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ABSTRACT Complexity has been argued to limit operational efficiency, hinder decision-making and
induce disruption in supply chain networks. The main aim of this paper is to investigate the architectural
trade-off between complexity and modularity in modular assembly supply chain networks. Towards this,
an information-entropic complexity model is developed and applied to the domain of assembly supply chains
and logistics. This approach characterises complexity as a combination of the intrinsic complexity of the
system modules/interfaces and the influence of the topological composition of the network. The model is
then used within an optimisation framework, where the optimal granularity level for assembly supply chain
design solutions for a given assembly product can be automatically verified by considering the trade-off
between complexity and network modularity. It is concluded that the proposed methodology could help to
minimise the complexity of supply chain assembly configurations while maximising their modularity and
thereby help to increase both the reliability and performance of supply chain networks.

INDEX TERMS Complexity, modularity, supply chain management, assembly systems, assembly supply
chains, network planning, optimization.

I. INTRODUCTION
A. RESEARCH BACKGROUND
An assembly supply chain (ASC) is a dynamic network
in which different business actors, including goods, sup-
plies, finance, and information, are distributed via upstream
and downstream flows [1]. ASCs usually consist of many
distinct manufacturing entities, each of which may com-
bine several production inputs to produce an output [2].
In today’s manufacturing settings, most companies use mod-
ular ASC network models as they offer more flexibility than
non-modular designs [3]. In modular configurations, the final
assembler assigns the bulk of assembly tasks to intermediate
sub-assemblers instead of doing all assembly work. As a
result, a comparatively limited number of assembly opera-
tions are carried out by the final assembly line, reducing the
complexity of the final assembly processes while spreading
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the risk and responsibilities to intermediate assemblers [2].
According to Baldwin et al. [4], complexity and modularity
are considered closely related; meaning that complexity is
expected to be reduced by an increase in system modular-
ity. However, if an efficient complexity management strat-
egy is not in place, high modularity may also lead to a
complex system architecture with a large number of inter-
faces/relationships between modules [5]. This is true for ASC
networks as highly modular supply networks may introduce
more supply interfaces to be established and can therefore
contribute to the overall system complexity significantly.
Therefore, an optimal granularity level for ASC architectures
should always be pursued to minimise excessive/harmful
complexity.

B. RESEARCH HYPOTHESIS
It is hypothesised in this research work that a novel ASC
complexitymeasure can be used to characterise the difference

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 57907

https://orcid.org/0000-0002-5994-4351
https://orcid.org/0000-0002-4211-9056
https://orcid.org/0000-0002-5048-4141


B. Alkan et al.: Identifying Optimal Granularity Level of Modular ASCs

between ASC architectures with a simple topology over a
small number of complex assembly systems versus ASC
architectures with a complex topology over a large number
of relatively simple assembly systems. From this viewpoint,
it is suggested that increasing ASC modularity could be a
potential solution for managing complexity associated with
increased product variety since complexity is distributed
across relatively small and manageable parts (i.e., divide and
conquer principle). However, it should also be remembered
that highmodularitymay lead to an increase in the complexity
of supply interfaceswhich can result in logistics problems and
disruptions. To overcome this challenge, this paper proposes
an optimisation framework to verify ASC network archi-
tectures for network modularity and complexity. This helps
system designers to re-formulate the ASC design dilemma as
a multi-objective architectural design optimisation in which
ASC networks can be built for optimum modularity while
minimising network complexity and related risks.

C. RESEARCH APPROACH
In this article, an information-entropic complexity defini-
tion for modular ASC networks is presented. The approach
considers the complexity of ASCs as a function of both
i) intra-module complexity (i.e., cumulative complexity of
assembly systems) and ii) inter-module complexity which is
a function of both a) the cumulative complexity of pair-wise
supply interfaces between suppliers/assemblers and b) the
effect of the network’s topological pattern. Inherent com-
plexity of assembly systems and pair-wise supply interfaces
are assumed to be related to the increased product that they
support, and are measured through Shannon’s information
entropy, whereas the topological effect of the network is
assumed to be related to the network’s structural arrange-
ment and is calculated through a graph energy metric. This
complexity metric is then embedded within an optimisation
framework, where the near-optimal granularity level for an
ASC network realising a particular product with given assem-
bly precedence relationships can be automatically verified
with respect to the minimisation of both i) standard devia-
tion of module complexities and ii) the overall inter-module
complexity. This provides a Pareto-optimum frontier for the
modularity and complexity distribution of the network and
can be used to guide the selection of the optimal granularity
level for the system architecture. The approach is demon-
strated in two case studies. Results demonstrate that the
approach can support decision-making activities in supply
chain planning by optimally balancing modularity and com-
plexity considerations.

D. STRUCTURE OF THE PAPER
The remainder of the paper is organised as follows.
Section 2 reviews the literature on supply chain complex-
ity. Section 3 presents the theoretical definition of supply
chain complexity. Section 4 proposes the Pareto-optimisation
framework for the configuration selection of ASCs con-
sidering both system modularity and complexity. Section 5

provides an implementation of the proposed optimisation
approach on two case studies. Section 6 summarises the
paper’s findings.

II. LITERATURE REVIEW
A. SUPPLY CHAIN COMPLEXITY
Supply chain networks are often characterised as dynamic
social systems consisting of multiple interdependent compo-
nents that are very vulnerable to the external environment [6].
According to Serdarasan [1], the complexity inherent in sup-
ply chains can be defined in three intertwined dimensions,
i.e., structural, operational and decision-making. Structural
complexity is related to a system’s time-independent proper-
ties, which relate to the sheer quantity and variation of system
elements as well as the strength of their interactions [7]. Oper-
ational complexity is linked to the supply chain network’s
time-dependent characteristics and concerns factors such as:
time, latency, and uncertainty [8]. Finally, decision-making
complexity involves facets of both structural and operational
complexity and is related to variables such as organisational
mechanisms, decision-making structures and IT networks [1].
According to Bode et al. [9], these variables are closely
related. As both the quantity and the diversity of the infor-
mation in a system increase, a larger number of interactions
and a wider range of system behaviours can be observed.

In the literature, supply chain complexity drivers are clas-
sified according to two distinct perspectives [1]. The for-
mer groups the drivers of complexity based on their roots.
These are i) physical situation (e.g., number and variety
of products and processes), ii) operational behaviours (e.g.,
uncertainties associated with manufacturing and logistics
operations), iii) dynamism (e.g., market/demand fluctua-
tions), and iv) organisational structure (e.g., IT systems,
decision-making hierarchy, etc.) [1]. The latter categorises
complexity drivers based on their domains: i) internal,
ii) interface, and iii) external drivers. According to Bozarth
et al. [10], internal drivers emerge from both decision-making
and operational considerations, including product and pro-
cess architectures. Interface complexity drivers stem from
factors related to both material and data flows between man-
ufacturers, consumers and service providers. On the other
hand, external complexity drivers such as environmental reg-
ulations, global geopolitics, etc., are inherently more difficult
to control or manage.

B. EMPIRICAL STUDIES
There are diverse approaches to measuring complexity in
supply chains, which can be grouped into i) empirical and
ii) conceptual studies. An example of an empirical study,
proposed by [11], investigated the relationship between sup-
ply chain performance, complexity and uncertainty, and
proposed a formal categorisation for identifying risks and
uncertainties in supply chain systems. A similar study, car-
ried out by [12], examined the implications of complexity
drivers on system performance, and proposed a framework
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for the classification of variety management strategies and
managerial recommendations to reduce the complexity in a
mass customization environment. Vachon and Klassen [13]
proposed a two-dimensional framework that conceptualises
the degree of complexity embedded in a supply chain along
two major dimensions: the form of technology and the
nature of information processing. They found a correla-
tion between delivery performance and both the complicat-
edness of the product/process and the uncertainty of the
management systems. A supply chain complexity model sug-
gested by Bozarth et al. [10], was statistically validated using
real-world data obtained from more than two-hundred plants
in several countries. A negative correlation between the com-
plexity of the supply chains and the performance of the man-
ufacturing facilities was identified. Manuj and Sahin [14]
presented a supply chain decision-making complexity model,
which was developed using an interview-based ‘‘grounded
theory analysis approach’’ to assess the implications of
complexity for production performance. A method based
on ‘‘lower-than-network’’ level metrics was proposed by
Bode and Wagner [9] to analyze upstream supply chain
disturbances. Their study is based on data from a survey
of 396 firms from Germany, Switzerland and Austria and
reveals a positive correlation between the drivers of com-
plexity in the supply chain and the intensity of upstream
disruptions [9].

C. CONCEPTUAL STUDIES
Several conceptual studies also aim to quantify complex-
ity in assembly systems and supply chains. Frizelle and
Woodcock [7] proposed a method to assess both structural
and operational manufacturing systems complexity. Their
method is based on Shannon’s information entropy [15] and
considers complexity as uncertainty associated with both
a system’s structural and operational aspects (e.g., queue
lengths, deviations between actual and scheduled system
states, e.g., busy, idle, etc.). Huaccho Huatuco et al. [16]
employed Shannon’s entropy to characterise the interactions
between complexity and efficiency in job scheduling in a
bottle manufacturing company. In their study, operational
complexity was evaluated using Shannon entropy, in terms of
the deviation between actual and planned scheduling states.
They found that operational complexity is related to fluctu-
ations in customer demand and that it negatively impacts on
organisational flexibility. Sivadasan et al. [17] presented an
information entropic complexitymodel for supplier-customer
networks. Their model is based on Shannon’s information
entropy and relates complexity to the uncertainties associated
with material and information flow within supply networks.
Sivadasan et al. [18] examined the implications of opera-
tional complexity for inventory capacities using Shannon’s
entropy. Operational complexity was found to have a sig-
nificant impact on capacity scheduling in supply networks.
The authors also suggested that operational complexity could
be better handled using appropriate IT systems providing
decision-making support for scheduling planning activities

and better information exchange between various supply
chain stakeholders. Zhu et al. [19] proposed a novel complex-
ity quantification approach called ‘‘Operator Choice Com-
plexity’’ (OCC) to assess complexity arising from increased
product variety in mixed-model assembly production lines
and ASCs. Their measure is another adaptation of Shan-
non’s entropywithin themanufacturing domain and considers
variety-induced complexity as uncertainty associated with
choices occurring in manual assembly operations (e.g., tool
choices, fixture choices, etc.). Similarly, Wang et al. [20]
examined the impact of OCC on overall system through-
put and found that variety-induced complexity can hinder
the human cognitive efficiency and human reaction times
in assembly operations, and hence affects the rework/scrap
rate of assembly stations and disturbs assembly line through-
put. Information entropy was also used alongside graph
theory-based metrics (e.g., vertex degree) to quantify com-
plexity in assembly supply chain networks [3], [21]–[23].
A summary of the literature review on supply chain complex-
ity assessment is given in Table 1.

D. RESEARCH GAPS
Based on the literature review of complexity management in
assembly supply chains, little attention has been given to the
question of supply chain network design from a viewpoint
aiming to find a balance between network modularity and
supply chain complexity. Only a few studies investigated the
implications of network configurations over complexity in
modular ASCs [2], [3], [20], [21], [23]. However, these stud-
ies mostly depend on pen-and-paper based solutions and did
not emphasise the modularity-complexity trade-off within a
broader context of the network design optimisation problem.
This paper addresses this knowledge gap in ASC architectural
planning by implementing a multi-objective optimisation
framework in which the optimal granularity level of ASC net-
work configurations for a given product or product family can
be automatically verified by considering standard deviations
in the module-level complexities alongside the network’s
overall inter-module complexity. This allows system design-
ers to achieve an equitable allocation of variety-induced
complexity across the system, thereby reducing supply inter-
face complexity arising from module-to-module interactions
and the network’s overall topology. The results of the study
demonstrate that the approach helps designers in minimising
supply chain risks associated with increased product variety
by optimising the modularity of the ASC network.

III. THEORETICAL FRAMEWORK
The research presented here defines a modular assembly
supply chain as a network consisting of several connected
mixed-model assembly systems (i.e., modules). To formally
define the complexity of modular ASCs, we adopt the follow-
ing definition proposed by [32] as a base frame: ‘‘Complexity
of a network-based system is a function of i) the complexities
of individual components, ii) the complexities of pair-wise
interactions, and iii) the effects of the system’s architectural
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TABLE 1. A review of the literature related to supply chain complexity measures.

pattern, which makes the management of the system mentally
difficult and error-prone’’. Following the definition given
above, the complexity of an ASC (C) is defined as a com-
bination of the inherent complexity of system entities (i.e.,
modules and interfaces) in isolation, and the effect of the
network’s architectural topology, and is given as follows.

C = f (C1,C2,C3) (1)

Here, C1, C2 and C3 represent module complexity (i.e.,
the internal complexity of each assembler in the supply
chain), supply interface complexity (i.e., the interaction com-
plexity of each link between suppliers and assemblers in the
supply chain), and topological complexity (i.e., the complex-
ity due to the overall topology of the supply chain).

The term C1 represents the summation of intrinsic com-
plexities of each assembly system αi within the supply chain
network, and is estimated as follows:

C1 =

N∑
i=1

αi (2)

where, N represents the number of assemblers within the
ASC.

The term C2 depicts the sum of pair-wise interface com-
plexities between system modules, and is calculated as
follows:

C2 =

N∑
i=1

N∑
j=1

βijSij (3)

where, βij is the pair-wise supply interface complexity
between assembler i and supplier j, and Sij describes the
connectivity matrix:

Sij =

{
1 if modules i and j are connected,
0 else.

(4)

The term C3 represents the influence of the architectural
topology on the system complexity and is defined as the ratio
between the summation of singular values of the connectivity
matrix S and the total number of modules within the ASC.

E =
Nσ∑
i=1

σi (5)

C3 =
E
N

(6)

In Equation 5, σi represents the ith singular value and Nσ rep-
resents the total number of singular values. Please note that,
the calculation of the term C3 requires complete knowledge
of the entire system architecture (i.e., the complete topology
of the network). Hence, it contributes to system complex-
ity only at the system level [32]–[34]. According to [32],
the term C2C3, within the context of complex systems, can
be referred as an overall indicator of required system man-
agement/integration effort.

In supply chain systems, both increased variety and num-
ber of interactions within a supply system can result in exces-
sive interdependency between system modules which can
negatively impact the cost and performance of the supply
chain system [35]. By following the definition given above,
we categorised the terms C1 and C2C3 as the intra-module
and inter-module complexity, respectively. In this context,
the inter-module complexity of a supply chain system is a
system-level complexity indicator reflecting the operational
and logistics risks arising due to the architectural arrange-
ment of the network modules and the material/information
transmissions between them. It is known that inter-module
complexity is a function of interface complexity and topolog-
ical complexity. However, the interaction between these two
elements is not directly perceptible. Although it is assumed
that inter-module complexity represents the product of these
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two elements, it is part of future work to investigate the
interactions between these components in detail. In summary,
the intra-module and inter-module complexities are defined
as follows:

Cintra−module =
N∑
i=1

αi (7)

Cinter−module = (
N∑
i=1

N∑
j=1

βijSij)

∑Nσ
k=1 σk

N
(8)

In the following sections, individual elements of the complex-
ity metrics are explained.

A. ASSEMBLY SYSTEM COMPLEXITY
The term αi represents the inherent complexity of ith

assembly system in the supply network. In this research,
the OCC model proposed by [36] is adopted to assess
the inherent complexity of assembly systems. OCC is a
widely used information-theoretic complexity quantifica-
tion model for mixed-model manual assembly systems [2],
[19], [20], [28], [29], [31], [36]–[42] relating complexity to
the variety-induced operational uncertainty associated with
assembly choices that are made by assembly operators.
In such a sense,OCC is only able to measure variety-induced
complexity in manual assembly systems. In this study, this
model is selected on the basis that the modularisation of a
supply chain network is primarily to manage how an increase
in product variety affects the complexity of both assembly
system and supply chains. Owing to this relationship between
product variety and complexity, the selection of the OCC
model, whichmeasures variety induced complexity inmanual
assembly systems, is justified. Please note that, in the domain
of assembly systems, product variety is only one of many
sources of complexity. Some other sources include: assembly
system design complexity [43]–[49], assembly task complex-
ity [50], product complexity [51]–[57], assembly automation
complexity [58], [59] and operational stochasticity [60].

In this approach, the inherent complexity αi of assem-
bly system i composed of Nm

i sequential manual assembly
stations is linked to both the number and ratio of product
variants introduced to the assembly system, and is formulated
as follows:

αi =

Nm
i∑

q=1

Ψq (9)

where Ψq represents the complexity of assembly station q.
This term is formulated as follows:

Ψq = ψqq +
∑
∀p:p<q

ψpq (10)

where, ψqq is the feed complexity associated with the fea-
ture variants assembled in station q, and ψpq is the trans-
fer complexity caused by the feature variants assembled at
any upstream station p. Here, ψ is linked to the uncertainty
associated with performing the sequential activities (e.g., part

selection, fixture selection, tool selection, etc.) that realise a
particular assembly operation.

ψqq =

K∑
k=1

λkqqH
k
qq (11)

where, K is the total number of activities performed in the
station, λkqq is the relative activity difficulty coefficient (λ

k
qq >

0
∑K

k=1 λ
k
qq = 1), and H k

qq is the information entropy asso-
ciated with the variant mix ratio relevant to the k th activity at
station q. Entropy H k

qq is formulated as follows:

H k
qq = −

NP∑
m=1

Pkmlog2 P
k
m (12)

where, Pkm is the probability of occurrence of a choice taking
the mth (m ∈ 1, 2, ..,N p) outcome in the activity k .

Please note that the propagation of the two types of
complexity (i.e., feed and transfer complexity) results in an
increase in the associated assembly system complexity, and
affects overall supply chain complexity dramatically. One
simple way to reduce operator choice complexity is to use
flexible tools and fixtures within an assembly station [31].
Flexibility in tools, fixtures and procedures reduces the cogni-
tive effort associated with the operator’s decision-making by
reducing the number of selections that are required. This ulti-
mately reduces the operator choice complexity and helps to
improve the quality of the assembly and reduce human errors.
Nevertheless, not all assembly processes may be simplified
by such techniques; flexible equipment, specific fixtures or
common assemblymethods can entail major improvements in
the station design and task planning, which are often expen-
sive and may require a time-consuming ramp-up phase [61].

B. PAIR-WISE INTERFACE COMPLEXITY
The term C2 is defined as a function of three main factors: i)
number of pair-wise interfaces in the supply chain network,
ii) number of variants produced by each assembly system,
and iii) the demand uncertainty. Let’s assume that for every
relation in the adjacency matrix S where Sij = 1, the matrix
Qij represents the product mix ratio for modules i and j as
follows:

Qij =


pij1v
pij2v
:

pijOi,v

 =

pij11 pij12 · · · pij1,Oj
pij21 pij22 · · · pij2,Oj

: :
. . . :

pijOi,1 pijOi,2 · · · pijOi,Oj


Oi×Oj

(13)

whereOi is the number of product variants arriving at module
i, Oj is the number of product variants produced at module
j, pijuv is the product ratio of variant u at module i to meet
the demand of product variant v at module j. Following this,
the complexity of each supply interface within an assembly

VOLUME 9, 2021 57911



B. Alkan et al.: Identifying Optimal Granularity Level of Modular ASCs

FIGURE 1. Topological complexity of networks with varying configuration patterns.

supply chain can be defined in the following form:

βij = −

Oi∑
u

Oj∑
v

p∗ijuv log2p
∗ij
uv (14)

p∗ijuv =
pijuv
K

(15)

K =
N∑
i

N∑
j

Oi∑
u

Oj∑
v

pijuv (16)

In this equation, p∗ijuv is used to represent the normalised
interaction factor between modules i and j, which is a
function of both the number of variants in module i and
module j and the mix ratio of the variants of downstream
module i [38]. In this way, the pair-wise interface complexity
defines the level of uncertainty associated with the material
flows between supplier and assemblers.

C. TOPOLOGICAL COMPLEXITY
Topological complexity of a network-based system stems
from the architectural configuration of the network and
depends on the nature of the connectivity. It attempts to
capture the ‘‘intricateness’’ of structural dependency between
system modules [62]. In this research, the topological com-
plexity of an ASC is calculated using the graph energy metric
E (see [63]), defined as the ratio between the sum of the
singular values of the connectivity matrix of the system under
consideration and the number of system modules (Eq. 5).
According to [32], the graph energy of a system increases
as the system moves from centralised architectures to more
distributed topologies.

Figure 1 shows the topological complexity of different
synthetic ASC networks with varying topologies. It can be
observed that topological complexity reduces for networks
with increasingly centralised topologies. Please note that
topological complexity may reach values above one as the
network becomes maximally distributed. Since ASC net-
works are often trees, their topological complexity is expected
to vary between [0, 1]. In a practical way, topological com-
plexity allows us to distinguish between network architec-

tures with a similar number of similarly complex modules
that are nevertheless organised in different ways. Please note
that, for systems such as distributed sensory networks, bio-
logical systems, autonomous systems, etc., topological com-
plexity can take scores of more than two, as a result of high
bi-directional connectivity.

D. AN EXAMPLE COMPLEXITY ASSESSMENT
An example complexity calculation for a supply chain net-
work belonging to a particular product family is illustrated in
Figure 2. The product has four parts (i.e., A, B, C and D)
with multiple variants (e.g., A1 versus A2); which can be
assembled into a maximum of 24 possible final products.
There are eight modules in the supply chain network, where
module 0 is the virtual supplier, modules 1, 2, 3 and 4 are
suppliers in the most upstream echelon, modules 5 and 6 are
intermediate assembly systems and module 7 is the final
assembler. Each module assembles all the possible combina-
torial variants provided by its suppliers and supplies a certain
number of variants to a downstream module. The complexity
of the supply chain configuration is calculated as follows.
• First, the connectivity matrix Sij of the supply chain,
including the virtual supplier, is defined as follows.

Sij =

s00 · · · s07:
. . . :

s70 · · · s77

 =



01111000
00000100
00000100
00000010
00000001
00000010
00000001
00000000


(17)

• Topological complexity is calculated by estimating the
graph energy of the connectivity matrix Sij.

C3 = 0.7803, [E = 6.2426,N = 8] (18)

• For each assembler module, assembly system complex-
ity is calculated by assuming the inherent complexity
of the virtual supplier is zero α00=0. An example cal-
culation is given for assembly system 5. Let’s consider
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FIGURE 2. An illustration of a modular assembly supply chain.

that this assembly system is composed of two assembly
stations and one inspection station (Figure 3). In the
first station, an assembly operator selects one of the two
parts from the tray and places it onto the relevant fixture.
Then, in the second station, an assembly operator selects
one of two parts per given customer order and assembles
it with the part fed from the previous station. In this
operation, the operator has to select one of the two tools
and assembly procedures as appropriate to the part being
assembled. Here, selections of both tools and assembly
procedures are impact on transfer complexity associated
with the interface between stations one and two. Finally,
an inspection operator inspects the final sub-assembly
at station three by selecting the relevant tool, procedure
and fixture relevant to the customer order. Hence, station
complexities are calculated as follows:

ψ5
1 = H1

1 + H
2
1 = 1.8366 bits

ψ5
2 = H1

2 + H
2
2 + H

3
2 = 2.8316 bits

ψ5
3 = H1

3 + H
2
3 + H

3
3 = 3.6182 bits

Ψ5 = ψ
5
1 + ψ

5
2 + ψ

5
3 = 8.2864 bits (19)

Ψii =



0
0
0
0
0

8.2864
8.7855
8.5889


(20)

C1 = 25.6608 bits (21)

• Interface complexities are calculated as follows. Rela-
tionship matrix pijuv for each edge is developed. For
example, the relationship between vertices 2 and 5 is
written as follows.

p25 =
[
6/24 0 5/24 0
0 10/24 0 3/24

]
(22)

• Each relationship matrix is normalised with respect to,
K , total number of interactions within the supply chain
(K=10 in our example). The normalised matrix for
the relationship between vertices 2 and 5 is written as
follows.

p∗25 =
[
6/240 0 5/240 0
0 10/240 0 3/240

]
(23)

• Finally, interaction complexity for each edge is calcu-
lated using Eq. 12. Then total interaction complexity is
estimated using Eq. 3

β01
β02
β03
β04
β15
β25
β36
β56
β47
β67


=



0.424
0.432
0.486
0.430
0.520
0.520
0.686
0.686
0.681
0.681


(24)

C2 = 5.546 bits (25)
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FIGURE 3. Choices in sequential assembly activities.

• Finally, the overall supply chain complexity can be
defined in a two-dimensional form as follows:

C = [C1 : 25.6608,C2C3 : 4.3275(5.546

×0.7803)] bits (26)

IV. OPTIMISATION FRAMEWORK
System decomposition refers to the decomposition of a
system into smaller manageable sub-systems/modules [64].
In this context, one of the important factors that should be
considered in managing supply chain risks is to check that
the complexity across the supply chain is evenly distributed.
Since the uneven distribution of complexity could indicate
that one subsystem might be more costly in terms of man-
agement than the rest [65]. This underscores the importance
of considering the even distribution of complexity across
the system. It is to be understood that modularisation and
functional encapsulation do not decrease intrinsic system
complexity but instead effectively reallocate it in a way that
enables the system to be more easily managed. Another
point to note is that, as the information variety across the
system increases, introducing modularity that carefully take
account of system decomposability can often result in system
architectures that remain workable. This study employs a
multi-objective optimisation framework to obtain the optimal
granularity level of ASC configurations with respect to the
trade-off between variety-induced complexity allocation and
the modularity of ASC network configurations. Figure 4
shows the flow-chart of the proposed approach. Each step is
explained below.

• Step 1 Generate alternate configurations:
Generating all possible combinations of alternate supply
chain configurations creates enormous combinatorial
difficulties. In this research, an iterative decomposition
algorithm, proposed by [31], is adopted to generate
all valid supply chain network alternatives for a given

number of suppliers at the most upstream echelon. The
algorithm is written in the MATLAB programming lan-
guage [66]. In this approach, the output of each node
within the supply network is defined using a coding
approach. As an example, {P1P2} indicates that the first
and second product parts (P1 and P2) will be assem-
bled at one assembly system, whereas {{P1P2}P3} indi-
cates that the third product part will be added to the
sub-assembly {P1P2} that is coming from an upstream
assembly system. The followings are the steps for the
algorithm:

– Step 1.1: Firstly, all sub-assembly combinations
are produced based on the total number of product
parts. Givenm product parts,

(m
1

)
+
(m
2

)
+. . .+

( m
m−1

)
possible sub-assemblies can be generated. As an
example, the possible combinations for a product
with three parts can be written as follows: {P1},
{P2}, {P3}, {P1P2} {P1P3}, and {P2P3}.

– Step 1.2: Next, using the sub-assemblies obtained
from Step 1.1, combinations defining the final
assembly are generated. In our cases, these
combinations are as follows: {{P1}{P2P3}},
{{P2}{P1P3}}, {{P3}{P1P2}} and {{P1}{P2}{P3}}.
This step is vital, as product assembly precedence
relations are checked with respect to the obtained
final assembly definitions and infeasible designs
are eliminated. In this step, assembly precedence
relations are imported to the algorithm in the form
of source and target node pairs defined by the
designer.

– Step 1.3: If the final product description includes
inner braces of more than one cardinality, the inner
braces must have a sub-assembly relationship.
In this case, the sub-assembly is treated as
the finished product defined in Step 1.1. As a
consequence, Step 1.1 should be repeated for
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FIGURE 4. The flow-chart of the proposed framework.

that sub-assembly until the cardinality of all
inner braces equals one, meaning that no further
sub-assembly decomposition is necessary. In our
example, the final assembly codes are generated
as follows: {{P1}{{P2}{P3}}}, {{P2}{{P1}{P3}}},
{{P3}{{P1}{P2}}} and {{P1}{P2}{P3}}. As depicted
in Figure 5, the configuration for {{P2}{{P1}{P3}}}
(Design 2) is infeasible as it does not sat-
isfy the assembly precedence relations given in
Figure 5.a. Note that all design alternatives are
also checked against any plant constraints that
require sub-assemblies to be assembled at specific
nodes.

• Step 2 Calculate supply chain complexity:
As soon as a network configuration is marked as
feasible, the algorithm calculates its intra-module
and inter-module complexities based on the approach
presented in the previous section. Assembly station
complexities Ψ are calculated based on the uncertainty
associated with the selection of i) parts, ii) fixtures,
iii) tools and iv) assembly procedures. It is assumed
that each assembler has a virtual assembly station that
performs part and fixture selections followed by down-
stream a sequence of assembly stations, in which assem-
bly operations are carried out involving selections of
parts to be assembled, tools to be used, and procedures
to be followed. In this context, all calculations are made
based on the aggregation of the final product’s mix ratio.
Here, the final product mix is assumed to be divided
equally between the final product variants to produce
the maximum demand entropy Hmax , is defined by the

following equation:

Hmax = −
N p∑
1

1
N p log2(

1
N p ) (27)

where N p is total number of product variants at the final
assembler. In a similar fashion, inter-module complex-
ity of the configuration is calculated using pair-wise
interface and topological complexity metrics. Once all
calculations are completed, network information (i.e.,
layout information and detailed complexity scores, etc.
is recorded in a database with a unique ID tag.

• Step 3 Pareto-optimality check:
In the last step, the algorithm identifies the non-
dominated solution set from the design space database
by considering the following objectives:

– Objective 1 is to minimise the standard deviation
of intra-module complexities (i.e., assembly sys-
tem complexity) (α1...N ). From a system architect-
ing and design perspective, an even distribution
of module-level complexity is required in order to
reduce the module-level variation in complexity.
This result in better risk distribution across interme-
diate assemblers. Consequently, the first objective
function f1 is defined as follows.

f1 = min(

√∑N
i=1(αi − µ)2

N
) (28)

where, N is the number of assembly systems, αi
is there inherent complexity of the ith assembly
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FIGURE 5. An example network decomposition using the coding approach.

system, and µ is the mean value of the assembly
system complexities.

– Objective 2 is to minimise the inter-module com-
plexity (C2C3). The inter-module complexity cap-
tures the complexity associated with the integration
of the modules and material/data flow within the
network. The contribution of module integration
to the total complexity is indicated by the relative
magnitude of inter-module complexity. When the
total structural complexity of a system is consid-
ered constant, a low inter-module complexity is
often associated with high intra-module complexity
(i.e., complexity embedded within the module) and
vice-versa [32]. Objective function 2 is described as
follows.

f2 = min((
N∑
i=1

N∑
j=1

βijSij)

∑Nσ
i=1 σi

N
) (29)

Our implementation of multi-objective optimisation (i.e.,
minimisation) involves searching the entire design space
D for the Pareto front solution set R and sorting the
non-dominated solution set. In this research, a modi-
fied Quick-sort algorithm (see [67]) is used to find the
non-dominated solution set, due to its ability to quickly sort
a large number of solutions. Once, this Pareto-optimal set is
identified, the corresponding solutions could be analysed for
other performance indicators, such as: cost, flexibility and

sustainability, etc., within the context of broader supply chain
Multi-Criteria Decision-Making (MCDM) framework. The
details of this MCDM framework will be part of a future
manuscript.

V. RESULTS AND DISCUSSION
This section discusses the application of the proposed frame-
work in two case studies. The case studies presented here are
deployed on a PC with AMD Ryzen 5 1500X Quad-Core
Processor with 8 GB RAM. The first case involves a hypo-
thetical scenario for the design of a supply chain consisting of
eight suppliers. The second case study is derived from heavy
industry, where the proposed optimisation framework is used
to analyse unique supply chain configurations for bulldozer
assembly logistics.

A. CASE STUDY ONE
In a hypothetical supply network consisting of eight suppliers
at the most upstream echelon, each supplier delivers two vari-
ants of a single product part with identical demand. The final
product is assumed to have no assembly precedence relation
constraints, i.e., full integral architecture. Each assembly sys-
tem produces a product sub-assembly with sequential flow,
i.e., no parallelism. Once the assembly operations are com-
pleted, the quality of each sub-assembly is checked at a final
inspection station. It is assumed that i) all assembly systems
have a virtual assembly station at the start of the assembly
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FIGURE 6. Pareto-front of the generated supply chain configurations for case one.

that selects the first part to be assembled and ii) assembly
and inspection operations are carried out by human operators.
Each assembly operation requires a unique assembly tool,
assembly fixture, and assembly procedure and their selection
probabilities are calculated based on the mix ratio of the
input module from the upstream station. Figure 6 shows the
Pareto-optimal front for this ASC network.

The Pareto-front, highlighted as red circles, identifies the
non-dominated solutions that provide an optimal trade-off
between the complexity induced by the modularity and the
standard deviation of module complexities within the supply
system. It can be observed that increasing the modularity of
the supply chain leads to a better distribution of complexity
over the modules resulting in low standard deviation values,
but that it also increases the complexity associated with the
supply interfaces and the topology of the network.

It is in accordance with our initial hypothesis that modu-
larity of the supply chain network and average intra-module
complexity conflict with each other. This is an interesting
point to mull over when system architects need to decide on
the design of a supply chain network. For example, a com-
pany might choose a supply network architecture with sim-
pler and more balanced modules (i.e., lower complexity at
the module level) if they have the confidence to manage the
resulting high complexity of supplier-assembler interactions.
From Figure 6, solution C represents this scenario. On the
other hand, centralised architectures might be preferable

when the industry has a reduced number of product variants
that make it easier to handle the resulting complexity at the
module level. Moreover, if it can be assumed that centralised
architectures tend to be less expensive than decentralised
architectures, ceteris paribus, solution A might be prefer-
able, since it involves a smaller number of more centralised,
high complexity assembly systems. From the Pareto-front,
the majority of solutions that are located between the points B
and C provide an optimum trade-off between both considered
objectives and in certain situations, industries that do not have
clear preferences for either of the objectives might prefer
them as a safer option (i.e., solution B). This kind of decision
is vital for complexity management strategies that might be
put in place during the supply chain planning phases.

B. CASE STUDY TWO
The second case study considers a modular bulldozer assem-
bly supply chain selected from heavy vehicle industry. A bull-
dozer is a strong tractor with a huge metal plate that is used in
construction and conversion projects to clear large quantities
of sand, soil or similar material. Bulldozers may be used in
a wide range of settings from mines and quarries, to military
bases, heavy industrial installations, manufacturing compa-
nies and farms. Product parts of a bulldozer can be combined
into 18 major groups: frame assembly, case, brake, drive,
plant carrier, platform, fender, roll-over, transmission, trans-
mission casing, engine, fan, bogie assembly, pin assembly,
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FIGURE 7. Pareto-front of the generated supply chain configurations for case two.

TABLE 2. Bulldozer sub-assemblies.

and track-roller frame assemblies (A and B) [35]. In this
study, the product parts: track-roller frame assembly A and
B, transmission, boogie assembly, engine, plant carrier, drive
and case are assumed to have the following number of product
variants: two, two, four, two, three, two, three and two; result-
ing in a total of 1152 product variants at the final assembler.
Table 2 shows the names and number of variants for each
sub-assembly.

It can be seen from Figure 7 that a reduced number of
solutions are presented on the Pareto-front. This is because
the assembly precedence constraints define a feasible region
of the design space. Despite this, as with the first case

study, we find that an increase in standard deviation of the
module complexity tends to be accompanied by a decrease
in the inter-module complexity and vice-versa. Two solu-
tions (A and B) that represent distinct strategies along the
Pareto-front are chosen for further discussion. From the
whole set of feasible solutions, it should be noted that Solu-
tion A represents one of the most preferable of all possi-
ble centralised architectures. Similarly, Solution B represents
one of the most preferable of all decentralised architecture
solutions. Solutions A and B each consist of three and five
tiers, respectively. Both solutions are transformed to sup-
ply chain schematics in Figure 8, representing the various
sub-assemblies at different stages of the assembly process.
The ability of the approach to provide feasible solutions is
validated by specialists in the field. It is also possible to
make small modifications to the supply chain architecture to
better fit with the industrial requirements. The alternate archi-
tectures should be compared by using certain performance
measures that might be either qualitative or quantitative to
arrive at themost preferable solution for the considered indus-
try. Therefore, this methodology should be considered as a
primary guide that filters from a set of solutions, the most
suitable ones that then need to be further analysed.

C. DISCUSSIONS
The framework introduced in this paper contributes to the
area of supply chain complexity management by proposing a
new approach with which to characterise and optimise assem-
bly supply chain network configurations. This approach illus-
trates the use of a novel, multi-factor information-entropic
complexity measure to guide multi-criteria optimisation in
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FIGURE 8. Selected design solutions for bulldozer assembly supply chain (Suppliers and assemblers are represented as light and dark blue
squares, respectively).

order to arrive at non-dominated solutions that provide
a good compromise between architectural modularity and
variety-induced supply chain complexity. Real world supply
chains can encompass a large number of different suppliers,
assembly plant locations, etc. At any one point in time, many
alternative configurations of this network may be possible.
Moreover, the requirements of an assembly supply chain
may also evolve over time as products are commissioned
and decommissioned, requiring repeated refinements and
re-design of the assembly supply chain or parts thereof. This
results in a very challenging design challenge that is difficult
to verify manually. Using the approach presented here it, it is
possible to screen the design space automatically in order to
candidate ASC network designs that optimise the trade-off
between modularity and assembly system complexity while
respecting the constraints on product assembly and reflecting
the implications of the required product variant mix.

The approach, however, has certain limitations that need to
be addressed. Firstly, the coding algorithm used to generate
the feasible design space could be ineffective for network
designs with a large number of suppliers. This is because
the number of combinations of a supply network exponen-
tially increases with the quantity of suppliers [23], [31].
Sophisticated clustering algorithms and meta-heuristics opti-
misation methods can be employed to offset the increased
computational load within an acceptable time-frame. Cur-
rently, the effects of topological complexity on overall
inter-module complexity is assumed to be linear due to lack
of data. This is a crude assumption that should be further
evaluated via case studies in which the relationships between
architectural topology and performance indicators such as

system reliability, operational performance and system cost
can be established.

VI. CONCLUSION AND FUTURE WORK
The paper presents an optimisation approach to verify the
trade-off betweenmodularity and variety-induced complexity
in assembly supply chain planning phases. The proposed
approach offers automatic verification of network architec-
tures; thereby, contrary to pen-and-paper based complex-
ity quantification approaches, providing reduced complexity
measurement effort and allowing designers to explore a wider
design space in a relatively short time. As future work,
the presented complexity definition will be further calibrated
using a series of empirical studies, where the supply chain
complexity model can be correlated with a series of system
performance indicators observed at both design and opera-
tional stages. The presented approach is also planned to be
integrated into a wider MCDM-based network design optimi-
sation framework, where supply network designs are verified
and optimised within the context of a wider set of decision
criteria (e.g., cost, sustainability, flexibility, etc.).
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