
                          Bourne-Worster, S. L., Feighan, O. J. H., & Manby, F. R. (2021).
Reliable transition properties from excited-state mean-field
calculations. The Journal of Chemical Physics, 154(12), [124106].
https://doi.org/10.1063/5.0041233

Peer reviewed version

Link to published version (if available):
10.1063/5.0041233

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via American Institute of Physics at ttps://doi.org/10.1063/5.0041233 . Please refer to any applicable terms of
use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/401537758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1063/5.0041233
https://doi.org/10.1063/5.0041233
https://research-information.bris.ac.uk/en/publications/9483a50c-bf35-437c-bcf4-2c882973d472
https://research-information.bris.ac.uk/en/publications/9483a50c-bf35-437c-bcf4-2c882973d472


Reliable transition properties from excited-state mean-field calculations
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Delta-self-consistent field theory (∆SCF) is a conceptually simple and computationally in-

expensive method for finding excited states. Using the maximum overlap method to guide

optimization of the excited state, ∆SCF has been shown to predict excitation energies with a

level of accuracy that is competitive with, and sometimes better than, that of TDDFT. Here

we benchmark ∆SCF on a larger set of molecules than has previously been considered,

and, in particular, we examine the performance of ∆SCF in predicting transition dipole

moments, the essential quantity for spectral intensities. A potential downfall for ∆SCF

transition dipoles is origin dependence induced by the nonorthogonality of ∆SCF ground

and excited states. We propose and test a simple correction for this problem, based on

symmetric orthogonalization of the states, and demonstrate its use on bacteriochlorophyll

structures sampled from the photosynthetic antenna in purple bacteria.
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I. INTRODUCTION

The matrix element of the electric dipole operator µ̂ between two quantum states, commonly

known as a transition dipole moment µ, is a crucial quantity in simulating spectra and describ-

ing excited-state dynamics of molecular systems. The magnitude of the transition dipole moment

|µ| defines the strength with which a transition between the two states can couple to the elec-

tromagnetic field to absorb (or emit) light, while the dipole-dipole interaction between transition

dipole moments provides the simplest model for the coupling between excited states on different

chromophores.

An important application of this second property is in describing transport of excitons through

a network of chromophores, as is seen in the early stages of photosynthesis, as well as synthetic

analogues, such as organic polymer light-emitting diodes1 and chromophores hosted on DNA

scaffolds.2–4 These systems are often simulated using a Frenkel exciton Hamiltonian,5–8

Ĥ = ∑
i

Ei |i〉〈i|+∑
i6= j

Vi j |i〉〈 j| , (1)

whose off-diagonal elements, Vi j, are the coulomb interaction between the transition dipole mo-

ments of the relevant excitation on each chromophore. The light-harvesting antenna in photo-

synthetic organisms typically contain large numbers of chromophores, which are, themselves,

relatively large conjugated organic molecules. For example, the antenna in purple photosynthetic

bacteria consists of 3–10 light-harvesting II (LHII) complexes (and one LHI complex) per reac-

tion centre,9,10 each containing 27 (32) bacteriochlorophyll-a (BChla) chromophores of around

140 atoms.11,12 Furthermore, the transition dipole moment of each chromophore, and hence the

coupling elements of the Hamiltonian, fluctuate constantly with the vibrations of the molecules.

To capture the full time-dependent Hamiltonian, even approximately, calculation of the transition

dipole moments should therefore ideally be computationally cheap, as well as reasonably accurate.

Current models of exciton dynamics in these systems rely on parameterising the coupling elements

Vi j from experiment,5,13–17 or use time-dependent density functional theory (TDDFT) to generate

representative transition dipole moments from a small handful of chromophores.18,19 On-the-fly

TDDFT has been used in this context for a single LHII complex,20 and the present work forms

part of a wider effort to scale and refine the approach reported there.

TDDFT21–23 is a widely popular method for obtaining the properties, including transition

dipole moments, of excited states.24,25 With the right choice of exchange-correlation functional
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and basis set, it yields good accuracy compared to correlated wavefunction methods such as CC226

and EOM-CCSD25,27, at a much lower computational cost. In TDDFT, excitation energies emerge

as the eigenvalues of the Casida equations.22,28

The transition vectors (which arise as eigenvectors) are expressed in a basis of excitations i→ a

and corresponding de-excitations. Each one can be reshaped into a transition density matrix, with

columns i and rows a, from which the transition properties of the excited state can easily be

calculated. The transition dipole moment, for example, is found by tracing the transition density

matrix with the dipole operator µ̂.

However, TDDFT is still too costly to perform dynamics calculations involving large numbers

of BChla chromophores, and this paper amounts to an investigation into how feasible it would be

to use the cheaper ∆SCF method. Crucially ∆SCF is not only simpler for the energy evaluation;

the excited-state gradient is also available very cheaply because it can be computed using standard

ground-state mean-field gradient theory.

∆SCF is conceptually simple. Excited states are found by promoting an electron from an oc-

cupied orbital in the ground state to one of the unoccupied virtual orbitals. The orbitals are then

reoptimised for the excited electron configuration using a normal SCF iterative procedure.29–33

Unlike TDDFT, therefore, ∆SCF produces a distinct set of molecular orbitals for the excited state.

The transition dipole moment can be calculated as a matrix element between the ground-state and

excited determinants.

Initial attempts to locate excited states via an SCF procedure rigidly maintained the orthog-

onality of the ground and excited states by relaxing the excited state particle (and hole) orbitals

within the ground-state virtual space29,30 (or respectively in the virtual and occupied spaces32). In

addition to the convenience of dealing with orthogonal states, these procedures also ensure that re-

laxing the orbitals does not collapse the excited state wavefunction back down to the ground state.

Gilbert et al. later argued that imposing orthogonality in this way led to wavefunctions that were

no longer solutions of the full SCF equations and propagated errors and approximations in the

ground state.33 They relaxed the orthogonality condition and searched for high energy solutions to

the SCF equations by minimising the energy of the excited state with the added condition that the

occupied orbitals at each step of the iterative cycle should overlap as much as possible with their

counterparts in the previous iteration. This is known as the maximum overlap method (MOM) and

has been shown to be highly successful in finding excited state energies.33–36 The sizeable test set

that we consider in this paper adds to this body of evidence, as well as benchmarking the technique
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for transition dipole moments.

However, as Gilbert et al. acknowledge in their original paper, allowing non-zero overlap

between the ground and excited state can artificially enhance the size of the transition dipole

moment (and other transition properties). Nonorthogonality of the states introduces a non-zero

transition charge, equal to the size of the overlap. Transition dipole moments calculated from the

charged transition density are origin-dependent and therefore have a completely arbitrary magni-

tude. When the state overlap is very small and the molecule is is positioned with its centre of mass

on, or close to, the origin, the error associated with the charged transition density is small, or even

negligible. Conversely, if the molecule is positioned far away from the origin, as might be the case

for a chromophore located within a larger complex or aggregate centred collectively on the origin,

the error associated with this additional charge can quickly escalate. Here we propose and test a

simple correction that can be applied to the transition density matrix after the SCF cycle, to restore

the orthogonality of the ground and excited state.

II. THEORY

The transition dipole for an excitation from an initial state |Ψ1〉 to a final state |Ψ2〉 is defined

in the standard length gauge as

µ1→2 = 〈Ψ2|µ̂|Ψ1〉 , (2)

where µ̂ is the 3-component dipole operator.

In ∆SCF the states |Ψn〉 are Slater determinants constructed from spin orbitals {|φ (n)
j 〉} with

n = 1,2. The orbitals are orthonormal within each state, but, in general, nonorthogonal between

states, with inner products S21
jk = 〈φ (2)

j |φ
(1)
k 〉. The inner product of the two determinants is the

determinant of the orbital inner products:

〈Ψ2|Ψ1〉= |S21| . (3)

Following the normal rules for nonorthogonal determinants laid down by Löwdin37, the transi-

tion dipole can be written

〈Ψ2|µ̂|Ψ1〉= ∑
jk
µ21

jk adj(S21) jk , (4)

where µ21
jk = 〈φ (2)

j |µ̂|φ
(1)
k 〉 and where adj denotes matrix adjugate.
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Alternatively the value of the transition dipole can be computed from the reduced one-particle

transition density matrix:

〈Ψ2|µ̂|Ψ1〉= tr(µ̂ |Ψ1〉〈Ψ2|) = tr(µD21). (5)

Here D21 is the one-particle reduced transition density matrix in the atomic-orbital basis, given by

D21 = C(2) adj(S21)C(1)† (6)

where C(n) are the molecular-orbital coefficients for state n. For unrestricted calculations the spin

summation for the reduced density matrix has additional factors that would be 1 or 0 if a common

set of orthonormal orbitals were being used, but here have to be considered explicitly:

D21 = D21,α |S21,β |+D21,β |S21,α | , (7)

where D21,σ is the analogue of D21 for the σ spin channel.

As noted above, in ∆SCF, the sets of orbitals {φ (1)
j } and {φ (2)

k } for the ground and excited

states are optimised independently, so that the resulting states |Ψ1〉 and |Ψ2〉 are not necessarily

orthogonal. As previously recognised in the literature,33 non-zero overlap between these two states

leads to errors in the calculated transition dipole moment. In particular, when states are not exactly

orthogonal there is a non-zero transition charge equal to the value of the overlap: q21 = 〈Ψ2|Ψ1〉.
This breaks the origin-independence of the transition dipole moment, making the calculated values

virtually meaningless. While the transition charge is sometimes exactly zero (when the ground and

excited states are of different symmetries) or very small, any violation of translational invariance

is certain to prevent widespread use of transition properties from ∆SCF, and needs to be fixed.

For ∆SCF calculations using Hartree–Fock theory one can clearly proceed by performing

nonorthogonal configuration interaction,38,39 not only fixing the transition dipoles but also (pre-

sumably) generally improving the quality of the description. On the other hand, for ∆SCF based

on DFT, such a procedure is not well defined because the underlying Slater determinants are un-

derstood not to be “the” wavefunctions, nor the Hamiltonian to be “the” Hamiltonian.40 It would

be possible to build on the approach developed by Wu et al. in the context of constrained DFT,40

but that also introduces other choices and approximations.

Another possibility is to correct the transition dipole moment by adding in the dipole of the

nuclear charges, weighted by the overlap of the ground and excited state. This is equivalent to

repositioning the molecule before calculating the transition dipole moment, such that its centre of
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charge sits at the origin. This approach has been used successfully in simulations of absorption

spectra41,42 and we will briefly comment on its effectiveness for calculating the absolute magni-

tudes of transition dipoles. However, while this correction does, by definition, ensure translational

invariance of the calculated transition dipole moment, it does not address the underlying cause of

the problem and neither does it eliminate the transition charge.

Here we instead focus on the simple expedient of using symmetric orthogonalization to ensure

exact orthogonality. Recall that symmetric orthogonalization mixes the two states to make a pair

of states that are orthogonal while being as close as possible to the original states, and is defined

by the transformation

|Ψν̃〉= ∑
ν

|Ψν〉 [S−1/2]νν̃ (8)

where S =
(

1 S
S 1

)
and S = 〈Ψ2|Ψ1〉. Based on this transformation, the transition density between

the orthogonalized states is given by

D̃21 =
1

4(1+S)

[
(1−a2)(D11 +D22)+(1+a)2D21 +(1−a)2D12] (9)

where a =
√

1+S/
√

1−S; this parameter is equal to 1 when S = 0, recovering the expected result

D̃21 = D21 in this limit. In this work we explore the quality of ∆SCF transition dipoles based on

the symmetrically orthogonalized transition density.

III. COMPUTATIONAL DETAILS

Calculations were performed on a set of 109 small closed-shell molecules containing H, C, N,

O and F. These structures are a subset of the benchmark set used in reference,43 with molecules of

12 atoms or fewer.

Reference energies and transition dipole moments (reported in atomic units) were calculated

for the 3 lowest energy singlet excited states of each molecule using EOM-CCSD with an aug-

cc-pVTZ basis set.44–46 The same quantities were also calculated for the 6 lowest energy sin-

glet excited states using TDDFT with the CAM-B3LYP functional47 and aug-cc-pVTZ basis set.

CAM-B3LYP has consistently been shown to perform well for prediction of the optical properties

of both small molecules26,27 and a large number of conjugated chromophores of various sizes.48–50

Both EOM-CCSD and TDDFT calculations were performed using Gaussian 16.51 Excited

states were cross-referenced between the two methods using the symmetry labels provided by

Gaussian. In a small number of cases, the symmetry labelling was unsuccessful or defaulted to a
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different choice (non-abelian or highest order abelian) of point group between the two methods.

In these cases, the excited states were matched by hand based on descent in symmetry and their

composition, energy, and transition dipole moment. A full list of symmetries and indices of the

selected transitions can be found in the supplementary material.

These data were used to benchmark the performance of ∆SCF in predicting transition prop-

erties, both with and without the symmetric orthogonalization correction proposed in equation 9.

∆SCF calculations were performed in the Entos Qcore package,52 with the CAM-B3LYP func-

tional and aug-cc-pVTZ basis set.

We investigated only the HOMO-LUMO singlet transition. Using ∆SCF, we calculated the

properties of the state corresponding to the spin-conserving excitation of a HOMO electron into

the lowest energy virtual orbital. This does not correspond to a true singlet excitation, which would

contain a superposition of α and β excitations. The spin-purification formula,

∆ES = 2∆E i,α→a,α −∆E i,α→a,β , (10)

was applied to more accurately estimate the true singlet excitation energy.53–55 However, this cor-

rection is applied at the end of the SCF cycle and does not affect the composition of the molecular

orbitals, which are used to calculate the transition dipole moment.55

Since ∆SCF uses a variational principle to optimise the excited state orbitals, a known weakness

is that the calculation can converge on the ground state rather than the desired excited state. In

most cases, this can be prevented using MOM33, which selects orbitals to be occupied based on

maximum overlap with each occupied molecular orbital in the previous iteration. This stops the

orbitals from changing significantly in any particular step of the optimization and helps stabilize

the calculation around the excited state stationary points, rather than the global minimum (ground

state). However, in a small number of cases, additional help was needed to converge the SCF

cycle to the correct excited state. There are a number of well-established techniques to address

this issue. We used a combination of Fock-damping, modifying the direct inversion of iterative

subspace (DIIS) protocol,56–58 and starting from an initial guess corresponding to excitation of

half an electron.

The properties of the ∆SCF transition were compared to those of the TDDFT transition with

the largest coefficient for HOMO-LUMO excitation (based on the orbital indexing in the TDDFT

calculation), along with the corresponding EOM-CC transition. For a few molecules this was not

an appropriate comparison to make, either because of a reordering of orbitals with very similar

7
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energies or because there was no single state dominated by the HOMO-LUMO transition. In these

cases, we either selected the correct TDDFT transition by hand or calculated the ∆SCF transition

corresponding to the lowest energy TDDFT transition. Full details of these choices can be found

in the supplementary material.

IV. RESULTS

First, we test the effect of applying the symmetric orthogonalization correction, proposed

above, to overlapping ground and excited states. Figure 1 shows the error relative to EOM-CCSD

in the magnitude of the transition dipole moment, as a function of the ground-excited state overlap

for each molecule in the test set using ∆SCF with or without the correction. In panel A, the coor-

dinates of the entire molecule have been translated by 100 Å in each cartesian direction. Physical

properties like excitation energy and transition dipole moment should be invariant under this trans-

lation; but when there is non-zero overlap between the ground and excited state, the calculation

of the transition dipole moment becomes origin-dependent and this coordinate shift introduces an

error into the calculated values of |µ|.
Although the ground-excited state overlaps are small (< 0.02) for every molecule in the test set,

when the molecule is displaced far away from the origin, it is sufficient to produce highly unphys-

ical transition dipoles. Using the symmetric orthogonalization correction, the origin dependence

is completely removed and these errors do not arise.

An important consideration is whether applying the correction degrades the accuracy of the

∆SCF calculation in any way. This is difficult to see, since the origin-dependence of the the

uncorrected transition dipole moments means that they cannot be taken as a reliable indication of

the ‘correct’ ∆SCF transition dipole. However, we note that, by construction, the amount of ground

and excited state dipole that are mixed into the transition density (the amount that the correction

‘changes the answer’) scales roughly linearly with the size of the overlap for small overlaps. When

the overlap is zero (and the uncorrected ∆SCF transition dipole is therefore already ‘correct’), the

symmetric orthogonalization procedure does not change the states, transition density or transition

dipole at all. At the largest overlaps present in this test set, the change in the transition dipole that

comes from applying the symmetric orthogonalization correction is still very small, as illustrated

in panel B of Figure 1.

Note that we do not attach any significance to whether the corrected or uncorrected transition

8
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FIG. 1. Absolute error in the magnitude of the transition dipole moment calculated using ∆SCF vs. EOM-

CCSD, as a function of the overlap between the ground and excited state. The coordinates of the molecules

have been translated by [100,100,100] Å in panel A compared to B. Without any correction (red dots),

the coordinate shift results in unphysically large transition dipoles. This can be avoided by using the sym-

metric orthogonalization correction (black dots). All calculations used the aug-cc-pVTZ basis set. ∆SCF

calculations were performed using the CAM-B3LYP functional.

dipole magnitude is closer to the reference value since the uncorrected magnitude can be made to

have any value by shifting the coordinates of the molecule. The molecules in this test set are small,

with average atomic positions (not center of mass) defining the origin, so we do not expect the

uncorrected transition dipole moments to be wildly wrong. However, even shifting the molecule

so that its centre-of-mass lies on the origin is sufficient to account for the difference in values seen

on the right-hand side of Figure 1. For the larger molecules in the test set, the transition dipole

may not span the whole molecule and the concept of the ‘correct’ position or transition dipole for

the molecule becomes even less clear.

Correcting the transition dipole by including a weighted amount of the nuclear dipole produces

near-identical results to the symmetric orthogonalization correction. This is illustrated in Figure

S1 of the supplementary material. It would therefore be reasonable to choose either of these

corrections based on convenience or suitability for a particular application.

For the remainder of this paper, the symmetric orthogonalization correction will be applied for

all reported ∆SCF transition dipoles.

Figure 2 compares the excitation energy of each molecule calculated using TDDFT and ∆SCF
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FIG. 2. Excitation energies calculated using TDDFT (black cross) or ∆SCF (red dot) compared to the

EOM-CCSD reference values. The target values are given by the solid black line y = x. The insert in

the lower right hand corner show the probability distribution for the error in each method compared to the

EOM-CCSD reference. The outlier circled in green is excluded from this error analysis (see also table I).

All calculations used the aug-cc-pVTZ basis set. ∆SCF and TDDFT calculations were performed using the

CAM-B3LYP functional.

with the value predicted by EOM-CCSD. The energies predicted by ∆SCF are at least as accurate

as those predicted using TDDFT, if not slightly more so. TDDFT with CAM-B3LYP has a ten-

dency to slightly underpredict the excitation energy, which is slightly less pronounced in ∆SCF.

The exception is one very noticeable outlier, highlighted with a circle in figure 2.

This outlier is a perpendicular ethene dimer, and it serves to illustrate a key situation where

∆SCF may not be an appropriate choice of method. The two highest occupied molecular orbitals

in the ground state of the ethene dimer are degenerate, representing the π-bonding orbital on each

monomer. The two lowest unoccupied molecular orbitals are similarly very close in energy and

are in-phase and out-of-phase combinations of the π-antibonding orbitals on each molecule. Both
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EOM-CCSD and TDDFT predict that the two lowest energy excitations of the ethene dimer are

degenerate linear combinations of the local excitations with an excitation energy of 7.5 eV and

transition dipole moments in the x and y directions (the principal axis being z). ∆SCF, by con-

struction, cannot capture the mixed nature of these excitations,59 and instead predicts excitations

with energies around 7 and 10 eV (shown) and transition dipoles in the xy plane.

Excluding the outlier, the mean error in the ∆SCF excitation energies compared to EOM-CCSD

is 0.35 eV, with a standard deviation of 0.25 eV (table I). For TDDFT, the mean error is 0.41 eV,

with a standard deviation of 0.27 eV. For excitation energies, ∆SCF is therefore clearly worth

considering as a cheap and accurate alternative to TDDFT. This is in good agreement with earlier

studies benchmarking ∆SCF excitation energies for large organic dyes.36,60

Figure 3 makes the same comparison for |µ|. By eye, ∆SCF produces slightly more scatter

around the EOM-CCSD reference than TDDFT but has a broadly similar accuracy. This is borne

out in a more detailed numerical analysis. The mean error in |µ| for ∆SCF compared to EOM-

CCSD is 0.07 a.u. (atomic units for transition dipoles = ea0), with a standard deviation of 0.08

a.u. (table I). For TDDFT, the mean error is 0.03 a.u., with a standard deviation of 0.06 a.u..

There is, again, a single obvious outlier where ∆SCF apparently performs far worse than

TDDFT. This outlier corresponds to a stretched version of the benzene molecule. Like the ethene

dimer described above, the lowest energy excitation of this structure is a roughly equal mix of

HOMO to LUMO and HOMO−1 to LUMO+1 transitions. In this case, however, both HOMO

and HOMO−1 and LUMO and LUMO+1 are exactly degenerate and this creates some flexibility

in the definition of the transition and its dipole moment. The transition dipole moment found by

∆SCF agrees very well with that for an excitation that is an equal mix of HOMO to LUMO+1 and

HOMO−1 to LUMO, which, given the degeneracy of the states, is an equally valid choice. This

outlier should therefore be viewed not as a failure of ∆SCF but as a reminder that there isn’t one

correct transition dipole moment when degenerate states are involved.

This test set contains two other structures for benzene, with slightly different bond lengths. For

these variations, coupled cluster and TDDFT find nearly pure, degenerate HOMO to LUMO and

HOMO−1 to LUMO+1 transitions, for which ∆SCF predicts very accurate transition dipoles.

Since ∆SCF was unable to capture the true nature of the transition in the ethene dimer discussed

above, we might expect this to account for one of the larger errors in figure 3. However, it happens

that the magnitude of the dipole moment for the combined transition is very similar to that of

the single-determinant transition predicted by ∆SCF (although their directions are different). In
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FIG. 3. Transition dipole magnitudes (|µ|) calculated using TDDFT (crosses) or ∆SCF (dots) compared to

the EOM-CCSD reference values. The target values are given by the solid black line y = x. The insert in

the lower right hand corner show the probability distribution for the error in each method compared to the

EOM-CCSD reference. The outlier circled in green is excluded from this error analysis (see also table I).

All calculations used the aug-cc-pVTZ basis set. ∆SCF and TDDFT calculations were performed using the

CAM-B3LYP functional.

general, there does not appear to be a strong correlation between error in the ∆SCF excitation

energy and the ∆SCF transition dipole magnitudes.

Having established the performance of ∆SCF vs. TDDFT, we move on to look at the perfor-

mance of ∆SCF in calculating the transition properties of the 27 BChla in the LHII complex of

purple bacteria. As before, we focus on the HOMO-LUMO transition, which, in this case, is the

Qy transition between two sets of π-bonding molecular orbitals spread over the conjugated ring

system. The corresponding transition dipole lies approximately along an axis connecting opposing

nitrogen atoms on the tetrapyrrole ring. We take the structures of the chromophores from a single

snapshot of the molecular dynamics simulation by Stross et al.18 This chromophore is too large to
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FIG. 4. A. Excitation energies and B. transition dipole magnitudes of the 27 BChla molecules in the LHII

complex of purple bacteria, calculated using ∆SCF vs. TDDFT. All calculations used the PBE0 functional

and Def2-SVP basis set. To highlight the correlation between the methods, we plot the lines y = x+C on

each subplot. The interpretation of the intercept C is discussed in the text.

treat with EOM-CCSD, so we use TDDFT as our reference, bearing in mind its performance on

the test set of smaller molecules. We use the PBE0 functional61,62 and Def2-SVP basis set63, in

line with Ref. 18.

As shown in Figure 2, the excitation energies calculated using ∆SCF correlate extremely well

with those predicted by TDDFT and lie well within the range of error of TDDFT. This suggests

both that the ∆SCF excitation energies are accurate and that small variations in the energy between

the different chromophores are physically meaningful.

By contrast, there is a significant difference between the magnitude of the transition dipoles

predicted by TDDFT and ∆SCF, with ∆SCF predicting magnitudes that are, on average, 0.42

a.u. larger. This is larger than the average error expected for TDDFT and ∆SCF compared to

EOM-CCSD but within the full range of errors observed for the test set of small molecules. We

note that the difference between TDDFT and ∆SCF will have contributions from the error in both

methods and it is not clear from figure 4 which will be the largest contribution. However, while it

appears that the error in the ∆SCF transition dipole moment is towards the higher end of what we

might expect, it is reassuring that the values remain well-correlated with those from TDDFT. This

suggests that ∆SCF could be used to create a valid pictures of how the transition dipoles of each

chromophore change over the course of a molecular dynamics simulation.
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One chromophore is missing from figure 4, as the ∆SCF calculation collapsed back to the

ground state. This is a hazard of the ∆SCF method, and we plan to keep working on robustness,

including for example by implementing the initial maximum overlap method34 (IMOM) based on

orbitals from an initial averaged calculation.

V. DISCUSSION

We have benchmarked the excitation energies and transition dipole magnitudes predicted by

∆SCF for a large set of small organic molecules. In line with previous work on larger, organic

chromophores, we have shown that ∆SCF predicts excitation energies with a very similar accu-

racy to TDDFT, compared to a highly accurate EOM-CCSD reference. TDDFT still outperforms

∆SCF in predicting the magnitudes of transition dipoles but the error in the ∆SCF predictions are

sufficiently small that it can still be considered a useful alternative when TDDFT is too compu-

tationally demanding or when speed is of greater importance than higher precision. In contrast

to earlier studies, we have focused on testing a large number of different molecules, rather than a

range of functionals and basis sets.

A potential downside of many excited state SCF methods, including the MOM, used here, is

that the excited state molecular orbitals are optimised independently of the ground state orbitals

and there is consequently no guarantee that the ground and excited state will be orthogonal. In

their paper first introducing the MOM, Gilbert et al. argue that orthogonality is not an expected

property of SCF states, which are approximations of the exact quantum states33. They further

demonstrate that the MOM tends to converge on excited states that only overlap with the ground

state by a small amount. Nevertheless, even a small overlap can introduce a problematic origin

dependence into the calculation of the transition dipole moment, particularly when the relevant

part of the molecule is not close to the origin of the coordinate axis. We have demonstrated

that performing a symmetric orthogonalization of the ground and excited states produced by the

SCF optimization is a simple way to remove these small overlaps without introducing error into

the calculation of the excitation energy or significantly changing the identity of the states. We

have demonstrated the use of this correction in the context of simulating photosynthetic antenna

complexes, which consist of multiple chromophores arranged into a larger aggregate structure.

In a molecular dynamics simulation, for example, these complexes would typically be centred

globally on the origin, with each individual chromophore therefore being displaced well away
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from the origin. Applying our simple correction to the transition density matrix is significantly

more straightforward than recentering every single chromophore (whilst also keeping track of

its original position relative to all the other chromophores). We anticipate that this trick will be

extremely useful in the application of cheaper excited-state SCF methods to biological systems.

We have seen that the greatest potential for ∆SCF to fail occurs when the transition of interest

is highly mixed in nature. This is not surprising, since ∆SCF is constructed to deal with transi-

tions between a single occupied ground state orbital and a single (relaxed) virtual orbital. Highly

mixed transitions usually occur when there are low-lying virtual orbitals of the same symmetry

with very similar energies. By calculating the energies and symmetries of the molecular orbitals

(programs like Gaussian provide an option to do this automatically), a simple inspection would

identify molecules with a greater risk of highly mixed transitions, helping to determine whether

∆SCF could be appropriately used. Furthermore, large molecules, for which TDDFT may become

prohibitively expensive, typically have much lower symmetry than the small molecules considered

here, greatly reducing the chances that near-degenerate molecular orbitals of the same symmetry

will exist.

Looking forward, we suggest that there is potential to further improve the ability of ∆SCF to

predict accurate transition dipole moments. Previous work by Kowalczyk et al.36 demonstrates

that much of the error in ∆SCF excitation energies arises from spin contamination and that this

effect is more pronounced for functionals with a smaller amount of exact exchange. While excita-

tion energies can be, at least partially, corrected for spin contamination using the spin purification

formula described above, this correction does not extend to the molecular orbitals used to calculate

the transition density, and related properties. We hypothesise that the performance of ∆SCF for

transition dipoles could be improved by incorporating spin purification into the calculation of the

molecular orbitals. This could be done, for example, by minimising the spin-purified energy in the

SCF cycle, rather than applying the correction at the end of the energy calculation. Trialling such

a procedure is, however, beyond the scope of the current study.

SUPPLEMENTARY MATERIAL

See the Supplementary Material for all numerical data presented in this paper, and xyz structure

files for the chlorophyll geometries.
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TABLE I. Error in excitation energies and transition dipole magnitudes calculated using ∆SCF and TDDFT

at the CAM-B3LYP/aug-cc-pVTZ level of theory. Errors are calculated relative to an EOM-CCSD reference

value. The outliers highlighted in Figures 2 and 3 are excluded from the error analysis for the energies and

dipole moment respectively.

Error in ∆E / eV Error in |µ| / ea0

∆SCF TDDFT ∆SCF TDDFT

mean 0.35 0.41 0.07 0.03

std. dev. 0.25 0.27 0.08 0.06

min. 0.01 0.02 0.00 0.00

max. 1.63 1.24 0.52 0.34
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