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Geometrical vortex lattice pinning 
and melting in YBaCuO submicron 
bridges
G. P. Papari1,*, A. Glatz2,3,*, F. Carillo4, D. Stornaiuolo1,5, D. Massarotti5,6, V. Rouco1, 
L. Longobardi6,7, F. Beltram2, V. M. Vinokur2 & F. Tafuri5,6

Since the discovery of high-temperature superconductors (HTSs), most efforts of researchers have 
been focused on the fabrication of superconducting devices capable of immobilizing vortices, 
hence of operating at enhanced temperatures and magnetic fields. Recent findings that geometric 
restrictions may induce self-arresting hypervortices recovering the dissipation-free state at high fields 
and temperatures made superconducting strips a mainstream of superconductivity studies. Here we 
report on the geometrical melting of the vortex lattice in a wide YBCO submicron bridge preceded by 
magnetoresistance (MR) oscillations fingerprinting the underlying regular vortex structure. Combined 
magnetoresistance measurements and numerical simulations unambiguously relate the resistance 
oscillations to the penetration of vortex rows with intermediate geometrical pinning and uncover the 
details of geometrical melting. Our findings offer a reliable and reproducible pathway for controlling 
vortices in geometrically restricted nanodevices and introduce a novel technique of geometrical 
spectroscopy, inferring detailed information of the structure of the vortex system through a combined 
use of MR curves and large-scale simulations.

Superconductors are materials in which below the superconducting transition temperature, Tc, electrons form 
so-called Cooper pairs, which are bosons, hence occupying the same lowest quantum state1. The wave function 
of this Cooper condensate has a fixed phase. Hence, by virtue of the uncertainty principle, the number of Cooper 
pairs in the condensate is undefined. As a result, the collective motion of the Cooper-pair condensate occurs 
without scattering (the scattering would have served a mean for counting Cooper pairs), i.e., without power dis-
sipation2. This fundamental feature instrumental to technological applications of superconductivity is destroyed 
by magnetic vortices, tiny filaments of the magnetic field that penetrate the technologically important type-II 
superconductors. Vortices move under an applied current and destroy the global phase coherence leading to 
electric losses. Thus, immobilizing vortices, i.e., the problem of vortex pinning, is central to application-focused 
studies of superconductors3.

Superconducting bridges offer an irreplaceable laboratory for uncovering vortex properties. In an early work4 
Parks and Moshel observed an oscillating magnetoresistance in what at the time were “extremely narrow” super-
conducting film strips of the order of 1 μm wide and 100 nm thick in a perpendicular magnetic field, and justly 
guessed, well ahead of their time, that the oscillations were due to the sequential penetration of vortex rows into 
the strips. Now it is well established that if the strip is too narrow, vortices cannot enter the strip at all, but if the 
width is about a few coherence lengths, ξ, then vortices arrange themselves in a single and subsequently in distinct 
rows5–7. Moreover, if the strip is short enough, then an entry or an exit of even a single vortex might be visible in 
transport measurements8–11.

In narrow strips vortex behaviour is highly sensitive to the underlying interplay between geometrical restric-
tions and details of vortex arrangement5. A remarkable feature of the strips is that they allow to gain insight 
into the microscopic vortex behaviour combining numerical simulations of the vortex system and transport 
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measurements12. Here we adopt the same integrated approach. Carrying out simultaneous numerical simula-
tions, magnetotransport measurements, and visualizing the vortex penetration and dynamics in the strip, we 
calibrate the fingerprints of the magnetoresistance. This enables us to directly juxtapose the observed features of 
the magnetoresistance with the microscopic behaviours of the vortex system. We unambigously relate the resist-
ance oscillations with the sequential penetration of vortex rows, separated by regions of geometrical pinning, and 
reveal the fingerprints of the magnetoresistance that evidence vortex lattice melting in the strip.

We carry out systematic transport measurements on high quality YBCO submicron bridges at both low and 
high magnetic fields. We observe oscillations of the magnetoresistance with a period corresponding to the pene-
tration of additional vortex rows. We detect melting of the vortex lattice and identify the flow of the pinned vortex 
liquid controlled by plastic deformation of the vortex matter13.

Experimental Techniques
The sample fabrication is described in the Methods section. In order to explore the entire vortex phase diagram, 
we controllably degrade the samples. Varying parameters during each fabrication step of the ion milling proce-
dure14–16 (i.e. the baking temperature of the photoresist, the duration of each single etching step and the interval 
between two of them, the cooling temperature of the sample during ion milling, and the power of the ion beam), 
we tune the oxygen desorption to achieve the desirable Tc, Jc and Hc

17–19. Specifically, the oxygen desorption is 
tuned to have a transition to the superconducting state of about 50 K (see R(T) in Fig. 1, the transition temper-
ature is defined by the middle of the drop in R(T)) to enable measurements in a wide range of temperatures 
(T ≥​ Tc). This allows to explore the vortex dynamics under the conditions ranging from the pinned to the flux 
flow state, yet remaining within a relatively small magnetic field range that is much smaller than the one in bulk 
samples (hundreds of Tesla). The dynamics of the vortex lattice and the vortex phase diagram remain unaltered, 
scaled to lower critical fields and temperatures3,15,20. Measurements are taken on the bridges with the width, w, 
lying in the interval 200 nm <​ w <​ 300 nm, their length being typically about 700 nm. Shown in Fig. 1 is a scan-
ning electron microscope (SEM) image of an exemplary 230 nm wide sample. Finally, transport measurement are 
performed using a Helium-3 cryostat (HELIOX Oxford Instruments) equipped with different filter stages (for 
more details, see Methods).

Experimental Results
Figure 2a shows a 3D surface plot of the differential magnetoresistance as a function of the temperature and 
magnetic field. One clearly sees the distinct peaks which do not change their position noticeably with variation of 
temperature. Shown in the inset of Fig. 2b are the representative data taken at two temperatures, 36.0 K and 39.8 K 
and moderate magnetic fields up to 1.2 T displaying the peculiar structure of the nonmonotonic behaviour of the 
MR. The peaks of the MR curves signal sequential penetration of the vortex rows into the strip7, as confirmed 
by numerical simulations (see below). The decreasing magnetoresistance immediately after the formation of the 
every next penetrating vortex row, reflects that with increasing field the vortex rows grow denser eventually merg-
ing into a central, nearly normal channel7. One further observes that peaks that correspond to the penetration of 
the second and third rows, nearly merge. Then there is a significant drop in the resistance before the fourth row 
enters. The relatively low peak that marks the appearance of the fourth row suggests that the four-row configu-
ration experiences quite strong geometric pinning. The highest peak corresponds to the formation of the fifth 
vortex row, indicating that the five-rows configuration is unstable.

The large field behaviour is illustrated in Fig. 3, where panel a) demonstrates the full range MR as a function 
of the magnetic field at representative temperatures. The character of the MR behaviour changes at about B =​ 3 T, 
as fully accounted by numerical simulations as shown in Fig. 3b, where the MR in log scale is reported as a func-
tion of the magnetic field. The plot log(Rs) vs. B demonstrates a noticeable kink and change of the slope at 3 T (Rs 
denotes the dimensionless, simulated MR).

Figure 1.  Sample setup S.E.M. image of the 230 nm wide sample. Inset (a) scheme of the magnetoresistance 
setup, l =​ 700 nm, d =​ 50 nm, w =​ 230 nm. Inset (b) Log-linear plot of the resistance, R(T) in the temperature 
range (30–90) K.
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To gain an insight into the nature of this behaviour, we plot the number of vortices Nv as a function of the 
magnetic field in Fig. 4a. Nv is estimated as Nv ⌊1+w/a0⌋(L/a0), where w and L are the width and the length of 
the strip respectively, and ≈ Φa B/0 0  is the mean distance between vortices at B ≫​ Bc1 ∝​ Φ​0/w2, see refs 21,22. It 
is also assumed that w ≫​ ξ, and ⌊x⌋ denotes the integer part of x. At B 3 T the behavior of Nv(B) changes to a 

Figure 2.  Magnetoresistance and vortex configurations. (a) Experimental MR of the 230 nm wide sample, in 
log-linear scale as a function of temperature. Important to note is that the position of the peaks does not change 
much with temperature. (b) Simulated MR of a 2D system with dimensions similar to those of the experimental 
system. The simulated temperature is lower than that in the experiment leading to sharper peaks, which are 
realized at higher fields. The periodicity and the relative peak heights are however reproduced correctly. The 
inset shows comparable experimental curves at 36 K and 39.8 K at low fields. (c) Vortex configurations at the 
peaks of the simulated MR curve. The peaks of the MR mark the appearance of a new vortex row entering the 
strip. The plots show isosurfaces of the superconducting order parameter amplitude and a color plot of the order 
parameter density as projection on the bottom.

Figure 3.  Full magnetic field range of experimental and simulated MR curves. (a) Measured MR curves 
at different temperatures in linear-log representation. (b) Simulated MR curves (linear-log plot). The red line 
indicates the limit of the numerical resolution. The inset shows a comparable MR curve obtained at 39.8 K along 
with its first derivative, which helps to detect MR oscillations at high fields.
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continuous increase (which is easier seen in the simulations, Fig. 4, inset), where vortices do not enter as complete 
new rows, but rather individually. Furthermore, at about the same field there is a kink in the magnetic field 
dependence of the number of rows. The high-field part of the Nr(B) dependence is well approximated by 
Nr =​ 1 +​ 1.3w/a0.

Numerical Results and Discussion
To shed the light to the observed MR oscillations and gain insight into the behaviour of the system, we perform 
large-scale numerical simulations of a two-dimensional superconducting strip, with parameters of the experi-
mental YBCO bridge, using the time-dependent Ginzburg-Landau equations23 (see Methods for technical 
details). Taking the zero-temperature coherence length of YBCO as ξ0 =​ 1.5 nm, we discretized the system in 
1024 ×​ 320 grid points having a physical size of ξ×480 150 0

2 or 720 nm ×​ 225 nm, close to that of the experimen-
tal system. A dimensionless current, measured in units of the depairing current, equaling to 0.05 (see Methods), 
is applied along the x-direction and a perpendicular magnetic field in z-direction is slowly increased from 0 to 
0.1Bc2,0. This field range spans the interval from 0 T to 14.5 T for the simulated system. At each field increment, the 
system is allowed to relax into a steady state and then the voltage along x-direction, proportional to the 
magneto-resistance (MR), i.e. Rs =​ ∂​xμ, where μ is the scalar potential, is calculated. In YBCO the depairing cur-
rent is ~300MA/cm2. Due to the method of measurement (see Methods), the way the magnetoresistance is 
obtained and its magnitude cannot be directly compared to the simulation.

To enable the observation of the MR oscillations, the simulations are performed at temperatures that are 
lower than those of the real experiment since the required averaging times for higher temperatures would have 
been prohibitively long. Yet, both the periodicity and relative peaks heights observed in the experiment are nicely 
reproduced in the simulations, see Fig. 2b. Note, the peak corresponding to the second vortex row has a smaller 
“side-peak”. This is due to the weak vortex interaction and the resulting slow formation of a hexagonally ordered 
double row. Therefore, it happens that the field is increased before the two rows are perfectly formed. At the sim-
ulated temperature, a full relaxation would take a very long time and becomes impractical. In fact, this instability 

Figure 4.  Vortex lattice melting transition. (a) The number of nucleated fluxons as a function of the applied 
magnetic field. The points shown by triangles, circles, and squares are recorded at 36.0 K, 39.8 K, and 46.5 K, 
respectively. The (red) dashed line is a linear fit of the data at 39.8 K. Inset: the number of the entered vortex 
rows as a function of B. The dashed curve is the function + . w a1 1 3 / BC1

 where φ= −a B B/( )B C0 1C1
 which 

represents the theoretical trend expected for an ordered vortex lattice. (b) Analysis of the simulated vortex 
lattices as a function of field. The plot shows the topological defect concentration (vortices with number of 
closest neighbours different from 6) obtained by Delaunay triangulation. The edge rows are not taken into 
account, such that the curve starts when the third row is formed. The scattering plot shows a typical run, and the 
red curve is an average of 12 runs with the different random initial configurations. When the vortex lattice starts 
moving at B ~ 3T the defect concentration shows a maximum (a typical vortex configuration at the maximum is 
shown at the top right corner). The inset shows the vortex number as a function of the magnetic field. At low 
fields, below the dynamic transition the vortex number shows a clear step-like behaviour when new vortex rows 
appear. At high fields the vortex number increases continuously. Two typical vortex lattice triangulations are 
shown in panel (c) (topological defects having 5 and 7 nearest neighbors are highlighted by red and blue circles, 
respectively, on the left.)
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of the second row can also explain the strong overlap of the second and third row peaks in the experiment. 
This overlap also causes those two peaks to apparently move closer to each other. The inset shows comparable 
experimental data and the corresponding simulated peaks are indicated by dashed arrows; note that because of 
the significantly higher temperatures in the experiment, the experimental peaks are much broader than their 
numerical counterparts and the first row can penetrate the experimental bridge at much lower fields as thermal 
fluctuations lead to a reduction of the surface barrier. The peaks in the MR mark the appearance of additional 
vortex rows with increasing field (see also Supplementary Movie). The mechanism behind the MR peak is that 
the formation of each additional row is the result of a second order phase transition between the different vortex 
states analogous to the well known transition at Bc1 between the vortex-free and Shubnikov phases7,5. This implies 
that an increase of the MR due to suppression of the surface barrier for the vortex exit changes into a drop of the 
MR right after a new row emerges. The reason is that upon increasing the field, the newly formed vortex array gets 
denser, the regions with suppressed order parameter overlap more, thus the potential well for vortices in the inner 
part of the strip gets deeper. This deepening overweights the suppression of the surface barrier, hence the peak in 
the MR at the moment of the formation of the extra row7. Upon further increase of the field the suppression of the 
barrier becomes more important again, the growth of the MR wins again, and the process repeats itself. We stress 
here that since peaks in the MR correspond to well defined phase transitions in the vortex structure, these are the 
peaks of the MR (and not the minima) that have a clear physical meaning.

The vortex configurations at fields of the formation of new rows are shown in Fig. 2c as isosurfaces of the 
complex order parameter amplitude with a density projection at the bottoms. The behaviour of the simulated MR 
in the full range of the fields is presented in Fig. 3b as linear-log plots showing the transition to the resistive state 
at ~3T. The horizontal (red) line indicates the limit of the numerical resolution such that the shaded region below 
is not relevant. Above ~1T, in the yellow highlighted magnetic field range of the MR curve, vortex rows penetrate 
the system separated by field intervals in which the vortex lattice is geometrically arrested. At higher fields (high-
lighted in red) the system becomes resistive.

To further gain detailed knowledge about the nature of the structural transitions in the vortex system, we 
analyzed the evolution of the vortex configurations upon increasing the magnetic field by using Delaunay’s trian-
gulation. The kink in the MR at 3 T shown in Fig. 4 strikingly resembles the manifestation of the so-called 
disorder-induced melting (DIM) predicted in refs 24,25. According to ref. 25 an increasing magnetic field 
enhances the destabilizing effect of the standard point-like disorder (e.g. oxygen vacancies in cuprates) on the 
vortex lattice. Thus at a certain magnetic field the topological defect-free, perfect vortex lattice transforms into a 
highly dislocated amorphous vortex configuration, where the vortex dynamics is governed by the motion of dis-
locations26. The DIM transition is characterized by the production of multiple dislocations. In contrast to disor-
dered superconductors, in the strip the destabilizing role of pinning is taken by the edges of the strip, confining 
the vortex system and enforcing the symmetry different from the inherent symmetry of the vortex lattice and, 
therefore, generating stress in the vortex system near the edges. We conjecture that at some field BCIM the 
confinement-induced melting (CIM) occurs in the vortex system. At this field, the generation of multiple topolog-
ical defects (dislocations) starts near the edges, which together with the applied current forms dislocations and a 
new dynamic amorphous vortex phase. These dislocations are realized as a vacancy-interstitial pair propagating 
across the strip. The activated motion of vortices in this phase is controlled by the energy of the plastic deforma-
tion εU ap 0 0, where ε0 is the energy of the vortex core and Φa B/0 0  is the vortex lattice spacing. The 
dependence of the density of topological defects in the vortex lattice (i.e. the concentration of vortices with num-
ber of nearest neighbours other than six) on the magnetic field is shown in Fig. 4b. For the analysis, only vortices 
within rows having both neighboring rows on either side are taken into account. Therefore, the curve starts with 
the appearance of three rows since “edge” rows have no well defined number of neighbors in the used triangula-
tion scheme. One sees that in the low field regime, for static vortex lattices, the number of defects increases. A 
maximum of defects is reached just before the system becomes resistive. In the dynamic state at higher fields the 
defect concentration decreases again due to dynamic annealing of defects in the inner part of the strip. The tran-
sition to the dynamic state is clearly seen in the number of vortices present in the system vs. magnetic field in the 
inset of Fig. 4b)], which is discrete at low fields with steps at the fields where additional rows appear in the system 
and continuous at high fields. Again, due to the lower temperature in the simulation, this effect is more pro-
nounced than in the experiment, Fig. 4a. At this point we remark that disorder in form of e.g. inhomogeneities, 
grain boundaries, or surface defects can also influence the shape and location of the magnetoresistance peak. The 
experimental system is prepared from high quality films and shaped carefully. Furthermore, the results of our 
measurements indicate that there is no strong disorder which could play an important role, since our measure-
ments were conducted in the resistive regime, where the applied current exceeds the depinning critical current. 
Weak pinning effects are not detectable since they need large spatial scales well exceeding the width of the strip in 
order to manifest themselves3. Additionally, the simulations of clean systems reproduce the main features – in 
particular, the envelope curve for the number of vortices follows the dependence expected in the clean state with-
out surfaces. However, to check how disorder influences the simulations, we studied multiple scenarios of disor-
der by introducing various types of δTc defects (i.e., spatial modulation of the critical temperature within the 
sample, meaning the linear coefficient, ε, in the TDGL equation): An amorphous structure and potential grain 
boundaries were modeled by weak random quenched noise, and Voronoi tessellation, tiling the domain with 
small polygons (of order of a few coherence lengths) with randomly chosen critical temperature close to the bulk 
Tc. Other possible inhomogeneities or distortions of the surface, were simulated by weak localized defects. While 
all these defects can add slightly to the broadening and shift of the peaks, the effects of thermal noise — especially 
close to the experimental value — dominates the peak structure. In any case, the oscillation period of the mag-
netoresistance is still determined by the sample geometry only.
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Panel Fig. 4c shows snapshots of the vortex configuration with overlaid triangulation corresponding the 
low-field and high field amorphous phases, respectively. The field dependence of the activation energy Up at 
T =​ 44 K is shown in Fig. 5. One sees that at B >​ BCIM indeed ∝ −U Bp

1/2 exactly as expected for vortex dynamics 
governed by the plastic deformations of the vortex system. Of course, the high field part of the curve where Up 
becomes less than the temperature of the experiment should be taken with utmost reservation since the very 
concept of activated motion does not apply in this field range. However, in the proper field interval where Up >​ T, 
the fit shows perfect agreement with the measurement.

Conclusion
Our integrated experimental-numerical study of the vortex transport in the presence of a perpendicular magnetic 
field in a superconducting strip reveals the fingerprints of a low-field oscillatory magnetoresistance due to the 
peculiar interplay between the symmetry enforced by confinement or geometrical pinning and the inherent sym-
metry of vortex configuration corresponding to 2-, 3-, 4-, and 5-rows vortex phases. This opens an opportunity 
for a novel tool: characterization of the field-dependent vortex configuration through magnetresistance spectros-
copy - analyzing measurements of the R(B) dependence together with large-scale simulations. At elevated fields 
we discovered a novel dynamic phase transition in the confined vortex system, confinement-induced melting, i.e., 
transition from the topologically perfect vortex configuration to an amorphous one saturated with dislocations. 
The oscillation period of the magnetoresistance of ~250 mT and the magnetic field at which the CIM occurs, are 
reproduced by the simulations.

Methods
Sample fabrication.  The nanobridges are fabricated via processing a 50 nm thick YBCO film (in c-direction)  
covered by a 20 nm thick gold (Au) layer. Films are deposited by a thermal evaporation technique on yttrium 
stabilized zirconia substrates (YSZ) (Ceraco ceramic coating GmbH). The titanium (Ti) mask on the Au layer is 
prepared by the standard electron beam lithography and lift off procedures. Cold (−​150 °C) ion milling is used 
to remove Au/YBCO from regions not protected by the Ti mask16. The Au top layer is finally removed by a fur-
ther step of ion milling. Further details on the fabrication process are reported in ref. 14. Our measurements are 
performed on bare YBCO nanobridges (without Au cap layer), differently from what commonly done on YBCO 
nanowires which are always protected by Au to enhance as much as possible the critical current density.

Measurements.  Each type of filter is anchored at an independent temperature stage of the cryostat to work 
as low pass band filters with cutoff frequency ν0 <​ νT =​ kBT/h, which represents the thermal noise level where 
kB and h are the Boltzmann and the Planck constants respectively. A handmade copper powder filter has been 
thermalized in the helium 3 pot of the cryostat, while π-filters have been anchored at the 1 K-pot. A further 
stage of commercial EMI filters has been used at 300 K, just after the voltage amplifier, to shield signals against 
electromagnetic environment. Current-voltage (I–V) curves are obtained via injecting an oscillating (about 
7 Hz) current and acquiring an averaged (roughly 100 times) voltage curve through an oscilloscope (LeCroy 
WAVERUNNER 6100 A). Both the magnetoresistance and temperature, R(T), dependences, are taken employing 
a lock-in amplifier, feeding the sample with a current modulated at 17.3 Hz. Excitation signals were of the order 
of 300 nA to avoid heating and/or excessive perturbation of vortex dynamics27 effects. Magnetic field step was 
about Δ​B =​ 10 mT, i.e., one tenth of the expected Bc1 (see below). The setup for the zero bias MR’s is sketched in 
the Fig. 1(a).

Simulation parameters.  All simulations were performed using the time-dependent Ginzburg-Landau 
equations

Figure 5.  Plastic Energy Up as a function of the magnetic field. The gray dashed line is a B1/  fit 
demonstrating that the data is consistent with the expected behaviour due to plastic deformation resulting from 
vortex shear13,28,29. The straight green dashed line corresponds to the temperature T =​ 44 K of the experiment.
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ψ µψ εψ ψ ψ ψ∂ + = − + ∇ −i iA( ) (1)t
2 2

µ ψ ψ= ∇ + ∇ − ∇ = .⁎I iAj ( ), j 0 (2)

There equations were solved numerically by an implicit finite-difference method. Here ψ is the superconduct-
ing order parameter, A =​ (−​Bz,0,0)y is the vector potential corresponding to the applied magnetic field Bz perpen-
dicular to the strip, j is the current density and μ is the scalar potential, ε =​ (Tc −​ T)/T, T is the temperature, Tc is 
the critical temperature. Note, that in this scaling, the zero-temperature coherence length ξ0 is the unit of length, 
the second critical field Bc2(T =​ 0) the unit for the field, and the unit of j is π λ ξ ξ ψ= =ħ ħj c e e m/8 ( / )0

2
0
2

0 0 0
2, 

resulting in a depairing current density jdp for B =​ 0 is given by = − ≈ . −j T T T T2 3 /9(1 / ) 0 385(1 / )dp c c
3/2 3/2.

The simulated strip is discretized by a square grid with resolution ξ0/2 – this is sufficient for the TDGL descrip-
tion and finer resolutions do neither change our results nor have any physical meaning, as microscopic theories 
are needed in that case (which are unsuitable to study vortex dynamics on larger length scales numerically). Thus 
for ξ0 ≈​ 1.5 nm we need 1024 ×​ 320 grid points to represent a system of physical size ξ×480 150 0

2 or 
720 nm ×​ 225 nm.

The simulated sample is periodic in the current direction (x) and superconductor/vacuum boundary condi-
tions for the superconducting order parameter ψ, ∂​yψ =​ 0, are imposed at the surfaces in the shorter transverse 
direction, y. In order to collect sufficient statistics the results for the MR are averaged over 20 runs with the dif-
ferent random initial conditions.

For details on the algorithm and definition of all parameters, see ref. 23. The simulations were performed on 
Nvidia Tesla K20X GPUs.
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