely due to the error reducing the 

correlation between maternal and paternal smoking value.  

Models with error type 2 or 3 showed bias that was greater than the models without error. Bias 

was observed even when there was no assortative mating for models with these types of error. 

Bias became closer in size to the models without error as the percentage of assortative mating 

increased.  

 

 

A.4.3 – Discussion  

The results showed that error in the negative exposure value, such as when maternal report of a 

paternal behaviour, can lead to bias in the coefficient estimate for the NCA by making the 
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negative exposure appear to be more or less like the exposure. Mutual adjustment appears to 

reduce bias occurring in such a way. 

By considering error only in the negative exposure I have assumed that maternal report of 

maternal behaviour is measured with less error than maternal report of paternal behaviour. Prior 

work on the error rate of maternal report of maternal smoking behaviour has suggested that non-

smokers are unlikely to falsely report active smoking [332] while 5% of those reporting that 

they are non-smokers have been suggested to be current smokers [333, 334]. In contrast, 

assessment of the agreement between self and maternal reports of paternal smoking in ALSPAC 

has shown a 5% discrepancy [301]. This does not suggest that the error rate of maternal self-

report and maternal report of paternal smoking is equivalent as the 5% error rate for maternal 

self-report is among non-smokers only. It is also unclear whether those who self-report with 

error are the same individuals who would report with error for their partners. 

Assortment of behaviours may influence the error in the negative exposure. Partners with 

similar interest in scientific research may be more likely to both engage with cohort studies. 

Dissimilar interest may lead to one parent engaging with a study while the other does not. 

Similarity of interest in scientific research may in turn be associated with similarity in 

behaviours which would be used as negative exposures. As a result, exposure discordant 

couples may be more likely to rely on maternal report of paternal behaviours. The above 

patterns of behaviour are speculative and further research is required to identify what patterns of 

error truly occur for maternal and paternal reports of smoking behaviour and what the 

determinants of these are. I have, however, provided some insight as to how error could 

influence conclusions from the negative control design in the presence of assortative mating. 
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Figure A.4-1: Plot of the bias in the paternal β value against the quantity of assortative mating under three different error structures. Error type 1 is random error to the paternal smoking value, error 

type 2 is over-reporting of assortative mating (where mothers report that their partner has the same exposure behaviour more often than is true) and error type 3 is over-reporting of assortative mating 

among maternal smokers only.
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Appendix B – Supplementary material to Chapter 4 

B.1 – The fraction of missing information (FMI) 

For an estimate β̂, which could be a regression coefficient that has been averaged across 

m imputed datasets (i.e. �̂� = (1/𝑚) ∑ �̂�𝑘
𝒎
𝒌=𝟏 ) the FMI is given by 

𝐹𝑀𝐼 =
𝑩

(𝑾 + 𝑩)
. 

Here 𝑾 is the within imputation variance of β̂ and 𝑩 is the between imputation variance 

of β̂. These values are derived as follows. For �̂�𝑘, the squared standard error of �̂� in 

the 𝑘𝑡ℎ imputed dataset, the within imputation variance across 𝑚 imputations is given 

by 

𝑾 = (1/𝑚) ∑ �̂�𝑘

𝑚

𝑘=1
. 

In other words, 𝑾 is calculated as the average squared standard error of β̂. The between 

imputation variance is given by 

𝑩 = (
1

𝑚 − 1
) ∑ (

𝑚

𝑘=1
�̂�𝑘 −  �̂�)2. 

This is the square of the standard deviation of the estimated regression coefficient in 

each imputed dataset relative to the mean value across all imputed datasets.  

The total variance, 𝑣𝑎𝑟(β̂) is equal to 𝑾 + (1 +
1

𝑚
) 𝑩. Hence for large numbers of 

imputations 𝑚, the FMI is the fraction of the total variance that is attributable to 

between imputation variance. 

Being a fraction of the total variance, the FMI can take values between 0 and 1. Low 

values (i.e. close to 0) indicate that much of the “missing” information is in fact 

captured by other, more completely observed, variables. In the absence of any missing 

data the FMI is 0 because the between imputation variance, 𝑩, would be 0 since all 

imputation datasets would be identical. Of course, if we have no missing data we would 

not use multiple imputation and therefore would not estimate the FMI.  
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B.2 – Justification for the number of imputations used 

Figure S1 displays the FMI of the �̂�1 coefficient for 20%, 40%, 60% and 80% missing data for 

increasing numbers of imputations. 47 simulations, all displayed, were performed. An 

imputation model including Y, X, Z1 and Z3 was used along with the same analysis model used 

(𝑌 regressed on 𝑋) as the main investigation. The datasets used were also the same as those used 

in the main investigation. Multiple imputation was performed using the Stata package mi 

impute. As Stata allows a maximum of 1000 imputations only the FMI had to be calculated 

manually instead of being obtained directly from Stata’s mi estimate. The analysis model was 

performed on each imputed dataset using Stata’s regress command. Following this the �̂�1 

coefficient for each imputed dataset was appended together and the FMI based on the first 𝑚 

imputations was calculated. FMI was calculated at every 5 imputations from 5-50 imputations, 

every 25 imputations from 25 to 500 imputations and every 100 imputations from 500 to 10000 

imputations.  

The FMI is highly variable at low numbers of imputations, only becoming stable for all 

proportions of missing data when 250 imputations are used. At 1000 imputations we therefore 

have greater confidence that the FMI estimates across simulations have become stable. The 

figure also seems to show that the FMI is more variable with greater proportions of missing data 

at lower numbers of imputations.  

 

 

Figure S1. Line graph of FMI for regression coefficient of 𝒀 on 𝑿 against the number of imputations. 
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B.3 – Calculation of performance statistics for the simulation study 

i. Bias  

Bias is calculated as the difference between the estimated and true values of 𝛽𝑗,  

𝐵𝑖𝑎𝑠 = �̂�𝑗 − 𝛽𝑗, 

where the true values are given by 

𝛽1 =  
𝐶𝑜𝑣(𝑌, 𝑋)

𝑉𝑎𝑟(𝑋)
 , 

𝛽0 = �̅�−𝛽1�̅�. 

Here �̅� and �̅� are the arithmetic means of the variables Y (outcome) and X (exposure) 

respectively. 

 

ii. Empirical standard error  

For simulations 𝑞 = (1, … , 𝑟), β̂𝑞 equal to the estimate averaged across imputations in 

simulation 𝑞, and β̅ = (1/𝑟) ∑ β̂𝑞
𝑟
𝑞=1 , the empirical standard deviation is given by 

emp.  s. e. = √(
1

𝑟 − 1
) ∑(β̂𝑞 −  β̅)

2
𝑟

𝑞

. 

Note the difference between empirical standard deviation and between imputation variance is 

that the former is calculated across simulations while the latter is calculated across imputations 

within a single simulation.  

 

iii. Average estimated standard errors 

For 𝑠𝑞, the standard error of �̂� in the 𝑞𝑡ℎ  simulation, the average estimated standard error is 

given by 

𝑚𝑜𝑑𝑒𝑙 𝑠. 𝑒. = √𝑠2̅̅ ̅ = √
1

𝑟
∑ 𝑠𝑞

2
𝑟

𝑞=1
 

We do not present the average standard errors. These are used to calculate the relative 

percentage error.  
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iv. Relative percentage error 

The relative percentage error is the proportional error of the average estimated standard 

errors √𝑠2̅̅ ̅, relative to the empirical standard deviation of �̂�𝑗. 

Relative % Error =  (
𝑚𝑜𝑑𝑒𝑙 𝑠. 𝑒.

𝑒𝑚𝑝. 𝑠. 𝑒.
− 1 ) × 100 

The empirical standard error and the average estimated standard error should be approximately 

equal. The relative percentage error is therefore a measure of bias in 𝑠𝑗 with departures from 0 

indicating bias. Relative percentage error was calculated using the simsum command in Stata.  

v. Coverage probability of 95% CI  

Letting 𝐼(. ) be the indicator function, the coverage of a 95% confidence interval is given by 

 𝐶 =
1

𝑟
∑ 𝐼( |�̂�𝑞 − 𝛽 | <  𝑧𝛼/2𝑠𝑞 )

𝑟

𝑞=1
, 

where 𝑧𝛼/2 = 1.96 is the critical value of the normal distribution. The coverage probability 

indicates the percentage of simulations in which the true value of the coefficient is found within 

the span of the estimated 95% confidence interval. A value greater than 95% indicates over-

coverage while a value less than 95% indicates under-coverage.   
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B.4 – Empirical SE of the MI exposure coefficient against FMI - Figure 1 separated by panels of percentage missing data 

 

 

Figure B.4-1: Empirical SE of the MI exposure coefficient plotted against FMI for simulated MCAR data. Panels separate the data by percentage of missing data. Error bars are 95% confidence 

intervals based on Monte Carlo standard errors across simulations. FMI = fraction of missing information; SE = standard error. 

 



 

204 

 

B.5 – Performance statistics for the exposure coefficient in the simulation study 

Table B.5-1: Performance Statistics for the MCAR Results of the Exposure Coefficient in the Simulation Study.  

Statistic % missing 

data 

CCA Model 1 

No aux info, R2=0.36 

Model 2 

R2=0.40 

Model 3 

R2=0.52 

Model 4 

R2=0.76 

Model 5 

R2=0.92 

FMI a 1   0.01 0.01, 0.01 0.01 0.01, 0.01 0.01 0.00, 0.01 0.00 0.00, 0.00 0.00 0.00, 0.00 

 5   0.05 0.04, 0.06 0.05 0.04, 0.05 0.04 0.03, 0.04 0.02 0.02, 0.02 0.01 0.01, 0.01 

 10   0.10 0.09, 0.11 0.09 0.08, 0.10 0.08 0.07, 0.08 0.04 0.04, 0.05 0.01 0.01, 0.02 

 20   0.20 0.19, 0.21 0.19 0.18, 0.20 0.16 0.15, 0.17 0.09 0.08, 0.09 0.03 0.03, 0.03 

 40   0.41 0.39, 0.42 0.38 0.37, 0.40 0.33 0.32, 0.35 0.20 0.19, 0.21 0.08 0.07, 0.08 

 60   0.60 0.59, 0.62 0.60 0.58, 0.61 0.53 0.52, 0.55 0.37 0.35, 0.39 0.16 0.15, 0.17 

 80   0.80 0.79, 0.81 0.79 0.78, 0.81 0.75 0.73, 0.76 0.63 0.60, 0.65 0.35 0.33, 0.38 

 90   0.91 0.90, 0.91 0.90 0.89, 0.91 0.88 0.86, 0.89 0.78 0.76, 0.80 0.56 0.53, 0.60 

              

Bias 1 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 

 5 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 

 10 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 

 20 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 

 40 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 

 60 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 

 80 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 -0.01, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 

 90 0.00 0.00, 0.01 0.00 0.00, 0.01 0.00 0.00, 0.01 0.00 0.00, 0.01 0.00 0.00, 0.00 0.00 0.00, 0.00 

              

Empirical 

SE 

1 0.03 0.02, 0.03 0.03 0.02, 0.03 0.03 0.02, 0.03 0.03 0.02, 0.03 0.03 0.02, 0.03 0.03 0.02, 0.03 

5 0.03 0.02, 0.03 0.03 0.02, 0.03 0.03 0.02, 0.03 0.03 0.02, 0.03 0.03 0.02, 0.03 0.03 0.02, 0.03 

 10 0.03 0.03, 0.03 0.03 0.03, 0.03 0.03 0.03, 0.03 0.03 0.03, 0.03 0.03 0.02, 0.03 0.03 0.02, 0.03 

 20 0.03 0.03, 0.03 0.03 0.03, 0.03 0.03 0.03, 0.03 0.03 0.03, 0.03 0.03 0.02, 0.03 0.03 0.02, 0.03 

 40 0.03 0.03, 0.03 0.03 0.03, 0.03 0.03 0.03, 0.03 0.03 0.03, 0.03 0.03 0.03, 0.03 0.03 0.02, 0.03 

 60 0.04 0.04, 0.04 0.04 0.04, 0.04 0.04 0.04, 0.04 0.04 0.04, 0.04 0.03 0.03, 0.03 0.03 0.03, 0.03 

 80 0.06 0.05, 0.06 0.06 0.05, 0.06 0.05 0.05, 0.06 0.05 0.05, 0.05 0.04 0.04, 0.04 0.03 0.03, 0.03 

 90 0.08 0.08, 0.09 0.08 0.08, 0.09 0.08 0.08, 0.09 0.07 0.07, 0.08 0.05 0.05, 0.06 0.04 0.04, 0.04 

              

Relative 

error 

1 -1.34 -5.67, 3.00 -1.36 -5.69, 2.97 -1.19 -5.52, 3.15 -1.26 -5.59, 3.07 -1.10 -5.44, 3.24 -1.24 -5.58, 3.09 

5 -0.53 -4.90, 3.84 -0.52 -4.89, 3.85 -0.49 -4.86, 3.87 -0.10 -4.48, 4.29 -0.08 -4.46, 4.31 -1.14 -5.48, 3.19 

 10 0.96 -3.47, 5.39 0.89 -3.54, 5.32 1.03 -3.41, 5.46 0.30 -4.10, 4.70 0.44 -3.97, 4.85 -0.62 -4.98, 3.74 

 20 0.92 -3.51, 5.35 0.77 -3.65, 5.20 1.47 -2.98, 5.93 1.03 -3.41, 5.47 2.93 -1.58, 7.45 2.47 -2.02, 6.97 

 40 0.63 -3.79, 5.05 1.09 -3.35, 5.53 1.46 -2.99, 5.92 1.04 -3.40, 5.48 3.25 -1.28, 7.78 2.94 -1.58, 7.46 
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Statistic % missing 

data 

CCA Model 1 

No aux info, R2=0.36 

Model 2 

R2=0.40 

Model 3 

R2=0.52 

Model 4 

R2=0.76 

Model 5 

R2=0.92 

 60 2.37 -2.13, 6.87 2.81 -1.71, 7.33 4.80 0.19, 9.40 0.42 -3.99, 4.84 3.28 -1.25, 7.82 3.47 -1.07, 8.02 

 80 1.80 -2.69, 6.29 1.11 -3.35, 5.57 2.56 -1.96, 7.08 -1.52 -5.85, 2.82 3.14 -1.40, 7.68 4.61 0.01, 9.20 

 90 -2.06 -6.40, 2.28 -0.47 -4.88, 3.93 -0.71 -5.11, 3.68 -0.10 -4.52, 4.32 1.21 -3.26, 5.69 0.38 -4.05, 4.80 

              

Coverage 1 94.70 93.31, 96.09 94.60 93.20, 96.00 94.60 93.20, 96.00 94.90 93.54, 96.26 94.70 93.31, 96.09 94.90 93.54, 96.26 

 5 95.20 93.88, 96.52 95.30 93.99, 96.61 95.20 93.88, 96.52 95.40 94.10, 96.70 95.00 93.65, 96.35 94.70 93.31, 96.09 

 10 95.50 94.22, 96.78 95.40 94.10, 96.70 95.50 94.22, 96.78 95.10 93.76, 96.44 95.30 93.99, 96.61 94.90 93.54, 96.26 

 20 94.70 93.31, 96.09 94.80 93.42, 96.18 94.80 93.42, 96.18 94.40 92.97, 95.83 95.50 94.22, 96.78 95.50 94.22, 96.78 

 40 94.90 93.54, 96.26 94.90 93.54, 96.26 94.90 93.54, 96.26 94.40 92.97, 95.83 95.20 93.88, 96.52 95.80 94.56, 97.04 

 60 96.20 95.01, 97.39 96.20 95.01, 97.39 96.30 95.13, 97.47 95.00 93.65, 96.35 95.50 94.22, 96.78 95.30 93.99, 96.61 

 80 95.00 93.65, 96.35 94.70 93.31, 96.09 95.70 94.44, 96.96 93.90 92.42, 95.38 95.50 94.22, 96.78 95.90 94.67, 97.13 

 90 94.90 93.54, 96.26 95.30 93.99, 96.61 94.90 93.54, 96.26 94.30 92.86, 95.74 95.30 93.99, 96.61 95.10 93.76, 96.44 

CCA – Complete case analysis; FMI- Fraction of Missing Information; SE – Standard error; R2 – the squared coefficient of multiple correlation  

a For FMI the estimate was the median across simulations and the interval represents the interquartile range. For all other statistics the mean across simulations was taken and the 95% confidence 

interval was calculated using Monte Carlo standard error. 
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Table B.5-2: Performance Statistics for the MAR Results of the Exposure Coefficient in the Simulation Study.  

Statistic % missing 

data 

CCA Model 1 

No aux info, R2=0.36 

Model 2 

R2=0.40 

Model 3 

R2=0.52 

Model 4 

R2=0.76 

Model 5 

R2=0.92 

FMI a 1   0.02 0.01, 0.02 0.02 0.01, 0.02 0.01 0.01, 0.02 0.01 0.00, 0.01 0.00 0.00, 0.00 

 5   0.08 0.07, 0.09 0.08 0.07, 0.09 0.06 0.05, 0.07 0.03 0.03, 0.04 0.01 0.01, 0.01 

 10   0.15 0.14, 0.17 0.15 0.13, 0.16 0.12 0.11, 0.14 0.06 0.06, 0.07 0.02 0.02, 0.03 

 20   0.27 0.25, 0.29 0.26 0.24, 0.28 0.22 0.21, 0.24 0.13 0.11, 0.14 0.05 0.04, 0.05 

 40   0.48 0.45, 0.49 0.46 0.44, 0.48 0.42 0.40, 0.44 0.26 0.25, 0.28 0.11 0.10, 0.12 

 60   0.66 0.64, 0.68 0.64 0.62, 0.66 0.60 0.58, 0.62 0.43 0.41, 0.45 0.20 0.19, 0.22 

 80   0.83 0.81, 0.84 0.82 0.80, 0.84 0.79 0.77, 0.81 0.65 0.63, 0.68 0.39 0.36, 0.43 

 90   0.91 0.90, 0.92 0.91 0.90, 0.92 0.89 0.87, 0.90 0.80 0.78, 0.82 0.59 0.55, 0.63 

              

Bias 1 0.00 -0.01, 0.00 0.00 -0.01, 0.00 0.00 -0.01, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 

 5 -0.01 -0.02, -0.01 -0.01 -0.02, -0.01 -0.01 -0.02, -0.01 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 

 10 -0.02 -0.03, -0.02 -0.02 -0.03, -0.02 -0.02 -0.03, -0.02 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 

 20 -0.04 -0.04, -0.04 -0.04 -0.04, -0.04 -0.04 -0.04, -0.04 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 

 40 -0.06 -0.06, -0.06 -0.06 -0.06, -0.06 -0.06 -0.06, -0.05 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 

 60 -0.06 -0.07, -0.06 -0.06 -0.07, -0.06 -0.06 -0.07, -0.06 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 

 80 -0.06 -0.07, -0.06 -0.06 -0.07, -0.06 -0.06 -0.07, -0.06 0.00 -0.01, 0.00 0.00 0.00, 0.00 0.00 0.00, 0.00 

 90 -0.05 -0.06, -0.05 -0.05 -0.06, -0.05 -0.05 -0.06, -0.05 0.00 0.00, 0.00 0.00 0.00, 0.01 0.00 0.00, 0.00 

              

Empirical 

SE 

1 0.02 0.02, 0.03 0.02 0.02, 0.03 0.02 0.02, 0.03 0.02 0.02, 0.03 0.02 0.02, 0.03 0.02 0.02, 0.03 

5 0.03 0.02, 0.03 0.03 0.02, 0.03 0.03 0.02, 0.03 0.03 0.02, 0.03 0.03 0.02, 0.03 0.03 0.02, 0.03 

 10 0.03 0.03, 0.03 0.03 0.03, 0.03 0.03 0.03, 0.03 0.03 0.03, 0.03 0.03 0.02, 0.03 0.03 0.02, 0.03 

 20 0.03 0.03, 0.03 0.03 0.03, 0.03 0.03 0.03, 0.03 0.03 0.03, 0.03 0.03 0.02, 0.03 0.03 0.02, 0.03 

 40 0.03 0.03, 0.04 0.03 0.03, 0.04 0.03 0.03, 0.04 0.03 0.03, 0.03 0.03 0.03, 0.03 0.03 0.03, 0.03 

 60 0.04 0.04, 0.04 0.04 0.04, 0.04 0.04 0.04, 0.04 0.04 0.04, 0.04 0.03 0.03, 0.04 0.03 0.03, 0.03 

 80 0.06 0.06, 0.06 0.06 0.06, 0.06 0.06 0.06, 0.06 0.05 0.05, 0.06 0.04 0.04, 0.04 0.03 0.03, 0.03 

 90 0.08 0.08, 0.09 0.08 0.08, 0.09 0.08 0.08, 0.08 0.08 0.07, 0.08 0.05 0.05, 0.06 0.04 0.04, 0.04 

              

Relative 

error 

1 2.45 -2.04, 6.95 2.42 -2.08, 6.91 2.65 -1.86, 7.15 2.45 -2.05, 6.95 2.39 -2.10, 6.89 2.33 -2.16, 6.82 

5 1.42 -3.03, 5.88 1.39 -3.06, 5.84 1.18 -3.26, 5.62 1.83 -2.64, 6.30 1.96 -2.52, 6.43 1.89 -2.59, 6.36 

 10 1.20 -3.24, 5.65 1.22 -3.22, 5.67 1.64 -2.82, 6.11 1.43 -3.02, 5.89 1.77 -2.70, 6.23 1.79 -2.67, 6.26 

 20 3.94 -0.63, 8.50 4.00 -0.57, 8.56 4.30 -0.28, 8.88 5.63 0.99, 10.27 4.47 -0.12, 9.05 2.64 -1.87, 7.14 

 40 -1.16 -5.51, 3.18 -1.17 -5.51, 3.17 -1.38 -5.71, 2.95 0.51 -3.90, 4.93 -1.05 -5.39, 3.29 0.15 -4.25, 4.55 

 60 2.40 -2.10, 6.91 2.65 -1.86, 7.17 2.22 -2.27, 6.72 3.91 -0.66, 8.48 -0.32 -4.70, 4.05 1.01 -3.43, 5.44 

 80 2.11 -2.40, 6.61 2.46 -2.06, 6.98 1.73 -2.76, 6.22 4.91 0.28, 9.53 2.98 -1.55, 7.52 0.94 -3.50, 5.38 

 90 1.38 -3.13, 5.88 2.73 -1.83, 7.30 2.03 -2.50, 6.56 2.07 -2.47, 6.60 6.09 1.39, 10.79 4.30 -0.30, 8.91 
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Statistic % missing 

data 

CCA Model 1 

No aux info, R2=0.36 

Model 2 

R2=0.40 

Model 3 

R2=0.52 

Model 4 

R2=0.76 

Model 5 

R2=0.92 

              

Coverage 1 95.10 93.76, 96.44 95.10 93.76, 96.44 95.00 93.65, 96.35 95.00 93.65, 96.35 95.10 93.76, 96.44 95.30 93.99, 96.61 

 5 91.40 89.66, 93.14 91.20 89.44, 92.96 91.50 89.77, 93.23 95.00 93.65, 96.35 95.00 93.65, 96.35 95.60 94.33, 96.87 

 10 85.80 83.64, 87.96 86.00 83.85, 88.15 86.00 83.85, 88.15 95.70 94.44, 96.96 95.10 93.76, 96.44 95.90 94.67, 97.13 

 20 73.30 70.56, 76.04 72.90 70.15, 75.65 72.60 69.84, 75.36 97.00 95.94, 98.06 96.10 94.90, 97.30 96.00 94.79, 97.21 

 40 61.80 58.79, 64.81 61.40 58.38, 64.42 60.90 57.88, 63.92 94.30 92.86, 95.74 94.30 92.86, 95.74 95.20 93.88, 96.52 

 60 70.40 67.57, 73.23 71.00 68.19, 73.81 67.70 64.80, 70.60 96.00 94.79, 97.21 94.30 92.86, 95.74 95.40 94.10, 96.70 

 80 82.10 79.72, 84.48 82.20 79.83, 84.57 82.50 80.14, 84.86 96.60 95.48, 97.72 94.80 93.42, 96.18 94.90 93.54, 96.26 

 90 90.20 88.36, 92.04 90.40 88.57, 92.23 89.40 87.49, 91.31 96.00 94.79, 97.21 96.40 95.25, 97.55 96.10 94.90, 97.30 

CCA – Complete case analysis; FMI- Fraction of Missing Information; SE – Standard error; R2 – the squared coefficient of multiple correlation  

a For FMI the estimate was the median across simulations and the interval represents the interquartile range. For all other statistics the mean across simulations was taken and the 95% confidence 

interval was calculated using Monte Carlo standard error. 
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B.6 – FMI and efficiency gains were not sensitive to whether the auxiliary 

variable was included in the missingness mechanism 

 

In imputation model 3 the auxiliary variable 𝑍1 can be replaced by 𝑍2 and still provide the same 

𝑅𝑌
2 value. However, the variable 𝑍1 is associated with the missing data mechanism while 𝑍2 is 

not. These two models can be used to check whether parameters are sensitive to the auxiliary 

variable being associated with the missing data mechanism. Table S6 shows that FMI and 

empirical SE do not differ between the two models. However, because Z1 is associated with 

missingness, model 3 (using 𝑍2 in place of 𝑍1) is biased where the original model 3 was not.  

 

 

Table B.6-1. Performance Statistics for the MAR Results of the Exposure Coefficient of Model 3 replacing variable Z1 

with Z2.   

Statistic % missing 

data 

CCA Model 3 

R2=0.52 

Model 3 using Z2  

R2=0.52 

FMI a 1   0.01 0.01, 0.02 0.01 0.01, 0.02 

 5   0.06 0.05, 0.07 0.06 0.05, 0.07 

 10   0.12 0.11, 0.14 0.12 0.11, 0.13 

 20   0.22 0.21, 0.24 0.22 0.20, 0.23 

 40   0.42 0.40, 0.44 0.40 0.38, 0.42 

 60   0.60 0.58, 0.62 0.59 0.57, 0.61 

 80   0.79 0.77, 0.81 0.78 0.76, 0.80 

 90   0.89 0.87, 0.90 0.89 0.87, 0.90 

        

Bias 1 0.00 -0.01,  0.00 0.00 0.00, 0.00 0.00 -0.01,  0.00 

 5 -0.01 -0.02, -0.01 0.00 0.00, 0.00 -0.01 -0.02, -0.01 

 10 -0.02 -0.03, -0.02 0.00 0.00, 0.00 -0.02 -0.03, -0.02 

 20 -0.04 -0.04, -0.04 0.00 0.00, 0.00 -0.04 -0.04, -0.04 

 40 -0.06 -0.06, -0.06 0.00 0.00, 0.00 -0.06 -0.06, -0.05 

 60 -0.06 -0.07, -0.06 0.00 0.00, 0.00 -0.06 -0.07, -0.06 

 80 -0.06 -0.07, -0.06 0.00 -0.01, 0.00 -0.06 -0.07, -0.06 

 90 -0.05 -0.06, -0.05 0.00 0.00, 0.00 -0.05 -0.05, -0.05 

        

Empirical 

SE 1 0.02 0.02, 0.03 0.02 0.02, 0.03 0.02 0.02, 0.03 

 5 0.03 0.02, 0.03 0.03 0.02, 0.03 0.03 0.02, 0.03 

 10 0.03 0.03, 0.03 0.03 0.03, 0.03 0.03 0.03, 0.03 

 20 0.03 0.03, 0.03 0.03 0.03, 0.03 0.03 0.03, 0.03 

 40 0.03 0.03, 0.04 0.03 0.03, 0.03 0.03 0.03, 0.03 

 60 0.04 0.04, 0.04 0.04 0.04, 0.04 0.04 0.04, 0.04 

 80 0.06 0.06, 0.06 0.05 0.05, 0.06 0.05 0.05, 0.06 

 90 0.08 0.08, 0.09 0.08 0.07, 0.08 0.07 0.07, 0.07 

        

Relative 

error 

1 2.45 -2.04, 6.95 2.45 -2.05, 6.95 2.15 -2.33, 6.64 

5 1.42 -3.03, 5.88 1.83 -2.64, 6.30 2.22 -2.26, 6.71 

 10 1.20 -3.24, 5.65 1.43 -3.02, 5.89 1.60 -2.86, 6.06 

 20 3.94 -0.63, 8.50 5.63 0.99, 10.27 3.06 -1.46, 7.59 

 40 -1.16 -5.51, 3.18 0.51 -3.90, 4.93 -1.42 -5.75, 2.91 

 60 2.40 -2.10, 6.91 3.91 -0.66, 8.48 1.09 -3.36, 5.53 

 80 2.11 -2.40, 6.61 4.91 0.28, 9.53 1.32 -3.15, 5.79 

 90 1.38 -3.13, 5.88 2.07 -2.47, 6.60 5.84 1.14, 10.54 

        

Coverage 1 95.10 93.76, 96.44 95.00 93.65, 96.35 95.3 93.99, 96.61 

 5 91.40 89.66, 93.14 95.00 93.65, 96.35 91.6 89.88, 93.32 

 10 85.80 83.64, 87.96 95.70 94.44, 96.96 84.8 82.57, 87.03 



 

209 

 

Statistic % missing 

data 

CCA Model 3 

R2=0.52 

Model 3 using Z2  

R2=0.52 

 20 73.30 70.56, 76.04 97.00 95.94, 98.06 71.6 68.81, 74.39 

 40 61.80 58.79, 64.81 94.30 92.86, 95.74 59.5 56.46, 62.54 

 60 70.40 67.57, 73.23 96.00 94.79, 97.21 64.6 61.64, 67.56 

 80 82.10 79.72, 84.48 96.60 95.48, 97.72 80.1 77.63, 82.57 

 90 90.20 88.36, 92.04 96.00 94.79, 97.21 90.1 88.25, 91.95 

CCA – Complete case analysis; FMI- Fraction of Missing Information; SE – Standard error; R2 – the squared 

coefficient of multiple correlation  

a For FMI the estimate was the median across simulations and the interval represents the interquartile range. For all 

other statistics the mean across simulations was taken and the 95% confidence interval was calculated using Monte 

Carlo standard error. 

 

 

B.7 – Missing data in included and excluded sample for the applied 

example 

Table B.7-1: Quantity of Missing Variables (Outcome, Exposure or Auxiliary) Separated by Inclusion in the Sample.  

 N(%) 

Number of missing 

variables (outcome, 

exposure or auxiliary)  

Missing confounders/ 

excluded 

No missing confounders/ 

included 
Total 

0 - No missing 42 (1.51) 1,607 (13.49) 1,649 (11.22) 

1 142 (5.11) 1,408 (11.82) 1,550 (10.55) 

2 201 (7.23) 1,292 (10.85) 1,493 (10.16) 

3 461 (16.58) 1,817 (15.25) 2,278 (15.51) 

4 482 (17.34) 1,771 (14.87) 2,253 (15.34) 

5 249 (8.96) 1,174 (9.86) 1,423 (9.69) 

6 257 (9.24) 1,118 (9.39) 1,375 (9.36) 

7 551 (19.82) 1,724 (14.47) 2,275 (15.49) 

8 - All missing 395 (14.21) 0 (0.00) 395 (2.69) 

Total 2,780 (100.00) 11,911 (100.00) 14,691 (100.00) 

 

 

 

B.8 – Missing data pattern in the applied example 

Table B.8-1. Missing Data Pattern for the Exposure, Outcome and the Strongest Auxiliary for the Outcome 

Pattern Exposure Outcome Strongest auxiliary a N(%) 

1 Complete Missing Missing 4,803 (40.32) 

2 Complete Complete Complete 3,974 (33.36) 

3 Complete Missing Complete 2,698 (22.65) 

4 Complete Complete Missing 496 (4.16) 
a The strongest auxiliary for predicting the outcome was IQ at age 8 
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B.9 – Applied example exposure coefficient results for the unadjusted model 

 

Figure S3. Estimate, standard error and FMI for the exposure coefficient in the applied example unadjusted analysis model. Reduction in SE is relative to CCA. CCA=complete case analysis; FMI= 

fraction of missing information; SE = standard error. 
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B.10 – Simulation study using a binary outcome 

B.10.1 – Methods 

Data model. We first simulated 1000 observations of exposure 𝑋 and auxiliary variables 𝑍1 −

𝑍3 from independent standard normal distributions. 𝑌 was then simulated as a binary outcome 

variable using a logistic regression model as the linear combination of 𝑋 and 𝑍1 − 𝑍3, each with 

a coefficient of log(2), and a constant of negative log(0.9455/0.0545).  

Missingness was simulated in the same way as for our linear example. MCAR data was 

simulated by removing the first 𝑝 observations such that 
𝑝

𝑛
 gives the required proportion of 

missing data. MAR missingness was simulated under a logistic regression model using 

logit(λ𝑖) = α + Z1𝑖 + 𝑋𝑖, 

where α was manipulated for the different simulation settings to provide the required proportion 

of missing data on average across datasets. 

  

Analysis model. For each simulation setting and imputation model the following logistic 

regression analysis model was used:  

logit(𝐸[𝑌]) = 𝛽0 + 𝛽1𝑥, 

where 𝛽0 and 𝛽1 are the intercept and exposure coefficient respectively. We took the true value 

of 𝛽1 to be the mean across all simulations of the coefficient obtained from analysis of the full 

dataset with no observations removed. We used this as the definition of the true value as 

opposed to the designed value, as was used in the linear model, in order to account for non-

collapsibility of the OR for our exposure coefficient.       

 

Imputation models. Five imputation models were considered for both MCAR and MAR data 

(see Table B.10-1). All models contained the variables included in the analysis model and used 

logistic regression to impute the missing outcome. Model 1 contained no auxiliary information. 

Model 2 and model 3 were identical in terms of quantity of auxiliary information but Model 3 

contained all variables in the missingness mechanism while Model 2 did not. Models 4 and 5 

contained increasing quantities of auxiliary information, achieved by increasing the number of 𝑍 

variables included in the imputation model. To measure the quantity of auxiliary information we 

have used the sum of the designed odds ratios for 𝑌, ∑ 𝑂𝑅𝑌. The ∑ 𝑂𝑅𝑌 is used in place of 𝑅𝑌
2 

from the simulation study with a continuous outcome. For each imputation model 1000 

imputations were run.  
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Table B.10-1. Description of the Imputation Models Used for Both MCAR and MAR Data.  

Imputation model  Variables included ∑ 𝑂𝑅𝑌 a 
1 (least auxiliary information) Y, X 2 

2 Y, X, Z2 4 

3 Y, X, Z1 4 

4 Y, X, Z1-2 6 

5 (most auxiliary information) Y, X, Z1-3 8 
a ∑ 𝑂𝑅𝑌 is the sum of the designed odds ratios in the logistic model used to produce Y for variables included in the 

imputation model. 

 

Comparisons. We repeated the simulation study for 1%, 5%, 10%, 20%, 40% 60%, 80% and 

90% missing data. For all scenarios, we generated 1000 independent simulated datasets We 

used the same performance statistics for the logistic model as we did for the linear model. All 

performance statistics were calculated on the log(OR) scale. Performance statistics should not 

be compared between our logistic and linear simulation studies due to differences between the 

imputation models used.   

 

B.10.2 – Results  

We present the results of the simulation study with a binary outcome in Table B.10-2 for 

MCAR data and Table B.10-3 for MAR data. In the MAR setting bias is reduced, compared to 

CCA, when all variables in the missingness mechanism are included in the imputation model. 

However, the quantity of bias is smaller than the size of the empirical SE. Bias can therefore be 

considered to be negligible in all of our simulation settings. Small improvements in efficiency 

over CCA were observed with increasing auxiliary information for both MCAR and MAR data.  

We display a plot of the empirical SE against the FMI for MCAR data in Figure B.10-1 and 

MAR data in Figure B.10-2. As in our linear model example, the FMI was reduced with 

increasing auxiliary information. This reduction was greater for MAR data than for MCAR data.  
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Table B.10-2. Performance Statistics for the MCAR Results of the Exposure Coefficient in the Binary Outcome Simulation Study.  

Statistic % missing 

data 

CCA Model 1 

No aux info, R2=0.36 

Model 2 

R2=0.40 

Model 3 

R2=0.52 

Model 4 

R2=0.76 

Model 5 

R2=0.92 

FMI a 1   0.01 0.01, 0.01 0.01 0.01, 0.01 0.01 0.01, 0.01 0.01 0.01, 0.01 0.01 0.00, 0.01 

 5   0.05 0.04, 0.06 0.05 0.04, 0.06 0.05 0.04, 0.05 0.04 0.04, 0.05 0.04 0.03, 0.05 

 10   0.10 0.09, 0.11 0.09 0.08, 0.10 0.09 0.08, 0.10 0.09 0.08, 0.10 0.08 0.07, 0.10 

 20   0.20 0.19, 0.22 0.19 0.18, 0.21 0.19 0.18, 0.21 0.18 0.17, 0.20 0.17 0.16, 0.19 

 40   0.40 0.38, 0.42 0.39 0.37, 0.41 0.38 0.37, 0.41 0.38 0.36, 0.40 0.36 0.34, 0.38 

 60   0.60 0.58, 0.61 0.59 0.57, 0.61 0.59 0.57, 0.61 0.58 0.56, 0.60 0.56 0.54, 0.59 

 80   0.79 0.78, 0.81 0.78 0.77, 0.80 0.79 0.77, 0.80 0.79 0.77, 0.81 0.77 0.75, 0.79 

 90   0.89 0.88, 0.90 0.90 0.88, 0.91 0.89 0.88, 0.91 0.89 0.87, 0.90 0.89 0.87, 0.90 

              

Bias 1 0.00 -0.01, 0.01 0.00 -0.01, 0.01 0.00 -0.01, 0.01 0.00 -0.01, 0.01 0.00 -0.01, 0.01 0.00 -0.01, 0.01 

 5 0.00 -0.01, 0.01 0.00 -0.01, 0.01 0.00 0.00, 0.01 0.00 -0.01, 0.01 0.00 -0.01, 0.01 0.00 -0.01, 0.01 

 10 0.00 0.00, 0.01 0.00 0.00, 0.01 0.00 0.00, 0.01 0.00 0.00, 0.01 0.00 0.00, 0.01 0.00 0.00, 0.01 

 20 0.00 0.00, 0.01 0.00 -0.01, 0.01 0.00 -0.01, 0.01 0.00 0.00, 0.01 0.00 -0.01, 0.01 0.00 0.00, 0.01 

 40 0.00 -0.01, 0.01 0.00 -0.01, 0.01 0.00 -0.01, 0.01 0.00 -0.01, 0.01 0.01 0.00, 0.02 0.01 0.00, 0.02 

 60 0.00 -0.01, 0.02 0.00 -0.01, 0.02 0.01 0.00, 0.02 0.00 -0.01, 0.01 0.00 -0.01, 0.01 0.00 -0.01, 0.02 

 80 0.02 0.00, 0.04 0.02 0.01, 0.04 0.03 0.01, 0.04 0.01 -0.01, 0.02 0.01 -0.01, 0.02 0.00 -0.01, 0.02 

 90 0.04 0.02, 0.07 0.07 0.04, 0.09 0.03 0.00, 0.05 0.05 0.02, 0.07 0.02 0.00, 0.04 0.02 0.00, 0.04 

              

Empirical 

SE 

1 0.11 0.11, 0.12 0.11 0.11, 0.12 0.11 0.11, 0.12 0.11 0.11, 0.12 0.11 0.11, 0.12 0.11 0.11, 0.12 

5 0.11 0.11, 0.12 0.11 0.11, 0.12 0.11 0.11, 0.12 0.11 0.11, 0.12 0.11 0.11, 0.12 0.11 0.11, 0.12 

 10 0.12 0.11, 0.12 0.12 0.11, 0.12 0.12 0.11, 0.12 0.12 0.11, 0.12 0.12 0.11, 0.12 0.12 0.11, 0.12 

 20 0.13 0.12, 0.13 0.13 0.12, 0.13 0.13 0.12, 0.13 0.13 0.12, 0.13 0.12 0.12, 0.13 0.12 0.12, 0.13 

 40 0.14 0.14, 0.15 0.14 0.14, 0.15 0.14 0.14, 0.15 0.14 0.14, 0.15 0.14 0.14, 0.15 0.14 0.13, 0.15 

 60 0.18 0.17, 0.19 0.18 0.17, 0.19 0.17 0.17, 0.18 0.18 0.17, 0.18 0.17 0.17, 0.18 0.17 0.16, 0.18 

 80 0.27 0.26, 0.28 0.27 0.26, 0.28 0.27 0.25, 0.28 0.27 0.25, 0.28 0.26 0.25, 0.27 0.25 0.24, 0.26 

 90 0.40 0.38, 0.42 0.40 0.38, 0.42 0.39 0.37, 0.40 0.39 0.37, 0.41 0.38 0.36, 0.39 0.36 0.35, 0.38 

              

Relative 

error 

1 0.58 -3.85, 5.01 0.57 -3.86, 4.99 0.64 -3.79, 5.07 0.64 -3.79, 5.07 0.76 -3.68, 5.19 0.69 -3.75, 5.12 

5 0.74 -3.70, 5.17 0.81 -3.63, 5.24 0.69 -3.75, 5.12 0.62 -3.81, 5.05 0.52 -3.91, 4.94 0.59 -3.84, 5.02 

 10 1.19 -3.27, 5.64 1.15 -3.30, 5.61 1.01 -3.44, 5.46 0.78 -3.66, 5.22 0.84 -3.60, 5.29 0.82 -3.62, 5.26 

 20 0.73 -3.71, 5.16 0.98 -3.47, 5.43 0.33 -4.09, 4.75 0.49 -3.94, 4.91 0.18 -4.23, 4.60 0.29 -4.13, 4.70 

 40 1.55 -2.93, 6.03 1.52 -2.96, 6.00 1.36 -3.11, 5.83 0.46 -3.98, 4.89 1.00 -3.46, 5.45 0.12 -4.30, 4.54 

 60 1.54 -2.95, 6.04 1.21 -3.26, 5.69 1.76 -2.74, 6.27 0.71 -3.74, 5.17 1.63 -2.87, 6.13 1.24 -3.25, 5.72 

 80 -3.73 -8.03, 0.58 -4.01 -8.31, 0.28 -4.86 -9.12, -0.61 -4.73 -9.00, -0.47 -2.29 -6.66, 2.09 -3.70 -8.01, 0.62 

 90 -0.77 -5.35, 3.82 -2.40 -6.92, 2.12 -0.42 -5.02, 4.18 -0.87 -5.44, 3.71 -2.51 -7.02, 2.00 -0.41 -5.05, 4.22 
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Statistic % missing 

data 

CCA Model 1 

No aux info, R2=0.36 

Model 2 

R2=0.40 

Model 3 

R2=0.52 

Model 4 

R2=0.76 

Model 5 

R2=0.92 

              

Coverage 1 94.89 93.52, 96.26 94.89 93.52, 96.26 94.99 93.64, 96.34 94.89 93.52, 96.26 94.89 93.52, 96.26 94.99 93.64, 96.34 

 5 94.69 93.30, 96.08 94.79 93.41, 96.17 94.99 93.64, 96.34 94.99 93.64, 96.34 95.19 93.86, 96.52 94.79 93.41, 96.17 

 10 95.49 94.20, 96.78 95.49 94.20, 96.78 95.49 94.20, 96.78 95.19 93.86, 96.52 95.29 93.98, 96.60 95.19 93.86, 96.52 

 20 95.59 94.32, 96.86 95.59 94.32, 96.86 95.29 93.98, 96.60 95.09 93.75, 96.43 95.19 93.86, 96.52 94.69 93.30, 96.08 

 40 94.99 93.64, 96.34 94.99 93.64, 96.34 95.09 93.75, 96.43 95.09 93.75, 96.43 95.39 94.09, 96.69 94.89 93.52, 96.26 

 60 95.49 94.20, 96.78 95.49 94.20, 96.78 95.29 93.98, 96.60 95.59 94.32, 96.86 94.69 93.30, 96.08 95.19 93.86, 96.52 

 80 95.09 93.75, 96.43 95.39 94.09, 96.69 94.89 93.52, 96.26 94.19 92.74, 95.64 95.09 93.75, 96.43 95.19 93.86, 96.52 

 90 96.49 95.35, 97.63 95.99 94.78, 97.21 95.49 94.20, 96.78 95.29 93.98, 96.60 95.09 93.75, 96.43 95.99 94.78, 97.21 

              

% 

reduction 

in SE 

compared 

to CCA 

1   -0.01%  0.10%  0.08%  0.23%  0.19%  

5   0.06%  0.06%  0.01%  0.03%  0.26%  

10   -0.01%  0.06%  -0.17%  0.15%  0.43%  

20   0.05%  0.00%  0.08%  0.37%  1.07%  

40   -0.28%  0.63%  0.09%  0.98%  2.14%  

 60   -0.18%  1.70%  0.87%  2.51%  4.36%  

 80   -0.17%  2.45%  2.31%  4.70%  6.90%  

 90   -0.60%  2.82%  2.27%  5.20%  8.60%  

CCA – Complete case analysis; FMI- Fraction of Missing Information; SE – Standard error; R2 – the squared coefficient of multiple correlation 

a For FMI the estimate was the median across simulations and the interval represents the interquartile range. For all other statistics the mean across simulations was taken and the 95% confidence 

interval was calculated using Monte Carlo standard error. 
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Table B.10-3. Performance Statistics for the MAR Results of the Exposure Coefficient in the Binary Outcome Simulation Study.  

Statistic % missing 

data 

CCA Model 1 

No aux info, R2=0.36 

Model 2 

R2=0.40 

Model 3 

R2=0.52 

Model 4 

R2=0.76 

Model 5 

R2=0.92 

FMI a 1   0.01 0.01, 0.02 0.01 0.01, 0.01 0.01 0.01, 0.01 0.01 0.00, 0.01 0.01 0.00, 0.01 

 5   0.06 0.05, 0.06 0.05 0.05, 0.06 0.03 0.03, 0.04 0.03 0.03, 0.04 0.03 0.03, 0.04 

 10   0.11 0.10, 0.12 0.11 0.10, 0.12 0.07 0.07, 0.08 0.07 0.06, 0.08 0.07 0.06, 0.08 

 20   0.21 0.20, 0.23 0.21 0.19, 0.23 0.15 0.14, 0.17 0.15 0.13, 0.16 0.14 0.12, 0.16 

 40   0.41 0.39, 0.43 0.40 0.38, 0.42 0.32 0.30, 0.35 0.31 0.29, 0.34 0.30 0.28, 0.33 

 60   0.60 0.58, 0.62 0.59 0.57, 0.61 0.51 0.48, 0.54 0.51 0.47, 0.54 0.49 0.46, 0.53 

 80   0.79 0.77, 0.81 0.79 0.76, 0.80 0.73 0.70, 0.76 0.72 0.69, 0.75 0.71 0.68, 0.75 

 90   0.89 0.87, 0.90 0.88 0.87, 0.90 0.85 0.82, 0.87 0.84 0.81, 0.86 0.83 0.80, 0.86 

              

Bias 1 0.00 -0.01, 0.00 0.00 -0.01, 0.00 0.00 -0.01, 0.00 0.00 -0.01, 0.01 0.00 -0.01, 0.01 0.00 -0.01, 0.01 

 5 -0.01 -0.02, -0.01 -0.01 -0.02, -0.01 -0.01 -0.02, -0.01 0.00 -0.01, 0.01 0.00 -0.01, 0.01 0.00 -0.01, 0.01 

 10 -0.03 -0.04, -0.02 -0.03 -0.03, -0.02 -0.03 -0.03, -0.02 0.00 -0.01, 0.00 0.00 -0.01, 0.00 0.00 -0.01, 0.00 

 20 -0.05 -0.05, -0.04 -0.05 -0.05, -0.04 -0.05 -0.05, -0.04 0.00 -0.01, 0.00 0.00 -0.01, 0.01 0.00 -0.01, 0.01 

 40 -0.08 -0.09, -0.07 -0.08 -0.09, -0.07 -0.08 -0.09, -0.07 -0.01 -0.02, 0.00 -0.01 -0.02, 0.00 0.00 -0.01, 0.00 

 60 -0.10 -0.11, -0.09 -0.10 -0.11, -0.09 -0.10 -0.11, -0.09 -0.01 -0.02, 0.00 -0.01 -0.02, 0.00 -0.01 -0.02, 0.00 

 80 -0.11 -0.12, -0.10 -0.11 -0.13, -0.10 -0.11 -0.13, -0.10 -0.02 -0.03, 0.00 -0.01 -0.03, 0.00 -0.01 -0.02, 0.00 

 90 -0.09 -0.11, -0.07 -0.10 -0.11, -0.08 -0.09 -0.11, -0.08 -0.01 -0.03, 0.01 0.00 -0.02, 0.02 0.00 -0.02, 0.01 

              

Empirical 

SE 

1 0.11 0.11, 0.12 0.11 0.11, 0.12 0.11 0.11, 0.12 0.11 0.11, 0.12 0.11 0.11, 0.12 0.11 0.11, 0.12 

5 0.11 0.11, 0.12 0.11 0.11, 0.12 0.11 0.11, 0.12 0.11 0.11, 0.12 0.11 0.11, 0.12 0.11 0.11, 0.12 

 10 0.12 0.11, 0.12 0.12 0.11, 0.12 0.12 0.11, 0.12 0.12 0.11, 0.12 0.12 0.11, 0.12 0.12 0.11, 0.12 

 20 0.12 0.11, 0.13 0.12 0.12, 0.13 0.12 0.11, 0.13 0.12 0.11, 0.12 0.12 0.11, 0.12 0.12 0.11, 0.12 

 40 0.13 0.13, 0.14 0.13 0.13, 0.14 0.13 0.13, 0.14 0.13 0.13, 0.14 0.13 0.13, 0.14 0.13 0.13, 0.14 

 60 0.16 0.15, 0.17 0.16 0.15, 0.17 0.16 0.15, 0.17 0.16 0.16, 0.17 0.16 0.15, 0.17 0.16 0.15, 0.17 

 80 0.22 0.21, 0.23 0.22 0.21, 0.23 0.22 0.21, 0.23 0.22 0.21, 0.23 0.22 0.21, 0.23 0.22 0.21, 0.23 

 90 0.30 0.29, 0.32 0.30 0.29, 0.32 0.30 0.28, 0.31 0.31 0.29, 0.32 0.30 0.29, 0.32 0.29 0.28, 0.30 

              

Relative 

error 

1 0.73 -3.70, 5.16 0.67 -3.76, 5.10 0.71 -3.72, 5.14 0.81 -3.63, 5.25 0.77 -3.66, 5.21 0.76 -3.67, 5.20 

5 0.86 -3.57, 5.30 0.84 -3.60, 5.27 0.93 -3.51, 5.37 1.20 -3.26, 5.65 1.19 -3.27, 5.64 1.13 -3.32, 5.58 

 10 0.49 -3.94, 4.91 0.56 -3.86, 4.99 0.41 -4.01, 4.83 0.77 -3.67, 5.20 0.54 -3.88, 4.97 0.42 -4.00, 4.85 

 20 2.03 -2.46, 6.52 1.99 -2.50, 6.48 1.89 -2.59, 6.38 2.41 -2.10, 6.92 2.26 -2.25, 6.76 2.11 -2.39, 6.61 

 40 1.56 -2.91, 6.04 1.91 -2.58, 6.40 2.44 -2.08, 6.95 1.91 -2.58, 6.40 2.32 -2.18, 6.83 1.97 -2.52, 6.47 

 60 0.19 -4.23, 4.61 0.37 -4.06, 4.79 -0.26 -4.67, 4.14 -0.43 -4.82, 3.96 -1.11 -5.47, 3.26 -1.29 -5.65, 3.07 

 80 -1.58 -5.94, 2.78 -0.94 -5.33, 3.46 -2.26 -6.60, 2.08 -1.28 -5.65, 3.10 -1.84 -6.20, 2.51 -3.00 -7.31, 1.31 

 90 -1.45 -5.86, 2.97 -1.18 -5.61, 3.25 -1.57 -5.99, 2.85 -2.17 -6.56, 2.21 -2.45 -6.83, 1.93 -0.54 -5.01, 3.93 
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Statistic % missing 

data 

CCA Model 1 

No aux info, R2=0.36 

Model 2 

R2=0.40 

Model 3 

R2=0.52 

Model 4 

R2=0.76 

Model 5 

R2=0.92 

              

Coverage 1 95.09 93.75, 96.43 95.09 93.75, 96.43 94.89 93.52, 96.26 95.09 93.75, 96.43 94.89 93.52, 96.26 94.89 93.52, 96.26 

 5 94.99 93.64, 96.34 94.99 93.64, 96.34 94.99 93.64, 96.34 95.19 93.86, 96.52 95.29 93.98, 96.60 95.39 94.09, 96.69 

 10 94.39 92.96, 95.82 94.49 93.07, 95.90 94.29 92.85, 95.73 95.09 93.75, 96.43 95.29 93.98, 96.60 95.29 93.98, 96.60 

 20 93.89 92.40, 95.37 93.79 92.29, 95.29 93.89 92.40, 95.37 94.99 93.64, 96.34 95.49 94.20, 96.78 95.49 94.20, 96.78 

 40 91.08 89.31, 92.85 90.68 88.88, 92.48 90.48 88.66, 92.30 95.39 94.09, 96.69 95.89 94.66, 97.12 95.69 94.43, 96.95 

 60 88.88 86.93, 90.83 88.58 86.60, 90.55 87.88 85.85, 89.90 94.79 93.41, 96.17 94.79 93.41, 96.17 93.89 92.40, 95.37 

 80 90.28 88.44, 92.12 89.88 88.01, 91.75 90.28 88.44, 92.12 94.39 92.96, 95.82 94.59 93.19, 95.99 94.09 92.62, 95.55 

 90 93.59 92.07, 95.11 93.09 91.51, 94.66 92.99 91.40, 94.57 95.19 93.86, 96.52 94.49 93.07, 95.90 94.59 93.19, 95.99 

              

% 

reduction 

in SE 

compared 

to CCA 

1   -0.05%  0.00%  0.18%  0.15%  0.16%  

5   -0.02%  0.17%  0.69%  0.72%  0.72%  

10   0.01%  -0.07%  0.78%  0.72%  0.72%  

20   -0.15%  0.01%  0.92%  1.03%  1.22%  

40   0.09%  1.27%  0.63%  1.53%  1.72%  

 60   -0.10%  0.22%  -1.25%  -1.09%  -0.10%  

 80   0.39%  0.48%  -0.73%  -0.20%  0.26%  

 90   -0.07%  1.58%  -1.63%  0.01%  4.15%  

              

% 

reduction 

in bias 

compared 

to CCA 

1   2.51%  3.72%  86.84%  90.22%  93.93%  

5   -2.52%  -6.71%  88.27%  91.64%  93.16%  

10   0.77%  2.52%  86.72%  85.34%  88.59%  

20   -0.19%  0.42%  91.25%  95.04%  97.80%  

40   -4.20%  -2.67%  89.05%  91.25%  93.78%  

 60   -2.47%  -3.38%  88.28%  90.88%  93.12%  

 80   -3.77%  -3.12%  83.97%  86.65%  89.63%  

 90   -3.11%  -1.05%  91.36%  96.95%  95.96%  

CCA – Complete case analysis; FMI- Fraction of Missing Information; SE – Standard error; R2 – the squared coefficient of multiple correlation  

a For FMI the estimate was the median across simulations and the interval represents the interquartile range. For all other statistics the mean across simulations was taken and the 95% confidence 

interval was calculated using Monte Carlo standard error. 



 

217 

 

 

Figure B.10-1: Empirical SE of the MI exposure coefficient plotted against FMI for simulated MCAR binary outcome data. Error bars are 95% confidence intervals based on Monte Carlo standard 

errors across simulations. FMI = fraction of missing information; SE = standard error. 
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Figure B.10-2: Empirical SE of the MI exposure coefficient plotted against FMI for simulated MAR binary outcome data. Error bars are 95% confidence intervals based on Monte Carlo standard 

errors across simulations. FMI = fraction of missing information; SE = standard error. 
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Appendix C – Supplementary material to Chapter 5 

C.1 – Methods 

C.1.1 – Exclusion criteria  

Table C.1.1-1: ICD-10 diagnoses used for exclusion. 

ICD-10 Code Description 

Q89.8  Williams syndrome 

Q87.1 Prader-Willi syndrome 

Q87.2 Rubinstein-Taybi syndrome  

Q44.7 Alagille syndrome 

D82.1  DiGeorge syndrome 

Q85.0 Neurofibromatosis (non-malignant) 

Q85.1 Tuberous sclerosis 

Q90-Q99 Chromosomal abnormalities, not elsewhere specified 

E70-E72 Metabolic disorders 

 

 

C.1.2 – Psychiatric history diagnosis codes  

Table C.1.2-1: ICD-8 and ICD-10 diagnosis codes used to define parental psychiatric history. 

Disorder ICD-8 codes ICD-10 codes 

Anxiety disorders 300.x9 (excluding 300.49), 305.x9, 

305.68, 307.99 

F40-F48 

Depressive disorders 296.09 ,296.29, 298.09, 300.49 F32-F39 

Affective and non-affective 

psychoses 

295.x9, 296.39, 296.89, 297.x9, 

298.29-298.99, 299.04, 299.05, 

299.09, 301.83, 296.19, 298.19 

F20-F29, F30-F31 

Substance use disorders 291.x9, 294.39, 303.x9, 303.20, 

303.28, 303.90, 304.x9 

F10-F16, F18-F19 

 

 

  



 

220 

 

C.2 – Results 

C.2.1 – Cohort descriptives  

Table C.2.1-1: Distribution of changes in smoking from one pregnancy to the next. 

 Parity, N(%) 

 0/1 1/2 2/3 3/4 4/5 5/6 

Smoked in 

neither 

215,006 

(81.84) 

71,405 

(81.69) 

16,330 

(76.71) 

4,309 

(75.84) 

1,539 

(77.96) 

662 

(80.63) 

Smoked in both 26,027 (9.91) 10,016 

(11.46) 

3,401 (15.98) 1,014 

(17.85) 

330 (16.72) 124 

(15.10) 

Started smoking 6,710 (2.55) 2,274 (2.60) 595 (2.80) 147 (2.59) 46 (2.33) 15 (1.83) 

Stopped smoking 14,982 (5.70) 3,712 (4.25) 962 (4.52) 212 (3.73) 59 (2.99) 20 (2.44) 

 

 

Table C.2.1-2: Distribution of changes in smoking from one pregnancy to the next separated by the exposure and 

outcome status of the latter pregnancy. 

 Maternal smoking in pregnancy, N(%) Intellectual Disability, N(%) 

 No Yes No Yes 

Smoked in neither 315,170 (93.93) - 313,663 (81.49) 1507 (68.01) 

Smoked in both - 41,611 (80.66) 41,118 (10.68) 493 (22.25) 

Started smoking - 9,975 (19.34) 9,892 (2.57) 83 (3.75) 

Stopped smoking 20,359 (6.07) - 20,226 (5.25) 133 (6.00) 

 

 

Table C.2.1-3: Proportions of ID in each level of the family level exposure variable. 

 Siblings in a family exposed to smoking in pregnancy, N(%) 

 None Some All Total 

Counts for 

individuals 

    

-No ID 829,246 (99.39) 66,288 (99.24) 163,404 (98.54) 1,058,938 

(99.25) 

-ID 5,118 (0.61) 510 (0.76) 2,423 (1.46) 8,051 (0.75) 

- Total 834,364 (100.0) 66,798 (100.0) 165,827 (100.0) 1,066,990 

(100.0) 

Counts for 

families 

    

-No ID 500,808 (99.01) 28,255 (98.29) 121,407 (98.08) 650,470 (98.81) 

-At least 

1 case of 

ID 

4,999 (0.99) 493 (1.71) 2,373 (1.92) 7,865 (1.19) 

-Total 505,807 (100.0) 28,748 (100.0) 123,780 (100.0) 658,335 (100.0) 

 

 

  



 

221 

 

Table C.2.1-4: Distribution of family smoking variable among families with children born before the cohort start date 

versus families with children all born after the cohort start date. 

Family level exposure value 

Families with excluded older 

siblings, N(%) 

Families with first born included in 

cohort, N(%) 

0 (smoked in no pregnancies) 145,837 (70.41) 359,970 (79.78) 

0.01-0.33 84 (0.04) 459 (0.10) 

0.34-0.66 3,924 (1.89) 21,278 (4.72) 

0.67-0.99 449 (0.22) 2,554 (0.57) 

1 (smoked in all pregnancies) 56,827 (27.44) 66,953 (14.84) 

 

 

Table C.2.1-5: Distribution of smoking among only children and first-born children. 

 N(%) 

 Only child First born child 

Non-smoker 134,458 (76.81) 242,190 (84.47) 

Smoker 40,585 (23.19) 44,526 (15.53) 
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C.2.2 – Missing data assessment 

Table C.2.2-1: Descriptive statistics for those included in the main cohort versus those excluded for having missing 

covariates. 

Characteristic 

Excluded for 

missing covariates, 

N(%) 

Included in main 

cohort, N(%) 

O.R.(95% CI) 
a 

p-

value 

Intellectual disability     

-Yes 571 (1.09) 8,051 (0.75) 1.46 (1.34-

1.59) 

<.001 

-No 51,586 (98.91) 1,058,938 (99.25) Ref - 

Maternal smoking     

-Yes 1,798 (13.26) 198,377 (18.59) 0.67 (0.64-

0.70) 

<.001 

-No 11,759 (86.74) 868,612 (81.41) Ref - 

Maternal age     

-<20 1,044 (2.01) 14,682 (1.38) 1.49 (1.40-

1.59) 

<.001 

-20-24 7,416 (14.25) 125,515 (11.76) 1.24 (1.21-

1.28) 

<.001 

-25-29 17,455 (33.53) 366,516 (34.35) Ref - 

-30-34 17,229 (33.10) 380,506 (35.66) 0.95 (0.93-

0.97) 

<.001 

-35+ 8,913 (17.12) 179,770 (16.85) 1.04 (1.01-

1.07) 

.003 

Paternal age     

-<20 254 (0.49) 4,238 (0.40) 1.24 (1.09-

1.41) 

.001 

-20-24 3,383 (6.51) 61,559 (5.77) 1.13 (1.09-

1.18) 

<.001 

-25-29 12,811 (24.64) 264,433 (24.78) Ref - 

-30-34 18,145 (34.90) 392,876 (36.82) 0.95 (0.93-

0.98) 

<.001 

-35+ 17,397 (33.46) 343,882 (32.23) 1.04 (1.02-

1.07) 

<.001 

Maximum parental education     

-Primary 5,594 (13.17) 107,273 (10.05) Ref - 

-General/Vocational 19,380 (45.64) 462,159 (43.31) 0.80 (0.78-

0.83) 

<.001 

-Higher 17,486 (41.18) 497,557 (46.63) 0.67 (0.65-

0.70) 

<.001 

Parental income decile     

-1 9,483 (18.19) 102,424 (9.60) 2.20 (2.12-

2.28) 

<.001 

-2 6,164 (11.82) 105,749 (9.91) 1.38 (1.33-

1.44) 

<.001 

-3 5,361 (10.28) 106,556 (9.99) 1.19 (1.15-

1.24) 

<.001 

-4 5,020 (9.63) 106,894 (10.02) 1.11 (1.07-

1.16) 

<.001 

-5 4,526 (8.68) 107,385 (10.06) Ref - 

-6 4,595 (8.81) 107,326 (10.06) 1.02 (0.97-

1.06) 

.463 

-7 4,523 (8.67) 107,392 (10.06) 1.00 (0.96-

1.04) 

.973 
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Characteristic 

Excluded for 

missing covariates, 

N(%) 

Included in main 

cohort, N(%) 

O.R.(95% CI) 
a 

p-

value 

-8 4,307 (8.26) 107,607 (10.09) 0.95 (0.91-

0.99) 

.017 

-9 3,970 (7.61) 107,946 (10.12) 0.87 (0.84-

0.91) 

<.001 

-10 4,196 (8.05) 107,710 (10.09) 0.92 (0.89-

0.96) 

<.001 

Maternal country of origin     

-Denmark 35,852 (71.82) 928,190 (86.99) Ref - 

-Africa 1,839 (3.68) 17,130 (1.61) 2.78 (2.65-

2.92) 

<.001 

-Americas 533 (1.07) 6,013 (0.56) 2.29 (2.10-

2.51) 

<.001 

-Europe 5,341 (10.70) 46,295 (4.34) 2.99 (2.90-

3.08) 

<.001 

-Middle East 2,335 (4.68) 25,403 (2.38) 2.38 (2.28-

2.49) 

<.001 

-Oceania 2,284 (4.58) 29,118 (2.73) 2.03 (1.94-

2.12) 

<.001 

-Scandinavia 1,738 (3.48) 14,840 (1.39) 3.03 (2.88-

3.19) 

<.001 

 

 

 

    

Paternal country of origin     

-Denmark 35,622 (72.28) 931,110 (87.27) Ref - 

-Africa 1,829 (3.71) 18,980 (1.78) 2.52 (2.40-

2.65) 

<.001 

-Americas 443 (0.90) 5,626 (0.53) 2.06 (1.87-

2.27) 

<.001 

-Europe 5,393 (10.94) 50,035 (4.69) 2.82 (2.73-

2.90) 

<.001 

-Middle East 2,521 (5.12) 30,348 (2.84) 2.17 (2.08-

2.26) 

<.001 

-Oceania 1,903 (3.86) 20,046 (1.88) 2.48 (2.36-

2.60) 

<.001 

-Scandinavia 1,572 (3.19) 10,844 (1.02) 3.79 (3.59-

4.00) 

<.001 

Maternal psychiatric history     

-Affective disorder     

-Yes 755 (1.45) 18,343 (1.72) 0.84 (0.78-

0.90) 

<.001 

-No 51,402 (98.55) 1,048,646 (98.28) Ref - 

-Anxiety disorder     

-Yes 1,659 (3.18) 39,859 (3.74) 0.85 (0.81-

0.89) 

<.001 

-No 50,498 (96.82) 1,027,130 (96.26) Ref - 

-Psychotic disorder     

-Yes 263 (0.50) 5,072 (0.48) 1.06 (0.94-

1.20) 

.350 

-No 51,894 (99.50) 1,061,917 (99.52) Ref - 

-Substance use disorder     

-Yes 738 (1.41) 18,020 (1.69) 0.84 (0.78-

0.90) 

<.001 
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Characteristic 

Excluded for 

missing covariates, 

N(%) 

Included in main 

cohort, N(%) 

O.R.(95% CI) 
a 

p-

value 

-No 51,419 (98.59) 1,048,969 (98.31) Ref - 

Paternal psychiatric history     

-Affective disorder     

-Yes 319 (0.61) 6,708 (0.63) 0.97 (0.87-

1.09) 

.630 

-No 51,838 (99.39) 1,060,281 (99.37) Ref - 

-Anxiety disorder     

-Yes 842 (1.61) 1,7403 (1.63) 0.99 (0.92-

1.06) 

.769 

-No 51,315 (98.39) 1,049,586 (98.37) Ref - 

-Psychotic disorder     

-Yes 283 (0.54) 4,977 (0.47) 1.16 (1.03-

1.31) 

.013 

-No 51,874 (99.46) 1,062,012 (99.53) Ref - 

-Substance use disorder     

-Yes 1,048 (2.01) 25,539 (2.39) 0.84 (0.79-

0.89) 

<.001 

-No 51,109 (97.99) 1,041,450 (97.61) Ref - 

Child sex     

-Female 25,306 (48.52) 519,856 (48.72) Ref - 

-Male 26,851 (51.48) 547,133 (51.28) 1.01 (0.99-

1.03) 

.365 

Parity     

-0 22,836 (43.79) 461,759 (43.28) Ref - 

-1 18,321 (35.13) 400,499 (37.54) 0.93 (0.91-

0.94) 

<.001 

-2 7,423 (14.23) 152,496 (14.29) 0.98 (0.96-

1.01) 

.247 

-3+ 3,569 (6.84) 52,235 (4.9) 1.38 (1.33-

1.43) 

<.001 

     

Cohort year     

-1995-1997 13,575 (26.03) 180,394 (16.91) Ref - 

-1998-2000 11,862 (22.74) 182,132 (17.07) 0.87 (0.84-

0.89) 

<.001 

-2001-2003 6,704 (12.85) 177,831 (16.67) 0.50 (0.49-

0.52) 

<.001 

-2004-2006 6,070 (11.64) 180,674 (16.93) 0.45 (0.43-

0.46) 

<.001 

-2007-2009 7,310 (14.02) 178,532 (16.73) 0.54 (0.53-

0.56) 

<.001 

-2010-2012 6,636 (12.72) 167,426 (15.69) 0.53 (0.51-

0.54) 

<.001 

a Odds Ratio for exclusion from the cohort due to missing covariates. 

 

 

Table C.2.2-2: Number of observations with missing data in each variable. 

Variable Number of missing values 

% of those excluded a, 

b 

% of total sample a, 

c 
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Maternal smoking in pregnancy 38,600 74.01 3.45 

Highest parental education 9,697 18.59 0.87 

Paternal country of origin 2,874 5.51 0.26 

Maternal country of origin 2,235 4.29 0.20 

Paternal age 167 0.32 0.01 

Maternal age 100 0.19 0.01 

Income decile 12 0.02 <0.01 

Parity 8 0.02 <0.01 
a Groups not mutually exclusive so percentages may not add to 100%.  
b Percentage denominator equals 93,190 
c Percentage denominator equals 1,119,146 
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Table C.2.2-3: Distribution of missing smoking data by each cohort year group. 

Year group Excluded for missing smoking data, N(%) a Included in main cohort, N(%) b 

1995-1997 10,770 (27.90) 183,199 (16.95) 

1998-2000 9,652 (25.01) 184,342 (17.06) 

2001-2003 4,865 (12.60) 179,670 (16.63) 

2004-2006 4,478 (11.60) 182,266 (16.87) 

2007-2009 5,041 (13.06) 180,801 (16.73) 

2010-2012 3,794 (9.83) 170,268 (15.76) 
a Percentage denominator equals 38,600 
b Percentage denominator equals 1,066,989 

 

 

Table C.2.2-4: Distribution of missing smoking data by parity.  

Parity Excluded for missing smoking data, N(%) a Included in main cohort, N(%) b 

0 16,771 (43.45) 467,824 (43.30) 

1 14,066 (36.44) 404,754 (37.46) 

2 5,496 (14.24) 154,423 (14.29) 

3+ 2,265 (5.87) 53,539 (4.95) 
a Percentage denominator equals 38,600 
b Percentage denominator equals 1,066,989 
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C.2.3 – Secondary analyses 

Table C.2.3-1: Multinomial logistic GEE analyses of the association between maternal smoking in pregnancy and 

each ID severity category 

 Unadjusted analyses 

Coefficient O.R. 95% CI 

- F70 – Mild 2.17 2.04 - 2.31 

- F71 – Moderate  1.53 1.35 - 1.73 

- F72 – Severe  1.20 0.96 - 1.50 

- F73 – Profound  1.37 0.97 - 1.94 

- F78/F79 – Other/unspecified 1.77 1.59 - 1.97 

All odds ratios are relative to the group with no ID  

 

Table C.2.3-2: Multinomial logistic GEE analyses of the association between maternal smoking in pregnancy and 

each category of ID and ASD comorbidity 

  ID only ASD only ID + ASD 

Model Coefficient O.R. 95% CI O.R. 95% CI O.R. 95% CI 

Unadjusted - Population 

averaged 

 

2.21 2.09 - 2.34 1.37 1.32 - 1.42 1.40 1.29 - 1.53 

Adjusted for 

confounders a 

 

- Population 

averaged 

 

1.42 1.33 - 1.51 1.24 1.20 - 1.29 1.21 1.10 - 1.32 

Adjusted for 

family smoking 

variable 

- Within-family 0.88 0.74 - 1.05 1.16 1.05 - 1.29 0.98 0.75 - 1.28 

 - Between-family 

 

2.76 2.29 - 3.32 1.21 1.09 - 1.35 1.50 1.13 - 1.99 

Adjusted for 

confounders a and 

family smoking 

variable 

- Within-family 

 

0.91 0.76 - 1.10 1.07 0.96 - 1.19 0.96 0.73 - 1.28 

- Between-family 1.63 1.33 - 1.98 1.19 1.06 - 1.34 1.29 0.95 - 1.74 

All odds ratios are relative to the group with no ID or ASD 

a Adjusted for child parity and year of birth, mother and father’s age, education and income in the year of the child’s 

birth, the psychiatric history of mother and father prior to the child’s birth and mother and father’s country of origin. 

 

 

Table C.2.3-3: Multinomial logistic GEE analyses of the association between maternal smoking in pregnancy and 

each category of ID and ADHD comorbidity 

  ID only ADHD only ID + ADHD 

Model Coefficient O.R. 95% CI O.R. 95% CI O.R. 95% CI 

Unadjusted - Population 

averaged 

 

1.76 1.66 - 1.86 2.27 2.20 - 2.34 2.43 2.22 - 2.66 

Adjusted for 

confounders a 

 

- Population 

averaged 

 

1.30 1.22 - 1.38 1.63 1.58 - 1.69 1.54 1.40 - 1.70 

Adjusted for 

family smoking 

variable 

- Within-family 0.92 0.77 - 1.09 0.99 0.90 - 1.09 0.88 0.67 - 1.16 

 - Between-

family 

 

2.07 1.72 - 2.48 2.56 2.31 - 2.83 3.12 2.33 - 4.17 

Adjusted for 

confounders a and 

family smoking 

variable 

- Within-family 

 

0.94 0.78 - 1.13 0.95 0.86 - 1.05 0.90 0.67 - 1.21 

- Between-

family 

1.44 1.19 - 1.75 1.86 1.67 - 2.07 1.84 1.35 - 2.50 

All odds ratios are relative to the group with no ID or ADHD 

a Adjusted for child parity and year of birth, mother and father’s age, education and income in the year of the child’s 

birth, the psychiatric history of mother and father prior to the child’s birth and mother and father’s country of origin. 
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Table C.2.3-4: Logistic GEE analyses of the association between maternal smoking during pregnancy and offspring 

ID, including an interaction between maternal smoking and offspring sex  

Model Coefficient O.R. 95% CI 

Unadjusted - Smoking in pregnancy 

 

1.93 1.78, 2.10 

 - Male sex 

 

1.93 1.82, 2.04 

 - Interaction term 

 

0.98 0.89, 1.08 

Adjusted for confounders a - Smoking in pregnancy 

 

1.37 1.26, 1.49 

 - Male sex 

 

1.94 1.83, 2.05 

 - Interaction term 0.98 0.89, 1.08 
a Adjusted for child parity and year of birth, mother and father’s age, education and income in the year of the child’s 

birth, the psychiatric history of mother and father prior to the child’s birth and mother and father’s country of origin. 

 

 

Table C.2.3-5: Logistic GEE analyses of the association between maternal smoking cessation in pregnancy and 

offspring ID 

Model Coefficient a O.R. 95% CI 

Unadjusted - Stopped smoking in 1st trimester 1.25   1.04, 1.50 

 - Continued smoking after 1st 

trimester 

2.01   1.91, 2.12 

Adjusted for confounders 
b 

- Stopped smoking in 1st trimester 1.09   0.91, 1.32 

 - Continued smoking after 1st 

trimester 

1.39   1.31, 1.47 

a Reference group is non-smoking mothers 
b Adjusted for child sex, parity and year of birth, mother and father’s age, education and income in the year of the 

child’s birth, the psychiatric history of mother and father prior to the child’s birth and mother and father’s country of 

origin. 

 

 

Table C.2.3-6: Logistic GEE analyses of the association between dosage of maternal smoking during pregnancy and 

offspring ID 

Model Coefficient O.R. a 95% CI 

Unadjusted - Population averaged 

 

1.05   1.05, 1.06 

Adjusted for confounders b - Population averaged 

 

1.03 1.02, 1.04 

Adjusted for family dosage 

variable 

- Within-family 

 

1.00 0.98, 1.03 

 - Between-family 

 

1.06   1.03, 1.09 

Adjusted for confounders b and 

family dosage variable 

- Within-family 1.01 0.98, 1.03 

 - Between-family 1.03   1.00, 1.06 
a OR for ID per 1 additional cigarette smoked in pregnancy 

b Adjusted for child sex, parity and year of birth, mother and father’s age, education and income in the year of the 

child’s birth, the psychiatric history of mother and father prior to the child’s birth and mother and father’s country of 

origin. 
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C.2.4 – Sensitivity analyses 

Table C.2.4-1: Logistic GEE analyses of the association between maternal smoking during pregnancy and offspring 

ID using a stricter outcome definition 

Model Coefficient O.R. 95% CI 

Unadjusted - Population averaged 

 

1.89   1.77, 2.01 

Adjusted for confounders a - Population averaged 

 

1.35   1.26, 1.44 

Adjusted for family smoking 

variable 

- Within-family 0.90  0.73, 1.10 

 - Between-family 

 

2.26   1.82, 2.80 

Adjusted for confounders a and 

family smoking variable 

- Within-family 0.91   0.74, 1.13 

 - Between-family 1.54   1.23, 1.93 
a Adjusted for child sex, parity and year of birth, mother and father’s age, education and income in the year of the 

child’s birth, the psychiatric history of mother and father prior to the child’s birth and mother and father’s country of 

origin. 

 

 

Table C.2.4-2: Logistic GEE analyses of the association between maternal smoking during pregnancy and offspring 

ID using an exposure variable centred on the family-level smoking variable 

Model Coefficient O.R. 95% CI 

Adjusted for family smoking 

variable with centred 

individual smoke exposure 

variable 

- Within-family 

 

0.91   0.78, 1.06 

- Between-family 

 

2.05   1.95, 2.15 

Adjusted for confounders a and 

family smoking variable with 

centred individual smoke 

exposure variable 

- Within-family 

 

0.93 0.79, 1.09 

- Between-family 1.40   1.33, 1.48 

a Adjusted for child sex, parity and year of birth, mother and father’s age, education and income in the year of the 

child’s birth, the psychiatric history of mother and father prior to the child’s birth and mother and father’s country of 

origin. 
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Table C.2.4-3 Logistic GEE analyses of the association between maternal smoking during pregnancy and offspring 

ID repeated in each year group category 

  O.R. (95% CI) 

Model Coefficient 1995-1997 1998-2000 2001-2003 2004-2006 2007-2009 2010-2012 

Unadjusted - 

Population 

averaged 

 

1.82  

(1.67, 

1.98) 

1.73  

(1.58, 

1.89) 

2.12 

(1.90, 

2.36) 

2.17 

(1.90, 

2.49) 

2.04  

(1.72, 

2.41) 

1.93  

(1.54, 

2.44) 

Adjusted for 

confoundersa 

- 

Population 

averaged 

 

1.28 

(1.17, 

1.41) 

1.21 

(1.10, 

1.33) 

1.50 

(1.33, 

1.69) 

1.49 

(1.28, 

1.72) 

1.44 

(1.19, 

1.73) 

1.50 

(1.17, 

1.94) 

Adjusted for 

family 

smoking 

variable 

- Within-

family 

 

0.98 

(0.69, 

1.40) 

0.74  

(0.56, 

0.97) 

0.95   

(0.71, 

1.28) 

0.99   

(0.68, 

1.43) 

0.89   

(0.56, 

1.42) 

1.72   

(0.70, 

4.22) 

- Between-

family 

 

1.93   

(1.35, 

2.78) 

2.55   

(1.91, 

3.40) 

2.46   

(1.78, 

3.39) 

2.44   

(1.63, 

3.64) 

2.51   

(1.53, 

4.11) 

1.13   

(0.45, 

2.87) 

Adjusted for 

family 

smoking 

variable and 

confoundersa  

- Within-

family 

 

1.03   

(0.71, 

1.48) 

0.78   

(0.58, 

1.05) 

1.01   

(0.73, 

1.39) 

0.97   

(0.65, 

1.44) 

0.80   

(0.49, 

1.31) 

1.46   

(0.57, 

3.73) 

- Between-

family 

1.27   

(0.87, 

1.85) 

1.62   

(1.19, 

2.21) 

1.57   

(1.11, 

2.23) 

1.63   

(1.06, 

2.49) 

1.93   

(1.14, 

3.29) 

1.03   

(0.39, 

2.74) 
a Adjusted for child sex and parity, mother and father’s age, education and income in the year of the child’s birth, the 

psychiatric history of mother and father prior to the child’s birth and mother and father’s country of origin. 

 

 

 

Table C.2.4-4: Cox proportional hazards analyses of the association between maternal smoking during pregnancy 

and time to offspring first diagnosis of ID  

Model Coefficient H.R. 95% CI 

Unadjusted - Population averaged 

 

1.87 1.78, 1.96 

Adjusted for confounders a - Population averaged 

 

1.23 1.17, 1.30 

Adjusted for family smoking 

variable 

- Within-family 0.91 0.79, 1.05 

 - Between-family 

 

2.20 1.89, 2.57 

Adjusted for confounders a and 

family smoking variable 

- Within-family 0.89 0.76, 1.04 

 - Between-family 1.44 1.21, 1.70 
a Adjusted for child sex, parity and year of birth, mother and father’s age, education and income in the year of the 

child’s birth, the psychiatric history of mother and father prior to the child’s birth and mother and father’s country of 

origin. 
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Table C.2.4-5: Analyses of the association between maternal smoking during pregnancy and offspring ID repeated in 

restricted cohorts 

  O.R. (95% CI) 

Model Coefficient 

Single-child 

cohort a 

Multiple-child 

cohort b 

Multiple-child cohort 

with no missing older 

siblings b 

Unadjusted - Population 

averaged 

 

1.54 (1.38, 

1.71) 

1.94 (1.84, 2.04) 1.87 (1.76, 1.99) 

Adjusted for 

confounders b 

- Population 

averaged 

 

1.13 (1.01, 

1.27) 

1.37 (1.29, 1.45) 1.33 (1.24, 1.42) 

Adjusted for family 

smoking variable 

- Within-family 

 

- 0.91 (0.78, 1.06) 0.92 (0.77, 1.10) 

 

- Between-family 

 

- 2.33 (1.97, 2.75) 2.23 (1.85, 2.69) 

 

Adjusted for 

confounders c and 

family smoking 

variable 

- Within-family 

 

- 0.96 (0.81, 1.13) 0.92 (0.76, 1.11) 

 

- Between-family - 1.49 (1.25, 1.79) 1.52 (1.24, 1.86) 

a Logistic regression model. 
b Logistic GEE model with exchangeable covariance structure. 

c Adjusted for child sex, mother and father’s age, education and income in the year of the child’s birth, the psychiatric 

history of mother and father prior to the child’s birth and mother and father’s country of origin. 
d Adjusted as for c but with additional adjustment for child parity. 
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Appendix D – Supplementary material to Chapter 6 

D.1 – Methods 

D.1.1 – Exclusion criteria  

 

Table D.1.1-1 – ICD-10 diagnosis codes for genetic and chromosomal abnormalities associated with intellectual 

disability that were used in exclusion criteria.   

ICD-10 Code Description 

Q89.8  Williams syndrome 

Q87.1 Prader-Willi syndrome 

Q87.2 Rubinstein-Taybi syndrome  

Q44.7 Alagille syndrome 

D82.1  DiGeorge syndrome 

Q85.0 Neurofibromatosis (non-malignant) 

Q85.1 Tuberous sclerosis 

Q90-Q99 Chromosomal abnormalities, not elsewhere specified 

E70-E72 Metabolic disorders 
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D.1.2 – Exposure imputation procedure  

 

Table D.1.2-1 – Imputation procedure for missing smoking values 

Original value Imputed value 

Smoking 3 

months prior to 

pregnancy 

Smoking at first 

antenatal 

contact 

Smoking at 30-

32 weeks 

pregnancy 

Smoking 3 

months prior to 

pregnancy 

Smoking at first 

antenatal 

contact 

Smoking at 30-

32 weeks 

pregnancy 

Non-smoker Missing Missing X Non-smoker Non-smoker 

 

Non-smoker Missing Non-smoker X Non-smoker X 

      

Any value Non-smoker Missing X X Non-smoker 

 

1-9 cig or 10+ 

cig 

Missing 1-9 cig or 10+ 

cig 

X Value at 30-32 

weeks 

pregnancy 

 

X 

Missing 1-9 cig or 10+ 

cig 

Any value Value at first 

antenatal visit 

X X 

X – value not imputed 

 

 

Table D.1.2-2 - Imputation procedure for missing snus use values 

Original value Imputed value 

Snus use at 3 

months prior to 

pregnancy 

Snus use at first 

antenatal 

contact 

Snus use at 30-

32 weeks 

pregnancy 

Snus use 3 

months prior to 

pregnancy 

Snus use at first 

antenatal 

contact 

Snus use at 30-

32 weeks 

pregnancy 

Non-user Missing Missing X Non-user Non-user 

 

Non-user Missing Any value X Non-user X 

 

Any value Non-user Missing X X Non-user 

 

Snus-user Missing Snus-user X Snus-user 

 

X 

Missing Snus-user Any value Snus-user X X 

 

Missing Missing Snus-user Snus-user X X 

X – value not imputed 
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D.1.3 – Confounder derivations 

 

Table D1.3-1:  ICD-9 and ICD-10 codes used to define parental psychiatric history. 

Disorder ICD-9 codes ICD-10 codes 

Anxiety disorders 300.0, 300.2, 300.3, 308, 

309 

 

F40-F43 

Depressive disorders 296.1, 298.0, 300.4, 311  

 

F32-F39 

Psychotic disorders (affective 

and non-affective)  

295, 296.0, 296.2, 296.3, 

296.4, 297, 298.2, 298.3, 

298.4, 298.8, 298.9 

 

F20-F29, F30-F31 

Substance use disorders 291.0-291.9 

303.0-303.9 

304.0-304.9 

305.0-305.9 (minus 

305.1) 

F10-F16, F18-F19 
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D.2 – Results 

D.2.1 – Cohort descriptives 

Table D.2.1-1: Descriptives separated by categories of family level smoking 

  N(%) 

Variable Level Never smoked in 

pregnancy 

Sometimes smoked 

in pregnancy 

Always smoked in 

pregnancy 

Never used snus in 

pregnancy 

Sometimes used 

snus in pregnancy 

Always used snus in 

pregnancy 

Total 
 

959785 37999 76304 1052233 13327 8528  

Intellectual disability No 954023 (99.40) 37675 (99.15) 75398 (98.81) 1045430 (99.35) 13219 (99.19) 8447 (99.05) 

 Yes 5762 (0.60) 324 (0.85) 906 (1.19) 6803 (0.65) 108 (0.81) 81 (0.95) 

 

Small for gestational age No 938591 (97.79) 36969 (97.29) 72638 (95.20) 1026839 (97.59) 13070 (98.07) 8289 (97.20) 

 Yes 18264 (1.90) 909 (2.39) 3401 (4.46) 22134 (2.10) 231 (1.73) 209 (2.45) 

 

Sex Female 466545 (48.61) 18486 (48.65) 36897 (48.36) 511285 (48.59) 6481 (48.63) 4162 (48.80) 
 

Male 493240 (51.39) 19513 (51.35) 39407 (51.64) 540948 (51.41) 6846 (51.37) 4366 (51.20) 

  
Parity 1 432971 (45.11) 12623 (33.22) 31949 (41.87) 468521 (44.53) 4779 (35.86) 4243 (49.75) 
 

2 354399 (36.92) 15280 (40.21) 23462 (30.75) 385200 (36.61) 5419 (40.66) 2522 (29.57) 
 

3 or more 172415 (17.96) 10096 (26.57) 20893 (27.38) 198512 (18.87) 3129 (23.48) 1763 (20.67) 

 

  
Highest parental 

education 

High School 34024 (3.54) 4126 (10.86) 11793 (15.46) 48939 (4.65) 608 (4.56) 396 (4.64) 

Gymnasium 367788 (38.32) 24354 (64.09) 52220 (68.44) 432316 (41.09) 7080 (53.13) 4966 (58.23) 
 

University 557973 (58.14) 9519 (25.05) 12291 (16.11) 570978 (54.26) 5639 (42.31) 3166 (37.12) 

  
Adjusted family income 1 99291 (10.35) 6600 (17.37) 15462 (20.26) 119113 (11.32) 1391 (10.44) 849 (9.96) 

2 187435 (19.53) 12185 (32.07) 27522 (36.07) 221285 (21.03) 3556 (26.68) 2301 (26.98) 
 

3 215754 (22.48) 9637 (25.36) 17706 (23.20) 237259 (22.55) 3509 (26.33) 2329 (27.31) 
 

4 229068 (23.87) 6453 (16.98) 10818 (14.18) 241616 (22.96) 2902 (21.78) 1821 (21.35) 
 

5 228237 (23.78) 3124 (8.22) 4796 (6.29) 232960 (22.14) 1969 (14.77) 1228 (14.40) 
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  N(%) 

Variable Level Never smoked in 

pregnancy 

Sometimes smoked 

in pregnancy 

Always smoked in 

pregnancy 

Never used snus in 

pregnancy 

Sometimes used 

snus in pregnancy 

Always used snus in 

pregnancy 

  

Maternal anxiety 

diagnosis 

No 934219 (97.34) 35801 (94.22) 70041 (91.79) 1019456 (96.89) 12625 (94.73) 7980 (93.57) 

Yes 25566 (2.66) 2198 (5.78) 6263 (8.21) 32777 (3.11) 702 (5.27) 548 (6.43) 

  
Maternal depression 

diagnosis 

No 942002 (98.15) 36523 (96.12) 72215 (94.64) 1029797 (97.87) 12848 (96.41) 8095 (94.92) 

Yes 17783 (1.85) 1476 (3.88) 4089 (5.36) 22436 (2.13) 479 (3.59) 433 (5.08) 

  
Maternal psychosis 

diagnosis 

No 956910 (99.70) 37795 (99.46) 75518 (98.97) 1048530 (99.65) 13239 (99.34) 8454 (99.13) 

Yes 2875 (0.30) 204 (0.54) 786 (1.03) 3703 (0.35) 88 (0.66) 74 (0.87) 

  
Maternal addiction 

diagnosis 

No 949629 (98.94) 36400 (95.79) 71084 (93.16) 1036110 (98.47) 12887 (96.70) 8116 (95.17) 

Yes 10156 (1.06) 1599 (4.21) 5220 (6.84) 16123 (1.53) 440 (3.30) 412 (4.83) 

  
Any maternal psychiatric 

diagnosis 

No 915371 (95.37) 33944 (89.33) 64705 (84.80) 994412 (94.50) 12102 (90.81) 7506 (88.02) 

Yes 44414 (4.63) 4055 (10.67) 11599 (15.20) 57821 (5.50) 1225 (9.19) 1022 (11.98) 

  
Any paternal psychiatric 

diagnosis 

No 927360 (96.62) 35224 (92.70) 68321 (89.54) 1010377 (96.02) 12573 (94.34) 7955 (93.28) 

Yes 32425 (3.38) 2775 (7.30) 7983 (10.46) 41856 (3.98) 754 (5.66) 573 (6.72)  

Any maternal 

neurodevelopmental 

diagnosis 

No 958597 (99.88) 37837 (99.57) 75623 (99.11) 1050316 (99.82) 13277 (99.62) 8464 (99.25) 

Yes 1188 (0.12) 162 (0.43) 681 (0.89) 1917 (0.18) 50 (0.38) 64 (0.75) 

 

  
Any paternal 

neurodevelopmental 

diagnosis 

No 958374 (99.85) 37832 (99.56) 75622 (99.11) 1050050 (99.79) 13287 (99.70) 8491 (99.57) 

Yes 1411 (0.15) 167 (0.44) 682 (0.89) 2183 (0.21) 40 (0.30) 37 (0.43) 

 

  
Maternal country of 

origin 

Africa 29014 (3.02) 572 (1.51) 668 (0.88) 30046 (2.86) 163 (1.22) 45 (0.53) 

Americas 10380 (1.08) 311 (0.82) 516 (0.68) 11108 (1.06) 67 (0.50) 32 (0.38) 
 

Asia 30643 (3.19) 647 (1.70) 1162 (1.52) 32133 (3.05) 189 (1.42) 130 (1.52) 
 

Europe 46087 (4.80) 2765 (7.28) 6315 (8.28) 54845 (5.21) 207 (1.55) 115 (1.35) 
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  N(%) 

Variable Level Never smoked in 

pregnancy 

Sometimes smoked 

in pregnancy 

Always smoked in 

pregnancy 

Never used snus in 

pregnancy 

Sometimes used 

snus in pregnancy 

Always used snus in 

pregnancy  
Middle East 53770 (5.60) 2510 (6.61) 3393 (4.45) 59316 (5.64) 279 (2.09) 78 (0.91) 

 
Oceania 417 (0.04) 10 (0.03) 21 (0.03) 443 (0.04) 0 (0.00) 5 (0.06) 

 
Scandinavia 15002 (1.56) 682 (1.79) 1907 (2.50) 17284 (1.64) 187 (1.40) 120 (1.41) 

 
Swedish 774472 (80.69) 30502 (80.27) 62322 (81.68) 847058 (80.50) 12235 (91.81) 8003 (93.84) 

  
Birth year 1999-2001 206094 (21.47) 7412 (19.51) 17054 (22.35) 226659 (21.54) 2275 (17.07) 1626 (19.07) 
 

2002-2004 234118 (24.39) 11248 (29.60) 21848 (28.63) 261263 (24.83) 3619 (27.16) 2332 (27.35) 
 

2005-2007 242212 (25.24) 10416 (27.41) 18140 (23.77) 264888 (25.17) 4029 (30.23) 1851 (21.70) 
 

2008-2010 277361 (28.90) 8923 (23.48) 19262 (25.24) 299423 (28.46) 3404 (25.54) 2719 (31.88) 

  
Any maternal smoking in 

pregnancy 

No 959785 (100.00) 20164 (53.06) 0 (0.00) 960336 (91.27) 11917 (89.42) 7696 (90.24) 

Yes 0 (0.00) 17835 (46.94) 76304 (100.00) 91897 (8.73) 1410 (10.58) 832 (9.76) 

  
Any maternal snus use in 

pregnancy 

No 947238 (98.69) 36795 (96.83) 75365 (98.77) 1052233 (100.00) 7165 (53.76) 0 (0.00) 

Yes 12547 (1.31) 1204 (3.17) 939 (1.23) 0 (0.00) 6162 (46.24) 8528 (100.00) 
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Table D.2.1-2: Descriptives separated by timing of smoking exposure 

  N(%) 

Variable Level 

Non-smoker 

before pregnancy 

Smoker before 

pregnancy 

Non-smoker at first 

prenatal visit 

Smoker at first 

prenatal visit 

Non-smoker at 32 

weeks pregnancy 

Smoker at 32 weeks 

pregnancy 

Total 
 

838763 190333 982536 85952 999168 59003  

Intellectual disability No 833835 (99.41) 188685 (99.13) 976574 (99.39) 84956 (98.84) 993072 (99.39) 58374 (98.93) 

 Yes 4928 (0.59) 1648 (0.87) 5962 (0.61) 996 (1.16) 6096 (0.61) 629 (1.07) 

 

Small for gestational age No 820424 (97.81) 183904 (96.62) 960797 (97.79) 81939 (95.33) 976992 (97.78) 56256 (95.34) 

 Yes 15945 (1.90) 5811 (3.05) 18765 (1.91) 3717 (4.32) 19130 (1.91) 2597 (4.40) 

 

Sex Female 407647 (48.60) 92382 (48.54) 477699 (48.62) 41481 (48.26) 485596 (48.60) 28658 (48.57) 
 

Male 431116 (51.40) 97951 (51.46) 504837 (51.38) 44471 (51.74) 513572 (51.40) 30345 (51.43)  

Parity 1 358221 (42.71) 100193 (52.64) 438512 (44.63) 36406 (42.36) 447758 (44.81) 23352 (39.58) 
 

2 322316 (38.43) 53835 (28.28) 364783 (37.13) 26385 (30.70) 369539 (36.98) 18842 (31.93) 
 

3 or more 158226 (18.86) 36305 (19.07) 179241 (18.24) 23161 (26.95) 181871 (18.20) 16809 (28.49)  

Highest parental 

education 

High School 28235 (3.37) 19611 (10.30) 36827 (3.75) 12830 (14.93) 38101 (3.81) 9312 (15.78) 

Gymnasium 303311 (36.16) 120070 (63.08) 383353 (39.02) 58695 (68.29) 393293 (39.36) 40359 (68.40) 
 

University 507217 (60.47) 50652 (26.61) 562356 (57.24) 14427 (16.78) 567774 (56.82) 9332 (15.82)  

Adjusted family income 1 85455 (10.19) 30183 (15.86) 103670 (10.55) 16936 (19.70) 105757 (10.58) 12097 (20.50) 
 

2 162951 (19.43) 54845 (28.82) 195638 (19.91) 30396 (35.36) 199880 (20.00) 21734 (36.84) 
 

3 187459 (22.35) 45527 (23.92) 221863 (22.58) 20060 (23.34) 225983 (22.62) 13677 (23.18) 
 

4 199104 (23.74) 36978 (19.43) 232428 (23.66) 12733 (14.81) 235930 (23.61) 8113 (13.75) 
 

5 203794 (24.30) 22800 (11.98) 228937 (23.30) 5827 (6.78) 231618 (23.18) 3382 (5.73)  

Maternal anxiety 

diagnosis 

No 817032 (97.41) 178512 (93.79) 955405 (97.24) 79228 (92.18) 971212 (97.20) 54002 (91.52) 

Yes 21731 (2.59) 11821 (6.21) 27131 (2.76) 6724 (7.82) 27956 (2.80) 5001 (8.48)  

Maternal depression 

diagnosis 

No 823744 (98.21) 182294 (95.78) 963749 (98.09) 81507 (94.83) 979790 (98.06) 55721 (94.44) 

Yes 15019 (1.79) 8039 (4.22) 18787 (1.91) 4445 (5.17) 19378 (1.94) 3282 (5.56)  

No 836333 (99.71) 188998 (99.30) 979516 (99.69) 85128 (99.04) 996034 (99.69) 58432 (99.03) 
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  N(%) 

Variable Level 

Non-smoker 

before pregnancy 

Smoker before 

pregnancy 

Non-smoker at first 

prenatal visit 

Smoker at first 

prenatal visit 

Non-smoker at 32 

weeks pregnancy 

Smoker at 32 weeks 

pregnancy 

Maternal psychosis 

diagnosis 

Yes 2430 (0.29) 1335 (0.70) 3020 (0.31) 824 (0.96) 3134 (0.31) 571 (0.97)  

Maternal addiction 

diagnosis 

No 831165 (99.09) 181236 (95.22) 971255 (98.85) 80365 (93.50) 987208 (98.80) 55048 (93.30) 

Yes 7598 (0.91) 9097 (4.78) 11281 (1.15) 5587 (6.50) 11960 (1.20) 3955 (6.70)  

Any maternal psychiatric 

diagnosis 

No 801630 (95.57) 168338 (88.44) 935312 (95.19) 73416 (85.42) 950336 (95.11) 49935 (84.63) 

Yes 37133 (4.43) 21995 (11.56) 47224 (4.81) 12536 (14.58) 48832 (4.89) 9068 (15.37)  

Any paternal psychiatric 

diagnosis 

No 811324 (96.73) 175432 (92.17) 948196 (96.50) 77339 (89.98) 963744 (96.45) 52746 (89.40) 

Yes 27439 (3.27) 14901 (7.83) 34340 (3.50) 8613 (10.02) 35424 (3.55) 6257 (10.60)  

Any maternal 

neurodevelopmental 

diagnosis 

No 837836 (99.89) 189249 (99.43) 981220 (99.87) 85253 (99.19) 997769 (99.86) 58475 (99.11) 

Yes 927 (0.11) 1084 (0.57) 1316 (0.13) 699 (0.81) 1399 (0.14) 528 (0.89)  

Any paternal 

neurodevelopmental 

diagnosis 

No 837662 (99.87) 189191 (99.40) 980982 (99.84) 85254 (99.19) 997542 (99.84) 58467 (99.09) 

Yes 1101 (0.13) 1142 (0.60) 1554 (0.16) 698 (0.81) 1626 (0.16) 536 (0.91) 

 

  
Maternal country of 

origin 

Africa 27036 (3.22) 1972 (1.04) 29325 (2.98) 777 (0.90) 29563 (2.96) 504 (0.85) 

Americas 8345 (0.99) 2412 (1.27) 10546 (1.07) 584 (0.68) 10729 (1.07) 359 (0.61) 
 

Asia 27854 (3.32) 3568 (1.87) 31034 (3.16) 1283 (1.49) 31364 (3.14) 855 (1.45) 
 

Europe 38783 (4.62) 14536 (7.64) 48081 (4.89) 6810 (7.92) 49041 (4.91) 4940 (8.37) 
 

Middle East 49000 (5.84) 8355 (4.39) 55563 (5.66) 3799 (4.42) 56021 (5.61) 2776 (4.70) 
 

Oceania 368 (0.04) 61 (0.03) 420 (0.04) 24 (0.03) 429 (0.04) 15 (0.03) 
 

Scandinavia 12953 (1.54) 3763 (1.98) 15413 (1.57) 2076 (2.42) 15732 (1.57) 1347 (2.28) 
 

Swedish 674424 (80.41) 155666 (81.79) 792154 (80.62) 70599 (82.14) 806289 (80.70) 48207 (81.70)  

Birth year 1999-2001 151182 (18.02) 39577 (20.79) 209698 (21.34) 19511 (22.70) 213522 (21.37) 11018 (18.67) 
 

2002-2004 211205 (25.18) 53511 (28.11) 239870 (24.41) 25400 (29.55) 244159 (24.44) 17628 (29.88) 
 

2005-2007 220992 (26.35) 48280 (25.37) 248702 (25.31) 20622 (23.99) 253077 (25.33) 15097 (25.59) 
 

2008-2010 255384 (30.45) 48965 (25.73) 284266 (28.93) 20419 (23.76) 288410 (28.87) 15260 (25.86)  
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  N(%) 

Variable Level 

Non-smoker 

before pregnancy 

Smoker before 

pregnancy 

Non-smoker at first 

prenatal visit 

Smoker at first 

prenatal visit 

Non-smoker at 32 

weeks pregnancy 

Smoker at 32 weeks 

pregnancy 

Any maternal smoking in 

pregnancy 

No 835467 (99.61) 100033 (52.56) 974797 (99.21) 0 (0.00) 979949 (98.08) 0 (0.00) 

Yes 3296 (0.39) 90300 (47.44) 7739 (0.79) 85952 (100.00) 19219 (1.92) 59003 (100.00)  

Any maternal snus use in 

pregnancy 

No 826823 (98.58) 187740 (98.64) 969089 (98.63) 84883 (98.76) 985508 (98.63) 58190 (98.62) 

Yes 11940 (1.42) 2593 (1.36) 13447 (1.37) 1069 (1.24) 13660 (1.37) 813 (1.38) 
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Table D.2.1-3: Descriptives separated by timing of snus exposure 

  N(%) 

Variable Level 

Non-snus before 

pregnancy 

Snus before 

pregnancy 

Non-snus at first 

prenatal visit 

Snus at first prenatal 

visit 

Non-snus at 32 

weeks Snus at 32 weeks 

Total 
 

997689 27741 1055180 12858 1065864 4954  

Intellectual disability No 991345 (99.36) 27567 (99.37) 1048343 (99.35) 12752 (99.18) 1058957 (99.35) 4895 (98.81) 

 

Yes 6344 (0.64) 174 (0.63) 6837 (0.65) 106 (0.82) 6907 (0.65) 59 (1.19) 

 

Small for gestational 

age 

No 973637 (97.59) 27122 (97.77) 1029772 (97.59) 12538 (97.51) 1040200 (97.59) 4839 (97.68) 

Yes 21140 (2.12) 536 (1.93) 22179 (2.10) 282 (2.19) 22379 (2.10) 99 (2.00) 

 

Sex Female 484661 (48.58) 13528 (48.77) 512730 (48.59) 6231 (48.46) 517993 (48.60) 2426 (48.97) 
 

Male 513028 (51.42) 14213 (51.23) 542450 (51.41) 6627 (51.54) 547871 (51.40) 2528 (51.03)  

Parity 1 441382 (44.24) 14875 (53.62) 469187 (44.47) 5503 (42.80) 474211 (44.49) 1945 (39.26) 
 

2 366859 (36.77) 8373 (30.18) 386625 (36.64) 4422 (34.39) 390180 (36.61) 1835 (37.04) 
 

3 or more 189448 (18.99) 4493 (16.20) 199368 (18.89) 2933 (22.81) 201473 (18.90) 1174 (23.70)  

Highest parental 

education 

High School 46680 (4.68) 813 (2.93) 49034 (4.65) 556 (4.32) 49546 (4.65) 247 (4.99) 

Gymnasium 407050 (40.80) 13798 (49.74) 434395 (41.17) 7322 (56.95) 439622 (41.25) 2926 (59.06) 
 

University 543959 (54.52) 13130 (47.33) 571751 (54.19) 4980 (38.73) 576696 (54.11) 1781 (35.95) 

 

 

  
Adjusted family income 1 112936 (11.32) 2023 (7.29) 119285 (11.30) 1223 (9.51) 120493 (11.30) 534 (10.78) 
 

2 210612 (21.11) 6393 (23.05) 222430 (21.08) 3499 (27.21) 224861 (21.10) 1406 (28.38) 
 

3 224803 (22.53) 7368 (26.56) 238291 (22.58) 3524 (27.41) 240835 (22.60) 1388 (28.02) 
 

4 228347 (22.89) 6931 (24.98) 242282 (22.96) 2789 (21.69) 244661 (22.95) 991 (20.00) 
 

5 220991 (22.15) 5026 (18.12) 232892 (22.07) 1823 (14.18) 235014 (22.05) 635 (12.82)  

Maternal anxiety 

diagnosis 

No 965752 (96.80) 26196 (94.43) 1022137 (96.87) 12056 (93.76) 1032377 (96.86) 4619 (93.24) 

Yes 31937 (3.20) 1545 (5.57) 33043 (3.13) 802 (6.24) 33487 (3.14) 335 (6.76)  

No 975872 (97.81) 26539 (95.67) 1032546 (97.85) 12262 (95.36) 1042920 (97.85) 4696 (94.79) 
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  N(%) 

Variable Level 

Non-snus before 

pregnancy 

Snus before 

pregnancy 

Non-snus at first 

prenatal visit 

Snus at first prenatal 

visit 

Non-snus at 32 

weeks Snus at 32 weeks 

Maternal depression 

diagnosis 

Yes 21817 (2.19) 1202 (4.33) 22634 (2.15) 596 (4.64) 22944 (2.15) 258 (5.21)  

Maternal psychosis 

diagnosis 

No 994132 (99.64) 27549 (99.31) 1051436 (99.65) 12761 (99.25) 1062079 (99.64) 4897 (98.85) 

Yes 3557 (0.36) 192 (0.69) 3744 (0.35) 97 (0.75) 3785 (0.36) 57 (1.15)  

Maternal addiction 

diagnosis 

No 982050 (98.43) 26760 (96.46) 1038874 (98.45) 12313 (95.76) 1049283 (98.44) 4706 (94.99) 

Yes 15639 (1.57) 981 (3.54) 16306 (1.55) 545 (4.24) 16581 (1.56) 248 (5.01)  

Any maternal 

psychiatric diagnosis 

No 941549 (94.37) 24916 (89.82) 996884 (94.48) 11421 (88.82) 1006783 (94.46) 4338 (87.57) 

Yes 56140 (5.63) 2825 (10.18) 58296 (5.52) 1437 (11.18) 59081 (5.54) 616 (12.43)  

Any paternal 

psychiatric diagnosis 

No 957031 (95.92) 26178 (94.37) 1013058 (96.01) 12057 (93.77) 1023251 (96.00) 4599 (92.83) 

Yes 40658 (4.08) 1563 (5.63) 42122 (3.99) 801 (6.23) 42613 (4.00) 355 (7.17)  

Any maternal 

neurodevelopmental 

diagnosis 

No 995799 (99.81) 27627 (99.59) 1053245 (99.82) 12781 (99.40) 1063891 (99.81) 4915 (99.21) 

Yes 1890 (0.19) 114 (0.41) 1935 (0.18) 77 (0.60) 1973 (0.19) 39 (0.79) 

  
Any paternal 

neurodevelopmental 

diagnosis 

No 995543 (99.78) 27647 (99.66) 1052970 (99.79) 12814 (99.66) 1063636 (99.79) 4934 (99.60) 

Yes 2146 (0.22) 94 (0.34) 2210 (0.21) 44 (0.34) 2228 (0.21) 20 (0.40) 

 

  
Maternal country of 

origin 

Africa 28876 (2.89) 137 (0.49) 30009 (2.84) 91 (0.71) 30206 (2.83) 29 (0.59) 

Americas 10590 (1.06) 95 (0.34) 11081 (1.05) 50 (0.39) 11175 (1.05) 19 (0.38) 
 

Asia 31059 (3.11) 341 (1.23) 32138 (3.05) 178 (1.38) 32345 (3.03) 64 (1.29) 
 

Europe 52800 (5.29) 296 (1.07) 54716 (5.19) 152 (1.18) 55054 (5.17) 71 (1.43) 
 

Middle East 57001 (5.71) 223 (0.80) 59202 (5.61) 144 (1.12) 59579 (5.59) 51 (1.03) 
 

Oceania 415 (0.04) 10 (0.04) 439 (0.04) 5 (0.04) 446 (0.04) 1 (0.02) 
 

Scandinavia 16258 (1.63) 364 (1.31) 17299 (1.64) 177 (1.38) 17466 (1.64) 78 (1.57) 
 

Swedish 800690 (80.25) 26275 (94.72) 850296 (80.58) 12061 (93.80) 859593 (80.65) 4641 (93.68)  

Birth year 1999-2001 183455 (18.39) 3773 (13.60) 226637 (21.48) 2097 (16.31) 228992 (21.48) 786 (15.87) 
 

2002-2004 257752 (25.83) 6900 (24.87) 261691 (24.80) 3623 (28.18) 264932 (24.86) 1419 (28.64) 
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  N(%) 

Variable Level 

Non-snus before 

pregnancy 

Snus before 

pregnancy 

Non-snus at first 

prenatal visit 

Snus at first prenatal 

visit 

Non-snus at 32 

weeks Snus at 32 weeks  
2005-2007 262196 (26.28) 7082 (25.53) 266003 (25.21) 3306 (25.71) 268987 (25.24) 1135 (22.91) 

 
2008-2010 294286 (29.50) 9986 (36.00) 300849 (28.51) 3832 (29.80) 302953 (28.42) 1614 (32.58) 

  
Any maternal smoking 

in pregnancy 

No 906723 (90.88) 26331 (94.92) 963349 (91.30) 11760 (91.46) 972735 (91.26) 4467 (90.17) 

Yes 90966 (9.12) 1410 (5.08) 91831 (8.70) 1098 (8.54) 93129 (8.74) 487 (9.83)  

Any maternal snus use 

in pregnancy 

No 994642 (99.69) 16188 (58.35) 1053486 (99.84) 0 (0.00) 1059398 (99.39) 0 (0.00) 

Yes 3047 (0.31) 11553 (41.65) 1694 (0.16) 12858 (100.00) 6466 (0.61) 4954 (100.00) 

 



 

244 

 

Table D.2.1-4: Descriptives of cohort for sensitivity analysis (ii) separated by change in smoking behaviour across 

first two pregnancies 

  N(%) 

Variable Level Total Stopped Started 

Total 
 

663875 8913 4995 
 

Intellectual disability No 659146 (99.29) 8843 (99.21) 4946 (99.02) 

 

Yes 4729 (0.71) 70 (0.79) 49 (0.98) 

 

Small for gestational age No 644096 (97.02) 8528 (95.68) 4839 (96.88) 

 Yes 17473 (2.63) 347 (3.89) 134 (2.68) 

 

Sex Female 322324 (48.55) 4290 (48.13) 2443 (48.91) 
 

Male 341551 (51.45) 4623 (51.87) 2552 (51.09) 
 

Parity 1 461255 (69.48) 7443 (83.51) 3818 (76.44) 
 

2 117966 (17.77) 938 (10.52) 750 (15.02) 
 

3 or more 84654 (12.75) 532 (5.97) 427 (8.55) 
 

Highest parental 

education 

High School 32379 (4.88) 857 (9.62) 733 (14.67) 

Gymnasium 280306 (42.22) 5810 (65.19) 3115 (62.36) 
 

University 351190 (52.90) 2246 (25.20) 1147 (22.96) 
 

Adjusted family income 1 78696 (11.85) 1411 (15.83) 1230 (24.62) 
 

2 125083 (18.84) 2064 (23.16) 1225 (24.52) 
 

3 129914 (19.57) 2016 (22.62) 932 (18.66) 
 

4 159749 (24.06) 2158 (24.21) 1031 (20.64) 
 

5 170433 (25.67) 1264 (14.18) 577 (11.55) 
 

Maternal anxiety 

diagnosis 

No 644529 (97.09) 8569 (96.14) 4841 (96.92) 

Yes 19346 (2.91) 344 (3.86) 154 (3.08) 
 

Maternal depression 

diagnosis 

No 650406 (97.97) 8686 (97.45) 4889 (97.88) 

Yes 13469 (2.03) 227 (2.55) 106 (2.12) 
 

Maternal psychosis 

diagnosis 

No 661469 (99.64) 8883 (99.66) 4976 (99.62) 

Yes 2406 (0.36) 30 (0.34) 19 (0.38) 
 

Maternal addiction 

diagnosis 

No 653174 (98.39) 8547 (95.89) 4847 (97.04) 

Yes 10701 (1.61) 366 (4.11) 148 (2.96) 
 

Any maternal psychiatric 

diagnosis 

No 628798 (94.72) 8175 (91.72) 4657 (93.23) 

Yes 35077 (5.28) 738 (8.28) 338 (6.77) 
 

Any paternal psychiatric 

diagnosis 

No 638056 (96.11) 8350 (93.68) 4725 (94.59) 

Yes 25819 (3.89) 563 (6.32) 270 (5.41) 
 

Any maternal 

neurodevelopmental 

diagnosis 

No 662551 (99.80) 8896 (99.81) 4975 (99.60) 

Yes 1324 (0.20) 17 (0.19) 20 (0.40) 

 
 

Any paternal 

neurodevelopmental 

diagnosis 

No 662436 (99.78) 8885 (99.69) 4978 (99.66) 

Yes 1439 (0.22) 28 (0.31) 17 (0.34) 

 
 

Maternal country of 

origin 

Africa 17491 (2.63) 84 (0.94) 85 (1.70) 

Americas 7448 (1.12) 50 (0.56) 50 (1.00) 
 

Asia 22311 (3.36) 137 (1.54) 105 (2.10) 
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  N(%) 

Variable Level Total Stopped Started 
 

Europe 37280 (5.62) 589 (6.61) 445 (8.91) 
 

Middle East 36707 (5.53) 343 (3.85) 467 (9.35) 
 

Oceania 282 (0.04) 0 (0.00) 2 (0.04) 
 

Scandinavia 11224 (1.69) 158 (1.77) 88 (1.76) 
 

Swedish 531132 (80.00) 7552 (84.73) 3753 (75.14) 
 

Birth year 1999-2001 206662 (31.13) 3037 (34.07) 2354 (47.13) 
 

2002-2004 163022 (24.56) 3687 (41.37) 1419 (28.41) 
 

2005-2007 139817 (21.06) 1805 (20.25) 1014 (20.30) 
 

2008-2010 154374 (23.25) 384 (4.31) 208 .16) 
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D.2.2 – Missing data 

Table D.2.2-1: Descriptives for missing covariate data 

Variable Level Included, N(%) Excluded, N(%) 

O.R. for exclusion (95% 

CI) 

Total 
 

1132473 (100.00) 824 (100.00)   

Intellectual disability No 1124940 (99.33) 811 (98.42) Ref 
 

Yes 7533 (0.67) 13 (1.58) 2.39 (1.38-4.14)  

Small for gestational 

age 

No 1104238 (97.51) 785 (95.27) Ref 

Yes 

 

24090 (2.13) 37 (4.49) 2.16 (1.55-3.01) 

Any maternal 

smoking in 

pregnancy 

No 980066 (86.54) 701 (85.07) Ref 

Yes 103099 (9.10) 80 (9.71) 1.08 (0.86-1.37) 
 

Missing 49308 (4.35) 43 (5.22) 1.22 (0.90-1.66)  

Any maternal snus 

use in pregnancy 

No 1060047 (93.60) 768 (93.20) Ref 

Yes 14972 (1.32) 9 (1.09) 0.83 (0.43-1.60) 
 

Missing 57454 (5.07) 47 (5.70) 1.13 (0.84-1.52)  

Sex Female 549959 (48.56) 402 (48.79) Ref 
 

Male 582514 (51.44) 422 (51.21) 0.99 (0.86-1.14)  

Parity 1 503786 (44.49) 393 (47.69) Ref 
 

2 413596 (36.52) 183 (22.21) 0.57 (0.48-0.68) 
 

3 or more 215091 (18.99) 248 (30.10) 1.48 (1.26-1.73)  

Highest parental 

education 

High School 53744 (4.75) 19 (2.31) Ref 

Gymnasium 467625 (41.29) 40 (4.85) 0.24 (0.14-0.42) 
 

University 611104 (53.96) 72 (8.74) 0.33 (0.20-0.55)  

Adjusted family 

income 

1 128677 (11.36) 430 (52.18) 19.75 (14.44-27.03) 

2 238887 (21.09) 161 (19.54) 3.98 (2.85-5.58) 
 

3 254172 (22.44) 43 (5.22) Ref 
 

4 257905 (22.77) 20 (2.43) 0.46 (0.27-0.78) 
 

5 252832 (22.33) 61 (7.40) 1.43 (0.97-2.11)  

Maternal anxiety 

diagnosis 

No 1096769 (96.85) 804 (97.57) Ref 

Yes 35704 (3.15) 20 (2.43) 0.76 (0.49-1.19)  

Maternal depression 

diagnosis 

No 1108057 (97.84) 804 (97.57) Ref 

Yes 24416 (2.16) 20 (2.43) 1.13 (0.72-1.76)  

Maternal psychosis 

diagnosis 

No 1128347 (99.64) 822 (99.76) Ref 

Yes 4126 (0.36) 2 (0.24) 0.67 (0.17-2.67)  

Maternal addiction 

diagnosis 

No 1114428 (98.41) 821 (99.64) Ref 

Yes 18045 (1.59) 3 (0.36) 0.23 (0.07-0.70)  

Any maternal 

psychiatric diagnosis 

No 1069221 (94.41) 788 (95.63) Ref 

Yes 63252 (5.59) 36 (4.37) 0.77 (0.55-1.08)  

Any paternal 

psychiatric diagnosis 

No 1087032 (95.99) 806 (97.82) Ref 

Yes 45441 (4.01) 18 (2.18) 0.53 (0.33-0.85)  

Any maternal 

neurodevelopmental 

diagnosis 

No 1130342 (99.81) 816 (99.03) Ref 

Yes 2131 (0.19) 8 (0.97) 5.20 (2.59-10.45) 

  
Any paternal 

neurodevelopmental 

diagnosis 

No 1130111 (99.79) 822 (99.76) Ref 

Yes 2362 (0.21) 2 (0.24) 1.16 (0.29-4.67) 

  
Maternal country of 

origin 

Africa 31815 (2.81) 153 (18.57) 84.64 (61.78-115.96) 

Americas 11914 (1.05) 16 (1.94) 23.64 (13.49-41.41)  
Asia 33954 (3.00) 71 (8.62) 36.80 (25.73-52.64) 
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Variable Level Included, N(%) Excluded, N(%) 

O.R. for exclusion (95% 

CI)  
Europe 57821 (5.11) 137 (16.63) 41.70 (30.30-57.39) 

 
Middle East 62334 (5.50) 93 (11.29) 26.26 (18.70-36.87) 

 
Oceania 491 (0.04) 4 (0.49) 143.38 (51.66-397.96) 

 
Scandinavia 18925 (1.67) 59 (7.16) 54.87 (37.78-79.68) 

 
Swedish 915219 (80.82) 52 (6.31) Ref  

Birth year 1999-2001 250416 (22.11) 85 (10.32) Ref 
 

2002-2004 276150 (24.38) 128 (15.53) 1.37 (1.04-1.80) 
 

2005-2007 293076 (25.88) 214 (25.97) 2.15 (1.67-2.77) 
 

2008-2010 312831 (27.62) 397 (48.18) 3.74 (2.96-4.73) 
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Table D.2.2-2: Descriptives for missing exposure data 

Variable Level Included, N(%) Excluded, N(%) 

O.R. for exclusion 

 (95% CI) 

Total 
 

1074088 (100.00) 58385 (100.00)   

Intellectual disability No 1067096 (99.35) 57844 (99.07) Ref 
 

Yes 6992 (0.65) 541 (0.93) 1.43 (1.31-1.56)  

Small for gestational age No 1048198 (97.59) 56040 (95.98) Ref 

Yes 22574 (2.10) 1516 (2.60) 1.26 (1.19-1.32) 

 

Any maternal smoking in 

pregnancy 

No 979949 (91.24) 117 (0.20) Ref 

Yes 94139 (8.76) 8960 (15.35) 797.18 (664.20-956.79) 
 

Missing 0 (0.00) 49308 (84.45)   

Any maternal snus use in 

pregnancy 

No 1059398 (98.63) 649 (1.11) Ref 

Yes 14690 (1.37) 282 (0.48) 31.34 (27.22-36.07) 
 

Missing 0 (0.00) 57454 (98.41)   

Sex Female 521928 (48.59) 28031 (48.01) Ref 
 

Male 552160 (51.41) 30354 (51.99) 1.02 (1.01-1.04)  

Parity 1 477543 (44.46) 26243 (44.95) Ref 
 

2 393141 (36.60) 20455 (35.03) 0.95 (0.93-0.96) 
 

3 or more 203404 (18.94) 11687 (20.02) 1.05 (1.02-1.07)  

Highest parental education High School 49943 (4.65) 3801 (6.51) Ref 
 

Gymnasium 444362 (41.37) 23263 (39.84) 0.69 (0.66-0.71) 
 

University 579783 (53.98) 31321 (53.65) 0.71 (0.69-0.74)  

Adjusted family income 1 121353 (11.30) 7324 (12.54) 1.32 (1.29-1.37) 
 

2 227142 (21.15) 11745 (20.12) 1.13 (1.11-1.17) 
 

3 243097 (22.63) 11075 (18.97) Ref 
 

4 246339 (22.93) 11566 (19.81) 1.03 (1.00-1.06) 
 

5 236157 (21.99) 16675 (28.56) 1.55 (1.51-1.59)  

Maternal anxiety diagnosis No 1040061 (96.83) 56708 (97.13) Ref 
 

Yes 34027 (3.17) 1677 (2.87) 0.90 (0.86-0.95)  

Maternal depression diagnosis No 1050740 (97.83) 57317 (98.17) Ref 
 

Yes 23348 (2.17) 1068 (1.83) 0.84 (0.79-0.89)  

Maternal psychosis diagnosis No 1070223 (99.64) 58124 (99.55) Ref 
 

Yes 3865 (0.36) 261 (0.45) 1.24 (1.10-1.41)  

Maternal addiction diagnosis No 1057113 (98.42) 57315 (98.17) Ref 
 

Yes 16975 (1.58) 1070 (1.83) 1.16 (1.09-1.24)  

Any maternal psychiatric 

diagnosis 

No 1014020 (94.41) 55201 (94.55) Ref 

Yes 60068 (5.59) 3184 (5.45) 0.97 (0.94-1.01)  

Any paternal psychiatric 

diagnosis 

No 1030905 (95.98) 56127 (96.13) Ref 

Yes 43183 (4.02) 2258 (3.87) 0.96 (0.92-1.00)  

Any maternal 

neurodevelopmental diagnosis 

No 1072057 (99.81) 58285 (99.83) Ref 

Yes 2031 (0.19) 100 (0.17) 0.91 (0.74-1.11)  

Any paternal 

neurodevelopmental diagnosis 

No 1071828 (99.79) 58283 (99.83) Ref 

Yes 2260 (0.21) 102 (0.17) 0.83 (0.68-1.01)  

Maternal country of origin Africa 30254 (2.82) 1561 (2.67) 0.93 (0.89-0.98) 
 

Americas 11207 (1.04) 707 (1.21) 1.14 (1.06-1.23) 
 

Asia 32452 (3.02) 1502 (2.57) 0.84 (0.79-0.88) 
 

Europe 55167 (5.14) 2654 (4.55) 0.87 (0.84-0.91) 
 

Middle East 59673 (5.56) 2661 (4.56) 0.81 (0.78-0.84) 
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Variable Level Included, N(%) Excluded, N(%) 

O.R. for exclusion 

 (95% CI)  
Oceania 448 (0.04) 43 (0.07) 1.74 (1.27-2.38) 

 
Scandinavia 17591 (1.64) 1334 (2.28) 1.37 (1.30-1.45) 

 
Swedish 867296 (80.75) 47923 (82.08) Ref  

Birth year 1999-2001 230560 (21.47) 19856 (34.01) Ref 
 

2002-2004 267214 (24.88) 8936 (15.31) 0.39 (0.38-0.40) 
 

2005-2007 270768 (25.21) 22308 (38.21) 0.96 (0.94-0.98) 
 

2008-2010 305546 (28.45) 7285 (12.48) 0.28 (0.27-0.28) 
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D.3 – Reanalysis of snus use in pregnancy-SGA association without 

exclusions that may lead to bias 

 

Table D.3-1: Repeat of primary analysis of snus use in pregnancy at any time and offspring risk of being born SGA 

using data that did not exclude those with metabolic, genetic and chromosomal abnormalities.  

  Snus use in pregnancy 

Model Coefficient O.R. a 95% CI 

1 - Conventional unadjusted Population averaged 1.03 (0.92-1.15) 

2 - Conventional adjusted b Population averaged 1.06 (0.95-1.18) 

3 - Within-between unadjusted Within-family 1.02 (0.82-1.28) 
 

Between-family 1.01 (0.78-1.31) 

4 - Within-between adjusted b Within-family 1.08 (0.85-1.37) 
 

Between-family 0.97 (0.74-1.27) 

a Estimates produced using a total sample size of 1,083,663 individuals from 711,737 families including 23,432 cases 

of SGA.   

b Model adjusted for year of birth, sex, parity, highest parental education, income, parental psychiatric history, 

maternal country of origin and maternal age at birth. 
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Table D.3-2: Repeat of secondary analysis of the effect of timing of snus use in pregnancy and offspring risk of being 

born SGA using data that did not exclude those with metabolic, genetic and chromosomal abnormalities. 

  Snus use in pregnancy 

Model Coefficient O.R. 95% CI 

1 - Conventional unadjusted a 

(population-averaged estimates) 

Non-user 1.00  

User before pregnancy only 0.82 (0.73-0.92) 

Quit during pregnancy 0.92 (0.76-1.11) 

 Used late into pregnancy 0.99 (0.79-1.24) 

2 - Conventional adjusted a, b 

(population-averaged estimates) 

Non-user 1.00  

User before pregnancy only 0.79 (0.70-0.89) 

 Quit during pregnancy 0.93 (0.76-1.12) 

 Used late into pregnancy 1.05 (0.84-1.33) 

3 - Unadjusted conditional logistic c 

(within-family estimates) 

Non-user 1.00  

User before pregnancy only 1.11 (0.83-1.49) 

Quit during pregnancy 1.06 (0.69-1.63) 

 Used late into pregnancy 1.14 (0.59-2.20) 

4 - Adjusted conditional logistic b, c 

(within-family estimates) 

Non-user 1.00  

User before pregnancy only 0.87 (0.63-1.20) 

 Quit during pregnancy 1.20 (0.75-1.93) 

 Used late into pregnancy 1.61 (0.78-3.25) 

a Estimates produced using a total sample size of 1,077,716 individuals from 709,097 families including 23,282 cases 

of SGA.   

b Model adjusted for year of birth, sex, parity, highest parental education, income, parental psychiatric history, 

maternal country of origin and maternal age at birth. 

c Estimates produced using a total sample size of 24,123 individuals including 10,923 cases of SGA.   
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Appendix E – Supplementary material to Chapter 7 

E.1 – Methods  

E1.1 – Multiple-sourced indicator variable for ID 

 

Table E.1.1-1: Search terms and number of hits for free text fields. 

Search term Number of Hits in ALSPAC 

Intellectual Disability 0 

Developmental Disabilities 0 

Intellectual disab 0 

developmental disab 0 

learning disab 15 

mental retard <5 

mental handicap 0 

handicap 5 

intellectual 5 

retard 7 

learning disability 6 

learning disabled <5 

learning difficulties 137 

learning difficulty 41 

difficulty learning <5 

mental disability 0 

mentally disabled <5 

mentally retarded 0 

mental retardation <5 

low IQ <5 

development delay 20 

developmental delay 29 
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Table E.1.1-2: Read codes used to indicate intellectual disability in GP records 

Read code Description 

13Z4E Learning difficulties 

6664 Mental handicap problem 

69DB Learning disability health examination 

8Ce6 Preferred place of care - learning disability unit 

8H4f Referral to learning disabilities psychiatrist 

8HHP Referral to learning disability team 

8Hg2 Discharge from learning disability team 

918e On learning disability register 

9HB Learning disabilities administration status 

9HB0 Learning disabilities health action plan declined 

9HB1 Learning disabilities health action plan offered 

9HB2 Learning disabilities health action plan reviewed 

9HB3 Learning disabilities health assessment 

9HB4 Learning disabilities health action plan completed 

9HB5 Learning disabilities annual health assessment 

9HB6 Learning disabilities annual health assessment declined 

9HB7 Did not attend learning disabilities annual health check 

9N0y Seen in learning disabilities clinic 

9hL Exception reporting: learning disability quality indicators 

9mA Learning disability annual health check invitation 

9mA0 Learning disability annual health check verbal invitation 

9mA1 Learning disability annual health check telephone invitation 

9mA2 Learning disability annual health check letter invitation 

9mA20 Learning disability annual health check invtation 1st letter 

9mA21 Learning disability annual health check invtation 2nd letter 

9mA22 Learning disability annual health check invtation 3rd letter 

E3 Mental retardation 

E30 Mild mental retardation, IQ in range 50-70 

E31 Other specified mental retardation 

E310 Moderate mental retardation, IQ in range 35-49 

E311 Severe mental retardation, IQ in range 20-34 

E312 Profound mental retardation with IQ less than 20 

E31z Other specified mental retardation NOS 

E3y Other specified mental retardation 

E3z Mental retardation NOS 

Eu7 [X]Mental retardation 

Eu70 [X]Mild mental retardation 

Eu700 [X]Mld mental retard with statement no or min impairm behav 

Eu701 [X]Mld mental retard sig impairment behav req attent/treatmt 

Eu70y [X]Mild mental retardation, other impairments of behaviour 

Eu70z [X]Mild mental retardation without mention impairment behav 

Eu71 [X]Moderate mental retardation 

Eu710 [X]Mod mental retard with statement no or min impairm behav 

Eu711 [X]Mod mental retard sig impairment behav req attent/treatmt 

Eu71y [X]Mod retard oth behav impair 

Eu71z [X]Mod mental retardation without mention impairment behav 

Eu72 [X]Severe mental retardation 

Eu720 [X]Sev mental retard with statement no or min impairm behav 

Eu721 [X]Sev mental retard sig impairment behav req attent/treatmt 

Eu72y [X]Severe mental retardation, other impairments of behaviour 

Eu72z [X]Sev mental retardation without mention impairment behav 

Eu73 [X]Profound mental retardation 

Eu731 [X]Profound ment retard sig impairmnt behav req attent/treat 

Eu73y [X]Profound mental retardation, other impairments of behavr 

Eu73z [X]Prfnd mental retardation without mention impairment behav 

Eu7y [X]Other mental retardation 

Eu7y0 [X]Oth mental retard with statement no or min impairm behav 

Eu7y1 [X]Oth mental retard sig impairment behav req attent/treatmt 

Eu7yy [X]Other mental retardation, other impairments of behaviour 

Eu7yz [X]Other mental retardation without mention impairment behav 

Eu7z [X]Unspecified mental retardation 

Eu7z0 [X]Unsp mental retard with statement no or min impairm behav 

Eu7z1 [X]Unsp mentl retard sig impairment behav req attent/treatmt 

Eu7zy [X]Unspecified mental retardatn, other impairments of behav 

Eu7zz [X]Unsp mental retardation without mention impairment behav 
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Read code Description 

Eu814 [X]Moderate learning disability 

Eu815 [X]Severe learning disability 

Eu816 [X]Mild learning disability 

Eu817 [X]Profound learning disability 

Eu81z [X]Learning disorder NOS 

Eu841 [X]Mental retardation with autistic features 

Eu844 [X]Overactive disorder assoc mental retard/stereotype movts 

R034y [D]Global retardation 

Z7CBE Intellectual functioning disability 

Z7CD2 Learning difficulties 

ZL1B5 Under care of psychiatrist for mental handicap 

ZL5B5 Referral to psychiatrist for mental handicap 

ZL9D5 Seen by psychiatrist for mental handicap 

ZLD2f Discharge by psychiatrist for mental handicap 

ZLE94 Discharge from mental handicap psychiatry service 

ZS34 Learning disability 

ZV623 [V]Educational handicap 

1286 FH: Mental retardation 

94Z9 Preferred place of death: learning disability unit 

9hL0 Excepted from learning disability quality indicators: informed dissent 

9hL1 Excepted from learning disability quality indicators: patient unsuitable 

Eu730 [X]Profound mental retardation with the statement of no, or minimal, impairment of behaviour 

PKyG Mental retardation, congenital heart disease, blepharophimosis, blepharoptosis and hypoplastic 

teeth 

R034E [D]Developmental delay 

Eu81z-1 [x]learning disability nos 

E30-1 educationally subnormal 

6664 Mental handicap problem  

 

 

 

Table E.1.1-3: International classification of disease diagnosis codes for intellectual disability obtained from 

hospital episode statistics data. 

Diagnosis classification 

system 

ICD code Description 

ICD-9 317  Mild intellectual disabilities 

 318.0 Moderate intellectual disabilities 

 318.1 Severe intellectual disabilities 

 318.2 Profound intellectual disabilities 

 319 Unspecified intellectual disabilities 

 

ICD-10 F70  Mild intellectual disabilities 

 F71  Moderate intellectual disabilities 

 F72  Severe intellectual disabilities 

 F73  Profound intellectual disabilities 

 F78 Other intellectual disabilities 

 F79  Unspecified intellectual disabilities  
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E1.2 – Exclusion criteria  

 

Table E.1.2-1: Codes (read and ICD) used to identify genetic, chromosomal and metabolic abnormalities. 

Source (code type) Code Description 

GP records (read code) 1JB0 Suspected Downs syndrome 

677C4 Carrier of fragile X gene mutation 

 C301 Phenylketonuria 

 F1y0 Fragile X associated tremor ataxia syndrome 

 PJ0 Down's syndrome - trisomy 21 

 PJ02 Partial trisomy 21 in Down's syndrome 

 PJ0z Down's syndrome NOS 

 PJ2 Edward's syndrome - trisomy 18 

 PJ22 Partial trisomy 18 in Edward's syndrome 

 PJ2z Edward's syndrome NOS 

 PJ31 Cri-du-chat syndrome 

 PJ534 Individual with autosomal fragile site 

 PJyy2 Fragile X chromosome 

 PJyy4 Fragile X syndrome 

 PK5 Tuberous sclerosis 

 PK61 Sturge-Weber syndrome 

 PKy0 Prader-Willi syndrome 

 PKy4 William syndrome 

 PKy60 Cornelia de Lange syndrome 

 PKy80 Noonan's syndrome 

 PKy93 Prader - Willi syndrome 

 PKyz5 Angelman syndrome 

 PKyz7 Angelman syndrome 

 ZC2C6 Dietary advice for phenylketonuria 

 PJ00 Trisomy 21, meiotic nondisjunction 

 PJ01 Trisomy 21, mosaicism 

 PJ20 Trisomy 18, meiotic nondisjunction 

 PJ21 Trisomy 18, mosaicism 

 PJ0-2 trisomy 21 

 PJ50w Whole chromosome trisomy, meitotic nondisjunction 

 PJ11. Trisomy 13, mosaicism 

 PJ507 Other trisomy C syndromes 

 PJ1z. Patau's syndrome NOS 

 PKy03 Weaver syndrome = Sotos syndrome 

 PJ506 Trisomy 12 

 PJ636 Turner's phenotype, ring chromosome karyotype 

 PJ334 Jacobsen syndrome 

 PJ12. Trisomy 13, translocation 

 PJ333 Smith-Magenis syndrome 

 PJ504 Trisomy 10 

 PJ523 Triploidy 

 PKy95 Biemond's syndrome 

 PJ524 Polyploidy 

 PKyz0 Ullrich - Feichtiger syndrome, chimaera 

 PJ50x Whole chromosome trisomy, mitotic nondisjunction 

 PJ50z Whole chromosome trisomy syndrome NOS 

 PJ10. Trisomy 13, meiotic nondisjunction 

 PJ332 Deletion of short arm of chromosome 18 

 PJ30. Deletion of long arm of chromosome 21 

 PJ501 Trisomy 7 

 PJ71. Klinefelter's syndrome, male with more than two X chromosomes 

 PJ37. Whole chromosome monosomy, mosaicism 

 PJ505 Trisomy 11 

 PJ1.. Patau's syndrome - trisomy 13 

 PJ508 Trisomy 22 

 PJ502 Trisomy 8 

 PJ5y. Pseudotrisomy 18 

 PJ32. Deletion of short arm of chromosome 4 

 PJ50. Whole chromosome trisomy syndromes 

 PJ330 Deletion of long arm of chromosome 13 

 PJ3y0 Shprintzen syndrome 
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Source (code type) Code Description 

 PJ510 Major partial trisomy 

 PJ331 Deletion of long arm of chromosome 18 

 PJ500 Trisomy 6 

 PJ36. Whole chromosome monosomy, meiotic nondisjunction 

 PKy92 Menke's syndrome 

 PJ503 Trisomy 9 

 PJ73. Klinefelter's syndrome, XXYY 

 PJ50y Other specified whole chromosome trisomy syndrome 

 Eu842 [X]Rett's syndrome 

 PJ9.. Mowat-Wilson syndrome 

 PKyz. Cockayne's syndrome 

 PKy94 Zellweger's syndrome  

   

HES data (ICD-9 codes) 270.0  Disturbances of amino-acid transport 

 270.1  Phenylketonuria [PKU] 

 270.2  Other disturbances of aromatic amino-acid metabolism 

 270.3  Disturbances of branched-chain amino-acid metabolism 

 270.4  Disturbances of sulphur-bearing amino-acid metabolism 

 270.5  Disturbances of histidine metabolism 

 270.6  Disorders of urea cycle metabolism 

 270.7  Other disturbances of straight-chain amino-acid metabolism 

 270.8  Other specified disorders of amino-acid metabolism 

 270.9  Unspecified disorder of amino-acid metabolism 

 271.8  Other specified disorders of carbohydrate transport and metabolism 

 272.8  Other disorders of lipoid metabolism 

 277.81  Primary carnitine deficiency 

 277.82  Carnitine deficiency due to inborn errors of metabolism 

 277.83  Iatrogenic carnitine deficiency 

 277.84  Other secondary carnitine deficiency 

 277.85  Disorders of fatty acid oxidation 

 277.86  Peroxisomal disorders 

 277.89  Other specified disorders of metabolism 

 279.11  Digeorge's syndrome 

 330.8  Other specified cerebral degenerations in childhood 

 751.60  Unspecified anomaly of gallbladder, bile ducts, and liver 

 751.69  Other anomalies of gallbladder, bile ducts, and liver 

 758.0  Down's syndrome 

 758.1  Patau's syndrome 

 758.2  Edwards' syndrome 

 758.31  Cri-du-chat syndrome 

 758.32  Velo-cardio-facial syndrome 

 758.33  Other microdeletions 

 758.39  Other autosomal deletions 

 758.4  Balanced autosomal translocation in normal individual 

 758.5  Other conditions due to autosomal anomalies 

 758.6  Gonadal dysgenesis 

 758.7  Klinefelter's syndrome 

 758.81  Other conditions due to sex chromosome anomalies 

 758.9  Conditions due to anomaly of unspecified chromosome 

 759.5  Tuberous sclerosis 

 759.81  Prader-Willi syndrome 

 759.83  Fragile X syndrome 

 759.89  Other specified congenital anomalies  

   

HES data (ICD-10 codes) F84.2  Rett's syndrome 

 Q89.8  Williams syndrome 

 Q87.1 Prader-Willi syndrome 

 Q87.2 Rubinstein-Taybi syndrome  

 Q44.7 Alagille syndrome 

 D82.1  DiGeorge syndrome 

 Q85.0 Neurofibromatosis (non-malignant) 

 Q85.1 Tuberous sclerosis 

 Q90  Down syndrome 

 Q91  Trisomy 18 and Trisomy 13 

 Q92  Other trisomies and partial trisomies of the autosomes, not 

elsewhere classified 



 

257 

 

Source (code type) Code Description 

 Q93  Monosomies and deletions from the autosomes, not elsewhere 

classified 

 Q95  Balanced rearrangements and structural markers, not elsewhere 

classified 

 Q96  Turner's syndrome 

 Q97  Other sex chromosome abnormalities, female phenotype, not 

elsewhere classified 

 Q98  Other sex chromosome abnormalities, male phenotype, not 

elsewhere classified 

 Q99  Other chromosomal abnormalities, not elsewhere specified 

 E70 Disorders of aromatic amino-acid metabolism 

 E71 Disorders of branched-chain amino-acid metabolism and fatty-acid 

metabolism 

 E72 Other disorders of amino-acid metabolism 
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Personal Reflections  
 

 

At the start of this PhD I considered causal inference to be this magical set of methods that 

revealed the true value of an unknown estimate. All other researchers must be kicking 

themselves for not having put the time in to try to figure out how to use these methods. Slowly, 

over 4 years I came to the realisation that these methods are simply imperfect ways of reducing 

the impacts of the different forms of bias that can hide the truth behind associations. Becoming 

aware of this was humbling and helped me become a bit less arrogant about the quality of the 

work I was producing and the comparison to methods used by others in the field. This also 

opened up a whole new avenue of research that I did not think I would enjoy when I started.  

If the first page of a google search is to be believed, on February 5th 1675, Isaac Newton wrote a 

letter to Robert Hooke where he provided the now famous (and perhaps overused) metaphor for 

the progression of knowledge: “If I have seen further it is by standing on the shoulders of 

Giants”. As an epidemiologist and statistician, some of the most interesting work has been 

assessing the methods we are using to assess causality and trying to identify under what 

scenarios do they show what we think they are showing. Performing simulation studies has not 

felt like standing on the shoulder of giants, though the work of the researchers who developed 

these methods is genuinely quite amazing. Instead it has felt more like standing at the top of a 

large human pyramid, throwing large stones to see if the foundations on which you stand on are 

really all that sturdy, fully aware that you may have to jump onto another nearby pyramid when 

you, or a peer next to you, lands a well-placed throw. This is perhaps too generous an analogy 

given that none of the work I’ve undertaken so far is likely to be paradigm shifting. It does, 

however, speak to the concept of testing ideas to find where they fall apart and the sometimes 

hostile nature with which scientists do this (academic twitter has truly been eye opening with 

this regard). Going forward I would like to be one of the researchers that challenges others’ 

ideas with tact and grace though it has been fun developing the accuracy of my throw and 

deciding which nearby pyramid would be best to jump to.  

In my continuing development as a researcher I need to work on selecting the most relevant 

information rather than providing everything in the hope that it provides a complete picture. Too 

much information can sometimes be just as confusing as restricted information (Bradbury’s 

dystopia in Fahrenheit 451 is not necessarily better than Orwell’s dystopia in 1984). The length 

of the appendices (nearly 70 pages) in this thesis is a testament to the fact that this is something 

I still need to work on.  



 

259 

 

This thesis was not written in a linear fashion: Chapter 2 was written after Chapters 5 and 6. As 

a result, some of the decisions made in empirical chapters were based on an incomplete 

understanding of the methodological considerations, but could not be changed due to later data 

restrictions. In the perfect world I would have fully understood all of the methods before I 

implemented them. The reality of implementing anything is that understanding and mastery 

comes with time. You walk before you can run. You cycle the bike before realising you can go 

faster by strapping your feet to the pedals. I’ve been told many times that the purpose of the 

PhD is not to write the perfect thesis, but to display the development of understanding. I’ve 

learnt a lot over 4 years and have been very lucky to have had the opportunity to spend such a 

large portion of time developing understanding of an area that I find interesting. I look forward 

to a career where I can continually learn and never feel comfortable in the knowledge I already 

have.  

It has been an interesting experience completing this PhD during the course of the COVID-19 

global pandemic. What has been nice is that (most) people now know what an epidemiologist is. 

I hope that fewer people ask me if it means that I work with skin (maybe a reasonable mistake). 

I thought that training in this area would mean that I would have a solid understanding of all the 

data and studies and questions that people have produced but I instead feel none the wiser than 

the average person. This may be showing the difference in working in non-communicable 

disease epidemiology versus working in infectious disease epidemiology. A number of experts 

in fields other than epidemiology produced work that was criticised heavily for questionable 

decisions due to not fully understanding the field and therefore drawing conclusions from their 

data that were potentially harmful. Many were criticised for wandering out of their field (see for 

example https://www.theguardian.com/world/2020/may/31/covid-19-expert-karl-friston-

germany-may-have-more-immunological-dark-matter and the response from GDS 

https://twitter.com/mendel_random/status/1267075832897507328). I don’t disagree with this 

criticism. Thinking that you can better another field by stumbling in and having a go dismisses 

the time experts within that field have spent grappling with the minutiae that needs to be 

understood in order to provide usable data and interpretation. However, one of the best bits of 

being an epidemiologist is that it is a crossing point for so many different fields (mathematics, 

statistics, biology, medicine, chemistry, psychology, economics, geography, history and likely 

several more). As a result there is ample opportunity to work with many people who have 

training in a different field to you, meaning that each new collaboration provides an opportunity 

to develop understanding of an area of science you had previously not thought much about. In 

essence my experience of the pandemic has reinforced the idea that it’s good to explore areas 

you know nothing about, but to be aware of your limitations and collaborate with people that 

can teach you more.  

https://www.theguardian.com/world/2020/may/31/covid-19-expert-karl-friston-germany-may-have-more-immunological-dark-matter
https://www.theguardian.com/world/2020/may/31/covid-19-expert-karl-friston-germany-may-have-more-immunological-dark-matter
https://twitter.com/mendel_random/status/1267075832897507328

