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ABSTRACT

In this thesis we investigate the Galois representation attached to an algebraic curve over a
local field. In particular, we consider elliptic and hyperelliptic curves with very bad reduction,
i.e. which acquire good reduction over a wildly ramified extension.

It is a well-known fact that the primes at which an elliptic curve may acquire good reduction
over a wildly ramified extension are 2 and 3. For such primes, a classification of the restriction to
inertia of the Galois representation is well understood in the literature; in particular the image
of inertia is a finite group, which can be either cyclic or non-abelian. However, less is known
about the full Galois action. In this work we give an explicit and algorithmic description of the
Galois representations which occur in these cases, with a particular focus on the curves with
non-abelian inertia image.

For a hyperelliptic curve of genus g, the primes of wild reduction are at most 2g+1. In this
work we consider the family of hyperelliptic curves which have potentially good reduction at
2g+1, assuming this is a prime, and the largest possible image of inertia. We will see how the
result on the Galois representation attached to one such curve is a direct generalisation of the
corresponding result for elliptic curves.
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1
INTRODUCTION

One of the invariants associated to an algebraic curve X defined over a number field K

is the canonical Galois representation. This is a 2g-dimensional representation of the

absolute Galois group of K , where g is the genus of the curve, which encodes information

on the Galois action on the Tate modules of the Jacobian of X .

Understanding this invariant has several consequences, since it can be used to compute, for

example, the conductor and the root number of the curve, and it is a tool for the study of other

problems such as the inverse Galois problem.

The most natural family of algebraic curves one can consider is that of elliptic curves, in fact

these curves are also abelian varieties, and the Galois representation is defined by looking at the

Galois action on torsion points of the curve itself. However, a complete and effective description

of this representation is non-trivial even in this case, and it cannot be found in literature.

A natural approach to the study of Galois representations is by considering separately the

local behaviour at each completion of K . Indeed, the Galois representation attached to an elliptic

(or higher genus) curve defined over a local field is primarily determined by its reduction type;

moreover the absolute Galois group of the completion of a number field K at some prime p of

K fits into the absolute Galois group of K , as it is isomorphic to a decomposition group of p.

Therefore we will consider a curve defined over a p-adic field, that is a finite extension of Qp,

for a fixed prime p, and for ` different from p, we will study the `-adic Galois representation

attached to this curve, i.e. on the `-adic Tate module.

For elliptic curves, this problem is well understood if the reduction at p is good, multiplicative,

or potentially multiplicative (that is additive and acquiring multiplicative reduction over a

finite extension of the base field). In the case of additive potentially good reduction, the Galois

representation varies, depending on the curve acquiring good reduction over a tamely or wildly
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CHAPTER 1. INTRODUCTION

ramified extension of the base field. The tame case can be easily dealt with, using an algorithmic

approach that essentially consists in point-counting over several finite extensions of the base field.

However, this approach is not useful in the wild case, and a more systematic study is needed.

The first step is to consider the restriction to the inertia subgroup of the `-adic Galois

representation, which has finite image, isomorphic to either a cyclic group of order 2,3,4 or 6, the

dicyclic group of 12 elements, the quaternion group, or SL2(F3); in particular, wild reduction only

occurs when p = 2 or 3, and the inertia image is either cyclic or non-abelian. Then we consider

the family of curves with given inertia image and we study and classify all the possible Galois

representations which can occur.

The non-abelian case is the first one tackled in this thesis. Imposing such a condition on

inertia gives more constraints to the full Galois action, and it can be easily shown that in all three

non-abelian cases there are at most two possibilities for the Galois representation. In order to

distinguish between these two, it is necessary to compute the trace of a certain explicit element,

and this can be done after exhibiting a model with good reduction for the curve over an explicit

finite extension of the base field.

The remaining cases, although apparently more similar to the tame cases, are more subtle:

since the inertia image is small, there are less constraints to the full Galois action. In particular,

if the size of the inertia image is 2, we can only conclude that a quadratic twist of the curve has

good reduction. Nonetheless, the techniques employed in the non-abelian cases can be adapted to

find an explicit answer also in the wild cyclic cases at p = 3 and for the case p = 2 and inertia

image of size 4.

The classification presented here is completely explicit, hence it provides an algorithm for the

computation of the Galois representation in each case. This algorithm has been implemented in a

MAGMA function by the author, in the non-abelian cases.

For higher genus curves, there are few available results on Galois representations, which

largely rely on recent developments in the study of regular models of curves over local fields.

A natural generalisation of elliptic curves is given by hyperelliptic curves and, in the case of

potentially good reduction, only the restriction to inertia is completely understood. However, if

we restrict to the family of hyperelliptic curves of genus g which have potentially good reduction

at p = 2g+1 (assuming this is a prime), which have the largest possible inertia image, we find

that the Galois representation behaves in exactly the same way as in the non-abelian 3-adic case;

in fact, the result for elliptic curves is just a corollary of the result that we will prove for this

family of hyperelliptic curves.

The structure of this thesis is as follows. In Chapter 2 we introduce the notation and review

all the results known in literature, concerning elliptic curves with good, multiplicative, potentially

multiplicative, and tame potentially good reduction. In Chapters 3 and 4, we focus on the non-

abelian cases for p = 3 and 2 respectively. In Chapter 5, we consider all the remaining wild cases.

Finally, in Chapter 6 we generalise the main theorem of Chapter 3 to the family of hyperelliptic
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2
PRELIMINARIES

In this chapter, we introduce the terminology and classic results concerning elliptic curves

over a local field. We show how the different reduction types of an elliptic curve lead to

substantially different behaviour in the Galois representation and give known results that

are already present in literature. The main (but not only) references are [10, 15, 23, 24].

2.1 Elliptic curves: definitions

Let K be any field and let E be an elliptic curve defined over K , i.e. a smooth projective curve of

genus 1, with a specified K-rational point O. As explained in [23, III,§1-3], such a curve can be

expressed via a Weierstrass equation, that is an equation of the form

Y 2Z+a1XY Z+a3Y Z2 = X3 +a2X2Z+a4X Z2 +a6Z3.(2.1)

We have that O = [0 : 1 : 0] and the coefficients ai are in K . Using non-homogeneous coordi-

nates x = X /Z and y=Y /Z we will simply identify E with its affine Weierstrass equation

y2 +a1xy+a3 y= x3 +a2x2 +a4x+a6,(2.2)

where O is still the (unique) point at infinity.

To a Weierstrass equation we can associate the c-invariants c4, c6, the discriminant ∆ and

the j-invariant, as defined in op. cit. We recall that a Weierstrass equation is the equation of an

elliptic curve (in particular, of a smooth curve) if and only if its discriminant is non-zero.

Let K be an algebraic closure of K . Two Weierstrass equations define the same elliptic curve

up to K-isomorphism, if they are obtained one from the other via a change of coordinates of the
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CHAPTER 2. PRELIMINARIES

form {
x = u2x′+ r,

y = u3 y′+u2sx′+ t,
(2.3)

where u, r, s, t ∈ K of K and u 6= 0. If u, r, s, t ∈ K , then we obtain two elliptic curves which are

isomorphic over K ; in this case, we identify the two curves and we call the two corresponding

equations two different Weierstrass models for the same curve.

Observe that, under a change of coordinates as in Equation (2.3), the invariants are scaled as

follows: 
c4 = u4c′4,

c6 = u6c′6,

∆ = u12∆′,
j = j′;

(2.4)

in particular, the j-invariant is an invariant of the elliptic curve up to K-isomorphism.

The set of K-rational points on an elliptic curve (including the point at infinity O), form an

abelian group which we denote by E(K), with identity element given by O. For details on the

definition of the group law on E(K) see [23, III, §2]; observe in particular that the group law is

defined over K , i.e. it is given by rational functions with coefficients in K . For each intermediate

field K ⊆ L ⊆ K , we have that the subset of L-rational points is also a subgroup of E(K), which we

denote by E(L).

If K has characteristic different from 2 or 3, any elliptic curve over K can be expressed via a

short Weierstrass equation, i.e. an equation of the form

y2 = x3 +a4x+a6.(2.5)

In the rest of this thesis, unless the characteristic of K is 2 or 3, we will always implicitly fix

a short Weierstrass equation for an elliptic curve over K .

2.2 Torsion, Tate modules and Galois representations

Let P ∈ E(K). If there exists a positive integer m such that [m]P =O, by which we mean P added

to itself m times is equal to the point at infinity, we say that P is an m-torsion point of E. If m is

minimal with this property, we say that P has order m. In particular, O has order 1 and is an

m-torsion point for any m. We denote by E[m] the subset of E(K) given by all m-torsion points. It

is easy to check that E[m] is a subgroup of E(K). Moreover, if the characteristic of K is zero or

coprime to m, we have an isomorphism (see [23, III, §6, Corollary 6.4]):

E[m]∼= (Z/mZ)2.(2.6)

6



2.2. TORSION, TATE MODULES AND GALOIS REPRESENTATIONS

It is possible to compute explicitly the coordinates of m-torsion points, for a given integer

m. This is done via the m-division polynomials, which are polynomials defined over K whose

roots are the abscissas of the m-torsion points. We denote by K(E[m]) the minimal field extension

of K which contains the x- and y-coordinates of a Weierstrass model of all m-torsion points of

E, or equivalently, where all m-torsion points are defined. Then the extension K(E[m])/K is

Galois. Moreover, by the isomorphism in Equation (2.6), we have that if we fix a basis for E[m]

as a Z/mZ-module, we obtain the field K(E[m]) by simply adjoining the coordinates of the two

elements in the basis.

The m-division polynomials for m ∈ {2,3} are simple to compute from the coefficients of a short

Weierstrass equation and will be used in Chapters 3 and 4. Let E/K : y2 = x3 +a4x+a6. Then the

2 and 3-division polynomials are, respectively:

φ2(x)= x3 +a4x+a6,(2.7)

φ3(x)= 3x4 +6a4x2 +12a6x−a2
4.(2.8)

Now let ` be a prime, different from the characteristic of K if this is non-zero. For all n,

there is a well-defined and surjective map: E[`n+1] → E[`n] given by multiplication by `. This

construction makes {E[`n],n ∈N} into a projective system. We define the `-adic Tate module of E

as the following inverse limit:

T`(E)= lim←−−n
E[`n].(2.9)

Notice that we have T`(E) ∼= Z2
`
. Let σ ∈ Gal(K /K), the absolute Galois group of K , and let

P = (xP , yP ) ∈ E(K). We define

Pσ =σ(P)= (σ(xP ),σ(yP )).(2.10)

Then Pσ ∈ E(K), since E is defined over K . Moreover, the action of Gal(K /K) on E(K) is linear,

since the group law is defined over K ; in particular for any integer m we have

([m]P)σ = [m]Pσ,(2.11)

therefore the Galois action restricts to the torsion subgroups, and we have a representation

ρE,m : Gal(K /K)→Aut(E[m])(2.12)

which we call the mod m Galois representation attached to E. If m is coprime to char(K), or

char(K) = 0, after we fix a basis for E[m] over Z/mZ, we can view this representation as a

homomorphism: Gal(K /K) → GL2(Z/mZ). Furthermore, taking the inverse limits produces an

action on the `-adic Tate module for each prime `, which we call the `-adic Galois representation

attached to E, denoted as follows:

ρE,` : Gal(K /K)→Aut(T`(E))∼=GL2(Z`).(2.13)

7



CHAPTER 2. PRELIMINARIES

We can and will view ρE,` as a representation with image in a vector space over an alge-

braically closed field, by taking the tensor product Aut(T`(E))⊗Z`Q`, where Q` is a fixed algebraic

closure of Q`. We fix for each ` an embedding Q` ,→ C, in order to identify the elements of Q`
with complex numbers. We will specify the image of finitely many elements of Q` under such

embedding, when needed, in the following chapters.

2.3 Elliptic curves over local fields

From this moment on, we assume that K is a non-archimedean local field of characteristic 0.

Equivalently, K is isomorphic to a p-adic field, for a prime number p, that is a finite extension of

Qp. Such a field has a maximal unramified extension, which we denote by Knr (see [21, III, §5]

for details). We denote by πK a uniformiser of K , by OK its ring of integers and by k the residue

field OK /(πK ), which is a finite field of characteristic p. Moreover, let us fix a valuation v on K ,

normalised so that v(πK )= 1. Let n = [k : Fp], then n is equal to the absolute inertia degree of K ,

i.e. the inertia degree fK /Qp of the extension K /Qp. Finally let k be an algebraic closure of k, then

k is isomorphic to the residue field of Knr.

We have that Gal(K /K) has a normal subgroup given by the inertia subgroup IK , which we

identify with Gal(K /Knr). The quotient Gal(K /K)/IK is isomorphic to Gal(Knr/K), which is in

turn isomorphic to Gal(k/k). This is a procyclic group generated by the Frobenius automorphism,

which acts as

x 7→ x|k|.(2.14)

We call arithmetic Frobenius of K , and denote by FrobK , any element of Gal(K /K) which

maps to the Frobenius automorphism under the quotient map Gal(K /K)→Gal(Knr/K)∼=Gal(k/k).

There is more than one choice for FrobK , as it is only well-defined up to inertia, so it will be

necessary to fix a specific choice for FrobK in each case we consider. This will be done explicitly in

each case.

Let E be an elliptic curve over K and let us fix a Weierstrass equation for E with coefficients

in OK . This can always be done by an appropriate change of variables as in Equation (2.3).

Among all the equations with integer coefficients, we call one such that the valuation v(∆) of

the discriminant is minimal a minimal model for the curve, and the corresponding discriminant

∆min is called a minimal discriminant. In particular, ∆min is well-defined up to units of K , so it is

not unique, but its valuation is. Let us fix a minimal model for E/K and consider the equation

defined over k which we obtain by reducing all the coefficients modulo (πK ). This curve reduces

to a smooth (hence elliptic) curve if and only if the reduction of the discriminant of a minimal

model is non-zero, or equivalently if and only if v(∆min)= 0, for any choice of the minimal model.

In this case, we say that E/K has good reduction. Otherwise, the reduced curve is singular, with

exactly one singular point, which can be a node or a cusp. We say that E/K has multiplicative

reduction in the first case, and additive reduction otherwise. Furthermore, we say that a curve

8



2.4. KNOWN RESULTS

with multiplicative reduction has split reduction if the tangent lines at the nodes are defined

over the residue field, and non-split otherwise. These conditions can be checked by looking at the

valuation of the c-invariants of a minimal model, namely we have that:

• E/K has multiplicative reduction if v(∆min)> 0 and v(c4,min)= 0;

• E/K has additive reduction if v(∆min)> 0 and v(c4,min)> 0.

For a proof, see [23, VII, §5, Proposition 5.1]. We will make great use of the following results,

which can be found in [23, VII, §5, Propositions 5.4 and 5.5].

Proposition 2.1. Let E/K be an elliptic curve.

• Let K ′/K be an unramified extension. Then the reduction type of E over K is the same as the

reduction type over K ′.

• Let K ′/K be a finite extension. If E has either good or multiplicative reduction over K, then

it has the same reduction type over K ′.

• There exists a finite extension K ′/K such that E has either good or multiplicative reduction

over K ′.

For a curve E/K with additive reduction, we say that E has potentially good reduction if it

acquires good reduction over a finite extension, and potentially multiplicative reduction otherwise.

Proposition 2.2. Let E/K be an elliptic curve, then E has potentially good reduction if and only

if its j-invariant has non-negative valuation.

2.4 Known results

2.4.1 Elliptic curves with good reduction

Let K be as in the previous section and let E be an elliptic curve defined over K . In this work we

address the `-adic Galois representation attached to E, where ` is a prime different from p. We

will see how the `-adic Galois representation changes substantially depending on the reduction

type of E/K .

Theorem 2.3 (Criterion of Néron-Ogg-Shafarevich). Let E/K be an elliptic curve. Then the

following are equivalent:

• E/K has good reduction.

• The restriction of ρE,m to IK is trivial for all integers m > 1 that are relatively prime to p.

• The restriction of ρE,` to IK is trivial for all primes ` 6= p.

9



CHAPTER 2. PRELIMINARIES

• The restriction of ρE,m to IK is trivial for infinitely many integers m ≥ 1 that are relatively

prime to p.

Proof. See [23, VII, §7, Theorem 7.1]. �

An immediate consequence of this Criterion is the following result.

Corollary 2.4. Let E/K be an elliptic curve. Then E has potentially good reduction if and only if

IK acts on T`(E) through a finite quotient for some (or equivalently all) primes ` 6= p.

Proof. See [23, VII, §7, Corollary 7.3]. �

These two results give a first, rough way to classify Galois representations of elliptic curves

with different reduction types. Indeed we have that:

• the image of inertia is trivial if and only if the curve has good reduction;

• the image of inertia is finite if and only if the curve has potentially good reduction;

• the image of inertia is infinite if and only if the curve has (potentially) multiplicative

reduction.

In the good reduction case, since the image of inertia is trivial, we have that ρE,` factors

through the quotient Gal(K /K)/IK , which is generated by FrobK . So we only need to compute

ρE,`(FrobK ) to fully understand the Galois action. Moreover, the action of FrobK is independent

of the particular choice of Frobenius in this case (we will see later that this is no longer true if,

for example, E/K only has potentially good reduction). As is shown in [22, IV, §2.3], the image

of FrobK is always diagonalisable (at least in Q`), so it is enough to compute its eigenvalues to

uniquely determine its action. This can be done using the following result (see [22, IV, §1.3]).

Theorem 2.5. Let ` 6= p be a prime. The characteristic polynomial of ρE,`(FrobK ) is given by

F(T)= T2 −aT + q,(2.15)

where q = |k| and a = q+1−|Ẽ(k)|, and Ẽ denotes the reduction of the curve E to k.

Observe that, although ρE,`(FrobK ) is a matrix with coefficients in Q`, the theorem above

shows that its characteristic polynomial is defined over Z and independent of `, as long as ` 6= p.

10



2.4. KNOWN RESULTS

2.4.2 Elliptic curves with potentially good reduction: the image of inertia
and the tame case

Let K be as in the previous sections and E/K be an elliptic curve with potentially good reduction.

Let ` be a prime different from p and ρE,` be the `-adic Galois representation attached to

E. We fix a Weierstrass equation for E, which we assume to be minimal. We denote by ∆ the

discriminant of this equation, and by c4, c6 the c-invariants.

First of all, we observe that ρE,` is independent of `. Indeed we have the following result.

Lemma 2.6. Let E/K be an elliptic curve with potentially good reduction and let ` be a prime

different from p. Then the kernel of ρE,` is the same for all `, and the character of ρE,`
∣∣
IK

has

values in Z which are independent of `.

Proof. See [19, Theorem 2 (ii)]. �

We know from Corollary 2.4 that I = ρE,`(IK ) is finite, but this can be made more precise. So,

our first step is to determine the group I. Recall by Proposition 2.1 that the reduction types of E

over K and Knr are the same. Let L be the minimal finite extension of Knr over which E acquires

good reduction. Then it follows from Theorem 2.3 that the representation ρE,` factors through

the quotient IK /IL, which is isomorphic to Gal(L/Knr): notice that the subgroup IL is normal in

IK , so L/Knr is Galois. This group is also finite, and since we chose L to be minimal, it injects

into Aut(T`(E)) and it is isomorphic to I.

Gal(K /Knr) Aut(T`(E))

Gal(L/Knr)

ρE,`

Furthermore, there is an injection of Gal(L/Knr) into Aut(ẼL), where ẼL is the reduction of a

minimal equation for E over L (for more details see [19, proof of Theorem 2]). In particular, the

image of inertia is one of

C2,C3,C4,C6,

C3oC4 only when p = 3,

Q8,SL2(F3) only when p = 2,

where Cn is the cyclic group of order n, C3 oC4 is the only non-abelian semidirect product of

C3 and C4, which is also known as the Dicyclic group (see [7]), Q8 is the group of quaternions

and SL2(F3) is the subgroup of GL2(F3) given by matrices with determinant 1. This list comes

from the following classification of the automorphisms of an elliptic curve defined over a field

of characteristic p (see [23, III, §10, proof of Theorem 10.1 and Appendix A, Proposition 1.2(c),

Exercise A.1]).

11
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j 6= 0,1728 j = 1728 j = 0

p 6= 2,3 C2 C4 C6

p = 3 C2 C3oC4 C3oC4

p = 2 C2 SL2(F3) SL2(F3)

Since these groups all have different orders, if we know the degree of the extension L/Knr, we

can uniquely determine the Galois group of this extension, hence the structure group of the image

of inertia. In order to do so, we follow the work of Kraus, namely [15, Proposition 1, Theorems 1,

2, 3]. These are complete classification theorems that depend on the residue characteristic being

2, 3 or higher.

Proposition 2.7. Let p ≥ 5. Then L is the only tamely ramified extension of Knr of degree equal

to the denominator of v(∆)/12.

Proof. See [15, Proposition 1]. �

Theorem 2.8. Let p = 3. Then:

(a) if E has type I∗0 , then v(∆)= 6 and I ∼= C2;

(b) if E has type II I, then v(∆)= 3 and I ∼= C4;

(c) if E has type II I∗, then v(∆)= 9 and I ∼= C4;

(d) if v(∆)≡ 0 (mod 4), then I ∼= C3;

(e) if v(∆)≡ 2 (mod 4) and E has type different from I∗0 , then I ∼= C6;

(f) if v(∆) is odd and E has type different from III and III∗, then I ∼= C3oC4.

Proof. See [15, Theorem 1]. For the definition of the Néron type of an elliptic curve, see [24, IV,

§9]. �

Theorem 2.9. Let p = 2. Then:

(a) we have I ∼= C3 if and only if E has type IV (and then v(∆)= 4) or IV∗ (and then v(∆)= 8);

(b) if 3v(c4)= v(∆), then I ∼= C2;

(c) if 3v(c4)≥ 12v(2)+v(∆), then if 3 | v(∆), we have I ∼= C2, otherwise if E does not have type IV

or IV∗ we have I ∼= C6.

(d) if v(∆)< 3v(c4)< 12v(2)+v(∆), let ∆1/3 be a third root of ∆ in K. Moreover let A = c4 −12∆1/3,

B = c2
4 +12c4∆

1/3 + (12∆1/3)2, A1/2 and B1/2 respectively a square root of A,B in K and C =
2(c4 +6∆1/3 +B1/2). Then:

12
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(i) if 3 | v(∆), and A,B,C are squares in Knr, then I ∼= C2; if only A,B are squares in Knr,

then I ∼= C4;

(ii) if 3 | v(∆), and A or B is not a square in Knr, then if C is a square in Knr(A1/2,B1/2) then

I ∼= C4, otherwise I ∼=Q8;

(iii) if 3 - v(∆), if A and B are squares in Knr(∆1/3) then I ∼= C3 if E has type IV or IV∗, and

I ∼= C6 otherwise. If A or B is not a square in Knr(∆1/3), then I ∼=SL2(F3).

Proof. See [15, Theorems 2, 3]. �

This last theorem allows us to recover the image of inertia by just looking at a minimal

equation for E, however it is not very helpful for computing L. A more general result, which is

less explicit but will be useful in Chapter 4, is the following, see [19, Corollary 2 to Theorem 2].

Theorem 2.10. We have L = Knr(E[m]), where m is any integer with m ≥ 3 and (p,m)= 1. The

Galois group Gal(K /L) is equal to ker(ρE,`
∣∣
IK

) for any ` 6= p.

In particular, we will use this theorem with p = 2 and m = 3, and we will study the extension

given by adjoining 3-torsion to K in order to describe ρE,`.

In the rest of this section, we focus on the case where E acquires good reduction over a tamely

ramified extension. By the results above, this happens if p ≥ 5, or p = 3 and E has Néron type I∗0 ,

I I I or I I I∗, or p = 2 and E has Néron type IV or IV∗.

The case of tame potentially good reduction has been studied extensively in literature. The

following results allow us to compute ρE,` for any E that satisfies one of the conditions we just

listed.

Remark 2.11. Let p ≥ 3 and let E have Néron type I∗0 . Then E is a quadratic twist of an elliptic

curve with good reduction. Equivalently, we have that I = ρE,`(IK )∼= C2.

This property comes from Tate’s algorithm (see [24, IV, §9]), and we have that such a curve

acquires good reduction over K(
p
πK ). Let χπ be the quadratic character of K(

p
πK )/K , and let Eπ

be the quadratic twist of E by K(
p
πK ), then it is straightforward to check the following identity:

ρEπ,` ∼= χπ⊗ρE,`.(2.16)

We can compute ρEπ,` as in Section 2.4.1, and thus ρE,`.

Now let p be any prime and suppose that E/K has tame potentially good reduction, but not

Néron type I∗0 . Let e be the denominator of v(∆)/12 and π1/e
K be any e-th root of the uniformiser

πK . Then, combining Proposition 2.7 and Theorems 2.8, 2.9, together with Proposition 2.1, we

have that E acquires good reduction over:

• F = K(π1/e
K ), if p ≥ 5, indeed this is a tamely totally ramified extension of K of degree equal

to the denominator of v(∆)/12;

13
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• F = K(∆1/4) for any 4-th root of ∆ in K , if p = 3, since in this case E has type I I I or I I I∗

(see Theorem 2.8, cases (b,c));

• F = K(∆1/3) for any 3-th root of ∆ in K , if p = 2, since in this case E has type IV or IV∗ (see

Theorem 2.9, cases (a) and (d.iii)).

In all three cases, the degree [F : K] is equal to e. Moreover, e is a proper divisor of 12: since

the group of automorphisms of an elliptic curve over a field of characteristic p ≥ 5 is either C2,

C4 or C6, the possible values for e are 2,3,4,6, as we observed at the beginning of this section.

The extension F/K is Galois and cyclic if and only if K contains a primitive e-th root of unity,

ζe. Otherwise, the Galois closure of F/K is given by F(ζe) and Gal(F(ζe)/K) is isomorphic to the

dihedral group with 2e elements, De. Observe that we can choose, alternatively, F = K(π1/e
K ) in all

cases: all are totally ramified of degree e over K and are Galois if and only if ζe ∈ K .

We first assume that ζe ∈ K , so the field extension F/K is cyclic of order e ∈ {3,4,6}. Let

u ∈O×
K be a unit which is not a e-th power, and let F ′ = K(u1/e∆1/12) if p ≥ 5, K((u∆)1/4) if p = 3,

K((u∆)1/3) if p = 2. Furthermore let FrobF and FrobF ′ be arithmetic Frobenius elements of F

and F ′ respectively. Then, by [10, Theorem 1], the representation ρE,` is uniquely determined by

the characteristic polynomials of ρE,`(FrobF ) and ρE,`(FrobF ′). See also [10, §3] for an explicit

application of this theorem.

Now we assume that ζe ∉ K , so the field extension F/K has dihedral Galois closure given by

F(ζe). Moreover let L be the maximal unramified extension of F(ζe), or, equivalently, of F. Let

FrobF and FrobF(ζe) be arithmetic Frobenius elements of F and F(ζe) respectively, then FrobF(ζe)

is central in Gal(L/K) and therefore ρE,`(FrobF(ζe))=λId2 is a scalar matrix. On the other hand,

ρE,`(FrobF(ζe))= ρE,`(FrobF )2, since F(ζe)/F is unramified and quadratic. Moreover FrobF is not

central, so we have, in some basis of T`(E)⊗Z` Q`, that ρE,`(FrobF )=
( p

λ 0

0 −pλ

)
. In order to

determine λ, we notice that the determinant of ρE,`(FrobF ) is equal to |k|, so we have λ=−|k|.
So we have

ρE,`(FrobF )=
( √

−|k| 0

0 −
√

−|k|

)
,(2.17)

where we identify
√

−|k| ∈Q` with the complex number i
√

|k| .
Now let FrobK be the arithmetic Frobenius of K that fixes F point-wise, in other words we

choose FrobK =FrobF . We define the following unramified character (i.e. with trivial restriction

to inertia):

χ : Gal(K /K)→Q` ,→C

FrobK 7→
√

−|k| .(2.18)

We observe that ρE,`⊗χ−1 factors through Gal(F(ζe)/K), with image isomorphic to it. There-

fore, as a representation of Gal(F(ζe)/K), it is faithful, and also irreducible, since Gal(F(ζe)/K),

14
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hence the image of ρE,`, is non-abelian, otherwise it would be the direct sum of two representa-

tions of dimension 1, hence it would be abelian.

Now, for e ∈ {3,4,6}, the group De has only one 2-dimensional irreducible and faithful repre-

sentation, as can be seen by direct computation or in [7]. To conclude, we have ρE,` ∼= χ⊗ψ, where

ψ is the unique irreducible and faithful 2-dimensional representation of De.

This argument proves the following theorem.

Theorem 2.12 (Elliptic curves with tame potentially good reduction). Let E/K be an elliptic

curve with tame potentially good reduction, and discriminant of a minimal model ∆.

(a) If p ≥ 3 and E has type I∗0 , then ρE,` = ρEπ,` ⊗χπ where χπ is the quadratic character of

K(
p
πK )/K, and Eπ is the quadratic twist of E by K(

p
πK ), which has good reduction.

(b) If p ≥ 5 or p = 3 and E has type II I or II I∗ or p = 2 and E has type IV or IV∗, let e be the

denominator of v(∆)/12.

(i) If ζe ∈ K, then ρE,` is determined by the characteristic polynomial of the Frobenius

elements of K(∆1/12) and K(u1/e∆1/12) if p ≥ 5, K(∆1/e) and K((u∆)1/e) if p = 3 or 2 for

u ∈O×
K not a e-th power.

(ii) If ζe ∉ K, then ρE,` = χ⊗ψ, where χ is the unramified character sending FrobK to
√
−|k|

and ψ is the irreducible faithful 2-dimensional representation of the dihedral group De.

2.4.3 Elliptic curves with (potentially) multiplicative reduction

Let E/K be a curve with multiplicative or additive, potentially multiplicative reduction. Let c4, c6

be the c-invariants of a minimal Weierstrass equation for E. Let Sp2 be the 2-dimensional special

representation of Gal(K /K), such that

Sp2(FrobK )=
(

1 0

0 q

)
, Sp2(σ)=

(
1 τ`(σ)

0 1

)
∀σ ∈ IK ,(2.19)

where τ` is the `-adic tame character, i.e. the only character: IK →Z` such that for k ∈Z, k > 1,

(ζ`k ) compatible `k-th roots of unity and σ ∈ IK :

σ(π1/`k

K )= ζτ`(σ)
`k π1/`k

K .(2.20)

Theorem 2.13. Let E/K have potentially multiplicative reduction. Let χ be the primitive character

of K(
√−c4/c6 )/K. Then ρE,` = χ⊗Sp2.

Observe that E/K has split multiplicative reduction if and only if the extension K(
√−c4/c6 )/K

is trivial, in which case χ is the trivial character. Otherwise, E acquires split multiplicative

reduction over K(
√−c4/c6 ), which is quadratic over K . Moreover, the extension is unramified if

E/K has non-split multiplicative reduction, and totally ramified if E/K has additive potentially

multiplicative reduction. For a proof see [24, V, §5, Lemma 5.2, Theorem 5.3, Exercise 5.11].
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Proof. Let E′ = E if E/K has split multiplicative reduction, and let E′ be the quadratic twist of

E by K(
√−c4/c6 ) otherwise. Then ρE,` = χ⊗ρE′,`, where χ is trivial if K(

√−c4/c6 )= K . By [24,

V, §5, Theorem 5.3], E′ is isomorphic to a Tate curve (see [24, V, §3] for the definition), and we

can use the theory of Tate curves to prove ρE′,` =Sp2. This can be found in [24, V, §5, Exercise

5.13], or it follows from the classification of Weil-Deligne representations and the fact that if E/K

has potentially multiplicative reduction, the image of inertia is infinite, see [18, §15]. �

2.5 Examples

The following two examples will be central in Chapters 3, 4 and 5.

Example 2.14. Let K be a local field with residue characteristic 3 and let k be its residue field.

Let E/K be an elliptic curve such that the reduction Ẽ over k is y2 = x3 − x. In particular, E has

good reduction over K. We want to compute the eigenvalues of ρE,`(FrobK ), for a prime ` 6= 3, as

elements of C.

First we assume that k = F3. Then the reduced curve Ẽ has the following 4 points over F3:

{O, (0,0), (1,0), (2,0)}, therefore, in the notation of Theorem 2.5, a = 0, q = 3 and the roots of F(T),

hence the eigenvalues of ρE,`(FrobK ), are ±p−3 . Here we identify
p−3 with the complex number

i
p

3 .

If [k : F3] = n ≥ 1, then ρE,`(FrobK ) acts as the n-th power of the linear operator described

above, so its eigenvalues are (±p−3 )n.

Example 2.15. Let K be a local field with residue characteristic 2 and let k be its residue field.

Let E/K be an elliptic curve such that the reduction Ẽ over k is y2 + y= x3. In particular, E has

good reduction over K. In this case we want to compute the eigenvalues of ρE,`(FrobK ), for a prime

` 6= 2, as elements of C.

As in the previous case, we first assume that k = F2. Then we have Ẽ(F2)= {O, (0,0), (0,1)}, so

in the notation above, a = 0 and q = 2, giving that the characteristic polynomial of ρE,`(FrobK ) is

T2 +2, with roots ±p−2 . Here we identify
p−2 with the complex number i

p
2 .

If [k : F2] = n ≥ 1, then ρE,`(FrobK ) acts as the n-th power of the linear operator described

above, so its eigenvalues are (±p−2 )n.

We now give examples of curves with tame potentially good reduction, one for each subcase of

Theorem 2.12.

Example 2.16. Let E/Q7 : y2 = x3 +73. Then E has type I∗0 , and acquires good reduction over

F = Q7(
p

7 ). More precisely, E is the quadratic twist by F of the curve E7/Q7 : y2 = x3 +1. By

Theorem 2.5 we have that ρE7,`(FrobF ) has eigenvalues −2±p−3 , where as usual
p−3 is identified

with the complex number i
p

3 . By Theorem 2.12 case (a), let χ7 be the quadratic character of

F/Q7, then ρE,` = χ7 ⊗ρE7,`. Since ρE7,` is unramified (trivial on inertia), the representation ρE,`

is completely determined.

16



2.5. EXAMPLES

The following example shows concretely how to recover the `-adic Galois representation from

the characteristic polynomial of two suitable Frobenius elements.

Example 2.17. Let E/Q7 : y2 = x3 +72. Then E acquires good reduction over a totally ramified

extension of degree 3, for example over F =Q7(71/3). Since 7 ≡ 1 (mod 3), Q7 contains the third

roots of unity and F/Q7 is Galois and cyclic. Over F, we can define the change of variables{
x = (71/3)2x′,
y = 7y′,

(2.21)

and we obtain a model for the base change EF of E to F given by y2 = x3 +1. Let FrobF be the

arithmetic Frobenius of F, then by the computations in the previous example we have that the

eigenvalues of ρEF ,`(FrobF ) are −2±p−3 .

Let FrobK be the arithmetic Frobenius of K that acts as FrobF , then we have ρE,` =ψ1 ⊕ψ2,

where ψi are 1-dimensional representations of Gal(Q7/Q7) such that ψ1(FrobK )=−2+p−3 and

ψ2(FrobK ) = −2−p−3 . We fix σ ∈ IQ7 an element such that, when projected to the quotient

Gal(F/Q7), we have σ(71/3)= ζ371/3, with ζ3 the third root of unity in Q7 such that ζ3 ≡ 2 (mod 7).

We only need to determine ψ1(σ) and ψ2(σ). These are primitive third roots of unity in Q`, and one

is the inverse of the other, as by the Weil pairing det(ρE,`(σ))= 1. As usual, we fix an embedding

of Q` into C, and then we have that ψ1(σ) ∈
{
−1±p−3

2

}
. In order to determine which of these two

numbers ψ1(σ) is, we fix F ′ =Q7((3 ·7)1/3), as in Theorem 2.12 case (b.ii).

Claim 2.18. We have FrobF ′ =σ2 FrobF .

In order to prove the claim, we observe that σ2 FrobF acts as FrobF on the residue field

(note both F and F ′ have the same residue field, namely F7), so we only need to prove that

σ2 FrobF ((3 ·7)1/3)= (3 ·7)1/3. Note that σ2 FrobF ((3·7)1/3)
(3·7)1/3 is a third root of unity, so it is sufficient to

prove that it reduces to 1 in the residue field. We have

σ2 FrobF ((3 ·7)1/3)
(3 ·7)1/3 )= FrobF (31/3)

31/3

FrobF (ζ2
371/3)

71/3 = 9ζ2
3,(2.22)

which reduces to 9 ·4 = 1 in F7. The first equality holds in K and it follows from the facts that

σ acts trivially on 31/3, and that σ and FrobF commute, since they do when restricted to Fnr,

and Gal(Fnr/K) is the direct product of the two abelian and (pro-)cyclic groups Gal(F/K) and

Gal(Knr/K).

Now, we compute the eigenvalues of ρEF′ ,`(FrobF ′), where EF ′ is the base change of E to F ′.
The change of variables {

x = ((21)1/3)2x′,
y = 21y′,

(2.23)
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gives the model y2 = x3+1/9, which reduces to y2 = x3+4 over F7. Applying Theorem 2.5 again, we

obtain that the eigenvalues of ρEF′ ,`(FrobF ′) are 5±p−3
2 . Therefore we have

(−2+p−3 )ψ1(σ)2 = 5+p−3
2

(−2−p−3 )ψ2(σ)2 = 5−p−3
2

,
(2.24)

or 
(−2+p−3 )ψ1(σ)2 = 5−p−3

2

(−2−p−3 )ψ2(σ)2 = 5+p−3
2

.
(2.25)

Direct computation shows that only the first system of equalities can hold, with ψ1(σ)2 =
−1−p−3

2
, i.e. ψ1(σ)= −1+p−3

2
and ψ2(σ)= −1−p−3

2
.

Example 2.19. Let E/Q5 : y2 = x3 +52. Similarly as in the previous example, this curve acquires

good reduction over the degree 3 totally ramified extension F =Q5(51/3), with model y2 = x3 +1.

However, the extension F/Q5 is not Galois, so we are in case (b.ii) of Theorem 2.12. Therefore

ρE,` = χ⊗ψ, where χ is the unramified character of Gal(Q5/Q5) mapping FrobK to
p−5 and ψ is

the only representation of S3 which is 2-dimensional and irreducible (and faithful).
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ELLIPTIC CURVES OVER A 3-ADIC FIELD WITH NON-ABELIAN

INERTIA ACTION

This chapter is a modified version of the author’s paper “Wild Galois Representations:

elliptic curves over a 3-adic field”, published in Acta Arithmetica ([2]). Here, we compute

the Galois representation ρE,` attached to an elliptic curve E over a 3-adic field, which

acquires good reduction over a non-abelian extension. We will prove the following result.

Theorem 3.1. Let E be an elliptic curve with potentially good reduction over a 3-adic field K,

with Weierstrass equation of the form y2 = f (x) and discriminant ∆. Fix a fourth root ∆1/4 of ∆ and

define F to be the compositum of the splitting field of f over K and K(∆1/4); let F ′ be the Galois

closure of F/K.

Let ` be a prime different from 3, and let ρE,` be the `-adic Galois representation attached to

E. Suppose that the image of the inertia subgroup of Gal(K /K) is isomorphic to C3oC4.

Let χ be the unramified character of Gal(K /K) (i.e. trivial on inertia) such that

χ(FrobK )= (
p
−3 )n,(3.1)

where n = [k : F3], and let ψ be as follows. If n is even, let ψ be the representation of Gal(F ′/K),

which is isomorphic to C3oC4, with character:

class 1 2 3 4A 4B 6

size 1 1 2 3 3 2

trψ 2 −2 −1 0 0 1

(3.2)

while if n is odd then let ψ be the representation of Gal(F ′/K), which is isomorphic to C3 oD4,
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with character:

class 1 2A 2B 2C 3 4 6A 6B 6C

size 1 1 2 6 2 6 2 2 2

trψ 2 −2 0 0 −1 0 −p−3
p−3 1

(3.3)

where the presentation of Gal(F ′/K) and its conjugacy classes are as in Section 3.1.

Then ρE,` factors as

ρE,` = χ⊗ψ.(3.4)

Part of this result follows immediately from [15, Theorem 1], [19, Theorem 2] and the

classification of the representations of the groups C3oC4 and C3oD4 in [7]. The result for the

case of odd n is the most subtle, as there are two possibilities for ψ, and we will prove that only

one of these occurs, via explicit computation.

The setting and the notation are the same as in Chapter 2. As usual, we are implicitly fixing

an embedding of Q` into C, thus identifying the coefficients of the elements in the image of ρE,`

with complex numbers. More specifically,
p−3 in the definition of χ and ψ is the complex number

i
p

3 .

The structure of this chapter is as follows. In Section 3.1 we specialise to the case over 3-adic

fields when the action of inertia is non-cyclic, giving the setup for the proof of Theorem 3.1. In

particular, we fix a presentation for the group Gal(F ′/K) that is mentioned in the theorem. The

proof is divided into two parts: in Section 3.2 we give the proof for the case of even inertia degree

n, and in Section 3.3 we assume that n is odd.

3.1 Setup

Let k be the residue field of K , and let n = [k : F3]. Then n is even if and only if K contains

a primitive fourth root of unity, which we denote ζ4 (see [21, XIV, §3, Lemma 1]). The Galois

representation changes substantially in these two cases. First of all, we describe the minimal

field extension L/Knr where E acquires good reduction. This is [15, Corollaire to Lemme 3].

Lemma 3.2. With the notation as in §2, we have

L = Knr(E[2],∆1/4),(3.5)

where ∆1/4 is any fourth root of ∆.

Let F be the field extension of K generated by E[2] and a fixed fourth root of the discriminant,

∆1/4. Note that since char(K)= 0, the curve E can be written with a Weierstrass equation of the

form y2 = f (x), where f is a monic polynomial of degree 3. If α1,α2,α3 are the roots of f in K , ∆
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the discriminant of E, then F = K(α1,α2,α3,∆1/4), for some choice of ∆1/4, and the discriminant

∆ f of the defining polynomial f , which is given by

∆ f = (α2 −α1)2(α3 −α2)2(α1 −α3)2,(3.6)

differs from ∆ only by a factor 16; in particular we have that
√
∆ f and therefore

p
∆ are in the

field generated by 2-torsion.

Remark 3.3. The extension F/K is totally ramified of degree 12. Indeed, since L = FKnr, L/F is

unramified and L/Knr is totally ramified of degree 12, we have that F/K has a subextension which

is totally ramified of degree 12. On the other hand, we have [F : K] | 12, since the extension of K

generated by 2-torsion has degree dividing 6 and it contains a square root of the discriminant,

so F is at most a quadratic extension of it. Therefore the degree is equal to 12 and the whole

extension F/K is totally ramified. Moreover, as it has good reduction over L = FKnr, E acquires

good reduction over F.

However F/K is not necessarily Galois. In fact it is Galois, with Galois group isomorphic to

C3oC4, if and only if ζ4 ∈ K , i.e. n is even. Otherwise, its Galois closure is F(ζ4) and Gal(F(ζ4)/K)

is isomorphic to the semidirect product (C3oC4)oC2. As follows from the classification in [7],

this group is C3oD4. We will now fix a presentation for the group Gal(F(ζ4)/K) in the two cases

and show that this group is isomorphic to C3oC4 for n even, C3oD4 for n odd.

Suppose first that n is even. With the notation used above, we define σ and τ to be the

generators of Gal(F/K) that act on α1,α2,α3 and ∆1/4 as follows:

σ : α1 7→α2, α2 7→α3, α3 7→α1, ∆1/4 7→∆1/4;

τ : α1 7→α1, α2 7→α3, α3 7→α2, ∆1/4 7→ ζ4∆
1/4.

(3.7)

Then Gal(F/K) has the following presentation

〈σ,τ;σ3 = τ4 = 1,τστ−1 =σ−1〉.(3.8)

This group is isomorphic to C3 oC4, which is given by the presentation in [7], via the

isomorphism from C3oC4 to Gal(F/K) defined by a 7→στ2 and b 7→ τ; in fact it is easy to check

that these elements satisfy a6 = 1,b2 = a3,bab−1 = a−1.

Suppose now that n is odd, i.e. ζ4 ∉ K . Then the Galois closure of F/K is given by F(ζ4) and the

subgroup generated by the elements σ,τ is the inertia subgroup of Gal(F(ζ4)/K). Furthermore,

Gal(F(ζ4)/K) contains an extra unramified automorphism corresponding to the map ζ4 7→ −ζ4,

which we call φ. Therefore it is presented by the following relations:

σ3 = 1; τ4 = 1; φ2 = 1; σφ=φσ; φτφ= τ−1; τστ−1 =σ2.(3.9)

Now C3oD4 = 〈a,b, c|a3 = b4 = c2 = 1,bab−1 = cac = a−1, cbc = b−1〉 (see [7]). The map from

C3oD4 to Gal(F(ζ4)/K) given by a 7→σ, b 7→ τ and c 7→ τφ is an isomorphism.

We denote the conjugacy classes of the group obtained in the two cases as follows (for the

sake of completeness, we will use both the notation of [7] and the one introduced in this chapter):
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• if n is even, the conjugacy classes of Gal(F/K)∼= C3oC4 are 1= [e], 2= [τ2 = b2], 3= [σ=
ab2], 4A = [τ= b], 4B = [στ= ab−1], 6= [στ2 = a];

• if n is odd, the conjugacy classes of Gal(F(ζ4)/K)∼= C3oD4 are 1= [e], 2A = [τ2 = b2], 2B =
[φ = b−1c], 2C = [τφ = c], 3 = [σ = a], 4 = [τ = b], 6A = [σφ = ab−1c], 6B = [σ2φ =
a2b−1c], 6C = [στ2 = ab2].

We can now prove Theorem 3.1.

3.2 Proof of the Main Theorem: the case of even inertia degree

Proof of Theorem 3.1, even case. Let us first consider the case n is even, i.e. ζ4 ∈ K . Then, if

F is as at the beginning of Section 3.1, we showed that F/K is Galois with Galois group isomorphic

to C3oC4. But then Fnr/K is the compositum of the Galois extensions F/K and Knr/K , which

intersect in K since F/K is totally ramified and Knr/K is unramified. So Gal(Fnr/K)∼=Gal(F/K)×
Gal(Knr/K). In particular the Frobenius element, which generates Gal(Knr/K), commutes with

every element of this group, therefore its image under ρE,` can be represented as a scalar matrix.

By Lemma 3.6, proved in §3.3, E reduces to y2 = x3 − x on the residue field. We computed in

Example 2.14 the eigenvalues of the Frobenius element of F, which coincide and are equal to

(−3)n/2 for every even n. As F/K is totally ramified, we can fix the Frobenius element of K to be

FrobF , so it has the same eigenvalues.

Now define the following unramified character:

χ(FrobK ) = (−3)n/2;

χ
∣∣
IK

= 1.
(3.10)

Then ρE,`(FrobK )= χ(FrobK )Id2 and there exists a representation ψ such that ρE,` = χ⊗ψ.

The representationψ is irreducible of dimension 2, since ρE,` is, it is trivial on FrobK and coincides

with ρE,` on inertia; therefore it factors through Gal(F/K)∼= C3oC4 and, as a representation of

this finite group, it is faithful. The group C3oC4 has only one irreducible faithful 2-dimensional

representation (see [7]), so the Galois representation is completely described by it; namely the

character of ψ in this case is:

class 1 2 3 4A 4B 6

size 1 1 2 3 3 2

trψ 2 −2 −1 0 0 1

as claimed. �
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3.3 Proof of the Main Theorem: the case of odd inertia degree

Lemma 3.4. Let F(ζ4) be the Galois closure of F. Then:

F(ζ4)= K(
p
α2 −α1 ,

p
α3 −α2 ,

p
α1 −α3 ,

p
α1 −α2 ,

p
α2 −α3 ,

p
α3 −α1 ).(3.11)

Proof. Let

F ′ = K(
p
α2 −α1 ,

p
α3 −α2 ,

p
α1 −α3 ,

p
α1 −α2 ,

p
α2 −α3 ,

p
α3 −α1 ).(3.12)

First of all, we prove that F(ζ4)⊆ F ′. Indeed α1,α2,α3 are clearly in F ′;
p
α2 −α1p
α1 −α2

is a primitive

fourth root of unity contained in F ′; finally one possible choice for ∆1/4 is given by the product

2
√

(α2 −α1)(α3 −α2)(α1 −α3) , which is in F ′. Since F ′ contains this element and a primitive

fourth root of unity, then also all the other fourth roots of ∆ (which are in F(ζ4)) are in F ′.
To prove that F ′ ⊆ F(ζ4), let B = K(α1,α2,α3); we show that [F ′ : B] | [F(ζ4) : B]. The extension

F(ζ4)/B is of degree 4, with an unramified subextension of degree 2 and a totally tamely ramified

subextension of degree 2. Therefore Gal(F(ζ4)/B)∼= C2×C2. The extension F ′/B is the compositum

of some quadratic extensions, so it is abelian of exponent 2. By [21, XIV, §4, Exercise 3], we have

|B×/(B×)2| = 4, hence B×/(B×)2 ∼= C2 ×C2, and by Kummer theory, the abelian extensions of B

of exponent 2 are in bijection with the subgroups of B×/(B×)2, which are five, namely B, three

quadratic extensions and the biquadratic; therefore [F ′ : B] | 4. �

We now want to compute the action of φ on the generators of F ′; for any choice of the square

roots, we know that φ(
p
α2 −α1 ) = ±pα2 −α1 and similarly φ(

p
α1 −α2 ) = ±pα1 −α2 . On the

other hand, φ changes the sign of
p
α1 −α2p
α2 −α1

for it is a primitive fourth root of unity. Therefore,

we have either:

• φ(
p
α2 −α1 )=p

α2 −α1 and φ(
p
α1 −α2 )=−pα1 −α2 , or

• φ(
p
α2 −α1 )=−pα2 −α1 and φ(

p
α1 −α2 )=p

α1 −α2 .

Without loss of generality the first condition holds, so
p
α2 −α1 ∈ F. Similarly, using the relations

between the generators of Gal(F ′/K), we have that φ fixes
p
α3 −α2 ,

p
α1 −α3 and changes sign

to the other generators of F ′; therefore F, which is the subfield of F ′ fixed by φ, satisfies

F = K(
p
α2 −α1 ,

p
α3 −α2 ,

p
α1 −α3 ).

Lemma 3.5. Let OF be the ring of integers of F, with maximal ideal mF . Then with the same

notation as above, we have

σ(x)
x

≡ 1 (mod mF ),(3.13)

for all x ∈OF \{0}.
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Proof. As σ is in the wild inertia subgroup of Gal(F ′/K), which is equal to the first ramification

group by [21, IV, §2, Corollary 1 to Proposition 7], we have σ(x) ≡ x (mod m2
F ). If x ∈ O×

F (i.e. if

x is a unit), then σ(x)/x ≡ 1 (mod m2
F ), hence modulo mF ; if x = πF is a uniformiser of OF of F

then by [21, IV, §2, Proposition 5] we have σ(x)/x ≡ 1 (mod mF ). In general x =πa
F u where a is a

non-negative integer and u ∈O×
F , so σ(x)/x = (σ(πF )/πF )aσ(u)/u ≡ 1 (mod mF ). �

Lemma 3.6. Let E be as before. Then the reduction of some minimal model for E/F on the residue

field is

Ẽ/k : y2 = x3 − x.(3.14)

Proof. First note that we can write, over F, the equation for E as follows:

y2 = (x−α1)(x−α2)(x−α3).(3.15)

Now, operating the following change of variables (well-defined over F):{
x = x′(α2 −α1)+α1,

y = y′(pα2 −α1 )3,
(3.16)

we obtain the new equation

(y′)2 = x′(x′−1)(x′−λ),(3.17)

where λ= α3 −α1

α2 −α1
. Finally, note that α1 −α3 =σ2(α2 −α1), and since σ is an element of the wild

inertia subgroup of Gal(F ′/K) then by Lemma 3.5,
σ2(α2 −α1)
α2 −α1

≡ 1 in the residue field. So the

reduction in k of λ is the same as the reduction of −σ
2(α2 −α1)
α2 −α1

, i.e. −1. With simplified notation,

the reduction of E in k is therefore y2 = x3 − x. �

Proof of Theorem 3.1, odd case. In Example 2.14 we computed the eigenvalues of the Frobe-

nius element of F, and hence of K (as F/K is totally ramified), acting on E, which are (±p−3 )n.

In particular, since n is odd, they are complex conjugate and the trace of Frobenius is 0.

Let χ be the following unramified character of Gal(K /K):

χ(FrobK ) = p−3 n;

χ∣∣
IK

= 1.(3.18)

Then ρE,`(FrobK )= χ(FrobK )

(
1 0

0 −1

)
and ρE,`(Frob2

K )= χ(FrobK )2 Id2. Let F2 be the field

extension of K fixed by Frob2
K : then it is an unramified extension of K of degree 2, i.e. F2 =

K(ζ4). Also, in the notation used above, F ′ = F(ζ4)= FF2. So the Galois group described before,
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Gal(F(ζ4)/K), is generated by σ,τ and the class of FrobK modulo Frob2
K , which we can identify

with φ. Moreover, there exists an irreducible representation ψ of Gal(K /K) such that

ρE,` = χ⊗ψ;(3.19)

in order to find it, since χ is a character, it is sufficient to consider ψ(g) = 1
χ(g)

ρE,`(g). The

kernel of this representation ψ is precisely Gal(K /F(ζ4)), so ψ factors through the finite group

Gal(F(ζ4)/K) and it is indeed an irreducible faithful representation of the finite group C3oD4.

By looking at the character table of C3oD4 (again, see [7]) it follows that there are precisely

two irreducible faithful representations of this group of dimension 2, and they only differ for

the character of the two conjugacy classes generated by the elements σφ and σ2φ. To uniquely

determine ψ we therefore have to compute the trace of the element ψ(σφ), and see whether it isp−3 or −p−3 .

We know from Lemma 3.6 that, over F, the equation for E is

E : y2 = (x−α1)(x−α2)(x−α3)(3.20)

and under the change of variables {
x = x′(α2 −α1)+α1;

y = y′(pα2 −α1 )3,
(3.21)

we find the minimal model

Emin : y2 = x(x−1)(x−λ),(3.22)

that reduces to

Ẽ : y2 = x3 − x(3.23)

over the residue field. Now let β(x, y) = (x′, y′) be the change of variables above, red be the

reduction map: Emin(K) → Ẽ(k) and lift : Ẽ(k) → Emin(K) be any section of red. Then we can

compute the action of any Galois automorphism γ on the reduced curve Ẽ(k) via the following

composition:

red◦β◦γ◦β−1 ◦ lift .(3.24)

So in particular for γ=σFrobK we have (recall |k| = 3n):

(x̃, ỹ) lift−−→ (x, y)
β−1

−−→ (
x(α2 −α1)+α1, y(

p
α2 −α1 )3)

σFrobK−−−−−→ (
σ(x)3n

σ(α2 −α1)+α2,σ(y)3n
(σ(

p
α2 −α1 ))3)

β−→
(
σ(x)3n

σ(α2 −α1)+α2 −α1

α2 −α1
,σ(y)3n (σ(

p
α2 −α1 ))3

(
p
α2 −α1 )3

)
=

(
σ(x)3n σ(α2 −α1)

α2 −α1
+1,σ(y)3n (σ(

p
α2 −α1 ))3

(
p
α2 −α1 )3

)
red−−→ (

x̃3n +1, ỹ3n)
(3.25)

Note that:
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• the reductions of
σ(α2 −α1)
α2 −α1

and
σ(

p
α2 −α1 )p
α2 −α1

are 1 by Lemma 3.5;

• FrobK fixes F, therefore it acts trivially on the elements α2 −α1 and
p
α2 −α1 ;

• since σ is an inertia element, σ(x)≡ x and σ(y)≡ y in k.

Now, to compute the trace of ρE,`(σFrobK ) we use the formula

tr(ρE,`(γ))= deg(γ)+1−deg(1−γ);(3.26)

in our case deg(γ)= detρE,`(σFrobK )= 3n and deg(1−γ) is the number of points fixed by σFrobK ,

i.e. the number of solutions (including the point at infinity) of
x = x3n +1

y = y3n

y2 = x3 − x.

(3.27)

Let us first consider the case n = 1. There are no solutions over k to this system of equations,

therefore tr(ρE,`(σFrobK ))= 3. But then

tr(ψ(σφ))= 1p−3
3=−

p
−3 .(3.28)

In general, we know that tr(ψ(σFrobK )) = ε
p−3 for some ε ∈ {±1}, and tr(ρE,`(σFrobK )) =

ε
p−3χ(σFrobK ) = ε

p−3
p−3 n = ε(−3)(n+1)/2. The value of ε can be determined by solving the

system of equations above, but for a general n, it cannot be solved directly. However, the number

of solutions is independent of the curve we use, so it is sufficient to work with a fixed curve.

Consider for example the elliptic curve over Q3

E : y2 = x3 +9.(3.29)

Since its reduction modulo 3 is y2 = x3, the valuation of the discriminant is 7 and the j-

invariant is 0, this curve has potentially good reduction, and its Néron type is IV , so we are in

the last case of Theorem 2.8. Hence the image of inertia is isomorphic to C3oC4.

Let us fix a basis for Q
2
` (with Q` considered as embedded in C), where the action of Frobenius

is given by the matrix

ρE,`(FrobK )=
( p−3 0

0 −p−3

)
;(3.30)

then the image of σ is either

(
ζ3 0

0 ζ−1
3

)
or its inverse, where ζ3 ∈Q` is the primitive third root

of unit
−1+p−3

2
. By the computation done for the case n = 1, we know tr(ρE,`(σFrobK ))= 3 and
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a simple check shows that then ρE,`(σ)=
(
ζ−1

3 0

0 ζ3

)
. Now let K be an unramified extension of

Q3 of odd degree n, so the residue field k is a degree n extension of F3 and the reduction type and

Galois representation of the curve E base-changed to K , restricted to inertia, is exactly the same

as above. Then ρE,`(σFrobK ) =
(
ζ−1

3
p−3 n 0

0 −ζ3
p−3 n

)
, with trace −(−3)(n+1)/2. Incidentally,

this argument proves the following.

Lemma 3.7. The number of solutions of the system of equations (3.27) above is 3n + (−3)(n+1)/2.

Proof. We have tr(ρE,`(σFrobK ))=−(−3)(n+1)/2. On the other hand, we know

tr(ρE,`(σFrobK ))= |k|+1− (1+|{solutions to (3.27)}|)=(3.31)

= 3n −|{solutions to (3.27)}|,(3.32)

so the number of solutions to (3.27) is precisely 3n − tr(ρE,`(σFrobK ))= 3n + (−3)(n+1)/2. �

So, with the notation above, we have ε=−1, and the character of ψ is the following:

class 1 2A 2B 2C 3 4 6A 6B 6C

size 1 1 2 6 2 6 2 2 2

trψ 2 −2 0 0 −1 0 −p−3
p−3 1

as claimed. In particular, in the proof we computed the character of an element of the class 6A. �
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4
ELLIPTIC CURVES OVER A 2-ADIC FIELD WITH NON-ABELIAN

INERTIA ACTION

This chapter is a modified version of the author’s paper “Wild Galois Representations: ellip-

tic curves over a 2-adic field with non-abelian inertia action”, published in International

Journal of Number Theory ([3]).

The notation is the same as in Chapter 2, with p = 2; in particular let K be a 2-adic field

and let E/K be an elliptic curve. Since char(K) = 0, we can always assume that E is in short

Weierstrass form, E : y2 = x3 + a4x+ a6, for a4,a6 ∈ K . Let k be the residue field of K and let

n = [k : F2]. Suppose that E/K has potentially good reduction; we want to study the representation

ρE,` on the `-adic Tate module T`(E); as usual, we fix a basis for T`(E)⊗Z` Q` so we can identify

Aut(T`(E)⊗Z` Q`) with GL2(Q`). The image of restriction of ρE,` to the inertia subgroup IK of

Gal(K /K) is isomorphic to Gal(L/Knr), where L is the minimal extension of Knr over which E

acquires good reduction. Moreover, since K is a 2-adic field, the image of inertia, which we denote

by I, can only be one of the following:

C2,C3,C4,C6,Q8,SL2(F3).(4.1)

In this chapter we focus on the cases where I is non-abelian (equivalently non-cyclic), hence

it is either Q8 or SL2(F3).

As in the previous chapters, we call an arithmetic Frobenius of K , and denote by FrobK , any

fixed choice of an element of Gal(K /K) that reduces to the Frobenius element modulo IK . In

order to compute explicitly the elements in the image of ρE,`, let us fix an embedding Q`→C; in

particular we will identify the element
p−2 of Q` with i

p
2 ∈C.

We will prove the following result. We refer to [7] for the notation used for group names

and character tables; in particular we denote each conjugacy class by the order of its elements,

followed by a letter if there is more than one class with the same order.

29



CHAPTER 4. ELLIPTIC CURVES OVER A 2-ADIC FIELD WITH NON-ABELIAN INERTIA
ACTION

Theorem 4.1. Let E/K be an elliptic curve with potentially good reduction over a 2-adic field, let `

be a prime different from 2 and let ρE,` : Gal(K /K)→GL2(Q`) be the `-adic Galois representation

attached to E. Suppose that I = ρE,`(IK ) is non-abelian. Let ∆ be the discriminant of a (not

necessarily minimal) equation for E and let n be the inertia degree of K /Q2. Then ρE,` factors as

ρE,` = χ⊗ψ(4.2)

where χ : Gal(K /K)→Q
×
` is the unramified character mapping the arithmetic Frobenius of K to

(
p−2 )n, and ψ is the irreducible 2-dimensional representation of the group G =Gal(K(E[3])/K)

given as follows.

• If n is even and ∆ is a cube in K, then ψ is the representation of G =Q8 with character

class 1 2 4A 4B 4C

size 1 1 2 2 2

trψ 2 −2 0 0 0

• If n is even and ∆ is not a cube in K, then ψ is the representation of G = SL2(F3) with

character
class 1 2 3A 3B 4 6A 6B

size 1 1 4 4 6 4 4

trψ 2 −2 −1 −1 0 1 1

Moreover the image of inertia is Q8 if ∆ is a cube in Knr and SL2(F3) otherwise.

• If n is odd and ∆ is a cube in K (equivalently the image of inertia is Q8), then ψ is the

representation of G = SD16 with character

class 1 2A 2B 4A 4B 8A 8B

size 1 1 4 2 4 2 2

trψ 2 −2 0 0 0
p−2 −p−2

• If n is odd and ∆ is not a cube in K (equivalently the image of inertia is SL2(F3)), then ψ is

the representation of G =GL2(F3) with character

class 1 2A 2B 3 4 6 8A 8B

size 1 1 12 8 6 8 6 6

trψ 2 −2 0 −1 0 1
p−2 −p−2

In the last two cases a generator for the class 8A can be described explicitly (it is φσ in the

proof of Theorem 4.7).
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4.1. THE GOOD MODEL

This theorem is almost completely proved in [9, §5]. In particular the cases where n is even

are already known, and here we present a proof for completeness. The cases where n is odd are

more subtle. Although it can be easily proved that the representation ψ can only be either the

one described above or the one which has the same character values for every conjugacy class

except for the classes 8A and 8B, which are swapped, it is not trivial to identify which of these

two is equal to ψ. In this chapter we prove that, with the definition of χ made in the statement of

Theorem 4.1, only one of the two possible cases occurs for elliptic curves. The method of proof

consists of describing explicitly a generator of the class 8A and computing the trace of ψ on it.

4.1 The good model

In the following, E is an elliptic curve over a 2-adic field K , with potentially good reduction, such

that the Galois action attached to it has non-abelian inertia image I.

Lemma 4.2. Let F be the field obtained from K by adjoining the coordinates of one point of exact

order 3 and a cube root of the discriminant ∆ of E. Then E acquires good reduction over F and it

reduces to ẼF : y2 + y= x3 on the residue field.

Proof. Let P = (xP , yP ) be a non-trivial 3-torsion point with coordinates in F and let λP be the

slope of the tangent line at P. Then after applying the change of coordinates{
x 7→ x+ xP

y 7→ y+λP x+ yP
(4.3)

we get an equation for E over F with the same discriminant ∆, of the form

y2 + Axy+By= x3,(4.4)

with B 6= 0 (for a detailed computation see [17, §2, Proposition 2.22 and Corollary 2.23]).

Next we prove that B is a cube in F. Note that the discriminant of equation (4.4) is given by

∆=−27B4 + (AB)3;(4.5)

since ∆ and −B3 are cubes in F, we have that also 27B− A3 = 27B
(
1− A3

27B
)

is a cube in F. If we

show that the quantity 1− A3

27B is a cube in F, then also B is. To prove this claim, it is sufficient to

show that the valuation in F of A3

27B is strictly positive. Then we conclude using Hensel’s Lemma

that the polynomial z3 − (
1− A3

27B
)

has a root in F.

We know by [19, §2, Corollary 2] that E acquires good reduction over the field K(E[3]). We

write v′ for the normalized valuation on this field, and vF for the normalized valuation on F. As

shown in the proof of Theorem 2 in [19], the image of inertia under the Galois action injects into

Aut(ẼK(E[3])), therefore by the classification of the automorphisms of an elliptic curve over a field

of characteristic 2 (see [23, III, §10, Theorem 10.1]) it can be non-abelian only if v′( j)> 0, where j

is the j-invariant of the curve, and therefore we have vF ( j)> 0.
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Assume by contradiction that vF
( A3

27B
)≤ 0, or equivalently 3vF (A)≤ vF (B). By direct computa-

tion,

j = A3(A3 −24B)3

B3(A3 −27B)
(4.6)

so we have that the valuation of the numerator is 12vF (A), and the valuation of the denominator

is at least 3vF (B)+3vF (A). Now

vF ( j)≤ 12vF (A)−3(vF (B)+vF (A))= 3(3vF (A)−vF (B))≤ 0,(4.7)

contradicting the fact that vF ( j)> 0.

Therefore B is a cube in F and the following is a well-defined change of variables over the

field F. {
x 7→ (B1/3)2x

y 7→ (B1/3)3 y
(4.8)

After applying this transformation to the curve (4.4), we get the model y2+A′xy+ y= x3, with

A′ = A/B1/3. By the computation above, vF (A) > vF (B)/3, so vF (A′) > 0 and the valuation of the

discriminant is vF (−27B4 + (AB)3)−12vF (B1/3)= 0. Therefore this model reduces to y2 + y= x3

on the residue field of F, and in particular E acquires good reduction over F. �

Computationally it is possible to find the values xP , yP ,λP using the following modified

version of the 3-division polynomial, whose roots are precisely the slopes of all tangent lines at

the non-trivial 3-torsion points (for a proof, see [8, Theorem 1]):

γ(t)= t8 +18a4t4 +108a6t2 −27a2
4.(4.9)

If λP is a root of γ, then the corresponding point P has coordinates xP = λ2
P

3 , yP = λ4
P+3a4

6λP
.

Let Fnr be the maximal unramified extension of F, which is equal to the compositum of F and

Knr. Note that Fnr is the minimal extension of Knr where the curve E acquires good reduction.

Indeed if L is such an extension, then by [19, §2, Corollary 2], we have that L = Knr(E[3]) and so

it clearly contains the coordinates of any 3-torsion point and any cube root of ∆, which by an easy

computation can be expressed in terms of these coordinates, so Fnr ⊆ L (see [17, §2, Lemma 2.20]).

On the other hand, E does acquire good reduction over F, hence on Fnr, so L = Fnr by minimality.

Also note that ker(ρE,`)=Gal(K /L) and so the representation factors through Gal(L/K) and the

representation induced here is injective.

We have that [L : Knr] | [F : K], and since we are assuming that I is non-abelian then [L : Knr]

is either 8 or 24, so 8 | [F : K]. This occurs precisely when the extension given by adjoining

the coordinates of P is totally ramified of degree 8, i.e. when the polynomial γ defined above is

irreducible over Knr.

There are several cases to consider:
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• if ∆ is a cube in K , then the degree of F/K is exactly 8;

• if ∆ is a cube in Knr but not in K , then [L : Knr]= 8 and [F : K]= 24;

• if ∆ is not a cube in Knr, then [L : Knr]= [F : K]= 24.

Moreover the Galois closure of F/K is given by K(E[3])= F(ζ3), where ζ3 is a primitive third

root of unity; since if ζ3 ∉ K it generates a degree 2 unramified extension, we have that F/K is not

Galois if and only if the inertia degree n of K over Q2 is odd. Note that this cannot occur if ∆ is a

cube in Knr but not in K , otherwise the extension K(∆1/3,ζ3) would be unramified and not cyclic.

4.2 Proof of the main theorem

We will use the same notation as in Section 4.1. Since I is non-abelian, then the group Gal(L/K)

is also non-abelian. By [9, §2, Lemma 1], the representation ρE,` factors as χ⊗ψ, where χ is the

following character:

χ : Gal(K /K) → Q
×
`

FrobK 7→ (
p−2 )n;

IK 7→ 1,

(4.10)

and ψ : Gal(K /K)→GL2(Q`) factors through the finite group G =Gal(F(ζ3)/K), which is either Q8

or SL2(F3) if n is even, SD16 or GL2(F3) if n is odd. As a G-representation, ψ is irreducible and

faithful, and it is given by ψ(g)= 1
χ(g)

ρE,`(g). The definition of χ is suggested by the following

lemma.

Lemma 4.3. Let FrobF be the arithmetic Frobenius of F; then the eigenvalues of ρE,`(FrobF ) are

(±p−2 ) fF/Q2 ; in particular these are real and equal if fF/Q2 is even, complex conjugate if fF/Q2 is

odd.

Proof. By Lemma 4.2 we can compute the characteristic polynomial of ρE,`(FrobF ) via point-

counting on the reduced curve y2 + y= x3, so by Example 2.15, for odd fF/Q2 we get eigenvaluesp−2 fF/Q2 , −p−2 fF/Q2 , and for even fF/Q2 there is only one double eigenvalue (−2) fF/Q2 /2. �

We have that, for even n = fK /Q2 , F(ζ3)= F and so FrobF is central in the group Gal(L/K), so it

acts as a scalar matrix, with eigenvalue given by Lemma 4.3. Moreover, for any n, if ∆1/3 ∉ Knr \K ,

then F and K have the same residue field and so fF/Q2 = n; in this case ρE,`(FrobK )= ρE,`(FrobF ).

Otherwise, the unramified part of the extension F/K is given by adjoining ∆1/3 and therefore it

has degree 3, so fF/Q2 = 3n. In particular ρE,`(FrobF )= ρE,`(FrobK )3.

Suppose first that n is even and that ∆1/3 ∉ Knr \ K . Then we have the following.
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Theorem 4.4. If K is a 2-adic field with even inertia degree n over Q2, then Theorem 4.1 is true

for any elliptic curve E/K with potentially good reduction such that the image of inertia under

ρE,` is non-abelian and ∆1/3 ∉ Knr \ K.

Proof. Since n is even, G is equal to its inertia subgroup since either ∆1/3 ∈ K or ∆1/3 ∉ Knr. As

noticed above, FrobK acts as the multiplication by a scalar with eigenvalue (−2)n/2 = χ(FrobK ),

therefore ψ is given by the representation ρE,` restricted to inertia, hence it is a faithful, ir-

reducible 2-dimensional representation of G (which is either Q8 or SL2(F3)). Moreover by [19,

§2, Theorem 2.ii], the character of this representation has values in Z. By inspecting the char-

acter tables of Q8 and SL2(F3) on [7], we deduce that each of these groups only has one such

representation, namely the one given in the statement. �

For the case ∆1/3 ∈ Knr \ K , the image of inertia is strictly smaller than Gal(F/K), so the

argument that the character values are in Z does not apply directly. However it is still possible to

compute ψ, getting a result surprisingly similar to the one in Theorem 4.4.

Theorem 4.5. If K is a 2-adic field with even inertia degree over Q2 and E is an elliptic curve

with potentially good reduction over K such that the image of inertia under ρE,` is non-abelian

and ∆1/3 ∈ Knr \ K, then Theorem 4.1 holds for E.

Proof. The difference between G and its inertia subgroup is determined by FrobK . We will show

that the trace of ψ(FrobK ) is integer and so the result will follow from the proof of Theorem 4.4.

Recall that χ is the unramified character given by χ(FrobK )= (−2)n/2; then, since the inertia

degree of F/K is 3, we have ρE,`(FrobF )= ρE,`(FrobK )3, therefore using the relation ρE,` = χ⊗ψ
and the fact that ρE,`(FrobF ) is a scalar, we have:

(−2)3n/2 Id2 = ((−2)n/2ψ(FrobK ))3;(4.11)

so the eigenvalues of ψ(FrobK ) are third roots of unity (not necessarily primitive) in Q`; moreover

the order of ψ(FrobK ) is exactly 3, since ψ is faithful as a representation of G, so not both the

eigenvalues can be 1. Computing the determinant on both sides, we obtain that det(ψ(FrobK ))= 1,

therefore the eigenvalues of ψ(FrobK ) can only be the two distinct primitive third roots of unity,

with trace −1. Hence the representation ψ of SL2(F3) is the one given in the statement. �

From this moment on, we assume that n is odd or equivalently that F/K is not Galois. Then

ψ is an irreducible faithful representation of dimension 2 of G, which is either SD16 if ∆ is a cube

in K , or GL2(F3) otherwise. Again, by looking at the character tables of these two groups in [7],

we obtain two possible such representations, both of which extend the representation of inertia

described in the proof of Theorem 4.4. These two representations only differ for the character

value on the elements of order 8. So we need a more explicit description of the action of this

group to deduce which one is the correct representation. Note that we will only concentrate on
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the wild inertia subgroup of G, so we may assume for simplicity that the whole group is SD16. If

G =GL2(F3), then the wild inertia subgroup does not change, since this Galois group differs from

the previous one by a cubic totally ramified (hence tame) field extension, and the parity of n is

not affected.

First, we need to describe explicitly this wild group. Recall that if ẼF is the reduced curve

of the good model for E over F, then there is an injection of the image of inertia into Aut(ẼF ),

that is SL2(F3). This injection is obtained as follows: fix an element σ of inertia, and a point (x̃, ỹ)

on the reduced curve, then lift it to a point (x, y) of EF , which has coordinates in F, apply σ to

each coordinate, and then reduce to another point which again lies on ẼF . The group G contains

a copy of the image of inertia and an extra element φ of order 2; applying the same construction,

we see that φ acts as Frobenius on the reduced curve. This describes a faithful representation of

G with values in GL2(F3).

Now fix `= 3 and consider the representation ρE,`: with this notation we mean the modulo

3 Galois representation attached to E, i.e. the one given by the action of Gal(K /K) on E[3]; this

is equal to the reduction modulo 3 of ρE,`; notice that, after fixing a basis {P,Q} for E[3] as a

F3-vector space, ρE,` takes values in GL2(F3), and by construction it factors through G. In [17,

§4, Figure 4.2] there is a visual interpretation of this action. The two representations described

above are identical, since they are both induced by the action of the Galois group on elements

of F(ζ3). We will use both interpretations to find the character of the generators of the group G

under ψ.

Lemma 4.6. There exists a basis {P,Q} of E[3] where the matrix representing the image of

Frobenius modulo 3 is

(
1 0

0 2

)
.

Proof. Let P be as in the proof of Lemma 4.2. Then P and −P are the only points of exact order

3 with coordinates in F. Otherwise if Q = (xQ , yQ) is another point of order 3 and xQ , yQ ∈ F,

then the coordinates of every other point of order 3 would be rational functions with rational

coefficients of xP , yP , xQ , yQ , since E[3]= {O,±P,±Q,±P ±Q}, hence these coordinates would be

in F, thus F/K would be Galois, contradiction.

We know that the good model for EF reduces to y2 + y= x3, and by direct computation this

curve has the following 8 points of exact order 3:

(0,0), (0,1), (ζ3,ζ3), (ζ3,ζ3
2
), (1,ζ3), (1,ζ3

2
) and (ζ3

2
,ζ3), (ζ3

2
,ζ3

2
),(4.12)

where ζ3 is a third root of unity in K .

After applying the change of coordinates described in Lemma 4.2, P reduces to (0,0) and

−P to (0,1). Let Q be the 3-torsion point of E(F(ζ3)) reducing to (1,ζ3). Then under ρE,` (recall

` = 3), Frobenius acts trivially on P and maps Q to −Q, that is to the only point that has the
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same abscissa of Q, which is in F. Therefore if we complete P to the basis {P,Q} of E[3] with Q

as above, the matrix expressing the Frobenius in this basis is

(
1 0

0 2

)
, as claimed. �

Theorem 4.7. If K is a 2-adic field with odd inertia degree n over Q2, then Theorem 4.1 is true

for any elliptic curve E/K with potentially good reduction such that the image of inertia under

ρE,` is non-abelian.

Proof. We will denote by b the matrix ρE,`(φ) =
(

1 0

0 2

)
∈ GL2(F3). Now let us choose an

element σ in the inertia subgroup, of order 4, for example

P 7→ Q−P

Q 7→ P +Q.
(4.13)

It exists since Q8 is contained in the image of inertia under ρE,`, therefore every element of

GL2(F3) with determinant 1 and 2-power order is in the image of inertia. Then ρE,`(σ) is given

by the matrix

(
2 1

1 1

)
. The element φσ is an element of order 8 of the group G and so if we

determine trψ(φσ), we determine the irreducible representation ψ. To compute this trace, we look

at the trace of ρE,`(FrobK σ). Let a be the reduction of ρE,`(FrobK σ) modulo 3. Then a =
(

2 1

2 2

)
,

with trace 1. This means that tr(ρE,`(FrobK σ)) ≡ 1 (mod 3). Note that a,b, with the relations

a8 = b2 = 1,bab = a3 generate SD16 as a subgroup of GL2(F3) (see the presentation of SD16 in

[7]).

By looking at the character table of the group SD16 in [7], we deduce that trψ(φσ) is eitherp−2 or −p−2 , so

trρE,`(FrobK σ)= χ(FrobK )tr(ψ(φσ)) ∈ {
p
−2 n · (±

p
−2 )}.(4.14)

Only one of this two numbers is congruent to 1 modulo 3, namely the one we obtain if

trψ(φσ)=+p−2 . Therefore we have the following character for ψ (note that only the generators

of the conjugacy classes of elements outside inertia, which identify the correct representation,

are explicitly written).

class 1 2A 2B 4A 4B 8A 8B

size 1 1 4 2 4 2 2

generator φ φσ φσ−1

trψ 2 −2 0 0 0
p−2 −p−2

Similarly if the inertia image is SL2(F3), we get the following character for ψ:

class 1 2A 2B 3 4 6 8A 8B

size 1 1 12 8 6 8 6 6

generator φ φσ φσ−1

trψ 2 −2 0 −1 0 1
p−2 −p−2
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as stated. �
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ELLIPTIC CURVES WITH WILD CYCLIC REDUCTION

In this chapter, we describe the Galois representation ρE,` attached to an elliptic curve

which has wild potentially good reduction, and such that the image of inertia I = ρE,`(IK ) is

cyclic. In other words, we consider all the cases that we have not dealt with in Chapters 2,

3 and 4.

As usual, let K be a non-archimedean local field of characteristic 0 and residue characteristic

p ∈ {2,3}, with uniformiser πK , normalised valuation v and residue field k. Let E/K be an elliptic

curve given by a minimal Weierstrass equation, with discriminant ∆. Let ` be a prime different

from p and ρE,` : Gal(K /K)→Aut(T`(E)) be the `-adic Galois representation. We view Aut(T`(E))

as a subgroup of GL2(Q`) by tensoring over Z` with Q`, and we fix an embedding of Q` into C.

5.1 The case p = 3

We assume for this section that p = 3. Then, by Theorem 2.8, we have that E has wild potentially

good reduction with cyclic inertia image (wild cyclic reduction for simplicity) exactly when v(∆)

is even and E has Néron type different from I∗0 , or equivalently, by Lemma 3.2, if v(∆) is even

and E has a 2-torsion point not defined over Knr. In fact if v(∆) is even then [L : Knr]< 12, and

if there exists a non-trivial 2-torsion point not defined over Knr then it gives at least a cubic

extension, so 3 | [L : Knr] and hence Gal(L/Knr), that is a subgroup of C3oC4, is cyclic of order

3 or 6. Conversely, if E has wild cyclic reduction then 3 | [L : Knr] and so there is at least one

2-torsion point not defined over Knr, and by the above v(∆) is even. Fix a Weierstrass equation

for E, of the form y2 = f (x), and let α1,α2,α3 be the roots of f in K . Notice that, since E has

potentially good reduction, the differences αi −α j for i 6= j all have the same valuation over their

field of definition (see also Remark 6.9), therefore adjoining any of α1, α2, α3 to Knr gives an
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extension of the same degree.

Let F = K(α1). Then the Galois closure of F/K is K(E[2]).

If v(∆)≡ 0 (mod 4), we fix FrobK to be the Frobenius element of Gal(K /K) that fixes F point-

wise. If v(∆) ≡ 2 (mod 4) and E has type different from I∗0 , we fix FrobK to be the Frobenius

element of Gal(K /K) that fixes F point-wise and a square root
p
πK of the uniformiser of K .

We will prove the following result.

Theorem 5.1. Let K be a 3-adic field and let E/K have wild cyclic reduction. Let χ be the

unramified character of Gal(K /K) that sends FrobK to
√

−|k| (which we identify with i
√

|k| ∈C).

(a) If v(∆)≡ 0 (mod 4) and [K(E[2]) : K]= 6, then ρE,` = χ⊗ψ, where ψ is the unique irreducible

2-dimensional representation of S3.

(b) If v(∆)≡ 0 (mod 4) and [K(E[2]) : K]= 3, then:

(i) if there are αi and α j such that αi −α j is a square in K(E[2]), let σ ∈ IK be the element

of order 3 that acts on the roots of f as σ(α j)=αi, and let

ψ : IK →Q
×
`

σ 7→ −1−p−3
2

;
(5.1)

then ρE,` = χ⊗ψ⊕χ⊗ψ, where • denotes complex conjugation;

(ii) otherwise, let σ ∈ IK permute cyclically the roots of f , with σ(α1) = α2, and let ψ be

defined analogously as in case (b.i), then ρE,` = χ⊗ψ⊕χ⊗ψ.

(c) If v(∆)≡ 2 (mod 4) and E has Néron type different from I∗0 , let χπ be the quadratic character

of K(
p
πK )/K. Then Eπ, the quadratic twist of E by K(

p
πK ), has wild cyclic reduction and

satisfies v(∆)≡ 0 (mod 4). We have ρE,` = ρEπ,`⊗χπ.

In the rest of this section, we prove each case separately.

Proof of case (a) Since F/K is totally ramified of degree 3, and by Theorem 2.8 we know that

I = ρE,`(IK )∼= C3, then E acquires good reduction over F. Then as [K(E[2]) : K]= 6 we have that

K(E[2])/F is quadratic and unramified. The same proof as the one for Theorem 2.12, case (b.ii),

shows that ρE,`(FrobK ) has eigenvalues ±
√
−|k| . Let χ be as in the statement. Then ψ= ρE,`⊗χ−1

factors through Gal(K(E[2])/K), which is isomorphic to S3. Since ψ
∣∣
IK

acts with image isomorphic

to C3, and seen as a representation of C3 it is faithful, by direct inspection of the 2-dimensional

representations of S3 we deduce that ψ is irreducible, so as a representation of S3 it is the unique

2-dimensional irreducible (and faithful) representation of S3. �

For the proof of case (b.i), we assume first that n = [k : F3] is odd. At the end of the proof, we

will highlight what changes if n is even.
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Proof of case (b.i). Assume that n = [k : F3] is odd. Up to relabeling, suppose that α2 −α1 is a

square in F = K(E[2]), and fix a square root
p
α2 −α1 ∈ F. The following change of variables{

x = (α2 −α1)x′+α1,

y =
√

(α2 −α1)3 y′
(5.2)

is defined over F and gives a model for the base change of E to F that reduces to Ẽ : y2 = x3 − x

over k (for the proof, see Lemma 3.6). Therefore, by Example 2.14, the eigenvalues of ρE,`(FrobK )

are ±
√

−|k| . We fix σ ∈ IK that permutes cyclically α1,α2,α3 and satisfies σ(α1)=α2, as in the

statement. Then ρE,`(σ) has determinant 1 (by the properties of the Weil pairing) and order 3, so

it has eigenvalues given by the two primitive third roots of unity.

Since the image of ρE,` is abelian, being isomorphic to Gal(Fnr/K) which is the direct product

of Gal(F/K) and Gal(Knr/K), we have a splitting of the form ρE,` = ρ1 ⊕ρ2, where the ρ i ’s are

1-dimensional. From the above, we know that, up to relabeling, ρ1(FrobK )= χ(FrobK )=
√

−|k| ,
ρ2(FrobK )= χ(FrobK )=−

√
−|k| and ρ1(σ), ρ2(σ) are the two primitive third roots of unity, and it

is only necessary to distinguish between the two.

The same argument as in the proof of Theorem 3.1 (more precisely in Section 3.3) can

be applied here, and it shows that ρ1(σ) = −1−p−3
2

, and ρ2(σ) = −1+p−3
2

. So, if we define

ψ : IK →Q
×
` such that ψ(σ)= −1−p−3

2
, we have

ρE,` = χ⊗ψ⊕χ⊗ψ,(5.3)

as claimed. �

Remark 5.2. If n = [k : F3] is even, we still have the same good model for E over F, and we can

compute the eigenvalues of Frobenius as in Example 2.14, obtaining two identical real values,

namely (−3)n/2. In this case, we simply have ρE,` = χ⊗ (ψ⊕ψ), for ψ defined as in the statement.

Since χ= χ, we still recover ρE,` = χ⊗ψ⊕χ⊗ψ.

Proof of case (b.ii). If all the αi −α j ’s are not squares in F = K(E[2]), then F(
p
α2 −α1 ) is

quadratic and unramified over F. In fact, we have v(∆)≡ 0 (mod 4) by assumption, and if vF is

the normalised valuation on F, we have v(∆) = vF (∆)/3 = 2vF (α2 −α1), since E has potentially

good reduction. Therefore vF (α2 −α1) is even, so we can write α2 −α1 = π2a
F ε, where πF is a

uniformiser of F, a ∈Z and ε ∈O×
F is not a square. Moreover, we can take πF and ε so that ε ∈O×

K .

Let Eε be the twist of E be K(
p
ε ), then Eε is as in case (b.i) of the theorem. In fact, since K(

p
ε )/K

is unramified, Eε also has wild cyclic reduction over K with image of inertia C3, moreover an

equation for Eε is

y2 = (x−εα1)(x−εα2)(x−εα3),(5.4)

so εα2 −εα1 = ε2π2a
F is a square in F.

41



CHAPTER 5. ELLIPTIC CURVES WITH WILD CYCLIC REDUCTION

By case (b.i), we have ρEε,` = χ⊗ψ⊕χ⊗ψ, where χ and ψ are as in the statement. Let

η : Gal(K /K)→ {±1} be the unramified quadratic character of Gal(K /K). Then ρEε,` = ρE,`⊗η, and

an immediate computation shows that

ρE,` = χ⊗ψ⊕χ⊗ψ,(5.5)

as claimed. �

Proof of case (c). In this case, by Theorem 2.8, we have I = ρE,`(IK )∼= C6. Let Eπ be the twist

of E by K(
p
πK ). Then the discriminant of Eπ is equal to π6

K∆, and v(π6∆)= 6+v(∆)≡ 0 (mod 4).

Therefore, if χπ is the quadratic character of Gal(K(
p
πK )/K), we have ρE,` = ρEπ,`⊗χπ, where

ρEπ,` is given by one of cases (a), (b.i) or (b.ii). �

5.2 The case p = 2

We assume for this section that p = 2. Recall that E/K has wild cyclic reduction exactly when the

image of inertia I = ρE,`(IK ) is one of C2, C4 or C6, and Theorem 2.9 classifies these three cases.

We first consider the problem of the restriction to inertia of ρE,` for I ∼= C2 or C6. In order to

do so, we start by viewing E as an elliptic curve over Knr, since the reduction type and the action

of inertia do not change. In particular, we have ρE,` : Gal(K /Knr)→Aut(T`(E)).

Lemma 5.3. Let E/Knr be an elliptic curve with wild cyclic reduction and I 6∼= C4. Then:

• if I ∼= C2 then E is a quadratic ramified twist of an elliptic curve with good reduction;

• if I ∼= C6 then E is a quadratic ramified twist of an elliptic curve with tame potentially good

reduction.

The proof is essentially [6, Proposition 4.3].

Proof. Assume first that I ∼= C2.

Let L = Knr(E[3]). Then, by Theorem 2.10, we have I ∼= Gal(L/Knr), so L/Knr is quadratic.

Then the quadratic twist E′ of E by L has good reduction.

Assume now that I ∼= C6 and let L be as above. Then L/Knr is cyclic of order 6 and there is a

unique quadratic subextension M/Knr. The quadratic twist of E by M has tame potentially good

reduction (achieved over L), with inertia image that is cyclic of order 3. �

We now show that, in fact, there exists a quadratic extension of the base field K , over which

E acquires good or tame reduction.

Lemma 5.4. Let E/K be an elliptic curve with wild cyclic reduction and I 6∼= C4. Then:

• if I ∼= C2 then E is a quadratic ramified twist of an elliptic curve with good reduction;
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• if I ∼= C6 then E is a quadratic ramified twist of an elliptic curve with tame potentially good

reduction.

Proof. Assume that I ∼= C2 and let L = Knr(E[3]) as in the proof of Lemma 5.3. Then Gal(L/K)

has inertia subgroup isomorphic to C2, and the quotient is the procyclic group Ẑ. Therefore,

Gal(L/K) is a semidirect product C2o Ẑ, with C2 normal in Gal(L/K); but then the action of Ẑ

can only be trivial, so in fact Gal(L/K)= C2 × Ẑ. In particular, we can consider the intermediate

extension F/K which is fixed by Ẑ: this is Galois, quadratic and totally ramified, with L/F

unramified, therefore E acquires good reduction over F.

If I ∼= C6, let L and M be as in the proof of Lemma 5.3, then Gal(M/K) is isomorphic to the

direct product C2 × Ẑ as in the previous case, and again by taking F to be the fixed field of Ẑ we

conclude. �

Notice that Lemma 5.4 shows the existence of a quadratic extension of K over which the

curve acquires good or tame reduction, but it does not give an algorithmic result to compute it.

Indeed, if p = 2, there are several quadratic ramified extensions of K and we need to consider

one such that its maximal unramified extension is equal to the field L in the proof of Lemma 5.4

above. Determining explicitly this extension is a non-trivial problem, which we do not tackle here.

However, some partial explicit results are available if we restrict to K =Q2, namely [14, §4.1,

Lemma 2].

Assuming we have computed a quadratic twist E′/K of E with good or tame reduction, and

if η is the corresponding quadratic character, then ρE,` = ρE′,`⊗η, and ρE′,` is determined by

Theorem 2.5 if I ∼= C2 and Theorem 2.12 case (b) if I ∼= C6.

For the rest of the section, we focus on the remaining wild cyclic case, that is I ∼= C4. We fix

an arithmetic Frobenius element FrobK of Gal(K /K). We will specify which Frobenius we choose

when the choice is relevant. Let n = [k : F2] be the absolute inertia degree of K . We define the

following unramified character of Gal(K /K):

χ : Gal(K /K)→Q` ,→C

FrobK 7→ (
p−2 )n 7→ (i

p
2 )n.

(5.6)

Let G = Gal(K(E[3])/K). Then G is naturally embedded into GL2(F3), with the embedding

given by fixing a basis for E[3] as a F3-vector space. We will show that ρE,`⊗χ−1 factors through

G, and more precisely we will prove the following result.

Theorem 5.5. Let G =Gal(K(E[3])/K) and suppose I ∼= C4. Then one of the following holds.

(a) G ∼= C4 and ρE,` = χ⊗ (ψ⊕ψ), where

ψ : G →Q` ,→C

σ 7→ i
(5.7)

for any fixed choice of a generator σ of G;
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(b) G ∼=Q8 or D4 and ρE,` = χ⊗ψ, where ψ is the only irreducible faithful 2-dimensional repre-

sentation of G;

(c) G ∼= C8 and ρE,` = χ⊗ (ψ⊕ψ), where ψ is the faithful character of C8 that maps g to the 8-th

root of unity
−p2 +p−2

2
, and g, seen as an element of GL2(F3), is

(
2 2

1 2

)
.

Remark 5.6. Determining which of cases (a), (b) or (c) occurs can be done, for instance, via [9, §3,

Proposition 2 and Lemma 3].

Proof. By definition, I = ρE,`(IK ) is the image of the absolute inertia subgroup via ρE,`. Then we

know, by Theorem 2.10, that I ∼=Gal(Knr(E[3])/Knr), so I is isomorphic to the inertia subgroup

of G. Therefore, I is a normal subgroup of G with cyclic quotient. By the classification in [9,

§3, Proposition 2], it follows that there are only four possibilities for G in order to have I ∼= C4,

namely G is one of C4,Q8,D4 or C8. Notice, in particular, that in each of these cases K contains

a third root of the discriminant of E, and we have that n is even if G ∼= C4,Q8, while n is odd if

G ∼= D4 or C8.

Suppose first that G ∼= I ∼= C4. Then K(E[3]) is a quartic extension of K , generated by the

coordinates of one point of E of order 3, and following the proof of Lemma 4.2 we obtain that

there exists a model for the base change of E to K(E[3]) that reduces to y2 + y = x3 over the

residue field k. In particular, if we fix FrobK to be the arithmetic Frobenius that fixes K(E[3])

point-wise, we have that ρE,`(FrobK ) has eigenvalues (±p−2 )n, and since n is even this means

that ρE,`(FrobK ) is the scalar matrix (−2)n/2 Id2. Therefore, ρE,`⊗χ−1 factors through G ∼= I,

and as a representation of I it is faithful with trivial determinant. By direct inspection on the

character table of the group C4 (see [7]), we deduce that ρE,`⊗χ−1 is the direct sum of the two

one-dimensional faithful representations of C4, hence it is ψ⊕ψ where ψ is as in the statement.

Now suppose that G ∼=Q8 or D4. Then G is non-abelian, so by [9, §2, Lemma 1] we have that

ρE,`⊗χ−1 factors through G, and as a representation of G it is irreducible and faithful. Since

both Q8 and D4 have only one 2-dimensional irreducible representation (which is also faithful),

case (b) of the theorem holds.

Finally we assume that G ∼= C8. In this case, since G is cyclic, there exists a unique subexten-

sion of K(E[3]) of degree 2 over K , namely the unramified extension K2 generated by a primitive

third root of unity in K . Notice that, in particular, this means that K(E[3]) is not the compositum

of a quartic totally ramified extension of K with a quadratic unramified extension of K , because

every extension of K contains K2, hence it is not totally ramified.

We have that I ∼=Gal(K(E[3])/K2), and the restriction ρE,`
∣∣
IK

factors through I. By [17, Figure

4.3] we know that the 3-division polynomial of E over K2 factors as the product of two quadratic

factors, so there are two points P,Q ∈ E[3]\{O} such that the abscissas xP , xQ are different but in

the same I-orbit.
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We fix the following generator σ of I: it is the element that acts on E[3] as{
P 7→ Q,

Q 7→ −P;
(5.8)

so if we fix {P,Q} as a basis for E[3] over F3 we identify σ with the matrix(
0 2

1 0

)
.(5.9)

We now want to fix a generator g of G, and to do so we observe that there are exactly two

elements in GL2(F3) that have square equal to σ, and they both are in G, namely

(
2 2

1 2

)
as in

the statement, and

(
1 1

2 1

)
. We fix g =

(
2 2

1 2

)
. Let us consider the representation ρE,`⊗χ−1.

Again by the same proof as in Lemma 4.2, we have that a model for the base change of E to

K(E[3]) reduces to y2 + y= x3, thus the Frobenius element of K(E[3]), which has inertia degree

2 over K , acts as the scalar matrix (−2)n Id2. We therefore have that the arithmetic Frobenius

of K has distinct eigenvalues ±(
p−2 )n, so ρE,`⊗χ−1 factors through G. We fix FrobK to be the

Frobenius element of K that is mapped to g under the quotient map: Gal(K /K)→G. Moreover,

the restriction to inertia of ρE,`⊗χ−1 factors through I ∼= C4, and as a representation of C4 it

is faithful with trivial determinant. Therefore ρE,`⊗χ−1 =ψa ⊕ψb, where ψa and ψb are two

of the four one-dimensional representations of C8, which are listed in [7]. Namely, the possible

representations are denoted in op. cit. by ρ3,ρ5,ρ6,ρ8, and we identify g with the conjugacy

class denoted by 8A, and the eighth root of unity ζ8 with the complex number e2πi/8 =
p

2 +p−2
2

.

Using that the restriction to inertia has trivial determinant, we deduce that the only possibilities

for the set {ψa,ψb} are:

{ρ3,ρ5}, {ρ3,ρ8}, {ρ5,ρ6}, {ρ6,ρ8},(5.10)

and in particular ψb =ψa. Let ψ=ψa. Now we have

ρE,`(FrobK )= χ(FrobK )(ψ+ψ)(g).(5.11)

Let us fix ` = 3. Then, the reduction modulo 3 of ρE,` is equal to the modulo 3 Galois

representation, i.e. the one given by the action of Gal(K /K) on E[3], so we have that ρE,`(FrobK )

reduces to g =
(

2 2

1 2

)
(mod 3), which has trace 1 and determinant 2. A direct computation

shows that the only pair in List 5.10 for which this occurs is {ρ6,ρ8}, so the representation ρE,` is

given by

ρE,` = χ⊗ (ρ6 ⊕ρ8)(5.12)

and this concludes the proof since ρ6(g)= ζ3
8 =

−p2 +p−2
2

. �
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6
A FAMILY OF HYPERELLIPTIC CURVES WITH LARGE INERTIA IMAGE

In this final chapter, we generalise the main result of Chapter 3 to the family of hyperelliptic

curves with potentially good reduction over a p-adic field, which have genus (p−1)/2, a

Weierstrass rational point and the largest possible image of inertia under the `-adic Galois

representation associated to their Jacobian. We will prove that this Galois representation factors

as the tensor product of an unramified character and an irreducible representation of a finite

group, which can be either equal to the inertia image (in which case the representation is easily

determined) or a C2-extension of it. In this second case, there are two suitable representations

and we will describe the Galois action explicitly in order to determine the correct one.

This result is surprisingly similar to Theorem 3.1, although the proof requires more general

techniques which involve a detailed study of representations of finite groups.

This chapter is a modified version of the author’s paper “Wild Galois representations: a family

of hyperelliptic curves with large inertia image”, currently submitted for publication ([4]).

6.1 Introduction

A hyperelliptic curve over a field K is a smooth projective algebraic curve X of genus g ≥ 2

that has the structure of a degree 2 cover of P1. The results of this chapter also hold for elliptic

curves, and the main theorem is in fact proved in §3, so throughout this chapter we will implicitly

include the case of X being an elliptic curve. Similarly as with elliptic curves, we can identify a

hyperelliptic curve with an affine Weierstrass equation, i.e. an equation of the form

X : y2 +h(x)y= f (x),(6.1)
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where h(x) and f (x) are polynomials with coefficients in K with deg(h) ≤ g and deg( f ) ∈ {2g+
1,2g+2}. By this, we mean that the function field of X is isomorphic to

K(x)[y]/(y2 +h(x)y− f (x)).(6.2)

Note that, if char(K) 6= 2, after a change of coordinates it is always possible to assume that

h(x)= 0.

One important difference between elliptic curves and higher genus hyperelliptic curves is

that the set of points on the latter does not have a group structure. However, it is possible to

associate an abelian variety to any curve X , namely the Jacobian variety Jac(X ), and study the

group structure on it. If K is a fixed separable closure of K , we denote by Jac(X )(K) the set of

points defined over K and lying on Jac(X ). For the definition of the Jacobian of a curve, see e.g.

[16, §1]. In particular we can define, for a prime `, the `-adic Tate module, which is

T`Jac(X )= lim←−−n
Jac(X )[`n],(6.3)

where by Jac(X )[m] we denote the subgroup of m-torsion points of Jac(X )(K). It can be proved

that, for ` different from the characteristic of K , this is a free Z`-module of rank 2g.

Let Gal(K /K) be the absolute Galois group of K . Then we have a linear action on the points of

Jac(X ), and an induced action on the Tate modules, thus we can define, for any prime ` (different

from char(K)) a Galois representation

ρJ,` : Gal(K /K)→Aut(T`Jac(X )).(6.4)

After taking the tensor product with Q`, and fixing a basis for T`Jac(X )⊗Z` Q`, we can and

will consider Aut(T`Jac(X )) as a subgroup of GL2g(Q`).

From this moment on, we assume that K is a non-archimedean local field of characteristic

0, i.e. a finite extension of Qp for some prime p; we also assume that p 6= `. As usual, we denote

by v the valuation on K , by OK the ring of integers, by πK a uniformiser, by k the residue field,

with algebraic closure k, and by Knr the maximal unramified extension of K contained in K . Let

IK be the inertia subgroup of Gal(K /K) and FrobK be any arithmetic Frobenius of Gal(K /K). In

Section 6.4 we fix a precise choice of FrobK .

In Section 6.2 we give the statement of the main result of this chapter. In Section 6.3 we

describe explicitly the action of inertia in our setting, using [11, Theorem 10.3] and [20, §8.2,

Proposition 25]. In Section 6.4 we use a good model for the family of curves we are interested in,

to compute the eigenvalues of Frobenius. Finally in Section 6.5 we give details about the proof, in

particular in the case where the inertia degree of K /Qp is odd, when the work of Sections 6.3 and

6.4 is not sufficient to describe the full Galois representation.
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6.2 Statement of the main results

Let K be a p-adic field as in the previous section and let X be an hyperelliptic curve over K of

the form:

X : y2 = f (x)(6.5)

with f ∈ K[x] monic, of degree p. (Recall that the genus g of the curve satisfies p = 2g+1). Suppose

that X has potentially good reduction over K , i.e. there exists a finite extension F/K such that the

base changed curve X ×K F has good reduction. Then by the Criterion of Néron-Ogg-Shafarevich

(see [19, §2, Theorem 2(ii)]), the Galois representation ρJ,` restricted to inertia factors through

a finite quotient. We assume that this quotient has the largest possible size. The first result

characterises the hyperelliptic curves that satisfy these assumption. Let α1, . . . ,αp ∈ K be the

roots of f , ∆ be the discriminant of f , and let G =Gal(K({pαi −α j }i 6= j)/K). Moreover let I be the

inertia subgroup of G.

Proposition 6.1. Let X : y2 = f (x) be a hyperelliptic curve such that deg( f )= p over a p-adic field

K, with potentially good reduction, and let ρJ,` be the `-adic Galois representation associated to

it. Then |ρJ,`(IK )| is maximal and equal to 2p(p−1) if and only if

• the Galois group of the splitting field of f over Knr is isomorphic to the Frobenius group

Cp oCp−1, and

• v(∆) is odd.

Furthermore, ρJ,`(IK )∼= I. The structure of the group I when these two conditions hold is that of

the semidirect product CpoC2(p−1) of Cp and C2(p−1) which has a degree 2 quotient isomorphic to

the Frobenius group Cp oCp−1.

The first condition in this proposition is expensive to check computationally, however the

following result gives two conditions that imply those above and are easier to verify. Throughout

the rest of the chapter we will assume for simplicity that these two new conditions hold, however

they can be replaced by the general ones, in fact the main theorem of this chapter holds whenever

the image of inertia is maximal, in the sense of Proposition 6.1. Notice furthermore that, since

the characteristic of K is 0, the existence of a defining equation for X satisfying deg( f ) = p is

equivalent to X having genus (p−1)/2 and a rational Weierstrass point.

Proposition 6.2. The conditions in Proposition 6.1 are implied by the following two:

• f is irreducible over K;

• (v(∆), p−1)= 1.
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For the proof of these statements see Section 6.3.

Let F = K(α1, . . . ,αp,
p
α2 −α1 ). We will prove that if the conditions in Proposition 6.2 hold,

F/K is totally ramified and X acquires good reduction over F. Moreover if the absolute inertia

degree fK /Qp of K is even, then F = K({pαi −α j }i 6= j) and so G = I, otherwise G is isomorphic to a

semidirect product of the form IoC2. Let us now fix a numbering on the roots and an element

σ ∈ I such that:

σ :α1 7→α2 7→ · · · 7→αp 7→α1(6.6)

and σ(pαi −α j ) = √
σ(αi)−σ(α j) for all i, j. Moreover, for odd fK /Qp , let φ be the non-trivial

element of G that fixes the field F. For each prime ` 6= p we fix an embedding Q` → C. In

particular we identify
pp with the positive real square root of p,

p−p with the complex number

ipp .

We will prove the following main result.

Theorem 6.3. Let X /K : y2 = f (x) be a hyperelliptic curve over a p-adic field of genus (p−1)/2

and a rational Weierstrass point with potentially good reduction and let ρJ,` be the `-adic Galois

representation attached to Jac(X ), for ` 6= p. Suppose that f is irreducible over K and that the

valuation of the discriminant of f is coprime to p−1. Let G, I,σ,φ be as above.

Then ρJ,` is irreducible and factors as ρJ,` = χ⊗ψ, where:

χ : Gal(K /K) → Q
×
`

IK 7→ 1

FrobK 7→
(√(−1

p

)
p

) fK /Qp
(6.7)

and:

• if fK /Qp is even, ψ is the unique irreducible faithful representation of G = I of dimension

p−1;

• if fK /Qp is odd, ψ is the unique irreducible faithful representation of G ∼= IoC2 of dimension

p−1 such that tr(ψ(σφ))=−
√(−1

p

)
p .

In order to prove this theorem, we follow this strategy: first we determine the Galois represen-

tation restricted to inertia, then we find a model of X ×K F reducing to y2 = xp−x over the residue

field, and use this to determine the action of ρJ,`(FrobK ). If fK /Qp is even, then this information

is enough to determine the full Galois action, otherwise there are two representations that, when

restricted to inertia, give the same result, and the two only differ by the trace of the elements

that are products of Frobenius with a wild inertia automorphism. We will compute explicitly the

trace of one such element, namely σFrobK where σ is defined above, using again the good model

y2 = xp − x, to conclude.
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Remark 6.4. Such curves exist: for example let X /Qp : y2 = f (x) = xp − p. Then f is irreducible

over Qp and v(∆)= 2p−1 is relatively prime to p−1.

6.3 The inertia action

In this section we prove Propositions 6.1, 6.2 and we use Proposition 25 in [20, §8.2] to determine

the restriction to inertia of ρJ,`.

6.3.1 Proof of Propositions 6.1 and 6.2

Remark 6.5 (Cluster picture for the curve). Recall that for a hyperelliptic curve of the form

y2 = f (x), a cluster is a subset of the set of all roots of f in K with the property that the difference

of any two different elements of it has valuation ≤ δ, for some δ ∈R. For more detailed definitions,

see [11, §1].

Suppose that X : y2 = f (x), with f (x) ∈ K[x] of degree p and roots α1, . . . ,αp ∈ K; note in

particular that, if g is the genus of the curve, then p = 2g+1. By [11, §10, Theorem 10.3], we have

that X has potentially good reduction if and only if the cluster picture consists of a unique cluster

R of size p containing all the roots. In this case, Jac(X ) also has potentially good reduction.

By the Criterion of Néron-Ogg-Shafarevich (see [19, §2, Theorem 2(ii)]), the Galois repre-

sentation ρJ,` on T`Jac(X ), restricted to inertia, has finite image, independent of ` if ` 6= p.

Moreover by Corollary 3 in the same paper, this image is isomorphic to Gal(Knr(Jac(X )[m])/Knr)

for any m ≥ 3 coprime to p, and Knr(Jac(X )[m]) is the minimal extension of Knr over which

Jac(X ) acquires good reduction. We can fix m = 4; then by [25, Theorem 1.1], we have that

L := Knr(Jac(X )[4])= Knr({
√
αi −α j }i, j∈{1,...,p}).(6.8)

We denote by Cp oC2(p−1) the semidirect product of Cp and C2(p−1) which has a degree 2

quotient isomorphic to the Frobenius group Cp oCp−1.

Lemma 6.6. Suppose that X : y2 = f (x) is a hyperelliptic curve with deg( f ) = p over a p-adic

field K with potentially good reduction and let ρJ,`,Gal(K /K), IK ,L be as above. Assume that f is

irreducible over Knr. Then ρJ,`(IK )∼=Gal(L/Knr) is isomorphic to a subgroup of Cp oC2(p−1).

Proof. Let L′ = Knr(Jac(X )[2]), and consider the tower of field extensions L/L′/Knr. Notice that

L′ is the splitting field of f over Knr, by [1, Lemma 2.1].

For all i, αi ∈ L′, therefore L is obtained from L′ by adjoining square roots of some elements

of L′. So the Galois group of L/L′ is a direct product of some copies of C2. However, it is a totally

ramified extension since L′ ⊇ Knr, and it is tame since p is odd, therefore it must be cyclic. So

L/L′ can only be trivial or quadratic.

Now let us consider L′/Knr. Since f is irreducible over Knr, we have that Gal(L′/Knr) has a

cyclic subgroup of order p. Therefore Gal(L′/Knr) injects into Sp, the group of permutations on p
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elements, and since p divides |Sp| exactly once, necessarily the p-Sylow subgroup of Gal(L′/Knr)

is isomorphic to Cp. So, the wild inertia subgroup of Gal(L′/Knr) is isomorphic to Cp, and the

quotient by Cp is the Galois group of the maximal tamely ramified subextension of L′/Knr, so it is

cyclic. Now the image of it in Sp is contained in the normaliser of Cp, that is equal to Cp oCp−1.

Therefore Gal(L′/Knr) injects into Cp oCp−1.

Putting all this together, if f is irreducible over Knr then Gal(L/Knr) has at most order

2p(p−1), with wild inertia subgroup of order p and a cyclic quotient of order at most 2(p−1),

corresponding to the maximal tame subextension. Since L′/Knr is an intermediate subextension

with Galois group isomorphic to a subgroup of the Frobenius group Cp oCp−1, this concludes the

proof. �

This lemma shows that, for a curve acquiring good reduction over a wildly ramified extension,

the size of the image of inertia under ρJ,` is at most 2p(p−1). In fact equality can be achieved,

and in this case we say that the curve has maximal inertia image. We now complete the proof of

Proposition 6.1.

Proof of Proposition 6.1 In Lemma 6.6, we proved that |ρJ,`(IK )| divides 2p(p−1), and that

(with the same notation used in the proof) [L : L′]≤ 2 and [L′ : Knr]≤ p(p−1). Clearly, the second

inequality is an equality precisely when the Galois group of the splitting field of f over Knr is

Cp oCp−1. Moreover, we have:

L = L′(
p
α2 −α1 )= K(α1, . . . ,αp,

p
α2 −α1 ),(6.9)

in fact at most one of the elements p
αi −α j is sufficient to generate L over L′ and by Remark 6.5

any of these elements works as they all have the same valuation. More precisely, the extension

L/L′ is quadratic if and only if α2 −α1 is not a square in L′, or equivalently it has odd valuation.

We denote by vL, vL′ the normalised valuations on L and L′ respectively. Then vL(
p
α2 −α1 )=

1
2

[L : L′]vL′(α2 −α1) and since by definition ∆=∏
i> j(αi −α j)2, we have:

vL(∆)=
(

p
2

)
2vL(α2 −α1)=

(
p
2

)
4vL(

p
α2 −α1 )= 2p(p−1)vL(

p
α2 −α1 );(6.10)

on the other hand since the valuations on Knr and K agree on the elements of K we have

vL(∆)= [L : Knr]v(∆).

Suppose that |ρ`(IK )| = 2p(p−1), so [L : Knr]= 2p(p−1). In particular, [L : L′]= 2 and by the

observation above this means vL′(α2 −α1) is odd. Then simplifying from the equalities above

we obtain that v(∆)= vL(
p
α2 −α1 )= vL′(α2 −α1) is odd and, as we already noted, Gal(L′/Knr)∼=

CpoCp−1. Conversely suppose that Gal(L′/Knr)∼= CpoCp−1 and that v(∆) is odd. Then comparing

the two expressions for vL(∆) and using that [L′ : Knr]= p(p−1) we obtain

[L : L′]v(∆)= 2 · 1
2

[L : L′]vL′(α2 −α1),(6.11)
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so vL′(α2 −α1)= v(∆) is odd, which implies [L : L′]= 2 and therefore [L : Knr]= 2p(p−1).

We now prove that ρ`(IK ) ∼= I, where I is as in Section 6.2. Let F = K(α1, . . . ,αp,
p
α2 −α1 ).

The extension F/K is totally ramified of degree 2p(p−1), since the ramification index is 2p(p−1)

and since [F : K] is at most 2p(p−1), again by the Proof of Lemma 6.6. The Galois closure of F/K

is given by K({pαi −α j }i 6= j). Therefore the inertia subgroup I of the Galois group of this field

over K is isomorphic to Gal(L/Knr), hence to the image of inertia ρJ,`(IK ). This concludes the

proof of Proposition 6.1. �

To conclude this subsection, we prove Proposition 6.2.

Proof of Proposition 6.2 We need to prove that if f is irreducible over K and (v(∆), p−1)= 1

then Gal(L′/Knr)∼= Cp oCp−1, where L′ is as in the proofs of Lemma 6.6 and Proposition 6.1. We

clearly also have that v(∆) is odd since p−1 is even.

Let us denote by M the splitting field of f over K . First of all, since f is irreducible over K

then Gal(M/K) contains a subgroup of order p. Moreover this subgroup is normal, in fact if we

see it as a subgroup of Sp, it consists of all the p-cycles in Gal(M/K) and the conjugation of any

p-cycle is a p-cycle.

Now consider the element ∆1/(p−1). Using the expression of ∆ in terms of the roots α1, . . . ,αp

of f and the fact that αi −α j all have the same valuation, we can prove that ∆1/(p−1) ∈ L′. More

precisely, we have

∆1/(p−1) = (α2 −α1)pu1/(p−1), where u = ∏
i> j

(
αi −α j

α2 −α1

)2
;(6.12)

note that u is an element of L′ with valuation 0 and so its (p−1)-st root gives an unramified,

hence trivial, extension of L′. Since (v(∆), p−1)= 1, we also have that [Knr(∆1/(p−1)) : Knr]= p−1.

Therefore p−1 divides both [L′ : Knr] and [M : K]. Now the inertia subgroup of Gal(M/K) is

isomorphic to Gal(L′/Knr), and it is normal with cyclic quotient. Therefore it must contain the

subgroup of Gal(M/K) isomorphic to Cp. This proves that p, p−1 | [L′ : Knr] and as in the proof of

Lemma 6.6 we conclude that Gal(L′/Knr)∼= Cp oCp−1. �

6.3.2 The irreducible representations of the group I

We now fix a set of generators for I; let σ be defined as in Section 6.2. The tame inertia is

generated by an element τ such that {σ,τ2} generates the Galois group of the splitting field of f ,

which is the Frobenius group Cp oCp−1. So I is presented as

I = 〈σ,τ|σp = τ2(p−1) = 1,τστ−1 =σb〉,(6.13)

for some b coprime to p. The exact value of b will not be relevant for the rest of the chapter.

Finally, we denote by ν the element τp−1; it generates the extra C2 contained in I, and acts as:√
αi −α j 7→ −√

αi −α j .(6.14)

53



CHAPTER 6. A FAMILY OF HYPERELLIPTIC CURVES WITH LARGE INERTIA IMAGE

Note that ν is the only element of the subgroup C2(p−1) of I (except the identity) that commutes

with σ.

We now want to describe the representation induced from ρJ,` on I. We claim that it is

irreducible of dimension p−1 and faithful. We only have to prove that it is irreducible, since it

is clearly faithful by the definition of I, and the dimension of ρJ,` (hence of the restriction to

inertia) is 2g = p−1. In order to do it, we make a digression on the irreducible representations of

the group I.

The group I is the semidirect product of two abelian groups, A = Cp and H = C2(p−1), so

we are in the setting of [20, §8.2]. Consider a set of representatives for the orbits of H in the

group of characters of A. We have that this set consists of two elements only, namely the trivial

representation 1 and a non-trivial character η. Let H1 (resp. Hη) denote the subgroup of H

consisting of the elements that stabilise 1 (resp. η). Then H1 = H and Hη = 〈ν〉 ∼= C2. Now, for

any irreducible representation ξ of H• we obtain a representation of G given by IndI
AH•

•⊗ξ. By

[20, §8.2, Proposition 25] the representations obtained in this way are exactly all the irreducible

representations of I.

In particular, I has 2(p−1) irreducible representations of dimension 1, corresponding to the

2(p−1) irreducible representations of H1 = H, and two representations of dimension [I : AHη]=
p−1 corresponding to the two irreducible representations of Hη

∼= C2.

Lemma 6.7. The restriction to inertia of the representation ρJ,` is irreducible.

Proof. Suppose that ρ`
∣∣
IK

is reducible. Then, since it has dimension equal to p−1, it is the

sum of p− 1 one-dimensional representations, but in this case the image would be abelian.

However, this representation factors through I and is faithful as an I-representation, so since I

is non-abelian we have a contradiction. Therefore ρJ,`
∣∣
IK

must be irreducible. �

Note that, as a consequence of this lemma, the representation ρJ,` is also irreducible.

We can furthermore identify ρJ,`
∣∣
IK

among these two (p−1)-dimensional irreducible repre-

sentations. Since Hη
∼= C2, the representation ξ needed for the construction described above is

either the trivial representation of Hη, or the representation sgn, defined by sgn(ν)=−1. So we

obtain the two representations IndI
C2p

η and IndI
C2p

η⊗sgn.

• The representation IndI
C2p

η is not faithful. In fact, tr(IndI
C2p

η)(1)= tr(IndI
C2p

η)(ν)= p−1.

• The representation IndI
C2p

η⊗sgn is faithful. In fact we have, for s ∈ I and for t1, . . . , tp−1 a

set of representatives for I/C2p:

tr(IndI
C2p

η⊗sgn)(s)= ∑
i:ti st−1

i ∈C2p

η(tist−1
i )sgn(s).(6.15)

For the terms occurring in this sum (which are at most p−1) we have that η(tist−1
i ) is some

root of unity, and it is 1 if and only if s = 1. So for s 6= 1 we have a sum of at most p−1
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roots of unity, different from 1, and therefore tr(IndI
C2p

η⊗sgn)(s) 6= p−1, or equivalently

the representation is faithful.

This proves the following.

Lemma 6.8. The representation ρJ,` restricted to inertia factors through I ∼= Cp oC2(p−1) and, as

a representation of I, it is the unique irreducible faithful representation of dimension p−1.

Remark 6.9. By [11, §10, Theorem 10.1], we have an alternative description of the representation

ρJ,`
∣∣
IK

. Since the cluster picture of X only contains the cluster R, we have that up to isomorphism

of inertia modules, ρJ,` is given by

γ⊗ (Q`[R]ª1),(6.16)

where γ is a certain character of order 2(p−1). More precisely, the isomorphism is with the first

étale cohomology group, which as a Galois representation is dual to ρJ,`. However, since the

restriction to inertia has integer characters, the result is the same.

6.4 The good model and the action of Frobenius

In this section we show that any hyperelliptic curve satisfying the hypotheses of Theorem 6.3 has

a good model over the field F defined in Section 6.2, that reduces to

y2 = xp − x(6.17)

on the residue field. We then prove that the action of Frobenius is diagonalisable, with eigenval-

ues:

• all equal to
((−1

p

)
p
) fK /Qp /2

, if fK /Qp is even;

• half equal to
((−1

p

)
p
) fK /Qp /2

and half equal to −
((−1

p

)
p
) fK /Qp /2

, if fK /Qp is odd.

In particular we deduce that the full Galois action is completely determined by these data

when fK /Qp is even.

As observed in Section 6.3, the extension F/K is totally ramified, so the residue fields of F and

K are both equal to k. Therefore we will identify the action of FrobK with that of FrobF , which is

well defined.

Lemma 6.10. The base change of X on F has a model reducing to y2 = xp − x on k.

Proof. Over F, we can define the following change of variables:{
x 7→ (α2 −α1)x+α1

y 7→ (
p
α2 −α1 )p y.

(6.18)
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Then applying this change of variables to X ×K F we have the following equation:

y2 = ∏
1≤i≤p

(
x− αi −α1

α2 −α1

)
.(6.19)

Note that for each i ∈ {2, . . . , p}, we have

αi −α1 =
i−2∑
j=0

σ j(α2 −α1)

and since σ is a wild inertia element,
σ j(α2 −α1)
α2 −α1

reduces to 1 on k (see Lemma 3.5), therefore

the reduction of
∏

1≤i≤p

(
x− αi −α1

α2 −α1

)
is

∏
1≤i≤p(x− (i−1))= xp − x. �

Remark 6.11. We know from the Criterion of Néron-Ogg-Shafarevich ([19, §2, Theorem 2(ii)])

that Jac(X ) acquires good reduction over F; this lemma shows that the curve X itself acquires

good reduction over the same extension.

Since F/K is totally ramified of degree 2p(p−1), there is an intermediate extension F ′ such

that F/F ′ is wild of degree p and F ′/K is tame of degree 2(p − 1). Hence there exists some

uniformiser πK of K such that a 2(p−1)-th root of it generates F ′/K . Now, since K is a finite

extension of Qp, it contains all the (p−1)-th roots of unity; moreover K also contains a primitive

2(p−1)-th root of unity if and only if the unramified part of the extension K /Qp has even degree,

i.e. if fK /Qp is even. Therefore the Galois closure of F/K (which, as observed in Section 6.3, is

equal to K(Jac(X )[4])) is given by F(ζ2(p−1)), where ζ2(p−1) is a primitive 2(p−1)-th root of unity.

In particular F/K is Galois if and only if fK /Qp is even, and if it is odd then [F(ζ2(p−1)) : F]= 2.

We are now ready to compute ρJ,`(FrobF ), hence ρJ,`(FrobK ).

6.4.1 The action of Frobenius

Suppose first that n = fK /Qp is even. Then FrobF is central in Gal(L/K) (recall L = Fnr), therefore

ρJ,`(FrobF ) is a scalar matrix. Let λ ∈ Q` be such that ρJ,`(FrobF ) = λId2g. Then we know

det(ρJ,`(FrobF ))= |k|g = png and so λ2g = png. On the other hand, since ρJ,`(FrobF ) is a scalar

matrix, then its characteristic polynomial is precisely (T −λ)2g, and by [5, Theorem 1.6] it has

integral coefficients, so λ ∈Z and in particular λ ∈ {±pn/2}. Finally, since F/K is Galois, we have

F = K(Jac(X )[4]), so ρJ,`(FrobF ) acts trivially modulo 4 and λ≡ 1 (mod 4). Hence

λ=
((−1

p

)
p
) fK /Qp /2

.

Suppose now that n = fK /Qp is odd. Assume for simplicity that n = 1, then for general n,

ρJ,`(FrobF ) acts as the n-th power of the linear operator we obtain for n = 1. Then the square of

FrobF is central in Gal(L/K), hence ρJ,`(FrobF )2 is of the form µId2g. As a consequence of the

Weil Conjectures (see again [5, Theorem 1.6]) we also have that the trace of ρJ,`(FrobF ) is given
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by p+1−|X̃F (Fp)| where X̃F is the reduction modulo p of X ×K F. Since for each x ∈ Fp, xp−x = 0,

we have precisely p affine points on X̃F , so tr(ρJ,`(FrobF )) = 0. Therefore the characteristic

polynomial of ρJ,`(FrobF ) has g roots equal to p
µ and g roots equal to −pµ , hence it is (T2−µ)g,

and again it has constant term equal to pg and integer coefficients, hence µ ∈ {±p}. As in the

previous case, we have µ≡ 1 (mod 4) and so µ=
(−1

p

)
p. Putting all this together, the eigenvalues

of ρJ,`(FrobF ) for generic odd fK /Qp are

±
(√(−1

p

)
p

) fK /Qp

,

each occurring g times.

Now we can prove Theorem 6.3 in the case of even fK /Qp .

Proof of Theorem 6.3 for even inertia degree. Since fK /Qp is even, we know F/K is Galois

with Galois group isomorphic to its inertia subgroup. We furthermore have Gal(L/K)=Gal(F/K)×
Gal(Knr/K), since L = Fnr = FKnr. If we define χ as in the statement of Theorem 6.3 we have

that ρJ,`(FrobK ) = χ(FrobK )Id2g and therefore if we let ψ = ρJ,`⊗χ−1, then ψ factors through

Gal(F/K), which is isomorphic to I, and as a representation of this group it is irreducible, faithful

and (p−1)-dimensional. By Lemma 6.8, there exists a unique such representation. �

6.5 The case of odd inertia degree

In this final section, we complete the proof of Theorem 6.3 for the case when fK /Qp is odd,

computing explicitly ψ.

Let χ be as in the statement of Theorem 6.3. Then we can fix a basis of T`Jac(X ) such that

the matrix representing ψ(FrobK )= 1
χ(FrobK )

ρJ,`(FrobK ) in this basis is diagonal with the first

g coefficients equal to 1 and the last g coefficients equal to −1. In particular ψ(Frob2
K )= Id2g and

so Frob2
K ∈ ker(ψ). Therefore we have that ker(ψ) = Gal(K /F(ζ2(p−1))) and so ψ factors through

G =Gal(F(ζ2(p−1))/K), and it is faithful as a representation of G. Now G is generated by I and the

element φ defined in Section 6.2, with G ∼= Io 〈φ〉. Note that φ is the reduction of FrobK modulo

its square. The group G has the following presentation:

G = 〈σ,τ,φ|σp = τ2(p−1) =φ2 = 1,τστ−1 =σb,σφ=φσ,φτφ= τp〉.(6.20)

In the diagram below we show the relations among the fields K ,K(ζ2(p−1)),F,F(ζ2(p−1)),L,K

and we highlight the relevant Galois groups (here φ is the image of φ in G/I).
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K

L

F(ζ2(p−1)) Knr

F K(ζ2(p−1))

K

G

I 〈Frob2
K 〉

〈φ〉

Lemma 6.12. The group G is isomorphic to a semidirect product

Cp o (C2(p−1)oC2).

Proof. Since 〈φ〉 ∼= C2, we know that G ∼= (Cp oC2(p−1))oC2. Moreover the subgroup given by

wild inertia is normal, so G has a normal subgroup isomorphic to Cp. We only need to prove that

G also has a subgroup isomorphic to C2(p−1)oC2. The field K(α1) is an intermediate extension of

degree p over K , and Gal(F(ζ2(p−1))/K(α1))∼= C2(p−1)oC2 is a subgroup of G. �

In particular G is of the form A oH, with A abelian, as in [20, §8.2]. Again we can use

Proposition 25 of op. cit. to describe the irreducible representations of G.

6.5.1 The irreducible representations of the group G

A set of representatives for the orbits of H in the group of characters of A consists, as in Section

6.3, only of the two elements 1 and η, for η any non-trivial character. It is easy to check that,

with the same notation as in Section 6.3, H1 = H and Hη = 〈φ,ν〉 ∼= C2
2. All the representations

of H1 give rise to a representation of G of the same dimension. Now H1 ∼= C2(p−1)oC2 is itself a

semidirect product of two abelian subgroups, so using Proposition 25 of [20] we have that all its

irreducible representations have dimension dividing the order of the second subgroup, that is

either 2 or 1. However, ψ is irreducible of dimension p−1 (since ρJ,` is), so unless p = 3 it cannot

arise from such a representation. For p = 3 we need a more direct approach, e.g. direct inspection

of the character table of the group, but this case is already dealt with in Chapter 3, so we can

assume p 6= 3.

Now let us consider the representations arising from Hη. Since this group is abelian, it only

has 1-dimensional irreducible representations, namely those given by the following characters:

class 1 ν φ νφ

ξ1 1 1 1 1

ξ2 1 1 −1 −1

ξ3 1 −1 1 −1

ξ4 1 −1 −1 1
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The irreducible representations arising from these four representations are

IndG
Cp×C2

2
ξ j ⊗η

for j ∈ {1, . . . ,4} (note that the subgroup of G isomorphic to Cp oC2
2 is in fact a direct product).

In particular these representations have dimension equal to [G : Cp ×C2
2]= p−1. Following the

same proof as that of Lemma 6.8 we have that only the representations arising from ξ3 and ξ4

are faithful, so ψ is one of these two.

Let σ,τ be the generators of I, as in Section 6.3. Before proving the following lemma, we fix η

such that η(σ)= e2πi/p, seen as a complex number; this can be done since η(σ) is a primitive p-th

root of unity.

Lemma 6.13. The representations ψ1 = IndG
Cp×C2

2
ξ3 ⊗η and ψ2 = IndG

Cp×C2
2
ξ4 ⊗η are such that

tr(ψ1(σφ))=−tr(ψ2(σφ))=
√(−1

p

)
p .

Proof. First of all, it is easy to check that Cp ×C2
2 is a normal subgroup of G. Moreover a set of

representatives for G/(Cp ×C2
2) is given by τ,τ2, . . . ,τp−1. We have

tr(ψ j(σφ))=
p−1∑
i=1

(ξ j+2 ⊗η)(τiσφτ−i)=
p−1∑
i=1

ξ j+2(τiφτ−i)η(τiστ−i).

By the relation φτφ= τp we deduce τ2φ=φτ2; so if i is even then ξ j+2(τiφτ−i)= ξ j+2(φ), and

if i is odd then ξ j+2(τiφτ−i)= ξ j+2(φν)=−ξ j+2(φ) (recall that ν= τp−1). On the other hand, since

τστ−1 =σb, then η(τiστ−i) varies among all the powers of η(σ)= e2πi/p. Note that(
bi

p

)
= (−1)i = ξ j+2(τiφτ−i)

ξ j+2(φ)
,

so trψ j(σφ) = ∑p−1
i=1 (−1)iξ j+2(φ)η(σ)bi = ξ j+2(φ)

∑p−1
a=1

(
a
p

)
(e2πi/p)a = ξ j+2(φ)

√(−1
p

)
p , where the

last equality follows from Gauss’ summation formula. �

6.5.2 The proof of Theorem 6.3

Proof. Let β(x, y)= (x′, y′) be the change of variables described in the proof of Lemma 6.10, red

the reduction map: X (K)→ X̃ (k) and lift be any section of red. Then we can compute the action

of a Galois automorphism γ on the reduced curve X̃ (k) via the composition red◦β−1 ◦γ◦β◦ lift. In

particular we will do it for γ=σFrobK ; then we have that

tr(ρJ,`(σFrobK ))= |k|+1− A

where A is the number of points on the reduced curve fixed by the map red◦β◦σFrobK ◦β−1 ◦ lift

constructed above (see [13, Theorem 1.5 and Remark 1.7] and [12, §6.5]).
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Let (x̃, ỹ) ∈ X̃ (k), then since σ is a wild inertia element we have

(x̃, ỹ) lift−−→ (x, y)
β−→ (

x(α2 −α1)+α1, y(
p
α2 −α1 )p)

σFrobK−−−−−→ (
σ(FrobK (x))σ(α2 −α1)+α2,σ(FrobK (y))(σ(

p
α2 −α1 ))p)

β−1

−−→
(
σ(FrobK (x))σ(α2 −α1)+α2 −α1

α2 −α1
,σ(FrobK (y))

(σ(
p
α2 −α1 ))p

(
p
α2 −α1 )p

)
=

(
σ(FrobK (x))

σ(α2 −α1)
α2 −α1

+1,σ(FrobK (y))
(σ(

p
α2 −α1 ))p

(
p
α2 −α1 )p

)
red−−→ (

x̃|k|+1, ỹ|k|
)
.

(6.21)

Here we use the facts that for every x in the ring of integers of F, x and σ(x) reduce to the

same element of k as σ ∈ IK , and furthermore since σ is wild, if x 6= 0 we also have that σ(x)/x

reduces to 1 (by Lemma 3.5), and finally by definition FrobK (x) reduces to x̃|k|. Then A is equal to

the number of solutions (including the point at infinity) of the following system of equations:
x = x|k|+1

y = y|k|

y2 = xp − x;

(6.22)

As in Section 6.4.1, let n = fK /Qp , so |k| = pn. If n = 1, then this system has 0 affine solutions if

p ≡ 3 (mod 4) and 2p affine solutions if p ≡ 1 (mod 4), so A = 1 or 2p+1 respectively. Therefore

tr(ρJ,`(σFrobK ))=−
(−1

p

)
p,(6.23)

and so tr(ψ(σφ))= tr(ρJ,`(σFrobK ))
χ(FrobK )

=
−

(−1
p

)
p√(−1

p

)
p

=−
√(−1

p

)
p .

For general odd n, we obtain the same system of equations independently on the curve X we

use, as long as it is defined over a p-adic field K with fK /Qp = n and it satisfies the conditions

of Theorem 6.3. Let X /Qp : y2 = xp − p as in Remark 6.4, and let XK be the base change of X to

the field K equal to the unique unramified extension of Qp of degree n. The polynomial xp − p

is irreducible over K , as any root gives a ramified extension, and the valuation of ∆ on Qp, and

hence K , is 2p−1, coprime to p−1. Let ρ′J,` be the `-adic Galois representation attached to

Jac(X ) and let ρJ,` be the `-adic Galois representation attached to Jac(XK ); then:

• the restriction to the inertia subgroups of the two representations ρ′J,` and ρJ,` coincide;

• ρJ,`(FrobK ) acts as the n-th power of ρ′J,`(FrobQp ).

So ρJ,`(σ)ρJ,`(FrobK )= ρ′J,`(σ)ρ′J,`(FrobQp )n. Notice that, by Section 6.4.1, since n−1 is even,

we have that ρ′J,`(FrobQp )n−1 is the scalar matrix with eigenvalue
((−1

p

)
p
)(n−1)/2

. Therefore

tr(ρJ,`(σFrobK ))=
((−1

p

)
p
)(n−1)/2

tr(ρ′J,`(σFrobQp ))=−
((−1

p

)
p
)(n+1)/2

.
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We can now conclude, since tr(ψ(σφ))= tr(ρJ,`(σFrobK ))
χ(FrobK )

=
−

((−1
p

)
p
)(n+1)/2

(√(−1
p

)
p

)n =−
√(−1

p

)
p . �

6.6 Applications and examples

In this section we present a few examples and applications of Theorem 6.3 and of the tools used

throughout the chapter.

• By the computation made in Section 6.5.2, we find the number A−1 of affine solutions of

the system (6.22), which is

A−1= |k|− tr(ρJ,`(σFrobK ))= pn +
((−1

p

)
p
)(n+1)/2

.(6.24)

This result is analogous to Lemma 3.7.

• We can express the representation ψ given in Theorem 6.3 in terms of the characters

introduced in Section 6.5.1. With the same notation, we have that

ψ=ψ2 = IndG
Cp×C2

2
ξ4 ⊗η.

A few examples are the following:

– For p = 5, the group I is isomorphic to C5oC8 in [7]. The restriction of ρJ,` to inertia

is given by ρ10. For odd fK /Qp , we have G ∼= C2
2 ·F5 in [7], with ψ= ρ13 (here the class

denoted 10A is the one generated by σφ).

– For p = 7, I ∼= C7oC12 and the corresponding representation is ρ14. For odd fK /Qp , we

have G ∼= Dic7oC6 with ψ= ρ18 (here the class 14A is the one generated by σφ).
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