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Abstract

Outcome values in randomized controlled trials (RCTs) may be missing not at
random (MNAR), if patients with extreme outcome values are more likely to
drop out (e.g., due to perceived ineffectiveness of treatment, or adverse effects).
In such scenarios, estimates from complete case analysis (CCA) and multiple
imputation (MI) will be biased. The trimmed means (TM) estimator operates
by setting missing values to the most extreme value, and then “trimming” away
equal fractions of both treatment groups, estimating the treatment effect using
the remaining data. The TM estimator relies on two assumptions, which we
term the “strong MNAR” and “location shift” assumptions. In this article, we
derive formulae for the bias resulting from the violation of these assumptions
for normally distributed outcomes. We propose an adjusted estimator, which
relaxes the location shift assumption and detail how our bias formulae can be
used to establish the direction of bias of CCA, MI and TM estimates under a
range of plausible data scenarios, to inform sensitivity analyses. The TM ap-
proach is illustrated with simulations and in a sensitivity analysis of the CoBalT
RCT of cognitive behavioural therapy (CBT) in 469 individuals with 46 months
follow-up. Results were consistent with a beneficial CBT treatment effect. The
MI estimates are closer to the null than the CCA estimate, whereas the TM
estimate was further from the null. We propose using the TM estimator as a
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sensitivity analysis for data where it is suspected that extreme outcome values
are missing.

Keywords

Trimmed means, dropout, randomized controlled trials, missing not at random,
sensitivity analyses, bias quantification

1 Introduction

Randomized controlled trials (RCT) are considered the gold standard for as-
sessing causality, because the randomization process ensures that unmeasured
characteristics are well-balanced across groups. However, RCTs remain vulner-
able to other sources of bias, including those which arise from missing data due
to dropout. We focus here on the case where an RCT has missing values solely
in the outcome, for example due to drop out.

The impact of missing data depends on the missingness mechanism and the
analysis model.1 Three distinct missingness mechanisms can be distinguished:
missing completely at random (MCAR), missing at random (MAR) and missing
not at random (MNAR). With MCAR, missingness is unrelated to any measured
or unmeasured characteristics and the observed sample is a representative subset
of the unobserved full data.3 MAR means the missingness can be explained by
observed data and, with MNAR, missingness is a function of the unobserved
data (in our case, the outcome) itself.2

There are three main ways of dealing with incomplete data: a complete case
analysis (CCA), inverse probability weighting (IPW) and multiple imputation
(MI). A CCA is the analysis model intended to be applied to the trial data
at its outset, restricted only to individuals with observed outcomes. Assuming
correct model specification, CCA is unbiased if the outcome is MCAR or MAR3.
With IPW, the same analysis model is fitted to the complete cases, but each
individual is now weighted by the inverse of its probability of being observed.
With MI, the observed data are used to repeatedly predict - ”impute” - the
missing values. The analysis model is applied to multiple imputed datasets and
the estimates pooled using Rubin’s rules.1. Broadly, IPW and MI will be valid
if the data are MAR and the weighting and imputation models are correctly
specified, respectively. When data are MNAR, however, the treatment effect
estimate will be biased in general for any of the aforementioned approaches.1,3

In practice, observed data cannot be used to determine whether data are MAR
or MNAR, and, consequently, if estimates from CCA, MI or IPW analyses are
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likely to be biased.

Permutt & Li4 suggested a trimmed means (TM) estimator for RCTs where
patients who drop out have more extreme (unobserved) outcome values than
those who do not drop out (e.g., lower value dropout, when comparator group
patients, not experiencing a benefit of treatment, leave the study early). Obser-
vations are ordered within each treatment group, with the missing observations
assigned the lowest rank. Equal proportions of data are trimmed away from
the lower end of both treatment group distributions and the TM treatment ef-
fect estimate is obtained from a linear regression of the exposure and outcome
variables, using the remaining “trimmed” data.

The TM estimator will give an unbiased estimate of the true treatment effect,
given two main assumptions - the location shift assumption and the strong
MNAR assumption. The first specifies identical distributions of the treatment
groups, with the only difference being a mean shift. The second restricts all
dropout to the fraction that is trimmed away.5 Previous studies have performed
a variety of simulations investigating the type 1 error and power of the TM es-
timator in a range of clinical scenarios6 and for various MNAR/MAR dropout
patterns5. However, the biases that arise from violations of the strict TM as-
sumptions and how to correct for these biases have yet to be established.

In this article, we derive formulae for the bias resulting from the violation of
the location shift and strong MNAR assumptions for a normally distributed
outcome, and illustrate, by means of simulations, the TM estimator bias for
range of MNAR/MAR mechanisms. Additionally, we propose an adjustment
to the estimator which relaxes the location shift assumption and leaves the es-
timator reliant only on the strong MNAR assumption and normality. For the
purpose of this article, consistent with previous publications,4,5,6 we primarily
consider worst value dropout. The principle, however, is equally applicable to
higher value dropout, which may occur when patients leave the study perceiving
themselves to be recovered, or where higher values indicate a worse response.
We also primarily consider the case of 50% fixed trimming, but provide more
general formulae for alternate trimming fractions. The TM approach is illus-
trated in an application to the CoBalT randomized controlled trial (registration
ISRCTN38231611), which compares the effectiveness of cognitive behavioural
therapy (CBT) as an adjunct to pharmacotherapy versus usual care in patients
with treatment resistant depression. We have developed an R package ’tmsens’
for performing a TM regression and conducting a TM estimator sensitivity anal-
ysis, available from https://github.com/dea-hazewinkel/tmsens.
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2 Methods

2.1 Notation

Consider a clinical trial with n subjects, with a continuous outcome, Y , with
patients randomized to receive an active treatment (R = 1) or comparator
(R = 0). Let yij denote the observed outcome for patient i randomized to
treatment group j, where i = 1, ..., nj and j = 0, 1. Let µj be the population
mean for arm j, with µj = E[Y |R = j], and its estimate, µ̂j , obtained from the
corresponding sample mean:

µ̂j =
1

nj

nj∑
i=1

yij .

.
When there are no missing outcomes in the trial, each µ̂j is an unbiased estimate
of µj . Let β denote the true treatment effect, given by the difference in treatment
group means:

β = µ1 − µ0,

where β is estimated by β̂:

β̂ = µ̂1 − µ̂0.

When the trial contains missing outcomes, we define a missing indicator M ,
which equals 0 if yij is observed and 1 if yij is not observed. Let µ̂cj be the
mean of all observed values for group j, given by µ̂cj = 1

nmj

∑nj
i=1 yij(1−mij),

with nmj =
∑nj
i=1(1−mij) andm

ij
being subject i’s missingness indicator. Then

µ̂cj estimates the population complete case mean µcj = E[Y |R = j,M = 0] and
the complete case estimand of the treatment effect is given by

βc = µc1 − µc0,

with βc estimated by

β̂c = µ̂c1 − µ̂c0 =
1

nm1

n1∑
i=1

yi1(1−mi1)− 1

nm0

n0∑
i=1

yi0(1−mi0).

2.2 Trimmed means estimator

We first define the population trimmed mean, µtj , in the absence of dropout
(mij = 0 ∀ i). For treatment group j, µtj is given by the expected value of all
observations exceeding the quantile F−1(p):

4
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µtj = E[Y |R = j, Y > F−1(p)], (1)

where p is the proportion of outcomes trimmed away from the lower end of
the distribution of each group j (e.g., for p = 0.25, the bottom 25% of the
distribution would be removed). Then µtj is estimated by

µ̂tj =
1

ntj

nj∑
yij>F̂−1(p)

yij , (2)

with ntj being the sample size after trimming (ntj = dnj(1− p)e, with d e the
ceiling function).

Let βt denote the TM effect estimand, given by the difference in population
trimmed means (βt = µt1 − µt0), estimated by β̂t = µ̂t1 − µ̂t0. If the outcomes
within each treatment group are normally distributed with underlying mean µj
and variance σ2

j , then µtj = E[Y |R = j, Y ≥ σjΦ
−1(p) + µj ]. If the treatment

group standard deviations (SDs) are equal (σ1 = σ0), C = σjΦ
−1(p) is common

across treatment groups and the population TM effect, βt, is identical to the
population mean difference β, since

βt = E[Y |R = 1, Y ≥ C + µ1]− E[Y |R = 0, Y ≥ C + µ0]

= E[Y |R = 1]− E[Y |R = 0] = β.
(3)

This property will also hold in absence of normality, if the outcome distributions
for each group are identical in shape and differ only by a mean shift.

We now consider the TM estimator in the presence of dropout. As the estimator
assumes worst value dropout, all missing values (mij = 1) are assigned a value
smaller than the worst observed outcome:

(yij |mij = 1) ≤ min(yij |mij = 0)

The precise value is unimportant as long as the above inequality holds. The
trimmed mean is obtained by taking the average of all observations exceeding
the quantile of the trimming proportion, p, as in (2), where p must now be equal
to or exceed the largest observed dropout proportion across the groups:

p > pmin = max
(nm1

n1
,
nm0

n0

)
.

If there is no dropout in the trimmed fraction used to estimate µt (the “strong

MNAR assumption”), β̂t is an unbiased estimator for the TM effect βt. In
addition, if the group variances are equal (the “location shift assumption”), βt
is unbiased for β (3). Previously, it has been stressed that the TM estimator
estimates an unique estimand - the mean difference of the best X% patients in
each treatment group, making it hard to compare with other approaches5,6. In
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order to identify this TM-specific estimand, only the strong MNAR assumption
is required. Under the additional constraint of the location shift assumption,
the TM effect becomes an unbiased estimator of the population mean difference
as shown in (3).

We now examine the two sources of bias in the TM estimator. Let Bt be the
total bias for the TM estimator, representing the deviation of the TM estimate,
β̂t, from the population mean difference, β:

Bt = E[β̂t − β] = E[β̂t − βt] + (βt − β). (4)

The first component results from the violation of the strong MNAR assumption,
the second from violation of the location shift assumption. Supplementary Fig-
ure S1 (Appendix A) illustrates the TM and CCA estimator behaviours across
four scenarios with varying dropout patterns and equal and unequal treatment
arm SDs. Box 1 summarizes the terminology used throughout this paper.

2.3 The location shift assumption

We now derive expressions for the bias resulting from the violation of the lo-
cation shift assumption, BtLS , for the case of 50% trimming, with results for
a more general trimming fraction, p, derived in Appendix B. We assume that
the strong MNAR assumption is satisfied and the outcomes are normally dis-
tributed for each treatment arm. Then, β̂t is an unbiased estimator for βt and
the total bias (4) is given by

BtLS = E[β̂t − β] = βt − β.

We define the 50% trimmed left-truncated mean (Appendix B):

µtj = µj + σj
φ
(
Φ−1(0.5)

)
0.5

= µj + σj

√
2

π
,

(5)

Then, the 50% trimmed population mean difference is given by

βt =

(
µ1 + σ1

√
2

π

)
−

(
µ0 + σ0

√
2

π

)
,

with the bias, BtLS , resulting from unequal SDs:

BtLS = (σ1 − σ0)

√
2

π
. (6)

6
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The TM estimator bias, BtLS (6), can alternatively be expressed as a function
of the trimmed fraction SDs, rather than of the unobserved full sample SDs
(Appendix C):

BtLS = (σt1 − σt0)

√
2

π − 2
. (7)

From both BtLS bias formulae, (6) and (7), it is apparent that the estimator is
unbiased given equal treatment group SDs, with the latter notation (7) making
it explicit that equality of trimmed fraction SDs suffices. This property underlies
the adjustment to the TM estimator outlined in Section 2.5, which relaxes the
location shift assumption, allowing for different treatment group SDs.

7

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.05.21252334doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.05.21252334
http://creativecommons.org/licenses/by/4.0/


BOX 1
List of terms used throughout this paper

Estimands Definition

β The true treatment effect, given by the difference in population
treatment group means, in absence of dropout

βc CCA estimand for the treatment effect, subject to the assumption
of a homogeneous dropout mechanism across the entirety of the
distribution

βt TM estimand for the treatment effect, subject to the location shift
assumption and the strong MNAR assumption

βtd TM estimand in the presence of dropout, subject to the location
shift assumption

βat Adjusted TM estimand, subject to the strong MNAR assumption,
obtained under 50% trimming of normally distributed data

Assumptions

Strong MNAR All missing values occur in the fraction that is trimmed away

Location shift The underlying treatment group distributions differ only by a
mean shift (for normally distributed outcomes, this constitutes
equal group SDs)

Homogeneous dropout Dropout is uniformly likely across a range of the distribution, so
that within this range, any observation is equally likely to drop
out

Bias terms1

BC CCA estimator bias on violating the assumption of homogeneous
dropout across the entire distribution

BCmax Maximum CCA estimator bias, occurring under dropout re-
stricted to the very lowest or highest values of the distribution

Bt TM estimator bias on violating the location shift assumption
and/or the strong MNAR assumption

BtLS TM estimator bias on violating the location shift assumption

BtSM TM estimator bias on violating the strong MNAR assumption, de-
rived under the assumption of a homogeneous dropout mechanism
acting on a part of or the entire distribution

BtSMmax Maximum TM estimator bias on violating the strong MNAR as-
sumption, occurring for lower value trimming under highest value
dropout and vice versa

Btmax Maximum TM estimator bias on violating the strong MNAR and
location shift assumptions (Btmax = BtSMmax +BtLS)

1) All bias terms are derived under the assumption of normally distributed outcomes

8
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2.4 The strong MNAR assumption

We now derive expressions for the bias resulting from the violation of the strong
MNAR assumption, BtSM , for dropout in the comparator group, with results
for dropout in both groups derived in Appendix E. We examine violation due
to a specific homogeneous dropout mechanism, where, in a given part of the
distribution, any observation is equally likely to be selected for dropout.

We assume that the location shift assumption is satisfied and the outcomes are
normally distributed in each treatment arm, prior to dropout. Then, βt is an
unbiased estimator for β and the total bias (4) reduces to

BtSM = E[β̂t − βt]. (8)

We define a new population parameter, βtd, which gives the population TM ef-
fect for a scenario with a normally distributed treatment group and a compara-
tor group no longer normally distributed due to dropout. Then, β̂t unbiasedly
estimates βtd, the TM effect, and the bias, BtSM (8), can be written as

BtSM = βtd − βt, (9)

and, with βt = µt1 − µt0 and βtd = µt1 − µtd0, simplified to

BtSM = µt0 − µtd0. (10)

While µtd0 is the trimmed mean of a population with non-normally distributed
outcomes, we can express it in terms of a normal distribution, under the assump-
tion of a homogeneous dropout mechanism. Consider a normal distribution with
lower bound, Φ−1(0) and upper bound, Φ−1(1), and let fu,v denote the fraction
of this distribution, so that f0,1 = 1. Let f0,c denote the fraction affected by
homogeneous dropout, with c ≤ 1, and Φ−1(c) its upper bound, so that each
value in f0,c is equally likely to drop out, with a given probability a:

P (M = 0|R = 0) =

{
a if Y |R = 0, Y ≤ Φ−1(c)

0 if Y |R = 0, Y > Φ−1(c).

Further, let f0,0.5 denote the fraction of the distribution that is trimmed away
under 50% trimming, f0.5,1 the trimmed fraction used for estimation, and f0.5,c

the fraction of the distribution for which the trimmed fraction, f0.5,1, is affected
by dropout (in violation of the strong MNAR assumption), see Figure 1.

9
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Figure 1: Schematic illustration of the dropout bias mechanism under assumption
of homogeneity, for 50% trimming, and 20% dropout (pd = 0.2) spread across 90% of
the distribution (f0,c = 0.9). A) dropouts (green) and observed patients (grey) for
normally distributed outcomes of a given group. The 50% trimmed fraction is given
by f0.5,1, f0.5,c gives the fraction affected by dropout, fc,1 the fraction unaffected by
dropout, and f0,0.5 the fraction that is trimmed away. B) Under dropout, f0.5,1 lacks
the observations to make up the 50% trimmed fraction, and the lower boundary, 0.5,
shifts downwards in compensation. C) Under dropout, the 50% trimmed fraction is
given by fb,1. The size of the shift is calculated with (11), giving, for this example,
b = 0.39.

The 50% trimmed mean is estimated by taking the top half of the distribution
under assumption of worse value dropout. When the strong MNAR assumption
is satisfied, the trimmed mean is given by µt = µ0.5,1. When the assumption
is violated, the fraction f0.5,1 no longer contains a sufficient number of observa-
tions, and a larger fraction of the distribution, fb,1, is taken, with b < 0.5 and
the trimmed mean given by µtd = µb,1. The shift from 0.5 to b is a function of
the dropout proportion, pd, the dropout spread, f0,c, the trimming proportion,
f0,0.5 = p, and f0.5,c = f0,c − p, with

b = f0,c − fb,c = f0,c −
f0,cf0,5,c

(f0,c − pd)
. (11)

Using this notation, the bias of the TM estimator in (10) can be expressed as

BtSM = µ0.5,1 − µb,1 = −f0.5,c

f0.5,1
σ0(Q0.5,c −Qb,c), (12)

with, for example, Qbc =
(
φ
(
Φ−1(c)

)
−φ
(
Φ−1(b)

))
/(c− b)). The full derivation

of (12) is given in Appendix D. BtSM (12) is a function of the size of the trimmed
fraction (f0.5,1), the fraction affected by dropout (f0.5,c), the SD of the affected
group (σ0), and the magnitude of the shift from 0.5 to b (11), which is affected by
the dropout proportion (pd). When the strong MNAR assumption is satisfied,
no shift occurs, since b = 0.5, so that Q0.5,c = Qb,c, and BtSM reduces to 0.

Figure 1 illustrates the strong MNAR bias mechanism for the case of 50% trim-
ming, with 20% dropout (pd = 0.2) spread across 90% (f0,c = 0.9) of the distri-
bution. From (11), we obtain fb,c = 0.9×0.4

(0.9−0.2) = 0.51 and b = 0.9− 0.51 = 0.39.

10
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With (12), we calculate Q0.5,c = 0.59 and Qb,c = 0.34. Specifying σ0 = 1,
the bias, BtSM , is then given by 0.4

0.5 (0.59 − 0.34) = 0.18. The bias is positive,
and the treatment effect is overestimated, resulting from underestimation of the
comparator group mean due to dropout in the trimmed fraction.

The bias (12) is defined under the assumption of a homogeneous dropout mech-
anism. In reality, dropout is unlikely to be homogeneous. In any scenario,
however, where the TM approach can be considered an appropriate estimator,
there should be reason to believe that the dropout comprises on average lower
- worse - outcome values. Then, homogeneous dropout can be considered a
worst-case scenario and the bias calculated under this assumption will serve
as an upper bound for the bias. This property is illustrated in supplementary
Figure S2 (Appendix F).

Unlike the TM estimator, the CCA estimator will be biased under the strong
MNAR assumption. We define this bias, BC , for the case of dropout in the
comparator group, with results for dropout in both groups derived in Appendix
G. As for the TM estimator, we derive the bias under the assumption of a
homogeneous dropout mechanism and a normally distributed outcome, with
BC given by

BC = βc − β = (µ1 − µc0)− (µ1 − µ0) = −µc0 + µ0 = µ0 − µc0, (13)

and

BC = −σ0

[(
f0,c −

(f0,c − pd)
(1− pd)

)
φ
(
Φ−1(c))

)
c

+

(
(1− f0,c)−

(1− f0,c)

(1− pd)

) −φ(Φ−1(c)
)

1− c

]
,

(14)

with f0,c the dropout spread, c its upper bound, and pd the dropout proportion.
We fully derive (14) in Appendix G.

In the absence of dropout (pd = 0), and for dropout spread homogeneously
across the entire distribution (c = f0,c = 1), BC is 0. The CCA estimate will be
maximally biased under dropout restricted to the very lowest or highest values
of the distribution, the former resulting in overestimation of the complete case
mean, µcj , the latter in its underestimation. We can write the maximum bias
for a given treatment group j under high or low value dropout as

| BCmax |=
σj

(1− pdj)
φ
(
Φ−1(pdj)

)
. (15)

The full derivation of (15) is given in Appendix H.
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The dropout mechanism, under which maximum CCA bias is achieved, can
be defined in terms of a threshold selection model. Consider dropout of the
pd highest values, so that all observations exceeding the (1 − pd)’th quantile
of the outcome distribution are unobserved. Let us define this threshold as
tH = µj + σjΦ

−1(1− pdj) = µj + σjΦ
−1(psj), so that

ps =

{
0 if y ≥ tH
1 if y < tH .

(16)

In the broader context of selection models in general, Copas and Jackson7 de-
fined a bias limit, which is equivalent to the maximum CCA estimator bias that
we derive here (15). We extend Copas and Jackson’s bias limit to the TM esti-
mator, and define the maximum possible TM bias, which, for the case of lower
value trimming, occurs under highest value dropout. For the comparator group,
the maximum bias resulting from dropout is then given by

BtSMmax =
−σ0

1− p

[
φ
(
Φ−1(ps)

)
− φ
(
Φ−1(ps − (1− p))

)
+ φ
(
Φ−1(1− p)

)]
, (17)

with the total maximum bias, Btmax, accounting for the potential violation of
the location shift assumption, given by

Btmax = BtSMmax +
(
σ1 − σ0

)φ(Φ−1(p)
)

1− p
. (18)

Full derivations of (17, 18) are given in Appendix I, alongside expressions for
maximum bias under dropout in the treatment group. Appendix J describes
a simple simulation illustrating the maximum CCA and TM estimator biases
under dropout assumption violations.

2.5 Adjusted estimator

Here, we define an adjusted estimator which relaxes the location shift assump-
tion. Under the assumption of normally distributed outcomes, the 50% trimmed
fractions will have half-normal distributions. The SD of a given fraction can
be adjusted by mirroring this half-normal distribution, and rescaling this now
complete, if artificial, normal distribution, using the full sample SD of the other
group. The latter SD will either be observed, in the absence of dropout, or
can alternatively be extrapolated from the observed fraction SD, using the un-
derlying properties of normality. The adjustment can be performed on either
treatment groups, but we illustrate the procedure for the comparator group.
Let µt0 be the unadjusted 50% comparator trimmed mean, with

µt0 = µ0 + σ0φ
(
Φ−1(0.5)

)
/0.5, (19)
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and µat0 the adjusted comparator trimmed mean, with

µat0 =
µt0 − µ0

σ0/σ1
+ µ0. (20)

Substituting (19) for µt0 in (20) then gives the comparator group trimmed mean
under the treatment group SD, σ1. From the adjusted comparator trimmed
mean, µat0 (20), and the unadjusted treatment trimmed mean, µt1 (5), we
obtain the population adjusted TM estimate, under comparator group rescaling,
βat0, as

βat0 = µt1 − µat0.

Equivalently, we can obtain the population adjusted TM estimate, under treat-
ment group rescaling, βat1 = µat1 − µt0, with µat1 defined analogously to (20).
As for the unadjusted estimator, violation of the strong MNAR assumption will
bias the estimate, with violation in the comparator group resulting in an overes-
timation of the treatment effect, and the converse true for the treatment group.
We show in simulation (Section 3, Table 1) that this assumption is stronger for
the adjusted estimators than for the unadjusted estimator, with the greatest
bias observed when rescaling the group for which the strong MNAR assumption
is most violated, and recommend that the adjustment be applied to the group
for which the assumption is most plausible. In Appendix K, expressions are de-
rived for the adjusted estimator bias resulting from strong MNAR assumption
violation in either or both treatment groups, under comparator group rescaling
and under treatment group rescaling.

3 A simulation study

Consider a clinical trial on n = 1000 subjects randomized to either a treatment
(j = 1) or comparator (j = 0) arm, with n1 = n0 = 500. We assume the out-
comes are normally distributed, with a true treatment effect β = 0.5, and 20%
dropout in the comparator group. Tables 1a and 1b give the mean treatment
effect estimates and bias across S = 1000 simulations for the CCA estimator
and the TM estimator under 50% trimming, for four scenarios. In the first
three, dropout is restricted to the lowest 20%, 50% and 75%, respectively, of
the comparator arm outcome distribution, and left completely unrestrained in
the fourth scenario.

In the first two scenarios, the strong MNAR assumption is satisfied and we
observe in Table 1a, for equal treatment SDs (σ1 = σ0 = 1), that the TM

estimate, β̂t = 0.5, is unbiased, while the CCA estimate, β̂c, is biased towards
the null. On violating the strong MNAR assumption, this bias decreases, with
β̂c being unbiased under random dropout (fac = 1). We observe the same
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pattern for σ0 = 1.5 and σ1 = 1 (Table 1b), with the CCA bias now larger due
to the higher σ0, which acts multiplicatively on the bias (14). Under unequal
SDs, the location shift assumption is violated, and the TM estimates are biased
towards the null. For the first two scenarios, the total bias, Bt, is equal to BtLS ,
while in scenarios 3 and 4, Bt is given by the sum of BtLS and BtSM , with the
latter biasing the TM estimates away from the null. As for the CCA estimator,
the increased comparator group SD results in a larger BtSM bias in Table 1b.

Table 1: Estimated treatment effects (β̂) and corresponding biases (B̂) for the CCA

(β̂c), TM (β̂t) and adjusted TM (β̂at) estimators, with the latter obtained when

performing the adjustment on the comparator group (β̂at0) and the treatment group

(β̂at1). Mean and standard deviation (SD) estimates for S = 1000 simulations are
reported. The TM estimands are estimated under 50% trimming of normally
distributed outcomes (N = 1000), for equal (a) and unequal (b) treatment group
SDs, true treatment effect β = 0.5, and 20% comparator group dropout. Four
scenarios are considered: dropouts restricted to 1) the lowest 20% of the distribution
(fac = 0.2 ), 2) the lowest 50%, 3) the lowest 75% and 4) left unrestricted.

(a) σ0 = σ1 = 1

Dropout spread β̂c β̂t β̂at1 β̂at0 B̂tLS B̂tSM B̂t B̂at1 B̂at0

1) f0,c = 0.2
β̂/B̂ 0.15 0.50 0.50 0.50 0.00 0.00 0.00 0.00 0.00
ŜD 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.03 0.03

2) f0,c = 0.5
β̂/B̂ 0.30 0.50 0.50 0.50 0.00 0.00 0.00 0.00 0.00
ŜD 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.03 0.03

3) f0,c = 0.75
β̂/B̂ 0.40 0.56 0.64 0.70 0.00 0.06 0.06 0.14 0.20
ŜD 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.03 0.03

4) f0,c = 0.1
β̂/B̂ 0.50 0.69 0.77 0.81 0.00 0.19 0.19 0.27 0.31
ŜD 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.03 0.03

(b) σ0 = 1.5, σ1 = 1

Dropout spread β̂c β̂t β̂at1 β̂at0 B̂tLS B̂tSM B̂t B̂at B̂at0

1) f0,c = 0.2
β̂/B̂ -0.03 0.10 0.50 0.50 -0.40 0.00 -0.40 0.00 0.00
ŜD 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

2) f0,c = 0.5
β̂/B̂ 0.20 0.10 0.50 0.50 -0.40 0.00 -0.40 0.00 0.00
ŜD 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

3) f0,c = 0.75
β̂/B̂ 0.34 0.19 0.70 0.82 -0.40 0.09 -0.31 0.20 0.32
ŜD 0.03 0.03 0.04 0.04 0.03 0.03 0.03 0.04 0.04

4) f0,c = 1
β̂/B̂ 0.50 0.39 0.91 0.96 -0.40 0.29 -0.11 0.41 0.46
ŜD 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

The adjusted TM estimates are given by β̂at1 and β̂at0, for rescaling applied to
the treatment and comparator group, respectively. In the first two scenarios, the
strong MNAR assumption is satisfied, and both estimators estimate an unbiased
treatment effect, β = 0.5, under unequal SDs (Table 1b). For scenarios 3 and 4,

however, both are biased away from the null, with bias components, B̂at1 and
B̂at0, bigger than the unadjusted estimator bias, B̂tSM . The greatest bias is
observed for B̂at0, a consequence of performing the adjustment on the group for
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which the strong MNAR assumption is violated.

Examples of bias calculations for the CCA and (un)adjusted TM estimators
are given in Appendix L. Appendix M describes an additional simulation, for
trimming fractions, p, other than 50%, illustrating the bias trade-off between the
BtLS and BtSM bias components. Appendix N provides R code for obtaining
adjusted and unadjusted TM estimates for a simulated dataset.

4 An application to the CoBalT randomized clin-
ical trial

The CoBalT trial9,10 was a multicentre trial investigating the effect of CBT as
an adjunct to pharmacotherapy versus usual care (UC) in 469 patients aged
18-75 with treatment-resistant depression. The primary outcome was the BDI-
II score - a self-completed measure of depressive symptoms, with higher values
indicating greater depression. Long-term treatment effect was assessed by a
repeated measures intention-to-treat analysis (N = 396), using outcomes at 6
months, 12 months and 3-5 years (average 46 months) and adjusted for BDI-II
at baseline, treatment centre and minimization variables (previously prescribed
antidepressants, presence of a counselor at the general practice, and duration of
current depressive episode at baseline). The repeated measures analysis showed
a beneficial effect of CBT versus UC of -4.7 (95% CI: -6.4,-3.0) with a mean
difference of -3.6 (95% CI: -6.6,-0.6) at 46 months for 136 and 112 patients in
the CBT and UC group, respectively.10

4.1 Missing data

Just over half of the initially recruited patients were observed at the final follow-
up, with greater dropout in the UC group than the CBT group (Table 2).
Dropout in the UC group appears to be unrelated to the most recent depression
score, whereas in the CBT group, dropout was more common in those with
higher recent depression scores (Table 3). The CBT group SDs are higher, most
noticeably for patients missing at 46 months, suggesting that the unobserved
full sample CBT SD at 46 months may be higher than the UC group SD. In
Supplementary Figure S3 (Appendix O), histograms of the BDI-II score dis-
tributions are given, across time, for the UC group, the CBT group and their
combined total. We observe that the distributions are moderately right-skewed
and non-normal.
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Table 2: Counts (N) and percentages (%) of patients with an observed BDI-II score
at baseline, 6 months, 12 months, and 46 months, for the usual care group (UC), the
CBT treatment group (CBT), and both groups

UC CBT Total
N % N % N %

Base 235 100 234 100 469 100
6 mo. 213 90.6 206 88.0 419 89.3

12 mo. 198 84.3 197 84.2 395 84.2
46 mo. 112 47.7 136 58.1 248 52.9

Table 3: Mean BDI-II measurements and SDs at baseline, 6 months, 12 months and
46 months for the usual care group (UC), the CBT treatment group. Patients
missing and observed at 46 months are compared for all time points, with mean
differences and 95% confidence intervals provided.

Usual care (UC) CBT

Observeda Missinga Differenceb Observeda Missinga Differenceb

Base 30.9 (10.3) 32.7 (11.3) -1.8 (-4.6,1.0) 30.4 (9.3) 33.6 (11.7) -3.2 (-5.9,-0.5)
6 mo. 24.6 (13.1) 24.4 (13.2) 0.2 (-3.3,3.8) 17.4 (13.6) 21.8 (14.9) -4.5 (-8.5,-0.4)

12 mo. 21.8 (13.3) 21.5 (12.4) 0.2 (-3.4,3.9) 15.8 (12.9) 19.5 (15.8) -3.8 (-7.9,0.4)
46 mo. 23.4 (13.2) 19.2 (13.8)

a) Given are mean and standard deviation (SD)

b) Given is the mean difference (observed - missing) with 95% confidence interval

4.2 Analysis details

Using the maximum CCA bias formula (15) from Section 2.4, we would expect
the treatment effect to either under- or over-estimate the treatment effect by
approximately 10 units of the BDI-II score. This is a wide bound, obtained
without taking into account information available from the data and motivat-
ing the use of a more precise sensitivity analysis. To this end, we employed
the TM approach and two MI models as a sensitivity analysis for the treatment
effect at 46 months, which is estimated using linear regression adjusting for
treatment centre, BDI-II at baseline and various minimization variables (previ-
ously described antidepressants, presence of a counselor at the general practice,
duration of current depressive episode at baseline). Adaptive trimming was
employed due to the high dropout proportion observed, with 52.3% of the high-
est values trimmed away in both groups. Confidence intervals were obtained
using a permutation-based approach.4 We considered only the unadjusted TM
estimator, as the adjusted estimator (Section 2.5), which adjusts for unequal
treatment group SDs, is strongly reliant on normality. The imputation models
included auxiliary variables: baseline variables associated with missing BDI-II
at any time of follow-up, and various measures of depression and anxiety (BDI-
II, PHQ-7, GAD-7, SF-12). Two MI models were considered, with the first
using only depression/anxiety information available at baseline (MI-baseline),
the second including intermediate outcome measurements at all follow-up times.
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To interpret the sensitivity analysis results, we used the bias formulae derived
in Sections 2.3 and 2.4 to establish CCA and TM estimator bias directions
under different dropout scenarios. Additionally, we calculated the expected
TM estimator bias of the CBT treatment effect in the CoBalT data, for three
variations of the most plausible dropout scenario. The location shift assumption
bias and strong MNAR bias are both functions of the full sample SDs, which
remain unobserved. Subject to the specified dropout mechanism, the observed
dropout proportions, and under assumption of normally distributed outcomes,
these can be inferred from the observed SDs, and used to calculate the relevant
bias terms (derivations and R code in Appendix P).

4.3 Plausibility of assumptions for CCA, MI and TM es-
timators

The validity of each method rests on the underlying estimator assumptions
about data characteristics, assumptions which cannot (usually) be tested. We
used the bias formulae derived in Sections 2.3 and 2.4 to compare TM and CCA
estimator behaviour across four plausible dropout scenarios Figure 2).

The CCA estimator will be biased if data are MNAR. Dropout of more depressed
patients in the CBT group will result in underestimation of the CBT complete
case mean, with the CCA estimator consequently overestimating the beneficial
effect of CBT (Figure 2.2).

The TM estimator will be unbiased if the location shift assumption and strong
MNAR assumption hold (Figure 2.1). From the CoBalT data, we suspect
dropout of patients with more severe depressive symptoms in the CBT group
(higher value dropout) and (approximately) homogeneous (MCAR) dropout in
the UC group. This will, under higher value trimming, lead to the inclusion of
too many high values in the trimmed fraction, and consequently to overestima-
tion of the UC trimmed mean and the treatment effect (Figure 2.2). Intermedi-
ate BDI-II measurements at earlier times suggest a comparatively higher SD for
the CBT group, implying that the location shift assumption may be violated
(Figure 2.3), with the larger spread of values leading to underestimation of the
CBT trimmed mean and overestimation of the beneficial effect of CBT. Vio-
lation of the location shift assumption, with SDCBT > SDUC, combined with
violation of the strong MNAR assumption in the UC group, will exacerbate the
bias, leading to a substantial overestimation of the CBT treatment effect. This
is illustrated in Figure 2.4, where the bias is somewhat mitigated by allowing
for the possibility that the strong MNAR assumption may also be violated, if
to a much lesser extent, in the CBT group.

MI estimates will be unbiased if the data are MAR and the imputation model
is correctly specified. Under higher-value dropout in the CBT group, the MI
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models will impute BDI-II values that are too low in the CBT group, but ap-
proximately correct in the UC group, resulting in underestimation of the CBT
imputed mean. As with the CCA estimator, this will result in a bias away from
the null, with the MI estimators overestimating the benefit of CBT treatment.
The inclusion of auxiliary information (baseline and intermediate depression
measures) in the MI models could potentially overcome part of the MNAR bias,
resulting in estimates that are closer to the truth than CCA. In summary, our
bias formulae suggest that under plausible assumptions, TM, MI and CCA will
overestimate the treatment effect.

Figure 2: Trimmed means (TM) and complete case analysis (CCA) estimators
across four scenarios with varying dropout patterns and treatment arm distributions,
for 52.3% dropout in the usual care group (pink), 41.9% dropout in the CBT group
(grey) and higher value 52.3% trimming. 1) The location shift assumption and strong
MNAR assumption are satisfied, with equal treatment group SDs and strictly higher
value dropout. 2) The location shift assumption is satisfied, but the strong MNAR
assumption is violated in the usual care group. 3) The location shift assumption is
violated, with σ1 > σ0, and the strong MNAR assumption is satisfied. 4) The
location shift assumption is violated with σ1 > σ0, and the strong MNAR assumption
is violated in the usual care group and to a lesser degree in the CBT group.

4.4 Results

The CCA treatment effect estimate for CBT of -3.89 (95% CI: -6.95,-0.83)
is comparable to the one of the main CoBalT follow-up analysis10 (Table 4).
Slightly smaller effects are estimated by the MI models, comparable to the
attenuation observed in the MI sensitivity analysis of the CoBalT follow-up
analysis.10 The TM estimator, in contrast, estimated a considerably bigger ben-
eficial CBT treatment effect of -8.26 (95% CI: -11.20,-5.32). These results are
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in line with our expectations regarding the BDI-II score and dropout character-
istics, detailed in Section 4.4.

From the CoBalT data, we have reason to suspect higher value dropout in the
CBT group and approximately homogeneous dropout in the UC group. Table
5 takes a closer look at the TM estimator bias components calculated under
three different assumptions of the dropout mechanism. In scenario A, we as-
sume completely directional, highest value dropout in the CBT group, with all
dropout values (41.9%) restricted to the top of the distribution, and entirely ho-
mogeneous dropout in the UC group, with the dropout (53.3%) spread equally
across the distribution. In scenarios B and C, we make less stringent assump-
tions, with in scenario B dropout in the top 60% for the CBT group, and in
scenario C dropout in the top 60% of the CBT group and top 80% of the UC
group. We obtain a total bias, B̂t of -17.53, -11.09, and -7.1 for scenarios A, B
and C, respectively, and calculate a bias-adjusted estimate, which can be inter-
preted as an upper bound for the treatment effect estimate, β̂t, with the lower
bound given by the TM estimate obtained from the data (β̂t = −8.26). For all

three scenarios, the CCA and MI estimates (Table 4) fall within the β̂t bounds,
with the bias-adjusted estimate of scenario C most comparable, at -1.16. Our
sensitivity analysis, comparing CCA, TM and MI, is consistent with a beneficial
CBT treatment effect, but suggests that it may be more modest than indicated
by the CCA estimator.

Table 4: Treatment effect estimate (β̂)) standard error (SE), and 95% confidence
interval (95% CI), for the trimmed means (TM) estimator, complete case analysis
(CCA), multiple imputation model with baseline outcome measurements (MI
baseline) and multiple imputation model with intermediate outcome measurements
(MI intermediate).

β̂ SE 95% CI
TM -8.26 1.47 (-11.2, -5.03)
CCA -3.89 1.53 (-6.92, -0.87)
MI (baseline) -3.33 1.39 (-6.07, -0.58)
MI (intermediate) -2.56 1.37 (-5.65, -0.08)
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Table 5: Trimmed mean estimator treatment effect bounds and bias components
under different dropout assumptions. A) CBT group dropout restricted to the top
41.9% of the distribution and homogeneous UC group dropout; B) CBT group
dropout in the top 60% of the distribution and homogenous UC group dropout; C)
CBT group dropout in the top 60% of the distribution and UC group dropout in the
top 80%. Shown are the bias components for violation of the location shift
assumption (B̂LS), the strong MNAR assumption in the UC group (B̂SM0), the

strong MNAR assumption in the CBT group (B̂SM1), the total bias (B̂t), the bias

adjusted estimate (β̂tBA), and the maximum bounds of the TM estimate, β̂t.

Group Spread B̂LS B̂SM0 B̂SM1 B̂t β̂tBA TM estimate bounds

A
UC 1

-7.17 -10.36 0 -17.53 9.27 [-8.26, 9.27]
CBT 0.419

B
UC 1

-1.14 -10.36 0.41 -11.09 2.83 [-8.26, 2.83]
CBT 0.6

C
UC 0.8

-2.01 -5.5 0.41 -7.1 -1.16 [-8.26, -1.16]
CBT 0.6

5 Discussion

Our work extends existing TM literature by deriving formulae that can be used
to calculate the resulting bias, establish bias direction, and also, under certain
additional assumptions, calculate a limit for the maximum expected bias. In
Section 4.3, we show how these formulae can be used to aid interpretation
of sensitivity analyses. In addition to this, we describe an adjustment to the
estimator that relaxes the location shift assumption.

Missing data is a common feature in RCTs and may result in biased inference,
with any analysis relying on unverifiable assumptions about the relationship be-
tween observed and missing data. To increase confidence in the primary results,
their robustness should be assessed by performing sensitivity analyses under a
range of plausible alternative assumptions.1,2,11,12 While conducting such anal-
yses in the presence of missing data is recommend practice, only a minority
of affected trials report performing any kind of sensitivity analysis. Six review
articles describing the handling of missing data in RCTs found that only 22% of
the 649 trials reviewed reported some kind of sensitivity analysis.13-18 The ma-
jority retained the missingness assumptions of the original analysis, with only a
small subset relaxing the original assumptions, and almost none considering a
MNAR mechanism.13
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Applying sensitivity analyses can be limited by the complexity of the methods,
and a lack of transparency about the assumptions underlying each method.
Two well-known approaches for dealing with incomplete data, which can be
adapted to sensitivity analyses, are selection models (SM) and pattern mixture
models (PMM). Selection models specify the relationship between outcome and
the probability of being missing, while PMM define the outcome distribution
for dropout across a range of missingness patterns.2 An example is the delta-
adjusted PMM, which assumes that patients who drop out have a mean outcome
that differs by a fixed amount, delta, to the ones who remain in study.12 This
parameter, delta, is user-specified and typically informed by expert knowledge,
in an attempt to characterize the unknown relationship between observed and
unobserved data. However, choosing plausible values and distributions for sen-
sitivity analysis parameters such as delta is far from straightforward.19,20 A
simpler alternative is to specify some extreme scenarios, and, under these, re-
estimate the main analysis results. An example of such an extreme scenario
analysis is the combination approach of best-worst and worst-best case sensitiv-
ity analyses, in which beneficial outcomes are assigned to dropouts in one group
and harmful ones to dropouts in the other group, and vice versa, yielding two
estimates under opposing assumptions21,22. The TM estimator, operating under
the assumption of strict directional dropout and requiring only the specification
of the size of trimming fraction, can be considered part of this family of eas-
ily implemented extreme-case scenario estimators. Such simple bias-sensitivity
analyses will often be sufficient to assess the robustness of inferences to potential
bias sources11, but in the event of ambiguity, can be followed up with a more
nuanced and fine-tuned sensitivity analysis (e.g. from the family of SM or PMM
models).

While the TM estimator is simpler to implement than SM and PMM models, re-
quiring no explicit specification of a missingness model or numerical sensitivity
parameters, it is theoretically similar. The TM estimator can be thought of as
a threshold SM, with the threshold value informed by the size of the trimming
fraction, and with the probability of missing set to zero in the trimmed fraction
and left unspecified in the part of the distribution that is trimmed away. A
similar parallel can be drawn between TM and the delta-adjusted PMM, with
the delta mean difference between observed and missing values implicit in the
former and a direct result of the choice of trimming fraction. Under the strong
MNAR assumption, this difference should be equal to or bigger than the differ-
ence between the mean of the trimmed fraction and the mean of the fraction
that is trimmed away.

The TM estimator will give an unbiased estimate of the true treatment effect
under the strong MNAR assumption and the location shift assumption. The
TM estimator is only unbiased for the particular case of MNAR data where the
trimmed fraction remains unaffected by dropout, and will be biased, even under
the null, when outcomes are MAR. In practice, missing data will frequently
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be characterized by more than a single missingness mechanism (e.g., missing
outcomes may be a mix of MAR and MNAR). Ocampo et al.5 sought to resolve
this by combining the TM estimator with multiple imputation. This approach,
however, relies on the assumption that missing values determined by MAR and
MNAR can be distinguished using auxiliary information and its success will be
heavily affected by the reliability and interpretation of the available information.

As assumptions underlying sensitivity analyses cannot be verified, it is impor-
tant to know how different underlying data structures affect a given estimator.
While previous studies have described the TM assumptions4-6, the biases arising
from the violation of these strict assumptions have not previously been charac-
terized. By quantifying the bias resulting from violation of these assumptions
and establishing bias direction under a range of plausible data scenarios, we
show how conclusions can be drawn from a sensitivity analysis, moving beyond
a comparison of estimates. For example, in the CoBalT analysis (Section 4.4),
the TM estimator, under very strict assumptions, estimated a beneficial effect
of CBT treatment of approximately -8. However, when considering more plau-
sible data generating scenarios and relaxing these assumptions, we obtained a
bias-corrected estimate, which was much smaller.

In order to identify relevant sensitivity analyses, a framework, such as the one
employed for the CoBalT analysis in Section 4.3, should be followed. Here, our
initial bias results suggest that all estimators will be biased away from the null
and overestimate the CBT treatment effect. The logical next step would involve
identifying sensitivity analyses that might be biased in the opposite direction
for a plausible data scenario. The TM estimator will be particularly useful in
cases where it can be expected to be biased in the opposite direction to the CCA
analysis. For example, if we had seen evidence of higher value dropout in both
groups (i.e., previous depression being higher for those with missing outcome
data in both UC and CBT groups) and evidence of similar SDs in the two arms,
then we would expect the CCA estimator to underestimate the treatment effect
given greater dropout in the comparator group, and overestimate the effect given
higher dropout in the treatment group, while the TM estimator would remain
unbiased for both.

Commonly applied sensitivity analyses employ complex models, for which bias
quantification methods are not readily available. In contrast, the TM estimator
is a simple approach, for which, as we show, analytic expressions for the bias
due to missingness are available. In this paper, we show how the TM estimator
can be used as a sensitivity analysis, by using bias formulae to interpret results
in context of information available from the data, as we show in our CoBalT
analysis. We recommend performing a TM sensitivity analysis when directional
dropout is plausible, using the bias formulae to establish bias direction and
interpret estimates.
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practice of handling and reporting missing outcome data in eight widely
used PROMs in RCT publications: a review of the current literature. Qual
Life Res. 2016;25(7):1613-1623.

17. Thabane L, Mbuagbaw L, Zhang S, et al. A tutorial on sensitivity analyses
in clinical trials: the what, why, when and how. BMC Med Res Methodol.
2013;13:92. Published 2013 Jul 16. doi:10.1186/1471-2288-13-92

18. Wood A, White I, Thompson S. Are missing outcome data adequately
handled? A review of published randomized controlled trials in major
medical journals. Clinical Trials. 2004;1(4):368–376.

19. White IR, Carpenter J, Evans S, Schroter S. Eliciting and using expert
opinions about dropout bias in randomized controlled trials. Clin Trials.
2007;4(2):125-139.

20. Mason AJ, Gomes M, Grieve R, Ulug P, Powell JT, Carpenter J. Develop-
ment of a practical approach to expert elicitation for randomised controlled
trials with missing health outcomes: Application to the IMPROVE trial.
Clin Trials. 2017;14(4):357-367.

21. Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should
multiple imputation be used for handling missing data in randomised clin-
ical trials - a practical guide with flowcharts. BMC Med Res Methodol.
2017;17(1):162. Published 2017 Dec 6. doi:10.1186/s12874-017-0442-1.

22. Jakobsen JC, Wetterslev J, Winkel P, Lange T, Gluud C. Thresholds
for statistical and clinical significance in systematic reviews with meta-
analytic methods. BMC Med Res Methodol. 2014;14:120. Published 2014
Nov 21. doi:10.1186/1471-2288-14-120.

25

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.05.21252334doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.05.21252334
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	Notation
	Trimmed means estimator
	The location shift assumption
	The strong MNAR assumption
	Adjusted estimator

	A simulation study
	An application to the CoBalT randomized clinical trial
	Missing data
	Analysis details
	Plausibility of assumptions for CCA, MI and TM estimators
	Results

	Discussion

