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Abstract 

The restructuring of power systems and wider introduction of renewable energy sources in 

the recent years is placing a greater stress on the transmission system. Yet, transmission system 

is paramount for the reliable, secure and economic operation of power systems. However, 

modern transmission systems often have insufficient capacity, leading to bottlenecks, 

congestions and spillage of renewable energy, while their expansion is generally expensive, 

complicated and time consuming. As an alternative to the transmission expansion, dynamic line 

rating technologies allows to utilize latent capacity of transmission lines through the use of 

measurements or forecasts of weather parameters. However, as the forecasts of the weather 

parameters are inherently uncertain, the estimates of transmission capacity also become 

uncertain, and must be addressed accordingly.  

This thesis investigates the impacts of dynamic line rating forecast uncertainty in power 

system operational planning problems. Thus, the thesis aims at developing mathematical models 

for the management of such uncertainty to ensure secure and effective operation of power 

systems. 

In order to achieve the above objective, firstly, stochastic models for the dynamic line rating 

are developed that allow to consider thermal dynamics of the conductor in the presence of 

uncertain weather forecasts. The models are entirely data-based and provide a risk-averse 

method of controlling conductor temperature in operational planning problems. Furthermore, 

the models allow to control both the probability of occurence and the magnitude of the thermal 

overloading. 
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Secondly, an analysis of uncertain factors and their interactions in power system 

operational planning is performed using the coherent risk measure framework. Additionally, a 

novel modelling approach for the uncertain renewable energy sources in operational planning 

problems is proposed. Then, coherent reformulations of uncertain constraints are developed and 

integrated into day-ahead unit commitment problem. Finally, the benefits of managing risk in 

operational planning problems using coherent risk measures are demonstrated in comprehensive 

case studies.  
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1 Introduction 

1.1 Motivation 

Modern power systems are in the process of undergoing significant changes caused by 

environmental, economic and social concerns. From the environmental perspective, in order to 

reduce the greenhouse gas emissions, many power systems actively retire existing fossil-fired 

generation capacity and replace it with intermittent renewable energy sources (RESs) [1], 

primarily in the form of wind and solar power. Simultaneously, the deregulation in the energy 

industry, the creation of electricity and gas markets greatly increases energy price volatility and 

facilitates long-distance energy trade with corresponding changes in energy transfer patterns 

[2]. Moreover, the increase and qualitative changes in demand, as well as more direct 

involvement of the customers in the energy market, are anticipated as the results of a wider 

spread of electric vehicles and increase in distributed generation [3].  

All of the above issues, to different extents, are changing the traditional practices of power 

system operation, with one of the main causes being larger and more unpredictable power 

transfers [2]. At the same time, security and economic operation of power systems are 

predominantly dependent on its “backbone” – the transmission network, which becomes even 

more critical, if significant amount of intermittent renewable energy is to be installed [4], [5]. 

However, existing transmission networks were designed to address the needs of traditional 

power systems, and are often facing difficulties in adapting to the new trends. The most obvious 

solution, the construction of new network infrastructure becomes more and more complicated 

because of considerable capital costs and the need to comply with strict social and 
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environmental demands. As a result, the expansion of the network is often much slower than 

the installation of new renewable energy capacity, limiting the benefits of the latter and posing 

a security risks.  

Often, network capacity is limited due to the risk of exceeding the thermal capacity of 

overhead transmission lines. In such cases, dynamic line rating (DLR) technologies can provide 

a practical and economical alternative to the immediate construction of new transmission lines 

[6]–[8]. Conventionally, power system operators would set line ampacity (i.e. its current 

carrying capacity that corresponds to its thermal limitation) according to the static line rating 

(SLR) – the maximum value of current that an overhead line can carry such that conductor’s 

temperature will not exceed specified value under unfavorable weather conditions. By using 

real-time or forecasted weather data, DLR allows to significantly increase the average line 

ampacity, leading to the alleviation of transmission congestions, decrease in re-dispatching 

actions and curtailment of renewable energy [9]. Moreover, DLR improves the security of the 

operation in the rare situations when actual weather conditions turn out to be worse than those 

assumed by SLR [10]. 

DLR technologies are most beneficial in real-time applications [11]–[14], since the ambient 

weather conditions and the conductor temperatures of the overhead lines are easily measurable 

and accurate values of ampacity can be estimated. Yet, to be able to realize the benefits of DLR, 

it should also be included in both short-term and long-term operational planning, leading to the 

necessary use of forecasting methods to estimate the ampacity. Consequently, as DLR is 

primarily dependent on weather data, the uncertainty in weather forecasts translates into the 

uncertainty of ampacity estimates, which can lead to the overestimation of ampacity and the 

possibility of thermal overload [15]–[17]. Therefore, the inclusion of DLR into the operational 
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planning has to be done considering the trade-off between its benefits, the risk of overloading 

and its consequences. Thus, the underlying optimization problems and models should be 

investigated from the stochastic perspective, additionally including the interdependency 

between various sources of uncertainty.  

1.2 Thermal Capacity of the Overhead Conductors 

The loadability curve [18] is a relatively simple conceptional tool that indicates the main 

factors determining the maximum available capacity of an overhead transmission lines as a 

function of its length. An example of such curve is shown in  Figure 1.1.  

 

Figure 1.1 Maximum loadability of transmission line as a function of its length 
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The voltage and steady-state limits are primarily determined by the properties of power 

system (such as network topology, properties of loads and generators, their control, etc.), have 

low variability and cannot be considerably improved without significant changes to the system. 

The thermal limit of the transmission line is largely dependent on the ambient weather factors, 

which, however,  translates into its variability and makes its analytical calculation problematic. 

On the other hand, when weather conditions are favorable, the transmission capacity can be 

greatly increased with little risk of overloading. 

In particular, the capacity of the thermally limited overhead lines is determined by the 

interrelated thermo-dynamical, electrical and mechanical phenomena. The two major limiting 

factors are the following: firstly, conductor sag due to the thermal elongation of the conductors 

that violates the safety clearances (distances to other conductors or structures); secondly, 

conductor annealing and loss of tensile strength due to their heating beyond the critical point. 

Whereas the detailed calculation of the thermal behavior of the conductors is too complex for 

engineering purposes, the IEEE  and CIGRE standards [19], [20] provide practical numerical 

methods of calculating the approximate thermal behavior of overhead lines. While the two 

standards generally provide accurate estimation, their results are often more conservative, than 

the actual measurements as is demonstrated in the field study [21].  
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Figure 1.2 Overhead Conductor Heating and Cooling 

In the core of the aforementioned standards lies the nonlinear differential heat balance 

equation (HBE), describing the evolution of a conductor’s temperature as a function of its 

physical properties (material, diameter, surface conditions, etc.), weather conditions and its 

electrical current: 

𝑚 ∙ 𝐶𝑝 ∙
𝑑𝑇𝐶

𝑑𝑡
= 𝑞𝐽(𝐼, 𝑇𝐶) + 𝑞𝑆(𝑄𝑇𝑜𝑡) − 𝑞𝐶(𝑇𝐶 , 𝑇𝐴, 𝑊𝑆, 𝑊𝐴) − 𝑞𝑅(𝑇𝐶 , 𝑇𝐴), (1.1) 

where 𝑚 [kg/m] is per-unit mass of the conductor, 𝐶𝑝 [J/(kg·°C)] is specific heat of conductor 

material, 𝑇𝑐 [°C] is conductor temperature, I [A] is conductor current, 𝑞𝐽, 𝑞𝑆, 𝑞𝐶 , 𝑞𝑅 [W/m] are 

the Joule heating, solar heating, convective cooling and radiative cooling respectively. 𝑇𝐴 [°C] 

is the ambient temperature, 𝑊𝑆 [m/s], 𝑊𝐴 [rad]  are the wind speed and direction and 
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𝑄𝑇𝑜𝑡 [W/m2] is the total solar radiation intensity. Schematically, the process of heating and 

cooling of the overhead conductor due to the most impactful factors is depicted in Figure 1.2 

[20]. 

Solving (1.1) numerically, the evolution of conductor temperature in time (referred to as 

“Transient” or “Dynamic” solution) as a function of its current and weather conditions can be 

easily obtained. If the sufficient time resolution of the thermal behavior is more than the thermal 

time constant, then for every given time period, the temperature can be assumed to be in steady-

state (
𝑑𝑇𝐶

𝑑𝑡
= 0) . This assumption is further justified by the fact, that thermal constant is 

exponentially reduced with the increase in the wind speed, as demonstrated in [22]. 

Consequently, steady-state HBE is written as follows: 

 𝑞𝐽(𝐼, 𝑇𝐶) + 𝑞𝑆(𝑄𝑇𝑜𝑡) = 𝑞𝐶(𝑇𝐶 , 𝑇𝐴, 𝑊𝑆, 𝑊𝐴) + 𝑞𝑅(𝑇𝐶 , 𝑇𝐴). (1.2) 

The fact that (1.2) is not a differential equation, but a nonlinear algebraic equation, 

simplifies the calculation of conductor temperature. More importantly, (1.2) provides a very 

concise way of calculating steady-state thermal rating – maximum current 𝐼𝑚𝑎𝑥, that, under the 

corresponding weather conditions, will produce an increase in the conductor temperature to be 

no more than maximum allowable 𝑇𝐶𝑚𝑎𝑥 . Thus, considering that Joule heating term is 

𝑞𝑅(𝑇𝐶 , 𝑇𝐴) = 𝐼2𝑅(𝑇𝐶
𝑚𝑎𝑥), the current is expressed as: 

𝐼𝑚𝑎𝑥 = √
𝑞𝐶(𝑇𝐶

𝑚𝑎𝑥, 𝑇𝐴, 𝑊𝑆, 𝑊𝐴) + 𝑞𝑅(𝑇𝐶
𝑚𝑎𝑥, 𝑇𝐴) − 𝑞𝑆(𝑄𝑇𝑜𝑡)

𝑅(𝑇𝐶
𝑚𝑎𝑥)

. (1.3) 
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Consequently, the steady-state conductor current expression (1.3) is widely used due to its 

convenient formulation and serves as a basis for the majority of research and applications of 

DLR. 

1.3 Literature Review 

Considering that DLR is not only a cost-effective solution (or temporary alternative) to the 

network expansion, but can also be used to relieve transmission congestions, it has received 

significant attention in the literature and in industry. The following references on DLR are 

loosely grouped based on the area of research. 

A general review of approaches to DLR, challenges and benefits, as well as underlying 

technologies can be found in [7]. Reviews of the existing and developing DLR technologies and 

instrumentation, along with their use cases are presented by the authors of [23] and [6]. A case 

study of the actual DLR implementation at AltaLink transmission line is presented in [8]. The 

applicability and benefits of DLR in distribution networks is studied in [24] and [11], while the 

applicability of DLR for long lines is investigated in [25]. The impact and benefist of the DLR 

on wind power integration is investigated by the authors of [9]. The identification of critical 

spans of transmission lines for the installation of DLR monitoring instrumentation is studied in 

[26] and [27].  

Real-time DLR estimation algorithm for a transmission line with limited number of weather 

stations is proposed in [28], while the authors of [29] propose to combine direct and indirect 

measurements for a similar problem. The authors of [30] and [31] use computational fluid 

dynamics to supplement the weather data for the computation of DLR in critical transmission 
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line spans. Least-squares model for the real-time transient DLR is proposed by the authors of 

[22] and is further validated in a pilot project. 

A probabilistic network planning method with the incorporation of DLR is proposed in 

[32]. A stochastic transmission expansion planning model that includes the DLR is developed 

by the authors of [33].  

A Markov model for the reliability analysis of the DLR is proposed in [34]. The joint 

reliability issues of the communication network and DLR are studied in [35]. The impact of 

DLR on the overall power system reliability is investigated by the authors of [12]. 

A review of the forecasting methodologies and challanges for DLR is presented by the 

authors of [36] and [37], who also discuss several of the existing DLR projects. Long-term time-

series models for the DLR are investigated in [38]. A probabilistic forecasting method for DLR 

is proposed in [39] that combines the Monte-Carlo simulations with the conductor thermal 

model. Ensemble weather-forecasting models are utilized in [15] for the probabilistic day-ahead 

forecasting of DLR. Transient DLR forecasting model that considers step changes in the 

conductor current is developed in [40]. An analysis of different DLR forecasting methods from 

the security perspective is carried out in [41]. The authors of [10] focus on the probabilistic 

forecasts of the extreme values of DLR. The authors of [42] apply machine learning and 

numerical weather prediction models for the probabilistic and point forecasting of DLR with 

various time resolution. 

The issue of DLR in power system operation is by far one of the most extensive research 

areas. The authors of [17] propose a robust framework to handle the uncertainty due to the DLR 

forecasting error in optimal power flow (OPF) problems. A distributionally robust approach to 
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handle the risk due to the DLR uncertainty in OPF is investigated in [43]. The authors of [44] 

propose an affine-arithmetic framework to solve the probabilistic OPF incorporating uncertain 

DLR. The heat-balance DLR equation is integrated into the AC OPF with wind power 

uncertainty in [45] and [46]. The authors of [14] propose a framework to integrate DLR into the 

market clearing problem to alleviate transmission line congestions. Probabilistic congestion 

management system based on DLR is developed by the authors of [47]. Model predictive 

control is applied to the problem of thermal overloading of transmission lines in [48]. Risk-

constrained two-stage stochastic programming model for the OPF with wind power and DLR 

uncertainty is developed by the authors of [49]. Two-stage stochastic programming for the day-

ahead scheduling considering the uncertainties due to the RESs and DLR forecasts is applied in 

[16], [50] and [51]. Optimal risk level selection for the uncertain DLR is investigated by the 

authors of [52], who formulate a bilevel stochastic optimization problem. The day-ahead unit 

commitment (UC) considering flexible network topology and DLR is studied in [53]. Security 

constrained day-ahead unit commitment model with DLR is developed by the authors of [54]. 

1.4 Research Questions and Objectives 

The importance of addressing the uncertainty of DLR forecasting in operational planning 

is a widely recognized challenge and is an active area of research. While many solutions and 

approaches to this problem have been proposed, several questions have remained largely 

unaddressed: 

• Short-term DLR forecasting combines the issue of uncertainty due to the weather 

variability with the issue of transient behavior of conductor temperature. The former 

issue necessitates the treatment of the overall problem as stochastic, which is further 
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complicated by the latter issue, which makes the assumptions underlying the use of 

steady-state heat-balance equation unjustified. 

• Previous research has largely considered risk as the probability of some undesirable 

event, while the magnitude of such events have generally been disregarded. Yet, as 

the consequences of the undesirable events can vary significantly, the latter should 

be taken into account. In particular, overhead conductors in DLR applications can 

withstand smaller magnitudes of thermal overloading, whereas larger magnitudes 

should be handled with greater caution. 

• The interactions between various sources of uncertainty, such as RESs and DLR, 

have been considered only from the computational and quantitative perspective. On 

the other hand, qualitative or axiomatic treatment of the uncertainty have not been 

addressed. 

Thus, the highlighted research questions form the goals of the thesis and are addressed in 

the following chapters by proposing new stochastic DLR models, a risk managing framework, 

a novel way of modelling uncertain RESs, and by performing an axiomatic analysis of 

uncertainty in operational planning. Finally, the performance of the developed models and 

methods is evaluated using comprehensive and large-scale case studies. 

1.5 Thesis Outline 

The organization of the thesis follows a manuscript-style, with two main chapters being 

based on the developed manuscripts. The DLR uncertainty in operational planning is the 

primary topic of the thesis. However the main chapters are not interdependent, but can be 
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interpreted as complementary and dealing with different subproblems in operational planning 

of power systems. 

Chapter 1 provides an introduction and motivation of this research. Then, a an overview of 

DLR principles is presented and related DLR research is summarized in a literature review. 

Finally, research questions and objectives are formulated which are addressed in further 

chapters. 

Chapter 2 focuses on the development of the stochastic models for the short-term DLR. 

The proposed models are entirely data-based and therefore do not require estimation of physical 

parameters of the conductors. The models can be integrated into the short-term operational 

planning to control the thermal dynamics of a conductor in a risk-averse manner, under the 

uncertainty of weather forecasts. Finally, a case study is included to demonstrate the 

effectiveness of the developed models. 

Chapter 3 presents an risk-management framework for the operational problems based on 

the coherent risk measures. A qualitative analysis of various sources of uncertainty (RESs, DLR, 

etc.) in power systems is performed and a new formulation of uncertain RESs is proposed. A 

model of UC incorporating the coherent reformulation of uncertain constraints is developed. 

Finally, case studies are performed to test the proposed approach and additionally demonstrate 

the benefits of including DLR in operational planning problems. 

The summary of work is presented in Chapter 4, highliting key findining of the research. 
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2 Risk-Averse Stochastic Dynamic Line Rating Models 

2.1 Abstract 

Static line rating (SLR), which is conventionally used in operation, not only results in a 

conservative usage of the capacity of overhead lines, but also fails to accurately address the 

overload risk. In this work, using quantile regression (QR) and superquantile regression (SQR) 

methods, two models are proposed to predict dynamic line rating (DLR) of overhead conductors 

in operational applications with very short-term horizons. The proposed methods model 

statistical properties of time evolution of conductors considering the conductor thermal inertia 

to cope with situations with higher time resolutions for enhanced capacity usage. To address the 

overload risk due to forecast uncertainties of weather-related parameters, the proposed models 

are reformulated as risk-based constraints and utilized as QR and SQR-based DLR. The 

developed constraints are fully parametric and readily applicable to optimization problems and 

are verified through an optimal power flow (OPF). Results of examining the proposed models 

on the RTS test system confirm their efficiency in terms of better utilization of conductor 

capacity, increased energy transfer, and reduced risk levels. 

2.2 Introduction 

Transmission networks have been under stress due to recent changes in power systems such 

as integration of renewable energy, proliferation of electric vehicles, and implementation of 

electricity markets [52]. These challenges demand a higher transfer capacity for transmission 

lines. Although transmission expansion can increase the transfer capability, it is a costly, time 

consuming and disputable approach due to its social and environmental impacts. Therefore, a 



14 

 

more efficient use of existing transmission systems can be considered as a viable approach. 

Static line rating (SLR) is commonly used to determine the capacity of lines based on their 

seasonal thermal ratings [37]. However, SLR likely underestimates available line rating due to 

its conservativeness, which implies a non-cost-effective solution [22]. This is intensified in 

higher wind speeds where there is a greater convection cooling available. In contrast, dynamic 

line rating (DLR) with a resolution as low as minutes can be employed to better employ the ca-

pacity of thermally limited lines for varying ambient weather conditions. The DLR can be 

incorporated into operational problems to minimize transmission congestion and related 

operational costs, or into planning problems to postpone investments in power networks [33]. 

In DLR methods, the capacity of short lines is prelimi-nary determined by their conductor 

sag/annealing, which is in turn determined by conductor temperature [19], [20]. The conductor 

temperature can be determined from solving the heat balance equation (HBE) that considers the 

heat gained due to Joule losses and sun irradiation along with the heat lost due to radiation and 

convection. If the weather parameters (such as ambient temperature, wind speed and direc-tion, 

and sun irradiation) are measured or forecasted, by neglecting the time evolution of conductor 

temperature, the maximum steady-state current of a transmission line (referred as DLR) can be 

obtained for its corresponding maximum conductor temperature. In literature, DLR is used for 

different purposes including to enhance reliability [12], to facilitate wind power integration [9], 

to reduce carbon emission [24], to manage contingency on a real-time basis [55], to plan 

transmission assets [33], to implement optimal power flow (OPF) [45] and unit commitment 

[54].  

Although these models are useful, they are based on the steady-state HBE model and also, 

they need pre-determined physical conductor parameters [22]. In addition, their performance 
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may be limited when there is a sudden change in line loading or weather conditions as well as 

when the time of interest is comparable with the conductor time constant, a situation that 

happens in case of large conductors, and/or low wind speeds, or when very short-term 

predictions such as one-hour-ahead with a few minutes resolutions are needed. 

If DLR is employed through direct measurements, it is only valid for the moment of 

measurement and it can only be used in real-time applications. On the other hand, if forecasts 

of DLR or underlying weather parameters are available, DLR can be predicted to schedule 

operational problems such as OPF and unit commitment. Data-based methods can be used to 

forecast the evolution of conductor parameters without needing physical parameters of con-

ductors (such as resistivity, emissivity, and reflectivity) and without solving the differential 

HBE [22]. Thus, data-based methods provide easier and faster approaches to model and predict 

the evolution of conductor temperatures. Since such methods rely entirely on the historical 

measurements, they do not require exact expressions for heat gain and loss. 

Generally, two data-based approaches including partial least squares (LS) regression [22] 

and neural networks [56] are used for DLR applications. Both categories employ historical field 

measurements to estimate DLR. The main difference between these models lies in the functions 

utilized to transform the input data into the estimation of conductor temperature. The LS model 

is based on the weighted combination of input parameters, whereas the neural network model 

is based on the interconnected layers of linear and nonlinear functions of input parameters [57]. 

In general, neural network models demonstrate a competitive performance compared to the LS 

models [57]. However, the creation of neural network models involves iterative solutions of 

large nonconvex problems so is usually time-consuming. Neural networks are also prone to 

overfitting, and therefore require careful tuning of hyper-parameters and large amounts of 
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training data. In contrast, regression models such as LS or quantile regression (QR) [58] are 

obtained by solving convex optimization problems with a much smaller size. When applied to 

estimate the conductor temperature, the performance of both models is very close with a 

difference between mean square errors of less than one degree Celsius [56], making both models 

acceptable. Therefore, the reliability and explicit parametrization of regression models, such as 

LS, make them a viable alternative for DLR applications. 

In view of the fact that a line with DLR is operated close to its thermal limits, the uncertainty 

of forecasts may result in its capacity overestimation and therefore, it may increase the risk of 

thermal overloading of the conductor. The uncertainty of DLR is investigated in [16] by a 

scenario-based stochastic programming and by robust optimiztion in [17], [43]. However, these 

methods are based on the steady-state model that neglects the thermal dynamics and may also 

need a high computational burden that makes them unsuitable for short-term operational 

problems, where fast methods are required.  

In this context, data-based methods provide more practical approaches for DLR. The partial 

LS model [22] that is based on field measurements is one such example. However, it fails to 

address the forecast uncertainty and the risk of overloading. While the LS model can be used to 

forecast conductor temperature or rating for the next time interval, it has not been applied in 

operational problems. In particular, the method of [22] does not consider the case when the 

conductor thermal dynamics introduce the dependence between the time intervals of the 

operational problem. The forecast uncertainty can be addressed by the QR method as the 

evolved version of the LS approach.  
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The QR method has been applied to forecast DLR in the recent literature, e.g., [42], [59]. 

In [42], a day-ahead QR model is proposed for steady-state DLR forecasting with the weather 

parameter inputs. While [42] leads to accepta-ble results in day-ahead forecasting, its 

performance depends on the careful tuning of some hyperparameters, such as the number of 

regression trees as well as their depth and width. In addition, because its model is not explicitly 

par-ametrized with respect to the conductor current, it cannot be directly embedded as a 

constraint in power system ap-plications such as OPF. In [59], a QR-based model is proposed 

to forecast the steady-state DLR for the hour ahead with measured weather parameters as inputs. 

These works employ the steady-state model of the DLR mainly based on the CIGRE standard 

[20]. Thus, they ignore the thermal dynamics of the conductor, which is a challenging feature 

in the DLR.  

Within the above context, main contributions of this part can be summarized as follows: 

• Two data-based models of QR and superquantile regression (SQR) are proposed to 

predict the conductor temperature evolution for DLR using time-lagged weather and conductor 

current data. The SQR is applied as the first attempt to power system applications. The time-

lagged data enable us to model the conductor thermal dynamics when a high-resolution 

prediction is performed with short time intervals comparable to the conductor thermal time 

constant. Thus, the conductor capacity is more efficiently utilized in operational problems.  

• A stochastic risk-averse framework is implemented to control uncertainties in estimating 

the conductor temperature. It becomes especially valuable when a line is operated at its 

boundary limits due to DLR, where any uncertainty can easily overload such a line.  The 
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resulting models are data-based, fully parametric and easily extendable. Moreover, bilinear 

terms are added to enhance the accuracy of the model. 

• The proposed DLR model is translated into a closed modular constraint with coupling 

among time slots to be incorporated into risk-based stochastic DLR applications. A multi-period 

OPF is selected to evaluate the applicability of the proposed models and show its Pareto 

optimality. 

2.3 Underlying Concepts 

2.3.1 Heat Balance Equation (HBE) 

The thermal behavior of an overhead transmission line conductor is generally described by 

a nonlinear HBE [19], [20]: 

𝑚 ⋅ 𝐶𝑝 ⋅
𝑑𝑇

𝑑𝑡
= 𝑞𝐽 + 𝑞𝑠 −  𝑞𝑐 − 𝑞𝑟 , (2.1) 

where 𝑇 is the average conductor temperature; 𝑚 is the mass of conductor; 𝐶𝑝 is the specific 

heat capacity of the conductor; 𝑞𝐽 and 𝑞𝑠 are heating components due to Joule losses and solar 

irradiation, respectively; 𝑞c and 𝑞r are convective and radiant cooling, respectively. While (2.1) 

may have other terms, such as magnetic and corona heating or evaporative cooling, they are 

usually ignored due to their complicated estimation or relatively small contribution. Note that 

𝑞𝐽  depends on the line current, while 𝑞𝑠 , 𝑞𝑐 , and 𝑞𝑟  depends on weather conditions. If the 

weather-related parameters and line current are available, (2.1) can be numerically solved to 

obtain the evolution of conductor temperature provided that conductor material properties are 
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known. Alternatively, if the conductor temperature is set to its upper limit, the optimal value of 

conductor current can be obtained from (2.1) for given weather parameters. 

To easily embed the differential HBE (2.1) into operation and planning problems, its 

thermal dynamics may be neglected [19], [20]. This assumption is valid only if time period of 

interest is enough larger than the time constant of solution of (2.1). In such a case, the HBE can 

be simplified into an algebraic steady state nonlinear equation: 

𝑞𝐽 + 𝑞𝑠 −  𝑞𝑐 − 𝑞𝑟 = 0 ⋅ (2.2) 

If the conductor maximum temperature is considered in (2.2), the steady state conductor 

current 𝐼SS (thermal rating) can be obtained as: 

𝐼SS = √
𝑞c + 𝑞r − 𝑞s

𝑅
, (2.3) 

where 𝑅  is the conductor resistance. The thermal rating 𝐼SS  is referred to either the SLR if 

conservative (seasonal) weather conditions are assumed or the DLR if real-time or forecasted 

weather conditions are assumed. 

2.3.2 Regression Models 

The LS regression is one of commonplace approaches to approximate the relationship 

between a variable of interest (output or dependent variable) and some underlying variables 

(inputs or independent variables). From the statistical viewpoint, the LS model is an estimator 

of the expectation of an output random variable conditioned on the input variables: 

𝑦̂ = 𝔼(𝑦|𝒙), (2.4) 



20 

 

where 𝑦  is the output random variable; 𝑦̂  is its estimated mean; 𝒙  is the vector of input 

variables. The linear form of the LS estimator is expressed as: 

𝑦̂ = 𝒙𝐓𝜷, (2.5) 

where 𝜷 is the model parameter vector. The first element of 𝒙 equals to unity to create the “bias” 

[57] (also known as “intercept” [58]) term. The bias term represents the base value of the output, 

conditional on all 𝒙 inputs (excluding the first unity term) being zero. The introduction of the 

bias term makes the regression model invariant to the affine scaling of the input and improves 

the regression convergence [58]. In order to determine the parameter vector 𝜷, sum of squared 

residuals between estimated 𝑦̂𝑖 and observed 𝑦𝑖 is minimized for the known input-output pairs 

(𝑦1, 𝒙1), … , (𝑦𝑛, 𝒙𝑛). Mathematically, the following optimization problem is solved for this 

purpose: 

𝜷 = argmin
𝜷

∑(𝑦𝑖 − 𝒙𝑖
T𝜷)

2
𝑛

𝑖=1

, (2.6) 

where 𝒙𝑖 and 𝑦𝑖 are the input vector and observed output, respectively, for data point 𝑖. 

While the LS method estimates the conditional mean of the output variable, it does not 

provide other distributional information. Instead, the distributional properties of a random 

variable can be described by using quantile-based methods. Assuming that random variable 𝑦 

is continuous, its 𝛼-quantile function can be defined as: 

ℚα(𝑦) = min{𝑧|𝐹𝑦(𝑧) ≥ 𝛼} = 𝐹𝑦
−1(𝛼), (2.7) 

where 𝐹𝑦(⋅), 𝐹𝑦
−1(⋅) are the cumulative distribution function (CDF) and its inverse function, 

respectively, of 𝑦. 
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Similar to (2.5), the linear QR model is an estimator of the conditional 𝛼-quantile of 𝑦: 

𝑦̂α = ℚα(𝑦|𝒙) = 𝒙𝐓𝜷α, (2.8) 

where 𝑦̂α is the estimated 𝛼-quantile; 𝛼 ∈ [0,1] is the quantile level of the random variable; 𝜷α 

is the model parameter vector. 

Unlike the LS regression, QR can capture the whole conditional distribution of a random 

variable [58]. In fact, QR can be used to estimate every conditional quantile including the 

median. As a result, the risk associated with the tail outcomes can be quantified and controlled 

in a systematic manner. In addition, compared with the LS regression, QR does not require the 

assumption of the distribution of errors. Therefore, QR performs adequately in the presence of 

outliers and is more successful when there is a weak relationship between the expected values 

of variables. The QR parameter vector 𝜷α is obtained from a linear programming optimization 

problem that can be efficiently solved by available solvers: 

𝜷α = argmin
𝜷α

∑ 𝜌𝛼(𝑦𝑖 − 𝒙𝑖
T𝜷α)

𝑛

𝑖=1

, (2.9) 

where 𝜌α(⋅) is the nominal absolute function described as: 

𝜌𝛼(𝑢) = {
𝛼𝑢 if 𝑢 ≥ 0

(𝛼 − 1)𝑢 if 𝑢 < 0
 ⋅ (2.10) 

While the QR is versatile and widely applicable in quantifying the risk, it can be further 

extended to the SQR [60] in order to estimate the cumulative tail behavior of a random variable. 

Unlike the QR that quantifies the risk only in terms of the probability of some undesirable event, 
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SQR reflects the magnitude of this event. This property is especially useful for applications, 

where it is possible to address the consequences of undesirable events. 

The 𝛼 -superquantile function of a continuous random variable 𝑦  is defined as its tail 

expectation. In terms of the quantile function (2.7), the upper-tail 𝛼-superquantile function is 

expressed as [60]: 

ℚ𝛼
(𝑦) = 𝔼(𝑦|𝑦 ≥ ℚ𝛼(𝑦)) =

1

1 − 𝛼
∫ ℚ𝛽(𝑦)

1

𝛼

𝑑𝛽. (2.11) 

Similar to other regressions, the linear SQR model is an estimator of the conditional 𝛼-

superquantile of 𝑦: 

𝑦̂α = ℚα
(𝑦|𝒙) = 𝒙𝐓𝜷α, (2.12) 

where 𝑦̂α is the estimated upper-tail 𝛼-superquantile; α ∈ (0,1) is the superquantile level 

of the random variable; 𝜷α̅  is the model parameter vector. The lower-tail  𝛼 -superquantile 

function ℚα(⋅) and its corresponding regression model can also be similarly defined. Since SQR 

is evolved from QR, it inherits the advantage of determining its model parameter vector 𝜷α̅ 

through solving a linear programming problem. Further details of SQR can be found in [60]. 

The performance of LS, QR, and SQR is compared in Figure 2.1, where quadratic models 

are fitted using data samples generated with the non-Gaussian noise assuming quantile and 

superquantile levels at 0.95. The PSG toolbox is used to implement QR and SQR. As seen from 

Figure 2.1, the LS model fits the expected value of the data well, but it does not provide 

information about its distribution. To illustrate how different models capture the distributional 

properties, the absolute error histograms are depicted in Figure 2.2. Note that positive errors in 
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this figure represent underestimation. As seen, the LS model underestimates the actual data, 

whereas the QR model (with the selected 0.95 quantile) leads to about less than 5% 

underestimation with a reduced peak. At the same time, the SQR further reduces the largest 

errors by almost the half as well as the underestimation compared with the LS method. 

 

Figure 2.1 Comparison of LS, QR, and SQR 

 

Figure 2.2 Error histogram for a) LS, b) QR, and c) SQR methods 
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2.3.3 Risk-Averse Modeling of Uncertain Line Flows Using Chance 

Constraints 

Forecast weather parameters have some level of uncertainty that translates to the 

uncertainty of the DLR forecasts and line flow constraints. By introducing a random variable 𝜉 

corresponding to the random DLR capacity, a line flow constraint can be expressed as: 

𝐻(𝜲) ≤ 𝜉, (2.13) 

where 𝐻(𝜲) is the transmission line flow (power or current) as a function of decision vector 𝑿.  

Since line flow constraint (2.13) cannot be directly incorporated into a programming-based 

optimization problem, it is necessary to reformulate it. In the simplest case, the expected value 

of 𝜉 can be used. However, as lines are usually operated at their thermal boundary rating in 

DLR, errors in the DLR forecasts can lead to the violation of line flow constraints. Therefore, 

it is desirable to control the risk of constraint violation.  

Applying the chance-constrained approach, the probability of violation of the uncertain 

constraint can be limited to the specified risk level [61]. The chance-constrained line flow can 

be written as: 

ℙ(𝐻(𝜲) ≤ 𝜉) ≥ 1 − 𝜖, (2.14) 

where ℙ denotes probability; 0 < 𝜖 < 1 is the risk level. Assuming that the DLR capacity 

random variable is continuous, the chance constraint (2.14) can be rewritten as:  

ℙ(𝐻(𝜲) ≥ 𝜉) ≤ 𝜖, (2.15) 



25 

 

𝐹𝜉(𝐻(𝜲)) ≤ 𝜖, (2.16) 

𝐻(𝜲) ≤ 𝐹𝜉
−1(𝜖) = ℚ𝜖(𝜉). (2.17) 

Alternatively, it is possible to limit the expected value of the constraint violation for a given 

risk level, specified by the corresponding quantile. Taking the conditional expectation of the 

uncertain line flow constraint (2.13), the following deterministic reformulation holds:  

𝔼(𝐻(𝜲)|𝜉 ≤ ℚ𝜖(𝜉)) ≤ 𝔼(𝜉|𝜉 ≤ ℚ𝜖(𝜉)), (2.18) 

𝐻(𝜲) ≤ 𝔼(𝜉|𝜉 ≤ ℚ𝜖(𝜉)), (2.19) 

𝐻(𝜲) ≤ ℚ𝜖(𝜉). (2.20) 

By setting a proper risk level 𝜖 (such as 1% or 5%), these reformulations provide a closed 

form of equations to control the risk level of transmission line flow constraint violation to be 

used in an optimization problem. Some methods, such as [52], can be employed to select an 

optimal value for the risk level. From the practical perspective, instead of working with the DLR 

distributions, corresponding regression methods can be used to calculate the right-hand sides of 

the line flow constraints in (2.20). 

2.4 Proposed Stochastic DLR Models 

2.4.1 Regression-Based DLR Models 

Starting from [22], we model uncertain thermal dynamics of an overhead line. Two models 

of QR and SQR are proposed to quantify the uncertainty of conductor temperature evolution. 

The proposed models are based on the linear QR (or SQR) parametrized by conductor current 
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and weather data forecasts as input vectors. These models forecast the 𝛼-quantile (or upper-tail 

𝛼-superquantile) of conductor temperature 𝑇̂𝑡
𝛼 (or 𝑇̂𝑡

𝛼) at time 𝑡 based on the input vectors at 𝑘 

previous time intervals. The input vector is constructed from basic weather-related forecasts 

including wind speed 𝑊𝑠, wind angle 𝑊𝑎 , ambient temperature 𝑇𝑎 , and solar radiation 𝑄𝑠 as 

well as conductor current 𝐼𝑡. We include the conductor current magnitude and its square in the 

input vector to represent the effects of both Joule heating and temperature-dependent resistance. 

This set of input parameters is practically available from field measurement data collected for a 

DLR conductor [8]. In particular, our input vector is expressed as: 

𝑥𝑡 = [

[1, ℐ2, ℐ, 𝒲𝑠, 𝒲𝑎, 𝒯𝑎, 𝒬𝑠]𝑇

[𝒲𝑠𝒲𝑎
̂ , 𝒲𝑠𝒯𝑎̂ , 𝒲𝑠𝒬𝑠̂, 𝒲𝑎𝒯𝑎̂ , 𝒲𝑎𝒬𝑠̂, 𝒯𝑎𝒬𝑠̂]

𝑇

[𝒲𝑠𝒲𝑠
̂ , 𝒲𝑎𝒲𝑎

̂ , 𝒯𝑎𝒯𝑎̂, 𝒬𝑠𝒬𝑎̂]
𝑇

] . (2.21) 

In (2.21), ℐ2, ℐ, 𝒲𝑠, 𝒲𝑎, 𝒯𝑎, and 𝒬𝑠 are row vectors of squared current and its magnitude, 

wind speed, wind angle, ambient temperature, and solar radiation, respectively, at 𝑘 previous 

time periods as: 

ℐ2 = [𝐼𝑡−1
2 , … , 𝐼𝑡−𝑘

2 ] 

ℐ = [𝐼𝑡−1, … , 𝐼𝑡−𝑘] 

𝒲𝑠 = [𝑊𝑠,𝑡−1, … , 𝑊𝑠,𝑡−𝑘] 

𝒲𝑎 = [𝑊𝑎,𝑡−1, … , 𝑊𝑎,𝑡−𝑘] 

𝒯𝑎 = [𝑇𝑎,𝑡−1, … , 𝑇𝑎,𝑡−𝑘] 

𝒬𝑠 = [𝑄𝑠,𝑡−1, … , 𝑄𝑠,𝑡−𝑘] ⋅ 

(2.22) 
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Bilinear terms are also included in (2.21). For instance, 𝒲𝑠𝒲𝑎
̂ =

[𝑊𝑠,𝑡−1𝑊𝑎,𝑡−1, … , 𝑊𝑠,𝑡−𝑘𝑊𝑎,𝑡−𝑘]  refers to the product of wind speed and angle. We have 

embedded bilinear terms in (2.21) to better capture the possible interdependence between input 

parameters. These bilinear terms enhance the impact of extreme parameters on estimation by 

more efficiently modeling correlations among these parameters. For example, correlations can 

happen when wind speeds are lower during overnight hours (when the temperature is lower), or 

when there is a correlation between solar irradiation and ambient temperature. 

The procedure for the creation of data-based models follows similar steps. As an example, 

the SQR model for a prescribed risk level 𝛼 is obtained by solving the optimization problem 

formulated in [60]. Input vectors 𝒙𝒊  in (2.21) are constructed from historical forecasts of 

weather parameters and conductor current and regressed against the historical measurements of 

conductor temperature 𝑦𝑖 = 𝑇𝑖  as the output. Then, to estimate the conductor temperature 

superquantile at time 𝑡 , input vector (2.21) is constructed based on the relevant data and 

substituted into (2.12) to calculate the forecasted 𝛼-superquantile of conductor temperature. The 

resulting SQR model has the following closed form: 

𝑇̂𝑡
𝛼 = 𝛽𝛼

0 + ∑ 𝛽𝛼

ℐ𝑡−𝑗
2

𝐼𝑡−𝑗
2

𝑘

𝑗=1

+ ∑ 𝛽𝛼

ℐ𝑡−𝑗𝐼𝑡−𝑗

𝑘

𝑗=1

+ ∑ 𝑊𝐹𝐶𝑡−𝑗

𝑘

𝑗=1

, (2.23) 

where 𝑇̂𝑡
α is the estimated 𝛼-superquantile conductor temperature at time 𝑡; 𝛽𝛼

0, 𝛽𝛼

ℐ𝑡−𝑗
2

 and 𝛽𝛼

ℐ𝑡−𝑗
 

are the parameters corresponding with entry 1 (the bias term), vectors ℐ2  and ℐ  in (2.21), 

respectively. The last term in (2.23) includes remaining parts associated with weather-related 

forecasted parameters 𝒲𝑠, 𝒲𝑎, 𝒯𝑎, and 𝒬𝑠 from time period 𝑡 − 𝑘 to 𝑡 − 1. 
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Due to the modular structure of the proposed models (2.21)–(2.23), it is straightforward to 

add other features such as ones related to snowy or rainy weather conditions by including their 

corresponding input variables. Moreover, the data-driven approaches, when compared with 

analytical ones, may need a limited amount of conductor parameters, and they have the 

capability to recreate their models by the information existent in the streams of time-series data. 

They also allow to adjust and control the thermal overload risk as described in the next 

subsection. 

2.4.2 Stochastic DLR Models as Line Flow Constraints 

While the reformulations of uncertain line flow constraints in (2.17) and (2.20) for the QR 

and SQR models can be used with the steady-state DLR, they cannot be applied in the models 

with thermal dynamics due to time coupling and non-static nature of conductor temperature. 

Eq. (2.23) gives a closed-form relation for the SQR estimation of the 𝛼-superquantile conductor 

temperature from time-series data of weather parameters and conductor current at 𝑘 previous 

time slots. Then, by setting the 𝛼-superquantile of the conductor temperature to its maximum 

permitted value 𝑇̂𝑡
α = 𝑇max in (2.23) and relaxing the equality into inequality, it is possible to 

limit the risk of conductor overheating. Then, due to its parametric form, (2.23) can be used to 

establish a relation among weather parameters and conductor current (lagged time periods 𝑡 −

𝑘 to 𝑡 − 1): 

𝛽𝛼
0 + ∑ 𝛽𝛼

ℐ𝑡−𝑗
2

𝐼𝑡−𝑗
2

𝑘

𝑗=1

+ ∑ 𝛽𝛼

ℐ𝑡−𝑗𝐼𝑡−𝑗

𝑘

𝑗=1

+ ∑ 𝑊𝐹𝐶𝑡−𝑗

𝑘

𝑗=1

≤ 𝑇max ⋅ (2.24) 
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Eq. (2.24) can be used as a quadratic constraint in different optimization problems, such as 

multi-period OPFs, for the data-based models. Since these DLR models are included for each 

time period, time coupling of multi-period applications are observed.  

Considering 𝑘 = 1  in (2.24), it is possible to get a simpler closed expression for the 

conductor current at each time period as a conventional capacity constraint: 

where 𝐼𝑡−1
𝑚𝑎𝑥, representing the maximum value of 𝐼𝑡−1, is expressed as a function of weather 

parameters 𝑊𝐹𝐶𝑡−1. 

2.4.3 Overall Proposed Algorithm for DLR 

The proposed algorithm is presented in Figure 2.3. First, the data-driven DLR model is 

created based on the historical data. After specifying the risk level and number of time lags, the 

model parameters are estimated as 𝛽 values used in equation (2.24). In the next step as the 

operational scheduling and using the DLR model, OPFs are constructed and solved for each 

time interval of the evaluation period. Because weather parameters predicted for the scheduling 

interval are also used in the OPFs, their solution including the conductor current may have some 

uncertainty due to forecast errors. Finally, using the conductor current and actual realizations of 

weather parameters, the conductor temperature is calculated by means of the heat-balance 

equation (2.1). After solving the OPFs for all time intervals, the actual risk is calculated as the 

ratio of the number of time intervals with excessive temperature to the total number of time 

intervals. 

𝐼𝑡−1
𝑚𝑎𝑥 =

−𝛽𝛼
ℐ𝑡−1

2𝛽𝛼
ℐ𝑡−1

2 +
√(𝛽𝛼

ℐ𝑡−1)
2

− 4𝛽𝛼
ℐ𝑡−1

2

(𝛽α
0 + 𝑊𝐹𝐶𝑡−1 − 𝑇max)

2𝛽𝛼
ℐ𝑡−1

2 , (2.25) 
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Figure 2.3 Proposed algorithm for DLR 

2.5 Application of the Proposed DLR Model to OPF 

The obtained time-coupled conductor current constraint (2.24) can be incorporated into 

different power system applications including OPF. We here consider a standard multi-period 

AC OPF to demonstrate the underlying ideas as formulated below. 
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The OPF cost objective function is minimized by (2.26), in which 𝑓𝑖(⋅) is the cost objective 

function of generator 𝑖; 𝑡 ∈ 𝒯 is the index and set of time periods; 𝑔 ∈ 𝔊 is the index and set of 

generators. Active and reactive power limits of generators are imposed by (2.27) and (2.28), 

respectively. Active power balance at buses is established by (2.29), where 𝑖, 𝑗 ∈ 𝒩  is the 

indices and set of network nodes (buses); ℓ ∈ ℰ is the index and set of network edges (lines); 

𝑎𝑔,𝑖 is a binary parameter that is equal to 1 if generator 𝑔 is located at bus 𝑖 and 0 otherwise; 

min ∑ ∑ 𝑓𝑖(𝑃𝑔,𝑡
𝐺 )

∀𝑔∀𝑡

 (2.26) 

𝑃𝑔
𝐺𝐿 ≤ 𝑃𝑔,𝑡

𝐺 ≤ 𝑃𝑔
𝐺𝑈 , ∀𝑔, ∀𝑡 (2.27) 

𝑄𝑔
𝐺𝐿 ≤ 𝑄𝑔,𝑡

𝐺 ≤ 𝑄𝑔
𝐺𝑈, ∀𝑔, ∀𝑡 (2.28) 

∑ 𝑃𝑔,𝑡
𝐺 𝑎𝑔,𝑖

∀𝑔

− ∑ 𝑃ℓ,𝑡(𝑏ℓ,𝑖,𝑗 − 𝑏ℓ,𝑗,𝑖)

∀ℓ,𝑗

= 𝑃𝑖,𝑡
𝐷 + 𝐺𝑖

𝑠𝑉𝑖,𝑡
2 , ∀𝑖, ∀𝑡 (2.29) 

∑ 𝑄𝑔,𝑡
𝐺 𝑎𝑔,𝑖

∀𝑔

− ∑ 𝑄ℓ,𝑡(𝑏ℓ,𝑖,𝑗 − 𝑏ℓ,𝑗,𝑖)

∀ℓ,𝑗

= 𝑄𝑖,𝑡
𝐷 − 𝐵𝑖

𝑠𝑉𝑖,𝑡
2 , ∀𝑖, ∀𝑡 (2.30) 

𝑃ℓ,𝑡 = 𝐺ℓ ∑ 𝑉𝑖,𝑡
2 𝑐ℓ,𝑖

∀𝑖

− 𝐺ℓ ∑ 𝑉𝑖,𝑡𝑉𝑗,𝑡cos𝜃𝑖,𝑗,𝑡𝑏ℓ,𝑖,𝑗

∀𝑖,𝑗

 

−𝐵ℓ ∑ 𝑉𝑖,𝑡𝑉𝑗,𝑡sin𝜃𝑖,𝑗,𝑡𝑏ℓ,𝑖,𝑗

∀𝑖,𝑗

, ∀ℓ, ∀𝑡 
(2.31) 

𝑄ℓ,𝑡 = −𝐵ℓ ∑ 𝑉𝑖,𝑡
2 𝑐ℓ,𝑖

∀𝑖

+ 𝐵ℓ ∑ 𝑉𝑖,𝑡𝑉𝑗,𝑡cos𝜃𝑖,𝑗,𝑡𝑏ℓ,𝑖,𝑗

∀𝑖,𝑗

 

−𝐺ℓ ∑ 𝑉𝑖,𝑡𝑉𝑗,𝑡sin𝜃𝑖,𝑗,𝑡𝑏ℓ,𝑖,𝑗

∀𝑖,𝑗

, ∀ℓ, ∀𝑡 
(2.32) 

𝐼ℓ,𝑡
2 =

𝑃ℓ,𝑡
2 + 𝑄ℓ,𝑡

2

∑ 𝑉𝑖,𝑡
2 𝑐ℓ,𝑖∀𝑖

, ∀ℓ ∈ ℒ ⊆ ℰ, ∀𝑡 (2.33) 

𝐼ℓ,𝑡 = √
𝑃ℓ,𝑡

2 + 𝑄ℓ,𝑡
2

∑ 𝑉𝑖,𝑡
2 𝑐ℓ,𝑖∀𝑖

, ∀ℓ ∈ ℒ ⊆ ℰ, ∀𝑡 (2.34) 

𝛽𝛼
0 + ∑ 𝛽𝛼

ℐ𝑡−𝑗
2

𝐼ℓ,𝑡−𝑗
2

𝑘

𝑗=1

+ ∑ 𝛽𝛼

ℐ𝑡−𝑗𝐼𝑡−𝑗

𝑘

𝑗=1

+ ∑ 𝑊𝐹𝐶𝑡−𝑗

𝑘

𝑗=1

≤ 𝑇max, ∀ℓ ∈ ℒ ⊆ ℰ, ∀𝑡 ⋅ (2.35) 

−(𝑆𝑙
𝑚𝑎𝑥)2 ≤ 𝑃ℓ,𝑡

2 + 𝑄ℓ,𝑡
2 ≤ (𝑆𝑙

𝑚𝑎𝑥)2,     ∀ℓ ∈ ℰ\ℒ, ∀𝑡 (2.36) 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖,𝑡 ≤ 𝑉𝑖

𝑚𝑎𝑥, ∀𝑖, ∀𝑡 (2.37) 
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𝑃ℓ,𝑡 is the active power flow of line ℓ at time period 𝑡; 𝑏ℓ,𝑖,𝑗 is a binary parameter that equals to 

1 if line ℓ connects buses 𝑖 and 𝑗 and 0 otherwise; 𝑃𝑖,𝑡
𝐷  is the active power demand of bus 𝑖 at 

time period 𝑡; 𝐺𝑖
𝑠 is the shunt conductance at bus 𝑖; 𝑉𝑖,𝑡 is the voltage magnitude of bus 𝑖 at time 

period 𝑡. Similarly, reactive power balance at buses is imposed by (2.30), where 𝐵𝑖
𝑠 is the shunt 

susceptance at bus 𝑖. Active power flow of lines is given by (2.31), in which 𝐺ℓ and 𝐵ℓ represent 

the conductance and susceptance of line ℓ, respectively; 𝑐ℓ,𝑖 is a binary parameter that equals to 

1 if line ℓ is connected to bus 𝑖  and 0 otherwise; 𝜃𝑖,𝑗,𝑡 = 𝜃𝑖,𝑡 − 𝜃𝑗,𝑡 ; 𝑉𝑖,𝑡∠𝜃𝑖,𝑡  is the voltage 

phasor of bus 𝑖 voltage at time period 𝑡. Similarly, (2.32) gives reactive power flow of lines. 

The square of the conductor current of DLR-controlled lines ℓ ∈ ℒ ⊆ ℰ at time period 𝑡 and its 

current value are given by (2.33) and (2.34). Similar to (2.24), the conductor temperature of 

DLR-controlled line ℓ is constrained by (2.35) in terms of 𝛼-quantile or the 𝛼-superquantile for 

QR or SQR, respectively. It is noted that since (2.35) incorporates the risk-based stochastic DLR 

into the OPF in a modular manner, it can also be easily incorporated in other applications. The 

MVA power of non-DLR lines and voltage magnitude of buses are constrained by (2.36) and 

(2.37), respectively. 

2.6 Case Study and Numerical Results 

The proposed method is examined on the updated RTS network [62] assuming one-hour-

ahead multi-period OPF with a five-minute time resolution. The line between buses 15–21 with 

the length 60 km is chosen to be monitored for DLR. Its conductor is considered “Falcon” 72/7 

with type of aluminum conductor steel-reinforced (ACSR) with the maximum temperature 

rating set at 80 C. The SLR current of the conductor is assumed to be 1269 A calculated at the 

conditions of ambient temperature 35 C, perpendicular wind speed 0.6 m/s, and solar radiation 
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900 W/m2. The risk level for risk-averse models is set at 5%. Other non-DLR lines of the test 

system are limited with their MVA rating, and the voltage magnitude of buses is confined into 

the range [0.95, 1.05] pu. 

For historical time-series data, we use the hourly weather data available from the 

“Assiniboia Airport” weather station in Saskatchewan, Canada. We interpolate these data to 

have a dataset with a 5-minute resolution, which is short enough to capture dynamic variations 

of weather conditions. We use the data from June and July 2019 to estimate the DLR models 

and data from August 2019 to evaluate and validate the proposed models. 

To evaluate and compare the proposed method in different situations, the following models 

are considered: 

• SLR: The static line rating model. 

• LS: The LS based model [22] having the structure of (2.24) with 𝑘 = 3. 

• CC: The standard chance-constrained based on the steady-state model (2.3). 

• QR: The proposed QR DLR model (2.24) with 𝑘 = 1, 2, 3 (referred to QR1, QR2, and QR3, 

respectively). 

• SQR: The proposed SQR DLR model (2.24) with 𝑘 = 1, 2, 3 (referred to SQR1, SQR2, and 

SQR3, respectively). 

The SLR model provides the static rating of the line using conservative weather 

assumptions. The LS forecast model uses three time lags (𝑘 = 3) of historical data. Model CC 

reveals the effect of imposing chance constraints on the steady state DLR forecast. By 

comparing SLR and CC models, it is possible to find out the overall effect of chance-constrained 
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DLR on its conventional implementation. Models SLR and CC do not consider the conductor 

time evolution. The QR and SQR models are implemented with three different values of time 

lags 𝑘 to reveal the effect of time lags in (2.24) on prediction. All above-mentioned models are 

built using data from June and July 2019 and then, forecast data from August 2019 are used in 

OPFs based on the created models; next, models are validated using actual data from August 

2019. 

It is noted that the predicted values of weather parameters, which are labeled 𝑊𝐹𝐶  in 

(2.24), are used in the forecast of all examined models. Because these predicted weather 

parameters have some forecast errors, the actual conductor temperature may violate its 

allowable limit when calculated with the actual realizations of weather parameters and the 

scheduled conductor current. One result is a probability of excess conductor temperature 

conditioned on the uncertainty of weather parameters. Each risk-averse model (i.e., CC, QR1, 

QR2, QR3, SQR1, SQR2, and SQR3) manages this risk with its own strategy. 

Results of the examined models are presented in Table 2.1 with average performance 

indices over the evaluation period, which includes August 2019 with 31 days (with 744 hourly 

OPFs). In column 2, the amount of transferred energy through the DLR conductor is reported. 

In column 3, the average excess temperature is reported for hours that violate the maximum 80 

C conductor temperature limit when actual realizations of weather data are applied. In column 

4, the actual risk is calculated as the ratio of the number of time intervals with conductor 

temperature violation to the total number of time intervals. If the OPF cost for the SLR method 

is considered 100%, the cost of other models in Table 2.1 have similar values ranging from 

95.13% to 95.84%. Since the cost mainly depends on other network parameters, such as 
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generator cost functions and network congestion, it may not present a relationship with risk-

based quantities. 

Table 2.1 Results of Examined Modes 

Model Average energy transferred (MWh) Average excess temperature (C) Actual risk (%) 

SLR 302.8 80.2 0.02 

LS 407.7 90.5 6.29 

CC 390.9 85.1 0.81 

QR1 397.6 85.3 1.44 

QR2 398.9 84.4 1.32 

QR3 400.9 84.7 1.85 

SQR1 391.3 84.9 0.73 

SQR2 393.7 83.9 0.87 

SQR3 394.3 84.2 1.24 

 

As seen from Table 2.1, all risk-averse and SLR models manage to reduce the actual risk 

within the preset value 5%. However, because the LS model fails to consider the risk, it results 

in a solution with the highest actual risk 6.29%. Although the LS model leads to a higher level 

of transferred energy (407.7 MWh), it has the worst average excess conductor temperature (90.5 

C) and leads to an insecure solution. In contrast, although the SLR model has the lowest risk 

and excess temperature, its transferred energy (302.8 MWh) is too low implying a solution that 

is too conservative and not cost-effective. The CC model, which is risk-averse but without 

coupling between time periods, leads to a transferred energy of 390.9 MWh (higher than the 

SLR model) as well as an acceptable risk (0.81%) and excess temperature (85.1 C). The QR2 

model offers a slightly higher transferred energy (398.9 MWh) than the QR1 model even with 

lower excess temperature and risk. The QR3 model offers a slightly higher transferred energy 

than the QR2 model with a similar excess temperature, but with a higher risk (1.85%). Thus, 

among the QR1, QR2, and QR3 models, the QR2 solution may represent a preferred 
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compromise in terms of the three parameters in Table 2.1. SQR models are generally more risk-

averse than QR models. 

 

Figure 2.4 Solutions by the examined models and Pareto-optimal front 

It is worthwhile to note that the risk and benefit are two competitive targets; by optimizing 

one of them, the other one may be deteriorated. Since the goal of DLR is to increase energy 

transfer capability of an overhead line, it is selected here as the desired benefit objective. On 

the other hand, given that the assigned risk level of 5% holds for all risk-averse methods in 

Table 2.1, the average excess temperature is selected here as the risk objective. This is motivated 

by the fact that small overheating can be smoothed out because of the conductor thermal inertia, 

and it is better handled in real-time operation when actual measurements are available. For these 

two metrics, the Pareto front is plotted in Figure 2.4 using the obtained solutions. This Pareto 

front helps the power system operator choose one of solutions to be implemented. Solutions by 

the SLR and LS are able to optimize only one of objective functions and then, the other one is 
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deteriorated. As seen from Figure 2.4, the QR2 solution provides the most acceptable tradeoff 

between the average excess temperature and transferred energy. Therefore, the QR2 solution 

may be the preferred one. In next stages, solutions by SQR2 and QR3 may make acceptable 

tradeoff between the two competing objective functions. Solutions by SQR1, CC, and QR1 fail 

to make acceptable tradeoffs between the two objective functions. 

In order to perform a more detailed analysis, the conductor temperature, current, and 

transferred power in selected hour 86 are plotted in Figure 2.5 for models QR2 and SQR2 (as 

the preferred ones) and CC (as an outlier) with a five-minute resolution. As seen from Figure 

2.5 (a), the selected hour encounters heavily loaded conditions and extreme weather parameters, 

and the conductor temperature reaches values above its allowable 80 C limit when the actual 

realizations of weather parameters are applied. The maximum experienced conductor 

temperature for models CC, QR2, and SQR2 in Figure 2.5 (a) is 89.2, 85.8, and 85.3 C, 

respectively. This figure shows that the examined models perform similarly when the loading 

level is low (early times in the horizontal axis); that is, all models are able to estimate a sufficient 

transmission margin. However, they perform differently in higher loading times (starting from 

around 𝑡 = 25 min  in Figure 2.5 (b)-(c)). One interesting difference in this figure is the 

preemptive reduction of conductor temperatures by the QR2 and SQR2 models. When the 

current or power in Figure 2.5 (b)-(c) starts to increase from around 𝑡 = 25 min, the conductor 

temperature is affected after some delays due to the thermal inertia of the conductor, with the 

conductor temperature reaching its peak later at around 𝑡 = 45 min in Figure 2.5 (a). Because 

the QR2 and SQR2 models consider time coupling, here they are able to mitigate the excessive 

temperature; this is not the case for the CC model that does not consider the time coupling. 

Consequently, the CC model results in the conductor facing the highest temperatures for longer 
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periods, whereas the QR2 and SQR2 models lead to lower maximum temperatures. This 

analysis is only for the selected hour; the average performance of the examined models over the 

entire evaluation period is presented in Table 2.1. 

 

Figure 2.5 Variation of conductor parameters in the selected hour with actual realizations 

of weather parameters: (a) temperature, (b) current, and (c) transmitted power 

In order to evaluate the effect of bilinear terms of input vector on performance metrics, the 

SQR2 method is selected to be implemented with/without bilinear terms. Results are presented 
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in Table 2.2. As seen in this table, while the introduction of bilinear terms has a minor impact 

on the average energy transfer, it significantly affects the ability of the model to address the risk 

and the temperature of the overloading. The two last metrics in Table 2.2 describe the statistical 

distribution of forecast residuals caused by the weather forecast error. As seen, predictions with 

considering the bilinear terms results in a better forecast with lower standard deviation and mean 

absolute deviation implying more robust results. 

Table 2.2 Effect of Bilinear Terms on the Solution 

Metric SQR2 without bilinear terms SQR2 with bilinear terms 

Average energy transmitted (MWh) 393.0 393.7 

Average excess temperature (C) 85.5 83.9 

Actual risk (%) 3.12 0.87 

Standard deviation (C) 9.7 8.6 

Mean absolute deviation (C) 7.0 6.4 

 

The forecast error of weather parameters impacts DLR performance. The standard 

deviation of the forecast error can be employed as an index, where ideally a zero standard 

deviation implies no forecast error, and a higher standard deviation indicates a lower forecast 

accuracy. The impact of forecast error standard deviation is presented in Table 2.3 for wind 

speed and ambient temperature, as the most influential weather parameters on the DLR, solved 

by SQR1. For each time interval in the evaluation period (August 2019), the weather parameter 

is forecast and then, its forecast error is calculated using its actual realization. Afterwards, the 

standard deviation of the forecast error time series is calculated as reported in Table 2.3 for each 

dataset. New datasets are generated using  the variance scaling method, in which the error time 

series is scaled by a coefficient, and then, the forecast time series is estimated in a backward 

manner as a new dataset. Finally, after creating the DLR model (Figure 2.3) for each dataset, 
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the conductor rating is calculated using (2.25) as reported in Table 2.3. As seen in this table, 

when the standard deviation of forecast errors of weather parameters increases, the conductor 

rating decreases. It implies that a more accurate forecast model schedules the conductor capacity 

more effectively. 

Table 2.3 Impact of Weather Forecasting Errors on the Conductor Rating 

Standard deviation of wind 

speed forecast error (m/s) 

Standard deviation of ambient 

temperature forecast error (C) 

Average estimated 

conductor rating (kA) 

1.23 1.56 1.91 

1.51 1.92 1.85 

1.74 2.21 1.81 

1.94 2.47 1.78 

2.13 2.71 1.75 

 

2.7 Conclusions 

In this work, two data-based models including QR and SQR are presented to estimate 

dynamic line rating values considering thermal evolution of conductors. Uncertainty in weather-

related forecast values are modeled by a risk-averse method to prevent overloading risk of 

conductors. The proposed method is finally converted to a closed relation constraint that is 

appropriate for optimization problems such as OPF. From our case studies, we have found that 

1) the proposed methods result in Pareto-optimal solutions making a tradeoff between conductor 

transmitted energy and excess temperature when compared with other existing SLR, LS, and 

CC methods, 2) the QR method with two time lags provides 31.7% more transmitted energy 

than the SLR solution, 3) compared with the CC method, QR and SQR solutions with two time 

lags offer higher values of conductor energy transfer capacity and lower excessive conductor 

temperature when the actual realizations of weather parameters are applied.  
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3 A Framework for Power System Operational Planning under 

Uncertainty Using Coherent Risk Measures 

3.1 Abstract 

With the increasing integration of renewable energy sources (RESs) and the 

implementation of dynamic line rating (DLR), the accompanying uncertainties in power 

systems require intensive management to ensure reliable and secure operational planning. 

However, while numerous approaches and methods in the literature deal with uncertainty, they 

have not been analyzed axiomatically. This work presents an analysis of risk in power system 

operation using coherent risk measures, elaborating on the origin of risk and the mechanisms of 

its management in the presence of various sources of uncertainty. To illustrate the practicality 

and benefits of coherent risk measures, a risk-averse asymmetry robust unit commitment (UC) 

model is established. It is based on coherent reformulations of the uncertain reserve and line 

flow constraints and is formulated in the form of a compact computationally efficient mixed-

integer second-order conic program (SOCP). The overall performance of the proposed 

framework is verified using the updated 2019 IEEE Reliability Test System over a year-long 

period. 

3.2 Nomenclature 

• Problem Parameters: 

𝓖  Set of conventional generators. 

𝓓  Set of loads. 

𝓡  Set of renewable energy sources. 
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𝓛𝐃  Set of lines with dynamic line rating. 

𝓛𝐒  Set of lines without dynamic line rating. 

𝓣  Set of time intervals. 

𝜋𝑙,𝑖 Power transfer distribution factor of line 𝑙 for the origin bus 𝑖. 

𝑃𝑙
max  Maximum capacity of line 𝑙. 

𝑃𝑔
max/𝑃𝑔

min Maximum/minimum output of generator 𝑔. 

𝑅𝑔
up/𝑅𝑔

𝑑own Up/down ramp capability of generator 𝑔. 

𝜏𝑔
on/𝜏𝑔

off  Minimum online/offline time of generator 𝑔. 

𝑓𝑔(⋅) Cost function of generator 𝑔. 

𝑐𝑔
su/𝑐𝑔

sd  Start-up/shut-down cost of generator 𝑔. 

𝑃𝑑,𝑡  Demand of load 𝑑 at time 𝑡. 

𝑃𝑟
max Maximum output (capacity) of renewable energy source (RES) r. 

• Conventional Optimization Variables: 

𝑃𝑔,𝑡       Output of generator 𝑔 at time 𝑡. 

𝑢𝑔,𝑡        On/off status of generator 𝑔 at time 𝑡. 

𝑣𝑔,𝑡        Start-up status of generator 𝑔 at time 𝑡. 

𝑤𝑔,𝑡        Shut-down status of generator 𝑔 at time 𝑡. 

• Robust Framework Parameters and Variables: 

𝑃𝑟,𝑡  Scheduling variable of RES 𝑟 at time 𝑡. 

𝑃̃𝑟,𝑡  Forecast random variable of RES 𝑟 at time 𝑡. 

𝑃𝑟,𝑡
0   Nominal value of forecast random variable of RES 𝑟 at time 𝑡. 

𝑝𝑟,𝑡/𝑞𝑟,𝑡  Forward/backward deviation of forecast random variable of RES 𝑟 at time 𝑡. 

𝑃𝑟,𝑡/𝑃𝑟,𝑡  Upper/lower bound of the zero mean forecast random variable of RES 𝑟 at time 𝑡. 

𝑃̃𝑙,𝑡  Forecast random variable of dynamic line rating (DLR) for line 𝑙 at time 𝑡. 

𝑃𝑙,𝑡
0   Nominal value of forecast random variable of DLR for line 𝑙 at time 𝑡.  
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𝑝𝑙,𝑡/𝑞𝑙,𝑡  Forward/backward deviation of forecast random variable of DLR for line 𝑙 at time 

𝑡.  

𝑃𝑙,𝑡/𝑃𝑙,𝑡  Upper/lower bound of the support of the zero mean forecast random variable of DLR 

for line 𝑙 at time 𝑡. 

Ω  Uncertainty budget parameter.  

𝜖 Probability of constraint violation. 

𝒚  Vector of robust counterpart auxiliary variables.  

𝒓/𝒔  Vector of upper/lower bound auxiliary variables. 

3.3 Introduction 

With the recent and ongoing changes in modern power systems, the uncertainty therein is 

becoming more impactful, widespread, and diverse, effectively itself constituting an inherent 

property. To implement energy sustainability and emission reductions, a considerable amount 

of current conventional generation is being replaced with renewable energy sources (RESs), 

primarily in the form of wind and solar power. While RESs have numerous benefits, their output 

is highly variable, which introduces forecast uncertainty and can result in the violation of 

operating constraints. Furthermore, the successful integration of large numbers of RESs also 

relies on the transfer capacity of the transmission network, which is potentially congested. 

Conventionally, system operators determine the capacity of thermally limited transmission lines 

based on their static line rating (SLR), which assumes conservative weather conditions. 

Alternatively, the dynamic line rating (DLR) calculated based on relevant weather conditions 

provides accurate estimations of transmission line capacity [19], allowing the system operator 

to more efficiently utilize existing infrastructure. The DLR can lead to a decrease in the number 

and severity of transmission congestions, decrease in operating costs, and increase in renewable 

energy utilization [9]. However, direct application of DLR forecasts may also lead to an 
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overestimation of the capacity and result in overloading due to the inherent uncertainty [17], 

[43]. Thus, the inclusion of the DLR in operational planning problems should consider not only 

its benefits but also the related risks.  

As power systems are undergoing such significant changes, forecast uncertainty becomes 

a systemic issue affecting power system operational planning problems. One way to address the 

uncertainty is by using the stochastic programming approach, such as two-stage stochastic unit 

commitment (UC) [63], [64] that aims to minimize first stage commitment costs and the 

expected costs due to the second stage realizations of uncertain parameters. While stochastic 

programming is intuitive and easily extendable, it suffers from prohibitively high 

dimensionality, necessitating decomposition algorithms, and cannot provide performance 

guarantees. Alternatively, the worst-case costs during the second stage can be minimized with 

respect to some set of uncertainty parameters. An example of such an approach is two-stage 

robust UC [65], [66], which often results in highly secure but significantly less economical 

solutions. Recently, a subject of intense research has been distributionally robust optimization, 

which assumes that the actual distribution of the uncertain parameters is not known but belongs 

to some family of distributions. A distributional family is commonly defined using the 

information of its moments [67], by some distance function with respect to a data sample [68], 

[69], or a combination of both [43]. Risk-based approaches provide another way of dealing with 

uncertainty by defining a function between the undesirable outcome and underlying uncertain 

parameters, for example, chance-constrained UC [70], mean-variance formulation of UC [71], 

as well as models based on coherent risk measures, as discussed next. 

Ultimately, all existing approaches can be understood as dealing with the consequences of 

the realizations of uncertain parameters, labelled as “risk” in a broader sense of the term [72]. 
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The framework of coherent risk measures presented in  [72] and [73] provides an axiomatic 

foundation that enables qualitative analysis of risk. Moreover, particular coherent risk measures 

provide quantitative definitions of risk and allow flexible management of risk in a tractable and 

computationally efficient way [74], [75]. Originally developed for the needs of the financial 

sector, the coherent risk measures framework is suitable for any application concerned with risk 

evaluation and management. Thus, one of the most widely used coherent risk measures, 

conditional value-at-risk (CVaR) [73], has been successfully applied in various power systems 

problems. CVaR has been used in the electricity market setting for distributed market clearing 

in [76], risk-averse decision making for demand-side resource aggregators in [77], and wind 

power producers in [78]. CVaR has also been integrated into operational planning problems. 

For example, a two-stage stochastic UC formulation is proposed in [79] for isolated power 

systems, a multi-stage UC model for smart grids is developed in [80], a security-constrained 

UC model is proposed in [81], and the decomposition approaches are investigated in [82]. 

CVaR is a reasonable choice of a coherent risk measure in most applications, but its 

performance depends on the sample size and sampling method. As a result, ensuring 

performance guarantees can make the problem size prohibitively large due to the required 

addition of extra variables and constraints for each sample. This situation is particularly relevant 

in the presence of discrete variables and multiple uncertain constraints, as is the case of UC. 

Moreover, the properties of coherent risk measures are often underutilized due to the way that 

uncertainty is implemented. That is, most of the existing formulations consider the RES 

forecasts as passive sources of uncertainty, neglecting the option of managing risk by actively 

adjusting the expected power from RESs during the operational planning. Most importantly, 

from the axiomatic perspective of risk measures, the phenomenon of risk associated with power 
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system operational planning under uncertainty has not been studied and analyzed in a systematic 

and unified way. 

In this work, the coherent risk measures framework is applied to analyze the risk of power 

system operational planning under uncertainty, resulting in the first introduction of a systematic 

treatment of risk. First, coherent reformulations of uncertain constraints are presented, with 

RESs formulated as schedulable and multiplicative sources of uncertainty. Second, the 

interactions between random and deterministic factors and their effects on the risk of constraint 

violations are analyzed. The relationship between coherent risk measures and the reduction of 

risk is presented. Third, a risk-averse robust UC model implementing the coherent 

reformulations of the uncertain power reserve and line flow constraints is developed. The 

reformulation is based on an asymmetric uncertainty set with a compact formulation and 

provides guarantees of constraint violation probability. Lastly, the ability of the proposed 

framework to efficiently manage the risks caused by different sources of uncertainty in a unified 

way is demonstrated by comprehensive year-long case studies. 

The main contributions of this work are summarized as follows: 

1) Analysis and interpretation of risk in power system operational planning are performed for 

the first time using the coherent risk measures framework. The relationships between 

various sources of uncertainty and risk are explained and quantified. 

2) Reformulations of uncertain power system constraints are developed in a fully coherent 

way. Also, a new method of modelling uncertain RESs with adjustable power references is 

proposed for flexible risk management in operational planning problems. 
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3) A risk-averse robust UC model is established with coherent risk measures of the uncertain 

constraints in the form of a computationally efficient mixed-integer second-order conic 

program (SOCP). The performance of the model is validated using year-long case studies 

on the 2019 update of the IEEE RTS system. 

 

3.4 Background on Risk Measures 

3.4.1 Coherent Risk Measures 

A risk measure is a function 𝜌(𝜐) used to quantify the risk corresponding to a random variable 

𝑣. Following the convention, assume that positive values of 𝜐 are beneficial and the risk is 

acceptable when 𝜌(𝜐) ≤ 0. The coherent risk measures are defined as a subset of risk measures 

that satisfy several properties in [72], [73]: 

The first property is known as translation invariance and indicates that adding a deterministic 

amount must reduce the risk by the same amount. The second property is known as sub-

additivity and can be interpreted as a form of “diversification”, meaning that the overall risk 

must not exceed the sum of individual risks of underlying random factors. The third property is 

known as positive homogeneity and means that the scale of random factors must correspond to 

the scale of risk. It also implies that the risk of not including a random factor is zero, 𝜌(0) = 0. 

1) 𝜌(𝜐 + 𝐶) = 𝜌(𝜐) − 𝐶, ∀𝐶 ∈ 𝐑. 

2) 𝜌(𝜐1 + 𝜐2) ≤ 𝜌(𝜐1) + 𝜌(𝜐2), ∀ random variables 𝜐1,𝜐2. 

3) 𝜌(𝜆𝜐) = 𝜆𝜌(𝜐), ∀𝜆 ≥ 0. 

4) 𝜌(𝜐1) ≤ 𝜌(𝜐2), ∀ random variables 𝜐1 ≥ 𝜐2. 
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The fourth property is known as monotonicity and means that the risk of the more beneficial 

(less risky) random factors must not exceed that of the less beneficial (more risky) factors. 

Two of the most commonly used risk measures are the value-at-risk (VaR) and conditional 

value-at-risk (CVaR) [72], which can be respectively defined as: 

where 𝐹𝜐(⋅) is the cumulative distribution function of 𝜐 and 𝜖  is the probability (risk) level 

between 0 and 1. VaR is often referred to as a chance constraint when it is used as a constraint 

in an optimization problem. While VaR can be interpreted as the 𝛼-quantile of the respective 

random variable, it is not a coherent risk measure because it violates the sub-additivity property 

[72]. CVaR is the conditional expected value of a random variable for outcomes greater than 

the corresponding VaR and is a coherent risk measure [72]. While neither VaR nor CVaR has 

general computationally efficient forms, the common approach is to use sample-based 

approximations by introducing additional constraints and variables for each sample. In this case, 

VaR optimization can be reformulated as a mixed-integer linear problem and CVaR as a linear 

problem [73]. Yet, the quality of such approximations is inversely proportional to the number 

of scenarios used and is further dependent on the sampling technique [83]. Therefore, using 

sample-based reformulations can lead to a significant increase in the size of an optimization 

problem, even for medium-sized problems. 

3.4.2 Asymmetry Robust Framework 

An uncertain linear constraint can be expressed as follows: 

VaR1−𝜖(𝜐) = inf
𝛾

{𝛾|𝐹𝜐(𝛾) ≥ 1 − 𝜖}, 
(3.1) 

CVaR1−𝜖(𝜐) =
1

𝜖
∫ 𝑉𝑎𝑅𝛽(𝜐)

1

1−𝜖

𝑑𝛽, (3.2) 



49 

 

where 𝒙 is the vector of decision variables and (𝐚̃, b̃) is the vector of uncertain coefficients. The 

uncertain coefficients can then be expressed in terms of underlying independent random 

variables: 

where (𝐚𝟎, b0) are the nominal values of the coefficients and (𝚫𝐚𝐣,Δbj) are the uncertainty 

contributions of N underlying independent random variables z̃𝑗 . Each random variable z̃𝑗  is 

assumed to have zero mean and support of [−z
𝑗
, z𝑗], with z

𝑗
, z𝑗 > 0 being its lower and upper 

bounds, respectively. 

Each random variable z̃ is assumed to belong to the asymmetric uncertainty set 𝒜, defined as 

follows [74], [75]: 

𝒜 = {𝐳 | ∃𝐯, 𝐰 ∈ 𝐑+
N , 𝐳 = 𝐯 − 𝐰,  

‖𝐏−1𝐯 + 𝐐−1𝐰‖ ≤Ω, −𝐳 ≤ 𝐳 ≤ 𝐳}, 
(3.5) 

where 𝐳 is a vector of the random variables z̃𝑗, 𝐏 = diag(𝑝1, . . , 𝑝N) and 𝐐 = diag(𝑞1, . . , 𝑞N) are 

the diagonal matrices of the forward and backward deviation measures respectively, and Ω is 

the size of the uncertainty set, referred to as the uncertainty budget. The forward and backward 

deviation measures generalize the standard deviation measure to capture the distributional 

asymmetry. These deviation measures can be calculated directly from the data samples of the 

random variable, from the moment generating functions of random variables, or approximated 

in a distributionally robust way [74]. In this work, the data-based approach is utilized. Therefore, 

𝐚̃T𝒙 ≤ b̃, (3.3) 

(𝐚̃, b̃) = (𝐚𝟎, b0) + ∑(𝚫𝐚𝐣,Δbj)z̃𝑗

N

𝑗=1

, (3.4)  
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if a sample {𝑠(1), . . , 𝑠(𝑘)} of a random variable 𝑧 with sample mean 𝑠̌ is available, the forward 

and backward deviations, 𝑝(𝑧) and 𝑞(𝑧), can be estimated using line search based on the 

following expressions [84]: 

An example of an asymmetric uncertainty set corresponding to random variables, 𝑧1 =

𝐵𝑒𝑡𝑎(1,5) and 𝑧2 = 𝐵𝑒𝑡𝑎(5,1), is shown in Figure 3.1 for various values of the uncertainty 

budget. 

Then, the uncertain constraint (3.3) can be included in an optimization problem by initially 

replacing it with the corresponding VaR risk measure, commonly known as the chance 

constraint: 

P(𝐚̃T𝒙 ≤ b̃) ≥ 1 − 𝜖 ↔ VaR1−𝜖(𝐚̃T𝒙 − b̃) ≤ 0, (3.8) 

where 𝜖 is the constraint violation probability level. 

𝑝(z) = sup
𝜃∈𝐑+

1

𝜃
√2 ln

1

𝑘
∑ exp(𝜃(𝑠(𝑖) − 𝑠̌))

𝑘

𝑖=1

, (3.6) 

𝑞(z) = sup
𝜃∈𝐑+

1

𝜃
√2 ln

1

𝑘
∑ exp(−𝜃(𝑠(𝑖) − 𝑠̌))

𝑘

𝑖=1

. (3.7) 



51 

 

 
Figure 3.1 Asymmetric Uncertainty Set Example 

To overcome the abovementioned shortcomings of VaR, a robust optimization framework 

based on an upper bound of VaR is proposed in [74], [75]. The robust reformulation of the 

uncertain linear constraint VaR (3.8) with the asymmetric uncertainty set (3.5) is expressed as 

follows: 

For N underlying random variables, the robust reformulation requires the introduction of 3N 

new variables, 2N new linear inequalities, and 1 conic inequality. Therefore, the reformulation 

has a compact size and can be handled by commercial SOCP solvers. Note that the risk 

𝐚𝟎T
𝒙 +Ω‖𝒚‖2 + 𝒓T𝐳 + 𝒔T𝐳 ≤ b0, (3.9) 

𝑦𝑗 ≥ 𝑝𝑗 (𝚫𝐚𝐣𝑻
𝒙 −Δbj − 𝑟𝑗 + 𝑠𝑗) , ∀𝑗 = {1, . . , N}, (3.10) 

𝑦𝑗 ≥ −𝑞𝑗 (𝚫𝐚𝐣𝑻
𝒙 −Δbj − 𝑟𝑗 + 𝑠𝑗) , ∀𝑗 = {1, . . , N}, (3.11) 

𝒚, 𝒓, 𝒔 ≥ 𝟎. (3.12) 
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contribution of each underlying random variable can be limited by its distributional support. 

This enables the modeler to establish the connection between the physical range of the 

underlying phenomena and its variability. 

Moreover, asymmetry robust reformulation acts as an approximation of CVaR [75]. In fact, 

while the size of the sample-based formulation of CVaR depends linearly on the number of 

samples, the size of the asymmetry robust reformulation depends linearly on the number of 

underlying random variables. Thus, when the number of random variables is significantly 

smaller than the number of samples, the asymmetry robust reformulation can lead to a 

considerable decrease in computational time, as is demonstrated in the case studies of Section 

3.8.2. 

The asymmetry robust reformulation provides an upper bound on the VaR problem, by 

relating the constraint violation probability 𝜖  and the uncertainty budget Ω . The following 

formula expresses this relation: 

𝜖 = exp(−
Ω2

2
). (3.13) 

Note that the independence assumption of underlying random variables z̃𝑗  in (3.4) is only 

required to establish the relationship (3.13) between the uncertainty budget and constraint 

violation probability. In fact, if a significant correlation exists between the underlying random 

variables, it can be included by using a corresponding covariance matrix [75]. While all 

coherency properties still hold in this case, the upper bound on risk (3.13) can only be used as 

a reference. 
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The asymmetric uncertainty set is a generalization of the conventional symmetric uncertainty 

set based on second moments and reduces to it in the case of symmetric distributions of 

underlying random variables. Yet, the symmetric uncertainty set robust reformulation is not 

coherent because the monotonicity property can be violated [75].  

While the forecasting error distributions of many uncertain phenomena are symmetric, 

conditional forecasts can be created by conditioning the random variable on some event, such 

as belonging to a particular interval [85]. In turn, conditional forecasts usually have asymmetric 

features, enabling uncertainty set parameters to be calculated for every conditional forecast 

random variable and facilitating the coherency benefits of asymmetry robust framework. 

3.5 Reformulation and Analysis of Power System Uncertainty Using 

Coherent Risk Measures 

3.5.1 Multiplicative Reformulation of Uncertain RESs 

In the proposed approach, each RES is formulated as an adjustable power reference variable. 

Then, in every uncertain inequality constraint each RES reference variable is multiplied by the 

corresponding RES forecast random variable. In all equality constraints and inequality 

constraints where uncertainty is negligible, each RES reference variable is multiplied by the 

mean of its forecast random variable. Thus, for each RES 𝑟 a new optimization variable 𝑃𝑟,𝑡 is 

introduced, corresponding to its scheduling decision at time 𝑡 . Variable 𝑃𝑟,𝑡  enters each 

uncertain constraint multiplied by a contribution factor and by a random coefficient 𝑃̃𝑟,𝑡 

corresponding to the forecast random variable of RES 𝑟 at time 𝑡.  



54 

 

The RES scheduling variable 𝑃𝑟,𝑡 can be constrained between 0 and 1, resulting in the RES 

being scheduled between zero and the nominal (mean) value of the forecast random variable 

𝑃𝑟,𝑡
0 . Alternatively, 𝑃𝑟,𝑡 can be constrained between 0 and 𝑃𝑟

max/𝑃𝑟,𝑡
0 , enabling the RES to be 

scheduled up to its full capacity. These approaches are referred to as “underscheduling” and 

“overscheduling”, respectively. Note that RESs are considered schedulable only during the 

operational planning problem for the purpose of risk management when their output is modeled 

as random variables. During real-time operation, the output of RESs is still dependent on actual 

weather conditions, but is assumed to be curtailable. Compared to “underscheduling”, 

“overscheduling” increases the scheduling range of the RESs, which can lead to an increase in 

their risk contributions above the nominal values of their forecast random variables. This can 

result in more economical but riskier solutions, as demonstrated in the case studies later. The 

use of “overscheduling” leads to the scheduling of more output from RESs and commitment of 

fewer conventional units, consequently reducing the available operating reserves and increasing 

the risk of their violation. 

With respect to the uncertain linear constraint (3.3), each RES is modeled as an element of a 

random coefficients vector 𝐚̃, multiplied by the corresponding element of the decision vector 𝒙, 

the former being the RES forecast random variable 𝑃̃𝑟,𝑡 and the latter being the RES scheduling 

variable 𝑃𝑟,𝑡. This is the main difference from most other approaches that treat RES forecast 

uncertainty additively as the right-hand side uncontrollable random term b̃, thus influencing the 

risk only through the translation invariance property and losing the benefits of the other 

properties. The relationship between the properties of coherency and power system operational 

planning is discussed next. 
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3.6 Analysis and Interpretation of Risk in Power System Operational 

Planning 

Next, each coherency property is investigated from the perspective of power system 

operational planning. The most important insight is that risk, as quantified by the corresponding 

risk measure, emerges due to the interactions between random and deterministic factors, both 

controllable and uncontrollable. Each coherency property is expanded as follows: 

1. The contribution of the conventional generators and loads to the risk can be interpreted 

through the translation invariance property. For example, for the risk measure of the 

upward reserve constraint (3.14), the property implies that committing a generating unit 

decreases the risk by its capacity, while an increase in the demand increases the risk. This 

interpretation holds even in the absence of any random terms and is valid for both discrete 

(e.g., unit commitment status) and continuous (e.g., demand response) decision variables. 

2. The property of sub-additivity states that the simultaneous contribution to the risk of 

different random factors does not exceed the sum of their individual risks. Therefore, 

considering multiple RESs through a coherent risk measure can only result in a decrease 

in the overall risk. Particularly, when more RESs are present, the probability of their 

aggregate output being low decreases, leading to a reduction of risk through 

diversification. The interaction of the uncertain RESs and DLR in the case of line flow 

constraints has the same effect and leads to further risk reduction.  

3. The property of positive homogeneity reflects how the scheduling value of each RES 

contributes to the risk when the multiplicative formulation is used. That is, the scheduling 

value of RES acts as a coefficient of the RES random variable, with possible 
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implementations and their implications as discussed in Section 3.5.1. In the case of the 

upward reserve constraint (3.14), the more (less) an RES is scheduled, the more (less) it 

contributes to the risk. Consequently, if an RES is not scheduled (i.e., scheduled to zero), 

then it does not contribute to the risk. This property is central to the proposed approach, as 

it quantifies and allows control over the relationship between the value of the RES 

scheduling and its risk contribution.  

4. The monotonicity property states that, for a particular risk measure, random factors with 

better outcomes should produce less risk. Together with the positive homogeneity 

property, monotonicity ensures the prioritization of RESs with better outcomes (less risky) 

in the overall schedule.  

3.6.1 Asymmetry Robust Reformulation of the Uncertain Reserve 

Constraints VaR 

The uncertain constraint for upward reserve is defined as the requirement to satisfy the 

demand by conventional generation and RESs. For every time period 𝑡 ∈ 𝓣, the constraint has 

the following formulation: 

∑ 𝑃𝑔,𝑡
max𝑢𝑔,𝑡

𝑔∈𝓖

+ ∑ 𝑃̃𝑟,𝑡𝑃𝑟,𝑡

𝑟∈𝓡

≥ ∑ 𝑃𝑑,𝑡

𝑑∈𝓓

. 
(3.14) 

Then, the VaR of the uncertain upward reserve constraint (3.14) is reformulated according to 

the asymmetry robust framework. Each RES forecast random variable, 𝑃̃𝑟,𝑡 = 𝑃𝑟,𝑡
0 + z̃𝑟,𝑡 , 

represents a random coefficient (3.4), which is modeled in terms of one underlying random 

variable z̃𝑟,𝑡 and nominal (mean) value 𝑃𝑟,𝑡
0 , giving the value of uncertainty contribution Δar,t 
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to be 1. In turn, z̃𝑟,𝑡 is the demeaned version of 𝑃̃𝑟,𝑡, with 𝑃𝑟,𝑡, 𝑃𝑟,𝑡, 𝑝𝑟,𝑡, and 𝑞𝑟,𝑡 representing 

the lower bound, upper bound, and forward and backward deviations of z̃𝑟,𝑡, respectively. While 

all underlying random variables are assumed independent, any correlation between multiple 

sources of uncertainty can be included accordingly [86]. 

By introducing auxiliary variables and corresponding parameters, constraint (3.14) is 

transformed into the standard form (3.9)–(3.12), having the following reformulation: 

where 𝑦𝑟,𝑡
uw, 𝑟𝑟,𝑡

uw, 𝑠𝑟,𝑡
uw  are the robust counterpart, upper bound, and lower bound auxiliary 

variables corresponding to the RES forecast random variable 𝑟  at time 𝑡 , respectively The 

elements of the vector 𝒚𝑡
uw are the variables 𝑦𝑗,𝑡

uw, and  Ωuw
 is the upward reserve uncertainty 

budget. 

The uncertain constraint for downward reserve is defined as the requirement to utilize the 

scheduled generation. For every time period 𝑡 ∈ 𝓣, the constraint has the following formulation: 

∑ 𝑃𝑔,𝑡
min𝑢𝑔,𝑡

𝑔∈𝓖

+ ∑ 𝑃̃𝑟,𝑡𝑃𝑟,𝑡

𝑟∈𝓡

≤ ∑ 𝑃𝑑,𝑡

𝑑∈𝓓

. 
(3.19) 

− ∑ 𝑃𝑔,𝑡
max𝑢𝑔,𝑡

𝑔∈𝓖

− ∑ 𝑃𝑟,𝑡
0 𝑃𝑟,𝑡

𝑟∈𝓡

+ ∑ 𝑃𝑑,𝑡

𝑑∈𝓓

 

+Ωuw‖𝒚𝑡
uw‖2 + ∑ 𝑃𝑟,𝑡𝑟𝑟,𝑡

uw

𝑟∈𝓡

+ ∑ 𝑃𝑟,𝑡𝑠𝑟,𝑡
uw

𝑟∈𝓡

≤ 0, 
(3.15) 

𝑦𝑟,𝑡
uw ≥ 𝑝𝑟,𝑡(−𝑃𝑟,𝑡 − 𝑟𝑟,𝑡

uw + 𝑠𝑟,𝑡
uw), ∀𝑟 ∈ 𝓡, (3.16) 

𝑦𝑟,𝑡
uw ≥ −𝑞𝑟,𝑡(−𝑃𝑟,𝑡 − 𝑟𝑟,𝑡

uw + 𝑠𝑟,𝑡
uw), ∀𝑟 ∈ 𝓡, (3.17) 

𝑦𝑟,𝑡
uw, 𝑟𝑟,𝑡

uw, 𝑠𝑟,𝑡
uw ≥ 0, ∀𝑟 ∈ 𝓡, (3.18) 
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Analogously, the VaR of the downward reserve constraint has the following robust 

reformulation: 

where the notation is analogous to the upward reserve case. 

3.6.2 Asymmetry Robust Reformulation of the Uncertain Line Flow 

Constraints VaR 

The uncertain linear line flow constraints, based on the DC network model, are defined as the 

requirement to not exceed the line capacity for positive and negative power flows. For every 

line monitored for DLR 𝑙 ∈ 𝓛𝐃 and every time period 𝑡 ∈ 𝓣, the constraints have the following 

formulation: 

−𝑃̃𝑙,𝑡 ≤ ∑ 𝜋𝑙,𝑔𝑃𝑔,𝑡

𝑔∈𝓖

+ ∑ 𝜋𝑙,𝑟𝑃̃𝑟,𝑡𝑃𝑟,𝑡

𝑟∈𝓡

− ∑ 𝜋𝑙,𝑑𝑃𝑑,𝑡

𝑑∈𝓓

≤ 𝑃̃𝑙,𝑡. 
(3.24) 

Similarly to the reserves constraints, each scaled RES forecast random variable 𝜋𝑙,𝑟𝑃̃𝑟,𝑡 =

𝜋𝑙,𝑟𝑃𝑟,𝑡
0 + 𝜋𝑙,𝑟 z̃𝑟,𝑡  represents a random coefficient (3.4) that is modeled in terms of one 

underlying random variable z̃𝑟,𝑡  and nominal (mean) value 𝜋𝑙,𝑟𝑃𝑟,𝑡
0 , giving the value of 

uncertainty contribution Δar,t to be 𝜋𝑙,𝑟. The DLR uncertainty in the line flow constraints is 

∑ 𝑃𝑔,𝑡
min𝑢𝑔,𝑡

𝑔∈𝓖

+ ∑ 𝑃𝑟,𝑡
0 𝑃𝑟,𝑡

𝑟∈𝓡

− ∑ 𝑃𝑑,𝑡

𝑑∈𝓓

 

+Ωdw‖𝒚𝑡
dw‖

2
+ ∑ 𝑃𝑟,𝑡𝑟𝑟,𝑡

dw

𝑟∈𝓡

+ ∑ 𝑃𝑟,𝑡𝑠𝑟,𝑡
dw

𝑟∈𝓡

≤ 0, 
(3.20) 

𝑦𝑟,𝑡
dw ≥ 𝑝𝑟,𝑡(𝑃𝑟,𝑡 − 𝑟𝑟,𝑡

dw + 𝑠𝑟,𝑡
dw), ∀𝑟 ∈ 𝓡, (3.21) 

𝑦𝑟,𝑡
dw ≥ −𝑞𝑟,𝑡(𝑃𝑟,𝑡 − 𝑟𝑟,𝑡

dw + 𝑠𝑟,𝑡
dw), ∀𝑟 ∈ 𝓡, (3.22) 

𝑦𝑟,𝑡
dw, 𝑟𝑟,𝑡

dw, 𝑠𝑟,𝑡
dw ≥ 0, ∀𝑟 ∈ 𝓡, (3.23) 
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modeled by introducing a forecast random variable 𝑃̃𝑙,𝑡 = 𝑃𝑙,𝑡
0 + z̃𝑙,𝑡 for the transmission line 

capacity. The DLR forecast random variable 𝑃̃𝑙,𝑡 is treated as the random right-hand side b̃ due 

to its uncontrollable nature. 

Then, the VaR of the positive line flow constraint has the following robust reformulation: 

where 𝑦𝑙,𝑟,𝑡
pos , 𝑟𝑙,𝑟,𝑡

pos , 𝑠𝑙,𝑟,𝑡
pos

 are the robust counterpart, upper bound and lower bound auxiliary 

variables for line 𝑙  for RES forecast random variable 𝑟  at time 𝑡  and 𝑦𝑙,𝑡
pos, 𝑟𝑙,𝑡

pos, 𝑠𝑙,𝑡
pos

 are the 

robust counterpart, upper bound, and lower bound auxiliary variables for the DLR forecast 

random variable for line 𝑙 at time 𝑡. The elements of vector 𝒚𝑙,𝑡
pos

 are the variables 𝑦𝑙,𝑟,𝑡
pos

 and 𝑦𝑙,𝑡
pos

, 

and Ω𝑙
 is the uncertainty budget for line 𝑙. 

The VaR of the negative line flow constraint has the following robust reformulation: 

∑ 𝜋𝑙,𝑔𝑃𝑔,𝑡

𝑔∈𝓖

+ ∑ 𝜋𝑙,𝑟𝑃𝑟,𝑡
0 𝑃𝑟,𝑡

𝑟∈𝓡

− ∑ 𝜋𝑙,𝑑𝑃𝑑,𝑡

𝑑∈𝓓

 

+ Ω𝑙‖𝒚𝑙,𝑡
pos‖

2
+ ∑ 𝑃𝑟,𝑡𝑟𝑙,𝑟,𝑡

pos

𝑟∈𝓡

+ ∑ 𝑃𝑟,𝑡𝑠𝑙,𝑟,𝑡
pos

𝑟∈𝓡

+ 𝑃𝑙,𝑡𝑟𝑙,𝑡
pos + 𝑃𝑙,𝑡𝑠𝑙,𝑡

pos ≤ 𝑃𝑙,𝑡
0 , 

(3.25) 

𝑦𝑙,𝑡
pos ≥ 𝑝𝑙,𝑡(−1 − 𝑟𝑙,𝑡

pos + 𝑠𝑙,𝑡
pos), (3.26) 

𝑦𝑙,𝑡
pos ≥ −𝑞𝑙,𝑡(−1 − 𝑟𝑙,𝑡

pos + 𝑠𝑙,𝑡
pos), (3.27) 

𝑦𝑙,𝑟,𝑡
pos ≥ 𝑝𝑟,𝑡(𝜋𝑙,𝑟𝑃𝑟,𝑡 − 𝑟𝑙,𝑟,𝑡

pos + 𝑠𝑙,𝑟,𝑡
pos ), ∀𝑟 ∈ 𝓡, (3.28) 

𝑦𝑙,𝑟,𝑡
pos ≥ −𝑞𝑟,𝑡(𝜋𝑙,𝑟𝑃𝑟,𝑡 − 𝑟𝑙,𝑟,𝑡

pos + 𝑠𝑙,𝑟,𝑡
pos ), ∀𝑟 ∈ 𝓡, (3.29) 

𝑦𝑙,𝑡
pos, 𝑟𝑙,𝑡

pos, 𝑠𝑙,𝑡
pos ≥ 0, (3.30) 

𝑦𝑙,𝑟,𝑡
pos , 𝑟𝑙,𝑟,𝑡

pos , 𝑠𝑙,𝑟,𝑡
pos , ≥ 0, ∀𝑟 ∈ 𝓡, (3.31) 

− ∑ 𝜋𝑙,𝑔𝑃𝑔,𝑡

𝑔∈𝓖

− ∑ 𝜋𝑙,𝑟𝑃𝑟,𝑡
0 𝑃𝑟,𝑡

𝑟∈𝓡

+ ∑ 𝜋𝑙,𝑑𝑃𝑑,𝑡

𝑑∈𝓓

 
(3.32) 
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where the notation is analogous to the positive case. 

3.7 Risk-Averse Asymmetry Robust Unit Commitment  

To demonstrate the use of coherent risk measures, the DC network-constrained UC problem 

is chosen as a general example of an operational planning problem. A single-stage centralized 

multi-period UC problem [87] is extended with the proposed robust reformulations of the 

uncertain constraints. The equality constraints and the constraints where the uncertainty is 

negligible are formulated with RES scheduling variable 𝑃𝑗,𝑡 being multiplied by the nominal 

value of the RES forecast 𝑃𝑗,𝑡
0 . The resulting UC problem formulation is as follows: 

+𝛺𝑙‖𝒚𝑙,𝑡
𝑛𝑒𝑔

‖
2

+ ∑ 𝑃𝑟,𝑡𝑟𝑙,𝑟,𝑡
𝑛𝑒𝑔

𝑟∈𝓡

+ ∑ 𝑃𝑟,𝑡𝑠𝑙,𝑟,𝑡
𝑛𝑒𝑔

𝑟∈𝓡

+ 𝑃𝑙,𝑡𝑟𝑙,𝑡
𝑛𝑒𝑔

+ 𝑃𝑙,𝑡𝑠𝑙,𝑡
𝑛𝑒𝑔

≤ 𝑃𝑙,𝑡
0 , 

𝑦𝑙,𝑡
neg ≥ 𝑝𝑙,𝑡(−1 − 𝑟𝑙,𝑡

neg + 𝑠𝑙,𝑡
neg), (3.33) 

𝑦𝑙,𝑡
neg ≥ −𝑞𝑙,𝑡(−1 − 𝑟𝑙,𝑡

neg + 𝑠𝑙,𝑡
neg), (3.34) 

𝑦𝑙,𝑟,𝑡
neg ≥ 𝑝𝑟,𝑡(−𝜋𝑙,𝑟𝑃𝑟,𝑡 − 𝑟𝑙,𝑟,𝑡

neg + 𝑠𝑙,𝑟,𝑡
neg ), ∀𝑟 ∈ 𝓡, (3.35) 

𝑦𝑙,𝑟,𝑡
neg ≥ −𝑞𝑟,𝑡(−𝜋𝑙,𝑟𝑃𝑟,𝑡 − 𝑟𝑙,𝑟,𝑡

neg + 𝑠𝑙,𝑟,𝑡
neg ), ∀𝑟 ∈ 𝓡, (3.36) 

𝑦𝑙,𝑡
neg, 𝑟𝑙,𝑡

neg, 𝑠𝑙,𝑡
neg ≥ 0, (3.37) 

𝑦𝑙,𝑟,𝑡
neg , 𝑟𝑙,𝑟,𝑡

neg , 𝑠𝑙,𝑟,𝑡
neg ≥ 0, ∀𝑟 ∈ 𝓡, (3.38) 

minimize∑ ∑(𝑓𝑔(𝑃𝑔,𝑡) + 𝑐𝑔
su𝑣𝑔,𝑡 + 𝑐𝑔

sd𝑤𝑔,𝑡)

𝑔∈𝓖𝑡∈𝓣

, 
(3.39) 

subject to 
 

𝑣𝑔,𝑡 − 𝑤𝑔,𝑡 = 𝑢𝑔,𝑡 − 𝑢𝑔,𝑡−1, ∀𝑔 ∈ 𝓖, ∀𝑡 ∈ 𝓣, (3.40) 

𝑃𝑔
min𝑢𝑔,𝑡 ≤ 𝑃𝑔,𝑡 ≤ 𝑃𝑔

max𝑢𝑔,𝑡, ∀𝑔 ∈ 𝓖, ∀𝑡 ∈ 𝓣, (3.41) 

𝑃𝑔,𝑡 − 𝑃𝑔,𝑡−1 ≤ 𝑅𝑔
up𝑢𝑔,𝑡−1 + 𝑃𝑔

min𝑣𝑔,𝑡, (3.42) 



61 

 

The objective function (3.39)Error! Reference source not found. minimizes the total 

operation cost due to the output, start-up, and shut-down decisions of the conventional 

generators. Constraint (3.40) defines the relationship between the binary status variables of the 

conventional generators. Constraints (3.41)-(3.45) set the minimum and maximum output, 

∀𝑔 ∈ 𝓖, ∀𝑡 ∈ 𝓣, 

𝑃𝑔,𝑡−1 − 𝑃𝑔,𝑡 ≤ 𝑅𝑔
down𝑢𝑔,𝑡 + 𝑃𝑔

min𝑤𝑔,𝑡, 

∀𝑔 ∈ 𝓖, ∀𝑡 ∈ 𝓣, 
(3.43) 

∑ 𝑣𝑔,𝜏

|𝓣|

𝜏=𝑡𝑔−𝜏𝑔
on+1

− 𝑢𝑔,𝑡𝑔
≤ 0, ∀𝑔 ∈ 𝓖, ∀𝑡𝑔 = 𝜏𝑔

on, . . |𝓣|, (3.44) 

∑ 𝑤𝑔,𝜏

|𝓣|

𝜏=𝑡𝑔−𝜏𝑔
off+1

+ 𝑢𝑔,𝑡𝑔
≤ 1, ∀𝑔 ∈ 𝓖, ∀𝑡𝑔 = 𝜏𝑔

off, . . |𝓣|, 
(3.45) 

∑ 𝑃𝑔,𝑡

𝑔∈𝓖

+ ∑ 𝑃𝑟,𝑡
0 𝑃𝑟,𝑡

𝑟∈𝓡

− ∑ 𝑃𝑑,𝑡

𝑑∈𝓓

= 0, ∀𝑡 ∈ 𝓣, 
(3.46) 

−𝑃𝑙,𝑡
max ≤ ∑ 𝜋𝑙,𝑔𝑃𝑔,𝑡

𝑔∈𝓖

+ ∑ 𝜋𝑙,𝑟𝑃𝑟,𝑡
0 𝑃𝑟,𝑡

𝑟∈𝓡

− ∑ 𝜋𝑙,𝑑𝑃𝑑,𝑡

𝑑∈𝓓

≤ 𝑃𝑙,𝑡
max, ∀𝑙 ∈ 𝓛, ∀𝑡 ∈ 𝓣, 

(3.47) 

0 ≤ 𝑃𝑟,𝑡 ≤ {
1, for "𝑢𝑛𝑑𝑒𝑟𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔",

𝑃𝑟
max/𝑃𝑟,𝑡

0 , for "𝑜𝑣𝑒𝑟𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔",
 

∀𝑟 ∈ 𝓡, ∀𝑡 ∈ 𝓣, 

(3.48) 

upward reserve constraint reformulation (3.15)-(3.18), 
 

downward reserve constraint reformulation (3.20)-(3.23), 
 

and positive and negative line flow constraints reformulations (3.25)-(3.31) and 

(3.32)-(3.38).  
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ramping capabilities, and minimum uptime and downtime for the conventional generators. The 

energy balance equation is defined in (3.46) and conventional transmission line flow constraints 

are defined in (3.47). The RES scheduling variable limits are set in (3.48) for one of the 

described approaches and the robust reformulations of uncertain constraints are included 

accordingly.  

Consequently, the UC problem is expressed as a mixed-integer SOCP that can be directly 

solved by commercial solvers. 

3.8 Illustrative Example 

3.8.1 Case Study Description 

To illustrate the proposed framework, a 2019 update of the IEEE Reliability Test System, 

referred to as RTS-GMLC, is used [88]. The system is assumed to have DLR technology 

installed for transmission lines B3 (between buses 201 and 205) and C8 (between buses 304 

and 309). The conductor types of both lines are assumed to be steel-reinforced aluminum 

conductor “Falcon” 72/7 with the SLR set to 1354.6 A and a capacity of 175 MW. To be 

consistent with other geographically based time series of RTS-GMLC, the weather data for the 

DLR of lines B3 and C8 are assumed to come from Las Vegas and Los Angeles, respectively. 

DarkSky weather service is used to acquire historical hourly weather data for the respective 

locations for the years 2017-2019. For each line, the DLR time series for 2017 and 2018 are 

used to train a neural network to produce 24-hour-ahead hourly forecasts, while the data from 

2019 are used to produce the forecasts for the simulation. Then, DLR ampacity data are rescaled 

to the MW capacity of the transmission lines. 
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In addition, the solar generation located on the same buses is aggregated, while concentrated 

solar power and storage are not included. Conditional forecasts [85] are created with the number 

of bins set at 12 and uncertainty set parameters are calculated for each conditional forecast bin. 

The formulation is implemented in YALMIP [89] and the solutions are obtained using Gurobi 

9.0 with a 0.1% optimality gap on an Intel i7-7700 PC with 12 GB of RAM. 

3.8.2 Simulation Results 

The performance of the proposed coherent risk-averse framework is demonstrated 

numerically by comparing the following models, corresponding to different ways of handling 

uncertainty:  

1. Model A: Deterministic setting of reserves according to 3% of total demand and 5% of total 

RES generation, known as the NREL 3+5 rule. 

2. Model B: Gaussian reformulation of uncertain reserves (example 4.8 in [90], known as the 

Markowitz portfolio problem) with “underscheduling” of RESs. RESs are modeled as 

forecasted values and correlated error terms, similar to the methodology of [71].  

3. Model C: Two-stage stochastic UC with 15 scenarios [16]. 

4. Model D: CVaR reformulation of uncertain reserves with “underscheduling” of RESs. A 

sample-based reformulation with 1000 samples is used. 

5. Model E: proposed asymmetry robust reformulation of uncertain reserves with 

“overscheduling” of RESs. 

6. Model F: proposed asymmetry robust reformulation of uncertain reserves with 

“underscheduling” of RESs. 
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7. Model G: CVaR reformulation of both uncertain reserves and line flow constraints with 

“underscheduling” of RESs. A sample-based reformulation with 1000 samples is used. 

8. Model H: proposed asymmetry robust reformulation of both uncertain reserves and line flow 

constraints with “underscheduling” of RESs. 

The risk level 𝜖 is set at 1% for all uncertain constraints. Models A-F are implemented 

without uncertain line flow constraints and all lines are limited at SLR. Each UC model is solved 

consecutively for every day of the year, with the generator's status and output for the last hour 

of the previous day being the initial condition for the next day. Therefore, 365 optimization 

problems are solved for each UC model with their aggregate performance reported. The results 

of the UC solutions are summarized in Table 3.1. The percentage of hours where reserve 

constraints are violated, given the actual realizations of RESs, are reported as the upward and 

downward reserve violation probabilities. As RESs are included as forecast random variables, 

their costs are considered to be zero at this stage.  

Table 3.1 Results of Year-long Day-ahead UC Solutions 

Model 
Avg. daily UC 

cost (106$) 

Avg. 

solution 

time (s) 

Upward reserve 

violation probability 

(%) 

Downward reserve 

violation probability 

(%) 

Model A 2.093 5.1 1.86 6.75 

Model B 2.150 9.7 0.35 1.33 

Model C 3.044 467.1 0.12 8.63 

Model D 2.135 28.5 0.04 1.72 

Model E 2.030 49.2 0.10 3.58 

Model F 2.141 20.8 0.05 1.19 

Model G 2.137 128.1 0.07 2.46 

Model H 2.142 33.6 0.05 2.50 
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Among the single-stage models, the main difference in average daily UC costs primarily 

comes from the scheduling method of RESs. In particular, the use of “overscheduling” instead 

of “underscheduling” leads to a reduction in costs as a result of scheduling more output from 

RESs. The average solution times of all single-stage models are also comparable, with Model A 

being the fastest due to the simplicity of the model and Model G being the slowest due to the 

additional variables and constraints of sample-based CVaR reformulation. For all risk-based 

models, the reserves scheduled during the UC satisfy the risk requirements. Compared to the 

single-stage models, two-stage stochastic Model C tends to commit a larger number of units, 

resulting in higher costs and significantly longer solution times. 

Furthermore, due to the presence of transmission congestion, the delivery of reserves is not 

always possible. To simulate the delivery of reserves, a DC optimal power flow (OPF) based 

on committed units with actual realizations of uncertain parameters is solved for each hour of 

the year, for a total of 8760 instances. Results for the hourly DC OPF solutions are summarized 

in Table 3.2. The cost associated with the curtailment of RESs is considered in the DC OPF and 

set at 20 $/MW. As a result, the average hourly costs illustrated in Table 3.2 are different from 

one twenty-fourth of the daily costs presented in Table 3.1, due to the forecasting errors in day-

ahead UC and the inclusion of RESs curtailment costs in hourly OPF. The percentage of all 

OPF instances where load shedding occurs is reported as the insufficient generation probability, 

indicating the probability of the risk. The average amount of load shedding in all such instances 

is reported as the average insufficient generation, indicating the severity of the risk. The latter 

risk metric is considered to be the most important, as it directly reflects the necessary amount 

of corrective actions.  
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Table 3.2 Results of Year-long Hourly DC OPF Solutions 

Model 
Avg. hourly 

cost (103$) 

Insufficient generation 

probability (%) 

Avg. insufficient 

generation (MW) 

Renewable 

energy utilization 

(%) 

Model A 90.2 1.97 236.0 95.0 

Model B 92.0 0.41 206.8 93.5 

Model C 94.0 0.17 87.3 91.7 

Model D 92.5 0.24 66.5 93.0 

Model E 92.1 0.77 63.5 93.2 

Model F 92.5 0.34 55.7 92.7 

Model G 92.4 0.31 51.5 93.0 

Model H 92.4 0.30 48.0 92.7 

 

The effect of network congestion on the delivery of reserves is evident in the relative increase 

of the probability of insufficient generation, compared to the UC results of Table 3.1. As 

different models apply different reformulations of the reserves constraints, the risks associated 

with the underlying random variables are evaluated differently, which leads to different UC 

solutions resulting in different values and allocations of available reserves across the network 

for each model. Consequently, the delivery of the reserves becomes different in real-time 

operation to handle the uncertainties, leading to the given differences in performance 

represented by the metrics in Table 3.2. The average hourly operating costs largely depend on 

the conservativeness of the solution, with more conservative solutions committing more units 

and leading to increased operating costs and limiting the ability to utilize available RES outputs. 

Moreover, compared to other metrics, the risk metrics of average insufficient generation vary 

by an order of magnitude with different models, indicating the necessity of prioritizing risk 

management.  
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Comparing Models A through F without uncertain line flow constraints, Model A is the most 

economical but does not directly manage risk and has the highest probability of generation 

insufficiency at 1.97% and the worst average insufficient generation at 236.0 MW. While 

managing the probability of the reserves violation compared to Model A, Model B lowers the 

insufficient generation probability to 0.41% but fails to address the average insufficient 

generation of 206.8 MW. This is the result of Model B being based on the Gaussian 

reformulation, which is incapable of representing and addressing the tail properties of the 

distributions. The result of Model B demonstrates that using the probability of constraint 

violation alone is an insufficient indicator of the model’s risk managing properties. The two-

stage Model C results in the most conservative commitment decisions with the lowest 

insufficient generation probability of 0.17% and the highest average operating cost. However, 

Model C also does not directly address the average insufficient generation of 87.3 MW. Models 

D and F with “underscheduling” have similar performance and demonstrate desirable risk 

managing properties by addressing both the probability and average value of the insufficient 

generation. Model E implements the proposed approach with “overscheduling” to better utilize 

RESs and results in a relatively high probability of insufficient generation of 0.77%. 

As discussed in Section 3.5, if the RESs are modeled multiplicatively, enabling the positive 

homogeneity property, their scheduled output directly affects the risk of constraint violation. 

The comparison of Models E and F shows the difference between modeling RESs with 

“underscheduling” and “overscheduling”. The use of “overscheduling” allows the scheduling 

of RES outputs above their nominal forecast values (with the corresponding increase in risk), 

replacing conventional generation in the UC solutions. While the overall risk is limited by the 

uncertainty budget Ω , it can still increase, compared to the “underscheduling” case. 
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Consequently, as the increase in risk is more significant than the decrease in cost, it can be 

concluded that scheduling RESs above their nominal forecast values is disadvantageous from 

the risk-averse perspective and “underscheduling” should be preferred.  

The benefits of including uncertain line flow constraints with DLR are shown by Models G 

and H. Model H has the smallest average value of insufficient generation at 48.0 MW and 

demonstrates a 3.8-fold decrease in average solution time compared to Model G.  

It must be further stressed that more than 1000 samples must be used to achieve a high 

certainty level of the CVaR solution. Using the results of [83], the lower theoretical bound on 

the number of samples to ensure a 1% risk level with a certainty level of 99.999% can be 

calculated. In the system employed, each uncertain constraint has 114 decision variables, 

requiring 2/0.01 ⋅ (ln(1 − 0.99999)−1 + 114) ≈ 25000  samples. This would result in 

practically unacceptable UC solution times of CVaR reformulation, especially if a large number 

of transmission lines with uncertain line flow constraints are considered. 

As our year-long simulation covers a wide range of operating scenarios, the results obtained 

can be treated with high fidelity. The results demonstrate how the proposed framework is 

capable of significantly lowering the probability and magnitude of undesirable events due to the 

coherent formulation of uncertainty and active scheduling of RESs. If the solution time is not 

critical, the CVaR approach can be recommended as a single-stage model, or a two-stage model 

can be extended using the proposed methodology to additionally address the magnitude of 

undesirable events. Otherwise, the asymmetry robust reformulation should be preferred, as it 

provides faster, more economical, and the most risk-averse solutions. 
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3.8.3 Impact of Risk Level 

While the uncertainty budget (3.13) corresponding to the predefined risk level provides an 

upper bound on constraint violation, the selection of the uncertainty budget can also be 

performed based on the actual performance. Thus, the simulation of Model F from Section 3.8.2 

is repeated with different risk levels between 0.5 and 5%. The results of the hourly DC OPF 

solutions are summarized in Table 3.3. 

Table 3.3 Impact of Risk Level on the Hourly DC OPF Solutions 

Predefined 

Risk level 

(%) 

Avg. hourly 

cost (103$) 

Insufficient generation 

probability (%) 

Avg. insufficient 

generation (MW) 

Renewable 

energy utilization 

(%) 

0.5 92.7 0.29 55.3 92.7 

1 92.5 0.34 55.7 92.7 

2 92.5 0.39 52.3 92.8 

3 92.2 0.19 47.4 93.0 

4 92.2 0.36 57.3 93.0 

5 92.3 0.49 66.1 93.1 

 

Based on the results of Table 3.3, it can be concluded that the uncertainty budget 

corresponding to the predefined risk level of 3% provides the best performance based on all 

considered metrics. Note that the best value of the uncertainty budget is determined for the RTS-

GMLC test system data when the number of bins for conditional random variables is set at 12, 

but it can be different for other input parameters and should be determined accordingly. 

3.8.4 ACTIVSg2000 Test Case 

To demonstrate the scalability and effectiveness of the proposed framework on a large-scale 

system, the case study is extended to the ACTIVSg2000 test case [91]. ACTIVSg2000 is a 
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synthetic test system, created based on the publicly available data of real power systems, and is 

composed of 2000 buses and 3206 branches. The system has 544 generators with a total installed 

capacity of 96 GW, including 109 RESs. The simulation setup is the same as in Sections 3.8.1 

and 3.8.2, but only Models A, D, and F are considered. The results of the day-ahead UC solutions 

and hourly OPF solutions are summarized in Table 3.4 and Table 3.5, respectively. 

Table 3.4 Results of Year-long Day-ahead UC Solutions (ACTIVSg2000) 

Model 
Avg. daily UC 

cost (106$) 

Avg. 

solution 

time (s) 

Upward reserve 

violation probability 

(%) 

Downward reserve 

violation probability 

(%) 

Model A 13.981 139.2 2.5 0.0 

Model D 14.334 510.3 0.24 0.0 

Model F 14.516 208.2 0.28 0.0 

 

Table 3.5 Results of Year-long Hourly DC OPF Solutions (ACTIVSg2000) 

Model 
Avg. hourly 

cost (103$) 

Insufficient generation 

probability (%) 

Avg. insufficient 

generation (MW) 

Renewable 

energy utilization 

(%) 

Model A 583.6 4.8 627.6 99.8 

Model D 597.5 0.73 185.3 99.6 

Model F 599.1 0.81 137.1 99.1 

 

 The simulation results are similar to the results of the RTS-GMLC test system, showing 

that the proposed models can effectively constrain both the probability and average value of 

insufficient generation. Additionally, compared to Model D, the asymmetry robust formulation 

of Model F demonstrates considerably faster solution times, further indicating the applicability 

of the latter for risk management in large-scale systems.  
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3.9  Conclusion 

This work proposes a risk-averse operational planning framework based on coherent risk 

measures to manage the risk due to uncertainty from RESs and DLR. It presents an analysis of 

power system operational planning risk and develops a novel formulation of uncertain RESs, 

allowing them to be scheduled coherently along with other sources of uncertainty. 

Year-long case studies are performed to evaluate different approaches to risk management in 

the presence of network congestion, highlighting the need to focus on the delivery of the 

reserves and not only on the total amount. Compared to other approaches, the models based on 

the coherent framework are the most effective at managing the probability and magnitude of 

undesirable events, reducing such risk metrics by an order of magnitude. The inclusion of DLR 

is shown to further facilitate the delivery of reserves. In addition, the proposed asymmetry 

robust reformulation of uncertain constraints is shown to be scalable and computationally 

efficient, proving its usefulness in practical risk management problems. 
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4 Conclusions and Future Work 

This thesis has investigated the impacts of unceratainty of DLR forecasts on the power 

system operational planning. The research highlights the benefits and challenges of utilizing 

DLR technologies and proposes new models to manage the operational risk in an efficient and 

secure way. The main contributions and findings of this thesis are summarized in the following 

list: 

• The development of stochastic models for DLR that can be used in operational planning 

problems for the risk-averse control of conductor temperature dynamics. Additionally, 

the necessity to consider both the probability and the magnitude of the events of thermal 

overloading of conductors monitored under DLR is accentuated.  

• The analysis of uncertain factors and their interactions in operational planning problems 

using coherent risk measures. The analysis highlights how different factors affect the 

risk and how the risk management can be interpreted and managed from the power 

system operator’s perspective. Furthermore, a new model for the renewable energy 

sources in operational planning problems is proposed. Additionally, coherent 

reformulations of uncertain reserves and line flow constraints are developed. These 

constraints are included into the novel formulation of UC, that allows to perform the 

scheduling in a coherent way, considering multiple sources of uncertainty. 

Finally, the results of this thesis can be extended and investigated in several directions. First, 

the impacts of extreme and rare weather conditions can be included in DLR models. However, 

this line of future work would likely require the construction of more sophisticated simulation 

methods, e.g. computational fluid dynamics, instead of solely relying on historical 
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measurements. Secondly, the potential of using energy storage systems together with the DLR 

technologies and wind power should be further researched in both operational and expansion 

planning problems. In particular, due to the correlations between the DLR, wind speed and wind 

power, it is envisaged that properly designed and managed energy storage systems can mitigate 

the associated uncertainties and lead to net benefits. 
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