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Abstract

Mean-�eld games with absorption is a class of games that has been introduced in Campi
and Fischer (2018) and that can be viewed as natural limits of symmetric stochastic
di�erential games with a large number of players who, interacting through a mean-�eld,
leave the game as soon as their private states hit some given boundary.

In this paper, we push the study of such games further, extending their scope along
two main directions. First, we allow the state dynamics and the costs to have a very
general, possibly in�nite-dimensional, dependence on the (non-normalized) empirical sub-
probability measure of the survivors' states. This includes the particularly relevant case
where the mean-�eld interaction among the players is done through the empirical measure
of the survivors together with the fraction of absorbed players over time. Second, the
boundedness of coe�cients and costs has been considerably relaxed including drift and
costs with linear growth in the state variables, hence allowing for more realistic dynamics
for players' private states. We prove the existence of solutions of the MFG in strict as
well as relaxed feedback form, and we establish uniqueness of the MFG solutions under
monotonicity conditions of Lasry-Lions type. Finally, we show in a setting with �nite-
dimensional interaction that such solutions induce approximate Nash equilibria for the
N -player game with vanishing error as N →∞.
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1 Introduction

Mean-�eld games (MFGs for short) are, loosely speaking, limits of symmetric stochastic
di�erential games with a large number of players, where each of them interacts with the
average behaviour of his/her competitors. They were introduced in the seminal papers by
Lasry and Lions (2006a,b, 2007) and, simultaneously, by Huang et al. (2006). An increasing
stream of research has been �ourishing since then, producing theoretical results as well as a
wide range of applications in many �elds such as economics, �nance, crowd dynamics and
social sciences in general. For an excellent presentation of the theory we refer to the lecture
notes of Cardaliaguet (2012) and the two-volume monograph by Carmona and Delarue (2018).

Motivation. In most of the literature on MFGs, all players stay in the game until the end
of the period, while in many applications, especially in economics and �nance, it is natural
to have a mechanism deciding when some player has to leave. Such a mechanism can be
modelled by introducing an absorbing boundary for the state space as in Campi and Fischer
(2018), which is the starting point of our study (other related references will be discussed later
in detail). Therein, existence of solutions of the MFG and construction of approximate Nash
equilibria for the N -player games were provided under some boundedness assumptions on the
coe�cients and without including the e�ect of past absorption on the survivors' behaviour.
The present paper continues the investigation of this kind of games, with the following main
extensions.

(i) We recast MFGs with absorption in a more general setting, most common to the MFG
literature, where the dependence of the dynamics and costs on the empirical measure
is in�nite-dimensional.
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(ii) We introduce a direct dependence on past absorptions in the drift of the Stochastic
Di�erential Equations (SDEs) describing the evolution of the players' states by letting
the initial distribution of players lose mass over time. Such a loss of mass corresponds to
the exit of the absorbed players from the game, so that the proportion of the absorbed
players has an e�ect on the future evolution of the survivors. This feature was not
present in Campi and Fischer (2018), where the empirical measure of the survivors was
re-normalized at each time. Such a dependence on past absorptions is also included in
the costs.

(iii) We allow both the drift and the cost functional of the players to grow at most linearly
with the state, hence they are not necessarily bounded unlike in Campi and Fischer
(2018). Moreover, the set of non-absorbing states O can also be unbounded. Dropping
the boundedness of the game data increases the �exibility of our setting, which can
include more realistic dynamics from the viewpoint of applications (for more details,
see later in this introduction).

To be more precise, the purpose of this paper is to study N -player games and related MFGs
in the presence of an absorbing set (i.e. a player is eliminated from the game once his/her
private state leaves a given open set O ∈ Rd), and where the vector of private states XN .

=
(XN,1, . . . , XN,N ) evolves according to

XN,i
t = XN,i

0 +

∫ t

0
b̄
(
s,XN,i

s , µNs , u
N,i
(
s,XN

))
ds+ σWN,i

t , t ∈ [0, T ] , (1.1)

for i ∈ {1, . . . , N}, where uN .
= (uN,1, . . . , uN,N ) is a vector of feedback strategies, WN,1, . . . ,

WN,N are independent d-dimensional Wiener processes de�ned on some �ltered probability
space, σ is the (non-degenerate) di�usion matrix and b̄ is a given drift functional. Finally,
µN is the random �ow of empirical sub-probability measures representing the empirical dis-
tribution of the survivors

µNt (·) .
=

1

N

N∑
i=1

δ
XN,i
t

(·)1
[0,τX

N,i
)
(t) .

Each player evaluates a strategy vector uN according to his/her expected costs

JN,i
(
u
N
) .

= E

[∫ τN,i

0
f̄
(
s,XN,i

s , µNs , u
N,i
(
s,XN

))
ds+ F

(
τN,i, XN,i

τN,i

)]
(1.2)

over a random time horizon. In Eq.(1.2), XN is the N -player dynamics under uN and

τN,i
.
= τX

N,i ∧ T . In the present work, we are interested in drifts b̄ and costs f̄ with sub-
linear growth, hence possibly unbounded. Further details on the setting with all the technical
assumptions will be given in Section 2.

The dynamics above is also motivated by economic models for corporate �nance, systemic
risk, and asset allocation. For instance, we can interpret players as �rms whose values are
represented by the state variables XN,i for i ∈ {1, . . . , N}. Each company is a�ected by the
fraction of both defaulted and non-defaulted �rms and takes strategic decisions accordingly.
Moreover, sub-linearity of the drift allows to include a mean-reversion term representing
some herding behaviour. A possible application is the pricing of portfolio credit derivatives
where the pricing depends upon the so called distance-to-default of the assets in the port-
folio (Hambly and Ledger (2017)). Alternatively, each player can be interpreted as a bank,
whose monetary reserve evolves according to the stochastic dynamics in Eq.(1.1) where the
drift depends on both the rate of interbank borrowing/lending and on a controlled borrow-
ing/lending rate to a central bank, as in Carmona et al. (2015). However, in Carmona et al.
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(2015) no absorbing boundary conditions are considered. The latter features could be in-
corporated in the model by introducing absorbing boundary conditions at the default level,
similarly to Hambly and Ledger (2017). This would enable to study the impact of defaults
on systemic risk and stability of the �nancial system described by the game. Last but not
least, the proposed set-up allows for a Brownian motion with an Ornstein�Uhlenbeck type
drift modelling for the private state, a model that has been used (for instance) for the notion
of �ocking to default in the �nancial literature (Fouque and Sun (2013)). However, in the
present paper we focus on the mathematical properties of the proposed family of games and
we leave the applications for future research.

Main results. The main contributions of the paper can be summarized as follows:

• We introduce the MFG with smooth dependence on past absorptions, i.e. the limit
model corresponding to the above N -player games as N tends to in�nity. For a solution
of the MFG, the empirical sub-probability measures (µNt )t∈[0,T ] are replaced by �ows

of sub-probability measures on Rd; see De�nition 2.1.

• We prove existence of a relaxed feedback MFG solution and, under an additional con-
vexity assumption, we show that there are optimal feedback strategies in strict form;
see Theorem 3.1, Proposition 3.4 and Proposition 3.5. Additionally, we show that there
exist relaxed and strict feedback solutions that are Markovian up to the exit time; see
Proposition 3.6.

• We prove uniqueness of the MFG solution under standard monotonicity conditions of
the Lasry-Lions type formulated for sub-probability measures; see Theorem 4.1.

• We study approximate Nash equilibria for the N -player game in a setting where the
dependence on the measure variable is �nite-dimensional. Precisely, we show that if
we have a feedback solution of the MFG (either relaxed or strict), we can construct
a sequence of approximate Nash equilibria for the corresponding N -player games with
a vanishing approximation error as N → ∞; see Theorem 5.1 and Corollary 5.2. It
is worth stressing that the construction produces approximate N -player equilibria in
feedback strategies (instead of the more common open-loop strategies).

The proof of the existence of feedback solutions of the MFG is inspired by the truncation
procedure introduced by Lacker (2015). We construct a sequence of approximating MFGs,
each one with bounded drift and cost functional, to which we can apply the results of Campi
and Fischer (2018). Then, we prove convergence of the solutions of these approximating
MFGs to a solution of the original one. Nonetheless, the procedure in Lacker (2015) cannot
be applied directly to our case mainly due to the history dependency and the discontinuities
induced by past absorptions. In particular, a di�erent instance of the mimicking result of
Brunick and Shreve (2013) applies to our framework.

To establish the uniqueness result we follow standard monotonicity arguments, with some
adjustments due to the dependence of the coe�cients on a �ow of sub-probability measures
instead of probability measures. In particular, the uniqueness result relies on an additional
(standard) monotonicity assumption on the running cost of the Lasry-Lions type.

The proof of the construction of approximate Nash equilibria for the N -player game
is based on weak convergence arguments and controlled martingale problems. The use of
martingale problems in proving convergence to the McKean-Vlasov limit and propagation
of chaos for weakly interacting systems goes back to Funaki (1984), Oelschläger (1984) and
Méléard (1996). We observe that, whereas standard results prove convergence in law of the
empirical measures, in the present paper we follow the approach of Lacker (2018) to obtain a
strong form of propagation of chaos with possibly unbounded and path-dependent drift. We
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show that the empirical measures converge in a stronger topology (the τ -topology), a result
that enables us to take the limit as N →∞ without assuming any regularity of the feedback
strategies with respect to the state process. In our framework, unlike Campi and Fischer
(2018), the continuity of the MFG optimal control for almost every path of the state variable
with respect of the Wiener measure is no longer feasible. Indeed, the PDE-based estimates
that were used in Campi and Fischer (2018) to get such a regularity are not available anymore
due to the possible unboundedness of the drift and the running cost.

Related literature. We have already discussed the paper Campi and Fischer (2018), so here
we focus on some other contributions in the literature of mean-�eld models and games related
to our study. First, we cite the works of Giesecke et al. (2013) and Giesecke et al. (2015)
where a model based on point processes for correlated defaults timing in a portfolio of �rms
is introduced and analysed. Giesecke et al. (2013) prove a LLN for the default rate as the
number N of �rms goes to in�nity.

Motivated by modelling the contagion e�ect are the works of Hambly and Ledger (2017),
Hambly et al. (2019) and Hambly and Søjmark (2019) too. The �rst work provides a LLN for
the empirical measure of a system of �nitely many (uncontrolled) di�usions on the half-line,
absorbed when they hit zero and correlated through the proportion of absorbed processes. In
Hambly et al. (2019) the model is extended to include a positive feedback mechanism when
the particles hit the barrier, thus modelling contagious blow-ups. A mathematical comple-
ment to the previous work is provided in Ledger and Søjmark (2020). More recently, Hambly
and Søjmark (2019) have proposed a general model for systemic (or macroscopic) events.
By working on a set-up similar to Hambly and Ledger (2017), they interpret the di�usions
as distances-to-default of �nancial institutions and model the correlation e�ect through a
common source of noise and a form of mean-reversion in the drift. A form of endogenous
contagion mechanism is also considered.

On the side of applications to economics, Chan and Sircar (2015) and Chan and Sir-
car (2017) study oligopolistic models with exhaustible resources formulated as MFGs with
absorption at zero. Their model keeps track of the fraction of active players at each time.
However, this fraction appears in the objective functions but not in the state variable.

Two more papers are those by Delarue et al. (2015a) and Delarue et al. (2015b), where a
particle system approach is used to study the mathematical properties of an integrate-and-
�re model from neurology. The particles' dynamics have some resetting mechanism which
activates as soon as some particle hits a given boundary. Besides, we cite two recent papers
by Nadtochiy and Shkolnikov (2019, 2020). The �rst one focuses on the cascade e�ect in an
interbank mean-�eld model with defaults and a contagion e�ect modelled via a singular in-
teraction through hitting times. The second one investigates the associated mean-�eld game
also including more general dynamics and connection structures.

Finally, we mention a class of MFGs that has been considered quite recently especially in
relation to bank run models, that is MFGs of optimal stopping or timing; see, for instance,
Bertucci (2018), Bouveret et al. (2020), Carmona et al. (2017) and Nutz (2018). Therein,
the agents solve an optimal stopping problem so that the terminal time is directly chosen by
them instead of being determined by the evolution of the controlled state as in our setting.
In both settings the terminal time is in fact a random time and the state evolution might be
a�ected by the fraction of leavers and the empirical measure of the remainers.

Structure of the paper. In Section 2 we introduce the notation and present both the N -
player and the MFGs along with the main assumptions. Section 3 contains the results on the
existence of feedback MFG solutions. In Section 4 we prove the uniqueness of MFG solutions
under some monotonicity condition of the Lasry-Lions type. In Section 5 we specialize to
a �nite dimensional setting and construct approximate Nash equilibria in feedback form for
the N -player game using the MFG solutions. The technical results used in the paper can be

5



found in the Appendix A.

2 Preliminaries and assumptions

In this section, we provide the de�nitions of the di�erent spaces of trajectories and measures
used in the paper along with the corresponding topologies, distances and notions of conver-
gence. In addition, we describe the MFG with smooth dependence on past absorptions and
give the de�nition of solution of the MFG. We conclude the section by introducing the MFGs
with truncated coe�cients, which will be used in the proof of existence of MFG solutions.

Spaces of trajectories. Let d ∈ N. We denote by O ⊂ Rd an open subset of Rd representing
the space of the players' private states and by X .

= C([0, T ];Rd) the space of Rd-valued
continuous trajectories on the time interval [0, T ], T < ∞. The space Rd is equipped with
the standard Euclidean norm, always indicated by | · |, while X with the sup-norm, denoted
by ‖ · ‖∞, which makes X separable and complete. We use the notation ‖ · ‖∞,t whenever
the sup-norm is computed over the time interval [0, t], t < T . Besides, we denote with
XN .

= C([0, T ];Rd×N ) the space of N -dimensional vectors of continuous trajectories and
identify it with X×N .

Spaces of measures. We use �ows of probability and sub-probability measures to describe the
distribution of players and its time evolution in O. For E a Polish space, letMf (E) denote
the space of �nite Borel measures on E, P(E) the space of Borel probability measures on E
and M≤1(E) the space of Borel sub-probability measures on E, i.e. measures µ ∈ Mf (E)
such that µ(E) ≤ 1. These spaces are endowed with the weak convergence of measures
(Billingsley (1999)). We will often write µn

w
⇀ µ to indicate weak convergence of µn towards

µ as n → ∞ and ξn
L−→ ξ to denote convergence in law of a sequence of random variables

(ξn)n∈N (de�ned on possibly di�erent probability spaces) to a limit random variable ξ.
We de�ne by ΥT

P(E) (resp. by ΥT
≤1(E)) the spaces of measurable �ows of probability

(resp. sub-probability) measures on E, i.e. the space of Borel measurable maps π (resp. µ)
from the time interval [0, T ] to P(E) (resp. M≤1(E)). Wherever possible without confusion,
we use ΥT

P (resp. ΥT
≤1) when E = Rd. We denote by P1(E) and byM≤1,1(E) the following

subsets of P(E) andM≤1(E):

P1 (E)
.
=

{
π ∈ P (E) :

∫
E
dE(x, x0)π(dx) <∞ for some x0 ∈ E

}
,

M≤1,1 (E)
.
=

{
µ ∈M≤1 (E) :

∫
E
dE(x, x0)µ(dx) <∞ for some x0 ∈ E

}
.

We endow P1(E) with the 1-Wasserstein distance W1

W1(µ, ν)
.
= inf

π∈Π(µ,ν)

∫
E×E

dE (x, y) dπ(x, y) = sup
f∈Lip1(E;R)

∫
E
f(x)d(µ− ν)(x) (2.1)

where Π(µ, ν) ⊂ P1(E × E) represents the set of probability measures with given marginals
µ and ν, and Lip1(E;R) the set of Lipschitz functions on E with unitary Lipschitz constant.
The second equality in Eq.(2.1) is due to the Kantorovich-Rubinstein Theorem (see, for
instance, Theorem 6.1.1 in Ambrosio et al. (2008)). Notice that (P1(E),W1) is a separable
and complete metric space whenever (E, dE) is separable and complete. Finally, let ΥT

P,1(E)

(resp. ΥT
≤1,1(E)) denote the space of measurable �ows of probability measures in P1(E)

(resp. in M≤1,1(E)). Again, wherever possible without confusion, we use ΥT
P,1 and ΥT

≤1,1

when E = Rd.
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The canonical space. We will often work on the canonical �ltered probability space, denoted
by (Ω,F , (Ft)t∈[0,T ],P) and de�ned as follows. Set Ω

.
= X , let ξ be an Rd-valued random

variable with law ν ∈ P(Rd) and let W be a d-dimensional Wiener process on X independent
of ξ. De�ne Wν ∈ P(X ) as the law of ξ + σW . Set F as the Wν-completion of the Borel
σ-algebra B(X ) and (F)t∈[0,T ] as the Wν-augmentation of the �ltration generated by the

canonical process X̂ on X , i.e. X̂t(ϕ)
.
= ϕ(t) for all (t, ϕ) ∈ [0, T ] × X . In particular,

(F)t∈[0,T ] satis�es the usual conditions. Finally set P .
= Wν and W

.
= σ−1(ξ − X̂), which is

a Wiener process on X . Where no confusion is possible, we will write X for X̂.

Now, let O ⊂ Rd be a non-empty open set, the set of non-absorbing states, and let Γ ⊂ Rd
be the set of control actions. For each ϕ ∈ X we set τϕ

.
= inf{t ∈ [0, T ] : ϕ(t) 6∈ O}, with

the convention inf ∅ =∞, and τ(ϕ)
.
= τϕ∧T . In order to set up the dynamics of the players'

states, we need to introduce the following functions:

b̄ : [0, T ]× Rd ×M≤1,1(Rd)× Γ→ Rd, σ ∈ Rd×d,
f̄ : [0, T ]× Rd ×M≤1,1(Rd)× Γ→ [0,∞), F : [0, T ]× Rd → [0,∞).

Since we will have to impose some joint continuity property for the functions above, in
particular with respect to the µ-variable, and there is no natural metrizable topology over the
set of sub-probability measuresM≤1,1(Rd), it will be convenient to work with the following
reparameterization of a suitable restriction of b̄ and f̄ :

b(t, ϕ, θ, u)
.
= b̄(t, ϕ(t), g(t, θ), u),

f(t, ϕ, θ, u)
.
= f̄(t, ϕ(t), g(t, θ), u)

where b and f are progressively measurable functionals such that

b : [0, T ]×X × P1(X )× Γ→ Rd,
f : [0, T ]×X × P1(X )× Γ→ [0,∞)

while g : [0, T ] × P1(X ) → M≤1,1(Rd) is de�ned by its action on the test functions of the
1-Wasserstein convergence, i.e., on the functions ψ ∈ C(Rd) with sub-linear growth, as∫

Rd
ψ(x)g(t, θ)(dx)

.
=

∫
X
ψ(ϕ(t))1[0,τϕ)(t)θ(dϕ). (2.2)

In words, the functions b and f above are reparameterizatons of the restrictions of b̄ and f̄ ,
respectively, to the range of the map

(t, ϕ, θ, u) 7→ (t, ϕ(t), g(t, θ), u).

Moreover, for each µ ∈M≤1,1(Rd) and θ ∈ P1(X ) we introduce the notation

m(µ)
.
=

∫
Rd
|x|µ(dx) and m(t; θ)

.
=

∫
X
|ϕ(t)|1[0,τϕ)(t)θ(dϕ).

Now, we collect the necessary assumptions on all initial data in order to state our main
results. Some further assumptions will be given later in the paper when necessary.

(H1) The drift b̄ satis�es the following uniform Lipschitz continuity:∣∣b̄(t, x, µ, u)− b̄(t, x′, µ, u)
∣∣ ≤ L|x− x′|, x, x′ ∈ Rd

for any (t, µ, u) ∈ [0, T ]×M≤1,1(Rd)× Γ. Moreover it has sub-linear growth, i.e.∣∣b̄(t, x, µ, u)
∣∣ ≤ C (1 + |x|+m(µ))

for all (t, x, µ, u) ∈ [0, T ]× Rd ×M≤1,1(Rd)× Γ and for a positive constant C > 0.
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(H2) The running costs f̄ and the terminal cost F have sub-linear growth, i.e.

f̄(t, x, µ, u) ≤ C(1 + |x|+m(µ)),

F (t, x) ≤ C(1 + |x|),

for all (t, x, µ, u) ∈ [0, T ]× Rd ×M≤1,1(Rd)× Γ, (t, x) ∈ [0, T ]× Rd and for a positive
constant C > 0.

(H3) b̄ and f̄ are such that their reparametrizations b and f are jointly continuous at points
(t, ϕ, θ, u) ∈ [0, T ]×X×P1(X )×Γ such that θ �Wν . Moreover, F is jointly continuous
on [0, T ]× Rd.

(H4) The set O is open, convex and strictly included in Rd with C2-boundary, i.e. ∂O is the
graph of a C2 function. Alternatively, O = (0,∞)×d is also allowed.

(H5) The set Γ ⊂ Rd is compact.

(H6) The di�usion matrix σ ∈ Rd×d has full rank.

(H7) The initial distribution ν ∈ P(Rd) has support in O and satis�es
∫
O e

λ|x|2ν(dx) < ∞
for some λ > 0.

(H8) The initial conditions of the N -player game XN,i
0 , i ∈ {1, . . . , N}, are i.i.d. and with

the initial condition of the MFG X0, they are all distributed as ν ∈ P(Rd).

Before turning to the MFG dynamics, some remarks on the assumptions above are in order.

Remark 2.1. The growth assumptions in (H1) and (H2) could be further re�ned. For
instance, one could assume sub-linear and sub-polynomial growth of the drift and di�usion
matrix with suitable exponents as, e.g., in Lacker (2015). Moreover, the running cost f could
certainly take real values; however, without loss of generality and given the interpretation as
a cost term, we have assumed f ≥ 0.

Remark 2.2. The continuity properties in (H3) are crucial in the passage to the limit
performed in Proposition 3.2. Since the laws of the processes that we consider are absolutely
continuous with respect to the Wiener measureWν (they belong to the set Q ⊂ P(X ) of laws
of Brownian-driven processes with sub-linear drift that we introduce and characterize in the
Appendix A, cfr. Lemma A.3), it is su�cient to require continuity at points θ � Wν . The
passage to the limit in the measure argument can then be performed by Lemma A.4 together
with Lemma A.5.

Remark 2.3. Admittedly, compactness of Γ is a strong assumption, but it will play an
important role in order to obtain existence and uniqueness of weak solutions of the SDEs
for the player state's dynamics in both the MFG and the N -player games. In particular, it
enables a line of arguments based on Ben¥s' condition � ensured by the boundedness of the
coe�cient in the control variable � and Girsanov's theorem (see Remark 2.5 for more precise
references), which is one of the main tools of our approach.

Remark 2.4. The nondegeneracy of σ as in (H6) is justi�ed by the counter-example in
Campi and Fischer (2018), Section 7, where it was shown that a feedback MFG solution
does not necessarily induce a sequence of approximate Nash equilibria with vanishing error.
A careful inspection of such a counter-example reveals that it can be easily adapted to our
setting since, in that particular context, dividing by the initial number of players N (as in
our setting) or renormalizing each time by the current number of players (as in the counter-
example) turn out to be equivalent for N large. Finally, even though state dependency of the
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di�usion matrix can be handled using very similar techniques, we have decided to leave it out
and focus on other more interesting aspects of the model. For the same reason we leave aside
a possible dependence of σ on the control, as it would just increase the level of technicality
of the proofs due to the use of martingale measures (see Lacker (2015)).

The mean-�eld dynamics. Given a �ow of sub-probability measures µ ∈ ΥT
≤1,1 and a feed-

back progressively measurable control u : [0, T ] × X → Γ, the representative player's state
evolves according to the equation

Xt = X0 +

∫ t

0
b̄ (s,Xs, µs, u (s,X)) ds+ σWt, t ∈ [0, T ] , (2.3)

where X is a d-dimensional stochastic process starting at X0
d∼ ν ∈ P(Rd) and W is a d-

dimensional Wiener process on some �ltered probability space (Ω,F , (Ft)t∈[0,T ],P). Solutions
of Eq.(2.3) are understood to be in the weak sense (see Remark 2.5 below).

Let Ufb denote the set of all feedback controls de�ned as

Ufb
.
= {u : [0, T ]×X → Γ : u is progressively measurable}.

The cost associated with a strategy u ∈ Ufb, a �ow of sub-probability measures µ ∈ ΥT
≤1,1

and an initial distribution ν ∈ P(Rd) is given by (we omit, for the sake of simplicity, the
explicit dependence on ν)

Jµ (u)
.
= E

[∫ τ

0
f̄ (s,Xs, µs, u (s,X)) ds+ F (τ,Xτ )

]
(2.4)

where (Ω,F , (Ft)t∈[0,T ],P,W,X) is a solution of Eq.(2.3) under u with initial distribution ν,

and τ
.
= τX ∧ T the random time horizon. Finally we set

V µ .
= inf

u∈Ufb
Jµ(u).

Remark 2.5. For a given �ow of sub-probability measures µ, thanks to the linear growth
of b̄ in the state variable ϕ and to the boundedness of the action space Γ, we have that
both existence and uniqueness in law of a weak solution of Eq.(2.3) is guaranteed by Lemma
A.1, and by Proposition 5.3.6, Remark 5.3.8 and Proposition 5.3.10 in Karatzas and Shreve
(1987) (see our Lemma A.2). Precisely, this can be proved by means of Girsanov's theorem
and Ben¥s' condition (Bene², 1971).

The notion of solution we consider for the MFG is the following.

De�nition 2.1 (Feedback MFG solution). A feedback solution of the MFG is a pair (u, µ) ∈
Ufb ×ΥT

≤1,1 such that:

(i) Strategy u is optimal for µ, i.e. V µ = Jµ(u).

(ii) Let (Ω,F , (Ft)t∈[0,T ],P, X,W ) is a weak solution of Eq.(2.3) with �ow of sub-probability
measures µ, strategy u and initial condition ν. Then

µt(·) = P({Xt ∈ ·} ∩ {τX > t}), t ∈ [0, T ].

Relaxed controls. It will be very convenient to use relaxed controls (see El Karoui et al.
(1987) for a precise de�nition), which allow us to view progressively measurable controls with
values on a compact set Γ as elements of the space of probability measures on Γ. The latter
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space is compact when endowed with the weak convergence of measures. The space V of
relaxed controls is given by

V .
= {q ∈Mf ([0, T ]× Γ) : q(dt, dγ) = dtqt(dγ), t 7→ qt ∈ P(Γ)Borel measurable}

i.e. it is the set of all �nite positive measures on [0, T ] × Γ with Lebesgue time marginal.
With a slight abuse of notation, we denote with Λ̂ both the identity map and the canonical
process on V (where no confusion is possible, we drop the hat and write Λ in place of Λ̂).
Precisely, a single-player relaxed control is a V-valued random variable Λ such that (Λt)t∈[0,T ]

is a progressively measurable P(Γ)-valued stochastic process. We say that Λ is a feedback
control if there exists a progressively measurable functional λ : [0, T ]×X → P(X ) such that
Λt = λ(t,X) for all t ∈ [0, T ], with X denoting the player's dynamics. Moreover, we say that
Λ is a strict and feedback control if there exists u ∈ Ufb such that λ(t,X) = δu(t,X) for all
t ∈ [0, T ].

Let Ũfb be the set of relaxed feedback controls for the MFG. We rewrite the dynamics
and the cost functional of the MFG (Eq.(2.3)) and Eq.(2.4)) using relaxed controls:

Xt = X0 +

∫
[0,t]×Γ

b̄ (s,Xs, µs, u)λ (s,X) (du)ds+ σWt, (2.5)

Jµ (λ) = E

[∫
[0,τ ]×Γ

f̄ (s,Xs, µs, u)λ (s,X) (du)ds+ F (τ,Xτ )

]

where t ∈ [0, T ] and λ ∈ Ũfb. Moreover, we extend accordingly the notion of feedback
solutions of the MFG.

De�nition 2.2 (Relaxed feedback MFG solution). A relaxed feedback solution of the MFG
is a pair (λ, µ) ∈ Ũfb ×ΥT

≤1,1 such that:

(i) λ is optimal, i.e. V µ = Jµ(λ).

(ii) Let (Ω̃, F̃ , (F̃t)t∈[0,T ],Q, X,W ) be a weak solution of Eq.(2.5) with �ow of sub-probability
measures µ, control λ and initial condition ν. Then

µt(·) = Q({Xt ∈ ·} ∩ {τX > t}), t ∈ [0, T ].

Feedback and open-loop controls. Feedback controls induce stochastic open-loop controls, i.e.
tuples (Ω,F , (Ft)t∈[0,T ],P, X, u,W ) that are weak solutions of

Xt = X0 +

∫ t

0
b̄ (s,Xs, µs, us) ds+ σWt, t ∈ [0, T ] (2.6)

where u is a progressively measurable Γ-valued stochastic process. As a consequence, the
computation of the in�mum of Jµ(·) over the class of stochastic open-loop controls would
imply a lower value for V µ. However, thanks to Proposition 2.6 in El Karoui et al. (1987),
the two minimization problems are equivalent from the point of view of the value function.
A similar argument holds also in the case of feedback relaxed controls, that induce relaxed
stochastic open-loop controls, tuples (Ω̃, F̃ , (F̃t)t∈[0,T ],Q, X,Λ,W ) that are weak solutions of

Xt = X0 +

∫
[0,t]×Γ

b̄ (s,Xs, µs, u) Λs(du)ds+ σWt, t ∈ [0, T ] (2.7)

where Λ is a progressively measurable P(Γ)-valued stochastic process.
In the rest of the paper we will call U the set of open-loop controls and, for the sake of brevity
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and where no confusion is possible, denote with u an element of U implying the whole tuple
(Ω,F , (Ft)t∈[0,T ],P, X, u,W ). Similarly, we will call Ũ the set of open-loop relaxed controls

and denote with Λ an element of Ũ implying the whole tuple (Ω̃, F̃ , (F̃t)t∈[0,T ],Q, X,Λ,W ).

The extended canonical probability space. When dealing with relaxed controls we will work
on the following extension of the canonical probability space X . Set Ω̃

.
= X × V, let F and

(Ft)t∈[0,T ] be the canonical σ-algebra and the canonical �ltration on X , respectively, whereas
G and (Gt)t∈[0,T ] denote the Borel σ-algebra and the �ltration generated by the canonical

process Λ̂ on V, respectively. Finally, we set F̃t
.
= Ft ⊗ Gt for all t ∈ [0, T ], and F̃ .

= F ⊗ G.

Approximating MFGs. We conclude this preliminary section by introducing a suitable se-
quence of approximating MFGs, which is obtained by truncation of the coe�cients of the
original MFG similarly as in Lacker (2015). Such a sequence will be useful in the proof of
existence of a MFG solution along the following lines: we will prove existence of feedback
MFG solutions of the approximating MFGs in the sequence by extending the existence result
of Campi and Fischer (2018). Then, by letting the truncation threshold go to in�nity, we will
obtain a solution of the original MFG. This approach relies on two additional assumptions
(Assumptions (C1) and (C2) below) that will be introduced later in this part.

Let (Kn)n∈N ⊂ R+ be an increasing sequence such that Kn ↗ +∞. The nth approximat-
ing MFG model, denoted by MFG(n), is obtained as follows.

(Tn) b̄n(x) = b̄(x) when |b̄(x)| ≤ Kn, while it is continuously truncated at level Kn, i.e.
|b̄n(x)| = Kn, otherwise. Similarly for the costs f̄n and Fn and for the associated
functions bn and fn.

Notice that we do not truncate the possibly unbounded set O of non-absorbing states. In
each MFG(n) the representative player's state evolves as in Eq.(2.3) with b̄ replaced by b̄n,
i.e.

Xt = X0 +

∫ t

0
b̄n (s,Xs, µs, u(s,X)) ds+ σWt, t ∈ [0, T ] (2.8)

when the player is using the strict control u, and similarly when he/she is using a relaxed
control. Moreover, in the cost functional f̄ and F are replaced by their truncated counterpart
f̄n and Fn. The associated cost functional is denoted by Jn,µ (u) or Jn,µ (λ) depending on
whether the player is implementing a strict strategy u or a relaxed one λ. The optimal values
are de�ned, accordingly, by

V n,µ .
= inf

u∈Ufb
Jn,µ(u).

The de�nitions of strict and relaxed MFG solutions given above for the (un-truncated) MFG
can clearly be applied to the approximating MFG(n)s with the obvious modi�cations. We
associate to the MFG(n)s the following Hamiltonians:

hn(t, x, θ, z, u)
.
= fn(t, x, θ, u) + z σ−1 bn(t, x, θ, u),

Hn(t, x, θ, z)
.
= inf

u∈Γ
hn(t, x, θ, z, u)

and the set of minimizers

An(t, x, θ, z)
.
= {u ∈ Γ : hn(t, x, θ, z, u) = Hn(t, x, θ, z)}

for (t, x, θ, z) ∈ [0, T ]×Rd ×P1(X )×Rd. In the next section on existence of MFG solutions
we will rely on the following additional convexity assumptions:
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(C1) For each n ∈ N, An(t, x, θ, z) is convex for all (t, x, θ, z) ∈ [0, T ]× Rd × P1(X )× Rd.

(C2) The running cost f is convex in the control variable u ∈ Γ.

Remark 2.6. Assumption (C1) is common in control theory and it is crucial in order to
apply �xed point theorems. In our case it is satis�ed if, for instance, the running cost f is
bounded and convex in the control variable u ∈ Γ. Indeed in this case, due to the �exibility
in the choice of the truncation thresholds, choosing Kn ≥ ‖f‖∞ for all n ∈ N we have fn = f
for all n ∈ N. Then convexity is preserved by adding any sub-linear term. Finally, we observe
that Assumption (C2) will be used in Section 3.4 for obtaining the existence of strict MFG
solutions.

3 Existence of solutions of the mean-�eld game

Throughout this section Assumptions (H1)-(H8) are in force. Under these and the additional
convexity Assumptions (C1) and (C2) we show that both a relaxed and a strict feedback
solution of the MFG exist; see Theorem 3.1 below together with Proposition 3.4 and Propo-
sition 3.5. In addition, we guarantee the existence of a feedback solution of the MFG with
Markovian feedback strategy up to the exit time; see Proposition 3.6. Our main existence
result can be stated as follows.

Theorem 3.1 (Existence of relaxed and strict feedback MFG solutions). Under Assumptions

(H1)-(H8) and (C1), there exists a relaxed feedback MFG solution (λ, µ). Moreover, under

the additional Assumption (C2) , there exists a strict feedback MFG solution (u, µ).

To prove Theorem 3.1, we proceed by approximation in the sense that, �rst, we prove that
each MFG(n) introduced in the previous section has a feedback (strict) solution by extending
the results in Campi and Fischer (2018); see Subsection 3.1. Then, we prove the convergence
of such approximating solutions to a feedback (relaxed) solution of the original MFG by
passing to the limit with the truncation thresholds; see Subsection 3.2.

Before proceeding, we ensure the well-posedness of the game in the sense that we show that
the private state X of the representative agent remains in O up to time T with some positive
probability. This is the content of the following lemma.

Lemma 3.1. Grant Assumptions (H1)-(H8). Let (Ω,F , (Ft)t∈[0,T ],P, X,W ) be a weak solu-

tion of Eq.(2.3). Then P(τX > t) > 0 for all t ∈ [0, T ].

Proof. Set bt
.
= b̄(t,Xt, µt, u(t,X)) for t ∈ [0, T ], and de�ne Z

.
= (Zt)t∈[0,T ] as

Zt
.
= Et

(
−
∫ ·

0
σ−1bsdWs

)
, t ∈ [0, T ],

where Et(·) denotes the Doléans-Dade stochastic exponential. By Lemma A.1, Z is a true

martingale. De�ne Q by dQ
dP

.
= ZT . By Girsanov's theorem W̃t

.
= Wt +

∫ t
0 σ
−1bsds, t ∈ [0, T ],

is a Q-Wiener process, and under Q the process X has law Wν . As a consequence of the
law of iterated logarithms, any Wiener process remains in an open set, hence in O ⊂ Rd,
for a �nite time with strictly positive probability. Therefore Q(τX > T ) > 0 and thus
P(τX > T ) > 0.

3.1 Approximating MFGs

In this subsection we prove existence of solutions of the approximating MFG(n)s.

12



Theorem 3.2 (Existence of solutions of MFG(n)). Let n ∈ N. Under Assumptions (H1)-

(H8) and (C1) there exists a feedback solution (un, µn) of MFG(n).

Proof. The proof follows similar steps to those in Section 6 of Campi and Fischer (2018): we
only sketch here the main steps. The main di�erence with Campi and Fischer (2018) is that,
due to Assumption (C1), we have to deal with set-valued maps, hence to apply a version
of Kakutani's �xed point theorem instead of Brouwer's. We use the version proposed by
Carmona and Lacker (2015), Proposition 7.4, which is in turn based on the results of Cellina
(1969). Other adjustments are due to the fact that µ is a �ow of sub-probability measures
(instead of probability measures) and that O can be unbounded.

Fix n ∈ N. The proof is based on the construction of a suitable map Ψ : P(X ) ×
U → P(X ) on an appropriate compact and convex subset of P(X ), where U is the space of
progressively measurable Γ-valued stochastic processes. The �xed points of Ψ will provide
MFG(n) solutions. More in detail, de�ne Qν,K as the set of laws θ ∈ P(X ) of any process of
the type

ξ +

∫ t

0
bsds+ σWt, t ∈ [0, T ]

de�ned on some �ltered probability space with a Wiener process W , ξ
d∼ ν, drift (bt)t∈[0,T ]

adapted and bounded by K > 0. Let us consider

Ψ : Qν,Kn × U 3 (θ, u) 7→ Pθ,u ◦X−1 ∈ Qν,Kn ,

where X is the canonical process on X and the probability measure Pθ,u is de�ned as follows.
Let (θ, u) ∈ Qν,Kn ×U and let µθ ∈ ΥT

≤1 be de�ned as µθt (·)
.
= θ({Xt ∈ ·} ∩ {τX > t}) for all

t ∈ [0, T ]. Let (Ω,Fu, (Fut )t∈[0,T ],Pθ,u, X,W u) be the weak solution of

Xt = X0 +

∫ t

0
b̄n(s,Xs, µ

θ
s, us) ds+ σW u

t , t ∈ [0, T ]

on the canonical space (Ω
.
= X ,F , (Ft)t∈[0,T ],P). Moreover, for θ ∈ Qν,Kn we call uθ an

optimal control for the cost

Jn,µ
θ

(u)
.
= EPθ,u

[∫ τ

0
f̄n(s,Xs, µ

θ
s, us)ds+ Fn (τ,Xτ )

]
.

Such optimal controls uθ can be constructed by standard BSDE techniques as in Campi and
Fischer (2018), Section 6.1, by means of Darling and Pardoux (1997), Theorem 3.4, due to
the random terminal times. Under Assumption (C1) optimal controls uθ are in general not
unique. Indeed

An(θ)
.
=
{
uθ ∈ U : uθ ∈ An(·, X·, θ, Zθ· ), LT ⊗ P− a.e.

}
provides an entire set of optimal controls, where Zθ is part of the the solution of the associated
adjoint BSDE and LT denotes the Lebesgue measure on [0, T ]. Moreover, by measurable
selection there exists a measurable function ûn,θ : [0, T ]× Rd ×Qν,Kn × Rd → Γ such that

ûn,θ(·, X·, θ, Zθ· ) ∈ An(θ), LT ⊗ P− a.e.

Additionally, ûn,θ(t,Xt, θ, Z
θ
t ), for t ∈ [0, T ], is a progressively measurable control process

that can be written in feedback form. Indeed, since Zθ is progressively measurable for the
canonical �ltration, it can expressed as Zθt = ζθ(t,X) for some progressively measurable
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functional ζθ : [0, T ]×X → Rd and for any t ∈ [0, T ].
Now, a �xed point for the map Ψ is a probability measure θ ∈ Qν,Kn such that θ ∈

Ψ(θ,A(θ)). Existence is provided by Proposition 7.4 in Carmona and Lacker (2015), so
to conclude the proof it su�ces to check that all the required assumptions are satis�ed in
our case. The set Qν,Kn ⊂ P(X ) is a (weakly) compact, convex and metrizable subset
of C∗b (X ), the dual of the space of bounded and continuous functions on X , which is a
locally convex topological vector space with the weak* topology (that induces the weak
convergence of measures on P(X )). We endow the vector space U with the norm ‖·‖U de�ned

as ‖u‖U
.
= E[

∫ T
0 |ut|dt]. As a consequence of Berge's maximum theorem (Aliprantis and

Border, 1994, Theorem 17.31) and of Assumption (C1) the set-valued map An : Qν,Kn → U is
upper hemicontinuous and has non-empty convex and closed values (see the proof of Lemma
7.11 in Carmona and Lacker (2015)). Therefore, Proposition 7.4 in Carmona and Lacker
(2015) applies, yielding the existence of a feedback solution of MFG(n).

A-priori estimates. Here, we show that the moments up to any order α ≥ 1 of the state
process remain bounded uniformly in n. Such estimates will be very useful when we will relax
the truncation in the next section.

Lemma 3.2 (A-priori estimates). Grant Assumptions (H1)-(H8) and (C1). Consider feed-

back solutions (un, µn)n∈N and (u, µ) of the MFG(n)'s and of the MFG, respectively. Let

(Ωn,Fn, (Fnt )t∈[0,T ],Pn, Xn,Wn)n∈N be a sequence of weak solutions of the SDEs in Eq.(2.8)
and (Ω,F , (Ft)t∈[0,T ],P, X,W ) a weak solution of the SDE in Eq.(2.3). Then for any α ≥ 1

sup
n∈N

EPn [‖Xn‖α∞] ≤ K(α) and EP [‖X‖α∞] ≤ K(α)

where K(α) <∞ is a positive constant independent of n.

Proof. This follows from standard estimates that rely on the drift's sub-linear growth and on
Grönwall's lemma.

3.2 Convergence of the approximating MFGs

Let (un, µn)n∈N be a sequence of feedback solutions of the approximating MFGs introduced in
the previous Subsection 3.1, whose existence is guaranteed by Theorem 3.2. In addition, let
(Ωn,Fn, (Fnt )t∈[0,T ],Pn, Xn,Wn)n∈N be a sequence of weak solutions of the SDEs in Eq.(2.8)
associated to (un, µn)n∈N. Let θ

n be de�ned as θn
.
= Pn ◦ (Xn)−1 for each n ∈ N.

To prove the convergence of the approximating MFGs we proceed in the following way.
First, we show that there exists a subsequence of (θn)n∈N, say (θnk)nk∈N, that converges in
P1(X ) to some limit θ ∈ P1(X ). To prove this, we interpret (un, µn)n∈N as relaxed feedback
solutions, (λn, µn)n∈N. Second, we show that also the sequence of the corresponding extended
laws (Θn)n∈N ⊂ P(X ×V) converges in P1(X ×V) to some limit Θ ∈ P1(X ×V). Finally, we
characterize the limit points by means of the martingale problem of Stroock and Varadhan
(see Stroock and Varadhan (1969, 2007)).

Lemma 3.3 (Relative compactness). (θn)n∈N is relatively compact in P(X ).

Proof. First, we prove tightness by applying Aldous' criterion (see, e.g., Jacod and Shiryaev
(2013), Condition VI.4.4), that is

lim
δ→0

lim sup
n→∞

sup
τ≤σ≤τ+δ

Pn (|Xn
σ −Xn

τ | ≥ r) = 0

for all r > 0 and where τ and σ are stopping times bounded by T . Indeed, we have

Pn (|Xn
σ −Xn

τ | ≥ r) ≤
EPn [|Xn

σ −Xn
τ |]

r
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and

EPn [|Xn
σ −Xn

τ |] ≤ EPn
[∫ (τ+δ)∧T

τ

∣∣b̄n(t,Xn
t , µ

n
t , u

n(t,Xn))
∣∣ dt]+ |σ|((τ + δ) ∧ T − τ)

1
2CWT

≤ EPn
[
C

∫ (τ+δ)∧T

τ
(1 + ‖Xn‖∞,t + sup

n∈N
EPn‖Xn‖∞,t + |un(t,Xn)|)dt

]
+|σ|((τ + δ) ∧ T − τ)

1
2CWT

≤ EPn
[
C

∫ (τ+δ)∧T

τ
(1 + ‖Xn‖∞ +K + |un(t,Xn)|)dt

]
+|σ|((τ + δ) ∧ T − τ)

1
2CWT

for some constants CWT ,K > 0 independent of n ∈ N. Then we conclude by Lemma 3.2.
Relative compactness then follows from Prohorov's Theorem.

Now, let θ ∈ P(X ) be a limit point for (θn)n∈N and let (θnk)nk∈N be a subsequence of (θn)n∈N
such that θnk

w
⇀ θ as nk → ∞. With a slight abuse of notation, in what follows we identify

(θnk)nk∈N with (θn)n∈N. We now show that the latter convergence is actually stronger by
proving that (θn)n∈N converges to θ in the 1-Wasserstein distance.

Lemma 3.4 (Convergence in the 1-Wasserstein distance). Let (θn)n∈N be as above. Then

W1(θn, θ)→ 0 and θ ∈ P1(X ).

Proof. Notice that by Lemma 3.2 we have (θn)n∈N ⊂ P1(X ). To prove convergence in the
1-Wasserstein distance, we have to show that (see, for instance, Theorem 7.12.ii in Villani
(2003))

lim
R→∞

sup
n∈N

EPn [‖Xn‖∞1{‖Xn‖∞≥R}
]

= 0.

Set α, β > 1 such that 1
α + 1

β = 1. Then, for any ε > 0 by Young's and Markov's inequalities,
and by Lemma 3.2 we have

EPn [‖Xn‖∞1{‖Xn‖∞≥R}
]
≤ εα

EPn [‖Xn‖α∞]

α
+

Pn(‖Xn‖∞ ≥ R)

εββ

≤ εα
K(α)

α
+

K

εββR

for some positive constants K(α) and K independent of n ∈ N. The conclusion immedi-
ately follows thanks to the fact that convergence in the 1-Wasserstein distance preserves the
�niteness of the �rst moment.

Proposition 3.1 (Absolute continuity of limit measures). Let θ, (θn)n∈N ⊂ P1(X ) be as in

Lemma 3.4. Then θ �Wν , i.e. θ is absolutely continuous with respect to Wν .

Proof. By construction θn �Wν for all n ∈ N, hence we have to make sure that the absolute
continuity is also preserved in the limit. For doing so, we apply Theorem X.3.3 in Jacod and
Shiryaev (2013). In particular, we have to verify that all assumptions therein are ful�lled,
which in our setting are reduced to the following properties:

(i) The contiguity of the sequence of θn with respect to the Wiener measure Wν , i.e. for
any sequence of measurable sets Bn with Wν(Bn)→ 0 we have θn(Bn)→ 0 as n→∞
(see, e.g., De�nition V.1.1 in Jacod and Shiryaev (2013)).
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(ii) The tightness of the sequence ofWν-martingales (Mn)n∈N, where eachM
n = (Mn

t )t∈[0,T ]

is de�ned as

Mn
t
.
= Et

(∫ ·
0
σ−1b̄n(s,Xs, µ

n
s , u

n(s,X))dWs

)
, t ∈ [0, T ].

In order to check property (i), we �rst show that the sequence of Radon-Nikodym derivatives
( dθ

n

dWν )n∈N is uniformly integrable under Wν . This is a consequence of the following bound:

sup
n∈N

EW
ν

[(
dθn

dWν

)p]
<∞, p ∈ [1,∞) (3.1)

which follows from Corollary A.1 and by fact that, by inspection of the proofs of Lemma A.1
and Corollary A.1, all bounds are uniform in n ∈ N.

Now, property (i) can be obtained as follows: for all sequences of measurable sets Bn with
Wν(Bn)→ 0, we have

θn(Bn) = EW
ν

[
dθn

dWν
1Bn

]
→ 0, n→∞,

by an application of dominated convergence theorem due to the bound in Eq.(3.1). Hence
the sequence of measures θn is contiguous to Wν .

Property (ii) follows from Aldous criterion (Jacod and Shiryaev, 2013, Condition VI.4.4),
that is

lim
δ→0

lim sup
n→∞

sup
τ≤σ≤τ+δ

Wν (|Mn
σ −Mn

τ | ≥ r) = 0 (3.2)

for all r > 0 and where τ and σ are stopping times bounded by T . As a consequence, we
will also have the tightness property for the pair (X,Mn)n∈N under the measure Wν . By
Theorem VI.4.13 in Jacod and Shiryaev (2013) it is su�cient to check the tightness property
for the corresponding quadratic variation processes

〈Mn〉t =

∫ t

0

∣∣σ−1b̄n(s,Xs, µ
n
s , u

n(s,X))Mn
s

∣∣2 ds, t ∈ [0, T ].

First, by Markov's inequality Wν(|〈Mn〉σ − 〈Mn〉τ | ≥ r) ≤ 1
rE
Wν

[|Mn
σ −Mn

τ |]. Then, by
Young's inequality for all p, q > 1 such that 1

p + 1
q = 1 we have

EW
ν

[|〈Mn〉σ − 〈Mn〉τ |] ≤ EW
ν

[∫ (τ+δ)∧T

τ

∣∣σ−1
∣∣2 ∣∣b̄n(s,Xs, µ

n
s , u

n(s,X))
∣∣2 |Mn

s |
2 ds

]

≤ 1

p

∣∣σ−1
∣∣2 ∫ (τ+δ)∧T

τ
EW

ν
[∣∣b̄n(s,Xs, µ

n
s , u

n(s,X))
∣∣2p] ds

+
1

q

∣∣σ−1
∣∣2 ∫ (τ+δ)∧T

τ
EW

ν
[
|Mn

s |
2q
]
ds

≤
(
K(p)

p
+
K(q)

q

) ∣∣σ−1
∣∣2 ((τ + δ) ∧ T − τ)

for some positive constants K(p) and K(q) > 0 independent of n ∈ N. Notice that the last
inequality is a consequence of Lemma 3.2 and Property (i). Therefore, Aldous' criterion in
Eq.(3.2) is satis�ed.

After checking properties (i) and (ii) above, we can at last apply Theorem X.3.3 in Jacod and
Shiryaev (2013), yielding that the tightness of (Wν ◦ (X,Mn)−1)n∈N implies the tightness of
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(θn ◦ (X,Mn)−1)n∈N. In particular, if (Wν ◦ (X,Mn)−1)n∈N weakly converges to some Θ′ in
P(X ×X ) then (θn ◦ (X,Mn)−1)n∈N weakly converges to some other Θ′′ � Θ′ in P(X ×X ),
and the same holds true for their �rst marginals on X . Therefore, we can conclude that
θ �Wν .

Compacti�cation method. So far we have established the convergence of the laws (θn)n∈N
to some limit law θ in the 1-Wasserstein distance. Now, in order to prove the convergence of
the approximating feedback solutions (un, µn)n∈N to some feedback MFG solution (u, µ), we
need to show that the sequence of optimal controls (un)n∈N converges to a control u, which
is optimal for the limit game.

To do this, we interpret the sequence of strict feedback solutions (un, µn)n∈N as a sequence
of relaxed feedback solutions (λn, µn)n∈N, by de�ning λn : [0, T ] × X → P(Γ) as λn(t, ϕ)

.
=

δun(t,ϕ) for all (t, ϕ) ∈ [0, T ] × X and for all n ∈ N. Furthermore, we identify each λn

with a stochastic relaxed control Λn. We then �x a sequence of associated weak solutions
(Ω̃n, F̃n, (F̃nt )t∈[0,T ],Qn, Xn,Wn) of Eq.(2.5) and set Θn .

= Qn ◦ (Xn,Λn)−1 ∈ P(X × V)
for all n ∈ N. Finally, we associate to each MFG(n) and to the limit MFG a martingale
problem (Stroock and Varadhan (1969, 2007)) and show that the limit points Θ ∈ P(X ×V)
of (Θn)n∈N solve the limit relaxed martingale problem. We start with the following lemma.

Lemma 3.5 (Tightness in the 1-Wasserstein distance and absolute continuity). Let (Θn)n∈N
be as above. Then the following two properties hold:

(i) (Θn)n∈N is tight in P1(X × V);

(ii) Any limit point Θ of the sequence (Θn)n∈N in P1(X × V) satis�es Θ ◦X−1 �Wν .

Proof. (i). It follows from Lemma 3.4 and the compactness of Γ.
(ii). This is a consequence of Proposition 3.1, the fact that by construction θn = Θn◦X−1

for all n ∈ N, and the fact that weak convergence of the joint laws implies weak convergence
of the marginals.

By the previous lemma, we can assume without loss of generality that the original sequence
(Θn)n∈N converges to some limit measure Θ in P1(X ×V). In order to characterize the limit
point Θ, we associate to each approximating MFG(n) and to the limit MFG a (relaxed)
martingale problem, henceforth RM(n) and RM, respectively. Then, we show that Θ is also
a solution of RM. We will use the notation Dg and D2g for the gradient and the Hessian of
a smooth function g : Rd → R, while Tr[A] denote the trace of a square matrix A. Notice
that in the following de�nition we have used the repameterization b of the drift b̄.

De�nition 3.1. The approximating martingale problems (RM(n)) We say that Θ̂ ∈ P(X×V)
is a solution of RM(n) if for all g ∈ C2

c (Rd) the process

Mn,g
t (ϕ, q; Θ̂)

.
= g(ϕ(t))− g(ϕ(0))−

∫
[0,t]×Γ

bn(s, ϕ, θ̂, u)>Dg(ϕ(s))q(ds, du)

+
1

2

∫ t

0
Tr
[
σσ>D2g(ϕ(s))

]
ds, t ∈ [0, T ]

is a Θ̂-martingale, where θ̂
.
= Θ̂ ◦X−1 and X is the canonical process on X .

Observe that, by construction, each Θn solves RM(n). In Proposition 3.2 below we will
characterize the limit points as solutions of the following (relaxed) martingale problem.
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De�nition 3.2. The limit martingale problem (RM) We say that Θ̂ ∈ P(X ×V) is a solution
of RM if for all g ∈ C2

c (Rd) the process

Mg
t (ϕ, q; Θ̂)

.
= g(ϕ(t))− g(ϕ(0))−

∫
[0,t]×Γ

b(s, ϕ, θ̂, u)>Dg(ϕ(s))q(ds, du)

+
1

2

∫ t

0
Tr
[
σσ>D2g(ϕ(s))

]
ds, t ∈ [0, T ]

is a Θ̂-martingale, where θ̂
.
= Θ̂ ◦X−1.

Remark 3.1. The martingale property in both RM(n) and in RM is understood to hold
on (X × V,B(X × V)) with respect to the Θ-augmentation of the canonical �ltration made
right continuous by a standard procedure. Nonetheless, to conclude it is su�cient to check
that the martingale property holds with respect to the canonical �ltration on X ×V (see, for
instance, Problem 5.4.13 in Karatzas and Shreve (1987)).

Now, we can characterize the limit points via the martingale problems.

Proposition 3.2 (Characterization of limit points via martingale problems). Θ solves RM

as in De�nition 3.2.

Proof. Fix t1, t2 ∈ [0, T ], t1 < t2, g ∈ C2
c (Rd) and ψ ∈ Cb(X × V) measurable with respect to

Bt1(X × V). De�ne Ψ,Ψn : P(X × V)→ R as

Ψ
(
Θ′; Θ

) .
= EΘ′

[
ψ
(
Mg
t2

(· ; Θ)−Mg
t1

(· ; Θ)
)]
,

Ψn
(
Θ′; Θ

) .
= EΘ′

[
ψ
(
Mn,g
t2

(· ; Θ)−Mn,g
t1

(· ; Θ)
)]

for Θ′,Θ ∈ P(X × V) and for all n ∈ N. Since Ψn(Θn; Θn) = 0 for all n ∈ N, it su�ces to
prove that Ψn(Θn; Θn)→ Ψ(Θ; Θ) as n→∞.

First, we observe that Ψn(Θn; Θn) and Ψ(Θ; Θ) can be written as

Ψn(Θn; Θn) =

∫
X×V

ψ(ϕ, q)

∫
[t1,t2]×Γ

bn(s, ϕ, θn, u)>Dg(ϕ(s))q(ds, du)Θn(dϕ, dq)

+

∫
X×V

ψ(ϕ, q)

∫ t2

t1

1

2
Tr
[
σσ>D2g(ϕ(s))

]
dsΘn(dϕ, dq)

and

Ψ(Θ; Θ) =

∫
X×V

ψ(ϕ, q)

∫
[t1,t2]×Γ

b(s, ϕ, θ, u)>Dg(ϕ(s))q(ds, du)Θ(dϕ, dq)

+

∫
X×V

ψ(ϕ, q)

∫ t2

t1

1

2
Tr
[
σσ>D2g(ϕ(s))

]
dsΘ(dϕ, dq).

The convergence of the di�usion terms is a straightforward consequence of the weak conver-
gence Θn w

⇀ Θ and the fact that the map

(ϕ, q) 7→ ψ(ϕ, q)

∫ t2

t1

1

2
Tr
[
σσ>D2g(ϕ(s))

]
ds

is in Cb(X × V), leading to∫
X×V

ψ(ϕ, q)

∫ t2

t1

1

2
Tr
[
σσ>D2g(ϕ(s))

]
dsΘn(dϕ, dq)

−→
n→∞

∫
X×V

ψ(ϕ, q)

∫ t2

t1

1

2
Tr
[
σσ>D2g(ϕ(s))

]
dsΘ(dϕ, dq).

18



Hence, we only need to study the convergence of the drift terms. We split the rest of the
proof in two steps.

Step 1. We prove that∫
X×V

ψ(ϕ, q)

∫
[t1,t2]×Γ

(bn(s, ϕ, θn, u)− b(s, ϕ, θn, u))>Dg(ϕ(s))q(ds, du)Θn(dϕ, dq) −→
n→∞

0.

Indeed,∣∣∣∣∣
∫
X×V

ψ(ϕ, q)

∫
[t1,t2]×Γ

(bn(s, ϕ, θn, u)− b(s, ϕ, θn, u))>Dg(ϕ(s))q(ds, du)Θn(dϕ, dq)

∣∣∣∣∣
≤ CDgCψ

∫
X×V

∫
[t1,t2]×Γ

|bn(s, ϕ, θn, u)− b(s, ϕ, θn, u)| q(ds, du)Θn(dϕ, dq)

≤ CDgCψ
∫
X×V

∫
[t1,t2]×Γ

|b(s, ϕ, θn, u)|1{|b|≥Kn}q(ds, du)Θn(dϕ, dq)

≤ CDgCψ
εα
∫
X×V

∫
[t1,t2]×Γ |b(s, ϕ, θ

n, u)|α q(ds, du)Θn(dϕ, dq)

2α

+ CDgCψ

∫
X×V

∫
[t1,t2]×Γ 1{|b|≥Kn}q(ds, du)Θn(dϕ, dq)

2βεβ

≤ CDgCψ
εα supn∈N

∫
X×V

∫
[t1,t2]×Γ |b(s, ϕ, θ

n, u)|α q(ds, du)Θn(dϕ, dq)

2α

+ CDgCψ
supn∈N

∫
X×V

∫
[t1,t2]×Γ |b(s, ϕ, θ

n, u)| q(ds, du)Θn(dϕ, dq)

2Knβεβ

for all ε > 0, where CDg and Cψ are uniform bounds on Dg and ψ, respectively. We applied
Young's inequality with exponents α, β > 1, 1

α + 1
β = 1 for the third inequality, while for

the last one we used the Markov's inequality with respect to the measure π(ds, du, dϕ, dq)
.
=

q(ds, du)Θn(dϕ, dq) on X × V × [0, T ]× Γ:∫
X×V

∫
[t1,t2]×Γ

1{|b|≥Kn}q(ds, du)Θn(dϕ, dq) ≤

∫
X×V

∫
[t1,t2]×Γ |b(s, ϕ, θ

n, u)| q(ds, du)Θn(dϕ, dq)

Kn
.

The suprema over n ∈ N are bounded due to Lemma 3.2. We conclude this step by letting
�rst n→∞ (so that Kn ↗∞) then ε→ 0.

Step 2. We prove that∫
X×V

ψ(ϕ, q)

∫
[t1,t2]×Γ

b(s, ϕ, θn, u)>Dg(ϕ(s))q(ds, du)Θn(dϕ, dq)

−→
n→∞

∫
X×V

ψ(ϕ, q)

∫
[t1,t2]×Γ

b(s, ϕ, θ, u)>Dg(ϕ(s))q(ds, du)Θ(dϕ, dq).

To this aim we show that:

(θ, ϕ, q) 7→ ψ(ϕ, q)

∫
[t1,t2]×Γ

b(s, ϕ, θ, u)>Dg(ϕ(s))q(ds, du)

is continuous on P1(X ) × X × V at points such that θ � Wν and that it has sub-linear
growth in (ϕ, q) ∈ X × V so that we can conclude by using the property W1(Θn,Θ) → 0
together with Theorem 7.12.iv in Villani (2003). Since ψ ∈ C(X × V), we only need to show
the continuity of the second (integral) term. Let (θn, ϕn, qn, un)n∈N ⊂ P1(X ) × X × V × Γ
converge to some point (θ, ϕ, q, u) ∈ P1(X )×X × V × Γ where θ �Wν . Then

b(t, ϕn, θn, un)>Dg(ϕn(t)) −→
n→∞

b(t, ϕ, θ, u)>Dg(ϕ(t))
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for all t ∈ [t1, t2] by the continuity assumptions on b and Dg, i.e. b(t, ·)>Dg(·) is jointly
continuous for each t ∈ [t1, t2] at points (θ, ϕ, q, u) with θ �Wν . Moreover∣∣∣b(t, ϕ, θ, u)>Dg(ϕ(t))

∣∣∣ ≤ CDgC (1 + ‖ϕ‖∞,t +m(t; θ) + |u|)

≤ CDgC (1 +K + ‖ϕ‖∞,t + |u|)

for some constants CDg, C,K > 0 (this replaces Assumption (2) of Corollary A.5 in Lacker
(2015)). We conclude by means of Corollary A.5 in Lacker (2015).

We conclude this subsection by characterizing any limit measure Θ as the joint law of state
and (relaxed) control for a weak solution of the limit SDE in Eq.(2.7) with drift b̄. The next
corollary is a fairly standard result establishing a well-known connection between solutions
of RM and weak solutions of SDEs:

Corollary 3.1 (Representation of limit points). Let Θ be a solution of RM, as in De�nition

3.2. Then there exists a weak solution (Ω̃, F̃ , (F̃t)t∈[0,T ],Q, X,Λ,W ) of

Xt = X0 +

∫
[0,t]×Γ

b̄ (s,Xs, µs, u) Λs(du)ds+ σWt, t ∈ [0, T ]

such that Θ = Q◦(X,Λ)−1, θ = Θ◦X−1 and µt = g(t, θ) with g : [0, T ]×P1(X )→M≤1,1(Rd)
as in Eq.(2.2).

Proof. Arguing analogously as in the proofs of Proposition 5.4.6 and Corollary 5.4.8 in
Karatzas and Shreve (1987) gives the existence of a weak solution (Ω̃, F̃ , (F̃t)t∈[0,T ],Q, X,Λ,W )
of the SDE

Xt = X0 +

∫
[0,t]×Γ

b (s,X, θ, u) Λs(du)ds+ σWt, t ∈ [0, T ] (3.3)

such that Θ is the law of (X,Λ) under Q and θ = Θ ◦X−1. The conclusion is obtained by
going back to the original drift b̄, that we recall is given by

b̄(t, ϕ(t), g(t, θ), u) = b(t, ϕ, θ, u), (t, ϕ, θ, u) ∈ [0, T ]×X × P1(X )× Γ,

and g(t, θ) = µt as in Eq.(2.2).

3.3 Optimality of the limit points

In this subsection, we show that any limit point Θ ∈ P(X×V) of (Θn)n∈N is optimal according
to the cost functional of the MFG. In order to do that, we will extend the notion of relaxed
MFG solution to controls that are not necessarily in feedback form. In this case we evaluate
optimality according to the following cost functional:

Jµ (Λ)
.
= E

[∫
[0,τ ]×Γ

f̄ (s,Xs, µs, u) Λs(du)ds+ F (τ,Xτ )

]
,

where Λ is any relaxed stochastic control and τ
.
= τX ∧ T , subject to the dynamics

Xt = X0 +

∫
[0,t]×Γ

b̄ (s,Xs, µs, u) Λs(du)ds+ σWt, t ∈ [0, T ]. (3.4)

We set V µ = infΛ J
µ(Λ), where the minimization is actually performed over the set of relaxed

stochastic open-loop controls, i.e. over the tuples (Ω̃, F̃ , (F̃t)t∈[0,T ],Q, X,Λ,W ) that are weak
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solutions of Eq.(3.4) and where Λ is a progressively measurable P(Γ)-valued stochastic pro-
cess. To simplify the notation, we will just write Λ to refer to the whole tuple. Moreover,
when working on the canonical space X ×V, where the canonical process (X,Λ) is completely
characterized by its law Θ, we will simply write Jµ(Θ) in place of Jµ(Λ).

De�nition 3.3 (Relaxed MFG solution). A relaxed solution of the MFG is a pair (Λ, µ),
where Λ is a relaxed stochastic control and µ ∈ ΥT

≤1,1, such that:

(i) Λ is optimal, i.e. V µ = Jµ(Λ).

(ii) Let (Ω̃, F̃ , (F̃t)t∈[0,T ],Q, X,Λ,W ) be a weak solution of Eq.(3.4) with �ow of sub-
probability measures µ, stochastic control Λ and initial condition ν. Then

µt(·) = Q({Xt ∈ ·} ∩ {τX > t}), t ∈ [0, T ].

Proposition 3.3 (Existence of relaxed MFG solutions). Grant Assumptions (H1)-(H8) and

(C1). Let Θ be a limit point of (Θn)n∈N in P1(X × V). Set µ ∈ ΥT
≤1,1 as

µt (·) .
= Θ

(
{Xt ∈ ·} ∩

{
τX > t

})
t ∈ [0, T ].

Then (Θ, µ) is a relaxed MFG solution according to De�nition 3.3.

Proof. By construction we immediately have that Λ is a relaxed stochastic control and µ ∈
ΥT
≤1,1. Moreover, property (ii) is a consequence of the fact that Θ is a solution of RM as in

De�nition 3.2. To prove property (i), we proceed through the following steps:

(j) Let Θ̃ ∈ P(X × V) be a solution of RM. Then there exists a sequence of solutions
(Θ̃n)n∈N of RM(n) such that limn→∞ J

n,µn(Θ̃n) = Jµ(Θ̃).

(jj) limn→∞ J
n,µn(Θn) = Jµ(Θ).

(jjj) Jµ(Θ) ≤ Jµ(Θ̃) for any Θ̃ ∈ P(X × V) solution of RM.

The proof of (j)-(jjj) largely follows that of Theorem 3.6 in Lacker (2015). Therefore, we
highlight only the main di�erences with respect to our setting, which are due to the sub-
linear growth of the drift and the cost functional and to the path dependency induced by the
exit time from O.

Proof of (j). Let Θ̃ ∈ P(X×V) be a solution of RM and let (Ω̃, F̃ , (F̃t)t∈[0,T ], Θ̃, X,Λ,W )

be a weak solution of Eq.(3.4) on the canonical space Ω̃ = X×V. The existence of this solution
is guaranteed by Corollary 3.1. Now �x Λ and let Xn be a sequence of strong solutions of:

Xn
t = ξ +

∫
[0,t]×Γ

b̄n (s,Xn
s , µ

n
s , u) Λs(du)ds+ σWt, t ∈ [0, T ]

on the �ltered probability space (Ω̃, F̃ , (F̃t)t∈[0,T ], Θ̃). Set Θ̃n .
= Θ̃◦(Xn,Λ)−1 for each n ∈ N.

Notice that (Θ̃n)n∈N ⊂ P1(X ×V). Moreover each Θ̃n solves RM(n) as in De�nition 3.1. We
now show that:

EΘ̃ [‖Xn −X‖∞] −→
n→∞

0 and W1(Θ̃n, Θ̃) −→
n→∞

0. (3.5)

Regarding the �rst limit, it is su�cient to note that:

EΘ̃ [‖Xn −X‖∞,t] ≤ L

∫ t

0
EΘ̃ [‖Xn −X‖∞,s] ds+ EΘ̃

[∫
[0,t]×Γ

∆bn(s, u)Λs(du)ds

]
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where we set

∆bn(t, u)
.
= |b̄n(t,Xt, µt, u)− b̄(t,Xt, µt, u)|.

The �rst term can be handled with Grönwall's Lemma, whereas the second one by applying
a similar argument as in the �rst step of the proof of Proposition 3.2. Regarding the second
limit in Eq.(3.5) we can proceed as follows. First, notice that the �rst limit in Eq.(3.5)
implies convergence in probability, hence in law, of Xn to X. Thus, by an argument similar
to that of Lemma 3.5, we can prove the convergence in the 1-Wasserstein distance. At this
point, the convergence of the costs is a consequence of the convergence in the 1-Wasserstein
distance and the sub-linear growth of the running cost (combined with Theorem 7.12.iv in
Villani (2003)), as in the second step of the proof of Proposition 3.2.

Proof of (jj). This follows from an argument similar to the second part of (j).
Proof of (jjj). Let Θ̃ ∈ P(X × V) be a solution of RM and let (Θ̃n)n∈N ⊂ P(X × V) be

an approximating sequence as in (j). By the optimality of Θn we have

Jn,µ
n

(Θn) ≤ Jn,µn
(

Θ̃n
)

for all n ∈ N. The optimality of Θ follows by taking the limit for n → ∞ on both sides of
the inequality above and using the previous properties (j) and (jj).

3.4 Existence of solutions

In this subsection we �nally conclude the proof of Theorem 3.1 by proving the existence of a
relaxed feedback MFG solution and, under additional convexity assumptions, the existence
of a strict feedback MFG solution. In addition, we also prove existence of solutions that are
Markovian up to the exit time.

Relaxed feedback MFG solutions. The main mathematical tool here is the mimicking result of
Brunick and Shreve (2013). We follow the procedure in Lacker (2015) but with modi�cations
due to the peculiarities of our model induced mainly by the presence of absorptions. We give
more details in the proof below.

Proposition 3.4 (Existence of relaxed feedback MFG solutions). Grant Assumptions (H1)-

(H8) and (C1). Let (Θ, µ) be a relaxed MFG solution as in De�nition 3.3.

Then there exists another relaxed MFG solution (Θ′, µ) and a progressively measurable

functional λ : [0, T ]× X → P(Γ) such that Θ′((ϕ, q) ∈ X × V : qt = λ(t, ϕ)) = 1 for LT -a.e.
t ∈ [0, T ] and Jµ(Θ′) = Jµ(Θ) = V µ, i.e. (λ, µ) is a relaxed feedback solution of the MFG as

in De�nition 2.2.

Proof. We adapt the proof of Theorem 3.7 in Lacker (2015) to our setting, by exploiting the
mimicking result in Corollary 3.11 of Brunick and Shreve (2013) instead of Corollary 3.7 as
in Lacker (2015). As a consequence, the mimicking process that we get is not Markovian
as in Lacker. However, it has the same law as the original process and not only the same
marginals. This is important in our setting due to the path dependency induced by the exit
time τ .

We start with the construction of λ by disintegration. Precisely, de�ne η ∈ P([0, T ] ×
X × Γ) as:

η (I ×B ×G)
.
=

1

T
EΘ

[∫
[0,T ]×Γ

1(I×B×G) (t,X, u) Λ (dt, du)

]
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and disintegrate it as η(dt, dϕ, du) = η̃(dt, dϕ)λt,ϕ(du). Then:

η (I ×B ×G) =

∫
[0,T ]×X

∫
Γ
1(I×B×G) (t, ϕ, u)λt,ϕ (du) η̃ (dt, dϕ)

for all I ∈ B([0, T ]), B ∈ B(X ) and G ∈ B(Γ). By the disintegration theorem, (t, ϕ) 7→
λt,ϕ(·) ∈ P(Γ) is Borel-measurable. Now set F̃Xt

.
= σ(Xs, s ∈ [0, t]) for each t ∈ [0, T ]. We

claim that:

λt,X (·) = EΘ
[
Λt (·)

∣∣F̃Xt ] Θ-a.s. and for LT -a.e. t ∈ [0, T ] (3.6)

which is measurable and adapted, hence it has a progressively measurable modi�cation λ. We
show that for any bounded measurable functional g : [0, T ]× X × Γ→ R such that g(t, ·, u)
is F̃Xt -measurable for all t ∈ [0, T ] and u ∈ Γ∫

Γ
g (t,X, u)λt,X (du) =

∫
Γ
g (t,X, u)EΘ

[
Λt (du)

∣∣F̃Xt ]
Θ-a.s. and for LT -a.e. t ∈ [0, T ]. Indeed, for any other bounded measurable functional h :
[0, T ]×X → R such that h(t, ·) is F̃Xt -measurable for all t ∈ [0, T ], we have

1

T
EΘ

[∫ T

0
h (t,X)

∫
Γ
g (t,X, u)λt,X (du) dt

]
(3.7)

=

∫
[0,T ]×X

h (t, ϕ)

∫
Γ
g (t, ϕ, u)λt,ϕ (du) η̃ (dt, dϕ)

=

∫
[0,T ]×X×Γ

h (t, ϕ) g (t, ϕ, u) η (dt, dϕ, du)

=
1

T
EΘ

[∫ T

0
h (t,X)

∫
Γ
g (t,X, u) Λt (du) dt

]
where the �rst equality comes from the de�nition of η̃, the second one is due to the disinte-
gration of η and the third one holds by de�nition of η.
Now, let (Ω̃, F̃ , (F̃t)t∈[0,T ],Q,W,X,Λ) be a weak solution of Eq.(3.4) with relaxed control
Θ = Q ◦ (X,Λ)−1. By Corollary 3.11 in Brunick and Shreve (2013) there exists a weak
solution (Ω̃′, F̃ ′, (F̃ ′t)t∈[0,T ],Q′,W ′, X ′) of

X ′t = ξ +

∫ t

0

∫
Γ
b̄
(
s,X ′s, µs, u

)
λs,X′(du)ds+ σW ′t , t ∈ [0, T ]

such that Q′ ◦ (X ′)−1 = Q ◦X−1. De�ne Θ′
.
= Q′ ◦ (X ′,Λ′)−1 where Λ′(dt, du)

.
= dtλt,X′(du).

Notice that if µ′ is the �ow of sub-probability measures associated to Θ′ then µ′ = µ. Finally,
Θ′ solves the same relaxed martingale problem as Θ, and it has the same cost as Θ as required:

Jµ
(
Θ′
)

= EQ′
[∫ τ ′

0

∫
Γ
f̄
(
t,X ′t, µt, u

)
λt,X′ (du) dt+ F

(
τ ′, X ′τ ′

)]

= EQ
[∫ τ

0

∫
Γ
f̄ (t,Xt, µt, u)λt,X (du) dt+ F (τ,Xτ )

]
= EQ

[∫ τ

0

∫
Γ
f̄ (t,Xt, µt, u)EQ

[
Λt (du)

∣∣F̃Xt ] dt+ F (τ,Xτ )

]
= EQ

[∫ τ

0

∫
Γ
EQ
[
f̄ (t,Xt, µt, u) Λt (du)

∣∣F̃Xt ] dt+ F (τ,Xτ )

]
= EQ

[∫
[0,τ ]×Γ

f̄ (t,Xt, µt, u) Λ (dt, du) + F (τ,Xτ )

]
= Jµ (Θ) .
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Remark 3.2. We observe that, due to the discontinuity induced by the exit time τ , it is not
possible in general to apply Theorem 3.6 of Brunick and Shreve (2013) to Zt = (Xt, I[0,τ)(t)),
t ∈ [0, T ], to obtain a control which is Markovian in Z. Moreover the few mimicking results
available in the literature for discontinuous processes hold under very restrictive or hardly
veri�able assumptions. Nonetheless, Theorem 3.6 of Brunick and Shreve (2013) could still be
applied in some particular cases when, for instance, O = (0,∞) and Zt = (Xt, infs∈[0,t]Xs).

Strict feedback MFG solutions. Under additional convexity assumptions (Filippov (1962);
Haussmann and Lepeltier (1990)), we prove existence of feedback MFG solutions in strict
form. Let (Θ, µ) be a relaxed MFG solution according to De�nition 3.3 and for each (t, ϕ) ∈
[0, T ]×X de�ne K(t, ϕ, µ) as:

K (t, ϕ, µ)
.
=
{(
b̄ (t, ϕ(t), µt, u) , z

)
: z ≥ f̄ (t, ϕ(t), µt, u) and u ∈ Γ

}
.

Existence of strict MFG solutions is established under the additional Assumption (C2).

Remark 3.3. Assumption (C2) is equivalent to requiring that the set K(t, ϕ, µ) is convex.
This assumption is crucial to apply the measurable selection arguments in Haussmann and
Lepeltier (1990); Dufour and Stockbridge (2012).

Proposition 3.5 (Existence of strict feedback MFG solutions). Grant Assumptions (H1)-

(H8), (C1) and Assumption (C2). Let (Θ, µ) be a relaxed MFG solution as in De�nition 3.3.

Then there exists another relaxed MFG solution (Θ′, µ) and a progressively measurable

functional u ∈ Ufb such that Θ′((ϕ, q) ∈ X × V : qt = δu(t,ϕ)) = 1 for LT -a.e. t ∈ [0, T ]
and Jµ(Θ′) = Jµ(Θ) = V µ, i.e. (u, µ) is a strict and feedback solution of the MFG as in

De�nition 2.1.

Proof. We follow once more the proof of Theorem 3.7 in Lacker (2015), highlighting the main
di�erences with respect to our setting. The �rst part of the proof proceeds as in Proposition
3.4. Since for all (t, ϕ) ∈ [0, T ] × X the pair (b̄(t, ϕ(t), µt, u), f̄(t, ϕ(t), µt, u)) belongs to
K(t, ϕ, µ) for all u ∈ Γ and K(t, ϕ, µ) is convex, we have∫

Γ

(
b̄ (t, ϕ(t), µt, u) , f̄ (t, ϕ(t), µt, u)

)
λt,ϕ(du) ∈ K (t, ϕ, µ) .

By applying the measurable selection argument in Haussmann and Lepeltier (1990); Dufour
and Stockbridge (2012) (with respect to the progressive σ-algebra, i.e. the σ-algebra gener-
ated by progressively measurable processes), we �nd a progressively measurable functional
u : [0, T ]×X → Γ such that∫

Γ
b̄ (t, ϕ(t), µt, u)λt,ϕ(du) = b̄ (t, ϕ(t), µt, u(t, ϕ))

and ∫
Γ
f̄ (t, ϕ(t), µt, u)λt,ϕ(du) ≥ f̄ (t, ϕ(t), µt, u(t, ϕ)) (3.8)

for all (t, ϕ) ∈ [0, T ]×X . De�ne Θ′
.
= Q′◦(X ′,Λ′)−1 where Q′ is as in the proof of Proposition

3.4 and Λ′(ϕ, q)(dt, du)
.
= dtδu(t,ϕ)(du). Θ′ solves the same relaxed martingale problem as Θ.
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As for the costs, we have

Jµ
(
Θ′
)

= EQ′
[∫ τ ′

0

∫
Γ
f̄
(
t,X ′t, µt, u

)
δu(t,X′)(du)dt+ F

(
τ,X ′τ

)]

= EQ′
[∫ τ ′

0
f̄
(
t,X ′t, µt, u(t,X ′)

)
dt+ F

(
τ,X ′τ

)]

≤ EQ′
[∫ τ ′

0

∫
Γ
f̄
(
t,X ′t, µt, u

)
λt,X′(du)dt+ F

(
τ,X ′τ

)]

= EQ
[∫ τ

0

∫
Γ
f̄ (t,Xt, µt, u)λt,X (du) dt+ F (τ,Xτ )

]
= EQ

[∫
[0,τ ]×Γ

f̄ (t,Xt, µt, u) Λ (dt, du) + F (τ,Xτ )

]
= Jµ (Θ)

where the inequality above is due to Eq.(3.8). Given the optimality of (Θ, µ) we already have
the converse inequality, i.e. Jµ(Θ) ≤ Jµ(Θ′). Hence Jµ(Θ) = Jµ(Θ′).

We can �nally give the proof of Theorem 3.1.

Proof of Theorem 3.1. Grant Assumptions (H1)-(H8) and (C1). Proposition 3.3 guarantees
existence of a relaxed MFG solution (Θ, µ) as in De�nition 3.3. By Proposition 3.4 there exists
another relaxed MFG solution (Θ′, µ) together with a progressively measurable functional
λ : [0, T ] × X → P(Γ) such that Θ′((ϕ, q) ∈ X × V : qt = λ(t, ϕ)) = 1 for LT -a.e. t and
Jµ(Θ′) = Jµ(Θ) = V µ. Then (λ, µ) is a relaxed and feedback solution of the MFG as in
De�nition 2.2.

Additionally grant Assumption (C2). By Proposition 3.5 there exists another relaxed
MFG solution (Θ′, µ) and a progressively measurable functional u ∈ Ufb such that Θ′((ϕ, q) ∈
X × V : qt = δu(t,ϕ)) = 1 for LT -a.e. t ∈ [0, T ], and Jµ(Θ′) = Jµ(Θ) = V µ. Then (u, µ) is a
strict and feedback solution of the MFG as in De�nition 2.1.

Markovian MFG solutions. We conclude this part with showing that there exist relaxed and
strict feedback solutions that are Markovian up to the exit time.

Proposition 3.6 (Markovian MFG solutions). Grant Assumptions (H1)-(H8) and (C1). Let

(Θ, µ) be a relaxed MFG solution as in De�nition 3.3. Then there exists another relaxed MFG

solution (Θ′, µ) and a function λ : [0, T ]× Rd → P(Γ) such that

LT ⊗Θ′({(t, ϕ, q) : qt = λ(t, ϕ(t)), t ≤ τX(ϕ)}) = 1

and Jµ(Θ′) = Jµ(Θ) = V µ. Additionally, grant Assumption (C2). Then there exists a

function u : [0, T ]× Rd → Γ such that

LT ⊗Θ′({(t, ϕ, q) : qt = δu(t,ϕ(t)), t ≤ τX(ϕ)}) = 1

and Jµ(Θ′) = Jµ(Θ) = V µ.

Proof. Let us de�ne the following processes

Yt
.
= (t,Xt), XτX

t
.
= Xt∧τX , Y τX

t
.
= Yt∧τX
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for t ∈ [0, T ]. If X satis�es Eq.(3.4) with �ow of sub-probability measures µ and relaxed

control Λ then the SDE satis�ed by XτX is (on the same probability space)

XτX

t = ξ +

∫
[0,t]×Γ

b̄
(
s,XτX

s , µs, u
)
1[0,τX)(s)Λs(du)ds+ σ

∫ t

0
1[0,τX)(s)dWs

for t ∈ [0, T ]. Notice that until t ≤ τX the stopped process XτX coincides pathwise with
the original process X. We now apply the mimicking result in Corollary 3.7 of Brunick and
Shreve (2013), to the stopped process Y τX . To this end, we follow the proof of Theorem 3.7
in Lacker (2015) and the proofs of Propositions 3.4 and 3.5 in the present paper.
First, we claim that there exists a measurable function λ : [0, T ]× Rd+1 → P(Γ) such that

λ
t,Y τ

X
t

(·) = EΘ
[
Λt(·)

∣∣Y τX

t

]
, Θ-a.s. and for LT -a.e. t ∈ [0, T ].

Such a function can be constructed by disintegration as follows. Let η ∈ P([0, T ]×Rd+1×Γ)
be given by

η(B)
.
=

1

T
EΘ

[∫
[0,T ]×Γ

1C

(
t, Y τX

t , u
)

Λ(dt, du)

]
.

We de�ne λ through η(dt, dy, du)
.
= η̃(dt, dy)λt,y(du). By Corollary 3.7 in Brunick and Shreve

(2013) applied to λ
t,Y τ

X
t

there exists a weak solution (Ω̃′, F̃ ′, (F̃ ′t)t∈[0,T ],Q′,W ′, X ′) of

X ′t = ξ +

∫ t

0

∫
Γ
b̄
(
s,X ′s, µs, u

)
1[0,τX

′
)(s)λs,Y τX

′
t

(du)ds+ σ

∫ t

0
1[0,τX′ )(s)dW

′
s

for t ∈ [0, T ], where Y τX
′

t
.
= (t ∧ τX′ , X ′t) and Q′ ◦ (t ∧ τX′ , X ′t)−1 = Q ◦ (t ∧ τX , XτX

t )−1 for

all t ∈ [0, T ], i.e. Y τX
′
and Y τX have the same time marginals. Now set τ ′

.
= τX

′ ∧T . Recall
that Θ = Q ◦ (X,Λ)−1 and de�ne Θ′

.
= Q′ ◦ (X ′,Λ′)−1 where Λ′(dt, du)

.
= dtλ

t,Y τ
X′

t

(du).

Equality of the costs can be shown just as in the proof of Proposition 3.4:

Jµ
(
Θ′
)

= EQ′
[∫ τ ′

0

∫
Γ
f̄(t,X ′t, µt, u)λt,t∧τX′ ,X′t

(du)dt+ F
(
τ ′, X ′τ ′

)]

= EQ
[∫ τ

0

∫
Γ
f̄(t,XτX

t , µt, u)λ
t,t∧τX ,XτX

t
(u)dt+ F

(
τ,XτX

τ

)]
= EQ

[∫
[0,τ ]×Γ

f̄(t,XτX

t , µt, u)Λ(dt, du) + F
(
τ,XτX

τ

)]
= Jµ (Θ) .

Therefore, λ : [0, T ]× [0, T ]× Rd → P(Γ) satis�es Θ′(q ∈ V : qt = λ(t, t ∧ τ X̂ , X̂τ X̂
t )) = 1 for

LT -a.e. t ∈ [0, T ] and Jµ(Θ′) = Jµ(Θ) = V µ.
Consider now a weak solution (Ω̃′′, F̃ ′′, (F̃ ′′t )t∈[0,T ],Q′′,W ′′, X ′′) of

X ′′t = ξ +

∫ t

0

∫
Γ
b̄
(
s,X ′′s , µs, u

)
λ
s,Y τ

X′′
t

(du)ds+ σW ′′t , t ∈ [0, T ]

where Y τX
′′

t = (t ∧ τX′′ , X ′′t ). Set Θ′′
.
= Q′′ ◦ (X ′′,Λ′′)−1 where Λ′′(dt, du)

.
= dtλ

t,Y τ
X′′

t

(du).

To avoid confusion between speci�c solutions, here (X̂, Λ̂) denotes the canonical process on
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X × V. First, Θ′ solves the martingale problem associated to

M̂g
t (ϕ, q)

.
= g(ϕ(t))− g(ϕ(0))−

∫
[0,t]×Γ

b̄(s, ϕ(s), µs, u)>Dg(ϕ(s))1
[0,τ X̂)

(s)q(ds, du)

+
1

2

∫ t

0
Tr
[
σσ>D2g(ϕ(s))

]
1

[0,τ X̂)
(s)ds, t ∈ [0, T ].

as well as the one associated to

Mg
t (ϕ, q)

.
= g(ϕ(t))− g(ϕ(0))−

∫
[0,t]×Γ

b̄(s, ϕ(s), µs, u)>Dg(ϕ(s))q(ds, du)

+
1

2

∫ t

0
Tr
[
σσ>D2g(ϕ(s))

]
ds

up to time τ X̂ ∧ T , i.e. the martingale property is satis�ed by the processes above stopped

at time τ X̂ ∧ T . Second, Θ′′ solves the latter martingale problem up to time T . Then

Θ′ and Θ′′ solve the same martingale problem up to time τ X̂ ∧ T . Moreover, we have

Θ′′(q ∈ V : qt = λ(t, t∧ τ X̂ , X̂t)) = 1 for LT -a.e. t ∈ [0, T ]. If we set Θt
.
= Θ◦ (X̂, Λ̂)−1

·∧t for all
Θ ∈ P(X × V) and t ∈ [0, T ], then by uniqueness of the solution of the martingale problem

up to time τ X̂ ∧ T we have

Θ′t(· ∩ {t ≤ τ X̂ ∧ T}) = Θ′′t (· ∩ {t ≤ τ X̂ ∧ T}).

Hence Jµ(Θ′) = Jµ(Θ′′). Now Θ′′ satis�es item (ii) of De�nition 3.3.

To conclude notice that the process Y τX
′′

t = (t ∧ τX′′ , X ′′t ) reduces to (t,X ′′t ) before time
τX
′′ ∧ T . Hence, also λ

t,Y τ
X′′

t

, with a slight abuse of notation, reduces to λt,X′′t . With

the additional Assumption (C2), the second part of this lemma follows from the proof of

Proposition 3.5 applied to the stopped process Y τX .

4 Uniqueness of solutions of the mean-�eld game

In this section we address the problem of uniqueness of MFG solutions. Precisely, under
Assumptions (H1)-(H8) and with the additional Assumptions (U1)-(U4) given below, where
the second one guarantees monotonicity of the running cost in the same spirit as Lasry and
Lions (2007) (see also Theorem 3.29 in Carmona and Delarue (2018)), we show uniqueness
of the MFG solution also in the presence of smooth dependence on past absorptions. The
extra assumptions can be formulated as follows.

(U1) The running cost can be split in two terms:

f̄(t, x, µ, u) = f̄0(t, x, u) + f̄1(t, x, µ)

for some measurable functions f̄0 : [0, T ] × Rd × Γ → [0,∞) and f̄1 : [0, T ] × Rd ×
M≤1,1(Rd)→ [0,∞).

(U2) Lasry-Lions monotonicity assumption: Let µ, µ̃ ∈M≤1,1(Rd), µ 6= µ̃. Then∫
Rd

(
f̄1(t, x, µ)− f̄1(t, x, µ̃)

)
(µ− µ̃)(dx) ≥ 0, t ∈ [0, T ].

(U3) The drift b does not depend on the measure variable.
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(U4) Let µ̄ ∈ ΥT
≤1,1 be �xed. Then the following optimization problem

inf
Λ∈Ũ

J µ̄ (Λ)
.
= E

[∫
[0,τ ]×Γ

f̄ (s,Xs, µ̄s, u) Λs(du)ds+ F (τ,Xτ )

]
(4.1)

has a unique solution Λµ̄, where (Ω,F , (Ft)t∈[0,T ],P,W,X) is a solution of Eq.(2.7)
under Λµ̄ with initial distribution ν and drift b satisfying (U3).

Theorem 4.1 (Uniqueness). Under Assumptions (H1)-(H8) and (U1)-(U4), if there exists

a feedback solution of the MFG (λ, µ) (as in De�nition 2.2) then it is unique.

Proof. By contradiction, let (λ, µ) and (λ̃, µ̃) be two di�erent feedback MFG solutions (as in
De�nition 2.2). Then

J µ̃(λ)− J µ̃(λ̃) > 0 and Jµ(λ̃)− Jµ(λ) > 0

where the inequality is strict by uniqueness of the minimizer in Assumption (U4), and in
particular

∆(µ, µ̃, λ, λ̃)
.
= J µ̃(λ)− J µ̃(λ̃) + Jµ(λ̃)− Jµ(λ) > 0.

However, thanks to Assumption (U3) that grants independence of the dynamics of the state
processes from the �ows of measures µ and µ̃

∆(µ, µ̃, λ, λ̃) = EP
[∫ T

0
1[0,τ)(t)

(
f̄1(t,Xt, µ̃t)− f̄1(t,Xt, µt)

)
dt

]
+EP̃

[∫ T

0
1[0,τ̃)(t)

(
f̄1(t, X̃t, µt)− f̄1(t, X̃t, µ̃t)

)
dt

]
where (Ω,F , (Ft)t∈[0,T ],P,W,X) and (Ω̃, F̃ , (F̃t)t∈[0,T ], P̃, W̃ , X̃) are weak solutions of Eq.(2.5)

respectively with controls λ and λ̃. Set θ
.
= P ◦X−1 and θ̃

.
= P̃ ◦ X̃−1. Then

∆(µ, µ̃, λ, λ̃) =

∫
X

∫ T

0
1[0,τ(ϕ))(t)

[
f̄1(t, ϕ(t), µt)− f̄1(t, ϕ(t), µ̃t)

]
dtθ̃(dϕ)

−
∫
X

∫ T

0
1[0,τ(ϕ))(t)

[
f̄1(t, ϕ(t), µt)− f̄1(t, ϕ(t), µ̃t)

]
dtθ(dϕ)

=

∫ T

0

∫
X

[
f̄1(t, ϕ(t), µt)− f̄1(t, ϕ(t), µ̃t)

]
1[0,τ(ϕ))(t)θ̃(dϕ)dt

−
∫ T

0

∫
X

[
f̄1(t, ϕ(t), µt)− f̄1(t, ϕ(t), µ̃t)

]
1[0,τ(ϕ))(t)θ(dϕ)dt

=

∫ T

0

∫
Rd

[
f̄1(t, x, µt)− f̄1(t, x, µ̃t)

]
µ̃t(dx)dt

−
∫ T

0

∫
Rd

[
f̄1(t, x, µt)− f̄1(t, x, µ̃t)

]
µt(dx)dt

= −
∫ T

0

∫
Rd

[
f̄1(t, x, µt)− f̄1(t, x, µ̃t)

]
(µt − µ̃t)(dx)dt

which is lower than or equal to zero by Assumption (U2). In the second equality we have
used Fubini-Tonelli theorem, while the third one comes from the de�nitions of µ and µ̃, i.e.

µt(B)
.
= θ ({Xt ∈ B} ∩ {t < τ})

=

∫
X
1B(ϕ(t))1[0,τ(ϕ))(t)θ(dϕ)

=

∫
Rd

1B(x)µt(dx), t ∈ [0, T ]
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for all B ∈ B(Rd) and similarly for µ̃.

Example 4.1 (Non-local dependence on the measure through a weighted average). We pro-
vide and example of running cost f̄ satisfying the monotonicity condition (U2), which is an
assumption on the measure-dependent term f̄1 only. Let w : Rd → [0,∞) be some measurable
function with sub-linear growth so that

mw(µ)
.
=

∫
Rd
w(x)µ(dx) <∞, for all µ ∈M≤1,1(Rd)

and set

f̄1(t, x, µ)
.
= w(x)

∫
Rd
w(y)µ(dy) = w(x)mw(µ), (t, x, µ) ∈ [0, T ]× Rd ×M≤1,1(Rd).

Since

f̄1(t, x, µ)− f̄1(t, x, µ̃) = w(x)

∫
Rd
w(y)(µ− µ̃)(dy)

we obtain∫
Rd

(
f̄1(t, x, µ)− f̄1(t, x, µ̃)

)
(µ− µ̃)(dx) =

∫
Rd
w(x)

∫
Rd
w(y)(µ− µ̃)(dy)(µ− µ̃)(dx),

=

∫
Rd
w(x)(µ− µ̃)(dx)

∫
Rd
w(y)(µ− µ̃)(dy),

=

(∫
Rd
w(x)(µ− µ̃)(dx)

)2

≥ 0.

5 Approximate Nash equilibria for the N-player game with

�nite-dimensional interaction

In this section, we consider an important particular case of our MFG with absorption, where
the mean-�eld interaction is �nite-dimensional. This is inspired by the original model of
Campi and Fischer (2018). We show that any feedback solution of the MFG can be used to
construct a sequence of approximate Nash equilibria for the corresponding N -player game. To
this end, we will need two additional assumptions (Assumptions (N1) and (N2) below). We
focus on a �nite-dimensional example �rst for technical reasons: this setting is very suitable
to the propagation of chaos result that we use in the proofs without being too technical.
Second, we think that this case is also particularly relevant for the applications as mentioned
in the introduction. Overall, we believe that the �nite-dimensional setting enables us to keep
a good balance between abstract technicalities and modelling needs.

The approximation result is the content of Theorem 5.1 and Corollary 5.2. In order to
prove this, we interpret the N -player system as a system of N interacting di�usions (as in,
e.g., McKean (1966); Sznitman (1991); Gärtner (1988)). While the usual mode of convergence
of an N -particle system is the convergence in law of the empirical measures, here we obtain
a stronger form of propagation of chaos as in Lacker (2018) but with possibly unbounded
drift in the state variable. We prove that the empirical measures converge in the stronger
τ -topology, which is widely used in the large deviations literature (see, for instance, Chapter
6.2 in Dembo and Zeitouni (2010)); see Subsection 5.3.
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5.1 The setting with �nite-dimensional interaction

Here, we describe the MFG and the correspondingN -player game with smooth dependence on
past absorptions, specializing them to the �nite-dimensional interaction setting. In particular,
we give the de�nition of ε-Nash equilibrium for the N -player game. Then, we give the
assumptions that are speci�c to this model. We conclude by checking that the MFG with
�nite-dimensional interactions satis�es the hypotheses of Theorem 3.1, granting the existence
of relaxed and strict solutions of the MFG.

The mean-�eld dynamics. Given a feedback control u ∈ Ufb and a �ow of sub-probability
measures µ ∈ ΥT

≤1,1, the representative player's state evolves according to the equation

Xt = X0 +

∫ t

0
b̃ (s,Xs, L (µs) ,mw (µs) , u (s,X)) ds+ σWt, t ∈ [0, T ] (5.1)

where X is a d-dimensional stochastic process starting at X0
d∼ ν ∈ P(Rd), W is a d-

dimensional Wiener process on some �ltered probability space (Ω,F , (Ft)t∈[0,T ],P), b̃ and
σ are as in the assumptions below. In addition, mw (µ) and L (µ) are functions mw :
M≤1,1(Rd)→ Rd0 and L :M≤1,1(Rd)→ [0, 1] de�ned as

mw (µ)
.
=

∫
Rd
w (x)µ(dx) and L (µ)

.
= 1−

∫
Rd
µ(dx)

where w : Rd → Rd0 , d0 ∈ N, is a �xed weight function with sub-linear growth. Again,
solutions of Eq.(5.1) are understood in the weak sense (see Remark 2.5). The cost associated
to a strategy u ∈ Ufb and a �ow of sub-probability measures µ ∈ ΥT

≤1,1 is given by

Jµ (u)
.
= E

[∫ τ

0
f̃ (s,Xs, L (µs) ,mw (µs) , u (s,X)) ds+ F (τ,Xτ )

]
(5.2)

where τ
.
= τX ∧ T is the random time horizon as in the previous sections.

The N -player dynamics. Let N ∈ N be the number of players. We assume that the players'
private states evolve according to the following system of N d-dimensional SDEs: for i ∈
{1, . . . , N},

XN,i
t = XN,i

0 +

∫ t

0
b̃
(
s,XN,i

s , L
(
µNs
)
,mw

(
µNs
)
, uN,i

(
s,XN

))
ds+ σWN,i

t (5.3)

for t ∈ [0, T ], where XN,i
0

d∼ ν i.i.d., WN,1, . . . ,WN,N is an N -dimensional vector of indepen-
dent d-dimensional Wiener processes, XN denotes the vector of all players' private states,
u
N the vector of feedback strategies, b̃ and σ are as in the assumptions below. We remind

that µN ∈ ΥT
≤1,1 is the random empirical sub-probability measures de�ned as

µNt (·) .
=

1

N

N∑
i=1

δ
XN,i
t

(·)1
[0,τX

N,i
)
(t) , t ∈ [0, T ]. (5.4)

Solutions of the SDEs in Eq.(5.3) are understood to be in the weak sense on some �ltered
probability space (ΩN ,FN , (FNt )t∈[0,T ],PN ) satisfying the usual conditions (see Remark 2.5).

Let UN1 be the set of all progressively measurable functionals u : [0, T ] × XN → Γ, and
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let UNN , the set of all vectors uN such that uN,i ∈ UN1 , i ∈ {1, . . . , N}. Each element of UNN
is called feedback strategy vector. In this game, player i evaluates a strategy vector uN ∈ UNN
according to his/her expected costs

JN,i
(
u
N
) .

= E

[∫ τN,i

0
f̃
(
s,XN,i

s , L
(
µNs
)
,mw

(
µNs
)
, uN,i(s,XN )

)
ds

+F
(
τN,i, XN,i

τN,i

)]
(5.5)

over a random time horizon, where XN is the N -player dynamics under uN and τN,i
.
=

τX
N,i ∧T . Our aim is the construction of approximate Nash equilibria for the N -player game

from a solution of the limit problem. In the next de�nition, we use the standard notation
[uN,−i, v] to indicate a strategy vector equal to uN for all players but the i-th, who deviates
by playing v ∈ UN1 instead.

De�nition 5.1 (ε-Nash equilibrium). Let ε ≥ 0. A strategy vector uN ∈ UNN is called ε-Nash
equilibrium for the N -player game if for every i ∈ {1, . . . , N} and for any deviation v ∈ UN1
we have:

JN,i(uN ) ≤ JN,i
([
uN,−i, v

])
+ ε.

Relaxed controls. It will be very convenient to use relaxed controls also in the N -player
case. Let ŨN1 be the set of all single-player relaxed strategies for the N -player game, and

let ŨNN be the set of N -player relaxed strategy vectors, i.e. vectors λN = (λN,1, . . . , λN,N )

with λN,i ∈ ŨN1 , i ∈ {1, . . . , N}. At this point, we can rewrite the dynamics and the cost
functional of the N -player game (Eq.(5.3) and Eq.(5.5)) by using relaxed controls as

XN,i
t = XN,i

0 +

∫
[0,t]×Γ

b̃
(
s,XN,i

s , L
(
µNs
)
,mw

(
µNs
)
, u
)
λN,i

(
s,XN

)
(du)ds+σWN,i

t (5.6)

with associated cost

JN,i
(
λN
)

= E

[∫
[0,τN,i]×Γ

f̃
(
s,XN,i

s , L
(
µNs
)
,mw

(
µNs
)
, u
)
λN,i

(
s,XN

)
(du)ds

+F
(
τN,i, XN,i

τN,i

)]
(5.7)

for t ∈ [0, T ], i ∈ {1, . . . , N}, λN ∈ ŨNN and λN,i ∈ ŨN1 for all i ∈ {1, . . . , N}. Moreover, we
extend accordingly the notion of ε-Nash equilibrium.

De�nition 5.2 (Relaxed ε-Nash equilibrium). A strategy vector λN ∈ ŨNN is an ε-Nash
equilibrium for the N -player game if for every i ∈ {1, . . . , N} and for any single-player
strategy β ∈ ŨN1

JN,i(λN ) ≤ JN,i
([
λN,−i, β

])
+ ε.

The drift b̃, the function w, the running cost f̃ and the terminal cost F now satisfy the
following assumptions, replacing Assumptions (H1)-(H3):

(H1') The drift b̃ : [0, T ] × Rd × [0, 1] × Rd0 × Γ → Rd is jointly continuous and satis�es the
following uniform Lipschitz continuity: there exists L > 0 such that∣∣∣b̃ (t, x, `,m, u)− b̃

(
t, x′, `,m, u

)∣∣∣ ≤ L ∣∣x− x′∣∣
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for all x, x′ ∈ Rd and all (t, `,m, u) ∈ [0, T ]× [0, 1]×Rd0×Γ. Moreover it has sub-linear
growth in (x,m) uniformly in the other variables, i.e. there exists a constant C > 0
such that ∣∣∣b̃ (t, x, `,m, u)

∣∣∣ ≤ C (1 + |x|+ |m|)

for all (t, x, `,m, u) ∈ [0, T ]× Rd × [0, 1]× Rd0 × Γ.

(H2') w : Rd → Rd0 is continuous and has sub-linear growth: |w(x)| ≤ C(1 + |x|) for all
x ∈ Rd.

(H3') The costs f̃ : [0, T ] × Rd × [0, 1] × Rd0 × Γ → [0,∞) and F : [0, T ] × Rd → [0,∞) are
jointly continuous. Moreover, they have sub-linear growth:∣∣∣f̃(t, x, `,m, u)

∣∣∣ ≤ C (1 + |x|+ |m|) ,

|F (t, x)| ≤ C (1 + |x|) ,

for all (t, x, `,m, u) ∈ [0, T ]× Rd × [0, 1]× Rd0 × Γ.

We conclude the presentation of the �nite-dimensional model by introducing the coe�cients'
reparametrization on P1(X ), by checking their joint continuity (as in Assumption (H3)),
where continuity in the measure variable is in the 1-Wasserstein distance and at points θ �
Wν . We set (b̄, f̄)(t, x, µ, u)

.
= (b̃, f̃)(t, ϕ(t), L(µ),mw(µ), u) for all (t, x, µ, u) ∈ [0, T ]×Rd ×

M≤1,1(Rd)× Γ and de�ne the reparametrization (b, f) as in Section 2. Then

(b, f)(t, ϕ, θ, u) = (b̃, f̃)(t, ϕ(t), L(t; θ),mw(t; θ), u)

where

mw(t; θ)
.
=

∫
X
w (ϕ(t))1[0,τ(ϕ))(t)θ(dϕ),

L(t; θ)
.
= 1−

∫
X
1[0,τ(ϕ))(t)θ(dϕ)

are called the average and loss process and they equal mw(µt) and L(µt) in case µt = g(t, θ)
where g is de�ned as in Eq.(2.2).

Joint continuity of b and f follows from joint continuity of b̃ and f̃ and from the following
lemma.

Lemma 5.1 (Continuity of the average and loss processes). Grant Assumptions (H1')-(H3')

and (H4)-(H8). Let (θn)n∈N ⊂ P1(X ) converge to θ ∈ P1(X ), θ �Wν , in the 1-Wasserstein

distance, then

(i) L(t; θn)→ L(t; θ) as n→∞.

(ii) mw(t; θn)→ mw(t; θ) as n→∞.

Proof. (i). Denote by Dτ (t) the set of discontinuity points of the map ϕ 7→ 1[0,τ(ϕ))(t) for

t ∈ [0, T ]. In particular θn
w
⇀ θ. Then:

L(t; θn)− L(t; θ) = −
∫
X
1[0,τ(ϕ))(t) (θn − θ) (dϕ) −→

n→∞
0

for all t ∈ [0, T ]. This follows from the de�nition of weak convergence of measures, the fact
that θ(Dτ (t)) = 0 for all t ∈ [0, T ] (due to θ �Wν) and by Lemma A.4.(d).

(ii). Now we have:

|mw(t; θn)−mw(t; θ)| ≤
∣∣∣∣∫
X
w(ϕ(t))1[0,τ(ϕ))(t) (θn − θ) (dϕ)

∣∣∣∣ −→n→∞ 0
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for all t ∈ [0, T ] as a consequence of the convergence in the 1-Wasserstein distance, the fact
that θ(Dτ (t)) = 0 for all t ∈ [0, T ] and by Lemma A.4.(d) together with Lemma A.5.

We conclude by proving that we can use Theorem 3.1 and get existence of a feedback relaxed
and strict solutions of the MFG with smooth dependence on past absorptions and �nite-
dimensional dependence on the measure.

Corollary 5.1 (Existence of relaxed and strict feedback MFG solutions). Under Assumptions

(H1')-(H3'), (H4)-(H8) and (C1) , there exists a relaxed feedback solution (λ, µ) of the MFG

with �nite dimensional interaction. Moreover, under the additional Assumption (C2) , there

exists a strict feedback MFG solution (u, µ).

Proof. Assumptions (H1')-(H3') imply Assumptions (H1)-(H3) of Theorem 3.1. Indeed, (H1)-
(H2) follow from the de�nition of the coe�cients b̃ and f̃ . Assumption (H3), i.e. joint
continuity of the reparametrized coe�cients, is a consequence of joint continuity of b̃ and f̃
and Lemma 5.1.

5.2 The N-player approximation theorem

In order to state the N -player approximation results, we need the following two additional
assumptions (N1)-(N2), whose formulation requires some more terminology.

We set

dTVt (θ, θ̃)
.
= supB∈Ft |θ(B)− θ̃(B)|,

for all θ, θ̃ ∈ P(X ) and we note that for t ∈ [0, T ), dt is only a pseudo-metric, whereas
for t = T it is a proper metric; dTVT is called the total variation distance. However, with a
slight abuse of terminology, we will often refer to dTVt as the total variation distance for each
t ∈ [0, T ].

(N1) The function w : Rd → Rd0 is bounded.

(N2) The drift b̃ satis�es the following Lipschitz continuity:∣∣∣b̃ (t, x, `,m, u)− b̃
(
t, x′, `′,m′, u

)∣∣∣ ≤ L (∣∣x− x′∣∣+
∣∣`− `′∣∣+

∣∣m−m′∣∣)
for all (x, `,m), (x′, `′,m′) ∈ Rd × [0, 1]× Rd0 and all (t, u) ∈ [0, T ]× Γ, with Lipschitz
constant L > 0. The running cost f̃ can be decomposed as

f̃(t, x, `,m, u) = f̃0(t, x, u) + f̃1(t, x, `,m),

where

|f̃0(t, x, u)| ≤ K and |f̃1(t, x, `,m)| ≤ C(1 + |x|),

for all (t, x, `,m, u) ∈ [0, T ]× Rd × [0, 1]× Rd0 × Γ and some constants C,K > 0.

From Assumptions (N1)-(N2), the reparametrizations b and f inherit a series of properties
that are fundamental in the proof of the approximation result. First, being w : Rd → Rd0
bounded, the drift b is Lipschitz continuous with respect to the total variation distance, which
is a key assumption in Lemma 5.2. Indeed∣∣b(t, ϕ, θ, u)− b(t, ϕ, θ′, u)

∣∣ ≤ L
(∣∣L(t; θ)− L(t; θ′)

∣∣+
∣∣mw(t; θ)−mw(t; θ′)

∣∣)
≤ L(1 + ‖w‖∞)dTVT (θ, θ′)

.
= LTVb dTVT (θ, θ′)
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because ∣∣L(t; θ)− L(t; θ′)
∣∣ =

∣∣∣∣∫
X
1[0,τ(ϕ))(t)(θ

′ − θ)(dϕ)

∣∣∣∣ ≤ dTVT (θ, θ′) and

∣∣mw(t; θ)−mw(t; θ′)
∣∣ =

∣∣∣∣∫
X
w(ϕ(t))1[0,τ(ϕ))(t)(θ − θ′)(dϕ)

∣∣∣∣ ≤ ‖w‖∞dTVT (θ, θ′).

Second, the sub-linear growth property

|b(t, ϕ, θ, u)| ≤ C(1 + ‖w‖∞ + ‖ϕ‖∞,t), (t, ϕ) ∈ [0, T ]×X

is uniform in θ ∈ P(X ) and in u ∈ Γ, implying that b is bounded in the measure and control
variables (and analogously f). This means that b and f are well de�ned on all P(X ) not only
on P1(X ), which is fundamental to apply the �xed point theorem in Lemma 5.2. Finally, the
running cost f can be decomposed as

f(t, ϕ, θ, u) = f0(t, ϕ, u) + f1(t, ϕ, θ)

where its components are

f0(t, ϕ, u)
.
= f̃0(t, ϕ(t), u) and f1(t, ϕ, θ)

.
= f̃1(t, ϕ(t), L(t; θ),mw(t; θ))

which inherit from f̃0 and f̃1 the properties

|f0(t, ϕ, u)| ≤ K and |f1(t, ϕ, θ)| ≤ C(1 + ‖ϕ‖∞,t)

for all (t, ϕ, θ, u) ∈ [0, T ]×X ×P(X )×Γ. This is a key assumption to perform the passage to
the many-player limit in Theorem 5.1. Indeed, boundedness in the control of f0 enables us to
exploit convergence in the τ -topology while sub-linearity in the state variable ϕ uniformly in
the measure variable θ makes f1 a good test function for the convergence in the 1-Wasserstein
distance.

Theorem 5.1 (Approximate Nash equilibria - relaxed). Let (λ, µ) be a relaxed feedback MFG

solution. For all N ≥ 2, de�ne λN = (λN,1, . . . , λN,N ) ∈ ŨNN where λN,i(t, ϕN )
.
= λ(t, ϕN,i)

for all i ∈ {1, . . . , N}, t ∈ [0, T ] and ϕN ∈ XN .
Then under Assumptions (H1')-(H3'), (H4)-(H8) and (N1)-(N2), for every ε > 0 there exists

N ε ∈ N such that λN is an ε-Nash equilibrium for the N -player game whenever N ≥ N ε, i.e.

for every i ∈ {1, . . . , N} and for any deviation β ∈ ŨN1

JN,i
(
λN
)
≤ JN,i

([
λN,−i, β

])
+ ε

for all N ≥ N ε.

Corollary 5.2 (Approximate Nash equilibria - strict). Let (u, µ) be a strict feedback MFG

solution. For all N ≥ 2, de�ne uN = (uN,1, . . . , uN,N ) ∈ UNN where uN,i(t, ϕN )
.
= u(t, ϕN,i)

for all i ∈ {1, . . . , N}, t ∈ [0, T ] and ϕN ∈ XN .
Then under Assumptions (H1')-(H3'), (H4)-(H8) and (N1)-(N2), for every ε > 0 there exists

a N ε ∈ N such that uN is an ε-Nash equilibrium for the N -player game whenever N ≥ N ε,

i.e. for every i ∈ {1, . . . , N} and for any deviation v ∈ UN1

JN,i
(
u
N
)
≤ JN,i

([
uN,−i, v

])
+ ε

for all N ≥ N ε.
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Before proceeding, we de�ne the empirical measure ζN of the N -player system (Eq.(5.6)) as

ζN (·) .
=

1

N

N∑
i=1

δXN,i (·) (5.8)

which is a P(X )-valued random variable. Moreover, we �x a relaxed feedback MFG solution
(λ, µ) and de�ne (cfr. Theorem 5.1 and Corollary 5.2) λN ∈ ŨNN as λN

.
= (λN,i)i=1,...,N

where λN,i(t, ϕN )
.
= λ(t, ϕN,i) for all i = 1, . . . , N , t ∈ [0, T ] and ϕN ∈ XN . In the next two

subsections we consider the following N -particle system:

XN,1
t = XN,1

0 +

∫
[0,t]×Γ

b
(
s,XN,1, ζN , u

)
β
(
s,XN

)
(du)ds+ σWN,1

t , (5.9)

XN,i
t = XN,i

0 +

∫
[0,t]×Γ

b
(
s,XN,i, ζN , u

)
λ
(
s,XN,i

)
(du)ds+ σWN,i

t (5.10)

for i = 2, . . . , N , t ∈ [0, T ] and where β ∈ ŨN1 is a generic single-player control. Precisely, in
Subsection 5.3 we set β(t, ϕN )

.
= λ(t, ϕN,1) for t ∈ [0, T ] and ϕN ∈ XN (we say that β = λ

for short); whereas, in Subsection 5.4 we let β be generic (unless di�erently speci�ed), which
means that we allow the �rst player to deviate from the MFG solution λ.

5.3 Propagation of chaos

In this subsection we consider the system of N interacting symmetric di�usions given by Eq.s
(5.9) and (5.10) with β = λ. We associate to this system a suitable McKean-Vlasov equation
(Eq.(5.11) below) and show a propagation of chaos result, that we will need in the proofs of
Theorem 5.1 and Corollary 5.2.

De�nition 5.3 (McKean-Vlasov solution). A law θ∗ ∈ P(X ) is a McKean-Vlasov solution
of equation

Xt = X0 +

∫
[0,t]×Γ

b (s,X, θ∗, u)λ (s,X) (du)ds+ σWt, t ∈ [0, T ], X0
d∼ ν (5.11)

if there exists a weak solution (Ω,F , (Ft)t∈[0,t],P, X,W ) with P ◦X−1 = θ∗ and P ◦X−1
0 = ν.

The following lemma ensures the well-posedness of Eq.(5.11).

Lemma 5.2 (Existence and uniqueness of McKean-Vlasov solutions). Grant Assumptions

(H1')-(H3'), (H4)-(H8) and (N1)-(N2). Then, there exists a unique McKean-Vlasov solution

for Eq.(5.11).

Proof. We follow Lacker (2018), proof of Theorem 2.4. Precisely, we apply Banach �xed
point theorem on the complete metric space (P(X ), dT ) together with Picard iterations. To
this end, we start by de�ning, for any α > 0, the following distance:

dα(θ, θ′)2 .
=

∫ T

0
e−αtdt(θ, θ

′)2 dt, θ, θ′ ∈ P(X ).

We note that dα(·, ·) is a complete metric on P(X ). We now de�ne Ψ : P (X ) → P(X ) ⊂
P (X ) as the map θ 7→ Ψ(θ)

.
= Pθ ◦ (Xθ)−1 where (Ωθ,Fθ,Pθ, Xθ,W θ) is a weak solution of

Eq.(5.11) with θ in the drift, which is well de�ned (see Remark 2.5).
We show that Ψ is a contraction on P (X ) with respect to the distance dα for a su�ciently

large α > 0. Let H(θ|θ′) denote the relative entropy of θ with respect to θ′ for θ, θ′ ∈ P(X ),
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and letHt(θ|θ′) = H(θt|θ′t), θt
.
= Pθ◦(Xθ

·∧t)
−1. By Pinsker's inequality, there exists a constant

CH > 0 such that

dt(Ψ(θ),Ψ(θ′))2 ≤ CHHt(Ψ(θ),Ψ(θ′))

≤ 1

2
CH |σ−1|2L̃2

∫ t

0
ds(θ, θ

′)2ds

where we set L̃
.
= LTVb . Therefore, we have

dα(Ψ(θ),Ψ(θ′))2 =

∫ T

0
e−αtdt(Ψ(θ),Ψ(θ′))2dt

≤ 1

2
CH |σ−1|2L̃2

∫ T

0
e−αt

∫ t

0
ds(θ, θ

′)2ds dt

=
1

2
CH |σ−1|2L̃2

∫ T

0
dt(θ, θ

′)2

∫ T

t
e−αsds dt

≤ 1

2

CH
α
|σ−1|2L̃2

∫ T

0
e−αtdt(θ, θ

′)2dt =
1

2

CH
α
|σ−1|2L̃2dα(θ, θ′)2

which shows that Ψ is a contraction whenever 1
2
CH
α |σ

−1|2L̃2 < 1. Thanks to the arbitrariness
of α > 0, we conclude that Ψ has a unique �xed-point in P(X ).

We consider the sequence of empirical measures (ζN )N∈N in Eq.(5.8) associated to the N -
particle systems in Eq.s (5.9) and (5.10) (with β = λ). We follow Lacker (2018) and we
prove the convergence, both in law and in probability in the τ -topology, of (ζN )N∈N to the
McKean-Vlasov solution θ∗ ∈ P(X ) of Eq.(5.11). We remind that the τ -topology on P(X ),
denoted with τ(P(X )), is the topology generated by the sets

Bf,x,δ
.
=

{
π ∈ P(X ) :

∣∣∣∣∫
X
f(y)π(dy)− x

∣∣∣∣ < δ

}
where f : X → R is any measurable bounded function, x ∈ R and δ is any strictly positive
constant. In particular, the τ -topology is the coarsest topology that makes the maps π 7→∫
X f(y)π(dy) continuous for all measurable bounded functions f : X → R (see, for instance,
Chapter 6.2 in Dembo and Zeitouni (2010)).

Moreover, we denote by w(P(X )) the weak topology on P(X ) and with B(P(X )) the Borel
σ-algebra on X generated by the open sets of the weak topology. The following lemma adapts
Theorem 2.6.1-2 in Lacker (2018) to our framework, in particular to the case of di�usions
with possibly unbounded drift.

Lemma 5.3 (Propagation of chaos). Grant Assumptions (H1')-(H3'), (H4)-(H8) and (N1)-

(N2). Let θ∗ ∈ P(X ) be the unique McKean-Vlasov solution of Eq.(5.11). Then the sequence

(ζN )N∈N converges in law to θ∗, i.e. ζN
L−→ θ∗, as N →∞. Moreover

lim
N→∞

PN
(
ζN 6∈ B

)
= 0

for all open neighbourhoods B of θ∗ in the τ -topology that are in B(P(X )).

Proof. Let (Ω,F ,P) be a probability space that supports an i.i.d. sequence of X -valued
random variables with law θ∗. For each N ∈ N, set (FNt )t∈[0,T ] to be the �ltration generated

by X1, . . . , XN . De�ne

W i
t
.
= σ−1

(
Xi
t − ξ −

∫
[0,t]×Γ

b(s,Xi, θ∗, u)λ(s,Xi)(du)ds

)
, t ∈ [0, T ], i ∈ {1, . . . , N}.
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In particular, W 1, . . . ,WN are independent Wiener processes on (Ω,F , (FNt )t∈[0,T ],P). Fix

N ∈ N, and consider the tuple (Ω,F , (FNt )t∈[0,T ],P, (XN,1, . . . , XN,N ), (W 1, . . . ,WN )), with

XN,i .= Xi, for all i ∈ {1, . . . , N}. This is a weak solution of

XN,i = ξ +

∫
[0,t]×Γ

b(s,XN,i, θ∗, u)λ(s,XN,i)(du)ds+ σW i
t , t ∈ [0, T ], i ∈ {1, . . . , N}.

Now, de�ne the probability PN via its density with respect to P, dPNdP
.
= ZNT , where, for all

t ∈ [0, T ]

ZNt
.
= Et

(∫ ·
0

N∑
i=1

∫
Γ
σ−1

(
b(s,XN,i, ζN , u)− b(s,XN,i, θ∗, u)

)
λ(s,XN,i)(du)dW i

s

)
.

A standard application of Girsanov's theorem gives

XN,i
t = ξ +

∫
[0,t]×Γ

b(s,XN,i, ζN , u)λ(s,XN,i)(du)ds+ σWN,i
t , t ∈ [0, T ], i ∈ {1, . . . , N}

for some PN -Wiener process WN . Notice that (Ω,F , (FNt )t∈[0,T ],PN , XN ,WN ) is a weak

solution of the N -particle system in Eq.s (5.9) and (5.10), with β(t, ϕN )
.
= λ(t, ϕN,1) for

t ∈ [0, T ] and ϕN ∈ XN .
At this point, the rest of the proof can be performed as in Lacker (2018), Theorem 2.6.1-2,

along the following steps:

(i) Show that Ft1,t2 : P(X )→ R de�ned as

Ft1,t2(θ)
.
=

∫
X

∫ t2

t1

∣∣∣∣∫
Γ
σ−1 (b(s, ϕ, θ, u)− b(s, ϕ, θ∗, u))λ(s, ϕ)(du)

∣∣∣∣2 dsθ(dϕ) (5.12)

is τ -continuous for all t1, t2 ∈ [0, T ], t1 < t2 and B(P(X ))-measurable, which is done
aside at the end of this proof. Moreover Ft1,t2(θ) ≤ L̃(t2 − t1)H(θ|θ∗) for all t1, t2 ∈
[0, T ], t1 < t2 and for all θ ∈ P(X ), which is a straightforward consequence of the
Lipschitz continuity in the total variation distance.

(ii) Since XN,1, XN,2, . . . XN,N are i.i.d. under P, Sanov's Theorem (e.g. Theorem 6.2.10
in Dembo and Zeitouni (2010)) can be applied to P ◦ (ζN )−1.

(iii) Derive a large deviation principle for PN ◦ (ζN )−1, precisely

lim sup
N→∞

1

N
logPN

(
ζN 6∈ B

)
≤ −e−L̃T inf

θ 6∈B
H (θ|θ∗)

for all open neighbourhoods B of θ in the τ -topology that are in B(P(X )), for some
constant L̃ > 0.
To this aim, we stress that we can proceed just as in Lacker (2018)1. Indeed, regardless
of the sub-linear growth of the drift, we can adapt Lacker's estimates thanks to∣∣b (t, ϕ, θ, u)− b

(
t, ϕ, θ′, u

)∣∣ ≤ 2L̃.

Moreover we can apply Varadhan's integral lemma (Dembo and Zeitouni, 2010, Theo-
rem 4.3.1) thanks to the continuity of Ft1,t2 .

1Precisely we can show by induction that Eq.(4.1) in Lacker (2018) holds also in this case, then conclude
observing that PN and P agree on F0.
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(iv) Conclude by showing that infθ 6∈BH(θ|θ∗) > 0 so that

lim
N→∞

PN
(
ζN 6∈ B

)
= 0

which can be performed as in Lacker (2018).

Proof of the continuity of Ft1,t2 in the τ -topology. We actually prove the stronger claim that
the functional Ft1,t2 in Eq.(5.12) is continuous in the weak topology (w-topology for short).
First, we can write Ft1,t2(θ) =

∫
X ft1,t2(ϕ, θ)θ(dϕ) for θ ∈ P(X ), where

ft1,t2(ϕ, θ)
.
=

∫ t2

t1

∣∣∣∣∫
Γ
σ−1 (b(s, ϕ, θ, u)− b(s, ϕ, θ∗, u))λ(s, ϕ)(du)

∣∣∣∣2 ds
which is a real-valued bounded measurable function de�ned on X × P(X ). Let (θn)n∈N, θ ∈
P(X ) be such that θn

w
⇀ θ. We want to show that Ft1,t2(θn)→ Ft1,t2(θ) as n→∞.

Set fn(ϕ)
.
= ft1,t2(ϕ, θn) and f(ϕ)

.
= ft1,t2(ϕ, θ). They are all in Cb(X ) with uniform

bound in n ∈ N. Moreover, fn → f in the sup-norm. Indeed

sup
ϕ∈X
|fn(ϕ)− f(ϕ)| ≤ 4LTVb L

∫ t2

t1

|L(s; θn)− L(s; θ)|+ |mw(s; θn)−mw(s; θ)| ds

which vanishes in the limit for n→∞ due to Lemma 5.1. As a consequence, we obtain

Ft1,t2(θn) =

∫
X
fn(ϕ)θn(dϕ) −→

n→∞

∫
X
f(ϕ)θ(dϕ) = Ft1,t2(θ).

5.4 Proof of the The N-player approximation theorem

This section is devoted to the construction of approximate Nash equilibria for the N -player
game from a solution of the limit problem, in the particular case of �nite-dimensional inter-
action as described before. The results of previous Subsection 5.3 allow us to pass to the
many-player limit even if feedback MFG strategies are discontinuous in the state variable. We
have observed in the introduction that the construction of approximated Nash equilibria for
the N -player games in Campi and Fischer (2018) was crucially based on the continuity of the
limit optimal control for almost every paths of the state variable with respect to the Wiener
measure. In our setting, such a regularity property is no longer feasible due to the possible
unboundedness of the coe�cients, which makes it di�cult to apply PDE-based estimates as
in Campi and Fischer (2018) to get the needed continuity. Therefore, in order to overcome
this obstacle, we will use the strong form of propagation of chaos in Lemma 5.3, which allows
to pass to the limit even through possibly discontinuous MFG optimal controls.

In this part, we consider the dynamics in Eq.(5.9) and Eq.(5.10) without necessarily tak-
ing β = λ, unless di�erently speci�ed. We start with some preliminary estimates ensuring
that the costs remain bounded in the mean-�eld limit despite the sub-linear growth.

Lemma 5.4 (A-priori estimates). Grant Assumptions (H1')-(H3'), (H4)-(H8) and (N1)-

(N2). Consider the dynamics in Eq.s (5.9) and (5.10). Then for any α ≥ 1

sup
N∈N

EPN [‖XN,i‖α∞
]
≤ K(α)

for i ∈ {1, . . . , N} and where K(α) <∞ is a positive constant independent of N .

Proof. This is a consequence of Grönwall's lemma together with uniform boundedness of the
drift in the measure and control variables.
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Now, we prove the tightness of the sequence of laws (PN ◦(ζN )−1)N∈N when β = λ in Eq.(5.9),
i.e. when the dynamics are symmetric. Then, thanks to Lemma 5.3, we characterize the limit
points of (PN ◦ (ζN )−1)N∈N as McKean-Vlasov solutions of Eq.(5.11); see Lemma 5.6.

Lemma 5.5 (Tightness). Grant Assumptions (H1')-(H3'), (H4)-(H8) and (N1)-(N2). Let

ζN be the empirical measure of the system given by Eq.s (5.9) and (5.10) with β = λ. Then
the sequence (PN ◦ (ζN )−1)N∈N is tight in P(P(X )).

Proof. The tightness of such a sequence follows from Sznitman (1991), Proposition 2.2, com-
bined with Kolmogorov-Chentsov criterion (see, for instance, Corollary 14.9 in Kallenberg
(2006)).

Lemma 5.6 (Characterization of limit points). Grant Assumptions (H1')-(H3'), (H4)-(H8)

and (N1)-(N2). Let ζN be the empirical measure of the system given by Eq.s (5.9) and (5.10)
with β = λ. Let (PNk ◦ (ζNk)−1)k∈N be a convergent subsequence of (PN ◦ (ζN )−1)N∈N. Let

ζ be a random variable de�ned on some probability space (Ω,F ,P) with values in P(X ) such

that ζNk
L−→ ζ. Then

(i) ζ coincides P-a.s. with the unique McKean-Vlasov solution θ∗ of Eq.(5.11).

(ii) The sequence (ζN )N∈N converges in probability (hence also in law) to θ∗ when P(X ) is
equipped with the τ -topology.

Proof. By Lemma 5.5 there exists a subsequence (PNk ◦ (ζNk)−1)k∈N ⊂ P(P(X )) converg-
ing to P ◦ ζ−1 ∈ P(P(X )). Lemma 5.3 guarantees the convergence in law of the whole
sequence (ζN )N∈N to the deterministic limit θ∗, which is the unique McKean-Vlasov solution
of Eq.(5.11). By uniqueness in law of the weak limit we have P ◦ ζ−1 = δθ∗ , yielding ζ = θ∗

P-a.s.. Lemma 5.3 also gives convergence in probability in the τ -topology of (ζN )N∈N to
θ∗.

Corollary 5.3 (Characterization of the convergence). Under the assumptions of Lemma 5.6,

the following properties hold:

(i) For all Borel-measurable bounded function f : X → R such that θ 7→
∫
X f(ϕ)θ(dϕ) is

τ(P(X ))-continuous

EPN
[∫
X
f(ϕ)ζN (dϕ)

]
−→
N→∞

EP
[∫
X
f(ϕ)ζ(dϕ)

]
≡ EP

[∫
X
f(ϕ)θ∗(dϕ)

]
.

(ii) PN ◦ (XN,1, ζN )−1 w
⇀ θ∗⊗ δθ∗. Moreover, PN ◦ (XN,1)−1 w

⇀ θ∗ and PN ◦ (ζN )−1 w
⇀ δθ∗.

(iii) For all f ∈ C(X ) with sub-linear growth, i.e. |f(ϕ)| ≤ Cf (1 + ‖ϕ‖∞) for some Cf > 0
and all ϕ ∈ X , we have

EPN
[∫
X
f(ϕ)ζN (dϕ)

]
−→
N→∞

EP
[∫
X
f(ϕ)ζ(dϕ)

]
≡ EP

[∫
X
f(ϕ)θ∗(dϕ)

]
.

Proof. (i) This is a consequence of Lemma 5.3, Lemma 5.6 and of the almost sure equality
ζ = θ∗.

(ii) We already know that PN ◦(ζN )−1 w
⇀ δθ∗ from Lemma 5.6. Therefore, the convergence

of PN ◦ (XN,1)−1 to θ∗ follows from Sznitman (1991), Proposition 2.2, and the symmetry of
the system.

(iii) Let f ∈ C(X ) with sub-linear growth. It is enough to show that

EPN
[∫
X
‖ϕ‖∞ζN (dϕ)

]
−→
N→∞

∫
X
‖ϕ‖∞θ∗(dϕ).
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To this aim, for �xed R > 0, we consider the decomposition

EPN
[∫
X
‖ϕ‖∞(ζN − θ∗)(dϕ)

]
≤ EPN

[∫
X

(‖ϕ‖∞ ∧R)(ζN − θ∗)(dϕ)

]
+EPN

[∫
X
‖ϕ‖∞1{‖ϕ‖∞≥R}(ζ

N + θ∗)(dϕ)

]
.

By property (i), for any �xed R > 0, we have

lim
N→∞

EPN
[∫
X

(‖ϕ‖∞ ∧R)(ζN − θ∗)(dϕ)

]
= 0

so that

lim sup
N→∞

EPN
[∫
X
‖ϕ‖∞(ζN − θ∗)(dϕ)

]
≤ lim sup

N→∞
EPN

[∫
X
‖ϕ‖∞1{‖ϕ‖∞≥R}(ζ

N + θ∗)(dϕ)

]
.

Now, we let R →∞ and we show that the RHS vanishes in the limit. To do so, recall that,
due to Lemma 5.4, there exist constants K(α),K > 0 such that

sup
N∈N

EPN [‖XN,i‖α∞
]
≤ K(α) and sup

N∈N
EPN [‖XN,i‖∞

]
≤ K

independently of i ∈ {1, . . . , N}. Then, set α, β > 1 such that 1
α + 1

β = 1 and let ε > 0. By

de�nition of ζN and by Young's and Markov's inequalities, we have

lim sup
N→∞

EPN
[∫
X
‖ϕ‖∞1{‖ϕ‖∞≥R}ζ

N (dϕ)

]
= lim sup

N→∞

1

N

N∑
i=1

EPN
[
‖XN,i‖∞1{‖XN,i‖∞≥R}

]
≤

(
εα
K(α)

α
+

K

εββR

)
(5.13)

which converges to zero by letting R → ∞ and then ε → 0. A similar reasoning applies to
the same expectation with θ∗ instead of ζN .

Remark 5.1. Let D .
= {ϕ ∈ X : τ(ϕ) is discontinuous at ϕ}. Since ζ

a.s.
= θ∗ ∈ Q, Lemma

A.4 implies θ∗(D) = 0 and the statement of Corollary 5.3 holds for f = 1D as well.

Finally, we conclude this section with the proof of Theorem 5.1, which leads immediately to
Corollary 5.2.

Proof of Theorem 5.1. The proof is structured in three steps.

(j) limN→∞ J
N,1(λN ) = Jµ(λ).

(jj) Let βN,1 ∈ UN1 be such that

JN,1([λN,−1, βN,1]) ≤ inf
β∈UN1

JN,1([λN,−1, β]) +
ε

2
.

Then

lim inf
N→∞

JN,1
([
λN,−1, βN,1

])
≥ Jµ(λ).

(jjj) JN,1(λN ) ≤ infβ∈UN1
JN,1([λN,−1, β]) + ε.
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We consider the dynamics in Eq.(5.6). In (j) we set λN,1(t, ϕN ) = λ(t, ϕN,i) for all (t, ϕN ) ∈
[0, T ] × XN and prove convergence of the �rst-player cost functional to the cost functional
of the MFG. In (jj) instead we allow the �rst player to deviate and choose λN,1(t, ϕN ) =
βN,1(t, ϕN ) for all (t, ϕN ) ∈ [0, T ] × XN where βN,1 ∈ ŨN1 is a generic single-player relaxed
control. We conclude the proof in (jjj) by combining the results in (j) and (jj).

Proof of (j). To prove that JN,1(λN )→ Jµ(λ), as N →∞, we split each cost functional
in the sum of two terms:

JN,1(λN ) = EPN
[∫

[0,T ]×Γ

∫
X
1[0,τ(ϕ))(t)f0(t, ϕ, u)λ(t, ϕ)(du)ζN (dϕ)dt

]

+EPN
[∫ T

0
1[0,τN,1)(t)f1(t,XN,1, ζN )dt+ F (τN,1, XN,1

τN,1
)

]
and

Jµ(λ) = EP

[∫
[0,T ]×Γ

∫
X
1[0,τ(ϕ))(t)f0(t, ϕ, u)λ(t, ϕ)(du)ζ(dϕ)dt

]

+EP
[∫ T

0
1[0,τ)(t)f1(t,X, ζ)dt+ F (τ,Xτ )

]
.

Since f0 is bounded, the convergence of the �rst summand in the decomposition of JN,1(λN )
to the corresponding term in Jµ(λ) is a consequence of Corollary 5.3(i) and of Lemma 5.6.
On the other hand, since both f1 and F have sub-linear growth, the convergence of the second
summand in JN,1(λN ) follows from Corollary 5.3(iii), Lemma 5.6 and the fact that θ∗ ∈ Q
together with Lemma A.5.

Proof of (jj). We follow the proof of Theorem 3.10 in Lacker (2020) with suitable modi-
�cations due to the possibly unbounded drift and the dependence on the �rst exit time from
the set O.
Let (ΩN ,FN , (FNt )t∈[0,T ],QN , Y N ,WN )N∈N be a weak solutions of the N -player system. Let

(ζN )N∈N be the associated empirical measures. Under QN the �rst player's dynamics is

Y N,1
t = Y N,1

0 +

∫
[0,t]×Γ

b(s, Y N,1, ζNY , u)βN,1(s,YN )(du)ds+ σWN,1
t , t ∈ [0, T ].

Now, let PN be the probability measure under which the �rst player's dynamics becomes

Y N,1
t = Y N,1

0 +

∫
[0,t]×Γ

b(s, Y N,1, ζNY , u)λ(s, Y N,1)(du)ds+ σW̃N,1
t , t ∈ [0, T ]

where W̃N,1 is a PN -Wiener process. In other terms, PN satis�es dQN
dPN = ZNT where

ZNt = Et
(∫ ·

0

∫
Γ
b(s, Y N,1, ζNY , u)(βN,1(s,YN )− λ(s, Y N,1))(du)dW̃s

)
, t ∈ [0, T ].

By inspection of the proofs of Lemma A.1 and Corollary A.1, all bounds are uniform in
N ∈ N, hence Corollary A.1 gives the uniform integrability of the sequence of exponential
martingales (ZN )N∈N. More in detail, we apply Corollary A.1 to the drift

b(t, ϕN )
.
=

∫
Γ
b(t, ϕN,1, ζϕN , u)(βN,1(t, ϕN )− λ(t, ϕN,1))(du)

for (t, ϕN ) ∈ [0, T ]×XN . Notice that this drift is sublinear in ϕN . Therefore convergence of
the empirical measures to θ∗ in probability in the τ -topology under PN implies convergence
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of the empirical measures to the same limit in probability in the τ -topology under QN . Hence

ζNY
L−→ θ∗ under QN and

lim
N→∞

QN
(
ζNY 6∈ B

)
= 0

for all neighbourhoods B of θ in the τ -topology which belong to B(P(X )). The tightness of
(Y N,1)N∈N underQN still follows from their tightness under PN . Consider (βN,1(t,YN ))t∈[0,T ]

as a single-player relaxed stochastic open-loop control and denote it simply by (βN,1t )t∈[0,T ].

Interpret (Y N,1, βN,1, ζNY )N∈N as a sequence of random variables with values in X ×V×P(X ).
Compactness of V and tightness of (Y N,1, ζNY )N∈N imply the tightness of (Y N,1, βN,1, ζNY )N∈N
under QN .

Let (Y, β, θ∗) be a limit point of the sequence (Y N,1, βN,1, ζNY )N∈N, de�ned on some prob-
ability space with probability measure Q. Then by a standard martingale argument it can
be shown to satisfy

Yt = ξ +

∫
[0,t]×Γ

b(s, Y, θ∗, u)βt(du)ds+ σWt, t ∈ [0, T ] (5.14)

where W is a Q-Wiener process. As in (j) we split JN,1([λN,−1, βN,1]) in two terms as

JN,1([λN,−1, βN,1]) = EQN
[∫

[0,T ]×Γ
1[0,τN,1)(t)f0(t, Y N,1, u)βN,1t (du)dt

]

+EQN
[∫ T

0
1[0,τN,1)(t)f1(t, Y N,1, ζNY )dt+ F (τN,1, Y N,1

τN,1
)

]
.

We move along a weakly converging subsequence of (Y N,1, βN,1,WN,1)N∈N under QN to the
limit point (Y, β,W ) in Eq.(5.14). Convergence of the �rst and second summands above now
works as in the proof of (j). Considering again the whole sequence, we obtain

lim inf
N→∞

JN,1([λN,−1, βN,1]) ≥ inf
β

EQN
[∫

[0,T ]×Γ
1[0,τ)(t)f(t, Y, θ∗, u)βt(du)dt+ F (τ, Yτ )

]
= V µ

where the in�mum on the RHS above is taken over all relaxed stochastic open-loop controls
and the last equality follows from embedding the set of strict controls into the set of relaxed
controls combined with the chattering lemma (El Karoui et al., 1987; Fleming and Rishel,
2012; Bahlali et al., 2006).

Proof of (jjj). This is a consequence of steps (j) and (jj). Indeed

JN,1(λN )− inf
β∈UN1

JN,1([λN,−1, β]) ≤ JN,1(λN )− Jµ(λ) + Jµ(λ)− JN,1([λN,−1, βN,1]) +
ε

2
.

Now by steps (j) and (jj) there exists N ε ∈ N such that for all N ≥ N ε

JN,1(λN )− Jµ(λ) ≤ ε

4
and Jµ(λ)− JN,1([λN,−1, βN,1]) ≤ ε

4
.

Therefore, we can conclude that JN,1(λN ) ≤ infβ∈UN1
JN,1([λN,−1, β]) + ε for all N ≥ N ε,

which establishes the statement of Theorem 5.1.
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A Appendix

This appendix provides some of the technical results used in the paper. More in detail, we
state existence and uniqueness of weak solutions of SDEs with sub-linear drift. We charac-
terize the space of laws of processes with sub-linear drift and initial condition ν (Q de�ned
below). We prove some regularity results on the exit time τX with respect to measures in
Q. Finally, we discuss the convergence of measures in the 1-Wasserstein distance along test
functions with sub-linear growth and possibly discontinuous over a set of limit measure zero.

A.1 Existence and uniqueness of solution of SDEs with sub-linear drift

In this subsection we prove a slight variation of the well-known Bene²' condition (Bene²
(1971)), leading to an existence and uniqueness result for weak solutions of SDEs with a
sub-linear drift. More precisely, we allow the drift to depend on a rescaled Wiener process
with a independent random initial condition. We recall that Et(·) denotes the Doléans-Dade
stochastic exponential. Moreover, given a function f : E → R where E is a Polish space, we
denote by Df the set of its discontinuity points.

As a preliminary, we introduce the set Q of laws of stochastic processes with sub-linear
drift in the sense of Bene² to which these results apply.

Laws of processes with sub-linear drift. Let β : [0, T ]×X → Rd be a progressively measurable
functional such that

|β (t, ϕ)| ≤ C (1 + ‖ϕ‖∞) , (t, ϕ) ∈ [0, T ]×X

for some constant C > 0. Let (Ω,F , (Ft)t∈[0,T ],P, X) be a weak solution of the following SDE

Xt = ξ +

∫ t

0
β(s,X)ds+ σWt, ξ

d∼ ν, t ∈ [0, T ]

where W is a Wiener process independent of ξ. Existence and uniqueness of a weak solution
follows from an application of Girsanov's theorem and Bene²' condition (see Lemma A.1 and
Lemma A.2). Moreover such laws turn out to be absolutely continuous with respect to the
Wiener measure Wν (Lemma A.3). Then, we denote by Q the set of laws θ ∈ P(X ) of all
continuous processes X solving the SDE above.

Lemma A.1 (Bene²' condition). Let b : [0, T ] × X → Rd be a progressively measurable

functional such that

|b (t, ϕ)| ≤ C (1 + ‖ϕ‖∞) , (t, ϕ) ∈ [0, T ]×X .

Let σ ∈ Rd×d be a full rank matrix. Let (Ω,F , (Ft)t∈[0,T ],P) be a �ltered probability space

satisfying usual conditions, supporting a random variable ξ
d∼ ν and a Wiener process W

independent of ξ. Set

Xt
.
= ξ + σWt, t ∈ [0, T ].

Then

Zt
.
= Et

(∫ ·
0
σ−1b(s,X)dWs

)
, t ∈ [0, T ]

is a martingale.
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Proof. We follow the proof of Corollary 3.5.16 in Karatzas and Shreve (1987). Precisely let
t0 = 0 < t1 < . . . < tn−1 < tn = T be a partition of the interval [0, T ]. Then thanks to the
sub-linearity of the drift∫ tn

tn−1

|b(s,X)|2 ds ≤ (tn − tn−1)C2 (1 + ‖X‖∞)2 .

Let Y n .
= (Y n

t )t∈[0,T ] be de�ned by

Y n
t
.
= e

1
4

(tn−tn−1)C2(1+|Xt|)2 .

Notice that Y n is a sub-martingale and that by Doob's maximal inequality (Karatzas and
Shreve, 1987, Theorem 1.3.8.iv) we have E[‖Y n‖2∞] ≤ 4E[(Y n

T )2]. Moreover

E
[
(Y n
T )2
]
≤ E

[
e

1
2

(tn−tn−1)C2(1+2|ξ|2+2|σ|2|WT |2)
]

= E
[
e(tn−tn−1)C2|σ|2|WT |2

]
E
[
e

1
2

(tn−tn−1)C2(1+2|ξ|2)
]

where in the equality we have used the independence between ξ and W . To conclude, it is
su�cient to choose (tk − tk−1), k = 1, . . . , n, su�ciently small, for instance (tk − tk−1) <
min{ 1

2C2|σ|2 ,
λ
C2 }, and to apply Corollary 3.5.14 in Karatzas and Shreve (1987).

Corollary A.1 (Moments of the stochastic exponential). Under the assumptions of Lemma

A.1, the process Z = (Zt)t∈[0,T ] has �nite moments of any order p ∈ [1,∞), i.e. E
[
ZpT
]
<∞

for all p ∈ [1,∞).

Proof. The proof follows directly from Lemma A.1 combined with Corollary 2 in Grigelionis
and Mackevi£ius (2003).

Lemma A.2 (Existence and uniqueness of weak solutions). Let b : [0, T ] × X → Rd be a

progressively measurable functional such that

|b (t, ϕ)| ≤ C (1 + ‖ϕ‖∞) , (t, ϕ) ∈ [0, T ]×X .

Let σ ∈ Rd×d a full rank matrix. Then there exists a weak solution (Ω,F , (Ft)t∈[0,T ],P, X,W )
of

Xt = ξ +

∫ t

0
b(s,X)ds+ σdWt, ξ

d∼ ν, t ∈ [0, T ].

Additionally, this solution is unique in law.

Proof. The proof follows directly from Lemma A.1 and Girsanov's theorem (see Karatzas and
Shreve, 1987, Propositions 5.3.6 and 5.3.10).

A.2 Characterization of the set Q

Lemma A.3 (Laws of processes with sub-linear drift). Let θ ∈ Q. Then θ ∼ Wν , i.e. θ is

equivalent to the Wiener measure Wν .

Proof. The proof follows directly from Lemma A.1, Girsanov's theorem and Bayes' rule to
ensure that Z−1 given by Lemma A.1 is still a martingale.
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Before proceeding further, we recall that τX is the �rst exit time from O in the path space,
i.e.

τX(ϕ) = inf {t ≥ 0 : ϕ(t) 6∈ O} , ϕ ∈ X ,

where O ⊂ Rd satis�es Assumption (H4).

Lemma A.4 (Regularity results). Let θ ∈ Q. Let O ⊂ Rd satisfy Assumption (H4) and let

X be the identity process on X . Then

(a) τX <∞, θ-almost surely.

(b) The mapping ϕ 7→ τX(ϕ), from X to [0,∞], is θ-a.s. continuous.

(c) θ(τX = t) = 0 for all t ∈ [0, T ].

(d) The mapping ϕ 7→ 1[0,τX(ϕ))(t), from X to R, is θ-a.s. continuous for all t ∈ [0, T ].

(e) Properties (a)-(d) hold for O = (0,∞)×d as well.

Proof. The proof is similar to the one of Lemma D.3 in Campi and Fischer (2018). Notice
that by Lemma A.3 each θ ∈ Q is equivalent to Wν . So, it is su�cient to check properties
(a)-(d) for Wν .

(a) This is a consequence of the law of iterated logarithms (as time tends to in�nity) and
the fact that O is strictly included in Rd.

(b) This, again, is a consequence of the law of iterated logarithms (as time tends to zero),
the smoothness of O's boundary, the non-degeneracy of σ and the fact that O is strictly
included in Rd (Kushner and Dupuis (2013), pp. 260-261).

(c) This is a consequence of the following relations

Wν(τX = t) ≤ Wν(Xt ∈ ∂O) = 0 for all t ∈ [0, T ]

where in the last equality we use the fact that the Lebesgue measure of the boundary of
a convex subset of Rd is identically zero (Lang (1986)), and that Wν ◦ X−1

t is absolutely
continuous with respect to the Lebesgue measure for all t ∈ [0, T ].

(d) This is a consequence of properties (b) and (c) above.
(e) When O = (0,∞)×d it turns out that

τX(ϕ) = min
i=1,...,d

τ i(ϕ), ϕ ∈ X

where τ i(ϕ)
.
= inf{t ∈ [0, T ] : ϕi(t) ≤ 0}, for i ∈ {1, . . . , d} and ϕ ∈ X . Then the conclusion

follows from the continuity result in dimension d = 1 (Kushner and Dupuis (2013), pp.
260-261) applied to each τ i.

A.3 Additional convergence results

Lemma A.5 (Convergence in the 1-Wasserstein distance). Let E be a Polish space with

a complete metric dE. Let θ, (θn)n∈N ⊂ P1(E) such that W1(θn, θ) → 0 as n → ∞. Let

f : E → R be a measurable function such that |f(x)| ≤ C(1 + dE(x, x0)) for all x ∈ E, for
some x0 ∈ E and for some constant C > 0. Let Df be the set of its discontinuity points and

assume θ(Df ) = 0. Then ∫
E
f(x)θn(dx) −→

n→∞

∫
E
f(x)θ(dx).
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Proof. The proof works as in Villani (2003), proof of Theorem 7.12.iv, the only di�erence
being that here f can have discontinuities with θ(Df ) = 0. In particular, we perform the same
decomposition as in Villani (2003), i.e. f(x) = f1

R(x)+f2
R(x) with f1

R(x)
.
= f(x)∧ (C(1+R))

and f2
R(x)

.
= f(x)− f1

R(x) for all x ∈ E and for some R > 0. We have that |f1
R| is bounded

by C(1 + R) and θ(Df1R) = 0 since Df1R ⊂ Df . Then all limits can be performed just as in

Villani (2003), proof of Theorem 7.12.iv.
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