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Privacy-Aware Fuzzy Range Query Processing Over
Distributed Edge Devices

Yinglong Li, Weiru Liu, Yihua Zhu, Senior Member, IEEE, Hong Chen, Senior Member, IEEE,
Hongbing Cheng, Tieming Chen, Ping Hu, and Ruohong Huan

Abstract—Range query processing is a common edge comput-
ing and service in the Internet of Things, which can extract
user-interest information from distributed edge devices. How
to design lightweight privacy-preserving range query processing
methods remains a challenging task. Existing secure range query
approaches suffer from both high communication cost and long
response time, which makes them unsuitable for edge computing
over resource-constrained edge devices. In this paper, we propose
two privacy-aware fuzzy query processing schemes based on
fuzzy theory. Linguistic range variables, fuzzy overlap infor-
mation and its recovery mechanism are introduced respectively.
In addition, two distributed privacy-aware fuzzy range query
processing algorithms are devised. Our approaches not only serve
for privacy protection, but also aim to provide other optimal
performances in terms of reliability, energy efficiency, and real-
time response. Theoretical analysis and experimental evaluations
based on real-world data sets validated our motivation.

Index Terms—Range query, Fuzzy sets, Edge computing,
Internet of Things, Privacy protection.

I. INTRODUCTION

N the age of Internet of Things (IoT), services in per-

vasive edge environments [1]-[3] are expected to offer
end-users better Quality-of-Services (QoS) than that in cloud
environments. Various kinds of edge devices, including mobile
phones, laptops, connected vehicles, smart cameras, and a
range of sensor-equipped devices [4] have been deployed in the
pervasive edge computing environments. These edge devices
have limited communication, computing, and storage capaci-
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ties. Especially their energy supply is always constrained and
hard to recharge or replace, which makes the edge computing
extremely challenging.

End-users often ask for edge computing and services [5]-
[8] with good QoS, such as less communication cost, quick
response time and good privacy protection. However, the
resource-constrained edge devices cannot afford to provide
edge services that meet users’ QoS requirements. For example,
a common privacy threat is the sensitive data leakage when an
adversary eavesdrops or sniffs the message packets during the
data transmission. To deal with such a privacy threat, a con-
ventional way is to make both the readings of edge devices and
users’ queries encrypted. However, it is a challenge to process
encrypted queries over encrypted data without knowing their
actual values. Besides, for recovering the usability of sensor
data and users’ queries, massive data exchange and compu-
tation should be performed, leading to huge communication
cost and time overhead. Therefore, it is significant to design
lightweight methods for edge computing and services as to
achieve good QoS under resource constraints.

Range query [9]-[15] is a common edge computing and
service in IoT applications. Through range query process-
ing, end-users can extract information from distributed edge
devices (e.g., extracting health information from wearable
health monitoring devices). Nevertheless, measurements and
locations of edge devices, as well as fusion information are
prone to be illegally acquired by adversaries, which brings
great security risks. Therefore, more and more research efforts
have been focused on the privacy protection problems of range
queries [11], [15], [23], [25], whereas most of the existing
methods still suffer from relatively complex computation and
costly communication despite tremendous endeavors had been
made. Resource-restricted edge devices are very sensitive to
the time and energy overhead during edge computing and
services, especially in real-time edge service scenarios, as
such, users call for lightweight and service-tailored range
query services.

In addition, existing query processing methods for IoT
applications always rely on using raw sensing data, which is
time-consuming and also causes massive data transmission.
However, even a centralized processing manner cannot ensure
accurate results due to imprecise raw sensory measurements
(reasons include the equipment accuracy problems of edge
devices, the impact of devices’ deployed environments, and
the interference during transmission). In many cases, end-
users neither care about these raw sensory data nor the data
format during in-network fusion, but interested fuzzy infor-
mation, such as “How serious is the situation?” and “where
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is the approximate event location?”. Fuzzy sets [28] provide a
good foundation for analyzing and processing the imprecise
and uncertain raw data of sensor systems in a robust and
understandable way, which can bring lots of benefits in terms
of intelligence, energy efficiency and privacy protection.

To tackle the aforementioned problems, we propose two
novel lightweight privacy-preserving range query processing
schemes for IoT edge services using fuzzy sets, which have not
been studied to the best of our knowledge. Our contributions
are summarized as follows:

1) Motivated by the idea of fuzzy sets, linguistic range
variables and fuzzy overlap ratio labels are proposed re-
spectively, and linguistic variables instead of raw sensory
values are used for fuzzy range query processing, which
benefits both privacy protection and energy efficiency.

2) Fuzzy range recovering mechanism as well as two
distributed privacy-aware fuzzy range query processing
schemes are introduced, which can provide intelligent
edge services in two common IoT application scenarios.

3) Theoretic analysis and experimental evaluations using
real-world data sets are performed to validate our moti-
vation in terms of effectiveness and efficiency.

The remainder of this paper is organized as follows. Section
IT reviews the related work. In Section III we introduce the
preliminaries such as the definition of fuzzy range query over
edge devices. In Section IV, we propose data transformation
methods using fuzzy sets and two privacy-aware fuzzy range
query schemes. The performance analyses are discussed in
Section V. Experimental evaluations are conducted in Section
VI. Finally, Section VII summarises our conclusions and future
work.

II. RELATED WORK

There has been a considerable amount of literature [11]-
[20], [23-27] dealing with privacy-preserving range queries
over various edge devices. Wu et al in [12] proposed ServeDB
supporting secure and scalable multidimensional range query
on outsourced database. Though the proposed SVETree in
ServeDB cannot be used directly when organizing multidi-
mensional sensory data on edge IoT devices, its creative
ideas have inspired our research, especially when dealing with
multidimensional sensor data while conducting experiments.
In [16], Sheng et al. firstly studied the problem of privacy-
preserving range query and applied a bit map to represent the
buckets that have data and broadcasts the bit map to the nearby
nodes. Nevertheless, a compromised storage node is able to
breach the integrity verification of the network easily. Shi et al
proposed spatial-temporal crosscheck scheme in [17], in which
bitmap index instead of hash check code was used for examine
the integrity of the query results. However, [17] inherited the
same weakness as that in [16], and the cost of communication
between storage nodes and base stations is high. To address
these drawbacks, Chen et al. proposed the SafeQ scheme based
on prefix family and neighborhood chains in [19]. The basic
idea of SafeQ is that the sensory data and queries are encoded
via prefix, where each data is prefixed by a range. Although
SafeQ is efficient, its costs are still relatively high. Kong et al.

in [18] proposed a range query scheme that can successfully
preserve the location privacy of the involved data requesters
and vehicles, and protect the confidentiality of the sensed data.
Chen et al. in [20] proposed a privacy-preserving range query
technique. Through a data hidden technique, both sensory data
and queries are encoded whilst storage nodes can correctly
process encoded queries over encoded data.

Techniques such as Order-Preserving Encryption (OPE)
[21], Order-Revealing Encryption (ORE) [21] and differential
privacy [22] for secure range queries in database systems have
been proposed. Although these techniques can achieve desired
privacy protection relying on custom data structures of certain
tasks in traditional database systems, they are still a bit costly
in terms of communication and storage in resource-constrained
edge-computing scenarios. Wang et al. in [23] designed a
symmetric-key searchable encryption scheme that can support
geometric range queries on encrypted spatial data, though there
are some small drawbacks relevant to high cost. Yi et al. in
[24] proposed an order preserving function-based secure range
query scheme (QuerySec) and a link watermarking scheme
to encode both sensor-collected data and sink issued queries.
Compared with SafeQ, QuerySec scheme requires lower com-
munication cost. In order to reduce the communication cost,
Zhang et al. [25] presented an encoding-based scheme (ES-
RQ) for secure IoT range query. Zeng et al. [26] proposed
a privacy-preserving multi-dimensional range query protocol
called PERQ, which not only achieves data privacy, but also
considers collusion attacks, probability attacks and differential
attacks. Dong et al. [27] proposed a privacy-preserving range
query framework SecRQ. In SecRQ, a generalized inverse
matrix and a distance-based query mechanism are adopted,
which can provide privacy protection for sensitive data as well
as integrity checking.

III. PRELIMINARIES

In this section, we briefly introduce the definition of fuzzy
sets, and then give the definition of fuzzy range query over
edge devices. Besides, the network structure and privacy threat
models are presented as well.

Fuzzy sets [28] which were first introduced by Lotfi A.
Zadeh in 1965 provide a good basis for analyzing and pro-
cessing the imprecise and uncertain data of complex systems
in a robust and understandable way [29]-[33].

Definition 1: Fuzzy Sets, a fuzzy set F' is a pair (X, p),
where X is a setand p : X — [0, 1] is a membership function.
The reference set X is called a universe of discourse, and for
each z € X, the value p(z) is called the grade of membership
of z in (X, p). Function p = pp is called the membership
function of the fuzzy set F' = (X, ). The (crisp) set of all
fuzzy sets on a universe X is denoted as F'(X).

For a finite set X = x1,--- ,x,, the fuzzy set (X,pu) is
often denoted by {u(z1)/x1, - ,pu(zy)/xn}. Let z € X.
Then z is referred to as

« not included in the fuzzy set (X, p) if u(z) =0 (not a
member)

o fully included if p(x) =1 (full member)

« partially included if 0 < z < 1 (fuzzy member)
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Note that u(x) = 0.5 is the greatest uncertainty point. In this
paper, we will propose several fuzzy information description
methods using the idea of membership function in subsequent
privacy-aware fuzzy range query schemes.

Definition 2: Fuzzy Range Query Over Edge Devices,
it refers to extracting user-interested fuzzy information from
distributed edge devices, where the readings fall into user’s
query range in a specified time window. Therefore, an user’s
range query usually contains three elements: query objects,
a query time window, and a query range, which can be
formalized as a tripe notation:

fuzzyR = (S, T, [lower, upper]?),

where S is the set of sensor-equipped edge devices and 7™ is
the time window. [lower,upper]® is the user’s query range
on the it" attribute readings over S, and the “lower” and
“upper” is the lower bound and upper bound of a user’s query
range respectively. fuzzyR is the fuzzy query results that
meet the user’s query ranges over edge devices S in time
window T It is worth mentioning that [lower, upper]* would
be transformed using the idea of fuzzy sets in our subsequent

fuzzy range query schemes.

Network Structure. There are two common network deploy-
ments for range query over edge devices. The first one is
that edge devices are randomly deployed and these devices
form a TAG [34] routing tree to an IoT gateway in a self
organized way, shown as in Fig. 1a. In this network structure,
the sensory measurements are collected and stored in the local
edge devices. The second network structure is that storage
devices are added to the first network, and this structure is
usually called a two-tiered [16], [17], [25] network structure,
as shown in Fig. 1b. Storage nodes might have more resources,
or can be the normal edge devices. These storage nodes not
only store the local sensor readings but also manage the local
network topology, and eventually build data forward paths to
the gateway, shown as in Fig. 1b. The first network structure
is relatively simple, thus is easy to deploy and manage. The
second one is more complicated, whereas it is more suitable
for delay-sensitive edge systems because the storage nodes
reduce the transmission paths.

Privacy Threats. Adversaries try to obtain sensitive data by
sniffing or eavesdropping the message packets during the data
transmission. As long as the sensed measurements or users’
queries are transmitted in an easy-to-understand format or even
using plaintext, these data and queries might be exposed to
malicious adversaries. Therefore, eavesdropping attack is the
main privacy threat that this paper focuses on. Besides, we
partially consider the compromise attack of storage nodes or
edge devices, since fully resist compromise attacks usually
need specific access control or other protection measures,
which deviates a bit from the main focus of this paper.

IV. PRIVACY-AWARE FUzZzZY RANGE QUERY SCHEMES

In this section, we propose two privacy-aware range query
schemes: local storage based privacy-aware range query and
proxy storage based privacy-aware range query, with regard

to the two mentioned network structures of range query in
Section III. The former is designed for edge computing and
services with higher accuracy requirements, while the latter
can be applied to the edge services with requirements of higher
real-time response. In addition, our two schemes can work
alongside with the ones using raw sensed data. Our algorithms
as well as others can be embedded in the gateway, and any
of these approaches can be chosen and be set as the default
option according to users’ requirements.

Before introducing the two aforementioned range query
schemes, some preprocessing over sensed measurements and
user’s queries should be performed. We try to find a
lightweight homomorphic preprocessing method for both sen-
sory data and user’s queries.

A. Sensed Data Transformation Using Fuzzy Sets

As discussed in Section I, it is a conventional way to have
both the readings of edge devices and user’s queries encrypted
for the privacy protection purpose. However, the encryption
and decryption processes are computationally complex, com-
munication costly and time consuming, besides encryption
destroys data usability, or pays a high cost for recovering data.
To this end, a lightweight data transformation method using
fuzzy sets is proposed, which paves a way to process range
query directly on the transformed fuzzy data.

Non-Uniform Range Partition: The overall range R of
sensed measurements is non-uniformly divided into m sub-
ranges sub® based on the probability density function (e.g.,
f(z) in subsequent (1)) of sensed measurements, so that the
readings of edge devices fall into these sub-ranges approxi-
mately on average. Let ¢ be [L, H], then R could be divided
into m sub-ranges subf’(i = 1...m), such that:

m

1) U subR’ = [L, H],
i=1
2)subR’ N subR? = 0,Vi,j € {1,....,m},i # j,
3)/ f(z)dx = / f(x)dz, Vi, j € {1,...,m}.
subR? subRI

Generally speaking, readings of an edge device in an IoT
application approximately follow a certain statistical distribu-
tion during a certain period of time, which reveals some char-
acteristics of the usually spatio-temporal correlated sensory
data. For example, the environmental sensed measurements
such as Temperature and Humidity of a sensor device during a
specific period of time usually approximately follow Gaussian
distribution [35] with mean p and standard deviation o, of
which probability density function (f(z)) is:

1 (w=mw)?
f(@) = —=e" 2 (1)
Varo? ’
where 1 and o can be assigned based on historical data statis-
tics or by a domain expert. According to the characteristics
of Gaussian distribution, we know that the closer subX to the
mean value p, the smaller its interval size is.
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TABLE I
EXAMPLES OF LRV DEFINITION
subR* (i = 1...m) LRVs Interpretation
[Tm—1, H] H(when m is 8)
[382 x3] C Very close to the p
[z1, z2] B Close to the 1
[L, 1] A

Note that, our range partition method does not only work
on Gaussian distribution, other distributions even rectangular
distribution can also produce non-uniform sub ranges using
our method. Sensor readings of edge devices are usually
spatio-temporal correlated or have some characteristics of a
certain distribution, which benefits our sub range partitions.
Therefore, to some extent, our range partition method is
somewhat distribution independent.

Linguistic Range Variable (LRV). Motivated by the idea of
fuzzy sets [28], we firstly calculate all the average distances
(e.g., Buclidean distance) between sub®’(i = 1...m) and
the mean value of the sensory data distribution. And then
the distance could be the universe of discourse of fuzzy
set “close to the mean value”. We define a Linguist Range
Variable (LRV) for each sub®, and each LRV has a semantic
interpretation. Apparently, there are also m LRVs, and their
interpretations are shown in Table L.

where m is specified according to the user’s accuracy re-
quirement. Generally speaking, a larger m benefits the higher
accuracy of a query result, since the larger the m is, the
more accurate the sub-range description is. However, a lager
m brings more LRVs and more fuzzy overlap ratio labels,
which makes the LRVs recovering more complex during range
query processing. The range partition and LRV definition are
embedded and shared in both edge devices and gateway. LRVs
instead of raw values are used for later range query processing
based on the idea of fuzzy sets.

B. Local Storage Based Privacy-Aware Fuzzy Range Query

In this section, we present a Local storage based Privacy-
aware fuzzy Range query (denoted as LPRange) scheme.
There are three major processes in LPRange. The first one
is the overlap ratio labels definition based on the overlap ratio
calculation between the partitions and the user’s query range,
followed by the fuzzy transformation of user’s query range,
both of which are performed in the gateway side. The third
one is the query range recovery and query matching in edge
devices.

Overlap Ratio Computing. Check the overlap between user’s
query range R“ ([lower, upper]) and subRi(i = 1...m),
if there are overlaps (namely, max(R%.lower, subR®.lower)
< min(R*.upper, subR’.upper)), then calculate the overlap
ratios 7%(i = 1...m). There are three cases when there is an
overlap between R* and sub®’(i = 1...m), which are shown
in Fig. 2a, Fig. 2b, and Fig. 2c respectively.
Their corresponding ways to compute v¢(i = 1...m) are:

- subR! upper — R*.lower
Casel : y* = . . 2
asel T subRi . upper — subR.lower’ @

. R upper — subR’.lower
Case2 :v' = : , 3
ases:q subRt.upper — sub¥t lower’ ©)

i R* . upper — R*.lower

Cased : 7' = subRt. upper — sub¥t lower” @)
Once the 7*(i = 1...m) values are obtained, these values
are then transformed to Fuzzy Overlap Ratio (FOR) labels
based on the idea of membership function [28] in fuzzy sets.
We define five FOR labels to describe the noticeable overlap
ratios v¢(i = 1...m). For example, the “Extremely big” label
is used to denote any (i = 1...m) which is larger than 0.95,
and those (i = 1...m) that are smaller than 0.25 are filtered
without any transformation. More details about how to process

such fuzzy transformation are demonstrated in Table II.
In Table II, the partition of 7*(i = 1...m) is performed
non-uniformly, the v%(i = 1...m) below 25% can be filtered,
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subX' lower subR’ sub R upper
Rlower—— R upper
9’{"
(a) Case 1
subR' lower subR' sub R’ .upper
’ .upper
R PP
(b) Case 2
subR lower sub% sub R’ .upper
%lo‘wer\%/v
(c) Case 3

Fig. 2. Three cases of overlaps between :* and sub@%i. (a) Case 1: when
subf’ . upper < R upper. (b) Case 2: when subR*.upper) > R* upper.
(c) Case 3: when R* C subR’.

TABLE I
EXAMPLES OF FOR LABELS AND ENCODINGS
~v*(i =1...m) FOR labels Encodings
>95% Extremely big 101
85%~95% Very big 100
70%~85% Big 011
50%~70% Medium 010
25%~50% Small 001
<25% NULL(be filtered) NULL

where NULL* means “without FOR label and encodings”.
More FOR labels are used to describe higher overlap ratios,
such as the top rows of the first column in Table II have higher
~" than the ones of the bottom rows. This strategy can improve
the accuracy of range queries. Fixed-length encodings shown
in the third column in Table II instead of FOR labels can
be used in data transmission for energy-saving and privacy
protection. In addition, variable length encodings, such as
Huffman encodings, are recommended to encode the FORs
when the number of FOR labels is relatively large, because in
this case variable length encodings are beneficial to reduce the
total encoding bits and thus trim down communication cost,
which might be useful in communication cost sensitive IoT
applications.

Fuzzy Transformation of Users’ Range Queries. Firstly,
the overlap ratios of ®“ and subR‘(i = 1...m) should be
calculated, and then the overlap ratios that are larger than the
threshold are transformed into corresponding LRVs and FOR
labels based on the definitions of LRV and FOR in Table I and
Table II respectively. We provide an algorithm (Algorithm 1)
to describe how to do such fuzzy transformation in details.
LRVs are used for fuzzy transformation of sensitive queries,
while FOR labels are used for approximately recovering
LRVs to users’ ranges, both of which contribute to privacy
protection, as well as energy efficiency and real-time response.

TABLE III
EXAMPLES OF RANGE PARTITIONS AND LRV DEFINITION
subR*(i = 1...m) || LRVs
[15, 23) D
[11, 15) B
[9, 11) A
[5, 9) C
[-3,5) E
TABLE IV
EXAMPLES OF FUzZZY TRANSFORMATION OF %
R LRVs FOR labels
[12, 15) B Big
[13, 18) B,D Medium, Small
[-6, 5.5) E Extremely big
[6, 10) C, A Big, Medium

Algorithm 1. Fuzzy Transformation of R
INPUT: R* ([lower, upper])
OUTPUT: LRVs and FOR labels
1. for i: 1tom do
2. if max(R“.lower, subR’.lower)
< min(R%.upper, subR’.upper) then

3 Calculate ~* using (2) or (3) or (4);

4 if v* > thrd then // thrd is 25% here
5. Return LRV (subR?) and FOR(v");
6. endif

7 endif

8. endfor

In algorithm 1, LRV (subR?) is the LRV corresponding to
subR?, as is shown in Table I. FOR(y") is the FOR label
corresponding to +* as shown in Table II. thrd is the ratio
threshold that determines whether LRV (sub%R?) is a user’s
LRV . thrd influences the accuracy of users’ queries and it
can be assigned according to their accuracy requirements.

Examples of Fuzzy Transformation of R". We give some
examples showing how Algorithm 1 works. The examples of
non-uniform range partition and LRV definition are shown in
Table III.

Taking a user’s query range (R™ is [12, 15]) for example,
there is only one sub-range [11, 15) overlapping with R*. The
overlap ratio v between R* and [11, 15) is 75%, therefore its
FOR label is “Big” according to Table II, and its LRV is ‘B’
according to Table III shown in Table IV. When R is [-6,
5.5], there is only one sub-range [-3, 5) overlapping with R,
and the overlap ratio v between R and [-3, 5) is bigger than
95%, therefore the FOR label is “Extremely big”, as is shown
in the fourth row of Table IV. When R* is [6, 10], there are
two sub-ranges overlapping with %, which are [5, 9) and [9,
11). Their overlap ratios are 75% and 50%, and then the FOR
labels are “Big” and “Medium”, as is shown in Table IV.

After transforming users’ queries into LRVs and FOR labels
in a gateway, the LRVs and FOR Labels instead of users’ raw
queries are sent to edge devices. An ideal case is that users’
queries match the partitions completely, which is very ben-
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eficial for high accuracy. However this is extremely difficult
because users’ queries vary in different scenarios, which makes
it difficult for having fuzzy information precisely describe
the actual users’ queries. Therefore, we provide a recovery
mechanism for fuzzy queries in order to approximately recover
users’ actual queries.

Recovering of Users’ Queries. In an edge device, when it
receives k LRVs and FOR labels from a gateway, the fuzzy
user’s query range can be recovered as 3. There are two cases
to compute R/, one of which is that when there is only one
LRV and FOR label (k = 1), the lower and upper bound of
R’ can be calculated as:

R’ .lower =subR(LRV ).lower + (subR(LRV).upper—
 (L—avg4(FOR))
? )
R’ .upper =subR(LRV ).upper — (subR(LRV).upper—
1 — avg(1(FOR))
2

subR(LRV).lower)

subR(LRV).lower) x ( ,
(6)
where subR(LRV) is the sub-range of the LRV, and
avg(7(FOR)) is the average overlap ratio of the FOR la-
bel. avg(y(FOR)) can be defined as: avg(y(FOR)) =
(v(FOR).upper+~(FOR).lower) /2, where v(FOR).upper
is the upper bound of ~ (overlap ratio range partition) and
Y(FOR).lower is the lower bound of +. Take Table II for
example, avg(y(Big)) = (70% + 85%)/2 = 77.5%, namely,
0.775.

Another case is that when k is bigger than 1, lower and
upper bound of R’ can be computed as:

R lower =subR(LRV').upper — (subR(LRV").upper—

subR(LRV?').lower) x avg(y(FOR™)),
(7

R .upper =subR(LRV*~1).upper + (subR(LRV").upper—

subR(LRV*).lower) x avg(v(FORFY)).

®)
Examples of i* Recovering. When there are two LRVs and
two corresponding FOR labels, which are “(B, Medium)”
and “(D, Small)”, as is shown in Table IV. Then the recovered
query range is [12.6, 18] according to (7) and (8). Comparing
with the true user’s query range R“([13, 18]), there might
be 8% false positives in query results. When " is ([12, 15]),
there is only one LRV and one FOR label, which is “(B, Big)”.
Then the recovered query range is [11.45, 14.55] using (5)
and (6), which results in 18.3% false positives and 15% false
negatives respectively.

LPRange Processing. The main process of LPRange can
be described as follows: Firstly, User’s range request R“
is transformed to LRVs and FOR labels in the gateway.
According to the LRVs and FOR labels received in edge
devices, the user’s fuzzy query range can be recovered as R’
using (5). Then each edge device locally checks whether its
measurements fall into ', and return the encrypted results

6

that meet user’s query request. More details are shown in
Algorithm 2.

Algorithm 2. LPRange Processing

INPUT: LRVs and FOR labels in Query Message(QM)
OUTPUT: Fuzzy range query results
1. Gateway floods QM with k£ LRVs and FOR labels
// in a distributed way
2. for each edge device ¢ receives the QM do
3 if £ > 1 then
4 R = R .lower, R .upper] using (7) and (8);
5. else if k¥ == 1 then
6. R = [R'.lower, R .upper] using (5) and (6);
7 endif
8 endif
9 if readings(i) € R’ then
10. Return encrypted results to the gateway;
/ / usually locations
endif
endfor

11.
12.

In the query results returning phase of Algorithm 2, the “en-
crypted results” usually means encrypted locations or global
location identifications. If encryption is needed, a lightweight
Diffie-Hellman [34] key exchange protocol might be a good
choice. The time overhead of Algorithm 2 is discussed in later
Subsection V.D.

Running Example of LPRange. Firstly, an user’s query
R* (take the example (13, 18] based on Table II, Ta-
ble III and Table IV) is transformed to LRVs and
FOR labels (“B, D, Medium, Small”) in a gateway (as
shown in Fig. 1). Secondly, the gateway floods QM with
“B, D, Medium, Small” (3-bit FOR encodings actually) to
edge devices in a distributed way. Then range recovery is
performed after receiving QM in each edge device. The
example “B, D, Medium, Small” was recovered as (12.6,
18], namely (15-0.6*%4, 15+8%0.375] using (7) and (8). Finally,
the query results (mainly locations) are sent to the gateway and
eventually to the users. There were two false positives but no
false negative in LPRange in this experimental scenario.

C. Proxy Storage Based Privacy-Aware Fuzzy Range Query

In LPRange scheme, query message flooding consumes
massive time and energy. In addition, the privacy of sensed
measurements stored in edge devices are fragile due to the pos-
sible edge device compromise. Therefore, we propose another
secure range query scheme using proxy storage nodes, called
Proxy storage based Privacy-aware Range query (PPRange),
in order to improve the privacy protection and real time
performance.

Fuzzy Transformation and Storage of Devices’ Measure-
ments. When there is a sensed measurement in an edge device,
it is transformed to a LRV using the methods of range partition
and the LRV definition discussed in Subsection IV.A. Then the
LRV is sent to the nearby storage node. There is a table in each
storage node for storing the received LRVs, as shown in Table
V. In the example of Table V, the storage node receives three
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TABLE V
AN EXAMPLE OF STORAGE TABLE IN A PROXY STORAGE NODE
Timewindows LRVs Locations
Sampling period 1 B 2(ciphertext format)
Sampling period 1 D 5
Sampling period 1 E 3
Sampling period 2 A 5
Sampling period 2 C 2

LRVs (B, D, and E) in sampling period 1, and their locations
are recorded as well.

Fuzzy Transformation of Users’ Range Queries. Fuzzy
transformation of users’ queries in PPRange is partially similar
to the one of LPRange, but there are some differences. The
similar parts are the overlap calculation and LRV transforma-
tion which can be described as follows. Using the overlap ratio
computing methods in Subsection IV.B, the overlap ratios of
users’ queries and subR’(i = ...m) can be calculated. When
a overlap ratios (i = ...m) is larger than a filter threshold,
its corresponding LRV should be included in query message.
For example, in Table IV, when " is [-8, 5.5], the overlap
ratio of R* and subR(E) is greater than 1, thus ‘E’ is one
of the LRVs in query message; whilst the overlap ratio of
R* and subR(C) is 12.5% and is less than the threshold
“25%”, and thus ‘C’ is not included in query message. The
main difference is that there is no FOR labels in the query
message of PPRange, because there is no range recovery of
users’ queries in PPRange.

Main Process of PPRange. Firstly, a gateway sends a query
message to those proxy storage nodes. LRVs are the major
data in query message. When storage nodes receive the query
message, those locations whose LRVs match user’s LRVs
are encrypted and sent to the gateway. More details of the
PPRange processing are shown in Algorithm 3.

Algorithm 3. PPRange Processing

INPUT: LRVs in Query Message (QM)

OUTPUT: Fuzzy range query results

1. Gateway sends QM with & LRVs

2. for each storage node ¢ receives QM do
// in a distributed way

3. i checks its storage table, and returns the encrypted
locations whose LRVs match the user’s LRVs;

4. endfor

In Algorithm 3, due to the distributed processing, the
computational complexity of Algorithm 3 is O(k*L;), where k
is the number of LRVs in a query message, and L, is the table
length of storage nodes. Actually, data transmission consumes
most of the time in Algorithm 3.

Running Example of PPRange. Firstly, when there is a
sensed measurement in an edge device, it is transformed to
a LRV and is sent to its nearby storage node (storage table, as
shown in Table V). Secondly, a user’s query R* is transformed
to LRVs only. Take the same R* (13, 18] and LRV definition
in Table III for instance, its transformed LRVs were ‘B’ and

‘D’, and were sent to all the storage nodes. Finally storage
nodes check their storage tables, and return the LRV-matched
results. Actually, the executed query range was (11, 23] in
this example, and there were only false positives due to the
enlarged executed ranges, namely, (11, 13] and (18, 23].

V. PERFORMANCE ANALYSIS

In this section, the performance analysis in terms of privacy
protection, accuracy, communication cost and response time of
our two proposed schemes are studied.

A. Privacy Protection

Observation 1. It is difficult for adversaries to infer users’
actual queries or actually executed queries both in LPRange
and PPRange, which makes our schemes have desirable ca-
pabilities of privacy protection.

Both in LPRange and PPRange, users’
queries are sent in the following format: <
LRV ... [LRV* FORLabel',--- , FORLabel®* >. Tt
is extremely difficult to learn the actual queries (R".lower
and R“.upper]) from LRV® and FORLabel’ (i = 1,--- , k).
Our LRVs are irregular characters based on non-uniform
partitions. Table I shows some single-character examples
mainly for an easy-to-understand purpose. Actually, Any
character on the keyboard (including 128 characters) can
be used as a single-character LRV. There is no correlations
among these LRVs, nor any correlations between these
LRVs and users’ query range boundaries. Since users’ range
boundaries are neither discrete nor fixed, it is very difficult
to infer both of them, as well as their correlations even by
brute-force search. Besides, When a LRV is an irregular
multi-digit string, brute-force search becomes more difficult.

There are also no correlations between FOR labels and
their encodings.If longer bit encodings were used, the brute-
force search space would become very large. For example,
m FOR Labels and n-bit encodings results in search space
being O(m * 2™), and as n increases, the search space grows
geometrically. By the way, the rise of n increases the computa-
tional cost and communication overhead. Fortunately, in most
practical applications, users may not need tough demand on
security / privacy protection, so the number of FOR encodings
does not need to be very large, which helps improving the
overall performances (energy-efficiency, real time and privacy
protection). All the definitions of LRVs, FOR Labels and their
encodings are not involved in data transmission, which makes
the adversaries impossible to know the actually executed
queries in our two schemes by eavesdropping or sniffing
attacks.

Observation 2. To some extent, the privacy protection perfor-
mance of PPRange is better than LPRange.

In PPRange, The raw sensing data in edge devices can
be deleted after fuzzy transformation to LRVs, which can
prevent sensitive raw sensory measurements from leaking
when edge devices are compromised. Besides, due to the LRVs
information being stored in storage nodes, the privacy leakage
risk when storage nodes being compromised in PPRange is
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also decreased. However, the raw sensor readings in LPRange
cannot be deleted, because they are needed for matching the
recovered queries. Therefore, LPRange cannot resist the com-
promise of edge devices, which makes its privacy protection
capability weaker than that of PPRange.

B. Accuracy

In LPRange, errors mainly come from both the fuzzy
transformation of R“, and its recovery stage. During the
transformation from R* to LRVs and FOR Labels, All the
parts of ®* whose overlap ratios (y?) of R* and subR’
(i = 1,---,m) below thrd are ﬁltered out, resulting in a
total missed ranges: Err.Tr = ) ", f ivsupgi J (2)dx, and
it reaches the maximum error when 7* = thrd. In fact, the
actual range of thrd varies when subR! changes. In the stage
of query recovery, our recovery methods (such as Eq.(5) and
Eq.(6) when £k = 1 or Eq.(7) and Eq.(8) when k£ > 1)
make the recovered range either enlarged or reduced, because
the actual range boundaries of $“ might be on the left of
avg(y(FOR?)), or on the right of it (x-axis). Let AsubR?
and Vsub¥® represent the amount of missed and enlarged
range with respect to subR?, which is determined by our
recovery mechanism (such as 7% and avg(y(FOR!))). Then
the errors (both false negatives and false positives) in the query
recovery are [, .o f(z)de + [o, 0 f(@)dz (k = 1) and
Zf:l Jnsupmi f(@)dz + Zf:l fvsubw f(z)dz (k> 1).

And then the total error rate (7) of LPRange can be
calculated approximately when k = 1 and k > 1 respectively
as follows.

Jasups F@)d2 + [G i f@)da + ErrTr

Jsu f(2)dz

Tk=1 =

Z Jnsupwi f(@)dz + Z fvsubw f(x)dx + Err.Tr

fw

In PPRange, errors mainly come from the fuzzy transfor-
mation of R* and such errors are similar to the ones of
LPRange, namely, Err.Tr = 221 i subRi f(x)dx, and it
reaches the maximum error when v* = thrd. When k = 1,
the possibly enlarged range is subR’ — R* due to no range
recovery in PPrrange, and the possible false positives are
fsubw o f(z)dx . When k > 1, the possibly enlarged range

is Zl L (subR?® — §Ru) and the possible false positives are
Zz 1 JsubRi—Ru f( )

Therefore the total error rate of LPRange can be calculated
approximately when k = 1 and k > 1 respectively as follows.

Tk>1 =

fsub?ﬁi—éﬁu f(a:)d:r; + E:il ~yixsubJti f(SU)d.T

fw f(x)dx ’

k
Zi:l subRi —RNu f(l‘)dﬂ]‘ + Zgl yiksubR? f(]))d.]?

S f(@)dz

Tk=1 =

Tk>1 —

C. Communication Cost

In wireless communications, data transmission accounts for
most of the communication cost. For example, transmitting
one bit can consume as much energy as running several
thousand instructions on a sensor’s CPU [35]. Besides, data
transmission is time-consuming and has direct impact on real
time performance.

In LPRange, most of the data transmission occurs in query
message floodings and query result returnings. The major data
structure is (LRVs, FOR labels). When there are k LRVs and
k FOR labels in a query message, the main data transmission
D gueryTran in query message flooding is:

Dgueryrran = N x k x (sizeof (LRV') + sizeof(FOR)),

where sizeof() means the number of bits, and N is the
number of edge devices.

In a query result returning phase, the major data transmis-
sion D, is:

U
Dyer = § i=1

where U is the number of query results, hop(i)(i = 1...U)
is the hop count of the i*" query result, and enLoc is the
encrypted location of a query result.

Therefore, the total data transmission Dy,.,,, of LPRange is:

hop(i) x sizeof(enLoc),

Dtran = une'r‘yTran + Dret
=N x k x (sizeof (LRV) + sizeof (FOR))

L

In PPRange, query messages only need to be sent to those
storage nodes, therefore, the major data transmission of a
query message flooding DgyeryTran 18:

hop(i) x sizeof(enLoc).

\%4
uneryTran = Zi:l hOp(l) x k x SiZGOf(LRV),

where V' is the number of storage nodes, and & is the number
of LRVs in a query message. hop(i)(i = 1..V) is the hop
count of the i*" storage node. The data transmission in a query
result returning phase D, is:

w
Dret: E i=1

where W is the number of storage nodes having query results,
and num(i) is the number of query results in the i*" storage
node.

Therefore the total data transmission Dy,.,, of PPRange is:

hop(i) x num(i) x sizeof(enLoc),

Dtran = uneryTran + Dret
= Z ) x k x sizeof (LRV)

+ Zi:l hop(i) x num(i) x sizeof(enLoc).

hop(i)
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D. Response Time

Compared with the time overhead on data transmission, the
computing time can be ignored. Considering the distributed
data transmission in both query messages flooding and results
returning phases, the time cost of a query message flooding
TyueryTran depends on the largest hop count of edge devices,
namely,

Toueryrran = max(hop(i)) x T'(hop), (i = 1...N),

where N is the number of edge devices and hop(4) is the hop
count of the i*" edge device. T'(hop) is the time overhead of
sending and receiving a data packet between two neighboring
nodes.

The time overhead of a query result returning 7;..; is:

Tet = max(hop(j)) x T(hop), (j = 1...M),

where M is number of edge devices having a query reply and
hop(5)(j = 1...M) is the hop count of the j*" edge device
having the query reply.

If there is an encryption for query results, then the time
overhead of encryption T.,,. should be considered, and T¢,,. is
determined by a specific encryption technique used. Therefore,
the time overhead of LPRange Time is:

Time = Tque'r‘yTran + Tret + Tene
= [max(hop(%)) + max(hop(j))] x T (hop) + Tenc,
(i =1..N,j= lM)

Beware of that the data transfer from edge devices to storage
nodes usually occurs before a user’s query starts, which has
no impact on any real time performance. In Algorithm 3, the
query message transmitting and query results returning also
perform in a distributed way. Therefore, the maximum hop
count of storage nodes affects the response time directly. The

. L , ]
time overhead of a query message transmitting 77, ... 74y, 18-

! = max(hop(i)) x T’ (hop), (i = 1...V),

queryTran

where V' is the number of storage nodes, hop(i) is the
hop count of the i*" storage node, and T”(hop) is the time
overhead of sending and receiving a data packet between two
neighboring storage nodes
The time overhead of a query result returning 77, is:
! max(hop(j)) x T’ (hop), (j = 1..W),

ret —

where W is the number of storage nodes having a query reply,
and hop(3) is the hop count of the j*" storage having a query
reply.
Therefore, the total time overhead of PPRange T'ime’ is:
. !/ !
T’Lme = TqueryTran +
— [max(hop(i)) + max(hop(j))] x T'(hop) + Tl
(i=1.V,5=1.W).

where 77, . is the time overhead of possible encryption of

query results in PPRange.

T _ +T

ret enc

9

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate our approaches using O-
MENT++ [38], where OMNET++ is a discrete event and
component-based C++ simulation library and framework, pri-
marily for building network simulators. Our experimental
evaluations are based on both real-world data set LUCE [39]
and Melbourne Urban Environments data set [40]. The real-
world data set LUCE that we had downloaded before consists
of location information and sensor data (node ID, Temperature,
Humidity, Solar Radiation, Wind Speed, etc.) of 88 valid
sensor nodes. Due to the disfunction of some edge devices or
the influence of devices’ surrounding environments, small part
of the measurements in LUCE was missing that made the data
sets somewhat incomplete. Therefore, we synthesized a small
amount of data based on the spatio-temporal correlation of the
real measurements to complement the missing data. Those 88
nodes were deployed in a 450m*300m edge region. When a
gateway’s location was at (0, 40) and the communication range
was 80m, these nodes formed a TAG routing tree connecting
to the gateway, shown as in Fig. 3a. We also set up a 12
storage nodes topology over the network deployment, shown
as in Fig. 3b.

In addition to the data set LUCE, the real-world data set
of Melbourne Urban Environments (Sensor readings, with
temperature, light, humidity every 5 minutes at 9 locations
(trial, 2014 to 2015)) [40] was also used to evaluate our
schemes. In this data set, the environmental sensors, measuring
light level, humidity and temperature, have been deployed at
Fitzroy Gardens and Library at the Dock. The data collected
assist the Urban Landscapes branch to better understand and
communicate the impact of canopy cover for urban cooling. In
our experiments, users try to find the locations where the edge
device’s measurements match the user’s query ranges with the
privacy protection on sensor data, user’s queries, and locations
of edge devices. We evaluated our two schemes in terms of
accuracy, energy consumption, and real time performance, as
well as performed comparisons with some of the existing
methods.

A. Accuracy

We studied the accuracy of LPRange and PPRange with
nine (m = 9) partitions of possible readings (Temperature: [-
40, 60]). The range partitions and FOR labels shown in Table
III and Table II respectively were used in our experiments. We
conducted the experimental evaluations with three different
R [12, 15], [13, 18], and [-6, 5.5] and their accuracy
performances are shown in Table VI, Table VII, and Table
VIIIL, where #(false_positives), #(false_negatives), and
#(true_results) mean the numbers of false positives, false
negatives, and true results respectively.

In Table VI, There are one false positive and one false
negative in LPRange, and there are two false positives without
false negative in PPRange when R" is in [12, 15]. The user’s
fuzzy query “(B, Big)” was recovered to be [11.45, 14.55]
in LPRange, which was close to the true user’s query range
contributing more accurate query results. However there is no
range recovering in PPRange, and the actual query range was
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(a) A network without storage nodes

(b) A network with 12 storage nodes

Fig. 3. Real-world network with 88 valid edge devices. (a) Edge network composed ordinary sensor devices, these devices connected to IoT gateway
hop-by-hop. (b) Edge network with 12 storage nodes formed a TAG routing tree based on these storage nodes.

TABLE VI
THE NUMBER OF ERRORS WHEN % WAS [12, 15]
LPRange PPRange
#(false_positives) 1 2
#(false_negatives) 1 0
#(true_results) 14 14
TABLE VII
THE NUMBER OF ERRORS WHEN % WAS [13, 18]
LPRange PPRange
#(false_positives) 2 9
#(false_negatives) 0 0
#(true_results) 21 21
TABLE VIII
THE NUMBER OF ERRORS WHEN 1% WAS [-6, 5.5]
LPRange PPRange
#(false_positives) 0 2
#(false_negatives) 3 3
#(true_results) 22 22

[11, 15], which enlarged the query range, thus leading to more
false negatives in PPRange.

When R* was [13, 18], there were two and nine false
positives in LPRange and PPRange respectively, while both
had no false negatives, as shown in Table VII. In LPRange, the
user’s fuzzy query “(B, Medium, D, Small)” was recovered to
be [12.6, 18], which guarantees a better accuracy performance.
While in PPRange, the actual range query performed was
[11, 23], which brought some false positives. From these
experimental results, it is not difficult to know that FOR labels
below “medium” or with a rough range partitions enlarge the
query range in PPRange since there is no range recovering in
PPRange.

When R* was [-6, 5.5], there were three false positives in
LPRange and PPPRange respectively, as shown in Table VIII.
The actual query ranges performed in LPRagne and PPRange
were [-2.9, 4.9] and [-3, 5.5] respectively, both of which were

TABLE IX
THE AVERAGE ACCURACY USING LUCE DATA SET
LPRange PPRange
accuracy 87.8% 71.9%

similar due to a good match between the sub-range of ‘E’ and
R,

From the above experiments, we can see that LPRange
has good and stable accuracy performance due to the range
recovery of FOR information, while PPRange has relatively
lower accuracy compared with LPRange. If users’ queries
in PPRange approximately fit the partitions, the accuracy of
PPRange is similar with that of LPRange’s, otherwise, its
accuracy is lower and less stable than the one of LPRange
due to the lack of range recovery in PPRange. Therefore, the
accuracy of PPRange is somewhat users’ queries dependent.
However, the response time of PPRange is much less than
LPRange’s, which will be discussed later.

We also conducted experiments with two other partitions
of Temperature measurements when m was 7 and 11 re-
spectively based on the same aforementioned three differ-
ent user’s queries using the data collected in different ten
periods, and computed the average accuracy using the fol-
lowing definition: accuracy = 1 — (#(false_positives) +
#(false_negatives))/#(true_results).

The average accuracy of LPRange over ten experimental
runs was about 87.8% and the average accuracy of PPRange
was approximate 71.9%, as is shown in Table IX. LPRange
has a better average accuracy performance than that of P-
PRange, because there is a query range recovery mechanism
in LPRange, while PPRange does not, which always enlarge
its query ranges.

We further evaluated how the number of range partitions
(m) influences the accuracy of our schemes LLRange and
PPRange. We divided the sensed measurement Temperature
([-40, 60]) into 7, 9, and 11 sub-ranges, as shown in Table X.

Based the above three range partitions, we conducted three
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TABLE X
AN EXAMPLE OF THREE PARTITIONS
m =7 || (36, 60], (20, 36], (12, 20], (8, 12], (0, 8], (-16, 0], (-40, -16]
m=19 || (39,60], (23, 39], (15, 23], (11, 15], (9, 11], (5, 9. (-3, 5], (-19, -3], (-40, -19]
m =11 [[ (405, 60], (24.5, 40.5], (16.5, 24.5], (12.5, 16.5], (10.5, 12.5], (9.5, 10.5], (7.5, 9.5, (3.5, 7.5], (-5.5, 3.5], (-21.5, -5.5], [-40, -21.5]

TABLE XI
THE AVERAGE ACCURACY USING RANDOM DATA
LPRange PPRange
accuracy 89.2% 67.9%

queries ([13, 18], [12, 15], and [-6, 5.5]) respectively. The
experimental results are shown in Fig. 4. Learned from Fig.
4a, Fig. 4b, and Fig. 4c, m had a certain degree of influence
on the accuracy of our schemes. The smaller the m is, the
larger the number of errors (false positives or false negatives)
is, and thus the lower the accuracy is. For example, as shown
in Fig. 4b and Fig. 4c, when m was 7, the number of errors of
both LPRange and PPRange were relatively larger, while there
were fewer errors when m was 9 and 11. However, the value
m and the accuracy were not proportional. For instance, the
number of errors was bigger when m was 11 than that when m
was 9, as shown in Fig. 4b. This phenomenon also happened
in Fig. 4a, the number of errors was the smallest when m was
7. In fact, the accuracy of our scheme is not only related to m,
but also related to the uses’ queries themselves. When there
are better matches between sub-ranges and users’ queries, the
recovered query range of LPRange is more accurate, as well
as the executed queries in PPRange are closer to the initial
users’ queries, both of which contribute to a higher accuracy
of our schemes.

In order to test the influence of data distribution on accuracy,
we synthesized random data (such as random temperature data
over [-50, 50]) uniformly for 87 valid nodes in LUCE. Then
we made three groups of uniform partitions (m is 10, 15 and
20 respectively) and carried out experiments over Six query
ranges ([-7, 7], [-5, 51, [-5, 10], [5, 25] , [10, 18], [31, 36]),
of which the experimental results are shown in Table XI.

In our experiments, we find that the data distribution (ran-
dom data) has a negligible impact on LPRange’s accuracy
(89.2% in Table XI vs. 87.8% in Table IX), and its impact
is even less important than that of subrange partitions (m).
Actually, both of them have little influence on the accuracy
of LPRange due to the range recovery of FOR in LPRange,
making the executed query ranges in LPRange close to the
ones using raw data. The influence of data distribution on
PPRange’s accuracy is also small, while the number of range
partitions has a certain influence on PPRange’s accuracy.
Generally speaking, the larger the m is, the more accurate the
PPRange is. This is because PPRange has no range recovery
mechanism, and the larger m makes users’ queries fit partitions
better.

B. Communication Cost

Existing secure range queries are usually based on bucket
techniques [14, 15, 17, 18, 22]. We strive to make a fair

comparison with the existing methods, though it is difficult to
do that because the ideas and techniques used are essentially
different. For instance, our non-uniform partition method pro-
duces no empty buckets, which makes it a bit different from
the existing ones. In addition, fuzzy data transformation and
recovering are used in our approaches, which did not appear
in the existing methods.

In our experiments, LRV was a 8 bits CHAR, and FORs
were 3-bit fixed-length encodings. Sensed measurements such
as Temperature, Humidity, and encrypted values in an encryp-
tion approach were all 32-bit FLOAT values (due to the 32-bit
simulation platform). In bucket-based methods, the sizes of an
encrypted bucket, a bucket tag and an authentication code are
16-bits, 8-bits and 32-bits respectively. For simplicity, other
information such as HEAD, CHECK CODE in a message
packet were not considered in the comparisons.

We conducted extensive experiments to evaluate our two
schemes (LPRange and PPRange) in terms of data transmis-
sion using real-world data set LUCE based on five query
ranges: R ([12, 15]), R? ([13, 18]), R3 ([-6, 5.5]), R*
([6, 10]), and R ([0, 15]). We also made experimental
comparisons among our two schemes, the naive method using
raw data and the bucket technique using encrypted data.
The communication cost (data transmission) performances are
shown in Fig. 5.

In Fig. 5a, the amounts of data transmission of LPRange
and of PPRange were similar, while both of them were much
less than the one of naive method using raw data. In LPRange
the amount of data transmission of a query message flooding
is much bigger than the one of PPRange. Nevertheless, there is
some communication overhead on storage in PPRange, while
LPRange does not, which offsets the data transmission in
LPRange. The raw data [lower, upper| of a query range in
the naive method is much larger than the LRVs and FOR
Labels used in our two schemes, which leads to the larger
data transmission of the naive method. In the experiments of
query range R° ([0, 15]), four LRVs and FOR labels were
required to describe the query range due to the large interval
of its [lower, upper], which makes the data transmission of
the query flooding in LPRange increase significantly, While
in PPRange, query messages only need to be transmitted to
those storage nodes, which makes its data transmission grow
slightly as shown in Fig. 5b. The data transmission of the
bucket technique using encrypted data was much larger than
the that of PPRange, as is shown in Fig. 5b, because both of
its data transmission for key management and its data storage
for bucket descriptions are larger than that of PPRange.

We also evaluated how gateway’s locations influence the
data transmission. When the gateway moved to the location
of (260, 200) (shown as in Fig. 6a and Fig. 6b respectively),
the communication cost (data transmission) performances are
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shown in Fig. 7. were reduced to some extent, causing a small decline of
The amount of data transmission of our two schemes in Fig. ~data transmission. In fact, both the number and the locations

6 did not change much, because the query results were the Of query results have big influence on the amount of data

same due to the unchanged data set and user’s queries. The transmission, because these two factors directly affect the

changed network topology had some impact on the number number of returned packets and the total relay hops.

of transmission hops. The numbers of relay hops both in

the query message transmitting and the query result returning
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C. Response Time

In wireless communications, one hop of data packet trans-
mission consumes much more time than the computation in
a sensor. Therefore, the total number of transmission (relay)
hops during query processing directly influences the response
time. In PPRange the data transfer of data storage usually
happens before a query starts, therefore, the time overhead
on data storage should not be considered when evaluating the
real time performance. In addition, the query message flooding
in LPRange as well as the results returning in LPRange and
PPRange are all performed in a distributed way. Therefore,
the largest relay hops affect the real time performance. We
conducted experiments using three query ranges (R'([12, 15]),
R2([13, 18]), and R3([-6, 5.5])) over two networks with 12 and
20 storage nodes respectively. The average numbers of relay
hops of LPRange, PPRange and Encryption way over 12 and
20 storage nodes based networks are shown in Fig. 8a and
Fig. 8b respectively.

In Fig. 8, the total number of relay hops of LPRange
was bigger than the one of PPRange, since query messages
have to be transmitted to each sensor device, and the node
farthest from the gateway determines the time overhead due
to the distributed transmission. The storage nodes help P-
PRange shortening the longest paths, which helps reducing
the response time of PPRange. In the 20 storage nodes based
network, more storage nodes resulted in more relay hops in
PPRange than that of 12 storage nodes based network. In
our three range queries, there were results coming from the
edge networks both in LPRange and PPRange, that is why the
total number of transmission hops varied slightly in the three
range queries. The numbers of total relay hops of Encryption
both in Fig. 8a and Fig. 8b were much larger than that in
our schemes, considering the distributed transmission as well.
This is because more data packets were transmitted for the
key management during encryption and decryption.

We further evaluated the influence of a gateway’s location
on the number of total relay hops. When the gateway moved
to location at (260, 200), the response time performance of
LPRange and PPRange are shown inFig. 8c and Fig. 8d
respectively. After the gateway moving to (260, 200), the

average number of network routing hops declined, as shown
in Fig. 3 and Fig. 6. As a result, the average number of relay
hops of both LPRange and PPRange decreased to some extent,
as shown in Fig. 8c and Fig 8d. Actually, the locations of
query results have a relatively large impact on the number of
relay hops. From Fig. 8, we know that PPRange has shorter
response time than that of LPRange, which can be used in the
delay-sensitive and fault-tolerant IoT applications.

We further evaluated our schemes using another real-world
data set Melbourne Urban Environments (MUE) [40]. There
are 9 edge devices with 56,571 measurements of temperature,
light and humidity every 5 minutes at 9 locations from 2014
to 2015. We conducted experimental evaluations over 1-D
(temperature), 2-D (temperature and light) and 3-D (temper-
ature, light and humidity) queries based on the measurements
between 7.30am and 11.45am on Feb. 28, 2015 of data set
MUE. In these experiments, users expected to find the records
(mainly the time and locations) meeting their query ranges.
The experimental results based on aforementioned data set
(MUE) are shown in Fig. 9.

In Fig. 9a, the average accuracies of 1-D queries were
the highest in LPRange, PPRange and the method using raw
data comparing with those 2-D and 3-D experiments. This
is because that both false positives and false negatives in 1-
D queries usually increase the probabilities of false positives
and false negatives in later 2-D and 3-D queries. The average
accuracy performances of 1-D range queries using data set
MUE were similar to that of 1-D queries using data set LUCE.

The average data transmission dropped as the number of
dimensions declined, as is shown in Fig. 9b. The query
results became fewer when more dimensions were involved
in queries, since more dimensions involved in a query means
more strict conditions were needed to filter the sensor readings.
A smaller number of edge devices also reduces the data
transmission when other query conditions are the same, such
as the same dimension and sensor measurements. The average
numbers of relay hops of LPRange and PPRange using data
set MUE were smaller than that of our two schemes when
LUCE used since there were less edge devices in MUE than
the ones in LUCE. And the average numbers of relay hops
of PPRange were smaller than that of LPRange, as shown in
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Fig. 9c, due to the proxy storage in PPRange.

VII. CONCLUSION

This paper addresses the qualities (such as energy efficiency,
real-time response and privacy protection) of range query ser-
vices over edge devices, and proposes two privacy-aware fuzzy
range query schemes using fuzzy sets. Non-uniform range
partitions, linguistic range variables and fuzzy overlap ratio
labels are introduced respectively. Linguistic variables instead
of raw sensory values are used for range query processing,
which benefits privacy protection, real-time response and en-
ergy efficiency. Besides, a fuzzy range recovering mechanism
as well as two distributed privacy-aware fuzzy range query
algorithms are devised, which can provide good edge range
query services in two common IoT application scenarios.
Extensive evaluations validate our motivation in terms of
reliability, real time, and energy efficiency. Though LPRange
and PPRange are service-tailed for range queries, the idea of
fuzzy data transformation and fuzzy information processing
can be used by other information extraction applications.

In the future, we aim for systematic query processing
in mobile edge networks that might confront sophisticated
malicious attackers.
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