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ABSTRACT 

Extrusion bioprinting (known as dispensing-based bioprinting as well) has been widely 

used to extrude or dispense continuous strands or fibers of biomaterials (e.g. hydrogel) and cells 

(such a mixture is referred to as "bioink"), layer-by-layer, to form three-dimensional (3D) scaffolds 

for tissue engineering. For extrusion bioprinting, one key issue is printability or the capability to 

print and maintain reproducible 3D scaffolds from bioink, which is typically measured by the 

difference in structure between the designed scaffold and the printed one. Due to the structural 

difference (or the difference caused by printability), the printed scaffold's mechanical properties 

are also different from those of the designed scaffold, notably affecting the scaffold performance 

as applied subsequently to tissue engineering. This dissertation aims to perform a comprehensive 

study on the printability and mechanical behavior of hydrogel scaffolds fabricated by extrusion 

bioprinting. The specific objectives are (1) to investigate the influence of design-, bioink-, and 

printing-related factors on the printability of hydrogel scaffolds, (2) develop an indirect printing 

technique to improve the printability of low-concentration hydrogels, (3) develop a numerical 

model representative of the elastic modulus of hydrogel scaffolds by considering the influence of 

printability, and (4) investigate the effect of crosslinkers on the scaffold's mechanical properties 

through experimental and numerical approaches. 

While studies on printing scaffolds from hydrogel(s) have been conducted, limited 

knowledge has been documented on hydrogels' printability. Current studies often consider one 

aspect of studying hydrogel printability (for example, bioink properties solely). The first part of 

this dissertation studies the multiple dimensions of printability for hydrogel scaffolds, including 

identifying the influence of hydrogel composition and printing parameters/conditions. 

Specifically, by using the hydrogels synthesized from alginate, gelatin, and methylcellulose (MC), 

flow behavior and mechanical properties, as well as their influence on the printability of hydrogels, 

were investigated. Pore size, strand diameter, and other dimensions of the printed scaffolds were 

examined; then, pore/ strand/ angular/ printability and irregularity were studied to characterize the 

printability. The results revealed that the printability could be affected by many factors; among 

them, the most important are those related to the hydrogel composition and printing parameters. 
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This chapter also presents a framework to evaluate alginate hydrogel printability systematically, 

which can be adopted and used in the studies of other hydrogels for bioprinting.  

Low-concentration hydrogels have favorable properties for many cell functions in tissue 

engineering, but they are considerably limited from a scaffold fabrication point of view due to poor 

3D printability. The second part of this dissertation is developing an indirect printing method to 

fabricate scaffolds made from a low-concentration of hydrogels as the second objective. This 

chapter briefly presents an indirect bioprinting technique to biofabricate scaffolds with low 

(0.5%w/v) to moderate (3%w/v) concentrations of alginate hydrogel using gelatin as a sacrificial 

bioink. Indirect-fabricated scaffolds were evaluated using compression, swelling, degradation, 

biological (primary rat Schwann cells), and morphological assessments. Results indicated that 

0.5% alginate scaffolds have steep swelling changes, while 3.0% alginate scaffolds had gradual 

changes. 0.5% alginate demonstrated better cell viability throughout the study than 3.0% 

counterparts, though. It was concluded that this indirect bioprinting approach could be extended 

to other types of hydrogels to improve the printability of low-concentration hydrogels along with 

the biological performance of cells and avoid high shear stress during direct 3D bioplotting causing 

cell damage. 

One issue involved in 3D bioplotting is achieving the scaffold structure with the desired 

mechanical properties. To overcome this issue, various numerical methods have been developed 

to predict scaffolds' mechanical properties, but they are limited by the imperfect representation of 

scaffolds as fabricated. The third part of this dissertation is developing a numerical model to predict 

the elastic modulus (one important index of mechanical properties) of scaffolds, considering the 

penetration or fusion of strands in one layer into the previous layer as the third objective.  For this 

purpose, the finite element method was used for the model development, while medium-viscosity 

alginate was selected for scaffold fabrication by the 3D bioplotting technique. The elastic modulus 

of the bioplotted scaffolds was characterized using mechanical testing; the results were compared 

with those predicted from the developed model, demonstrating a strong congruity amongst them. 

Our results showed that the penetration, pore size, and the number of printed layers have significant 

effects on the elastic modulus of bioplotted scaffolds and suggest that the developed model can be 

used as a powerful tool to modulate the mechanical behavior of bioplotted scaffolds. 
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For improvement, the fourth part of the dissertation (or the fourth objective) is improving 

the developed model by considering the crosslinker's effect on the modeling. The use of a cation 

solution (a crosslinker agent such as CaCl2) is important for regulating the mechanical properties, 

but this use has not been well documented in the literature. Here, the effect of varied crosslinking 

agent volume and crosslinking time on 3D extrusion-based alginate scaffolds' mechanical behavior 

were evaluated using both experimental and numerical methods. Compression tests were used to 

measure each scaffold's elastic modulus; then, a finite element model was developed, and a power 

model was used to predict scaffold mechanical behavior. Results showed that crosslinking time 

and crosslinker volume both play a decisive role in modulating 3D bioplotted scaffo lds' mechanical 

properties. Because scaffolds' mechanical properties can affect cell response, this study's findings 

can be implemented to modulate the elastic modulus of scaffolds according to the intended 

application. 

In conclusion, this dissertation presents the development of methods/models to 

study/represent the printability and mechanical properties of hydrogel scaffolds by using extrusion 

bioprinting, along with meaningful experimental and model-simulation results. The developed 

methods/models/results would represent an advance in bioprinting scaffolds for tissue engineering. 
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Chapter 1 Introduction 

1.1 Tissue scaffolds and three-dimensional (3D) printing 

The unavailability of adequate organs to meet the worldwide increasing demand for 

transplantation has created an organ shortage crisis on a global scale [1]. In the United States alone, 

more than 70,000 patients are waiting for organ transplants [2]. In particular, scaffold-based TE 

aims to develop bio-structures, so-called ‘scaffolds’, to eventually replace, protect, restore or repair 

damaged tissues such as skin, bladder, trachea, and myocardium after implantation [4–10]. Three-

dimensional (3D) printing has been driving significant innovations in TE, enabling the creation of 

variably complex biocompatible scaffolds that are suitable for transplantation  [3]. One of the 3D 

printing techniques (also known as additive manufacturing (AM)) widely used in TE is extrusion- 

or dispensing-based bioprinting [11], where a mixture of biomaterials and cells (referred to as 

bioink) is dispensed or extruded, layer-by-layer, to form a 3D scaffold. Typically, the bioink needs 

to be crosslinked, a process that promotes solidification of the bioink’s liquid form during or after 

printing. Depending on their nature, bioinks can be crosslinked physically or chemically. Either 

way, scaffolds should be printed as designed to resemble the biological and mechanical properties 

of native tissue; these “biomimetic” scaffolds promote successful and functional tissue 

regeneration [12,13]. To this end, numerous efforts have been made to fabricate biomimetic 

scaffolds using extrusion-based bioprinting. 

1.2 Extrusion-based bioprinting and printability 

One of the AM techniques is extrusion-based bioprinting (Figure 1.1). Using this 

technique, a mixture of cells and biomaterials can be printed layer by layer. This technique has 

enabled the manipulation of two or more biomaterials of distinct, yet complementary, mechanical 

and/or biological properties to form so-called hybrid scaffolds mimicking native tissues. Among 

various biomaterials, hydrogels synthesized to incorporate living cells and/or biological molecules 

have dominated due to their hydrated tissue-like environment. 

In scaffold extrusion-based bio-fabrication, one of the key issues is discovering significant 

factors affecting the 3D printability of hydrogel scaffolds used widely in TE. 3D printability of a 

hydrogel biomaterial is defined as the ability of a hydrogel to form and maintain a reproducible 
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3D structure with structural integrity. It is an index to measure the difference between the designed 

and fabricated scaffold. Printability affects the structure of printed scaffolds and, as a result, their 

mechanical and biological properties. Using the extrusion-based bioprinting technique, live cell-

incorporated structures can be fabricated. For this purpose, hydrogels have been widely used due 

to their cell-friendly environment and high water content. Hydrogels can be cross-linked physically 

or chemically to facilitate the creation of a bioprinted 3D structure. The cross-linking of hydrogels 

takes time and, as such, the hydrogel can flow or spread, and thus drift far from the desired design. 

Due to the poor printability of hydrogels, printed scaffolds may sometimes even collapse and fail 

to form a 3D structure. The concept of printability is important because the difference between a 

printed scaffold and the ideal design can impact the mechanical and biological properties, 

including mechanical strength and cell functions [14–17]. 

Printability can affect the shape fidelity of bio-fabricated scaffolds made using the 

extrusion-based technique. Printability is important in the sense that the structure of a scaffold 

controls the morphology and growth of cells after printing, the cultivation of which is already a 

challenging issue in TE [18]. Cell-incorporated hydrogels should be deposited as per designs 

intended to mimic artificial organs or tissues because the printed structure can affect the fate of 

cells after printing [18]. Poor printability can cause cell damage and result in tissue malfunction. 

Cell printing studies are also often quite expensive, so determining the correct printing parameters 

by trial and error is impractical [19]. Finally, yet importantly, printability affects the mechanical 

behavior of 3D-printed scaffolds. 
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Figure 1.1. Schematic of extrusion bioprinting technique (inset is a cell-incorporated alginate scaffold).  

Critical elements affecting printability include design, fabrication, and bio ink. From a 

bioink perspective, two key factors influencing printability are flow behavior and p hysical 

properties of bioinks. Design parameters (e.g. pore size, strand diameter, layer thickness) and 

fabrication parameters (e.g. crosslinking mechanism and printing parameters such as pressure and 

speed) can influence printability as well. There are numerous studies on printability to investigate 

the effect of printing parameters, such as pressure and speed. It was reported that air pressure and 

nozzle speed play the most decisive role in the printability of scaffolds fabricated by the bioplotting 

technique as a dispensing-based technique [13,15,16]. Besides, the flow behavior of bioinks used 

for scaffolds biofabrication has thoroughly been studied in different studies [17–19]; recently, a 

study focused on the effect of loss and storage modulus on the printability of scaffolds [18]. Yet, 

there is a limited number of studies identifying key elements that play a significant role in 

printability from a design point of view. Design is a critical element influencing printability due 

to its effects on filament spacing, filament orientation, and, consequently, the mechanical 

properties of scaffolds. It may influence cell performance, such as cell seeding and cell 

proliferation as well, according to multiple sources [20–23]. In the design of scaffolds, different 

geometries can be achieved by changing the design-related parameters such as the orientation of 

strands, pore size, and layer thickness. Moreover, while there are many studies on the effect of a 

single bioink- and fabrication-related elements influencing printability, more in-depth studies are 
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required to explore the effect of fabrication parameters as well as bioinks for scaffolds made of a 

composition of biomaterials. 

1.2.1 Printability and bioink 

One factor affecting the printability is the composition of bioink used for scaffold 

fabrication, categorized under bioink-related elements. Flow behavior, viscoelasticity, and 

physical properties are different indexes used to characterize bioinks. Each of these factors can 

affect printability with positive or negative impacts. Several types of hydrocarbon biomaterials 

may be used for scaffold construction. Polysaccharide-based hydrogels are used frequently due to 

their positive effects on cell migration, axonal guidance, and synapse development [29,30]. One 

of the polysaccharide-based hydrogels that has been used widely in dispensing-based bioprinting 

is alginate due to its biocompatibility, low toxicity, and relatively high printability [31–33],  as a 

good substrate to incorporate pancreatic islet cells, fibroblasts, myoblasts, and chondrocytes [34]. 

Sometimes, other types of biomaterials, such as gelatin as another biomaterial, are used with 

alginate to create hybrid or composite scaffolds. This strategy is implemented to improve the 

printability, mechanical properties, and biological characteristics of alginate scaffolds. For 

instance, alginate does not have adhesion sites required for cell attachment, and therefore, creating 

scaffolds made of alginate and gelatin can be a good solution to improve the biological properties 

of alginate scaffolds [35]. Gelatin is a collagen derivative that is less expensive relative to pure 

collagen and lacks the antigenicity of collagen; thus preventing the possibility of immunological 

response in the host into which it is implanted [36]. Gelatin is used widely to improve the 

mechanical/biological, as well as printability, of hydrogel scaffolds. Methylcellulose (MC) is 

another biocompatible hydrocarbon polymer which has shown promise in scaffold design, and its 

high hydrophilicity has been shown to allow for good water absorption, which is essential for 

nutrient delivery to the cells [37]. Hydrogels composed of multiple biomaterials have also been 

used in scaffold construction. For example, one study analyzed the properties of cell  substrates 

composed of a scaffold containing both gelatin and alginate and found these scaffolds to have high 

water retention rates [38]. This suggests that combining different biomaterials may be a way to 

manipulate the scaffold characteristics and allow for better control in achieving desired scaffold 

functions. To this end, using a mixture of biomaterials, printability can be improved. For instance, 

it was reported that adding gelatin to alginate can improve the printability of alginate scaffolds 
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[17]. It should be noted that the creation of hybrid or non-hybrid scaffolds is challenging because 

of printability-related issues. 

1.2.2 Printability and fabrication 

While modulating the fabrication-, bioink-, and design-related elements is an approach to 

improve the printability of hydrogel scaffolds, as current research gaps, specifically from a 

fabrication point of view, there are some novel methods. One of these techniques is indirect 

bioprinting, which is quite useful for printing low-concentration hydrogels. Low-concentration 

hydrogel is demandable; for instance, efforts have been made to use soft and low-concentration 

hydrogels, which can enable the regeneration of neurons by providing an adhesive matrix [28,39]. 

For another example, Matyash et al. reported the utilization of soft alginate hydrogel with 

successful results for rat and human neurons [40]. While the mechanical properties of low-

concentration hydrogels make them a favorable cellular environment, they are difficult to print 

into complex scaffolds [41,42]. The limited mechanical and physical stability makes scaffolds 

prone to collapse and deformation [13,43]. Indirect bioprinting is being explored to overcome these 

limitations. It involves the use of a sacrificial mold being developed through rapid prototyping 

(RP, another known term for AM), casting of biomaterial into the mold, and then mold removal to 

obtain the final construct [44,45]. This opens up the possibility of having a combination of many 

materials in one scaffold, including bioactive materials, with no worry of cell death caused by 

printing. 

1.2.3 Printability and mechanical behavior of scaffolds 

As a result of printability changes, the mechanical behavior of the printed scaffolds is 

different from the one of the original scaffold design. Beyond the importance of printability, the 

mechanical behavior of scaffolds should be matched with those of native tissue as discussed in the 

introduction. The mechanical behavior of scaffolds plays a decisive role in cell viability, and 

printability can affect the scaffolds’ mechanical properties. Hence, performing either numerical or 

experimental studies to evaluate the mechanical properties of scaffolds is importan t. As a general 

fact, scaffolds should satisfy both the biological and mechanical requirements of the targeted 

tissue. Many researchers have focused on modulating the mechanical properties of scaffolds 

fabricated by 3D bioplotting technique [46,47]. An experimental study investigated the effect of 
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geometrical features of scaffolds (including pore size, strand diameter, and orientation of strands) 

on the mechanical properties of 3D-bioplotted scaffolds [48]. In another study, the mechanical 

properties of scaffolds were measured, and it was reported that varying geometrical features is an 

effective way to modulate scaffold mechanical properties [35]. Notably, experimental 

measurements and the characterization of the mechanical properties of scaffolds are time -

consuming, even impractical, once scaffolds are implanted in vivo. Accordingly, it is needed to 

develop alternative methods, like numerical modeling [49], to predict the mechanical properties of 

scaffolds instead of the use of experimental tests. However, as the printability of bioinks affects 

the scaffold structure, the fabricated constructs are not always exactly as per design. It means that 

it is not easy to generate a model for numerical modeling so that it includes all features of a real 

structure of a scaffold. For instance, as Figure 1.2 shows, there is a fluctuation of strand diameter 

and deflection, and they are quite often neglected for numerical purposes. Furthermore, there is a 

penetration/overlap amongst layers, which is not considered for numerical modeling according to 

the literature [50] (Figure 1.2.e), and this matter will be discussed later on. 

 

Figure 1.2. Idealistic and realistic views of printed scaffolds: top views with a) idealistically constant and 

b) fluctuated strand diameter, side views with c) no overlap among layers and no deflection, d) no 

overlap and deflection, and e) overlap and deflection. 
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Finite element modeling (FEM) has been introduced as a method to represent the 

mechanical properties of additive manufactured scaffolds. For instance, a method was reported to 

predict the mechanical response of scaffolds based on FEM during the cell differentiation at a 

microscopic level [51]; while in another research, a multi-scale finite element model was 

introduced to predict cell viability in scaffolds [52]. Particularly, FEM has been used to predict the 

mechanical behavior of scaffolds fabricated by extrusion-based 3D printers. For example, FEM 

was used to accurately predict the elastic modulus of scaffolds fabricated by fused deposition 

modeling, an extrusion-based 3D printing method, with the assistance of an accurate model 

representing the real structure of printed scaffolds. This model was used to reduce the trial and 

error, and using that, the elastic modulus of scaffolds was predicted with a good agreement [49]. 

Although FEM has many benefits, it can be inconvenient due to the complexities in representing 

the exact structural features of scaffolds fabricated by an AM method [53] due to limitations (i.e. 

unstable flow in extrusion-based bioprinting) [54]. Another issue is adapting the boundary 

conditions so that the elastic properties can be estimated using FEM; recently, a review paper has 

been published in this regard [55]. Specifically, in the extrusion-based 3D printing of hydrogels, 

one of the important factors that has been neglected in previous studies is the amount of penetration 

amongst interlocked strands, analogous to a saddle notch, which are printed layer by layer. This 

penetration may affect the mechanical properties significantly, as its effect has been reported on 

the mechanical behavior of scaffolds fabricated by another extrusion-based technique, previously 

[49]. There are limited studies on the effect of crosslinker on the developed numerical models, 

showing the importance of developing a numerical model to address this matter. Additionally, 

more studies should focus on how to predict the mechanical properties of hydrogel scaffolds, 

considering the real structure of scaffolds. It means that the designed model, used for numerical 

modeling, should be as similar to the real structure of scaffolds. That could happen by considering 

the penetration amongst layers, the effect of crosslinker, fluctuation of strand diameter, and 

composition of bioink used for scaffolds fabrication.  

1.2.4 Printability and the effect of crosslinker 

From a fabrication perspective, the crosslinking mechanism of scaffolds is important. 

Crosslinking is the procedure to solidify a hydrogel either physically (temperature -sensitive 

hydrogels such as gelation) or chemically (using a chemical crosslinker such as CaCl2). However, 
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little is known about the effect of the crosslinking mechanism on printability. In an extrusion-based 

system, the cell-hydrogel precursor mixture is extruded layer-by-layer through a nozzle. The 

extruded hydrogel, such as alginate precursor (will be introduced later on), needs to be gelled 

quickly to assist the fabrication process and cell survival [24,25]. In this regard, divalent ionic 

crosslinkers, especially calcium chloride (CaCl2), have frequently been used to crosslink extruded 

hydrogel-based bioink because the ions cause rapid gelation; the gelled bioink can have acceptable 

printability while supporting the viability of any incorporated cells. Two vital factors, which 

should be taken into account, are the crosslinking and stability of hydrogels after fabrication. 

Although crosslinking is a good method to improve the printability of hydrogels, it is not 

reproducible [26]. Several studies were also reported that excessive crosslinking causes a 

significant reduction in cell viability in biofabrication [27]. Furthermore, the type and 

concentration of crosslinkers regulate the printing parameters (e.g. dispensing pressure, needle 

speed) and mechanical properties of a 3D scaffold. There is a correlation between alginate network 

density, which can be affected by crosslinker type/concentration, and stiffness. Based on published 

reports, the higher stiffness, the more reduction in permeability of alginate and its subsequent 

decrease of cell viability and proliferation of neural stem cells encapsulated in alginate [28]. 

Therefore, using low-concentration crosslinkers is recommended. However, the critical challenge 

to address is the poor printability of hydrogels using a low-concentration of crosslinker during a 

printing process. In this regard, the effect of crosslinking time and amount of crosslinking agent 

have been neglected in the literature, and the concentration of crosslinker has been investigated 

solely. Accordingly, an appropriate quantity of low-concentration CaCl2 solution should be taken 

in the biofabrication process to minimize the depletion effect of Ca2+ ions. However, this matter 

has not been studied until now so that scopes remain unexplored to determine the appropriate 

volume of CaCl2 solution mandatory for an extrusion-based system without compromising the 

mechanical stability of hydrogel scaffolds. 

1.3 Research aim and objectives 

This dissertation aims to investigate the printability and mechanical behavior of hydrogel 

scaffolds fabricated by the extrusion bioprinting technique. To do so, the effect of design, bioink, 

and fabrication parameters on the printability of scaffolds created by the extrusion-based technique 
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are studied. Moreover, an indirect printing approach is developed to improve the printability of 

hydrogel scaffolds. Due to the printability-related issues, the mechanical behavior of the printed 

scaffolds is different from the designed one. Finally, a numerical model, considering the real 

structure of scaffolds affected by printability, was developed to predict the elastic modulus of 

scaffolds. The research objectives are: 

• To study the printability and mechanical behavior of 3D printed hydrogel scaffolds (alginate, 

gelatin, and MC), with a focus on identifying the influence of hydrogel composition  (e.g. 

viscosity) and printing parameters/conditions (e.g. crosslinking mechanism) on printability 

✓ Examining the flow behavior and mechanical properties, as well as their influence on 

the printability of hydrogels 

✓ Examining the pore size, strand diameter, and other dimensions of the printed scaffolds; 

and then evaluating their printability in terms of pore/ strand/ angular/ printability and 

irregularity 

✓ Presenting a framework to evaluate alginate hydrogel printability in a systematic 

manner, which can be adopted and used in the studies of other hydrogels for 

bioprinting, 

• To develop an indirect printing technique to improve the printability of low-concentration 

hydrogels 

✓ Presenting an indirect bioprinting technique to biofabricate scaffolds with low 

(0.5%w/v) to moderate (3%w/v) concentrations of alginate hydrogel using gelatin as a 

sacrificial bioink, 

✓ Evaluating the indirect-fabricated scaffolds using compression, swelling, degradation, 

biological (primary rat Schwann cells), and morphological assessments, 

• To develop a numerical model to predict the mechanical behavior of scaffolds 

✓ Introducing a numerical model to predict the elastic modulus (one important index of 

mechanical properties) of scaffolds considering the penetration or fusion of strands in 

one layer into the previous layer, 

✓ Validating the developed model using experimental approach (compression test),  

• To improve the accuracy of the developed model by considering the effect of crosslinker 

✓ Evaluating the effect of varied crosslinking agent volume and crosslinking time on the 

mechanical behavior of alginate scaffolds experimentally and numerically. 

1.4 Organization of this dissertation 

This dissertation contains seven chapters, including this one, five chapters adapted from 

the five manuscripts that have been published, and a conclusion chapter that suggests future 

research directions. 
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Chapter 2 presents a brief review of printability as the key issue in extrusion bioprinting. 

In particular, design-, bioink-, and fabrication-related factors were studied to find significant 

elements affecting printability. According to the literature, printability can be affected by many 

factors, including those associated with bioink, printing process, and scaffold design, though far 

from certain. This chapter highlights the recent development in the discovery of printability for 

extrusion bioprinting. Key issues and challenges in the printability discovery are also identified 

and discussed, along with the approaches to improve the printability in extrusion bioprinting.  In 

this review, rheological properties, printing parameters, and printing conditions are investigated 

systematically to map the relationship between these parameters and printability rather than 

considering each factor individually. This chapter aims to define printability, identifying factors 

that can affect it, and proposing methods to measure the 3D printability of hydrogel scaffolds. 

Here, a systematic study was implemented by characterizing the bioink flow behavior, 2D, and 3D 

printability of hydrogels with different compositions.  

Chapter 3 examines the printability in terms of design, fabrication, and bioink to find 

significant factors affecting the printability of alginate-based hydrogels. In this chapter, alginate 

and a mixture of this hydrogel with gelatin and MC were studied. While studies have reportedly 

printed hydrogel scaffolds from one or more hydrogels, limited knowledge has been documented 

on the printability of such printing processes. This chapter presents a study on the printability of 

3D printed hydrogel scaffolds, with a focus on identifying the influence of hydrogel composition 

and printing parameters/conditions on the printability. By using the hydrogels synthesized from 

pure alginate or alginate with gelatin and MC, flow behavior and mechanical properties, as well 

as their influence on the printability, were examined in this chapter. To characterize the 

printability, the pore size and strand diameter, and other dimensions of the printed scaffolds  were 

examined; and then printability in terms of pore/ strand/ angular/ printability and irregularity was 

evaluated. Results revealed that the printability could be affected by many factors; among the most 

important are those related to the hydrogel composition and printing parameters. This chapter also 

presents a framework to evaluate alginate hydrogel printability in a systematic manner, which can 

be adopted and used in the studies of other hydrogels for bioprinting. 
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Chapter 4 investigates a novel indirect printing technique to address the poor printability 

of low-concentration hydrogels. The indirect-bioprinting process involved (1) printing a sacrificial 

framework from gelatin, (2) impregnating the framework with low-concentration alginate, and (3) 

removing the gelatin framework by an incubation process, and thus forming low-concentration 

alginate scaffolds. The scaffolds were characterized by compression testing, swelling, degradation, 

morphological, and biological assessment of incorporated or seeded Schwann cells. Results  

indicated that scaffolds could be fabricated using the indirect-bioprinting process, wherein the 

scaffold properties are affected by the concentration of alginate and sterilization technique used. 

Furthermore, scaffolds showed better cell functionality when fabricated with a lower concentration 

of alginate compared to a higher concentration. The indirect-bioprinting process explained 

elaborately in this chapter could be extended to other types of low-concentration hydrogels to 

address the tradeoffs between printability and mechanical/biological properties for favorable cell 

functions.   

In Chapter 5, the development of a novel numerical model to predict the elastic modulus 

(one important index of mechanical properties) of 3D bioplotted scaffolds is examined. One issue 

involved in 3D bioplotting is achieving the scaffold structure with the desired mechanical 

properties. To overcome this issue, various numerical methods have been developed to predict the 

mechanical properties of scaffolds, but they are limited by the imperfect representation of one key 

feature of scaffolds fabricated by 3D bioplotting, i.e., the penetration or fusion of strands in one  

layer into the previous layer. In this chapter, a finite element method was used for the model 

development, while medium-viscosity alginate was selected for scaffold fabrication by the 3D 

bioplotting technique. The elastic modulus of the bioplotted scaffolds was characterized using 

mechanical testing, and results were compared with those predicted from the developed model, 

demonstrating a strong congruity between them. Our results showed that the penetration, pore size, 

and the number of printed layers have significant effects on the elastic modulus of bioplotted 

scaffolds; and also suggest that the developed model can be used as a powerful tool to modulate 

the mechanical behavior of bioplotted scaffolds. 

Chapter 6 investigates the effect of crosslinkers on the mechanical behavior of 3D printed 

scaffolds. In particular, this chapter is on the effect of varied crosslinking agent volume and 
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crosslinking time on the mechanical behavior of 3D bioplotted alginate scaffolds to evaluate 

scaffolds using both experimental and numerical methods. Compression tests were used to 

measure the elastic modulus of each scaffold; then, a finite element model was developed, and a 

power model was used to predict scaffold mechanical behavior. Results showed that crosslinking 

time and volume of crosslinker both play a decisive role in modulating the mechanical properties 

of 3D bioplotted scaffolds. Because mechanical properties of scaffolds can affect cell response, 

the findings of this study can be implemented to modulate the elastic modulus of scaffolds 

according to the intended application. 

In Chapter 7, the developed methods and results obtained from the previous chapters are 

summarized and, on this basis, conclusions are drawn and highlighted. Moreover, suggestions for 

future research directions are presented and discussed. 

1.5 Contributions of the primary investigator 

The published articles included in this dissertation have multiple co-authors. However, the 

first author, Saman Naghieh, is the primary investigator of the research work as per the mutual 

understanding of all co-authors. In this dissertation, the co-authors are greatly appreciated and 

acknowledged for their valuable contributions. 
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Scaffolds with Vessel-like Channels for Tissue Engineering Applications - A Brief 

Review 
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and Figures. Professor Xiongbiao Chen guided and supervised the whole review work.) 

 

2.1 Abstract 

Over the past decades, significant progress has been achieved in the field of TE to restore/repair 

damaged tissues or organs and, in this regard, scaffolds made from biomaterials have played a 

critical role. Notably, recent advances in biomaterials and 3D printing have enabled the 

manipulation of two or more biomaterials of distinct, yet complementary, mechanical and/or 

biological properties to form so-called hybrid scaffolds mimicking native tissues. Among various 

biomaterials, hydrogels synthesized to incorporate living cells and/or biological molecules have 

dominated due to their hydrated tissue-like environment. Moreover, dispensing-based bioprinting 

has evolved to the point that it can now be used to create hybrid scaffolds with complex structures. 

However, the complexities associated with multi-material bioprinting and synthesis of hydrogels 

used for hybrid scaffolds pose many challenges for their fabrication. This paper presents a brief 

review of dispensing-based bioprinting of hybrid scaffolds for TE applications. The focus is on 

the design and fabrication of hybrid scaffolds, including imaging techniques, po tential 

biomaterials, physical architecture, mechanical properties, cell viability, and the importance of 

https://doi.org/10.1016/j.jmbbm.2017.11.037
https://www.youtube.com/watch?v=s8usVlz7AYs&t=63s
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vessel-like channels. The key issues and challenges for dispensing-based bioprinting of hybrid 

scaffolds are also identified and discussed along with recommendations for future research 

directions. Addressing these issues will significantly enhance the design and fabrication of hybrid 

scaffolds to and pave the way for translating them into clinical applications.  

2.2 Introduction 

The paucity of adequate organs to meet the increasing demand for organ transplantation 

has created a global organ shortage crisis [1]. TE has emerged as a promising approach to 

regenerate human tissues and organs; and one TE strategy is to develop constructs or scaffolds for 

replacing/repairing damaged tissues. Driving significant innovations in TE, 3D printing (Figure 

2.1) has enabled the creation of 3D scaffolds with a wide range of complexities. Different from 

conventional methods such as electrospinning [2], freeze-drying, gas foaming [3], and particle or 

porogen leaching [4], AM techniques allow for precise control layer-by-layer  to create 3D 

scaffolds [5]. Among these three techniques, dispensing-based bioprinting offers many attractive 

features. It is less expensive than inkjet- and laser-based printings and operationally more flexible 

with respect to printing multiple materials and cell types. Over the last decade, dispensing-based 

technique has created new opportunities to achieve the goal of complex organ printing, where the 

cells are incorporated by means of hydrogels [6–12]. 



19 

 

 

Figure 2.1. Schematic of bioprinting techniques a) inkjet-based, b) laser-based, and c) dispensing-based. 

Although hydrogels provide an appropriate environment for cells due to their high water 

content, they have poor mechanical properties. Thus, hydrogels at higher concentrations have been 

used to improve printing fidelity but this results in insufficient in-growth of new tissue [13]. On 

the other hand, other components, such as some synthetic polymers, can provide the required 

mechanical properties but, in the majority of cases, are not biologically compatible [14]. Thus, 

researchers have combined synthetic/natural hydrogel polymers to improve the mechanical 

stability of cell-incorporated constructs. These constructs fabricated by combining two or more 

biomaterials to achieve synergistic biological and mechanical properties are called hybrid scaffolds 

in this paper.   

This paper aims to review recent developments with respect to the design and fabrication 

of hybrid scaffolds based on dispensing-based bioprinting. In this regard, imaging techniques, 

potential biomaterials, physical architecture, and mechanical properties of hybrid scaffolds are 

discussed. The importance of vessel-like hollow channels/vascular networks and cell viability, as 

current challenges in TE, is then highlighted. Finally, the current limitations of 3D bioprinting and 

future directions for the development of hybrid scaffolds are discussed. 
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2.3 Fabrication of hybrid scaffolds for TE 

Figure 2.2 shows the procedure for the fabrication of hybrid scaffolds, which involves 

capturing the imaging data from the patient, generating a computer-aided design (CAD) model, 

selecting biomaterials and sources, and fabricating the hybrid scaffold. To fabricate hybrid 

scaffolds, a mixture of materials can be printed layer-by-layer or multiple layers of various 

materials can be combined; in some cases, sacrificial supports are also utilized. Hence, issues 

including poor mechanical/biological properties of hydrogels can be addressed by combining cell-

laden hydrogels with stiffer natural/synthetic polymers in addition to crosslinkers.  

 

Figure 2.2. Schematic of the fabrication process of a hybrid ear-shaped scaffold by a dispensing-based 

3D bioprinting technique including I) conversion of the medical image to a CAD model, II) 

transformation of the data to the machine code, III) biomaterial and cell source selection, and IV) 

bioprinting of sacrificial support, auricular cartilage, and fat tissue. 

Conventional methods have been used to prepare hybrid scaffolds in which hydrogels were 

incorporated into the scaffold by perfusion, but inadequate reproducibility and heterogeneous cell 

positioning limit the application of them [14]. Dispensing-based 3D bioprinting can effectively 

overcome such limitations. For instance, poly-caprolactone (PCL) and cell-laden alginate 

hydrogels have been printed using a multi-head tissue/organ building system [15]. Using other 
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methods, hybrid scaffolds were fabricated by combining 3D cell printing and electrospinning 

techniques [16,17] or acellular scaffolds using electrospinning and 3D printing together [18,19]. 

Depositing biomaterials accurately is the key to mimicking the heterogeneous structures of 

native tissues. One challenge for both AM and conventional methods used to fabricate hybrid 

scaffolds is manipulating two or more biomaterials. A common method to manipulate multiple 

biomaterials is to use multiple dispensers, each depositing one biomaterial [20]; this approach has 

been widely used to create hybrid scaffolds [21,22]. The critical issue of this approach is to control 

the biomaterials accurately to be deposited as per the CAD model. In other words, the problem 

associated with this method is the inability to simultaneously and accurately deposit 

biomaterials/cells. The other possibility for the deposition of multiple biomaterials is to print a 

mixture of biomaterials, such as a mixture of alginate and gelatin [23]. Simple mixing of various 

biomaterials/cells and fabricating scaffolds is one of the techniques used to create composite 

structures and in situ-forming hydrogel scaffolds [24,25]. However, accurate control over the 

deposition of biomaterials/cells is a challenge of this method. To tackle this issue, researchers have 

leaned towards other techniques such as coaxial nozzle-assisted 3D bioprinting to print 

biomaterials simultaneously [26] and, particularly, to create vessel-like channels, as will be 

discussed in subsequent sections. 

Because hybrid scaffold fabrication requires the handling of multiple biomaterials with 

different rheological properties, fabrication conditions might need to be rigorously determined and 

selected. In the dispensing-based technique, continuous and uniform printing of strands is 

associated with the moving speed of the needle, which is determined by [27]: 

𝑉 =
4𝑄

𝜋𝐷2
                                                                                               (2.1) 

where V, Q, and D are the moving speed, the flow rate of the dispensed biomaterial, and needle 

inner diameter, respectively.  

Notably, the flow rate of the biomaterial dispensed is a function of operational parameters 

(e.g., pressure, temperature), the flow behavior of the biomaterial (e.g., viscosity, consistency, flow 

behavior indexes), and geometric parameters (e.g., needle diameter, length), as given by [28]: 
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                                                   (2.2)  

This equation is for a tapered needle, where P is the applied pressure, ri and ro are the entrance and 

exit radius of the needle, respectively, and 𝜃 is the angle between needle and deposition surface. 

Moreover, 𝜏𝑦, n, and K are the yield stress, flow index, and consistency index, respectively. Note 

that n and K are associated with temperature and 𝜃 is related to the length of the needle. 

Hence, the manipulation of biomaterials used to fabricate hybrid scaffolds is quite 

challenging. For example, different fabrication parameters have been considered for printing 

PCL/alginate hybrid scaffolds [15,29]. Generally, a low driving force is needed for hydrogels due 

to their low viscosity. Furthermore, precise force control is required to print cell-laden hydrogels 

and arrange cells precisely at high resolution. On the other hand, dispensing materials such as PCL 

require a higher temperature and driving force. Thus, adequate cooling is required during the 

printing process of successive layers of hybrid scaffolds to overcome heat-induced cell damage in 

cell-laden hydrogels. 

In addition to the problems associated with manipulating biomaterials in a dispensing-

based bioprinting system, liquid polymers are required prior to fabrication. Natural and synthetic 

polymers require different conditions (e.g., temperature, solvent) to  be dissolved and they also 

need specific conditions (e.g., low temperature, light, crosslinkers, pH) to be crosslinked [30]. 

Therefore, a key challenge in the fabrication of hybrid scaffolds is to manipulate multiple materials 

with different dissolution and crosslinking or gelation properties. Furthermore, more challenges 

arise to attach successive printed layers with different biomaterials and when it is required to meet 

specific fabrication parameters (e.g., extrusion pressure, speed, temperature, type of crosslinker) 

to achieve printability with geometric precision. 

2.4 Design of hybrid scaffolds for TE 

The first step regarding the design of a customized hybrid scaffold could be the creation of 

a CAD model using medical images (Figure 2.2). This step plays a decisive role in the 

biofabrication process with respect to the accuracy of the fabricated scaffold. Biochemical, as well 
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as physical aspects, should be considered in designing tissue scaffolds. Biochemical aspects are 

associated with the chemical composition and biological properties of the scaffold. Physical design 

is related to the morphology and mechanical properties of the scaffold. This section highlights 

imaging techniques and potential biomaterials for the fabrication of hybrid scaffolds. Some 

fabrication features, morphology, mechanical properties, and how to modulate the mechanical 

properties of hybrid scaffolds are also discussed. 

2.4.1 Role of imaging techniques and support in the fabrication of custom-made 

hybrid scaffolds 

Fabrication of customized hybrid scaffolds starts with processing medical image captured 

from the patient. Imaging data acquisition and conversion into the format recognized by the 

machine must have sufficient resolution [31]. Recently, AM and medical imaging techniques, as 

noninvasive medical imaging modalities, have been used to fabricate customized patient-specific 

scaffolds [32]. To this end, defects of the patient can be scanned using medical imaging and the 

data obtained then converted into a CAD model [33,34]. A comprehensive review has recently 

been published on the importance of imaging data, challenges, and practical steps needed to 

fabricate a 3D printed model from cardiovascular CT data [35]. 

Hybrid scaffolds with complex structures are used in various applications such as skeletal 

muscle [1] and articular cartilage reconstruction [14]. In most cases, only soft materials such as 

hydrogels are printed and the creation of complex structures remains a challenge [36,37]. Complex 

structures might be defined as large-size structures, such as the ear, that have complex curvatures. 

More considerations are necessary to fabricate such hybrid structures, one of which is having a 

sacrificial support during their printing. In this regard, polyethylene glycol (PEG) [38], gelatin 

slurry [39], and Pluronic F-127 hydrogel [1] have been used as sacrificial supports. Another study 

reported a supramolecular assembly (guest-host system) for the development of bioinks and 

support hydrogels, such that filaments were deposited in the support hydrogel [40]. Using a slurry 

of gelatin microparticles is another method to support complex 3D structures during printing [39]. 

Additionally, some researchers used a submerged-in-crosslinker approach to crosslink the 

hydrogel just after printing to create hybrid scaffolds with cell-laden hydrogels [26,41]. 
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Sacrificial support is required for the fabrication of complex structures, as depicted for the 

ear in Figure 2.3. Supports are quiet useful assets to tolerate the weight of material during the 

printing process of a structure and specifically for situations, that material cannot be printed 

without support. The process starts with the generation of a CAD model using imaging data and 

progresses to the fabrication of a porous scaffold. The ear has a complex shape and composition 

and is a good candidate to illustrate the complexity of printing such structures. Notably, the ear 

has both auricular cartilage and fat tissue and, thus, bioprinting of the ear is also a good example 

of the fabrication of hybrid scaffolds using various biomaterials. Figure 2.3 shows the 3D model 

of the ear created using imaging data. This 3D model is then converted to an STL file and, after 

ensuring its accuracy, different parts, support, and the final porous structure can be designed 

(Figure 2.3). It is worth mentioning that the regeneration of ear tissue with traditional techniques 

is difficult.  
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Figure 2.3. 3D biprinting of complex structures via sacrificial support for ear regeneration; obtaining 
CAD model from imaging data, [1- converting CAD model to STL file, 2- investigation of the accuracy of 

STL file, 3- defining desired parts for bioprinintg with different cells, 4- creation of the CAD model of 

sacrificial support based on main CAD model, 5- fabrication of porous scaffold via bioprinter]; a 

representative sample of ear fabricated by a 3D-Bioplotter (CAD model is available at 

https://www.thingiverse.com/thing:304657 [42]). 

2.4.2 Potential biomaterials used in the fabrication of hybrid scaffolds 

Biomaterials should act as a mechanical support and provide biological requirements for 

targeted cells selected based on application. Hydrogels, such as alginate, are good substrates for 

the incorporation of cells but they do not have appropriate mechanical properties. To address this 

issue, hybrid scaffolds, including hydrogels and other natural/synthetic components, are used. 

From the biological point of view, many efforts have been made to fabricate functionalized 

scaffolds. Moreover, extracellular mimetic hydrogels are outstanding examples used in various 

biomedical applications that provide an artificial extracellular microenvironment resembling both 

the mechanical and biological features of extracellular matrix (ECM). Such structures have been 

applied to cartilage, bone, tendon, and intervertebral disc regeneration [43]. 

In addition, the selected biomaterials should be biocompatible to support cell activities 

such as proliferation, migration, etc. [44]. Moreover, they should have a suitable degradation rate 

and non-toxic byproducts to degrade just after tissue regeneration and replacement of ECM 

https://www.thingiverse.com/thing:304657
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proteins. A degradation rate that is too fast/slow results in issues such as lack of stability of the 

biomaterial [45]. Moreover, the selected biomaterials should be printable with suitable fluidic 

viscosity. In this regard, some biomaterials have good printability [46]; for those with poor 

printability, methods such as the use of sacrificial materials can be utilized. When using hydrogels 

in a dispensing-based system, good crosslinkers should be used to prevent any collapse during the 

printing process [37]. Hence, many factors including printability, degradation rate, mechanical 

stability, biological requirements, etc. should be taken into account during biomaterial selection,  

Both synthetic and natural polymers have been widely used in TE applications. Some 

synthetic polymers used in scaffold fabrication cannot provide an appropriate environment for cell 

attachment because they are hydrophobic and do not have cell attachment sites. In contrast, 

hydrogels are good candidates for cell encapsulation and 3D bioprinting but have poor mechanical 

properties. Hence, the combination of synthetic biomaterials (or other components) and hydrogels 

creates potential constructs for 3D biofabrication [47]. 

To overcome the poor mechanical properties of cell-laden hydrogels, several efforts have 

been made to combine hydrogels and other synthetic/natural polymers using a dispensing-based 

technique to support cell-laden hydrogels [17,48]. In this regard, Kang et al. reported the 

fabrication of hybrid scaffolds by combining cells with gelatin, fibrinogen, hyaluronic acid (HA), 

and glycerol mixed into Dulbecco’s Modifies Eagle Medium (DMEM) [1]. In a similar study, PCL 

improved the mechanical stability of cell-impregnated alginate for cartilage tissue regeneration 

[14]. In addition to mechanical properties, shear-thinning materials are generally desired 

candidates for 3D dispensing-based bioprinting due to the rapid decrease of viscosity of the 

material after extrusion from the nozzle [15]. 

Hydrogels can be functionalized to improve their biological properties. For instance, one 

polysaccharide-based hydrogel widely used in dispensing-based bioprinting is alginate, which has 

good biocompatibility, low toxicity, and high printability [49–51]. This biomaterial has been 

successfully used to incorporate pancreatic islet cells, fibroblasts, myoblasts, and chondrocytes 

[52]. In spite of many attractive features, lack of cell binding sites limits the application of sodium 

alginate (Na-Alg); for instance, Shim et al. reported that alginate (derived from brown seaweed) 

might not promote cellular activities because it has no bioactive proteins [15]. In this regard, many 



27 

 

efforts have been made to functionalize alginate. For example, carbodiimmide chemistry is useful 

for forming covalent bonds between various peptides and the alginate molecule. Such peptides can 

significantly enhance the functionality of cell-laden alginate for neurite outgrowth [53]. In this 

regard, the lack of adhesion sites on alginate has led researchers to functionalize this polymer by 

adding peptides, fibronectin, laminin, fibronectin, collagen, gelatin, etc. [54–56]. Another option 

for functionalizing hydrogels is the addition of immobilized growth factors, e.g., to functionalize 

chitosan hydrogel for the differentiation of neural stem cells [43].  

Another point to take into account is that selected biomaterials utilized in the fabrication 

of hybrid scaffolds should have a proper degradation rate. For example, hybrid scaffolds have been 

fabricated using cell-laden alginate hydrogel and PCL [14]; however, all of the pores were filled 

with gel and eliminated channels available for nutrient perfusion. Thus, the rate of degradation 

should be appropriate so that the scaffold degrades and provides some channels for perfusion. The 

issue of lack of nutrients, specifically for the inner parts of the scaffolds, has been extensively 

discussed elsewhere [57]. To address this issue, radio frequency heating has been used to accelerate 

the biodegradation of scaffolds and create a pathway for nutrient perfusion [58]. A recent review 

discusses the challenge of how to match the degradation rate of scaffolds with the growth of native 

tissue [59]. Other researchers have tried to fabricate hybrid scaffolds with pores intentionally left 

empty for oxygen and nutrient transport and as an example refer to [15]. 

Overall, the biomaterials selected for hybrid scaffolds should satisfy both mechanical and 

biological requirements. Table 2.1 lists the potential biomaterials that can be utilized in the 

fabrication of hybrid scaffolds as well as dispensing-based printing machines used in the 

biofabrication of hybrid scaffolds. 

Table 2.1. Potential biomaterials and printing parameters used in the biofabrication of hybrid scaffolds. 

Materials Application Description 
Dispensing-based 

printing machines 
Ref 

PCL and alginate 
Osteochondral tissue 

regeneration 

PCL (molecular weight = 70000–

90000 Da), 4% w/v alginate 
MtoBS [15] 
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PCL and alginate 

Generation of organized 

living grafts with 

improved mechanical 

stability 

PCL (molecular weight = 70000–

90000 Da), 2% w/v medium 

viscosity Na-Alg 

BioScaffolder 

dispensing: multi-arm 

dispensing- 

based bio-printing  

system 

[22] 

Nanofibrillated 

cellulose (NFC), 

PCL, and alginate 

Auricular cartilage 

regeneration 

2% (w/w) of plant-derived NFC, 

PCL Capa 6500, 0.5% (w/w) Na-

Alg 

3D Discovery® 

instrument 
[60] 

PCL, Pluronic F-

127, hydrogel: 

gelatin, fibrinogen, 

HA and glycerol 

Bone, cartilage, skeletal 

muscle 

PCL (molecular weight 

=43000~50000 Da), gelatin 

(35~45 mg/mL), fibrinogen (20–

30 mg/mL), HA (3 mg/mL), and 

glycerol (10% v/v), 33% w/v 

Pluronic F-127 added to a 10% 

v/v glycerol solution. 

Integrated tissue and 

organ printing 
[1] 

PCL, PEG, 

alginate 
Ear regeneration 

PCL (molecular weight =45000-

60000 Da), PEG (molecular 

weight = 20000 Da), 4% w/v 

alginate 

MtoBS [38] 

Fibrinogen, 

collagen type I, 

and Matrigel 

3D printed bifurcated 

tubes 
- 

MakerBot Replicator 

printer 
[39] 

Cell-laden Na-Alg 

and CaCl2 

Micro-channels for 

nutrients delivery 

2-5% (w/v) Na-Alg solution 

2-5% (w/v) CaCl2 

Coaxial nozzle-assisted 

3D bioprinting system 
[26] 

Alginate, HA 
Peripheral nerve 

regeneration 

Alginate and HA (2.5 % w/v 

alginate and 0.25 % w/v HA) 

3D-BioplotterTM 

system, EnvisionTEC 
[61] 

PCL and alginate Cartilage TE 

PCL (molecular weight =48000-

90000 Da); 

Alginate: 2 and 2.5% medium 

viscosity alginate 

3D-BioplotterTM 

system, EnvisionTEC 
[14] 

Collagen hydrogel 

precursor, gelatin, 

fibrinogen, 

thrombin 

Vascular Network System 

10% (w/v) gelatin, collagen 

hydrogel precursor (rat tail, type 

I), fibrinogen (10 mg/mL), 

thrombin (3U/mL) 

A developed bio-

printing platform 
[62] 
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PCL and alginate Cartilage TE 

PCL (molecular weight =70000-

90000 Da), 4 and 6% alginate 

 

Multihead deposition 

system 
[47] 

Collagen, gelatin Fluidic channels 
Collagen hydrogel precursor (rat 

tail, type I), 7% (w/v) gelatin 
Bio-printer system [63] 

PCL, PEG, 

alginate/ 

atelocollagen/ 

decellularized 

ECM 

Heterogeneous tissue 

regeneration 

PCL (molecular weight =70000-

90000 Da), PEG (molecular 

weight = 20000 Da), 

MtoBS [64] 

Oxidized alginate, 

gelatin 

Processability of 

the oxidized alginate- 

gelatin hydrogel in 

bioplotting applications 

2% (w/v) Na-Alg (molecular 

weight of 100000–200000 g/mol), 

gelatin (type A) 

Three axes moveable 

bioplotter (type 

BioScaffolder 2.1) 

[65] 

PCL and alginate 
Soft and hard tissue 

regeneration 

PCL (molecular weight =60000-

80000 Da), 

3.5 wt% alginate (low viscosity, 

high G-content non-medical grade 

LF10/60) 

Dispensing system [66] 

 

2.5 Physical architecture of hybrid scaffolds 

The morphology of a scaffold is defined by the geometry, distribution, and 

interconnectivity of pores, which are considered to be key parameters for 3D scaffold fabrication 

[67]. Due to the dependency of the mechanical properties into on the geometrical characteristics 

of the scaffold, here we emphasize the physical architecture; and in the next subsection, mechanical 

properties are discussed separately. In particular, in a porous scaffold, the macropores support cell 

migration whereas micropores promote cell-cell interactions and mass transport. Moreover, larger 

pores facilitate ECM extension and small pores enhance cell proliferation [68,69]. A recent review 

emphasizes the physical architecture of scaffolds in tissue regeneration [70]. To facilitate cell-cell 

interactions, mass transfer within the designed hybrid scaffold should be facilitated by sufficient 

mechanical stability in a porous structure with interconnected pores. Furthermore, interconnected 

pores ensure homogeneous cell seeding and better nutrient diffusion [69,71,72].  
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In general, hybrid scaffolds require a porous structure with interconnected pores due to the 

dependency of initial cell–carrier substance impregnation, cell-cell interactions, mass transfer of 

nutrients, and tissue growth to this factor. Therefore, balance among various design parameters 

must be achieved as strand thickness, pore geometry, and porosity significantly affect the 

mechanical and biological performance of the printed scaffold. In this regard, You et al. showed 

that the mechanical properties of hydrogel scaffolds can be modulated by altering internal structure 

parameters, including strand orientation and spacing, to manipulate the physical architecture of the 

scaffold [23]. In another study scaffolds with high porosity facilitate cell attachment were reported 

[73]. In a dispensing-based system, the main factors affecting the morphology of hybrid scaffolds 

are operating temperature, pressure, nozzle speed, and nozzle diameter. One of the advantages of 

developing hybrid scaffolds is that hydrogels cannot provide 3D constructs with pre -defined 

internal architectures; only a few reports are available in this regard [74,75]. Generally, changing 

the physical features of scaffolds (e.g., pore size, strand width) results in changes to mechanical 

properties, to be discussed in the next section.  

Table 2.2 summarizes the physical and mechanical properties of bioprinted hybrid 

scaffolds. The diameter of the dispensed strands depends on the pressure, temperature, nozzle size, 

and nozzle speed. PCL strands with various diameters (50 to 275 µm) have been printed by 

adjusting the aforementioned fabrication variables [15]. In particular, changing these variables 

regulates the flow rate of the material dispensed from the needle/nozzle. In this regard, numerous 

models have been developed to predict the flow rate of the dispensed biomaterial to fabricate 

scaffolds with expected pore size and strand width [5,76]. 

Table 2.2. Physical architecture and mechanical properties of hybrid scaffolds. 

Materials 
Strand 

width (µm) 

Pore 

size 

(µm) 

Mechanical 

properties (KPa) 
Description Reference 
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PCL and 

alginate 
50-275 50-600 - 

 

[15] 

PCL and 

alginate 
- 2000 

Young’s modulus 

near 600 

 

[22] 

PCL, NFC 

(cellulose), 

alginate 

Refer to 

picture 

Theoreti

cal 

porosity 

of 50% 

- 

 

Scale bar = 1 mm, with permission from the respective 

publisher 

[60] 

PCL, 

Pluronic F-

127, 

hydrogel: 

gelatin, 

fibrinogen, 

HA, and 

glycerol 

∼ 370 ∼ 750 

Three-point bending test 

of the 3D bioprinted ear 

constructs for 1 mm 

extension: percentage of 

loading cycle 49.22 ± 

12.54 (pre-

implantation), 29.58 ± 

3.45 (after one month)  

 

With permission from the respective publisher 

[1] 

PCL, PEG, 

alginate 
200 600 

Tensile modulus 14000–

16000 

 

[38] 
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Cell-laden 

Na-Alg and 

CaCl2 

Outer 

diameter of 

hollow tube: 

1192 

Inner 

diameter 

of 

hollow 

tube: 

892 

Ultimate tensile strength 

of 3D structure based on 

fusion of adjacent 

hollow filaments: 46 

(2% alginate), 77 (3% 

alginate), 116 (4% 

alginate) 

 

With permission from the respective publisher 

[26] 

PCL and 

alginate 
∼ 400 ∼ 650 - 

 

[14] 

PCL and 

alginate 
200 ± 20 

400 ± 

20 
- 

 

With permission from the respective publisher 

[77] 

PCL and 

alginate 

(only PCL 

was printed) 

200-400 
1000-

2000 

PCL compressive 

modulus: 6630-56460 

PCL tensile modulus: 

6030-46040 

Compressive modulus of 

alginate was considered 

negligible 
 

[78] 

PCL and 

alginate 

Alginate: 466 

± 63, PCL: 

437 ± 11 

88 ± 47 
Tensile modulus: 15400 

and 8300 

 

[66] 
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2.6 Mechanical properties: hybrid scaffolds with tailorable mechanical properties 

As discussed above, stiffer materials are generally used to improve the mechanical 

properties of hydrogel biomaterials. Many studies cite the poor mechanical properties of hydrogels 

as evidence to justify the fabrication of hybrid scaffolds [14,15,78,79]. Because a hybrid scaffold 

might be a combination of a soft material and a stiff material, mimicking the mechanical properties 

of native tissue is quite challenging. Successful tissue regeneration largely depends on the 

mechanical properties of fabricated scaffold resembling native tissues. Different studies have made 

efforts to tailor the mechanical properties of scaffolds by exploring appropriate biomaterial and 

scaffold geometry [80,81]. In addition to experimental studies, some efforts have been made to 

predict the mechanical properties of scaffolds using numerical investigation. Numerical studies 

have been carried out to reduce the number of experiments to evaluate scaffo lds using finite 

element models [82–85]. In this regard, more studies should be done to develop models that can 

predict the mechanical behavior of scaffolds considering the effects of geometr ic features. 

Inconsistency between the mechanical properties of scaffolds and native tissues provokes a stress-

shielding phenomenon and, thus, inhibits ECM secretion by cells [78]. According to the literature, 

various mechanical properties are desired with respect to the application of hybrid scaffolds; Table 

2.2 presents mechanical properties of some hybrid scaffolds utilized in different applications. 

Hybrid scaffolds with tailorable mechanical stiffness (provided by thermoplastic polymers) 

have been printed together with cells [22]. In particular, hybrid scaffolds composed of an acellular 

and soft matrix were fabricated to mimic specific native tissues and achieve the desired 

biomechanical and biological function [86–89]. Likewise, the spacing, orientation, and thickness 

of the fibers of hybrid scaffolds have been modified to improve mechanical properties in order to 

for use in intervertebral disks, cartilage, bone, and ligaments, and even in large blood vessels [90–

92]. Cardiac implants with modulated mechanical properties have been reported using hydrogel 

bioprinting with various patterns [93]. With respect to tailorable mechanical properties, more 

investigations are needed as this area is under-explored. Further, modulating the molecular weight 

of PCL and scaffold geometry has been attempted to fabricate hybrid constructs with similar 

mechanical properties to cartilage tissue [78]. Notably, conventional methods are unable to provide 



34 

 

scaffolds with tailorable mechanical properties due to random pore size and distribution, 

uncontrollable porosity, and poor pore interconnectivity [92,94–96].  

Beyond the general goal of creating 3D scaffolds with mechanical properties similar to 

native tissues, the mechanical properties of scaffolds can affect vascularization. For example, cells 

respond to the mechanical properties of implanted scaffolds [97]. Santos et al. showed that human 

umbilical vein endothelial cells (ECs) grown on collagen-coated low and high stiff polyacrylamide 

hydrogels showed different functional expression [98]. Another study demonstrated that ECs 

respond differently to angiogenic growth factors according to the mechanical properties of the 

scaffold [99]. Consequently, a vascular organization can be controlled via scaffolds by modulating 

mechanical properties; this effect can be useful to better control the creation of vascular networks. 

2.7 Cell viability and scaffold activation in large hybrid constructs: the role of vessel-like 

hollow channels/vascular networks 

Creating vascular networks with perfusion capability within 3D thick scaffolds is one of 

the most critical challenges in the fabrication of large scaffolds for maintaining the viability of 

cells [100]; this important issue is the subject of a recent review [101]. The creation of large hybrid 

scaffolds is no exception as large hybrid structures require appropriate vessel-like hollow 

channels/vascular networks to support cell viability throughout the 3D construct regardless of 

application. The creation of vessel-like hollow channels/vascular networks is not only important 

for vascularization using ECs but also vital for other applications using various types of cells. 

Vessel-like hollow channels/vascular networks play a major role in maintaining cell viability by 

facilitating adequate transport of oxygen and nutrients to the cells [102–104]. The goal of the 

creation of hollow channels within scaffolds is to improve cell viability in bioprinted scaffolds 

compared to those created with traditional scaffold-based TE techniques. This is considered a 

promising approach allowing the fabrication of complicated tissues for major internal organs, 

handling and positioning of multiple cell types, and integrating a vascular network in 3D tissue 

structures [105,106]. As an example of the importance of a hollow channel/vascular network, the 

lack of a network within a PCL/alginate hybrid scaffold reduced cell viability after just three days 

of culture [22]. To address this issue, several attempts have been made to facilitate media transport 

within controlled scaffold geometry but failed due to the absence of integrated vascular networks 
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[107]. In this section, methods used to create vessel-like hollow channels/vascular networks and 

how to activate scaffolds for vascularization are discussed; the effect of printing parameters on 

cell viability is then summarized.  

Notably, some approaches, such as chemical modification of biomaterials, optimization of 

pore sizes to facilitate blood vessel ingrowth, incorporation of angiogenic factors [108], and 

prevascularization of the scaffold in a bioreactor can enhance the formation of vasculature within 

a hybrid scaffold. Generally, microfabrication (e.g., photo patterning, micro-molding) and 3D 

bioprinting techniques are suitable for creating vascular networks [109]. Embedded microfluidic 

networks can improve perfusion in thick scaffolds but, in the majority of cases, microfluidic 

fabrication methods require various processes and, thus, direct fabrication of a vascular network 

is not possible [110]. Generation of a micro-pattern requires the knowledge of microfluidics to 

regulate the microenvironment (gas transfer, shear stress on cells, etc.) in cell culture.  One example 

in this regard is using stacked multiple layers of poly (glycerol sebacate) embedded with 

microfluidic networks to promote the formation of a complex vascular network within a 3D 

scaffold [53]. Moreover, sacrificial filaments (carbohydrate glass) incorporated within a 3D 

scaffold are useful for generating a vascular pattern, but this approach is not free from the 

complexities introduced by ECs seeding and the need to remove the sacrificial material. With 

respect to vascular networks, Huang et al. reported the fabrication of 3D zigzag cellular tubes 

according to the fusion of Na-Alg droplets via inkjet printing. However, this method requires the 

precise deposition of Na-Alg droplets and long printing times [111]. Another technique uses 

matrix-assisted pulsed laser evaporation; however, this method requires highly viscous materials 

and thus results in poor cell survival [112]. Although seeding and encapsulation methods have 

been used to incorporate ECs within scaffolds, they can only form randomly organized vessels 

with poor interconnectivity.  

Similar to the fabrication of complex structures with the assistance of sacrificial 

biomaterials as mentioned in the previous sections, several studies have used sacrificial techniques 

for vascular architecture fabrication. A recent review focuses on the utilization of sacrificial bioink 

materials for bioprinting of vascular tissue scaffolds [113]. However, ECs cannot be encapsulated 

during the fabrication of vascular channels in these methods [26,63,114]. For instance, 
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carbohydrate glass scaffolds were bioprinted but the sacrificial materials did not quickly dissolve 

after immersion in the culture medium [115]. In other studies, a perfused vascular channel was 

prepared in which a gelatin-based sacrificial filament was embedded into a collagen scaffold [116], 

and porous PCL bone grafts were vascularized through the post-seeding of human adipose-derived 

stem cells with a heterogeneous distribution [117]. Figure 2.4 illustrates the various techniques 

utilized in the creation of vascular networks within hybrid scaffolds. These techniques use a 

hydrogel reservoir to print in a bath of the hydrogel as a support. Second, coaxial nozzle printing 

can be utilized to create hollow channels using simultaneous crosslinking of the hydrogel. This 

technique is also known as core-shell printing and is a good candidate for the creation of hollow 

channels that can be used for drug delivery [118] or vessel-like channels as reported by many 

researchers [113,119,120]. Third, sacrificial materials act as a support that can be removed after 

chemically crosslinking of the main matrix. Using this method, Norotte et al. reported the creation 

of hollow channels of multicellular pig smooth muscle cells with the assistance of agarose 

cylinders as a sacrificial biomaterial [121]. 
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Figure 2.4. Printing of vascular networks within hybrid scaffolds using: a) hydrogel reservoir, b) coaxial 

nozzle, c) sacrificial material: I) CAD models of main (hybrid biomaterials) and sacrificial parts, II) final 

scaffold before removing sacrificial material (inset is the top view during fabrication), III) final hybrid 

scaffold after removal of the sacrificial material. 

Moreover, hybrid scaffolds can be created from a 3D construct fabricated from functional 

biomaterials. Bioactive molecules such as cell-adhesion peptides, responsive moieties, and growth 

factors incorporated into 3D scaffold can enhance biological function and vascularization [122–

124]. Sequential release of various angiogenic factors (such as vascular endothelial growth factors, 

basic fibroblast growth factor, and platelet-derived growth factor) from 3D scaffolds stimulates 

vasculature formation and therefore has frequently been explored [32]. Assembling multiple 

autologous cells, growth factors, and bioactive agents, mimicking the native tissue, is quite 

challenging; however, a 3D bioprinter with multiple nozzles can efficiently overcome this 

difficulty. A strategy to deploy stem cells and growth factors together in large constructs to form 
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vascular networks through the proliferation and differentiation of stem cells has been successful 

[125]. Hybrid scaffolds including tricalcium phosphate, PCL, and cells supported large blood 

vessel formation in calvarial bone reconstruction, while the control group promoted limited 

vascularization in the periphery of the implant [1]. The difficulty associated with thick tissue 

vascularization is forming an integrated vascular network within the 3D scaffold to allow the 

delivery of growth factors, oxygen, and other nutrients, and therefore this issue has been studied 

intensively [126,127]. 

The importance of using vessel-like hollow channels/vascular networks is to ensure cell viability. 

However, printing parameters also affect cell viability. Needle geometry and pneumatic pressure 

can affect cell viability in the 3D vascular pattern fabricated by a dispensing-based system. Using 

this method, many factors should be considered regarding cell viability and printing cell-laden 

hydrogels. For instance, conical needles are superior to cylindrical needles with respect to shear-

induced cell damage, and therefore tapered needles are recommended [14]. Additionally, highly 

viscous hydrogels offer better printability but cause cell damage in the printing process due to 

higher dispensing pressure [128]. Some of the printing parameters and conditions used in the 

biofabrication of hybrid scaffolds for different TE applications are summarized in  Table 2.3. A 

lower pneumatic pressure is recommended for cell-laden hydrogel printing to reduce the shear 

stress, which is one of the main factors influencing cell viability. Another factor is needle diameter, 

where smaller needle diameters result in more cell damage. Applied temperature and needle length 

are other paramount factors [129]. 

Table 2.3. Printing parameters and reported cell viability for different kinds of cells. 

Materials 

Nozzle 

speed/feed 

rate 

(mm/min) 

Needle 

diameter 

(µm)/gau

ge size 

Pressure 

(KPa) 

Tempe

rature 

(°C) 

Crosslinking 

of hydrogel 

(mM) 

Cell types 
Cell 

viability 
Description 

Refe

renc

e 

PCL and 

alginate 

Scan speed of 

the head 

PCL: 100 

Alginate: 250 

PCL: 200 

and 150 

PCL: 400 

Alginate: 

piston-based 

system with a 

plunger speed 

of 1.2 mm/min 

PCL: 

80 

Alginat

e: 20 

CaCl2: 100 

and NaCl: 

145 

Chondrocytes 

isolated from 

human nasal 

septum 

cartilage and 

osteoblasts 

Chondrocyte

s (∼93.9%) 

and 

osteoblasts 

(∼95.6%) 

Cell viability for at least 

7 days; chondrocytes 

retained their viability 

without remarkable 

proliferation after 7 days 

[15] 
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PCL and 

alginate 

PCL: feed rate 

of 176  

Alginate: 

deposition 

speed of 100 

PCL: 23G 

Alginate: 

210 

PCL: 500 

Alginate: 

piston-based 

system with a 

plunger speed 

of 1.5 mm/min 

PCL: 

160  

Alginat

e: room 

tempera

ture 

 

CaCl2: 102 C20A4 cells 
More than 

60% 
Only first day [22] 

NFC, 

PCL, and 

alginate 

Feed rate 

PCL: 1200 

NFC-Alginate: 

300 

PCL: 330 

NFC-

Alginate: 

150 

PCL: 250 

NFC-Alginate: 

40 

PCL: 

90 

NFC-

Alginat

e: 23 

CaCl2: 100 
Human nasal 

chondrocytes 
∼70.9% Throughout 28 days [60] 

PCL, 

Pluronic 

F-127, 

hydrogel: 

gelatin, 

fibrinoge

n, HA, 

and 

glycerol 

- 

PCL: 250 

Pluronic 

F127: 250 

Cell-laden 

hydrogel: 

300 

PCL: 800 

Pluronic F127: 

200-300 

Cell-laden 

hydrogel: 

50~80 

PCL: 

92.5 

Others: 

18 

Thrombin 

solution (20 

UI/mL) 

3T3 fibroblasts 

and Human 

AFSCs, rabbit 

ear 

chondrocyte, 

mouse C2C12 

myoblasts 

3T3 

fibroblasts ≥ 

95% 

∼91% for 

AFSCs and 

chondrocyte 

and ∼97% 

for 

myoblasts 

C2C12 

myoblasts 

3T3 fibroblasts: on day 

0, maintained through 

days 3 and 6 and other 

cells for long durations 

[1] 

PCL, 

PEG, 

alginate 

PCL: scan 

velocity 205 

Alginate: 

piston velocity 

0.48 

- 
PCL: 650 

PEG: 300 

PCL: 

80 

PEG: 

80 

Alginat

e: room 

tempera

ture 

CaCl2: 100 

Chondrocytes 

and adipocytes 

differentiated 

from adipose-

derived stromal 

cells 

∼95% During 7 days [38] 

PCL, 

PEG, 

Alginate/ 

atelocolla

gen/ 

decellular

ized 

ECM 

Scan velocity, 

PCL: 205 

PEG: 310 

Alginate: 80 

Atelocollagen: 

60 

dECM: 55 

250 

PCL: 650 

PEG: 300 

Piston velocity 

of alginate, 

Atelocollagen, 

and dECM: 

0.008, 0.015, 

and 0.018 

PCL: 

80 

PEG: 

80 

Others: 

room 

tempera

ture 

CaCl2 

Human 

adipose-

derived stem 

cells and 

human-

turbinate-

tissue-derived 

mesenchymal 

stem cells 

>95% - [64] 
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mm/s, 

respectively. 

Fibrinoge

n, 

collagen 

type I, 

and 

Matrigel 

- 150 - 22 
Printing in a 

gelatin slurry 

C2C12 

myoblasts 
∼99.7% During 7 days [39] 

Cell-

laden Na-

Alg and 

CaCl2 

Movement 

speed around 

1000 mm/min 

21-23 G 

Coaxial nozzle 

printing, flow 

rate alginate: 

0.5-1.5 

mL/min 

- 

Crosslinking 

via CaCl2 

(coaxial 

nozzle) 

L929 mouse 

fibroblast 
∼92.9% 

Cell viability reduced 

from 92.9% on day 1 to 

67.1% on day 7 

[26] 

PCL and 

alginate 

Dispensing 

speed:  

PCL: 60 

Alginate: 1500 

PCL: 300 

Alginate: 

200 

PCL: 800 

Alginate: 10 

PCL: 

65-80, 

Alginat

e: 10 

Partial 

crosslinking: 

CaCl2: 170 

Full 

crosslinking 

after 

fabrication: 

CaCl2: 100 

Rounded and 

fibroblastic 

cells isolated 

from primary 

cultures of 

embryonic 

chick 

chondrocytes 

Minimum 

viability of 

77% for both 

types of cells 

during 14 

days 

Up to 14 days of culture [14] 

PCL and 

alginate 

Scan velocity: 

PCL: 80 

Alginate: 400 

PCL: 250 

Alginate: 

250 

PCL: 650 

Alginate: 9-20 

PCL: 

80  

Alginat

e: room 

tempera

ture 

CaCl2: 100 

NaCl: 145 
Chondrocyte ∼85% Over 10 days [77] 

PCL and 

alginate 

Scan velocity: 

450 

Outer 

diameter: 

Alginate: 

310, PCL: 

350 

Alginate: 220 ± 

10 

PCL: 350 ± 5 

Alginat

e: 26 

PCL: 

130 

Before cell 

loading: 0.5 

wt% CaCl2, 

after printing: 

2 wt% CaCl2 

MC3T3-E ∼84% During 7 days [66] 

Alginate/

HA 

Scan velocity: 

240 
100 120 - 

CaCl2: 100 

0.1% w/v 

polyethylenim

ine 

RSC96 cells 

(ATTC), an 

immortalized 

rat Schwann 

cell line 

83.2% Over 3 weeks [61] 
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Oxidized 

alginate, 

gelatin 

Scan velocity: 

600-3600 
200 55 and 100 37 CaCl2: 100 

MG-63 

osteoblast 

Not reported 

statistically; 

high number 

of living 

cells 

After the plotting 

process; 5 h of 

incubation 

[65] 

 

2.8 Current challenges and the future of hybrid scaffolds 

Dispensing-based 3D bioprinting has revolutionized TE with respect to printing artificial 

tissues and organs but it is not free from limitations. Challenges remain with respect to fabricating 

hybrid scaffolds, such as the inclusion of vessel-like hollow channels/vascular networks and 

creation of scaffolds with geometrical features similar to those of native tissues. The following 

subsections present current limitations, solutions, and future directions. 

2.8.1 3D bioprinting and printability  

Challenges in 3D bioprinting include increasing the speed and resolution of biofabrication 

and the possibility of printing biocompatible materials. As depicted in  Table 2.3, printing 

parameters and conditions significantly affect cell viability in the bioprinted strand. In a 3D 

bioprinting system, the viscosity of the biopolymer is a critical factor that needs to be considered 

to achieve superior printability and printing resolution. Because the viscosity of some polymers is 

associated with their concentration in solution, selection of higher viscosity materials requires the 

application of more concentrated biopolymer during biofabrication. However, a number of studies 

demonstrate the adverse effect of more concentrated biopolymers on tissue culture. For example, 

4% alginate gels regenerated better cartilaginous tissue than 6% alginate gels [47].   

Other vital factors are the crosslinking and stability of hydrogels after fabrication. Although 

crosslinking is a good method to improve the stability of hydrogels, it is not reproducible [66]. 

Several studies reported excessive crosslinking causing a significant reduction in cell viability in 

biofabrication [130]. In addition, the type and concentration of crosslinkers regulate printing 

parameters (dispensing pressure, needle speed) and the mechanical properties of the resulting 3D 

scaffolds. Therefore, the choice of crosslinkers and determining an appropriate concentration are 

critical challenges that need to be addressed. A viscous biomaterial used for 3D cell printing should 



42 

 

have good printability while ensuring that its chemical/physical crosslinking does not adversely 

influence cell viability.  

2.8.2 Development of novel biomaterials for improved biological and/or 
mechanical properties 

The range of biomaterials used in bioprinting is limited and includes natural polymers 

(collagen, HA, alginate, etc.) as well as synthetic ones (PCL, polylactic acid, polyglycolic acid, 

etc.). The ideal 3D complex tissue or organ has yet to be printed; the incorporation of cells in 

hydrogels that have poor mechanical properties is the main obstacle. Thus, researchers have used 

synthetic biomaterials to improve the mechanical stability of hydrogels [131,132]. The mechanism 

by which synthetic materials transfer mechanical stimuli to the encapsulated cells in the hydrogel 

is complex and requires more investigation. PCL, a synthetic polymer, has been used in some 

studies to improve the mechanical properties of hybrid structures [22]. However, the role of 

synthetic polymers in transferring customized mechanical stimuli to the cells encapsulated in 

hydrogels is important and should be addressed in future studies. Modulating the mechanical 

properties of a hybrid scaffold to match the structure of native tissues is another critical factor. 

A number of biopolymers demonstrate superior printability but lack bioactive molecules 

in their structure. For example, Na-Alg demonstrates biocompatibility, low toxicity, and 

printability, and has frequently been used in 3D biopinting [49–51]. In spite of many attractive 

features, the deficiency of cell binding moieties on the molecular chain limits the application of  

Na-Alg; as it has no bioactive proteins [15]. In this regard, carbodiimmide chemistry is useful in 

forming a covalent bond between various peptides and alginate molecule [53]. Another biological 

issue is that cell-laden soft hydrogels degrade faster than synthetic materials in hybrid scaffolds. 

This non-uniform degradation affects the structure integrity of hybrid scaffolds within a short time 

during in vivo or in vitro tissue culture. Moreover, it is difficult to create attachments between 

successive layers of hydrogels and synthetic materials during bioprinting. Finally, synthetic 

materials take longer to degrade after in vivo implantation and result in inflammation and other 

biological complexities. 

From the mechanical point of view, successful cell-laden hydrogel strands can generally 

be printed with synthetic polymers (e.g., PCL) to improve the mechanical properties of hybrid 
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scaffolds. However, the heat transferred from the printed synthetic polymers to the hydrogel 

filaments significantly reduces cell viability [133]. To limit such detrimental effects of synthetic 

polymers with a relatively high melting temperature, rapid cooling of PCL has been conducted 

after dispensing together with a microchannel distance gap between the PCL strands and cells to 

reduce cell damage in the cell-laden hydrogel [1]. Another study concluded that PCL printed at 65 

to 75 °C did not have any effect on cell viability in the hybrid (PCL/alginate) scaffold due to the 

quick drop in the surface temperature of the PCL to room temperature [14].  

Along with the development of novel biomaterials, conventional and AM techniques might 

be combined to create hierarchical hybrid scaffolds [19]. In this regard, the 3D bioplotting 

technique might be combined with electrospinning method to achieve hybrid scaffolds with 

improved biological/mechanical properties. It is noticed that many efforts have been made to 

predict the mechanical properties of scaffolds using finite element models to reduce the number of 

time-consuming experiments, for example by developing accurate numerical models [82–84]. 

Such models can be utilized to predict the mechanical behavior of hybrid scaffolds in future 

studies.  

2.8.3 Manipulating multiple biomaterials 

Once a novel biomaterial is developed, the next question is how to manipulate various 

biomaterials to fabricate hybrid scaffolds. Control of the spatial distribution of materials is a key 

issue with respect to the manipulation of multiple materials. The capacity to manipulate multi-

materials/cells during scaffold bio-fabrication is critical to mimic the heterogeneous structures of 

native tissue/organs. A straightforward approach is to blend multi-materials/cells for deposition to 

build scaffolds, resulting in hybrid scaffolds and in situ-forming hydrogel scaffolds. This approach 

is challenged by the need to control the spatial distribution of individual materials/cells within the 

scaffolds created. To address this challenge, the use of multiple dispensers has been applied over 

the last decade, wherein multiple materials/cells stored in different dispensers are alternatively 

applied to build the scaffolds. This approach has been successfully utilized to fabricate hybrid 

scaffolds comprised of a solid 3D synthetic polymer framework to impart mechanical strength and 

a hydrogel network to encapsulate cells. However, this approach lacks the ability to dispense multi-

materials/cells simultaneously in a controllable manner in comparison with the simple blending 
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method. This limitation has been thoroughly addressed elsewhere, using a microfluidic device with 

a double-coaxial laminar flow as a novel method to manipulate multi-materials/cells [134]. 

2.8.4 Cell viability and the creation of activated hybrid scaffolds 

In a 3D hybrid scaffold, a large proportion of the encapsulated cell population can 

experience necrosis due to limited diffusional mass transfer [135,136]. Consequently, cells 

encapsulated in a large 3D scaffold cannot survive for a long time. However, Shim et al. report a 

new approach to ensure the availability of interconnected pores within a few hundred microns [15]. 

Furthermore, because shear-induced cell damage is a common phenomenon in dispensing-based 

3D bioprinting, more efforts are required to improve cell viability in this technology [37,137,138]. 

To address this issue, tapered needles have been introduced to reduce shear stress [45]. 

As mentioned above, a fundamental challenge in TE is vascularizing a large 3D cellular 

scaffold printed by a 3D bioprinting technique [1,108]. Because nutrient diffusion to cells without 

any vascular network is inefficient beyond a distance of 100 to 200 μm [1], cell viability in the 

scaffold is significantly reduced during in vivo or in vitro culture. In particular, new blood vessels 

take a considerable amount of time to grow into scaffolds by angiogenesis/vasculogenesis and this 

delay remarkably reduces cell viability due to hypoxia and necrosis [139]. Several strategic 

approaches have been considered to address this issue. Hollow channels prepared by sacrificial 

biomaterials have been perfused with ECs to form blood vessels [115]; the use of a coaxial nozzle 

to manage the flow of the hydrogel and crosslinker is another possibility to create 3D vasculture 

[140]. Moreover, a multi-nozzle bioprinter was used to fabricate complex tissue and a vascular 

network layer-by-layer to mimic native tissue [125]. In this regard, a co-axial nozzle was used to 

print tubular vascular networks, while a micro nozzle printed cells to fabricate large -scale 

vascularized tissues. Similarly, fibroblast tissue ligaments together with the vasculature network 

were printed [107]. Further, growth factors have been used to stimulate angiogenesis and create a 

vascular network [141,142]. Another remaining challenge in creating vascular networks is the 

generation of perfusable prevascularized tissues [32]. In this regard, in vivo/in vitro 

prevascularization was reported to be an effective approach in vasculature formation prior to in 

vivo implantation [143]. Finally, in addition to the importance of vascular networks in cell 

viability, fabrication parameters (e.g., applied pressure) can affect cell viability and therefore more 
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investigations are needed to determine optimal fabrication parameters for different biomate rials. 

As a future direction, techniques like coaxial nozzle printing might be implemented and combined 

with electrospinning to create hybrid scaffolds with vessel-like channels. Such a trend might 

improve cell viability within scaffolds, as the current critical challenge in TE.  

2.9 Conclusions 

Dispensing-based 3D bioprinting techniques have been widely used in the fabrication of 

tissue scaffolds with living cells, where hydrogels are regarded as the dominant biomaterials. 

Notably, poor mechanical/biological properties of hydrogels have led researchers to develop 

hybrid scaffolds from two or more biomaterials with distinct yet complementary properties. Many 

efforts have been made to address various challenges in the development of hybrid scaffolds with 

significant advances in terms of their design and fabrication. In terms of fabrication, one common 

trend to manipulate biomaterials is using multiple dispensers to deposit different biomaterials with 

dissimilar rheological properties and fabrication conditions (dissolution and crosslinking/gelation 

aspects). Challenges remain with respect to making attachments between successive layers printed 

with different biomaterials as well as determining appropriate fabrication parameters to achieve 

printability with geometric precision. In terms of design, critical issues are associated with the 

medical imaging used to fabricate customized patient-specific hybrid scaffolds, biomaterials, and 

the physical architecture of hybrid scaffolds with tailorable mechanical properties. This review 

highlights the technical (speed and resolution) and printability aspects, development of novel 

biomaterials, and fabrication of scaffolds with improved biological and mechanical properties. 

Many experimental and numerical studies have calculated/predicted the mechanical behavior of 

hybrid scaffolds and some advancements have occurred with respect to manipulating multiple 

materials, improving cell viability, creating vessel-like hollow channels/vascular networks, and 

fabricating large hybrid scaffolds. In spite of many successful achievements, more studies are 

needed to develop a range of printable biomaterials with appropriate biomechanical properties to 

create large hybrid scaffolds with vascular networks. The success of printing artificial tissues and 

organs with hybrid structures lies in the creation of an appropriate microenvironment in which a 

large cell population can function in an organized fashion to form respective tissues in the presence 

of a functional vasculature. In the near future, dispensing-based methods to produce bioprinted 
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hybrid scaffolds are predicted to evolve further towards the goal of printing entire organs or 

damaged tissues. 
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Chapter 3 Printability of 3D Printed Hydrogel Scaffolds: Influence of Hydrogel 

Composition and Printing Parameters 
 

This chapter has been published as “Saman Naghieh, MD Sarker, N. K. Sharma, Zohra 

Barhoumo, and Xiongbiao Chen, Printability analysis of 3D printed modified hydrogel scaffolds: 

Influence of biomaterial composition and printing parameters, Journal of Biomedical Engineering” 

According to the Copyright Agreement, "the authors retain the right to include the journal article, 

in full or in part, in a thesis or dissertation".  

(All the experimental work was conducted by me. MD Sarker, N. K. Sharma, and Zohra Barhoumi helped me in 

preparing Tables and Figures and performing some experiments. Professor Xiongbiao Chen guided and supervised 

the whole work.) 

3.1 Abstract 

Extrusion-based bioprinting has emerged as a promising method in tissue engineering and, 

specifically, the development of hydrogel scaffolds. However, bioprinting of hydrogel scaffolds is 

challenging due to printability-related issues, such as lack of capability to precisely deposit 

hydrogels to create the scaffold as per design. Printability is an index showing the difference 

between design and fabricated scaffold, yet under-explored. While some studies have attempted 

to improve either mechanical or biological characteristics of hydrogel scaffolds by means of 

mixing several types of hydrogels, limited known about the printability of such structures. In this 

study, sacrificial hydrogels (gelatin and MC) are used to discover the printability of pure and 

composite alginate scaffolds. As such, a stepwise study is undertaken to study the effect of the 

flow behavior of hydrogels used for scaffolds fabrication, as well as their mechanical properties, 

two-dimensional printability, and ultimately three-dimensional printability of pure alginate and a 

mixture of alginate, gelatin, and MC. Printability studies investigated pore size, strand diameter, 

and dimensions of scaffolds; and established several equations to define the printability – in terms 

of pore, strand, and angular printability, in addition to irregularity. Results indicated that the most 

important factors affecting the printability are biomaterial-related (such as viscosity) and 

fabrication-related ones (e.g. air pressure, nozzle speed, offset, and selected angular patterns). 

Finally, a linear regression model was developed to represent factors that have significant effects 
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on printability. The aim of this study is to present a clear picture of printability by introducing a 

framework to evaluate hydrogel printability in a systematic manner. Such an approach can be used 

to distinguish the most effective factors influencing the printability for different biomaterials.  

3.2 Introduction 

Extrusion-based bioprinting is one of the AM techniques used nowadays for various tissue 

engineering applications (Figure 3.1) [1]. Many studies have been carried out to create hydrogel 

scaffolds using this technique [2,3]. Generally speaking, a computer-aided design (CAD) is used 

to deposit biomaterials as per CAD [4]. However, scaffolds are rarely fabricated exactly according 

to CAD model. That is why the printability index is important as an element showing the difference 

between the scaffold design (typically in a CAD model) and the printed scaffold. 3D printability 

of a hydrogel biomaterial is defined as the ability of a hydrogel to form and maintain a reproducible 

3D structure with structure integrity. Although the range of accuracy for extrusion-based machines 

is in the order of micron, there is still a challenge when it comes to shaping fidelity and the 

printability of scaffolds bio-fabricated using the extrusion-based technique. 

 

Figure 3.1. The schematic diagram of an extrusion-based 3D bio-printer. 
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The printability itself can influence other interrelated factors such as morphology and 

mechanical properties of scaffolds. Consequently, it can affect cell response [5]; it is well-accepted 

that the mechanical properties of scaffolds can influence cell faith [6]. Hence, it is important to 

study elements that can influence printability. Although there are a few studies on printability of 

different biomaterials, the real picture and definition of printability remain unclear and there are 

fundamental questions about how to map the relationships amongst printability and other 

interrelated factors such as biomaterial and fabrication. For example, in some studies, the flow 

behavior of biomaterials was considered to evaluate printability [7,8]. In these studies, the solely 

physical and rheological characteristics of materials were investigated [9]. In another study, the 

influence of ionic crosslinkers on printability has been investigated without considering other 

factors [10]. In some studies, only printing parameters have investigated as critical factors 

influencing printability [2,11]. In another study, the gelation properties of materials during the 

printing process were studied to achieve a mechanically stable structure [12]. Murphy et al. studies 

gelation time, swelling, and printability of various groups of hydrogels [13]. In another study, 

analytical methods were implemented to check the printability of materials [14]. Kyle et al. 

reported that printability is a matter of rheology, biomaterial composition, nozzle variables, pore 

and filament dimensions, geometry, and printing angle [15]. Hence, improving printability 

considering one of the factors solely is not a systematic approach to improve printability. As 

mentioned, different studies have investigated the effect of some factors on printability 

specifically. However, there is not a clear picture of printability considering interrelated factors 

influencing printability. In this study, rheological properties, printing parameters, and printing 

conditions are investigated systematically to map the relationship between these paramete rs and 

printability rather than considering each factor individually. As such, more studies should be 

performed in this area to define and establish novel approaches to define and measure printability. 

The key question of this study is how to measure printability [15]. 

Alginate is one of the hydrogels used widely for biofabrication of scaffolds used for tissue 

engineering applications as reported in numerous studies [16–23]. Specifically, one of the 

approaches to improve the printability of alginate scaffolds fabricated by extrusion-based 

bioprinting method is to mix alginate with other types of hydrogels [24]. Gelatin is one of these 

hydrogels usually mixed with alginate. Gelatin is a natural polymer derived from collagen and it 
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has a cell-friendly environment and this is one of the reasons for mixing alginate with this 

biomaterial [12]. MC is another biocompatible hydrocarbon polymer used commonly in scaffold 

fabrication due to its high hydrophilicity and water absorption, which is essential for nutrient 

delivery to the cells [25]. Hydrogels composed of multiple biomaterials have also been used in 

scaffold construction: for example, one study analyzed the properties of cell substrates composed 

of a scaffold containing both gelatin and alginate and found these scaffolds to have high water 

retention rates [26]. This suggests that combining different biomaterials may be a way to 

manipulate the scaffold characteristics and allow for better control in achieving desired scaffold 

functions. 

The aim of this study is to present a clear picture of printability, identify factors that can 

affect it, and propose methods to measure 3D printability of hydrogel scaffolds with an alginate 

matrix. There are some studies on the effect of the flow behavior of biomaterials [27] ink 

consistency [7], and hydrogel mechanical characteristics [9] on printability. Nevertheless, little 

attention has been paid to the effect of printing parameters of scaffolds made of a mixture of 

hydrogels [2]. Here, the effect of hydrogel composition (alginate, alginate-gelatin, alginate-

gelatin-MC, and alginate-MC) on swelling, mechanical, and degradation properties were tested 

over time. Then, a systematic study was implemented by characterizing the biomaterial flow 

behavior, 2D and 3D printability of hydrogels with different compositions. Finally, a linear 

regression model was developed to map the relationships amongst various biomaterial-related and 

fabricated-related elements affecting printability. 

3.3 Materials and methods 

3.3.1 Preparation of hydrogels 

Medium viscosity Na-Alg from brown algae (Sigma-Aldrich Canada Ltd., P-code 

1001172534, with a molecular weight of 80,000 – 120,000 g/mol), was used for the preparation of 

a 3% w/v alginate (group 1) using distilled water. Gelatin from porcine skin, Type A, Bioreagent, 

(Sigma-Aldrich Canada Ltd.) was used for the preparation of a 2% w/v alginate and 1% w/v gelatin 

solution (group 2). MC, phosphate buffer saline, and calcium chloride were obtained from Sigma-

Aldrich Canada (Oakville, Ontario, Canada). 1.5% w/v alginate, 1% w/v gelatin and 0.5 % w/v 

MC were mixed together as group 3. Group 4 was consist of 1.5% w/v alginate and 1.5 % w/v MC 
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solution. For bulk gel experiments, hydrogels were pipetted into molds to a height of 4 millimeters 

and incubated with 50 mM calcium chloride at room temperature for cross-linking.  

For the ease of discussion, different groups are named here. From now on, group 1 will 

refer to 3% (w/v) alginate while group 2 will refer to 2% (w/v) alginate and 1% (w/v) gelatin. The 

third group includes 1.5% (w/v) alginate, 1% (w/v) gelatin and 0.5 % (w/v) MC (group 3). Last 

group includes 1.5% (w/v) alginate and 1.5 % (w/v) MC (group 4). To have a uniform solution for 

printing, prepared solutions were stirred, centrifuged, and kept in a refrigerator to get rid of bu bbles 

during the preparation procedure and to ensure complete hydration. In addition, solutions were 

kept in the nozzle for 20 minutes to have a uniform solution with a stable temperature in the 

printing head before starting the printing process. 

3.3.2 Scaffold fabrication 

A 3D Bioplotter (EvisionTec) was used to print scaffolds of 11×11×11 mm. All groups of 

hydrogels were deposited by using a 200 µm needle inner diameter (EFD, Nordson). Magics13 

EnvisionTEC software and Bioplotter RP software were used for CAD model generation and 

slicing, respectively. Scaffolds were fabricated layer-by-layer, while hydrogel filaments were 

deposited into a CaCl2 bath in a 12-well plate. The filament width, pore sizes, pore area, and the 

perimeter of scaffolds were measured using ImageJ® software. To check the uniformity of 

fabricated scaffolds, at least, 3 scaffolds were printed and evaluated in terms of pore size and strand 

diameter. 

3.3.3 Testing hydrogel construct swelling properties 

The initial weights of the hydrogel scaffolds were measured after removing them from the 

crosslinker solution and the scaffolds were then incubated in 10 mM Phosphate-buffered saline 

(PBS) solution at 37°C and 5% carbon dioxide. The weights of the samples were again measured 

after 1 hour, 3 hours, 12 hours, 3 days, 7 days, and 14 days for any change in mass due to swelling. 

A Kimwipe was used to eliminate excess or free liquid from the scaffold prior to weighing each 

sample. The swelling of the composite scaffolds was calculated with the following equation: 

% Swelling = 
𝑊𝑡− 𝑊𝑜

𝑊𝑜
 × 100                                                               (3.1) 
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where Wt is the hydrogel weight at the specific time and W0 is the hydrogel weight at time 

0 hours.  

3.3.4 Testing the compressive strength of the hydrogel constructs 

The hydrogel scaffolds were tested for compression strength using a compressive testing 

instrument from BOSE (load cell capacity: 20 Newtons). This device measured the forces required 

to compress a sample to a series of displacements until a maximum displacement of 2 mm was 

reached. The area and height of the scaffolds were measured using ImageJ® software prior to 

mechanical testing, and the resulting data were used to plot stress-strain curves for each construct. 

The elastic modulus was determined by finding the slope of the linear portion of the stress-strain 

curve. 

3.3.5 Testing hydrogel construct degradation properties 

Scaffolds were freeze-dried and then weighed to determine their initial masses. To obtain 

the degraded scaffolds, the samples were incubated in 10 mM PBS solution at 37°C and 5% carbon 

dioxide for 7, 14 21, and 28 days. The PBS solution was then taken out of the samples and the 

samples were freeze-dried and weighed again using a digital scale. The hydrogel degradation was 

calculated with the following equation: 

% Degradation =  
𝑊𝐹𝐷0−𝑊𝐹𝐷𝑡

𝑊𝐹𝐷0
 × 100                                           (3.2) 

where WFDt is the freeze-dried hydrogel weight a given time, and WFD0 is the freeze-dried 

hydrogel weight at the time 0. 

3.3.6 Flow behavior tests 

The flow behavior of various groups of 1 to 4 was investigated at 37°C. A Brookfield Ultra 

III Rheometer with the CP-41 spindle was used for the testing. The shear rate, shear stress, 

viscosity, and percentage of torque have been measured at various rotational speeds.  

3.3.7 Printability studies on printing parameters and condition 

Two dimensional (2D) studies were performed to check the printability of scaffolds by 

printing lines (scaffolds with two layers). Likewise, follow-up studies were carried out to check 

the 3D printability of different groups by printing 3D scaffolds. In the flowing subsections, the 



62 

 

experimental design on how to evaluate the effect of air pressure, nozzle speed, offset, and pattern 

selection on printability is discussed. 

3.3.7.1 Air pressure  

For this set of either 2D or 3D studies, air pressure (0.1 to 0.8 bar) and temperature (37, 45, 

and 55℃) were subjected to changes while other printing parameters such as nozzle speed and the 

temperature maintained constant.  

3.3.7.2 Nozzle speed 

For the second set of experiments, nozzle speed was changed starting from 4 mm/s for 

several pressures (0.1 to 0.4 bar). For this, scaffolds crosslinked mechanically and chemically 

through using a cold bed and CaCl2, respectively (except for group 1 crosslinked chemically). For 

groups crosslinked physically, printing temperature was kept at 37℃ while the printing bed 

temperature was 10℃ (pressure: 0.1-0.5 bar, minimum nozzle speed of 10 mm/s). For all groups 

crosslinked chemically, minimum nozzle speed was 4 mm/s (pressure: 0.1 to 0.4 bar) and group 1 

was printed at 24℃ while other groups at 37℃. 

3.3.7.3 Offset 

For the third set of experiments, offset was the variable (-0.08 to 0.08 mm) and the selected 

temperature was the same as the one for the previous set of experiments (negative values is as per 

calibration and do not mean any kind of substrate scratching). The offset is the distance from the 

nozzle to the build platform (Figure 3.1), which was analyzed to determine the influence of the 

offset on the line width. The nozzle speed was maintained at 35 mm/s (pressure: 0.1 and 0.2 bar).  

3.3.7.4 Angular pattern printing 

As another part of printability investigation, scaffolds with various angular patterns were 

printed and evaluated from printability perspective. For this, scaffolds with angular patterns of 0 -

25°, 0-45°, and 0-90° were printed. Pressure and nozzle speed were maintained between 0.1 and 

0.2 bar and 35 to 40 mm/s, respectively. The temperature was maintained as per the nozzle speed 

experiment. 
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3.3.8 Printability evaluation 

In this study, different evaluations were performed in order to show methods on how to 

measure printability. For this, firstly, a standard diameter of strands (Ds) was calculated and 

compared with experimental strand diameter. For this, the following equations were used: 

ρ =  
𝑀𝑎𝑠𝑠

𝑉𝑜𝑙𝑢𝑚𝑒
                                                  (3.3) 

𝑄 =  
𝑉𝑜𝑙𝑢𝑚𝑒

𝑇𝑖𝑚𝑒
                                           (3.4) 

𝑁𝑜𝑧𝑧𝑙𝑒 𝑠𝑝𝑒𝑒𝑑 =  
4𝑄

𝜋(𝐷𝑠)2
                                (3.5) 

where 𝜌, Q, and Ds are density, flow rate, and standard strand diameter, respectively. Here, 

different solutions of groups 1 to 4 were purged for a limited time and purged materials were 

weighted using the Sartorius Scale (model 225d). From Equation 3.3., the volume can be 

calculated and then using Equation 3.4 and 3.5, flow rate and standard strand diameter can be 

calculated respectively for different nozzle speeds. For this evaluation, pressure was maintained 

between 0.2 to 0.4 bar and temperature was same as the one reported in nozzle speed experiment. 

Based on Equation 3.5, strand printability was defined as: 

𝑆𝑡𝑟𝑎𝑛𝑑 𝑝𝑟𝑖𝑛𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 −
𝐷𝑠−𝐷𝑒𝑥𝑝.

𝐷𝑠
                                                (3.6) 

where Dexp. is experimental strand diameter. As another evaluation, pore printability was 

checked as it was reported elsewhere [8]. The following equation was used for this purpose. 

𝑃𝑜𝑟𝑒 𝑝𝑟𝑖𝑛𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑝2

16𝛽
                                                                         (3.7) 

where 𝛽 and 𝑝 are the area and perimeter of a pore of a scaffold. As the last evaluation, 

pore irregularity was defined as: 

𝐼𝑥, 𝑦 =  |
(𝑥,𝑦)𝑡ℎ−(𝑥,𝑦)𝑒𝑥𝑝.

(𝑥,𝑦)𝑡ℎ
|                              (3.8) 

where Ix,y is the irregularity of the geometry of scaffolds in different directions of X and Y. 

(x,y)th shows the ideal length of a scaffold in X and Y directions as per design while (x,y)exp. 

represents experimental lengths in these directions. 
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3.3.9 Statistical significance 

Statistical significance was calculated by performing a student’s t-test. For each set of 

experiment, three replicas were considered at least and data were presented as a mean ± standard 

deviation. Significant difference are shown with P-values of p < 0.05 and p < 0.01. Using Minitab® 

17.1 software, a linear regression model was developed with two-sided intervals of confidence 

with 95% value. 

3.4 Results 

3.4.1 Mechanical characterization 

The swelling properties of hydrogels are indicative of the ability of nutrients and wastes to 

be exchanged between the environment and cells that would be incorporated into the gels for the 

production of synthetic tissue. All samples in this study were incubated in PBS to assess the rate 

of water absorption over time. The change in mass of the hydrogels due to water absorption 

indicated a trend shown in Figure 3.2.  

 

Figure 3.2. The rates of absorption of samples composed of various biomaterials were indicated by the 

change in mass of the samples over time. 
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Group 1 showed a 155.10% swelling, group 2 showed 165.95% swelling, group 3 showed 

160.93% swelling, and group 4 showed 146.75% swelling after 168 hours of incubation with PBS. 

According to the data, group 2’s hybrid hydrogels showed the highest rate of absorption indicated 

by the highest change in mass over time of incubation. The degradation rate of each sample was 

also measured by observing the change in mass of the samples after immersion in PBS over time. 

The pure alginate samples (group 1), group 2, group 3, and group 4 showed 32.53%, 13.33%, 

40.00%, and 19.70% degradation, respectively, over time incubated in PBS. PBS has been used 

widely to evaluate the degradation rate of scaffolds as reported by [11,28–30]. Notably, as future 

work, other solutions such as fetal bovine serum and penicillin-streptomycin contained medium 

can be used to check the degradation rate of scaffolds. The alginate-gelatin-MC and pure alginate 

gels showed the greatest rate of degradation. The compressive strength of a ll groups was 

determined by finding the elastic modulus of each sample over weekly intervals of time, and the 

results are shown in Figure 3.3. 

 

Figure 3.3. The compressive strength of the scaffolds of varying composition over time is shown here. 

Statistical significance was calculated using a Student's t-test (* was and ** were used to represent p < 

0.05 and p < 0.01, respectively). 

The elastic moduli of group 1’s samples was 97.7 kPa, 63.8 kPa, and 39.1 kPa while for 

group 2’s samples, it was 69.4 kPa, 37.1 kPa, and 35.2 kPa during the 0, 2, and 4 weeks of 

incubation in PBS, respectively. The values for group 3’s samples were 82.85 kPa, 31 kPa, and 

25.4 kPa, and the values for group 4’s samples were 113.3 kPa, 41.45 kPa, and 26.1 kPa. Results 
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indicated that there was a decline in the compressive strength of each of the hydrogels that was 

especially evident in the first two weeks. After the first two weeks of immersion, the decline in 

compressive strength was more pronounced in pure alginate gels than the composite polymer 

samples. Furthermore, scaffolds of group 4 had a significantly higher elastic modulus compared 

to the hybrid constructs containing gelatin.  

3.4.2 Flow behavior results 

The flow behavior of all four groups was analyzed and Figure 3.4 shows the results of shear 

rate versus shear stress. At the same shear rate, group 1 showed higher shear stresses. Both groups 

of 3 and 4, which contain MC had a linear stress/strain behavior while other groups of 1 and 2 

showed a non-Newtonian behavior.  

 

Figure 3.4. Shear stress as a function of the Shear rate for each solution. 

 

Based on results obtained from Figure 3.4, the viscosity was calculated and the results 

showed high viscosity of group 1 followed by other groups of 2, 4, and 3. It was reported that 300 

to 30000 cps is a suitable range of viscosity for printable biomaterials [2]. Our results showed that 

all groups except for group 3 are in this range (Table 3.1).  
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Table 3.1. Viscosity behavior for different groups. 

Groups Min viscosity (cps) Max viscosity (cps) 

1 
2245.435 

± 37.29 
 

6582.08 

± 55.73 

2 
783.21 

± 56.95 
 

1375.36 

± 69.46 

3 
205.15 

± 12.26 

466.64 

± 34.73 

4 
476.62 

± 4.27 
 

835.04 

± 69.47 

 

3.4.3 Effect of printing parameters on 2D printability 

3.4.3.1 Pressure test 

The air pressure is one of the most critical factors affecting printability [2]. Every 

biomaterial has a surface tension and in order to print a biomaterial, a pressure more than the 

surface tension of biomaterials should be applied. Figure 3.5 shows the effect of printing pressure 

on purging status of group 2 and 4 at different temperatures, as an illustration. We defined Ds as 

the distance between the end of the needle and the position that the droplet of biomaterial separates. 

As such, for different biomaterials, Ds can be measured and to this end, suitable pressure and 

temperature can be selected. As shown, for some groups, even at 0.3 bar, the biomaterial is not 

printable and it is like a droplet hanging from the needle. On the other hand, higher pressures cause 

instability of extruded biomaterial and subsequently, poor printability. Group 1 behaved like a 

highly viscous biomaterial and was not printable at 37 ℃ (0.2 bar). At higher pressures, Ds was 

between 4.8 to 25.8 mm and higher pressures showed higher Ds. Group 3 showed a non-viscous 

behavior and even at 0.2 bar pressure, Ds more than 7.5 mm was observed. Our results showed 

that 0.2 bar is a suitable pressure to dominate the surface tension of biomaterials for group 1, 2, 

and 4 while 0.1 bar was found more suitable for group 3. 
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Figure 3.5. Effect of printing pressure on Ds for groups 2 and 4, as an illustration. 



69 

 

3.4.3.2 Nozzle speed test 

For this set of experiments, nozzle speed was subjected to changes. Firstly, physical 

crosslinking was used and groups 2, 3, and 4 were printed on a cold bed (10 ℃). However, poor 

printability was observed for all groups. Hence, chemical crosslinking was implemented by using 

a 50 mM CaCl2. Using Equations 3.3 to 3.5, the standard strand diameter was calculated for all 

groups. Figure 3.6 shows results for all groups including experimental and standard strand 

diameter (inset images are printed scaffolds for group 2 at different nozzle speeds of 6, 14, 18, and 

26 mm/s, as an illustration). Results showed that the experimental and theoretical values of strand 

diameter for group 1 are similar at nozzle speed of less than 8 mm/s while 12 mm/s was observed 

as a suitable speed for group 2. For group 3, experimental and theoretical values were more similar 

at higher speeds of more than 30 mm/s while 18 to 24 mm/s were identified more suitable for 

group 4. Overall, in all groups, there was a range of nozzle speed that theoretical and experimental 

values were close and speeds that fall under or above that range caused poor strand printability. In 

addition, generally speaking, by increasing the nozzle speed, thinner strand diameters were 

achieved. 
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Figure 3.6. Effect of nozzle speed on printability of groups 1 to 3 (pressure: 0.2 bar) and 4 (pressure: 0.1 bar): comparison between Ds and 

experimental strand diameter (inset images are printed scaffolds for group 2 at different nozzle speeds of 6, 14, 18, and 26 mm/s, as an 

illustration).
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 Strand printability and pore printability results have been shown in Table 3.2. Those values 
that were close to 1 ± 0.1 were considered acceptable for both pore and strand printability.  

Table 3.2. Effect of nozzle speed on strand and pore printability. 

Groups Pressure (bar) Speed Strand printability Pore printability  

1 0.2 4 0.97 ± 0.060 1.01 ± 0.002 

0.2 6 1.10 ± 0.180 1.01 ± 0.012 

0.2 8 1.18 ± 0.090 1.01 ± 0.009 

0.2 10 1.12 ± 0.140 1.01 ± 0.003 

0.2 12 1.32 ± 0.150 1.00 ± 0.003 

0.2 14 1.36 ± 0.150 0.98 ± 0.022 

2 0.2 6 0.81 ± 0.066 1.139 ± 0.086 

0.2 8 0.89 ± 0.069 1.050 ± 0.042 

0.2 10 0.91 ± 0.083 1.066 ± 0.070 

0.2 12 0.95 ± 0.062 1.010 ± 0.006 

0.2 14 1.09 ± 0.049 1.048 ± 0.054 

0.2 18 1.22 ± 0.077 1.002 ± 0.015 

0.2 22 1.26 ± 0.111 1.04 ± 0.027 

3 0.1 20 1.203 ± 0.136 1.152 ± 0.135 

0.1 30 0.997 ± 0.067 1.012 ± 0.019 

0.1 35 0.871 ± 0.059 1.010 ± 0.010 

0.1 40 0.897 ± 0.106 1.010 ± 0.018 

0.1 45 0.925 ± 0.056 1.045 ± 0.065 

0.1 50 0.975 ± 0.059 1.033 ± 0.041 

0.1 55 0.923 ± 0.052 0.937 ± 0.122 

4 0.2 18 1.075 ± 0.110 1.338 ± 0.488 

0.2 20 0.931 ± 0.138 0.974 ± 0.036 

0.2 22 0.939 ± 0.097 0.982 ± 0.056 

0.2 24 0.947 ± 0.116 1.039 ± 0.029 

3.4.3.3 Offset test 

For this section of studies, the offset was subjected to changes. Figure 3.7 shows results of 

offset, showing that offset can significantly affect strand diameter. All groups printed with 200 µm 

needle but a wide range of strand diameter (between 0.1 to 0.6 mm) was observed modulating the 

offset. 
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Figure 3.7. Effect of offset on the strand diameter of scaffolds made of groups 1 to 4.  

3.4.3.4 Printing angular patterns 

Scaffolds with acute, right, and obtuse angles were printed (Figure 3.8). Angular pattern 

printability results showed that not all groups can have good angle printability for 25 ° and 45°. 

The printing quality became worst at right angles so that a huge difference was observed in those 

that printed with 0-90° laydown pattern than 0-25° ones.  

 



73 

 

 

Figure 3.8. Effect of the angular pattern on printability of scaffolds with acute, right, and obtuse angles.  

3.4.4 Effect of printing parameters on 3D printability 

In the proceeding sections, 2D printability was presented and in this sections, 3D 

printability is discussed in terms of irregularity in the X and Y directions, pore printability, and 

strand printability for scaffolds made from different groups of given biomaterials (5, 10, and 15 

layers). Table 3.3 shows results for irregularity, pore and strand printability, as well as top views 

of scaffolds with 5, 10, and 15 layers. 
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Table 3.3. 3D printability results for bioplotted scaffolds made from groups 1 to 4 ( shows that biomaterials were not printable or a large 

deviation has been observed). 

Groups 
 

Printed layers Irregularity X Irregularity Y Pore printability Strand printability Printed scaffold (top view) 

1 

5 0.08 0.05 0.96 ± 0.02 1.29 ± 0.07 

 

10 0.05 0.06 1.00 ± 0.04 1.71 ± 0.07 

 

15 0.10 0.07 1.00 ± 0.01 1.64 ± 0.09 
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2 

5 0.07 0.03 0.97 ± 0.02 1.22 ± 0.02 

 

10 0.09 0.03 1.01 ± 0.01 1.92 ± 0.27 

 

15 0.09 0.08 0.97 ± 0.02 1.70 ± 0.25 
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3 

5 0.07 0.03 
1.02 ± 0.07 

 
 

 

10     

 

4 5 0.11 0.06 
1.05 ± 0.45 

 
1.10 ± 0.34 
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10 0.08 0.07 0.97 ± 0.05 1.01 ± 0.11 

 

15     
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3.5 Discussion 

Different methods of scaffold design can be used to manipulate the mechanical properties 

of hydrogel scaffolds to those that are best suited for cell support. Various studies have shown that 

it is crucial for the mechanical properties of scaffolds to be carefully controlled to successfully 

simulate the ECM which supports cells in human tissue because there is a dynamic relationship 

between cell growth and viability and the ECM [25,31–34]. These experiments have shown that 

water retention rate, elasticity, and degradation rate of a hydrogel construct can, to some extent, 

be controlled by changing the material composition of the scaffold. In this study, hydrogels 

containing alginate-gelatin showed a higher water retention capacity than the pure alginate gels. 

One possible explanation for this observation is that pure alginate molecules experience s tronger 

intermolecular forces with one another than when they are part of hybrid hydrogels. Adding gelatin 

or MC may interfere with the intermolecular forces between adjacent alginate molecules, and as a 

result, the attraction between the alginate molecules and surrounding water molecules may be 

stronger than in pure alginate hydrogels, which leads to greater water absorption. Furthermore, the 

melting point of gelatin is about 35°C [35], therefore at 37°C gelatin would be in liquid form, and 

as a result, there would be gaps in the scaffold which would be replaced by the surrounding water 

molecules. This would lead to a higher absorption rate when compared to a pure alginate hydrogel 

sample. This high water retention capacity allows cells to readily exchange important molecules 

such as ions and signaling molecules with their environment [25].  

Additionally, hybrid hydrogels containing gelatin had a lower elastic modulus compared 

to alginate-MC hybrid hydrogels, possibly because of the degradation of gelatin at physiological 

temperatures. The decomposition of gelatin due to its melting point of around 35°C would cause 

the formation of gaps in the construct, and this could compromise its mechanical stability and 

result in a lower elastic modulus. These results indicate that hydrogels can be constructed with 

different materials depending on the degree of stiffness that is necessary for the tissue type that 

requires regeneration. This allows for better specificity and control in scaffold design and 

construction.  

Group 3 showed the highest percentage of degradation in comparison to the other 

hydrogels. MC is soluble in water at temperatures lower than 40°C-50°C, as mentioned earlier, 
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has a melting point of about 35°C [35,36]. The weakened intermolecular interactions of MC and 

gelatin at physiological temperature would, therefore, lead to a high rate of degradation of this gel 

over time. Here, we proposed some compositions with various mechanical and 

swelling/degradation rates. 

Our results also showed different flow behavior from Newtonian to non-Newtonian ones. 

Group 1, having the highest viscosity, showed a good printability discussed elaborately later on. It 

means that the more viscous biomaterial, the more appropriate printability achieved. However, 

high viscous biomaterials may not printable. Referring back to the mentioned general rule, an 

appropriate range of viscosity from 300 to 30000 cps is recommended. Group 4 was not in the 

recommended range, which was in agreement with our printability results so that a poor printability 

was observed for this group. Notably, as we use lower viscous biomaterials, likewise, higher 

speeds should be implemented and it may cause difficulties for printing such as sudden direction 

changes in the edges of scaffolds. 

From air pressure perspective, group 1 behaved like a highly viscous biomaterial but as 

mentioned, it is always recommended to mix alginate with other biomaterials to achieve 

synergistic properties. However, adding gelatin or MC to alginate reduced the viscosity of the final 

solutions, as we discussed previously on the variation of viscosity observed in different groups. 

That being said, comparing to group 1, for other groups lower amount of pressure is required to 

dominate the surface tension of biomaterials. Studying the effect of pressure on Ds can clarify an 

appropriate range of pressure, suitable for printing. Due to having several groups with different 

viscosities, pressures in between 0.1 to 0.2 showed good results and at either lower or higher 

pressures, the biomaterials were not printable or had an unstable printing condition due to applying 

a high pressure. Referring to the changes in viscosity of different groups, lower viscous groups 

were printable at relatively higher nozzle speeds. It means that due to having relatively lower 

viscosities (e.g. groups 3 and 4), biomaterials flow easily and so at the same pressure, it is required 

to increase the nozzle speed to prevent extra deposition of biomaterials. As mentioned, group 1 

was printable appropriately at speeds around 10 mm/s while the starting point of speed for group 

3 and 4 was more than 18 mm/s (Figure 3.6).  
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From 2D strand and pore printability point of view, group 1 had acceptable strand 

printability for speeds ranging from 4 to 8 mm/s whereas pore printability showed acceptable 

results for speeds in between 4 to 14 mm/s. However, group 2 had not acceptable strand printability 

for the speed of less than 8 mm/s. This might be due to having a lower viscosity than group 1, and 

so higher speeds are required to reach acceptable printability. In addition, speeds higher than 14 

mm/s showed poor strand printability for group 2 whereas, for all speeds in between 6 to 22 mm/s, 

pore printability was acceptable. It means that using some speeds we may have acceptable pore 

printability while strand printability may not be acceptable. Hence, both pore and strand 

printability should be considered together to find suitable nozzle printing speed rather than taking 

either pore or strand printability into account separately. It should be noted that the criteria used 

keeps account only of pore shape. In this case, it means that for the cited parameters, the scaffolds 

still present perfectly square pores but with different size from the design. For group 3, speeds 

more than 30 mm/s showed an appropriate range of pore and strand printability. For the last group, 

all speeds in between 18 to 24 mm/s showed acceptable printability . 

Using offset of -0.02 to 0.08 mm, strand diameter in between 200 to 300 µm was observed 

for groups 1 and 4. At offset less than -0.02 mm, a significant change in strand diameter was 

observed. For group 3, strand diameters of more than 300 µm were observed and this may be due 

to having low viscosity resulting in having quick biomaterial flow leading to having a relatively 

large strand diameter. Group 4 showed a decrease in strand diameter by increasing the offset. The 

offset should be selected carefully because having large space between printing bed and needle 

lead to non-continuous printing and having small offset may lead to squeezing the biomaterial and 

preventing the proper flow of biomaterial during the deposition. 

Regarding angle printing, at acute angles, angle printability was acceptable while, for 

example, at 90° poor printability was observed in terms of angle. These results were interpreted as 

meaning that changing the needle direction by having a sharp angle of more than 90 may lead to 

poor angle printability due to a sudden change of the direction of the nozzle. Such a change in 

direction may cause stretching of strands and results in modulating the strand diameter as well.  

In agreement with 2D printability results, 3D printability studies showed that all printed 

scaffolds have acceptable pore printability while strand printability was not acceptable (most 
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values were more than 1 ± 0.1). As mentioned, the criteria used keeps account only of pore shape. 

Hence, both pore and strand printability should be considered. Surprisingly, strand printability has 

been neglected in the literature and our results showed that while having acceptable pore 

printability, scaffolds can have poor strand printability. One possible solution to address poor 

strand printability is to modulate the nozzle speed at constant pressures to get closer to the 

theoretical values. However, using such an approach, other interrelated factors, such as poor 

printability, can be affected. Except for group 4, all groups showed less than 10 percent irregularity 

in the X and Y directions. For groups 1 and 2, scaffolds with 15 layers were printed but groups 3 

and 4 showed poor printability for scaffolds made from more than 5 layers. Referring back to flow 

behavior results, groups 3 and 4 with relatively lower viscosities showed poor printability whereas 

other groups showed better printability. The viscosity of biomaterials can significantly influence 

the printability of bioplotted scaffolds so as high viscosity biomaterials need higher pressure and 

low viscous ones require less pressure to be extruded.  

Overall, there are many factors causing a deviancy between experimental and theoretical 

values including pressure, nozzle speed, and offset, as interrelated elements from printability 

perspective and modulating one of them can affect the other elements. That being said, all elements 

should be selected carefully so as to avoid, on one hand, any strand coiling owing to over-extrusion 

of an extruded strand, and on the other hand, using a low pressure that cannot dominate the surface 

tension of the biomaterial. To make a clear picture of printability and significantly effective 

elements, the following linear regression models were developed (R2 more than 85%) to map the 

relationship amongst the studied parameters including nozzle speed, pore and strand printability 

for 2D printing (Table 3.4), based on results presented in Table 3.2. 

Table 3.4 Linear regression models created based on experimental results reported in Table 3.2.  

Groups Applied pressure (bar) 

linear regression models (nozzle 

speed: Ns, pore printability: P, 

strand printability: S) 

1 0.2 

S = 51.5 - 3.39 Ns - 50.1 P + 3.38 Ns × 

P 
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2 0.2 

S = 0.08 + 0.108 Ns + 0.53 P - 0.075 
Ns × P 

 

3 0.1 

S = -2.06 + 0.0528 Ns + 2.96 P - 
0.0525 Ns × P 

 

4 0.2 
S = -0.6298 + 0.06394 Ns + 1.534 P - 

0.06222 Ns × P 
 

It is worthwhile to cite the fact that a high concentration of alginate is not an appropriate 

environment for cells [37]. High concentrations of alginate can interrupt diffusion mass transfer 

mechanism and lead to low cell viability. Inhabitation of cell migration/proliferation is another 

reason for avoiding high concentration alginate. That being said, the present study showed that we 

may mix other cell-friendly hydrogels such as gelatin in order to have a low concentration of 

alginate along with improving the printability of such a low concentration alginate.  

3.6 Conclusions  

Hydrogels are valuable with respect to their ability to serve as an appropriate environment 

for cells due to their ease of preparation and similarity to the ECM of many human tissues. 

Extrusion-based bioprinting method is used widely to create hydrogel scaffolds used extensively 

for different tissue engineering applications. In this regard, it is highly recommended to mix 

hydrogels to achieve synergistic properties. Here we examined the swelling, as well as 

degradation, rate and mechanical properties (elastic moduli) of hydrogels with various 

compositions of alginate, gelatin, and MC. Results showed that composite hydrogels have better 

water absorption ability compared to pure alginate hydrogel. Additionally, all combinations of 

hydrogels showed a decreasing pattern of elastic modulus with time, while alginate -MC 

combination gels showed the highest elastic moduli. After evaluating scaffolds from the 

mechanical perspective, more experiments were conducted to investigate the hydrogel printability. 

Results showed that biomaterial-related elements such as viscosity and fabrication-related ones 

such as air pressure, nozzle speed, offset, and selected angular pattern can influence the printing 

quality. Modulating these parameters, it is possible to improve the printability of different groups 

of hydrogels including alginate, gelatin, and MC. Conducting research studies on printability can 
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open the door for further improvement in the fabrication of hydrogel scaffolds using the extrusion-

based technique. To conclude, taking biomaterial- and fabrication-related elements, printability 

can be improved and accordingly, scaffolds can be specialized depending on which tissue requires 

regenerative tissue therapy. 
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4.1 Abstract 

Low-concentration hydrogels have favorable properties for many cell functions in tissue 

engineering but are considerably limited from a scaffold fabrication point of view due to poor 3D 

printability. Here, we developed an indirect-bioprinting process for alginate scaffolds and 

characterized the potential of these scaffolds for nerve tissue engineering applications. The 

indirect-bioprinting process involves (1) printing a sacrificial framework from gelatin, (2) 

impregnating the framework with low-concentration alginate, and (3) removing the gelatin 

framework by an incubation process, thus forming low-concentration alginate scaffolds. The 

scaffolds were characterized by compression testing, swelling, degradation, and morphological 

and biological assessment of incorporated or seeded Schwann cells. For comparison, varying 

concentrations of alginate scaffolds (from 0.5 to 3%) were fabricated and sterilized using either 

ultraviolet light or ethanol. Results indicated that scaffolds can be fabricated using the indirect-

bioprinting process, wherein the scaffold properties are affected by the concentration of alginate 

and sterilization technique used. These factors provide effective means of regulating the properties 

of scaffolds fabricated using the indirect-bioprinting process. Cell-incorporated scaffolds 

demonstrated better cell viability than bulk gels. In addition, scaffolds showed better cell 

functionality when fabricated with a lower concentration of alginate compared to a higher 

concentration. The indirect-bioprinting process that we implemented could be extended to other 

types of low-concentration hydrogels to address the tradeoffs between printability and properties 

for favorable cell functions.   

4.2 Introduction 

Recent progress in tissue engineering has placed the possibility of meeting the growing 

worldwide demand for tissue and organ replacements within reach in the near future. To this end, 

extrusion-based bioprinting has played an important role in fabricating complex structures layer-

by-layer to mimic native tissues [1–3]. Hydrogels have often been used in the extrusion-based 

technique as a bioink to incorporate large cell populations, growth factors, proteins, and peptides 

[4]. Notably, properties of a hydrogel bioink depend on its hydrogel concentration and affect cell 

viability [5], printability [6,7], and mechanical strength of the printed scaffolds [8]. At low 

concentrations, hydrogels are difficult, and at times even impossible, to print 3D constructs. In 
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contrast,  hydrogels at relatively high concentrations can reduce cell viability due to the increased 

mechanical strength of hydrogels [9] and higher induced forces that cells experience during the 

fabrication process [10]. The hydrogel concentration can also influence mechanical properties 

[11]. Further investigation into these influences is urged [7]. 

By means of the extrusion-based technique, scaffolds made from hydrogels have been 

explored for nerve tissue engineering [9,12,13]. In nerve tissue engineering, considerable evidence 

supports the use of low-concentration hydrogels due to their favorable effects on cell responses or 

functions [5]. It has also been reported that low-concentration alginate (0.2 and 1% (w/v) is able 

to provide a better environment for neurite growth and cell viability [5,14]. While low-

concentration alginate can support nerve tissue regeneration, poor printability makes it an 

undesirable material for printing scaffolds [5,15]. Hydrogels at higher concentrations have been 

used to enhance the printability and structural fidelity but at the cost of reduced in-growth of new 

tissue [16]. Therefore, approaches that allow for addressing this issue are greatly needed. Among 

these approaches, indirect printing has been evolved promising to tackle the poor printability of 

low concentration hydrogels  [17–19].  

Indirect bioprinting involves the creation of a sacrificial framework, which is used 

temporarily to support the formation of a scaffold made of a polymer [20]. Using indirect 

bioprinting, different materials, including bioactive materials and cells, can be strategically 

incorporated in a scaffold. Furthermore, indirect bioprinting allows for control over both the 

external and internal structure, thus creating scaffolds with advanced architecture [19]. As such, 

indirect bioprinting offers a great degree of versatility with respect to materials and structures, 

making it an attractive technique for the creation of complex hydrogel scaffolds. Notably, indirect 

3D bioprinting of hydrogel scaffolds for nerve tissue regeneration has not been explored. 

Specifically, the mechanical and biological properties of hydrogel scaffolds fabricated by the 

indirect approach remain unclear, raising the need to discover their applications in nerve tissue 

regeneration. 

As inspired, we developed an indirect bioprinting process for fabricating alginate scaffolds 

so as to address the issue of poor printability of low-concentration alginate. Our stepwise study 

included i) fabricating 0.5, 1.5, and 3% alginate scaffolds via the indirect bioprinting process where 
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50% gelatin is used as the sacrificial framework; ii) investigating the effects of UV and ethanol 

sterilization techniques on the mechanical properties of the indirectly-bioprinted scaffolds; iii) 

examining the degradation and swelling of the indirectly-bioprinted scaffolds; and iv) assessing 

the biological properties of the indirectly-bioprinted scaffolds. In addition, bulk gels and directly-

bioplotted scaffolds were assessed and compared in terms of the viability of incorporated Schwann 

cells using a live/dead assay. The novelty of this work lies in the development of a method to create 

scaffolds from low-concentration alginate to circumvent its poor printability occurring in the direct 

bioprinting process. To the best of our knowledge, this is the first report of mechanically -stable 

scaffolds fabricated by an indirect printing technique and made of low-concentration alginate, with 

potential for nerve tissue engineering.  

4.3 Materials and Methods 

4.3.1 Materials and equipment 

Gelatin (from bovine skin), medium viscosity Na-Alg (sodium salt from brown algae, 

medium viscosity), CaCl2, Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum 

(FBS), trypsin, ethylene-diaminetetraacetic acid (EDTA), and fluorescent dyes (propidium iodide 

(PI), calcein, Hoechst 33342) were all obtained from Sigma Aldrich (St. Louis, MO). Phosphate 

buffered saline (PBS; 0.0067 M) was obtained from HyClone (Logan, Utah). Primary rat Schwann 

cells (PRSCs) were supplied by Saskatoon City Hospital. A Sartorius scale (model 225d; Shanghai, 

China) was used for weighing samples. A 0.22-μm bottle-top filter (Thermo Scientific, Ann Arbor, 

MI, USA) was used to filter alginate solutions. A freeze-dryer (FreeZone, Labconco, USA) was 

used to freeze-dry samples. Sterile circular coverslips (Thermo Scientific™) and 12/24-well tissue 

culture plates (Thermo Fisher Scientific, MA, USA) were used for experiments. 

4.3.2 Directly bioprinting of scaffolds and preparation of cell-incorporated bulk 

gels 

4.3.2.1 Direct bioprinting of scaffolds 

3D scaffolds were directly printed on a 3D bioplotter (EnvisionTEC, Germany). For this, 

12-well plates were coated with polyethyleneimine (PEI) for the purpose of enhancing the 

attachment of first printing layer to the plate during the printing process [21] and then the coated 

plates were placed in an incubator over a day for the subsequent use in scaffold printing. Three 
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hydrogels, comprised of 0.5, 1.5, and 3% alginate, representing low to reasonably high 

concentrations, were chosen to investigate the mechanical and biological performance of scaffolds 

fabricated by using a direct printing technique. For all groups, 300 L of sterile alginate were 

mixed with 20 L of cell media. The mixture was transferred to a 200-m needle and three samples 

of each concentration were printed in a lattice pattern into PEI-coated wells (Figure 4.1). Printing 

parameters were chosen based on a printability study, which aimed to identify the appropriate 

temperature, pressure, and linear speed for each alginate concentration. The print temperature for 

the 3% alginate was set at 20 C, and the pressure and linear speed of the head were 0.3 bar and 

14 mm/s, respectively. The print temperature for the 1.5% alginate was also 20 °C and the pressure 

and linear speed were set to 0.1 bar and 26 mm/s, respectively. The inter-strand distance was 3.5 

mm for all groups. After printing one layer, 1 mL of CaCl2 was added, then removed after 2 min 

and replaced with 1 mL of DMEM. The 0.5% alginate solution had poor printability (inconsistent 

strands and beading) and was not printable with a 100-µm needle (Figure 4.1c); using a 200-m 

needle resulted in a bulk gel with no visible lattice structure. Therefore, instead of direct 

bioprinting of 0.5% alginate, bulk gel was used for further studies. To this end, 100 L of the 

mixture (0.5% alginate and cells) was transferred into three separate wells. Then 1 mL of CaCl2 

was immediately added to each well, removed, and replaced with 1 mL of DMEM. The plates 

were incubated at 37 C and 5% CO2. 
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Figure 4.1. 3D bioplotting of alginate hydrogels: a) cultivated Schwann cells mixed with alginate 

hydrogel and then bioplotted, b) cell-incorporated alginate scaffold and staining result showing one 

strand, and c) poor printability of 0.5% alginate printed with a 100-µm needle and staining result of cell-

incorporated gel. 

4.3.2.2 Preparation of alginate solutions with cells 

A culture dish with PRSCs was examined under a microscope to assess the confluency of 

cells for that 85-100% is required for cell passing; and for all cell-viability studies, the passage 

number of cells were maintained between 6 and 14. The culture medium was completely aspirated, 

then 5 mL of 10 mM sterile PBS was added along the sides of the plate, gently swirled, then 

completely aspirated. One mL of sterile trypsin + EDTA was added, and the plate was gently 

swirled so the mixture coated the entire surface of the plate. The trypsin + EDTA was aspirated, 

and the plate was incubated for 5 min at 37°C and 5% CO2. Six mL of DMEM + 10% FBS were 

added and gently re-pipetted to create an even suspension. The entire contents of the culture dish 

were transferred to a 14-mL Falcon tube and centrifuged at 800 rpm for 5 min. After centrifuging, 
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300 L of the solution were kept in the Falcon tube and the cell pellet redistributed in the solution. 

Cell density was 500,000 cells per 300 L of solution. Then 80 L of this solution were added to 

each alginate sample (0.5, 1.5, and 3.0%), and then mixed with a multi-rotator for 5 min. 

4.3.2.3 Preparation of cell-incorporated Bulk Gels 

A 0.22-μm bottle-top filter was used to filter 0.5% (w/v) medium viscosity Na-Alg 

solution, which was kept in a freezer at −80 °C for 24 h and then freeze -dried for 48 h, while 

maintaining a sterile environment. The freeze-dried alginate was re-dissolved in sterile calcium-

free DMEM to prepare 0.5, 1.5, and 3% (w/v) alginate precursors. PRSCs were cultured and 

trypsinized. Alginate precursors were thoroughly mixed with the cells at a density of 5 × 

105cells/mL to obtain a homogeneous cell distribution in the hydrogel. The mixture of alginate/cell 

suspension (100 µL) was poured onto sterile circle coverslips coated with 0.1% w/v PEI solution, 

and then 1 mL CaCl2 (50 mM) solution was layered over the dispensed alginate solution to 

facilitate crosslinking for 6 min in a 24-well tissue culture plate. 

4.3.3 Indirect bioprinting of alginate scaffolds 

A 50% (w/v) gelatin solution was prepared by dissolving 20 g of gelatin in 40 mL of 

distilled water using a magnetic stir plate heated to 50 C. The gelatin framework was designed 

using Magics CAD software (Materialise, Belgium), and then printed using a 3D bioplotter 

(EnvisionTEC, Germany), as shown in Figure 4.2. Strands were printed and layered on top of one 

another to form a 25 mm × 25 mm × 2.50 mm square lattice structure with a pore size of 2.5 mm. 

A print pressure of 0.8 bar, temperature of 50 C, speed of 16 mm/s, and a 24-gauge printing needle 

were used for printing; and structures were printed with 20 layers.  
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Figure 4.2. Indirect biofabrication: a) 3D bioplotter used for the fabrication of gelatin scaffolds, b) 

gelatin scaffold and bulk gel samples, and c) gelatin scaffold used for indirect biofabrication and a close-

up view of this sacrificial framework. 

The 0.5, 1.5, and 3.0% alginate solutions were prepared by dissolving 0.2, 0.6, or 1.2 g of 

alginate, respectively, into 40 mL of distilled water using a multi-rotator. A 50 mM CaCl2 solution 

was prepared by mixing 2.2 g of CaCl2 with 300 mL of distilled water. Gelatin frameworks were 

cut into smaller samples of approximately 8 mm × 8 mm × 2.5 mm and then placed in separate 

dishes. Alginate solution was added or impregnated to each of the gelatin frameworks and then 0.1 

mL of 50 mM CaCl2 added on top of the frameworks. The frameworks were then flipped and 

impregnated with more alginate. Excess alginate and bubbles in the pores were removed using a 

pipette, and 50 mM CaCl2 was poured into the dishes. Dishes were refrigerated for 18 h , then 

placed in an incubator at 37 C and 5.0% CO2 for 48 h in order to melt and remove gelatin. 

Scanning electron microscopy (SEM) was used to investigate the morphology of the indirectly-

printed scaffolds. SEM images were captured using a Hitachi microscope on gold-coated samples. 

Images were taken at each stage of the indirect-fabricated scaffold preparation to determine pore 

size and strand thickness and analyzed using ImageJ® software.  

4.3.4 Sterilization of scaffolds by ethanol disinfection or UV irradiation 

Ethanol disinfection was carried out as per the previous study [22]. Three samples from 

each group of scaffolds were placed in separate dishes, and then 250 mL of 70% ethanol was 

pipetted into each dish. The samples were exposed for 20 min and then the ethanol was removed 

and replaced with 250 mL of distilled water. The samples were soaked in distilled water for 10 
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min before mechanical testing. UV sterilization involved placing samples in separate dishes 

underneath a 254 nm UV light source for 20 min, with aluminum foil used to enclose the area. 

Other sterilization techniques such as lyophilization, gamma-irradiation, and ethylene oxide 

treatment were not explored as they have been shown to negatively affect the alginate structure 

[22]. Disinfection via ethanol or UV light was chosen to be investigated as these techniques have 

not been investigated in many studies.  

For post-seeding of indirect-fabricated scaffolds, scaffolds of each concentration group 

were sterilized by soaking in 70% ethanol for 20 min, then transferred to sterile Falcon tubes, and 

freeze-dried for 48 h. Freeze-dried samples were placed in PEI-coated wells of a 12-well plate, 

then covered with 10 µL of cell mixture and 2 mL of DMEM. After 2 min, the DMEM was 

removed and an additional 5 µL of cell mixture was added along with 1 mL of DMEM. Scaffolds 

were kept in an incubator at 37 °C and 5% CO2. 

4.3.5 Mechanical tests  

The mechanical properties of the scaffolds were tested by uniaxial unconfined compression 

on a BioDynamic 5010 testing machine (Bose, USA). Tests were repeated three times for each 

group of scaffolds. In each test, the geometrical features of scaffolds were measured and 

characterized by taking pictures of scaffolds and analyzing them using ImageJ software. The 

scaffolds were then placed between the two smooth plates of the testing machine and subjected to 

compression at a rate of 0.017 mm/s. A stress-strain curve was generated for each group of 

scaffolds, and the slope of the linear portion of the curve was evaluated to calculate the elastic 

modulus. 

4.3.6 Assessment of the swelling and degradation rates 

Swelling correlates with a hydrogel’s ability to retain water and is an important property 

to understand to prevent adverse effects on the surrounding tissue when a scaffold is implanted in 

vivo. The rate of degradation is an important property to consider when creating a biomimetic 

scaffold as well [23]. Samples made of varying concentrations of alginate scaffolds (from 0.5 to 

3%) were removed from the crosslinker solution and placed separately in pre-weighed dishes. 

Excess liquid was removed with a Kimwipe tissue and the weights of the dishes were recorded. In 

the next step, 2 mL of PBS were added to each dish, which were then incubated at 37 C and 5% 
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CO2. At various time points (1, 2, 3, 4, 6, and 12 h, 1 d and 7 d), the dishes were removed from 

the incubator, the PBS was removed, the dishes were reweighed. Percent swelling was calculated 

as: 

% 𝑆𝑤𝑒𝑙𝑙𝑖𝑛𝑔 =  
𝑤𝑡−𝑤0

𝑤0
 ×  100                                                          (4.1) 

where w0 is the initial weight of the sample and wt is the weight measured at one the above time 

points.   

To study the degradation rate, 10 samples from each group were placed in pre-weighed Falcon 

tubes and then stored in the freezer at −40 C for 4 h. Samples were then freeze-dried and weighed 

to determine their initial mass. Samples were then soaked in 1 mL of 70% ethanol for 20 min, the 

ethanol removed, and 2 mL of PBS added to each Falcon tube. The samples were then placed in 

an incubator at 37 C and 5% CO2 for 1, 3, 6, 24, or 48 h. At these time points, the PBS solution 

was removed, then the Falcon tubes placed in the freezer, freeze-dried, and reweighed. 

Degradation rate was calculated as: 

% 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 =  
𝑤𝐹𝐷0−𝑤𝐹𝐷𝑡

𝑤𝐹𝐷0
 ×  100                                              (4.2) 

where wFD0 is the initial weight of the freeze-dried scaffold and wFDt is the weight of the freeze-

dried scaffold at one the above time points (1, 2, 3, 4, 6, and 12 h, 1 d and 7 d).    

4.3.7 Cell viability and morphological assessment 

Fluorescent microscope imaging of the bulk gels took place on days 1, 3, and 8 using a 

Zeiss Germany microscope (Axiovert 100) and X-cite® EXFO (series 120). Samples were stained 

with 5 mg/mL Hoechst and 50 mg/mL PI/Calcein dye. Imaging of the cell-incorporated scaffolds 

occurred on days 1, 4, and 8. Samples were stained with 5 mg/mL Hoechst and  1 mg/mL calcein, 

with 2 L of each dye added to the samples and mixed with a pipette. Samples were then incubated 

for 1 h. DMEM was removed, samples were washed with PBS, 1 mL of fresh DMEM was added, 

and then the samples were imaged using fluorescent microscopy. Images were analyzed with 

ImageJ to determine the circularity of cells as well as the number of live and dead cells. Fractional 

cell viability was calculated as: 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑉𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝐿𝑖𝑣𝑒 𝐶𝑒𝑙𝑙𝑠

𝐷𝑒𝑎𝑑 𝐶𝑒𝑙𝑙𝑠
×  100                                      (4.3) 
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4.3.8 Statistical analysis 

T-tests were conducted to investigate differences between groups. Results were considered 

significant at P < 0.05. All results are reported as mean ± standard deviation. Minitab 17 statistics 

software was used to check the significant effect of the duration of culture and the concentration 

of alginate for cell viability studies using ANOVA (general linear model).  

4.4 Results and discussion 

4.4.1 Morphology of scaffolds 

The architectural properties of a scaffold are characterized in terms of its external geometry 

and internal structure. Figure 4.3 shows the indirect fabrication of scaffolds from alginate with 

different concentrations and the morphology of gelatin and alginate scaffolds (after refrigeration 

and incubation) using microscopic and SEM imaging. It shows distinct differences in the 

appearance of the scaffolds as well. All samples were visibly larger in area than the sacrificial 

gelatin, as a temporary framework. 
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Figure 4.3. Indirect biofabrication of alginate scaffolds using sacrificial gelatin [from left to right: 0.5, 
1.5, and 3% alginate solutions, sacrificial framework (scale bar 5 mm), and pore of indirect-fabricated 

scaffold after freeze-drying (scale bar 100 µm)]: a) impregnated gelatin scaffolds after 18 h refrigeration, 

b) removing the sacrificial material after 48 h incubation, and c) SEM images of the side view of 

indirectly fabricated scaffolds with 0.5%, 1.5% (scale bar 500 µm), and 3% (scale bar 1 mm) alginate 

concentrations after freeze-drying. 

Figure 4.4 compares the pore size in the X and Y directions, strand diameter, and sample 

thickness across all sacrificial gelatin and indirectly fabricated samples after 18 h of refrigeration 

and 48 h of incubation. After both refrigeration and incubation, the strand diameter of all scaffolds 

increased compared to the original gelatin scaffold (0.763  0.004 mm). A slight initial increase 

in pore size in all scaffolds occurred after impregnation of sacrificial frameworks with alginate 

and refrigeration. However, after incubation, the pore size of all scaffolds decreased to 
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significantly less than the original gelatin scaffold with a pore size of 1.507  0.055 mm and 1.518 

 0.061 mm in X and Y directions, respectively. Pore size, shape, and interconnectivity have a 

profound influence on tissue regeneration and integration. Different pore sizes are preferable for 

different anatomical locations to obtain functional tissue regeneration. For example, scaffolds 

employed in bone tissue engineering having 160-700 μm average pore size [24], while in vascular 

tissue engineering pore sizes larger than 400 µm inhibit the formation of a vascular network 

[25,26]. 

 

Figure 4.4. A comparison of pore size, strand diameter, and sample thickness from sacrificial gelatin 

scaffolds to samples after a) 18 h of refrigeration and b) subsequent 48 h of incubation. (*) and (~) 

indicate a significant difference from the original scaffold and the two other sample types, respectively (p 

 0.05, n = 9). 
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4.4.2. Mechanical properties 

Scaffolds indirectly fabricated from 0.5, 1.5, and 3.0% alginate were subjected to either 

ethanol disinfection, UV irradiation, or no sterilization. Compressive stress-strain tests were 

conducted to analyze the effect of varying %w/v concentration and method of sterilization on 

mechanical strength. We note here other factors beyond sterilization technique, such as 

crosslinking mechanism and molecular weight of the alginate, also affect mechanical properties 

[5,27,28]. Figure 4.5 shows that scaffolds with a higher %w/v concentration of alginate have a 

higher elastic modulus. This corresponds to scaffolds with a higher solids concentration displaying 

greater mechanical strength. Scaffolds treated with ethanol had the highest elastic modulus, 

followed by unsterilized scaffolds, and then UV irradiated scaffolds. Polymers degrade when 

exposed to UV light [29,30], which is likely the cause for the decrease elastic modulus in samples 

sterilized with UV irradiation. Similarly, bacterial degradation might alter the structure integrity 

of the nonsterile hydrogel and thus affect the elastic modulus of alginate scaffolds [31]. Based on 

the results above, the scaffolds treated with ethanol were determined to have the best mechanical 

properties (from having a higher elastic modulus point of view) and thus were subjected to swelling 

and degradation tests. 
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Figure 4.5. Elastic modulus for different scaffolds (fabricated from 0.5, 1.5, and 3% alginate) for control 

samples and those sterilized using UV or ethanol (results for all groups are significantly different at p  

0.05). 

4.4.3 Swelling properties 

In this study, the hydrogels were soaked in PBS. An exchange reaction occurs between the 

calcium (Ca2+) ions in the scaffold and the sodium (Na+) ions in the PBS, causing the crosslinks in 

the alginate formed by CaCl2 to break, releasing Ca2+ ions into solution [32]. Water then enters the 

hydrogel and causes it to swell. Figure 4.6a shows the trend over 24 h for all hydrogel precursors 

considered (0.5, 1.5, 3%), which reflects initial swelling followed thereafter by degradation. Rapid 

swelling occurred in the first hour due to ion exchange, polymer chain relaxation, and water uptake. 

The low-concentration alginate precursor contains less mannuronic and glucuronic acid compared 

to the high concentration alginate precursor. In particular, carboxylate ions (COOH  ̶) supplied by 

either mannuronic or glucuronic acid participate in the crosslinking process by forming a b ond 

with divalent ions (i.e., Ca2+). The strength and density of crosslinking depends on the availability 

of divalent and carboxylate ions in the hydrogel. In this study, the swelling rate of the scaffolds 

occurred in the order 0.5% > 1.5% > 3% alginate precursor in the first hour of incubation. After 
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the first hour, the swelling of the 1.5 and 3% alginate scaffolds continued at a slower rate due to 

the effect of saturation, whereas the swelling of the 0.5% alginate scaffold started decreasing at a 

rapid rate due to the initiation of degradation mechanisms. The swelling of 1.5 and 3% hydrogels 

appeared to decline after 3 and 6 h, respectively. The slower swelling rate of the 3.0% alginate 

compared to 1.5% alginate is attributed to its high crosslinking density and strength. The lower 

crosslinking density in low-concentration  alginate hydrogels (0.5 and 1.5%) caused rapid 

degradation that reduced the swelling of these scaffolds in the PBS earlier than for the higher 

concentration (3%) alginate. Samples were weighed again after 1 week, but no significant change 

in swelling was observed. All tests were conducted in a constant volume of PBS, meaning no extra 

Na+ ions were added to each well of the tissue culture plate. Once the samples reached equilibrium 

with surrounding Na+ ions after 8 h of incubation, little change in the amount of swelling was 

identified in all samples due to insignificant polymer chain relaxation, water uptake, and 

degradation, in agreement with [33]. 
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Figure 4.6. Percent a) swelling over 24 h and b) degradation over 48 h of the three types of alginate 

scaffolds created using the indirect fabrication technique.  

4.4.4 Degradation properties 

Alginate hydrogels were degraded by the release of divalent ions crosslinking the gel, in 

this case Ca2+, into the surrounding solution by an exchange reaction with monovalent cations [32], 

in this case the Na+ ions found in the PBS solution. Figure 4.6b shows the degradation trends of 

the three scaffold types (0.5, 1.5, 3% alginate precursor) over 48 h. The 0.5% alginate scaffold 

shows the most dramatic change, degrading 52%  1.74 at 48 h. In comparison, the 1.5% scaffold 

and the 3% scaffold both changed more gradually, degrading 27.4%  5.11 and 15.14%  5.09, 

respectively, after 48 h. The degradation profile of 0.5, 1.5 and 3% alginate scaffolds increased in 

the order 0.5%>1.5%>3%. Similar to the observations related to swelling, rapid degradation 

occurred in all alginate scaffolds from 0 to 3 h and then slowed due to ionic equilibrium (Na +/Ca2+) 

with the surroundings (due to the fixed volume of PBS in each culture well). Notably, both the 0.5 
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and 1.5% alginate samples became structurally unstable after 48 h but the 3% alginate samples 

maintained their structure for almost one week. 

Figure 4.7a shows the progression of the degradation of the alginate scaffolds. The 0.5% 

alginate scaffolds degraded rapidly, completely losing their physical structure after only 3 h; the 

1.5% scaffolds began losing their structure after 3 h, with almost complete loss after 48 h; the 3.0% 

scaffolds underwent no dramatic visible change in structure over 48 h. The inner structure of the 

different groups was investigated using SEM imaging. Figure 4.7b shows the internal structure of 

indirect-fabricated scaffolds made from different concentrations of alginate after 24 h. Scaffolds 

fabricated from low-concentration alginate (0.5%) had more porous structures than those made 

from 3% alginate, which had a rigid structure; the porous structure might facilitate the higher rate 

of degradation observed in the 0.5% alginate group. After 1 hour of incubating in the PBS solution, 

0.5% and 1.5% scaffolds had a smother inner structure than the 3% scaffold, which is good 

evidence of surface/bulk degradation as well as the dissolution of the lower concentration alginate. 

The 3% alginate scaffold demonstrated a rough surface even after 24  h in contrast to the other 

groups that showed evidence of erosion. The visual changes in Figure 4.7 closely follow the 

degradation trend in Figure 4.6b. The structure integrity of the 3% alginate scaffolds over 48 h 

suggests their possible application in tissue engineering. As the scaffolds retain well-

interconnected internal channels, created using sacrificial gelatin, this type of scaffold would be 

useful in studying micro-fluidics and vascularization [34]. In contrast, the relatively rapid 

degradation of the 0.5 and 1.5% alginate scaffolds could be useful in drug or cell release studies. 

Low-concentration hydrogels have promise in terms of neurite outgrowth for nerve tissue 

engineering; being rapidly degradable, such low-concentration hydrogels could be used as a filler 

material inside a conduit for their possible application in nerve guidance conduits, as reported in 

detail elsewhere [35]. 

The degradation experiments were conducted in a fixed volume of PBS and at a 

temperature designed to simulate the physiologic environment. Under these conditions, ion 

exchange takes place during the first few hours until equilibrium with the PBS is achieved. Because 

ion exchange is associated with degradation, observation of the degradation rate during the first 

few hours is critical for understanding the mechanical behavior of alginate/gelatin scaffolds in the 

physiologic buffer. 
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Figure 4.7. Progression of degradation for 1.5 and 3.0% alginate scaffolds over 48 h: a) visual 

observation and b) SEM images of indirect-fabricated scaffolds with 0.5, 1.5, and 3% alginate. 

4.4.5 Cell viability and circularity assessment 

4.4.5.1 Fluorescent imaging of bulk gels  

Each bulk gel was stained with Hoechst and PI to show the number of total cells and dead 

cells, respectively. All hydrogels experienced a decrease in cell viability over the course of 8 d 

(Figure 4.8). The 3% and 1.5% alginate hydrogels experienced a steep drop in fractional viability 
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from day 1 to day 8 (less than 40% and 30% for 1.5% and 3% alginate hydrogels, respectively), 

while the 0.5% gel had higher cell viability at the end of day 8 (more than 50%). The cells seeded 

onto the 0.5% bulk gel had a higher fractional viability over 8 days than those on 1.5 and 3.0% 

bulk gels. This might be due to the lower concentration of this hydrogel making it a favorable 

substrate for cells, as reported elsewhere [5]. Increasing alginate precursor concentration results in 

a stiffer internal structure of the bulk gel, which interrupts diffusion mass transfer mechanism 

between the cells and culture media and significantly affects the metabolic mechanism of 

incorporated cells. In addition, strong bonds among the polymer chains in the high-concentration 

alginate inhibit cell migration/proliferation as well as cell to cell interactions. Therefore, high 

concentration alginate is not a promising biomaterial in terms of cell viability but demonstrates 

relatively suitable mechanical properties for tissue engineering applications. In contrast, low-

concentration (0.5%) alginate demonstrates better cell viability compared to high-concentration 

alginate but has poorer mechanical stability. Hence, the optimum concentration of alginate 

precursor needs to be determined prior to fabrication to achieve both satisfactory mechanical 

stability and cell viability. The decreased cell viability in all alginate hydrogels with time could be 

improved by introducing interconnected channels through indirect printing and the creation of 

scaffolds with a porous structure. Such an interconnected structure would facilitate diffusive mass 

transfer (i.e., nutrients, oxygen gas, proteins, metabolites etc.) between the incorporated cell 

population and the surrounding culture medium.  
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Figure 4.8. Fractional cell viability in 0.5, 1.5, and 3% bulk alginate gels over 8 d. Based on ANOVA 

(general linear model), time, concentration, and their interaction are statistically significant (p<0.05) 

(top pictures are fluorescence microscope images of the total (left) and dead (right) staining of Schwann 

cells using Hoechst and PI).  

4.4.5.2 Fluorescent imaging of cell-incorporated scaffolds  

Scaffolds were stained with calcein and Hoechst to show the number of live cells and total 

cells, respectively. Calcein staining and optical images captured from the cell-incorporated 

scaffolds after bioprinting are shown in Figure 4.9. The 0.5% alginate had poor printability (Figure 

4.1) and so 0.5% alginate scaffolds were not considered; images in Figure 4.9I are for bulk gel. 

Optical microscopy was used to illustrate cell development, with the images showing pores were 

open and cells were well distributed (partially elongated cells with high cell density; Figure 4.9II 

and III). Alginate scaffolds fabricated with 1.5 or 3.0% hydrogel precursor showed better cell 

viability compared to 0.5% alginate gel on day 3 and 8 due to the interconnected bioplotted 

structures (Figure 4.10). However, alginate scaffolds printed with 3% alginate precursor 
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demonstrated poorer cell viability than the 1.5% alginate scaffold, indicating the effect of shear 

stress-induced cell damage during the bioplotting process. Live cells within the 0.5% bulk alginate 

gel showed a decreasing trend over the 8 d of in vitro culture; this is attributed to rapid degradation 

and the non-porous structure. Incorporated Schwann cells in 1.5 and 3.0% alginate scaffolds had 

a higher cell viability at day 3 than day 1 or 8 that might be due to the high proliferation rate; the 

observed decrease in cell viability thereafter is likely due to the effect of tissue remodeling.  

Compared to 3% alginate scaffolds, 1.5% alginate scaffolds maintained better cell viability over 

the 1 to 8 day culture period, suggesting the efficacy of less stiff polymer in the 3D cell  

incorporation approach. These results suggest the potential for scaffolds bioplotted with sequential 

layers of soft and stiff hydrogel strands, which would simultaneously address both biological and 

mechanical performance for specific tissue engineering applications.  
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Figure 4.9. Fluorescence microscope images of live staining of Schwann cells (scale bar 20 µm) showing 

live cells: I) 0.5% alginate bulk gel: a) day 1, b) day 4, c) day 8; II) 1.5% alginate scaffold: d) day 1, e) 

day 4, f) day 8; III) 3% alginate scaffold: g) day 1, h) day 4, i) day 8 (optical images in II and III were 

captured after fabrication of the cell-incorporated scaffolds; all scale bars are 500 µm). 
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Figure 4.10. Fractional cell viability in each cell-incorporated scaffold after 8 d. Error bars are standard 

deviation. Based on ANOVA (general linear model), time, concentration, and their interaction are 

statistically significant (p<0.05). 

4.4.5.3 Cell morphology in bulk gels and cell-incorporated/post-seeded scaffolds 

Calcein assay was used to stain the cytoplasm of Schwann cells to assess the morphology 

of cells over time [36]. The circularity of cells in the three types of alginate structures was analyzed 

using ImageJ. Circularity is measured on a 0.0-1.0 scale, with 1.0 being a perfect circle. Low 

circularity values are associated with a more stretched, attached, or differentiated state of 

incorporated cells. The circularity of cells in the 0.5, 1.5, and 3.0% alginate bulk gels was 0.423  

0.118, 0.768  0.034, and 0.799  0.064, respectively, after 8 d (Figure 4.11a). The lower 

circularity of cells in the 0.5% alginate gel at day 8 compared to other groups occurred concurrently 

with rapid degradation during the culture period due to significant polymer chain relaxation, 

swelling, and medium uptake within the bulk gel. Absorption of culture medium facilitated the 

availability of various protein molecules within the matrix that helped Schwann cells in the 0.5% 

alginate hydrogel express multipolar morphology. The higher values for cell circularity for the other 

bulk gels (3 and 1.5%; Figure 4.11a) suggest the lower concentration of alginate is more favorable 

for 3D Schwann cell cultures over time.  
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Figure 4.11. Cell circularity on bulk gels and cell-incorporated scaffolds over 8 d. 

In the 1.5 and 3% alginate scaffolds fabricated using direct bioplotting (Figure 4.11b), 

incorporated cells were more circular than in the 0.5% alginate bulk gel (Figure 4.11a). The high 

circularity is attributed to confined cells that are unable to migrate and interact with each other 

inside the alginate strands of the bioplotted scaffolds. Furthermore, the trend in Figure 4.11b 

indicates that the circularity of cells in the 1.5 and 3% alginate scaffolds are close to 0.9 at day 3. 

This might be due to a large number of cells, resulting from cell proliferation, becoming trapped 

in a confined space, where they tend to remain in a more circular shape. This could also explain 

the spike in circularity on day 3 for both the 1.5 and 3.0% alginate scaffolds (cell retraction due to 

proliferation). On a 2D tissue culture plate, Schwann cells usually demonstrate multipolar 

morphology, extending multiple processes that are indicative of attachment, differentiation, and 
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migrated states. In the in vivo state, the morphology might differ from cell to cell as per the location 

and function of the tissue or organ. In some applications, spherical morphology of cells (such as 

chondrocytes and pancreatic islet cells) incorporated into alginate hydrogel can form functional 

tissues [37,38]; however, the elongated morphology of Schwann cells is expected in a 3D culture 

to facilitate the formation Bands of Büngner necessary for the regeneration of damaged peripheral 

nerves.  

Figure 4.12a shows an increase in circularity over 8 days for post-seeded scaffolds. Figure 

4.12b demonstrates an increase in cells and cell clumping, and therefore the increased circularity 

again might be due to the retraction of cells to make space for proliferating cells. Figure 4.12b also 

shows the Schwann cells attached to the surface of the indirect-fabricated scaffolds. Schwann cells 

continued to proliferate on the surface of the 0.5% alginate scaffold to day 8 (Figure 4.12b), but 

this was less evident for the other alginate scaffolds (1.5 and 3%). This is consistent with reports 

demonstrating the limitations of cell migration, growth, and differentiation using high -density 

hydrogels [39]. As shown in Figure 4.7b, pores are evident in the inner structure of the 0.5% 

indirect-fabricated scaffolds and could facilitate the observed cell growth. Furthermore, not only 

were more cells observed on the surface of 0.5% alginate scaffold, for all sample groups, the 

seeded cells showed more spherical morphology over time in particular spots on the alginate 

surface, indicative of cell proliferation. It is well-established that polysaccharide molecules lacking 

peptides in their structure do not facilitate cell attachment on the surface. However, absorption of 

gelatin molecules released from the indirectly-fabricated framework on the surface of alginate 

strands might enhance the surface properties of alginate scaffolds fabricated by the proposed 

indirect approach. Moreover, some amount of gelatin might get absorbed in the alginate hydrogel 

during the removal process, and thereafter have a positive effect on the cellular behavior [40]. 
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Figure 4.12. Cell circularity of Schwann cells in post-seeded scaffolds over 8 d: a) cell viability for 

different groups of indirect-fabricated scaffolds and b) optical images from samples from different days 

indicating the morphology of cells (100× magnification). 

4.5 Conclusions 

Hydrogels are widely used in the bioprinting of scaffolds for tissue engineering 

applications. Low-concentration hydrogels create a favorable environment for many cell functions 

but are limited from the fabrication point of view due to poor printability. Here, we illustrated the 

feasibility of fabricating scaffolds from low-concentration alginate using an indirect-bioprinting 

process by means of a sacrificial gelatin framework. Scaffolds were fabricated with varying 

concentrations of alginate and then sterilized using either UV or ethanol. Next, the scaffolds were 
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characterized biologically using Schwann cells for potential nerve tissue engineering applications. 

Our results indicate that scaffolds can be fabricated by the indirect-bioprinting process at precursor 

alginate concentrations of 0.5-3%. Scaffolds created from 0.5, 1.5, and 3% alginate and sterilized 

with ethanol have a higher elastic modulus than those treated with UV. Scaffolds made from 0.5 

and 1.5% alginate experienced significant changes in swelling, while those fabricated from 3.0% 

alginate demonstrated much more gradual changes. In addition, 0.5% alginate scaffolds 

experienced dramatic degradation compared to those fabricated from 1.5 or 3.0% alginate. The 

low-concentration alginate scaffolds provided a more favorable environment for Schwann cells. 

Taken together, our results show the indirect-bioprinting process successfully addresses the poor 

printability of low-concentration alginate for scaffold fabrication. The results further show that 

both the mechanical and biological properties of fabricated scaffolds are affected by the 

concentration of alginate as well as the sterilization technique utilized. These results provide an 

effective means of regulating scaffold properties during the indirect-bioprinting process. 

Furthermore, the results indicate the possibility of extending the proposed indirect-bioprinting 

process to other types of low-concentration hydrogels to address the tradeoffs between printability 

and properties favorable for cell functioning. 
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Chapter 5 Modeling of the Mechanical Behavior of 3D-Bioplotted Scaffolds 

Considering the Penetration in Interlocked Strands 
 

This chapter has been published as “Saman Naghieh, MD Sarker, Mohammad Reza 

Karamooz-Ravari, Adam D McInnes, and Xiongbiao Chen, Modeling of the Mechanical Behavior 

of 3D-Bioplotted Scaffolds Considering the Penetration in Interlocked Strands, Journal of Applied 

Sciences” According to the Copyright Agreement, "the authors retain the right to include the 

journal article, in full or in part, in a thesis or dissertation".  

(All the experimental work was conducted by me. MD Sarker and Adam D McInnes helped me to conduct some 

experiments. Professor Xiongbiao Chen and Mohammad Reza Karamooz-Ravari guided and supervised the whole 

work.) 

5.1 Abstract 

(3D bioplotting has been widely used to print hydrogel scaffolds for tissue engineering 

applications. One issue involved in 3D bioplotting is to achieve the scaffold structure with the 

desired mechanical properties. To overcome this issue, various numerical methods have been 

developed to predict the mechanical properties of scaffolds, but limited by the imperfect 

representation of one key feature of scaffolds fabricated by 3D bioplotting, i.e., the penetration or 

fusion of strands in one layer into the previous layer. This paper presents our study on the 

development of a novel numerical model to predict the elastic modulus (one important index of 

mechanical properties) of 3D bioplotted scaffolds considering the aforementioned strand 

penetration. For this, the finite element method was used for the model development, while 

medium-viscosity alginate was selected for scaffold fabrication by the 3D bioplotting technique. 

The elastic modulus of the biplotted scaffolds was characterized using mechanical testing and 

results were compared with those predicted from the developed model, demonstrating a strong 

congruity between them. Once validated, the developed model was also used to investigate the 

effect of other geometrical features on the mechanical behavior of bioplotted scaffolds. Our results 

show that the penetration, pore size, and number of printed layers have significant effects on the 

elastic modulus of bioplotted scaffolds; and also suggest that the developed model can be used as 

a powerful tool to modulate the mechanical behavior of bioplotted scaffolds.  
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5.2 Introduction 

One aim of tissue engineering is to develop tissue/organ substitutes or scaffolds, based on 

the principles of biology and engineering, for the repair or replacement of damaged tissues and 

organs [1,2]. For this, scaffolds, typically of a 3D porous structure made from biomaterials, play 

an important role in supporting and/or promoting cell growth, tissue regeneration, and transport of 

nutrients and wastes. Design and fabrication of scaffolds have proven to be a challenging task [3]. 

One important issue in the design and fabrication of scaffolds is achieving the desired mechanical 

properties to match those of tissue at the site of implantation. More specifically, the scaffold must 

be strong enough to resist structural collapse upon implantation, yet sufficiently compliant so as 

not to damage the surrounding tissues.  

Tissue scaffolds can be fabricated by either conventional or modern techniques. Conventional 

methods, like electrospinning, are limited for the fabrication of 3D scaffolds with interconnected 

pores [4,5] and in some cases, organic solvents have to be used, thus being detrimental for cellular 

proliferation/differentiation [6]. Nowadays, AM techniques have been drawn considerable 

attention since it allows to fabricate scaffolds layer-by-layer [7], and thus opens a new door to 

create scaffolds with complex 3D microstructure and controllable pore shape and size [8]. Among 

various AM techniques, extrusion-based 3D bioplotting shows promise, where bioinks are 

extruded from either one or multiple needles and thus form 3D scaffolds [9,10], as shown in Figure 

5.1 (a pneumatic-based 3D bioplotter extruding biomaterials from one needle). Notably, the bioink 

for bioplotting can be prepared from the biomaterials favorable for cells, thus being capable of 

incorporating cells and proteins in the scaffold fabrication process [11,12]. For this, hydrogels 

have been widely utilized as they are able to provide an appropriate environment for encapsulating 

cells and growth factors [13]. This is mainly due to the fact the hydrogels involve a large amount 

of water in their polymeric 3D network, which is favorable to cell growth and tissue regeneration 

[14,15]. Alginate is one of the widely-used natural polymers with properties of good 

biocompatibility and ease of gelation and has found many applications in tissue engineering, such 

as wound healing and drug delivery [16]. As inspired, we selected alginate in the present study for 

the scaffold fabrication. 
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Figure 5.1. Schematic of 3D bioplotting. 

As noted previously, scaffolds should have the mechanical properties similar to those of 

targeted tissue. To this end, research has been performed to fabricate scaffolds with desired 

mechanical properties by taking the aforementioned advantages of 3D bioplotting [17,18]. The 

experimental results illustrate the mechanical properties of 3D-bioplotted scaffolds can be affected 

by the scaffold-material properties and the geometrical features of scaffolds (including pore size, 

strand diameter, and orientation of strands) [17,19]. Notably, experimental measurements and 

characterization of the mechanical properties of scaffolds are time-consuming, even impractical 

once implanted in vivo. Therefore, there is a need to develop alternative methods, like numerical 

modeling, to represent or predict the mechanical properties of scaffolds instead of the use of 

experimental tests.  

Recently, FEM has been introduced as a method to represent the mechanical properties of 

scaffolds fabricated by means of 3D extrusion-based printing. In our previous studies [8,20], 

models based on FEM have been developed to predict the elastic modulus of printed scaffolds. By 

these models, the elastic modulus of scaffolds was predicted with a good agreement with the 

measured ones [8,20]. FEM-based models can also be used to represent the change of mechanical 

properties of scaffolds with time due to the scaffold degradation [21] and the mechanical behavior 

of Poly(ethylene glycol) diacrylate hydrogels with complex geometric shapes [6]. It has been 

illustrated that FEM is a powerful tool to model the scaffold mechanical properties. However, the 

accurate representation of the structure of the scaffolds in the development of the FEM-based 
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model is an essential, yet challenging, tack. This is particularly true when the printed scaffold 

structure is significantly different from the scaffold design due to the penetration or fusion of 

strands in one layer into the previous layer during the scaffold fabrication process. This difference, 

however, has been ignored in the reported models including those reviewed above for 3D biplotted 

scaffolds specifically. It is noted that the penetration amongst interlocked strands, analogous to a 

saddle notch, can affect the mechanical properties significantly [8], which should be considered in 

the FEM-based models. 

In this study, FEM was used for the development of a model to predict the mechanical 

behavior of bioplotted scaffolds considering the effect of penetration in interlocked strands. In the 

model development, the structural features of the scaffolds, including diameter and orientation of 

strands, strand penetration, and pore size, were considered as the inputs to the model, along with 

the scaffold-material properties. Scaffolds and bulk gels were fabricated from alginate by 3D 

bioplotting and then evaluated mechanically through compression tests. Based on the developed 

model, the stress-strain curves were simulated and compared to those of experimental 

measurements to validate the developed model.  

5.3 Materials and methods 

5.3.1 Material preparation for fabrication 

Materials utilized in this experiment were alginic acid sodium salt from brown algae (medium 

viscosity) with P-code 1001172534 and calcium chloride dehydrate with P-code 1001911753 (Sigma-

Aldrich Canada Ltd., Toronto, ON. Canada). In addition, a tissue culture plate was treated with 0.5% (w/v) 

polyethylenimine (PEI, Alfa Aesar, Mw: 60000) and incubated overnight at 37°C. This coating can improve 

the surface adhesion of alginate strands during the printing process to achieve successful printing [22]. To 

prepare a 3% w/v alginate solution, 7.5 g of alginate powder was weighted using an analytical balance 

(Sartorius, CP 225 D), then added to 250 mL distilled water in a beaker covered by a parafilm. The solution 

was mixed overnight using a magnetic stirrer to create a homogenous solution. The solution was centrifuged 

for 5 minutes at 800 rpm (Sorvall T6000 B Centrifuge) to remove bubbles that had formed during mixing. 

To crosslink alginate, 50 mM CaCl2 was added to the print bath to induce immediate crosslinking as the 

material was extruded in the scaffold fabrication process, as described below. 
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5.3.2 Design and fabrication of scaffolds 

A CAD model of a scaffold, with a cuboid shape of 7 × 7 × 5 mm, was generated using 

Magics EnvisionTEC (V13, Materialise, Belgium), which was then sliced into 31 layers with the 

Bioplotter RP software (V2.9, EnvisionTEC GmbH, Germany). The slice thickness was 

considered as 88% of the strand diameter. VisualMachine software (BP, V2.2, EnvisionTEC 

GmbH, Germany) was utilized to control the printing and assign the print parameters for the model 

(Figure 5.2). A perpendicular pattern with alternating angles of 0°and 90°was used between the 

two adjacent layers, each layer consisting of strands with a distance of 1 mm. A 3D-BioplotterTM 

system (EnvisionTEC GmbH) was used to fabricate scaffolds by printing alginate solution into the 

50 mM CaCl2 solution to induce crosslinking layer-by-layer. Specifically, the 3% alginate solution 

was maintained at 10℃ for 10 min in a low-temperature dispensing head. Alginate was dispensed 

at 18-20℃ using a conical needle with the inner diameter of 200 µm. The scaffolds were printed 

in a 12-well tissue culture plate coated with PEI, with each well containing 1 mL of 50 mM CaCl2 

to crosslink alginate immediately after dispensing. The pressure was set at 0.2 bar and head speed 

of 8 mm/s selected during printing. Printing conditions are presented in  Table 5.1. After 

fabrication, scaffolds were maintained in the crosslinking solution for a time period sufficient to 

allow the Ca2+ ions to penetrate and crosslink the whole structure.  

For assessing the elastic modulus of bulk gel, bulks of alginate were also created on the 

3D-BioplotterTM system by employing the procedure and printing conditions similar to the above 

scaffold fabrication except the zero distance set between two adjacent strands. 
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Figure 5.2. Illustration of printing alginate scaffolds: a) CAD model, b) sliced layers, and c) 3D-

Bioplotter used for scaffold printing, with an inserted image showing the alginate scaffold printed in a 

tissue culture plate. 

Table 5.1. Printing condition used in scaffold fabrication.  

Concentration 
Needle 

diameter (µm) 

Head speed 

(mm/s) 
Pressure (bar) 

Temperature 

(℃) 
Crosslinker 

3% (w/v) 200 8 0.2 18-20 CaCl2 (50 mM) 

 

5.3.3 Image analyzing  

For capturing the geometry of the samples, a 13 MP, f/2.2, 31mm, autofocus camera 

(Samsung, Korea) was used, and images were analyzed by Image J® 1.48v Software (National 

Institute of Health, USA). The strand diameter, height, and pore size of the fabricated scaffold 

were obtained using the aforementioned software (n=10). Moreover, the projected area on the 

plane of loading, which is needed for the calculation of stress was obtained using the dimensions 

obtained from these images prior to performing mechanical testing. 

5.3.4 Mechanical testing 

Using a texture machine (Texture Technologies Corp., New York, USA), uniaxial 

unconfined compression tests were performed. Three specimens were prepared for each group of 

bulk alginate and porous scaffold. All tests were carried out at a speed of 0.1 mm/s (strain rate of 

0.035 S-1) with a defined preload of 1 N. Before doing any experiment, specimens were placed 

between the loading plates of the machine and the load cell was set to zero. ASTM D-695 standard 

was used to assess the elastic modulus of both bulk gels and porous scaffolds of alginate [23], as 

reported in the standard guide for characterization and testing of biomaterial scaffolds used in 

tissue-engineered medical products (ASTM: F2150 − 13) [24]. Porous scaffolds were kept in a 

CaCl2 crosslinking solution and extracted from the solution immediately prior to mechanical 

testing. It should be noted that keeping fabricated samples of alginate in the incubator with 37 ℃ 

temperature (humidified environment containing 5% CO2) did not have any significant effect on 

the elastic modulus. Hence, to simplify the experiment, samples were kept in a refrigerator (4℃) 

before the experiment. It is noted that there was a nonlinear region at the beginning of the stress-

strain curves, termed as the toe-region. This region makes the calculation of the elastic modulus 

(the slope of the first linear part of the curve) difficult. Based on the method provided in ASTM 
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D-695 standard, a line was used to fit the first linear section of the curves and the intersection of 

this line and the strain axis is terms as the corrected zero-strain point. 

5.3.5 Finite element modeling  

A Python script was used to develop a parametric finite element model through the finite 

element package ABAQUS 6.11-1 with the detailed information provided as follows. Figure 5.3.a 

shows the model generated using cylinders with the diameter of D and alternating strand 

orientation of 0-90° to mimic the structure of fabricated scaffolds. The number of strands in each 

plane is denoted by N with corresponding subscripts, the amount of penetration within layers by 

Δ₀, the pore size in the X and Z directions by Px and Pz, respectively, and the length of material 

exceeding the main borders of the scaffold by Ex and Ez (Figure 5.3.a). It should be mentioned that 

for applying the compressive load, the upper and lower sides of the modeled scaffolds were 

trimmed with the value of ∆L. Using these parameters, the dimensions of the scaffold can be 

calculated using the following relationships: 

𝐿𝑥 = 2𝐸𝑥 + 𝑁𝑥𝐷 + (𝑁𝑥 − 1)𝑃𝑥                                                                     (5.1) 

𝐿𝑧 = 2𝐸𝑧 + 𝑁𝑧𝐷 + (𝑁𝑧 − 1)𝑃𝑧                                                                       (5.2) 

𝐿𝑦 = {
2 (

𝐷

2
− ∆𝐿 + 𝑁𝑦𝑧(𝐷 − ∆0))                       𝑁𝑦𝑧 = 𝑁𝑦𝑥 − 1

2 (
𝐷

2
− ∆𝐿 + 𝑁𝑦𝑧(𝐷 − ∆0)) − (𝐷 − ∆0) 𝑁𝑦𝑧 = 𝑁𝑦𝑥

          (5.3) 

where Lx, Ly, and Lz are the length of the scaffold in each direction. 

As shown in Figure 5.3.b, to simulate the compression test, all the translational degrees of 

freedom of the bottom side of the scaffold were fixed while the upper face was moved downward 

with the value of the desired deformation. Since the model has some symmetric planes, the 

computational efforts might be reduced by decreasing the size of the model. Hence, the model was 

considered symmetric in X and Z directions. In addition, appropriate boundary conditions, e.g. 

fixing the degree of freedom parallel to the plane of symmetry were applied.  

To run the developed model, 20% displacement was applied and the Poisson’s ratio was 

considered as 0.31 as per the previous studies [25,26]. Ten-node modified quadratic tetrahedron 
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elements (four integration points, C3D10) were used to mesh the model (the configuration of the 

meshed model is available in Figure 5.3.b). In addition, convergence was achieved by using the 

criteria or conditions that the displacement function within an element is continuous, of rigid-body 

one, and under the constant strain [27]. 

 

Figure 5.3. a) Applied parameters in finite element model including the amount of penetration 

within layers (Δ0), pore size in the X and Z directions (Px and Pz), Ex and Ez as the extra 

material exceeding the main borders of the scaffold. ∆L is also the amount of trimmed value of 

the upper and lower sides of the modeled scaffolds for applying the compressive load and D is 

the strand diameter b) applied boundary conditions and meshed part. 

5.3.6 Statistical analysis 

Experimental data are presented as mean ± standard deviation. A linear regression equation was 

extracted using Minitab® 17.1 software and confidence level for all intervals was considered as two-sided 

intervals with 95% value and, thus, P-value less than 0.05 was considered significant. 

5.4 Results and discussion 

5.4.1 Model verification 

In this section, the geometrical features of the fabricated scaffold are evaluated according 

to the analysis of the captured images using Image J® Software, the elastic modulus of bulk gel 

and porous scaffolds are then examined and reported, and finally the results of the developed finite 

element model are presented and compared with the experimental measurements. 
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Geometrical features of scaffolds were measured using captures images analyzed in Image J® 

Software. The average pore size was 0.39 ± 0.03 mm and 0.47 ± 0.06 mm in Z and X directions, 

respectively. The strand diameter and height of the scaffold were also measured as 0.58 ± 0.06 mm and 

2.63 ± 0.12 mm in Z and X directions, respectively. To measure the penetration, the original CAD design 

and the printed scaffolds were compared in terms of the layer height. The penetration was calculated based 

on the difference in heights, giving a value of 510 µm. Table 5.2 shows the parameters obtained from 

geometrical features of the fabricated scaffold and they were used in the simulation of the model, as input 

data. 

Table 5.2. Parameter values used in simulation by the finite element model. 

Parameters Values (µm) 

NX 7 

NYX 15 

NYZ 16 
NZ 7 

D 580 

∆o 510 

∆L 10 

Px 470 

Pz 390 

Ex 10 

Ez 10 
 

The compressive stress-strain response of the porous scaffolds and bulk alginate was used 

to calculate their corresponding elastic modulus. The elastic modulus of the bulk gel and alginate 

scaffold were calculated to be 42.3 ± 1.58 KPa and 32.1 ± 0.6 KPa, respectively.  

For finite element simulations, a mesh sensitivity analysis on the finite element model was 

performed by comparing the predicted elastic modulus using different mesh sizes, with the results 

shown in Figure 5.4. To do so, the mesh size was reduced until the change of the obtained results 

was negligible. Using this method, the mesh size value of 0.3 was obtained and used for all the 

simulations. 
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Figure 5.4. Mesh sensitivity study. 

Using the developed finite element model, the elastic modulus of the fabricated scaffold was 

predicted to be 28.76 KPa, which is in agreement with the experimentally measured one, i.e., 32.1 

± 0.6 KPa. To further study the effectiveness of the model, more experiments were conducted by 

changing the penetration, pore size, and number of layers. For this, three sets of experiments were 

performed and for each set, one factor was subjected to changes and other parameters were taken 

the same as the ones listed in Table 5.2. 

For the first set, the penetration element was changed. Initially, the slice thickness, which 

was 88% of the strand diameter (i.e. 580 µm), calculated as 510 µm. Then, the slice thickness was 

selected as 35% of strand diameter to reach 200 µm penetration by trial and error. The model 

predicted 14.92 KPa for scaffolds with approximately 0.2 mm penetration within layers (the elastic 

modulus based on the experiment was 15.47 ± 1.03 KPa). As mentioned, the model predicted 

28.76 KPa as the elastic modulus of scaffolds with 510 µm penetration which was in good 

agreement with experimental results (32.1 ± 0.6 KPa), as shown in Figure 5 .5. 
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For the second set of experiments, the pore size of scaffolds was subjected to changes. 

Experimental results showed the elastic modulus of 22.43 ± 0.49 KPa for scaffolds with Px=551 

µm and Pz=487 µm, while the model predicted 21.35 KPa (Figure 5.6). As it was mentioned, the 

elastic modulus of scaffolds fabricated based on parameters reported in Table 5.2 (Px= 470 µm 

and Pz=390 µm) was 32.1 ± .0.6 KPa, while the model predicted 28.76 KPa. In addition, for bulk 

gel, the elastic modulus of 42.3 ± 1.58 KPa was calculated experimentally, while the simulation 

predicted 37.94 KPa, as the elastic modulus. In case of bulk gel, Px= Pz=0 was considered for the 

modeling purpose. 

For the last set of experiments, the number of layers was changed and scaffolds with 16 

and 24 number of layers were printed and experimental results showed 24.25 ± 0.64 KPa and 26.85 

± .0.92 KPa, while model predictions were 24.97 KPa and 27.34 KPa, respectively (Figure 5.7). 

As mentioned earlier, for scaffolds fabricated based on parameters mentioned in Table 5.2, 32.1 ± 

0.60 KPa was obtained experimentally as the elastic modulus of scaffolds with 31 layers (the model 

prediction was 28.76 KPa). 

5.4.2 Some more simulation results 

 Using the developed model, simulations were further performed to study the influence of 

penetration on the elastic modulus of scaffolds. For this, the value of penetration was changed 

from 0.01 mm, to 0.2, 0.3, 0.4, and 0.51, while the values of other parameters were taken the same 

as the ones listed in Table 5.2. The simulation results are presented in Figure 5.5, which shows a 

larger penetration lead to the higher elastic modulus. Elastic modulus achieved from experiment 

and model were discussed earlier for 0.2 and 0.51 mm penetration. More simulations were 

performed and the model predicted 3.64 KPa, 23.9 KPa, and 25.95 KPa for scaffolds with 0.01, 

0.3, and 0.4 mm penetration amongst layers. Additionally, as shown in Figure 5.5, as the 

penetration is increased, the model predicts higher elastic modulus and results become closer to 

the elastic modulus of a bulk gel (experimental elastic modulus = 42.3 KPa). It means that by 

increasing the penetration, a scaffold with a rigid structure and high mechanical stability is 

obtained. 

It should be noted the penetration between layers is an important index to measure the 

printability of hydrogels (i.e., alginate in the present study) in 3D bioplotting, which is defined as 
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the ability of a hydrogel to form and maintain a 3D structure and characterized by the difference 

between the printed scaffold structure and the designed one [28,29]. Lager penetration suggests 

the bigger difference between the printed structure and designed one, thus poorer printability of 

the hydrogel. In this study, the measured height of the fabricated scaffolds (2.63 ± 0.12 mm) was 

inputted to the numerical model to predict the elastic modulus of the printed structure (CAD model 

height was not considered for modeling). 

 

Figure 5.5. Effect of penetration within layers on the elastic modulus of alginate scaffolds with 

a strand diameter of 0.58 mm and a distance of 1 mm between two adjacent strands.  

Based on the developed model, a numerical analysis was also carried out to study the effect 

of pore size on the elastic modulus of scaffolds. In these simulations, the pore size value was 

changed from 0 to 551 µm, with other parameter values the same as the ones listed in Table 5.2. 

The simulation results are shown in Figure 5.6, showing that a smaller pore size can result in a 

higher elastic modulus. As such, the pore size of scaffolds can be adjusted in order to obtain the 

mechanical properties similar to the native tissues. While there are many experimental studies in 

this regard [17,19], the use of finite element method would provide a more effective approach to 
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adjust the pore size or other geometrical parameters to achieve the desired mechanical properties. 

It should be noted that measured pore sizes in different directions of fabricated scaffolds were not 

the same as shown in Figure 5.6. Here more simulations were performed. Modeling results showed 

30.42 KPa, 26.61 KPa, and 24.62 KPa for scaffolds with 300, 400, and 500 µm pore sizes in the 

X and Z directions defined in Figure 5.3. 

 

Figure 5.6. Effect of pore size on the elastic modulus (pattern fill column bars show 

experimental results for bioplotted scaffolds with (Px,z=0), (Px=470 and Pz=390), and 

(Px=551 and Pz=487)).  

The number of layers in the Y direction was investigated to determine the effect of the 

height of the scaffold on its elastic modulus. The penetration and strand diameter were considered 

as 0.51 mm and 0.58 mm, respectively. As demonstrated in 5.7, increasing the number of layers 

causes a higher elastic modulus numerically and experimentally. This is likely due to having more 

layers and, consequently, a thicker scaffold with a more mechanically stable structure has a higher 

elastic modulus. For a scaffold made of 10 layers, the model predicted 22.14 KPa as the elastic 

modulus of a porous scaffold. The model predicted 24.97 KPa, 27.34 KPa, and 28.76 KPa for 

scaffolds with 16, 24, and 31 layers, respectively. 
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Figure 5.7. Effect of the number of layers on the elastic modulus (pattern fill column bars show 

experimental results for bioplotted scaffolds with 16 (24.25 ± 0.64 KPa), 24 (26.85 ± .0.92 

KPa), and 31 layers (32.1 ± 0.60 KPa)). 

A strong congruity was observed between experimental and numerically predicted values 

of elastic modulus. Although the model was developed based on the assumption of a symmetric 

structure, bioplotted scaffolds might be asymmetric in different directions due to random variables 

that affect extrusion. This asymmetry might cause an increase in the error between predicted and 

real values because of numerous variables associated with the 3D biofabrication regulate the 

structural uniformity and geometry of the scaffold. Fluid viscosity, temperature,  dispensing 

pressure, needle speed, and crosslinker concentration have a profound effect on the strand 

diameter, porosity, and pore size distribution [22]. In this study, the scaffolds were printed in a 

static volume of the crosslinking solution of 1 mL and 50 mM CaCl2, the number of available Ca2+ 

ions in the crosslinking media decreases gradually with the fabrication of successive layers. Such 

a variable concentration of Ca2+ ions can affect the structure and thus the mechanical properties of 

the printed scaffolds [30]. As such, the effect of the crosslinker mechanism can be taken into 

consideration for improving the accuracy of model prediction. Also, fluid viscosity is temperature-

dependent and therefore temperature, changing during the printing process, can affect the fluid 

flow, which is also responsible for degraded structures in the bioplotted scaffolds. Another 

important factor influencing the mechanical behavior of porous scaffolds is microstructure 

degradation from the designed one [31–34]. Thus, in order to enhance the accuracy of numerical 
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models, one way is to identify these changes and degradations and specify them or their effects in 

the model. Moreover, it was reported that pore distribution and orientation of strands are not stable 

throughout the printed scaffold and it can influence the mechanical properties of scaffolds [35]. 

All of these can result in the degradation of the structure of scaffolds, thus affecting the error 

between the predicted and real values of scaffolds mechanical properties.   

According to the results obtained from the developed model, Equation 5.4 was derived by 

fitting a linear regression model (R2 = 99.61%) to quantitatively specify the effect of each term on 

the elastic modulus. For this purpose, the degree of penetration, strand diameter, pore size, and 

extra materials in X and Z directions, and the number of layers in Y direction were considered in 

the model. The number of layers in X and Z directions were assumed as five. In addition, 

considering the effect of major factors (Δ₀, D, Pz, Px, Ez, Ex, and Ny), all the interactions amongst 

the aforementioned factors were considered in the model. Accordingly, with respect to P-value, 

some parameters were not appeared to be significant. However, regarding the interaction between 

various terms, these factors showed a significant effect Significant interactions were identified 

amongst many factors including penetration*Ny, D*Ny, D*Pz, D*Px, Ny*Pz, and Ny*Px. Figure 5.8 

shows the effect of each factor on the elastic modulus demonstrating the significant effect of 

different terms on the elastic modulus. 

 
𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑢𝑙𝑢𝑠  = (136 ∆𝑜 ) + (651.9 𝐷)–(10.37 𝑁𝑦) + (2024 𝑃𝑧)–(1956 𝑃𝑥)–(497.7 𝐸𝑥) +
(569 𝐸𝑧)–(822 ∆𝑜 × 𝐷) + (98.5 ∆𝑜 ×  𝑁𝑦)– (22463 ∆𝑜 × 𝑃𝑧) + (22209 ∆𝑜 × 𝑃𝑥) +
(4982 ∆𝑜 × 𝐸𝑥)– (5749 ∆𝑜 × 𝐸𝑧)–(49.9 𝐷 × 𝑁𝑦) + (1357 𝐷 × 𝑃𝑧)–(1796 𝐷 × 𝑃𝑥)– 31.4            

    (5.4) 
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Figure 5.8. Effect of a) ∆o and Ny, b) ∆o and D, c) Ex and Ez, and d) Pz and Px on the elastic 

modulus (E.M.). 

It should also be noted that degradation of the scaffold over time can affect the mechanical 

properties of scaffolds and in this regard, many studies have been made to predict the mechanical 

behavior of scaffolds considering the effect of degradation in physiological condition [36–38]. In 

this study, we focused on the effect of penetration without the consideration of scaffold 

degradation over time. As an improvement of the model presented in this study, the effect of 

degradation on the mechanical properties of alginate scaffolds might be included in the future. As 

another extension of the present work, this model can be applied to study the mechanical behavior 

of hybrid scaffolds printed from more than two biomaterials. Similarly, this model can also be 

expanded to represent or predict the mechanical behavior of bioplotted scaffolds made from cell-

incorporated hydrogels. To this end, cell-incorporated hydrogels can be evaluated mechanically 

and results can be used as an input of the presented model to predict the mechanical behavior of 

them.  
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5.5 Conclusions  

In this study, a novel finite element model, by taking into account of the penetration of 

strands in one layer into the previous layer, was developed to represent and predict the mechanical 

properties of scaffolds fabricated by 3D Bioplotting technique. Our experimental results show the 

penetration within layers has a significant influence on the mechanical properties of printed 

scaffolds, along with the number of layers and pore size of scaffolds. To these experimental results, 

the predictions from our model were compared, showing a strong congruity between them. Based 

on the simulations from the developed model, a simple regression equation was developed to show 

the effects of penetration, pore size and number of layers on the elastic modulus of printed 

scaffolds. The method used to develop both finite element model and regression equation for 

alginate in the present study can also be implemented for other hydrogels so as to achieve the 

desired mechanical properties in tissue engineering.  
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Chapter 6 Influence of crosslinking on the mechanical behavior of 3D printed 

alginate scaffolds: experimental and numerical approaches 
 

This chapter has been published as “Saman Naghieh, Mohammad Reza Karamooz-Ravari, 

MD Sarker, Eva Karki, and Xiongbiao Chen, Influence of Crosslinking on the Mechanical 

Behavior of 3D Printed Alginate Scaffolds: Experimental and Numerical Approaches, Journal of 

the Mechanical Behavior of Biomedical Materials, 2018, DOI: 10.1016/j.jmbbm.2018.01.034, 

https://www.youtube.com/watch?v=puT4-xGI54Y&t=31s.” According to the Copyright 

Agreement, "the authors retain the right to include the journal article, in full or in part,  in a thesis 

or dissertation".  

(All the literature review was conducted by me. MD Sarker and Eva Karki helped me in performing experiemtns. 

Professor Xiongbiao Chen and Mohammad Reza Karamooz-Ravari guided and supervised the whole review work.) 

6.1 Abstract 

Tissue scaffolds fabricated by 3D bioprinting are attracting considerable attention for tissue 

engineering applications. Because the mechanical properties of hydrogel scaffolds should match 

the damaged tissue, changing various parameters during 3D bioprinting has been studied to 

manipulate the mechanical behavior of the resulting scaffolds. Crosslinking scaffolds using a 

cation solution (such as CaCl2) is also important for regulating the mechanical properties, but has 

not been well documented in the literature. Here, the effect of varied crosslinking agent volume 

and crosslinking time on the mechanical behavior of 3D bioplotted alginate scaffolds was 

evaulated using both experimental and numerical methods. Compression tests were used to 

measure the elastic modulus of each scaffold, then a finite element model was developed and a 

power model used to predict scaffold mechanical behavior. Results showed that crosslinking time 

and volume of crosslinker both play a decisive role in modulating the mechanical properties of 3D 

bioplotted scaffolds. Because mechanical properties of scaffolds can affect cell response, the 

findings of this study can be implemented to modulate the elastic modulus of scaffolds according 

to the intended application. 

 

https://www.youtube.com/watch?v=puT4-xGI54Y&t=31s
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6.2 Introduction 

Extrusion-based techniques are widely used to print large tissue scaffolds with cells and in 

such a system, biopolymers dispensed simultaneously from a 3D biofabrication system  [1,2] and 

provide custom-made scaffolds using imaging technology [3]. It has also been combined with 

other techniques like electrospinning to come up with newly developed scaffolds [4,5]. Such 

fabrication requires biocompatible bioink to maintain a hydrated environment essential for cell 

survival [6]. Over the last decade, several hydrogel precursors have been investigated to develop 

suitable bioinks for extrusion-based systems [7]. Seaweed-derived Na-Alg is a potential bioink for 

fabricating cell-incorporated 3D structures with remarkable geometric precision [8]. In an 

extrusion-based biofabrication system, a cell-hydrogel precursor mixture is extruded layer-by-

layer through a nozzle as per a pre-designed structure. The extruded alginate precursor must gel 

quickly to assist the fabrication process and support cell survival [9,10]. In this regard, divalent 

ionic crosslinkers have frequently been used to crosslink extruded hydrogel-based bioink because 

the ions cause rapid gelation and the gels can have acceptable printability and support the viability 

of any incorporated cells [11]. 

Although alginate offers several attractive features for 3D biofabrication, the poor 

mechanical stability of alginate scaffolds has been a major issue that requires further investigation 

[12]. Several efforts have improved the mechanical stability of 3D alginate constructs. For  

instance, alginate composites have been explored but complexities associated with multi-polymer 

handling may limit their application [2]. Other studies have been conducted to improve the 

mechanical stability of hydrogel scaffolds by manipulating the type and concentration of ionic 

crosslinkers [13]. Among various divalent ions, Ca2+ ions facilitate superb printability for alginate 

precursors while maintaining reasonable cell viability [14]. Mechanically stable alginate scaffolds 

can be successfully fabricated using CaCl2 solution at higher concentrations [15], but the 

incorporated cells can be adversely affected [1]. Therefore, extruding the alginate precursor into a 

lower concentration CaCl2 solution has been recommended to limit effects on cell viability [16]. 

Cell-incorporated scaffolds should also be crosslinked immediately after printing to prevent 

significant decreases in cell viability [1]. If the alginate precursor is extruded in a constant, low-

concentration, and small volume of CaCl2 solution, the number of available Ca2+ ions in the media 
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might decline significantly with the progression of scaffold height; this, in turn, might affect the 

mechanical stability of the extruded hydrogel. Accordingly, an appropriate quantity of low 

concentration CaCl2 solution should be employed in the biofabrication process to minimize the 

depletion effect of Ca2+ ions. However, this effect has not been thoroughly examined to date and 

so the appropriate volume and concentration of CaCl2 solution required for an extrusion-based 

system without compromising the mechanical stability of the alginate scaffolds is not known.  

Furthermore, extrusion-based biofabrication techniques require a specific amount of time 

to print a 3D structure and, during this period, scaffolds remain immersed in the crosslinker. 

Similar to concentration, crosslinking time in Ca2+ ions affects the viability of incorporated cells 

[1]. In an extrusion-based system, the CaCl2 solution is often aspirated upon biofabrication without 

allowing sufficient time for the alginate scaffolds to achieve equilibrium with the Ca2+ ions. While 

quick removal of the CaCl2 solution improves cell viability, the mechanical stability of the alginate 

scaffolds could be significantly compromised. Scaffolds crosslinked for an extended period could 

potentially be used for post-seeding applications, but the effect of immersing bioplotted alginate 

scaffolds in CaCl2 solution for a prolonged period on the mechanical stability of the hydrogel 

construct has not been assessed.  

This study investigated the volume of CaCl2 and gelation time as potential significant 

parameters in the biofabrication process of alginate scaffolds. While some studies have focused on 

the concentration of crosslinker [1], here we exclusively concentrate on the effect of crosslinking 

time and volume for a fixed concentration of the crosslinking solution. The effect of these factors 

on the mechanical characteristics of the bioplotted scaffolds was investigated using experimental 

and numerical approaches. Alginate precursor was used as a bioink to print scaffolds with a 3D 

bioplotting machine. Bioink was extruded in CaCl2 solution layer-by-layer to fabricate a cuboid 

structure. The gelation time was varied from 0 to 24 h, with the volume of 50 mM CaCl2 solution 

maintained between 1 and 5 mL. The elastic modulus of the scaffolds produced was measured to 

evaluate the effect of varying volumes and gelation times of CaCl2 solution, and then numerical 

models used to predict the elastic modulus of alginate scaffolds crosslinked with various volumes 

of crosslinker at a fixed concentration. Such models will be very useful for predicting the elastic 

modulus of alginate scaffolds in situ where the gelation time in the ionic crosslinkers must vary.  
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6.3 Materials and methods 

6.3.1 Preparation of alginate solution and other required materials 

Medium viscosity alginic acid sodium salt from brown algae (Sigma-Aldrich Canada Ltd., 

P-code 1001172534, with a molecular weight of 80,000-120,000 g/mol) was used for the 

preparation of a 3% w/v alginate solution using distilled water. Calcium chloride dehydrate 

(Sigma-Aldrich Canada Ltd., P-code 1001911753) was used for the preparation of a 50 mM CaCl2 

crosslinking solution. Tissue culture plates were treated with 0.5% (w/v) PEI (Alfa Aesar) and 

then incubated overnight at 37 °C and 5% carbon dioxide to improve the attachment of the first 

printed layer of alginate to the culture plate during the ensuing scaffold fabrication [8].    

 6.3.2 Design and fabrication of alginate scaffolds 

 The CAD model for scaffolds with dimensions of 10 × 10 × 5 mm was created using 

Magics EnvisionTEC (V13, Materialise, Belgium) and then sliced into 15 layers using Bioplotter 

RP software (V2.9, EnvisionTEC GmbH, Germany). The thickness of each layer was set a t 160 

µm and the distance between two adjacent strands at 1.5 mm.  

A 3D bioplotter (EnvisionTEC GmbH) was used to fabricate the scaffolds with the alginate 

solution dispensed through a conical needle (EFD Nordson, Westlake, OH) with an inner diameter 

of 200 µm at a temperature of 20 °C. During dispensing, the applied pressure was set to 0.2 bar 

and the horizontal movement speed of the dispensing head to 6 mm/s. Scaffolds were fabricated 

layer-by-layer as per the CAD design by dispensing alginate solution into the wells of a 12-well 

tissue culture plate that held 1, 3, or 5 mL of 50 mM CaCl2 as a crosslinking agent. Scaffolds were 

then either immediately subjected to mechanical testing or kept in the crosslinking solution at 37 

°C for 2, 4, or 24 h before mechanical testing. The experimental groups are summarized in Table 

6.1.   

 
Table 6.1. Groups of scaffolds subjected to mechanical testing. 

Group 
Crosslinking time 

in CaCl2 upon 
fabrication (h) 

Volume of CaCl2 

used for 
crosslinking (mL) 

Storage temperature 
before mechanical 

testing (°C) 

1 0  1 n/a  

2 0 3 n/a  

3 2   1 37 
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4 2   3 37 

5 4   1 37 

6 4 3 37 

7 24 1 37 

8 24 3 37 

9 24 5 37 

 

6.3.3 Mechanical testing 

Compression tests were performed to calculate the elastic modulus of the scaffolds from 

the recorded stress-strain curves. To this end, a Bose BioDynamicTM machine (with a load cell of 

20 N) was used for compression tests on the scaffolds done at a speed of 0.01 mm/s (or a strain 

ratio of 0.0037 s-1). Based on a method explained elsewhere [17], the elastic modulus of the 

scaffolds was calculated using the linear section of the stress-strain curves and by defining the ԑ0 

(corrected zero strain point) as the intersection of the linear region of the curve and the zero-stress 

point (Figure 6.1). Compression tests were also performed on bulk alginate gels. Bulk gels were 

3D bioplotted layer by layer to create an environment for their crosslinking similar to that used for 

the scaffolds (Figure 6.1a, b). The same volume of alginate used to create the scaffolds was used 

to fabricate the bulk gels. The elastic modulus values for the bulk gels were used to run the finite 

element model presented below. 
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Figure 6.1. a) 3D bioplotted bulk gel, b) first printed layer of the bulk gel, and c) corrected stress-strain 

curve using corrected zero strain point. 

6.3.4 Numerical modeling of the linear/non-linear behavior of 3D bioplotted 

scaffolds  

Two approaches were implemented to predict the mechanical behavior of 3D bioplotted 

scaffolds: linear elastic finite element modeling and non-linear regression modeling. The main 

goal of these numerical models are to predict the mechanical behavior of scaffolds prior to 

fabrication to optimize scaffold parameters pre-production, as producing various iterations for 

experimental characterization is costly and time consuming [18,19].  

To develop the linear finite element model, a Python script was developed using the finite 

element package ABAQUS 6.11-1. The proposed finite element model was developed to predict 

the elastic modulus of 3D bioplotted scaffolds immediately after printing. One of the inputs of this 

model is the elastic modulus of bulk gel, which can be affected by crosslinking time and volume; 

hence, the effect of crosslinking mechanism was taken into consideration. The details of the model 

developed are discussed elsewhere [17,20]. Briefly, scaffolds were considered as combinations of 

strands with 0° and 90° orientations and an interstrand distance representing the pore size in the X 
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and Z directions. Figure 6.2 depicts the geometrical model used to define the structure of a 3D 

bioplotted scaffold. The number of strands (N) was chosen to represent the structure of the 

fabricated scaffolds and D was defined as the diameter of each strand. Additionally, the amount of 

penetration among layers (Δ0) was considered in the model. According to the stress-strain curves 

of the compressed samples, the displacement of this elastic model was defined as 25%. A Poisson 

ratio of 0.31 was selected for alginate from the literature [21,22] and ΔL was defined as the value 

of deformed sections at the top and bottom of the scaffold. Finally, Ex and Ez were defined in the 

model so that the real structure of the printed scaffold could be represented (Figure 6.2). Equations 

6.1 to 6.3 were added to the developed Python script to mathematically represent the structure of 

the alginate scaffolds:  

𝐿𝑥 = 2𝐸𝑋 + 𝑁𝑋 𝐷 + (𝑁𝑋 − 1)𝑃𝑋                                                                (6.1) 

𝐿𝑍 = 2𝐸𝑍 + 𝑁𝑍𝐷 + (𝑁𝑍 − 1)𝑃𝑍                                                                (6.2) 

𝐿𝑦 = {
2 (

𝐷

2
− ∆𝐿 + 𝑁𝑌𝑍(𝐷 − ∆0))                       𝑁𝑌𝑍 = 𝑁𝑌𝑋 − 1

2 (
𝐷

2
− ∆𝐿 + 𝑁𝑌𝑍(𝐷 − ∆0)) − (𝐷 − ∆0) 𝑁𝑌𝑍 = 𝑁𝑌𝑋

          (6.3) 

where Lx, Ly, and Lz are dimensions of the scaffold in the X, Y, and Z directions, 

respectively. To reduce the computational effort, the model assumed symmetry in the X and Z 

directions and a strand diameter that was the mean of diameters measured from different points on 

the scaffold. 

Ten-node modified quadratic tetrahedron elements with four integration points, denoted as 

C3D10 in ABAQUS, were used to mesh the model. The size of the mesh was initially set at 1 and 

then reduced until the change in the simulation results was negligible. Using this method, a mesh 

size of 0.3 was found appropriate and thus utilized for all simulations. Furthermore, the layer 

penetration was defined in the model as the amount of penetration of one layer into the next; full-

attachment amongst layers was taken into account by merging nodes. Additionally, all geometrical 

features, i.e., pore size in different directions, strand diameter, thickness, etc., were obtained using 

captured images and added as model inputs. As such, the model considered all changes that might 

occur after printing, such as shrinkage, and was representative of the actual scaffolds fabricated. 
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Figure 6.2. The model developed to represent the structure of the alginate scaffold fabricated using a 3D 

boiplotter: penetration within layers (Δ0), strand diameter (D), pore size in the X (Px) and Z (Pz) 

directions, exceeding distance after the last strand in X and Z directions (Ex and Ez), and the amount of 

deformation at the upper and lower sides of the scaffold (∆L). 

In addition, consideration of the nonlinear mechanical behavior of the scaffolds has been 

taken into account in many studies to date because the tissues being replaced by scaffolds are 

homogeneous materials with non-linear responses. Accordingly, a non-linear (empirical power) 

model was also developed to investigate the non-linear behavior of the bioplotted scaffolds and 

bulk gels. Power models have been widely reported in the literature for modeling the non -linear 

behavior of materials [23], according to:  

Ϭ𝐸 = 𝐾Ԑ
𝑛
𝐸

                                                                        (6.4) 

where K is the rigidity constant (index of stiffness), n is the degree of concavity (index for 

the deviation from linearity), and ϬE, ԐE are stress and strain, respectively. For n=1, this equation 

is equal to Hooke’s law and k represents the elastic modulus. 
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In some tissue engineering applications, such as peripheral nerve [24], bone [17], and 

articular cartilage [25] regeneration, scaffolds undergo compressive force exerted by over- and 

underlying tissues in one direction. In such cases, the compressive elastic modulus is important in 

one direction while the scaffold mechanical behavior in other directions might be different; indeed, 

bioprinted scaffolds are not isotropic [26]. 

6.3.5 Imaging and morphology evaluation 

SEM was used to investigate the scaffold morphology and open source software (ImageJ 

1.5i) used to process the captured images. 

6.3.6 Statistical analysis 

All results are reported as mean values ± standard deviation. T-tests were used to compare 

the means of groups and determine statistical significance. 

6.4 Results and discussion 

6.4.1 Effect of the crosslinking time  

Figure 6.3 shows the effect of crosslinking time on the elastic modulus of alginate scaffolds 

in a fixed volume (3 mL) of CaCl2 crosslinker. Compression tests indicated elastic modulus values 

of 39.8 ± 6.36 kPa (immediately after printing), 99.3 ± 1.8 kPa (2 h after printing), 153.60 ± 16.10 

kPa (4 h after printing), and 273.35 ± 5.55 kPa (24 h after printing). The larger elastic modulus 

observed with increasing time is attributed to more Ca+2 ions being involved in chemically 

crosslinking the alginate. 
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Figure 6.3. Effect of crosslinking time on the elastic modulus of alginate scaffolds immersed in 3 mL of 50 

mM CaCl2. 

6.4.2 Effect of crosslinker volume 

 Figure 6.4 shows the effect of varying the volume of CaCl2 on the elastic modulus. The 

focus here was on the first 4 h after printing, which should provide sufficient time for the Ca +2 ions 

to penetrate the entire structure. As showed in Figure 6.3, samples exposed to the crosslinking 

agent for a greater amount of time had a higher elastic modulus; for example, Figure 6.4 shows 

values of 21.65 ± 1.91 kPa immediately after printing vs. 80.25 ± 2.35 kPa measured 2 h later for 

scaffolds printed into 1 mL of CaCl2. The elastic modulus of other samples with the same condition 

except for exposing to 3 mL of crosslinker agent was 39.8 ± 6.36 kPa, 99.3 ± 1.8 kPa, 153.60 ± 

16.10 kPa, and 273.35 ± 5.55 kPa, as mentioned before. Comparing the mechanical properties of 

samples that were crosslinked in 1 vs. 3 mL of CaCl2 for the same crosslinking time shows that a 

larger volume of crosslinking agent leads to better mechanical stability immediately after printing. 

Notably, samples crosslinked using either 3 or 5 mL of CaCl2 had no significant difference in terms 

of elastic modulus after 24 h, which is attributed to the scaffolds reaching equilibrium with the 

crosslinking solution. For 3D bioplotting of cell-incorporated alginate scaffolds, crosslinking time 

is critical because cell viability can decrease significantly with exposure to the crosslinking 

solution [1]. The results here indicate that the volume of crosslinker plays a decisive role in 
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determining the elastic modulus of alginate scaffolds immediately after printing. These findings 

could be implemented to modulate the mechanical behavior of  scaffolds to match those of the 

target tissue. In the next section, a finite element model is proposed to predict the elastic modulus 

of scaffolds immediately after printing. 

 

Figure 6.4. Effect of crosslinking time and crosslinker volume on the elastic modulus of alginate scaffolds 

immersed in 1 mL or 3 mL of crosslinking agent. 

6.5 Follow-up computational analysis  

6.5.1 Linear elastic finite element model to predict the elastic modulus of 

scaffolds immediately after printing 

An elastic linear model was developed to predict the elastic modulus of scaffolds exposed 

to 1 mL or 3 mL of crosslinker immediately after the 3D bioplotting process. As noted above, 

predicting the mechanical behavior of scaffolds immediately after printing would be useful for 

cell-incorporated scaffolds that cannot remain in crosslinking solution for a long time without 

compromising cell viability. To calculate the elastic modulus of the bulk materials, bulk alginate 

gels were exposed to 1 mL or 3 mL of crosslinker and immediately subjected to mechanical testing 

(data not shown). The significant difference between the elastic modulus of scaffolds crosslinked 

with 1 mL vs. 3 mL of crosslinker and compressed immediately after printing was shown in Figure 
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6.4; this is attributed to the porous structure of the scaffolds. SEM images of alginate scaffolds 

crosslinked for 24 h in 50 mM CaCl2 indicate the presence of nanopores throughout the scaffold 

strands (Figure 6.5). These pores can increase the surface area and, consequently, more surface is 

exposed to the crosslinking agent. Hence, using 3 mL vs. 1 mL of crosslinker, and therefore more 

Ca2+ ions, can improve the mechanical stability of 3D bioplotted scaffolds immediately after 

printing. 

 

Figure 6.5. Morphology of bulk alginate gel (top left) and SEM images of an alginate scaffold immersed 

in 50 mM CaCl2 for 24 h. 

Inputs for the linear elastic model were as follows. The elastic modulus values determined 

for the 3D bioplotted bulk gels immersed in 3 mL or 1 mL of CaCl2 and subjected to mechanical 

testing immediately after printing were 79.2 ± 3.04 kPa (linear section, R2=95.12%) and 42.3 ± 

1.58 kPa (linear section, R2=92.57%), respectively. Figure 6.6 demonstrates the stress-strain 

curves of the scaffolds and bulk gels, the boundary conditions applied in the model, the meshed 
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part, and the collapsed scaffold after compression. The pore size (P=0.652 ± 0.04 mm), number of 

strands (NX and NZ=6, NYX=7, NYZ=8), diameter of each strand (D=0.516 ± 0.06 mm), amount of 

penetration among layers (Δ0=0.392 mm), and the value of deformation (ΔL=0.01 mm) were 

defined based on analyzing the images captured of the bioplotted scaffolds.  

The model predicted an elastic modulus for scaffolds immersed in 3 mL of crosslinker and 

immediately subjected to compression testing of 38.59 kPa, which is in good agreement with 

values obtained experimentally (39.8 ± 6.36 kPa). Good agreement was also no ted between the 

predicted elastic modulus of scaffolds immersed in 1 mL of crosslinker (20.58 kPa) and 

experimental results (21.65 ± 1.91 kPa).  

 

Figure 6.6. a) Stress-strain curves of alginate samples of scaffolds and bulk gels (compressed after 3D 

bioplotting), b) finite element model: I) applied boundary conditions, II) meshed part, and III) collapsed 

scaffold after compression. 

This linear elastic model might, therefore, be useful for predicting the elastic modulus of 

cell-incorporated scaffolds based on the relationship between crosslinking time and cell viability 

[1]. Using the model developed, the volume of CaCl2 crosslinker could be calculated in advance 
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to modulate the mechanical properties of scaffolds so that the elastic modulus is matched according 

to the mechanical properties of the target tissue. As mentioned, the finite element model proposed 

only predicts the low-strain region of the stress-strain curve (linear elastic region). In some tissue 

engineering applications, such as nerve and skin regeneration, the linear, low-strain region of the 

stress-strain curve was used to calculate the elastic modulus of samples and considered to represent 

physiological behavior in the human vasculature [27]. In a similar study, isotropic linear elastic 

behavior was reported and 10% strain used to calculate the elastic modulus of scaffolds fabricated 

as cardiac-mimetic structures; furthermore, 10 to 25% strain was reported as the cardiac-relevant 

strain range in physiological conditions [28]. Finally, a finite element study assigned linear elastic 

elements to a model to predict the mechanical properties of tissue-engineered cartilage constructs 

[29]. Hence, the direct determination of elastic modulus from the linear section of stress-strain 

curve is appropriate if the possible applications are taken into account. For example, cartilage 

undergoes loading and unloading with periodic stress relaxation. Therefore, the stress-strain curve 

is reproduced many times and determination of the elastic modulus from the linear section of a 

stress-strain curve of the material is appropriate. In the next, subsection, the non-linear behavior 

of biolpotted gels, as well as scaffolds, are investigated. 

6.5.2 Non-linear numerical model to predict the non-linear behavior of 3D 

bioplotted scaffolds and bulk gels 

The linear section of the stress-strain curve was predicted using the aforementioned linear 

elastic finite element model. Here, Equation 6.4 (empirical power model) was used to predict the 

non-linear behavior of scaffolds crosslinked for 24 h. The power model obtained for more than 

50% strain was (R2=96%): 

 

Ϭ𝐸 = 0.126Ԑ𝐸
0.9917

                                                                       (6.5) 

The n value of close to 1 (here 0.9917) in Equation 6.5 indicates the alginate behaves in a 

near linear elastic fashion according to Hooke’s law. However, this equation demonstrates the 

dependency of the elastic modulus of alginate gels on the strain (strain-rate dependent behavior). 

Table 6.2 indicates the power models obtained for other samples at different times (immediately, 

2h, and 4h after printing) and volumes (1 mL and 3 mL) of  crosslinker. The majority of models 

have R2 values greater than 90%, which indicates good agreement with experimental values. All 
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also have n values larger than 1, which is evidence that they have completely non-linear behavior 

at higher values of strain. However, the proposed linear elastic finite element model (subsection 

6.5.1) has utility for predicting the behavior of the scaffolds at lower values of strain, such as would 

be expected for the intended applications. 

 

Table 6.2. Numerical models predicting the non-linear mechanical behavior of 3D bioplotted alginate 

gels and scaffolds. 

Crosslinker volume 

                        Time 

1 mL 3 mL 

Gel: After printing Ϭ𝐸 = 0.0299Ԑ𝐸
1.4336 

R² = 91% 
Ϭ𝐸 = 0.1986Ԑ𝐸

1.8158 
R² = 97% 

Gel: 2 hours Ϭ𝐸 = 0.0819Ԑ𝐸
1.1411 

R² = 86% 
Ϭ𝐸 = 1.0137Ԑ𝐸

2.3338 
R² = 90% 

Gel: 4 hours Ϭ𝐸 = 0.3862Ԑ𝐸
1.7681 

R² = 98% 
Ϭ𝐸 = 0.1264Ԑ𝐸

1.3187 
R² = 96% 

Scaffold: after printing Ϭ𝐸 = 0.0939Ԑ𝐸
1.6298 

R² = 99% 
Ϭ𝐸 = 0.1437Ԑ𝐸

1.3866 
R² = 92% 

 

The power model Ϭ𝐸 = 0.0939Ԑ𝐸
1.6298

 (R2=99%) was obtained for alginate scaffolds 

fabricated by the 3D bioplotting technique, crosslinked in 1 mL of CaCl2, and subjected to 

mechanical testing immediately after printing (Table 6.2). The degree of concavity (n=1.6298) is 

greater than one and indicates non-linear behavior and an upward concavity, which is obvious 

from the stress-strain curve (Figure 6.6). Additionally, the rigidity constant for both the bulk gel 

and alginate scaffold is related to the alginate concentration, guluronic residue fraction, and 

viscosity. The alginate used in this study is composed of approximately 61% mannuronic acid and 

39% guluronic acid (M/G ratio of 1.56), which under low strain behaves like an elastic material 

and returns to its initial shape after removing the applied force. The power model for the scaffolds 

crosslinked in 3 mL of CaCl2 and subjected to compression testing immediately after printing was 

Ϭ𝐸 = 0.1437Ԑ𝐸
1.3866

 (R2=92%, Table 6.2). 

Equation 6.6 was used to predict the stress at failure (ϬD, strength needed to break the 

material with a unitary surface), as reported by [23]:  
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Ϭ𝐷 = 𝐾Ԑ
𝑛
𝐷

                                                                             (6.6) 

where ϬD and ԐD are the stress and strain at failure, respectively. Here, we considered 25% 

strain as the failure point for the scaffolds. Equation 6.6 predicted values of stress at failure of 9.8 

kPa (1 mL CaCl2) and 21.02 kPa (3 mL CaCl2), which align well with experimental values of 9.77 

kPa (1 mL CaCl2) and 25.14 kPa (3 mL CaCl2). 

6.6 Conclusions 

This study investigated the effect of crosslinking mechanism on the mechanical behavior 

of 3D bioplotted alginate scaffolds by varying the volume of 50 mM CaCl2 crosslinker employed 

as well as the crosslinking time. Both immersion time and volume of crosslinker play a decisive 

role in modulating the elastic modulus of 3D bioplotted alginate scaffolds. These two previously 

unexplored factors can be used to modulate the mechanical properties of scaffolds to match those 

of the target tissue. Furthermore, numerical models (linear and non-linear) were developed to 

predict the elastic modulus of alginate scaffolds. The results from the models were in good 

agreement with experimental results and, as such, the models could be implemented to predict the 

mechanical properties of 3D bioplotted scaffolds. 
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Chapter 7 Conclusions and future recommendations   

7.1 Conclusions 

Extrusion-based bioprinting has been used for various types of tissue engineering 

applications. Using extrusion-based bioprinting, biomimetic structures, called scaffolds, are 

fabricated by considering mechanical and biological factors. Printability is a key issue in extrusion-

based bioprinting, though. It is an index to measure the difference between the designed and 

fabricated scaffold in the printing process. As a result of printability, the mechanical behavior of 

the printed scaffolds is different from the designed one (original scaffold design). Hence, it is 

important to study printability and the factors affecting it significantly. The main elements 

affecting printability (bioink, design, and fabrication) were studied in this dissertation. In 

particular, the flow rate of bioink and printing parameters, such as needle geometry and printing 

pressure, were studied. Specifically, hydrogels are the main focus of this dissertation, and all the 

results obtained here can be extended to any type of hydrogel. Besides, the crosslinking mechanism 

was studied in terms of crosslinking time and concentration, as it has a significant influence on 

printability and, as a result, the mechanical behavior of scaffolds. Furthermore, low-concentration 

hydrogels were used widely in extrusion-based bioprinting due to their cell-friendly environment. 

However, the poor printability of low-concentration hydrogels prevents further studies on 

bioprinted scaffolds. Hence, in this dissertation, indirect bioprinting was presented to address this 

issue. Finally, yet importantly, a numerical model was developed and presented in this dissertation 

because it is always time-consuming and labor-intensive to investigate scaffolds mechanically. 

Therefore, numerical modeling is recommended to study the mechanical behavior of bioprinted 

scaffolds ahead of time and before fabrication to save time and resources. Moreover, printability 

elements, such as crosslinking agents, can be considered in such numerical models to develop 

precise models that can predict the mechanical characteristics of scaffolds accordingly. The 

obtained conclusions have been highlighted as follows: 

• The swelling, as well as degradation, rate, and mechanical properties (elastic 

moduli) of hydrogels can be modulated based on the compositions of hydrogels. In 

this dissertation, alginate, gelatin, and MC were combined, and the results showed 

that composite hydrogels have better water absorption ability compared to pure 
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alginate hydrogel. Additionally, all groups of hydrogels showed a decreasing 

pattern of elastic modulus with time. In particular, alginate-MC hydrogels showed 

the highest elastic modulus. As per printability assessment, results showed that 

bioink-related elements (e.g. viscosity), fabrication-related ones (e.g. air pressure, 

nozzle speed, offset), and design-related factors (e.g. selected angular pattern) can 

affect printability. Hence, in this dissertation, the outlined factors were modulated 

to improve the printability of alginate, gelatin, and MC hydrogel scaffolds. To 

conclude, scaffolds with modulated mechanical properties (e.g. swelling, 

degradation, and elastic modulus) can be fabricated to have a customized structure 

as per the respected tissue requirements. 

• An indirect-bioprinting process was developed to fabricate low-concentration 

alginate scaffolds using a sacrificial gelatin framework. Indirectly-fabricated 

scaffolds were successfully printed while maintaining high cell viability. The 

directly and indirectly printed scaffolds have their advantages and disadvantages 

that were discussed in this dissertation.  

• Sterilization can affect the mechanical behavior of hydrogel scaffolds. Alginate 

scaffolds sterilized using ethanol had higher elastic modulus than the ones sterilized 

by UV. Results showed that precursor alginate scaffolds (0.5-3%) could be 

fabricated by the indirect-bioprinting process.  

• Although 0.5% alginate scaffolds can provide a cell-friendly environment 

(compared with the control group, which is the culture dish), they had a dramatic 

degradation rate than 1.5 or 3.0% alginate scaffolds. Hence, the developed indirect-

bioprinting process can be used to successfully address the poor printability of low-

concentration alginate. However, not all low-concentration scaffolds can be 

implemented due to poor mechanical properties. So, depending on the application, 

low to high concentration scaffolds can be fabricated as a trade-off between having 

a scaffold with a cell-friendly environment (low-concentration hydrogel) and a 

scaffold with more mechanical stability (high concentration hydrogel). Results also  

showed that both the mechanical and biological properties of fabricated scaffolds 
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could be affected by the concentration of hydrogel as well as the sterilization 

technique used. 

• Numerical models are an asset to fabricate scaffolds with appropriate mechanical 

properties. These models can be used in advance and before fabrication to evaluate 

scaffolds to make sure that they satisfy the required mechanical properties. In this 

dissertation, a novel finite element model was developed considering the 

penetration of strands in one layer into the previous layer. Results showed the 

significant effect of the penetration within layers on the elastic modulus of printed 

scaffolds. After verification, the model was used to predict the elastic modulus of 

scaffolds with a different number of layers and pore sizes. Results indicated that 

scaffolds with smaller pore sizes and a higher number of layers had higher elastic 

modulus. The developed model can be used for other hydrogels to achieve the 

desired mechanical properties in tissue engineering. 

• In this dissertation, the effect of crosslinker was taken into account by developing 

a numerical model that can take the effect of the crosslinking mechanism in terms 

of elastic modulus as an input. For this, the elastic modulus of bulk alginate 

scaffolds crosslinked with different volumes of crosslinker and crosslinking time 

was added as an input to predict the mechanical behavior of porous scaffolds. 

Results showed that the developed model is in good agreement with experimental 

results. It was concluded that scaffolds, crosslinked in a higher volume of the 

crosslinker with more crosslinking time, have higher elastic modulus.  

7.2 Recommendations for future research 

In this dissertation, fabrication-, design, and bioink-related elements were investigated to 

map the relationship between them and printability. In addition, numerical models were developed 

to consider the penetration amongst bioprinted layers and the crosslinking mechanism. Close 

investigations on the following issues might be considered as recommendations for future research, 

including: 

• In this dissertation, only one type of crosslinker (CaCl2) was used to crosslink the 

bioplotted scaffolds. However, different types of crosslinking agents might be used 
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to bioprint hydrogels into them (various concentrations). This approach might be 

a potential pathway to achieve scaffolds with enhanced mechanical and/or 

biological performance. Hence, further investigation into different types of 

crosslinkers at various concentrations is recommended. 

• In this dissertation, measurement tools to evaluate printability were discussed. 

However, other guidelines should be specified in the future to assess scaffold 

design, material selection, and printing parameters from a manufacturability point 

of view (e.g. using a benchmark). 

• All the mechanical experiments were conducted under a static condition. However, 

in some cases, the dynamic behavior of scaffolds should be investigated. In the 

future, it might be a potential study to evaluate the mechanical properties of 3D 

bioprinted scaffolds in a dynamic condition (physiologic buffer can be circulated 

during the test performance). Additionally, for modeling purposes, fluid flow can 

be considered in the model to study the effect of shear stress on cell damage. 

Degradation of scaffolds is another area yet to be explored, and it can be modeled 

using numerical approaches in the future. 

• In this dissertation, only one type of cell, called Schwann cells, was used to 

evaluate the biological performance of indirectly printed scaffolds made of low-

concentration alginate. It is recommended to study the behavior of other cell 

sources to gain more insight into the biological performance of such an indirectly-

printed structure. 

• In the future, cell studies carried out in this dissertation can be extended to animal 

studies to evaluate the fabricated scaffolds in vivo.  
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Appendix A: Images of Research Competition 2018 

 

Let's Create an Artificial Organ with Cells! Research in action, runner up 

 

You have probably heard about the global organ shortage due to limited donors. Creating organs 

artificially through 3D bioprinting is a promising way to help people who are waiting for life -

saving surgeries. The picture is showing the 3D ear fabricated using a 3D bioprinter. The inset 

images show the patient's medical imaging data, creating the model of the ear from the patient's 

imaging data, designing the porous ear, and the microscopic image of the incorporated cells inside 

the ear. The idea behind 3D printing is like a normal inkjet printer. My research focuses on the 

development of customized scaffolds, like the ear in this picture as a temporary construct, 

including a mixture of patient's cells and biomaterials. Hopefully, this magical technique will help 

millions of people around the world waiting for tissues and organs (With help from Adam 

McInnes). 



164 

 

Appendix B: Images of Research Competition 2019 

 

Building a bridge in the world of neural cells! 

Building a bridge is a common approach in civil engineering to connect two sides. What if we 

want to do the same thing inside the body? Bridging two sides of a damaged nerve? That sounds 

weird, but it is much easier than you think. Peripheral nervous system (PNS) injuries cause various 

types of disabilities. When a damaged nerve is more than 2 mm long, the body cannot heal. If this 

is the case, the body needs a temporary structure—known as a scaffold—to help the damaged 

tissue recover itself. The picture shows the 3D scaffold fabricated using a 3D bioprinter to treat a 

damaged peripheral nerve. This scaffold is made of alginate, a natural polymer, and neural cells to 

bridge the gap between the two sides of a damaged nerve. My research focuses on developing 

scaffolds to build a bridge for nerve regeneration (with help from MD Sarker). 

 

 

 


