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Abstract: This paper concerns the stability issue of pump-controlled single-rod cylinders, known
as mode switching. First, a review of the topic is provided. Thereafter, the most recently proposed
solution for the elimination of mode switching is investigated and shown to result in unstable
behavior under certain operating conditions. A theoretical analysis is provided demonstrating the
underlying mechanisms of this behavior. Based on the analysis, a novel control strategy is proposed
and investigated numerically. Proper operation and stability are demonstrated for a wide range of
operating conditions, including situations under which the most recently proposed solution results in
unstable behavior and loss of control over the actuator.

Keywords: pump-controlled systems; mode switching instability; linear actuators; single-pump
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1. Introduction

Pump-control of hydraulic actuators is a promising technology offering several advantages over
traditional valve-controlled systems. By connecting a hydraulic pump directly to the actuator, its
velocity may be controlled by varying either the speed of the prime mover, the displacement of the
pump, or a combination of both [1]. This eliminates the need for throttling of the hydraulic fluid,
allowing energy efficiencies superior to that of conventional valve-controlled systems [2,3]. This also
facilities the construction of compact electrohydraulic drives, combining the advantages of electrical
actuation (e.g., energy efficiency, plug-and-play functionality and no external piping) with those of the
hydraulic actuation (e.g., long service life, high force availability and good overload protection) [2–4].

A common requirement in industrial applications is the use of single-rod cylinders. This results
in different flows into, and out of, the cylinder, which must be handled for proper operation of the
actuator. Several solutions exist, involving either, the use of multiple pumps or auxiliary valves [5–8].
Conceptually, the simplest solution involves a switching valve arrangement that connects one of the
cylinder chambers to a hydraulic reservoir, displacing the differential flow to and from the reservoir
as the actuator is operated. A simple and cost-efficient circuit enabling four-quadrant operation
utilizing a shuttle valve to realize this function was introduced by Hewett [9], followed by a circuit
utilizing pilot operated check valves (POCVs) by Rahmfeld and Ivantysynova [10]. In both cases,
the differential flow is compensated by monitoring the pressures of the actuator and connecting the
cylinder chamber with the lowest pressure to the reservoir, see Figure 1 [11]. These solutions have,
however, shown to exhibit unstable behavior. Under certain operating conditions, the switching
valve arrangement may oscillate, reversing its connections rapidly, even for a constant input (i.e.,
constant velocity of the electric motor, or displacement of the pump). This results in oscillations of the
pressures and velocity of the actuator, which may lead to reduced performance and loss of control
over the actuator [8–10]. This phenomenon is commonly referred to as mode switching, first described
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by Williamson and Ivantysynova [12]. Alternative solutions, using multiple pumps to handle the
differential flow, does not result in mode switching [11]; however, a solution utilizing a single pump is
more attractive with regards to compactness and system cost. For this reason, much research effort has
been devoted to investigating the causes and potential solutions for mode switching in single-pump
circuits, a review of which is presented in the following.
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Figure 1. Conceptual schematic of a pump-controlled single-rod cylinder.

Williamson and Ivantysynova first reported mode switching while lowering light loads at high
velocity [12], then later for large inertia loads subjected to low external forces [13]. Feedforward control
of the actuator pressures, by means of a predictive observer was proposed, however later found to be
an insufficient solution [13].

A numerical analysis using a simplified nonlinear model was presented in [13], studying inertia
loads from 1 to 20 ton. Approximate stability thresholds were derived based on the study, and mode
switching was shown to increase for increasing inertias and lower damping. The use of pressure
feedback was proposed, and shown to be capable of stabilizing the actuator for the operating conditions
considered. Michel and Weber demonstrated that mode switching may result from subjecting large
inertia loads to high accelerations, and derived the limit for the maximum acceleration that may be
safely applied [11]. Pressure feedback was reported to be capable of increasing this limit [11]. A
mathematical analysis was presented in [14], where it was shown that instability may occur at low
load conditions.

The introduction of leakage to dampen mode switching oscillations by means of two auxiliary
hydraulic valves was proposed in [14], and shown to prevent mode switching for the operating
conditions investigated using a load of 143 kg. A more detailed analysis was presented by Caliskan et al.
by also including the dynamics of the switching valve arrangement, which had previously been treated
as an ideal switching element. Using linearized analysis, the presence of unstable equilibrium points
was demonstrated. The introduction of leakage without auxiliary valves was proposed using an
underlapped shuttle valve and shown to provide stable operation up to certain retraction speeds [15,16].
The effects of friction and line losses were studied in [17] and shown to alter the regions of stable and
unstable operation. Stabilization of the actuator by means of throttling only during critical operating
conditions (i.e., low load conditions) was studied in [17,18], and shown to improve performance while
preserving high energy efficiency.

All of the research reviewed so far concerns solution utilizing the valve switching strategy of
connecting the lowest cylinder chamber pressure to the reservoir. Although improvements have been
made, every proposed solution has suffered from performance issues and instability under some
operating conditions [19,20]. These solutions have typically been analyzed based on a quadrant division
plotting the velocity of the actuator on the vertical axis versus the external force on the horizontal
axis. Recently, Costa and Sepehri analyzed the problem from a different perspective by introducing a
new quadrant division. Rather than using the external force, the force due to the hydraulic pressures,
referred to here as the hydraulic force Fhyd, was used on the horizontal axis [19]:

Fhyd = p1 ·A1 − p2 ·A2. (1)
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where p1 and p2 are the piston- and rod-side pressures, and A1 and A2 are the piston- and rod-side areas.
It was shown that previous quadrant divisions do not accurately describe the operating quadrants
of the cylinder, and this was proposed as an explanation for why previous attempts of solving the
problem of mode switching have failed. A new valve switching strategy, based on the direction of
the hydraulic force, was proposed and implemented hydraulically by means of a pressure intensifier.
Experimental results controlling a load of 367 kg were presented with stable four-quadrant operation
demonstrated for the operating conditions investigated [19,20]. This is the most recently proposed
control strategy for single-pump circuits and is referred to here as the steady-state switching law (SSL).

This paper concerns the stability and control of simple-pump circuits utilizing switching strategies
based on the new quadrant division of Costa and Sepehri. First, the stability of a pump-controlled
single-rod cylinder using the SSL is investigated in detail. It is demonstrated theoretically and
numerically that mode switching may still occur under some operating conditions using the SSL. A
theoretical analysis is provided that explains the underlying mechanisms of this behavior. Based
on the analysis, a novel switching strategy is proposed and investigated. A number of operating
conditions are presented in which the use of the SSL leads to mode switching in varying degrees, with
the most severe cases resulting in loss of control over the actuator. It is demonstrated that neither
artificial damping nor filtering of the hydraulic force prevents mode switching using the SSL under
these conditions. Operating conditions leading to mode switching are presented for both low and
high load conditions, as well as low and high velocities, for a load of 2000 kg. The same simulations
are then repeated using the proposed control strategy, with stable behavior free of mode switching
demonstrated for all these operating conditions. Finally, stable behavior, free of mode switching, is
demonstrated using the proposed strategy for a wide range of external loading.

The rest of the paper is organized as follows: Section 2 describes the system under consideration and
its mathematical model. In Section 3, the possibility of mode switching using the SSL is demonstrated
and analyzed. A novel control strategy is proposed in Section 4, with numerical results presented in
Section 5. Section 6 concludes the paper with a summary of the findings.

2. System under Consideration

2.1. Hydraulic Circuit and Control Algorithm Implementation

The single pump circuit implementation, considered here, is shown in Figure 2. Traditionally,
single-pump-control strategies such as the SSL and its predecessor have been implemented using
purely hydraulic implementations [2,7]. Here, the use of two electronically actuated ON/OFF valves
(EV1 and EV2) is proposed for the implementation of the switching law. As will be seen, this enables
the application of more sophisticated control algorithms. The novel control strategy of Section 4
requires such an implementation, whereas the SSL may be implemented both hydraulically and
electro-hydraulically. In this paper, only electrohydraulic implementations are considered. The results
presented here regarding the SSL are however applicable to either implementation. The actuator is
controlled by varying the speed of the pump using an electric motor. The results to be presented are,
however, equally applicable to variable displacement solutions. Lastly, a sealed accumulator is used as
the hydraulic reservoir, so that the resulting system is a self-contained unit.

Referring to Figure 2, the SSL may be implemented electro-hydraulically as follows. The hydraulic
force Fhyd is defined as in (1). For Fhyd > 0, EV1 is closed while EV2 is open. For Fhyd < 0, the valve
connections are reversed.
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Figure 2. Single-pump circuit under consideration.

2.2. System Modelling

Applying Newton’s second law to the mass m:

m
..
x = p1 ·A1 − p2 ·A2 − b ·

.
x− Fext, (2)

where m is the total mass of the piston and load, b is the viscous friction coefficient and Fext the external
force. From the continuity equation:

.
p1 =

β1

VL1 + A1x

(
Qp + Q1 −A1 ·

.
x
)
, (3)

.
p2 =

β2

VL2 + A2(s− x)

(
−Qp + Q2 + A2 ·

.
x
)
, (4)

where β1 and β2 are the effective bulk moduli, VL1 and VL2 the line volumes and s the maximum stroke
of the cylinder. The pump flow Qp and the flows through EV1 and EV2:

Qp = D ·ω− c(p1 − p2), (5)

Q1 = Cd ·Ad · u1 · sgn(p3 − p1) ·

√
2
ρ
|p3 − p1|, (6)

Q2 = Cd ·Ad · u2 · sgn(p3 − p2) ·

√
2
ρ
|p3 − p2|, (7)

where ω is the velocity of the electric motor, c the pump leakage coefficient, cd and Ad the discharge
coefficient and discharge area, u1 and u2 the normalized openings of the electrohydraulic valves and ρ
the fluid density. Assuming an appropriately sized accumulator, the accumulator chamber pressure p3

is taken as constant. The dynamics of the electrohydraulic valves are modeled as first-order transfer
functions with a time constant τv. The dynamics of the electric motor is modeled as a first-order system
with a time constant τm.



Actuators 2020, 9, 20 5 of 24

3. Theoretical Analysis

This section demonstrates the possibility of mode switching in pump-controlled single-rod
cylinders when controlled using the SSL. For this purpose, consider the circuit of Figure 2, with

.
x

and Fext positive (resistant load). Assuming steady-state conditions (constant
.
x, Fext and ω), Fhyd > 0,

and therefore EV2 is energized while EV1 is closed. For the sake of clarity of presentation, friction is
omitted for the remainder of the analysis. In steady-state, p2 = p3 and the cylinder pressures balance
according to:

p1 ·A1 − p2 ·A2 = Fext. (8)

Next, consider an abrupt reversal of the external force. From Equations (1) and (8), a switch of
the valves will be required. Under these conditions, for the proper operation free of mode switching,
the valves must switch only once. If a second switch occurs, a third switch will also be required by
necessity before reaching steady-state, meaning that mode switching will take place with a minimum
of three switches. Thus, the occurrence of a second switch may be used to demonstrate the presence of
mode switching, which is utilized in the following.

Assuming p1 > p3 before the switch, p1 must decrease to p3 after the valves switch, whereas p2

must increase to fulfill Equation (8). During this transition, from the SSL and the definition of the
hydraulic force, the valves will switch a second time if p2 < p−2 , with p−2 defined as:

p−2 = p1 ·
A1

A2
. (9)

This switching condition may be illustrated graphically as in Figure 3, where the pressure p2 is
shown (solid line) along with the switching threshold p−2 (dashed line). The valve switching process
may be divided into four distinct stages, numbered one through four in Figure 3.
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During the first stage (t < t1), the system is in steady-state with:

p2 = p3, (10)

p−2 = p3 +
Fext

A2
, (11)

At t = t1, the external force changes direction, which marks the onset of the second stage. As a
result, p1 and thus also p−2 will decrease, until p−2 reaches p2 and the valves switch for the first time. The
third stage (t2 < t ≤ t3) is a transient stage, where both p2 and p−2 must approach their final steady-state
values, given by:

p2 = p2,ss = p3 ·
A1

A2
−

Fext

A2
. (12)

p−2 = p−2,ss = p3 ·
A1

A2
. (13)



Actuators 2020, 9, 20 6 of 24

During the fourth stage (t > t3), the system is again in steady-state with p2 and p−2 as described by
Equations (12) and (13). Note that for t > t1, Fext is negative, which is why p2,ss > p−2,ss, as indicated
in Figure 3. The transient responses of p2 and p−2 during the third stage determine whether or not a
second switch, and thus mode switching, takes place. If p2 < p−2 at any point after t = t2, a second
switch will take place and mode switching will occur with a minimum of three switches. The third
switch occurs for p2 > p−2 , after which several set of switches may occur again if the condition p2 < p−2
becomes fulfilled before reaching steady-state. Referring to Figure 3, this corresponds to an intersection
between the curves of p2 and p−2 .

Observe from (11) that p−2,ss > p3 as A1 > A2, and thus both p2 and p−2 must increase by necessity
after the valves switch the first time at t = t2. If the gradient of p−2 is less than

.
p2, and the response is

well-damped, the situation will resemble that of Figure 4a. In this case, the curves never intersect for
t > t2, and mode switching does not occur. However, if the gradient of p−2 is greater than

.
p2, the curves

will intersect and mode switching will occur with a minimum of three switches. If the gradient of p−2
remains greater than

.
p2 after the third switch, a series of switches may be initiated with the curves

overlapping until
.
p−2 <

.
p2. The situation will then resemble that of Figure 4b, where the curves overlap

in the region indicated by the green circle. In this paper, this is referred to as type 1 mode switching.
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Figure 4. Graphical interpretation of the switching condition: (a) no mode switching; (b) type 1
mode switching.

Even in the absence of type 1 mode switching, the curves may intersect at some point during
t2 < t < t3 if the response of p2 is underdamped, or the mass m oscillates (thus causing p2 to oscillate as
well). This type of behavior will be referred to here as type 2 mode switching.

These three possible scenarios are demonstrated numerically in the following using the model
developed in the previous section. Starting at steady-state with x = 0.1 m, m = 100 kg, b = 4000 Ns/m,
ω = 40 rpm, ideal (infinitely fast) valves, and the remainder of the system parameters as presented in
Section 5, an abrupt change in Fext from 1 kN to −1 kN at t = 0.1 s is simulated and plotted in Figure 5.
Figure 5a shows the response of p2 along with the switching threshold p−2 , and Figure 5b shows the
state of the EV1 valve, where 1 indicates an open valve and 0 indicates the valve being closed. The
response of the second valve, EV2 is identical in shape but reversed. The position and velocity of the
actuator are given in Figure 5c,d, respectively. In Figure 5a, the external force changes direction at the
time indicated by the first dashed horizontal line, whereas the second dashed horizontal line indicates
the time when the valves switch for the first time. As seen in Figure 5a, for these system parameters
and operating conditions, p2 and p−2 never intersect after the valves switch the first time, and thus
mode switching does not take place.
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Figure 5. System response with m = 100 kg, no mode switching: (a) pressure; (b) valve opening;
(c) position; (d) velocity.

Next, the simulation is repeated with m = 200 kg. As seen in Figure 6a, under these conditions
the curves intersect continuously for a short period of time after the valves switch for the first time,
leading to a series of switches, as seen in Figure 6b, demonstrating type 1 mode switching. During this
short time period, using ideal valves and a simulation step time of τsim = 10−6s, a total of 49 switches
take place.
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Figure 6. System response with m = 200 kg, type 1 mode switching: (a) pressures; (b) valve opening;
(c) position; (d) velocity.

Repeating the simulation with a mass of m = 2000 kg, the results plotted in Figure 7a–d are
obtained. Under these conditions type 1 mode switching occurs for a longer period of time after the
initial valve switch, followed by a type 2 mode switch at approximately t = 0.4 s. Type 1 and type 2
mode switching then occur consecutively for the remainder of the simulation with a total of 23479
switches taking place. The effect of this mode switching on the position and velocity of the actuator is
clear from Figure 7c,d, where both the position and velocity are observed to oscillate. Obviously, this is
not an acceptable type of behavior.
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Figure 7. System response with m = 2000 kg, type 1 and type 2 mode switching: (a) pressures; (b) valve
opening; (c) position; (d) velocity.

The analysis presented here was conducted using an abrupt change in the external force. This
represents the worst-case scenario, and may also represent an abrupt acceleration or deceleration of
the actuator, which is investigated in Section 5.

The results of the analysis may be summarized as follows:

1. Although, the SSL provides the correct operating quadrant and steady-state behavior, mode
switching may occur under certain operating conditions due to dynamic considerations.
Additionally, two distinct types of mode switching have been identified, referred to here
as type 1 and type 2.

2. The salient feature of type 1 mode switching is a continuous series of high-frequency valve
switches, and its occurrence depends upon the gradients of the cylinder pressures. This type of
mode switching may thus occur even if the pressures of the system are well damped.

3. If the pressures are not well-damped, any factor causing either cylinder chamber pressure to
oscillate (such as oscillations of the mass m) may result in a series of low-frequency switches,
which has been defined here as type 2 mode switching.

4. Novel Control Strategy

4.1. Conceptual Development

Referring to the summary of the previous section: regarding the third point, damping of the
pressures or filtering of Fhyd is likely to be beneficial. The former may be achieved by introducing
leakage or artificial damping (e.g., acceleration or pressure feedback), whereas the latter may be easily
implemented in software when using an electrohydraulic valve implementation. Regarding the second
point however, neither damping nor filtering are expected to resolve type 1 mode switching, and
therefore an alternative solution is developed here. Both artificial damping and filtering of Fhyd will,
however, be evaluated in Section 5, along with the control strategy to be developed in this section.

From its definition, the hydraulic force is observed to be comprised of the following components,
which in turn dictate whether or not a valve switch is commanded at any given time:

Fhyd = Fext + Fa,ω + F f + Fvs + Fa,m, (14)

which are numbered here as one through five and defined as: (1) Fext: the external force, (2) Fa,ω: forces
from commanded accelerations by adjusting the velocity command sent to the electric motor, (3) F f :
frictional forces, (4) Fvs: forces arising from transient pressure changes as a result of a previous valve
switch, (5) Fa,m: forces due to oscillations of the mass m.
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The analysis presented in the previous section indicates that reacting to the fourth and fifth
components is not desirable as it may lead to type 1, and type 2 mode switching, respectively. With
this in mind, the modified hydraulic force Fmod is introduced and defined as:

Fmod = Fext + Fa,ω + F f , (15)

The control strategy proposed here is to continuously calculate an estimate of the modified
hydraulic force, denoted F̂m, by means of an observer, and command valve switches based on F̂mod
rather than Fhyd. This should eliminate mode switching, however as a result the system may experience
transiently a valve connection which is considered incorrect according to the SSL and its predecessor, in
particular near Fhyd = 0. The effects of having such a connection, referred to here as a reverse connection,
is therefore investigated in the following before concluding the development of the proposed strategy.

Referring to Figure 2, assuming steady-state conditions and Fext positive, EV2 should be energized
with EV1 deenergized according to the SSL. Reversing the connections, p1 = p3 while p2 is given by
Equation (8) as:

p2 = p3 ·
A1

A2
− Fext (16)

From Equation (16) it is seen that as long as the following condition is fulfilled:

p3 ·
A1

A2
− Fext > 0, (17)

having a reverse connection will not lead to cavitation and thus control over the actuator is retained.
From Equation (17) it is seen that by increasing the accumulator pressure p3, the system remains
controllable with a reverse connection for larger Fext. For the system under consideration with
parameters as given in Section 5 and an accumulator pressure of p3 = 1 bar, it is found by rearranging
Equation (16) that the system can tolerate a reverse connection for up to Fext = 196 N for positive
Fext (EV1 energized), and down to Fext = −147 N for negative Fext (EV2 energized). Increasing the
accumulator pressure to p3 = 30 bar, these limits increase to Fext = 5890 N, and Fext = −4418 N,
respectively. The same deduction applies to Fhyd for transient behavior.

This is verified numerically in Figure 8, where the system is simulated with ω = 0 rpm for t < 1 s,
ω = 400 rpm, ω = −400 rpm for t > 3 s, p3 = 30 bar and an external force Fext = 1 kN. Figure 8a–c
show the position, velocity and pressures of the system with constant valve openings u1 = 1 and
u2 = 0 for the entire duration of the simulation. Figure 8d shows the hydraulic force, which is seen to
be positive except for a short period of time during t = 3 s.
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Figure 8. Constant valve configuration (EV1 energized): (a) position; (b) velocity; (c) pressures;
(d) hydraulic force.



Actuators 2020, 9, 20 10 of 24

Under these conditions, the system maintains a reverse connection for the entire simulation except
for the short time period where Fhyd becomes negative. Despite the reverse connection, the system
does not cavitate and remains both controllable and well behaved. The same simulation is repeated
in Figure 9, however with u1 = 0 and u2 = 1, providing the system with a reverse connection only
transiently near t = 3 s. Although the position and velocity response of the actuator differ slightly
from that of Figure 8, the system remains controllable, well behaved and free of cavitation.
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Figure 9. Constant valve configuration (EV2 energized): (a) position; (b) velocity; (c) pressures;
(d) hydraulic force.

Continuing with the development, the proposed strategy involves ensuring a certain minimum
pressure of the hydraulic reservoir, taken here as p3 = 30 bar, which may be realized using an
appropriately sized hydraulic accumulator as the reservoir. For a compact cylinder drive, this is not
common practice, where typically much lower accumulator pressures are used (e.g., p3 = 1 bar) [21].
As a result, some changes in the hydraulic topology are required. For variable-displacement drives
however, the use of a low-pressure line with a pressure of e.g., p3 = 25 bar is already common practice
in order to supply the servo valve controlling the displacement of the hydraulic unit from the same
line. Increasing the accumulator pressure also improves the stiffness of the actuator, leading to more
favorable dynamics. However, the force capability of the actuator is also reduced, and thus, selecting
the accumulator pressure level constitutes a tradeoff [22].

Although maintaining a constant set of valve opening leads to an appropriate behavior free
of mode switching under these conditions, as soon as Fhyd goes outside the limits calculated from
Equation (16) with Fhyd inserted for Fext, the system will cavitate and a switch of the valves is required
to maintain control over the actuator. Switching the valves at points close to these limits is not a
feasible control strategy as this would introduce large pressure shocks into the system. Switching of
the valves should therefore, take place near close to p1 = p2 (e.g., Fhyd = 0). The proposed control
strategy may then be summarized as follows: (1) Implement the system with an appropriate pressure
p3. (2) Estimate the modified hydraulic force Fmod using an observer. (3). For Fmod > 0 N, energize EV2,
for Fmod < 0 N, energize EV1.

4.2. Implementation

The implementation of the proposed strategy is realized as follows:

• An observer is constructed using equations identical to those presented in Section 2, except that
the switching valves EV1 and EV2 are excluded from the model in the observer and the pump
is modelled as an asymmetrical pump whose input and output flows are scaled to match the
differential area of the cylinder. This system, referred here as the virtual system is then simulated in
parallel with the true process. Additionally, the external force Fext is estimated using a simple
proportional Luenberger observer with a gain of Kobsv,F, implemented as described in [23].
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• The pressures of the virtual system, p1virt and p2virt are used to estimate of the modified hydraulic
force as F̂m = p1virt ·A1 − p2virt ·A2.

In this manner, the fourth component (transient pressure behavior due to valve switches) of
Equation (14) no longer affects the switching of the valves. The effects of the fifth component (mass
oscillations) are then eliminated by introducing a strong acceleration feedback with a feedback gain
Ka,virt in the virtual system.

Additionally, in order to ensure that the virtual system closely follows the desired velocity of the
true system, a velocity feedback with a feedback gain of Kv,virt is introduced in the virtual system. The
set point of this velocity feedback is calculated by estimating the desired velocity of the true system
based on a filtered version of the velocity command sent to the electric motor, um, f ilt, as:

.
xvirt,re f =

D · um, f ilt

(A1 + A2)/2
(18)

where
.
xvirt,re f is the velocity reference, and the average values of the cylinder areas have been used as

the velocity gain of the true system is a function of A1 with EV2 is energized, while a function of A2

when EV1 is energized. For filtering of the velocity command, a first-order filter with a time constant of
τre f ,virt is utilized. Lastly, in order to prevent valve switches from minor fluctuations in F̂mod when F̂mod
remains close to zero, a fixed valve configuration (EV1 = 1 and EV2 = 0) is maintained whenever F̂mod
enters a certain threshold value |F̂mod| = y1, which is deactivated again when |F̂mod| = y2. To avoid
oscillation between these two modes of operation, referred to here as fixed behavior, and virtual behavior,
respectively, y2 is selected as y2 > y1.

An overview of the virtual system is shown in Figure 10, where Gvirt is the mathematical model of
the valveless system containing the asymmetrical pump. The pressures of Gvirt are then used to estimate
the hydraulic force to control the valves of the true system. Although the virtual system contains both
a velocity and an acceleration feedback, the true system may be controlled in an open-loop manner
from input to output velocity, with or without acceleration feedback.
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These parameters (i.e., Kosbv,F, Ka,virt, Kv,virt, τre f ,virt, y1 and y2) may then be tuned and optimized
until the desired system behavior is achieved. With the proposed control strategy, referred to here as
the virtual system switching law (VSL), the desired system behavior is for the valves to switch based on
the factors contained in the modified hydraulic force of Equation (15), i.e., the external force, force
components, due to commanded accelerations and frictional forces. Regarding frictional forces, only
viscous friction is considered here. Note that although, the virtual system uses both velocity and
acceleration feedback, the true system may be controlled in either open-loop or in a closed-loop manner.

5. Numerical Results

This section presents numerical results using the SSL and VSL control algorithms.

5.1. Model Parameters and Operating Conditions

The models presented in Sections 2 and 4 are implemented in MATLAB using forward Euler
integration with a time step of τsim = 10−6 s and system parameters as given by Table 1. For simulations
with low velocity, the system starts at rest in steady-state with x = 0.1 m,

.
x = 0 m/s and ω = 0 rpm,
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followed by an abrupt acceleration at t = tω1 = 1 s by commanding the electric motor to ω = 200 rpm,
and a command to reverse with ω = −200 rpm at t = tω2 = 3 s. For simulations with higher velocities,
the operating conditions are similar, however with the electrical motor commanded to ω = 1500 rpm
(t = tω1 = 0.5 s) and ω = −1500 rpm (t = tω2 = 1 s).

Table 1. System parameters.

Parameter Value Parameter Value

m 2500 (kg) A1 1.96 · 103
(
mm2

)
b 4000 (Ns/m) A2 1.47 · 103

(
mm2

)
s 0.5 (m) β1, β2 5000 (bar)
D 25

(
cm3/rev

)
VL1, VL2 0.3 · 10−3

(
m3

)
c 10−13

(
m3/Pa

)
τv 25 (ms)

Cd 0.6 (−) τm 10 (ms)
Ad 78.5

(
mm2

)
ρ 850

(
kgm3

)
5.2. Steady-State Switching Law (SSL)

First, the system is simulated under low load conditions (|Fext| ≤ 1 kN) at low pump velocities
(|ω| ≤ 200 rpm) with the valves controlled using the SSL. Figure 11 shows the position, velocity, valve
command (EV1), valve opening (EV1) and pressures of the actuator for a constant external force of
Fext = 1 kN. Based on the operating conditions, a transient switch of the valves is required at t = tω2

in order to accommodate for the abrupt reversal of the actuator. Aside from this, no other switches are
required considering the external force, acceleration and viscous friction. Observe from Figure 11c,
however, that the valves also switch at t = 1 s. Furthermore, a series of multiple high-frequency
switches occur at both t = 1 s and t = 3 s. This is a result of mode switching, as the control law
also responds to other factors such as valve transients and mechanical oscillations. The position and
velocity responses of the actuator are however acceptable, and control over the actuator is maintained.
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Figure 11. System response with constant external force, Fext = 1 kN (SSL): (a) position; (b) velocity;
(c) valve command; (d) valve opening; (e) pressures; (f) motor velocity.

The simulations are then repeated with Fext = 0.1 kN, with the results plotted in Figure 12. Under
these conditions, the system enters a continuous state of mode switching after the pump is reversed at



Actuators 2020, 9, 20 13 of 24

t = tω2. From Figure 11a,b, this is seen to result in reduced performance, with the actuator moving at a
much lower velocity than previously for t > tω2.Actuators 2020, 9, x FOR PEER REVIEW 13 of 25 
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Figure 12. System response with constant external force, Fext = 0.1 kN (SSL): (a) position; (b) velocity;
(c) valve command; (d) valve opening; (e) pressures; (f) motor velocity.

Next, a variable external force is introduced with Fext = 0.1 kN up to t = tF = 2 s and
Fext = −0.1 kN for t ≥ tF. As seen in Figure 13a,b, this results in loss of control over the actuator, with
the actuator extending positively for the entire despite commanding a reversal at t = tω2 This is clearly
an unacceptable response.
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Figure 13. System response with variable external force, |Fext| = 0.1 kN (SSL): (a) position; (b) velocity;
(c) valve command; (d) valve opening; (e) pressures; (f) motor velocity.

In an attempt to improve the behavior of the system, filtering of Fhyd is introduced using a
first-order filter with a time constant of 150 ms. The results are given in Figure 14 with Figure 14f
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displaying the original Fhyd along with its filtered value. Despite heavy filtering, control over the
actuator is still lost as a result of the mode switching. Even with a time constant of 1500 ms, the authors
were unable to achieve a stable response.
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Figure 14. System response with variable external force, filtering of Fhyd (SSL): (a) position; (b) velocity;
(c) valve command; (d) valve opening; (e) pressures; (f) force.

As an alternative remedy, artificial damping is evaluated by introducing an acceleration feedback
with a gain of Ka = 80 s/m2, which increases damping in the same manner as leakages, however
without resulting in energy losses. As seen in Figure 15b,e, the damping of the system has increased
substantially as a result of the acceleration feedback. Despite the increased damping, however, the
system still experiences continuous mode switching for t > tω2, resulting in loss of control over
the actuator.
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Figure 15. System response with variable external force, acceleration feedback (SSL): (a) position;
(b) velocity; (c) valve command; (d) valve opening; (e) pressures; (f) motor velocity.
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Figure 16 demonstrates similar behavior under acceleration feedback for a variable external force
of magnitude |Fext| = 1 kN. Note in Figure 16a that as a result of having lost control, the actuator
reaches end its end stop close to t = 4 s and the simulation is therefore concluded.
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Figure 16. System response with variable external force, |Fext| = 1 kN (SSL): (a) position; (b) velocity;
(c) valve command; (d) valve opening; (e) pressures; (f) motor velocity.

Lastly, operating conditions where the use of the SSL results in degraded performance are
presented for higher velocity commands of the actuator. Figures 17 and 18 illustrates the response of
the actuator for a commanded pump velocity of |ω| = 1500 rpm under both low (Fext = 1 kN) and
high load conditions (Fext = 10 kN) without the use of filtering or acceleration feedback. In both
situations, mode switching occurs and results in significant loss of performance of the actuator. Thus it
is demonstrated that the use of the SSL may result in mode switching for both low and high actuator
velocities, and also under both low and high loading conditions.Actuators 2020, 9, x FOR PEER REVIEW 16 of 25 
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Figure 17. System response for higher velocity, low load condition, Fext = 1 kN (SSL): (a) position;
(b) velocity; (c) valve command; (d) valve opening; (e) pressures; (f) motor velocity.
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Figure 18. System response for higher velocity, high load condition, Fext = 10 kN (SSL): (a) position;
(b) velocity; (c) valve command; (d) valve opening; (e) pressures; (f) the hydraulic force.

5.3. Virtual System Switching Law (VSL)

Next, the system is simulated under the same operating conditions with the valves controlled
according to the VSL. The tunable parameters of the VSL are selected as shown in Table 2. Additionally,
the system is provided with an acceleration feedback with a gain of Ka = 40 s/m2.

Table 2. Virtual system tuning parameters.

Parameter Value Parameter Value

Kosbv,F 108 (1/N) τre f ,virt 40 (ms)
Ka,virt 400

(
s/m2

)
y1 0.1 (N)

Kv,virt 5000 (s/m) y2 0.2 (N)

Starting with a constant external force of Fext = 1 kN and a commanded pump velocity of
|ω| = 200 rpm, the response of the system is given in Figure 19 (VSL) for the same operating conditions
as those of Figure 11 (SSL). Based on the external force and commanded acceleration, the desired
behavior of the valves is a transient switch shortly after t = tω2 in order to accommodate for the
reversal of the actuator. As seen in Figure 19c,d, this exact behavior is achieved using the VSL, with
only a transient reversal of the valve connections occurring shortly after t = tω2 as the actuator reverses
direction. Compare with Figure 11 (SSL). Aside from this, no other valve switches occur and mode
switching is avoided. A minor disturbance in the velocity of the actuator is observed in Figure 19b as
the valves reverse, the response of the actuator is however well behaved and acceptable. Figure 19f
shows the estimate of the modified hydraulic force used in the VSL, along with the original hydraulic
force used for the SSL.
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Figure 19. System response with constant external force, Fext = 1 kN (vSL): (a) position; (b) velocity;
(c) valve command; (d) valve opening; (e) pressures; (f) the hydraulic force and the estimate of the
modified hydraulic force.

Figure 20 shows the response of the system for a constant external force of Fext = 0.1 kN. Recall
from Section 4, that with the VSL a fixed valve configuration is maintained for |F̂m| ≤ y2 after |F̂m| = y1,
which is referred to as fixed behavior. In Figure 20, F̂m remains inside this threshold and the system is,
therefore, operating in the fixed behavior mode with no valve switches occurring. The overall response
of the actuator is both well behaved and acceptable. Compare with the degraded performance resulting
from the use of the SSL in Figure 12a,c for the same operating conditions.Actuators 2020, 9, x FOR PEER REVIEW 18 of 25 
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Figure 20. System response with constant external force, Fext = 0.1 kN (VSL): (a) position; (b) velocity;
(c) valve command; (d) valve opening; (e) pressures; (f) motor velocity.
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Next, the variable external force of Figures 13–15 (SSL) is introduced using the VSL, the results
of which are plotted in Figure 21. As with the previous simulation, the system is operating in fixed
behavior mode and as a result no valve switches occur. The response of the system is both acceptable
and well behaved. Compared to Figures 13–15 (SSL), where control over the actuator was lost using the
SSL for the same operating conditions for t > tω2. Using the VSL, however, control over the actuator is
maintained throughout the entire simulation, with the actuator successfully following the command to
reverse direction.
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Figure 21. System response with variable external force, |Fext| = 0.1 kN (VSL): (a) position; (b) velocity;
(c) valve command; (d) valve opening; (e) pressures; (f) motor velocity.

Increasing the magnitude of the variable external force to |Fext| = 1 kN, the system now operates
in the virtual behavior mode (i.e., valve switches are commanded based on the direction of F̂m), see
Figure 22. Under these conditions, only a single switch of the valves is expected at t = tF as the external
force changes direction. No additional switches are required to accommodate for the reversal of the
actuator at t = tω2 as the external force is negative for t ≥ tF. As seen in Figure 22, this exact behavior
is achieved using the VSL, with the valves switch only once. Due to a large change in the external
force, a significant velocity disturbance is introduced at t = tF, the response of the actuator is, however,
both acceptable and well behaved. Compared to Figure 16 (SSL) where control over the actuator is lost
under the same operating conditions, the external force along with its estimated value is shown in
Figure 22f, which is observed adequately despite minor drifting.

Figure 23 illustrates the response of the system for a variable force with a magnitude of |Fext| =

10 kN. Despite an abrupt change in the magnitude of the external of 20 kN at t = t f , the response
remains stable and control over the actuator is maintained. Aside from the effects of the shock
introduced by reversing an external force of this magnitude at t = t f , the response of the system
remains acceptable and well behaved. The estimate of the modified hydraulic force is given in
Figure 23f along with the hydraulic force used in the SSL, which is seen to behave in a calmer manner
around t = t f . This is because the hydraulic force reacts to mechanical oscillations of the combined
mass of the piston and the load resulting from the reversal of the external force, whereas the modified
hydraulic force reacts only to the commanded motion, viscous friction and the external force itself.



Actuators 2020, 9, 20 19 of 24

Actuators 2020, 9, x FOR PEER REVIEW 19 of 25 

 

Increasing the magnitude of the variable external force to |𝐹𝑒𝑥𝑡| =  𝑘𝑁, the system now operates 

in the virtual behavior mode (i.e. valve switches are commanded based on the direction of 𝐹̂𝑚), see 

Figure 22. Under these conditions, only a single switch of the valves is expected at 𝑡 = 𝑡𝐹  as the 

external force changes direction. No additional switches are required to accommodate for the reversal 

of the actuator at 𝑡 = 𝑡𝜔2 as the external force is negative for 𝑡 ≥ 𝑡𝐹. As seen in Figure 22, this exact 

behavior is achieved using the VSL, with the valves switch only once. Due to a large change in the 

external force, a significant velocity disturbance is introduced at 𝑡 = 𝑡𝐹, the response of the actuator 

is, however, both acceptable and well behaved. Compared to Figure 16 (SSL) where control over the 

actuator is lost under the same operating conditions, the external force along with its estimated value 

is shown in Figure 22f, which is observed adequately despite minor drifting. 

 

Figure 22. System response with variable external force, |𝐹𝑒𝑥𝑡| =  𝑘𝑁 (VSL): (a) position; (b) velocity; 

(c) valve command; (d) valve opening; (e) pressures; (f) the external force and its estimate. 

Figure 23 illustrates the response of the system for a variable force with a magnitude of |𝐹𝑒𝑥𝑡| =

 0𝑘𝑁. Despite an abrupt change in the magnitude of the external of 20𝑘𝑁 at 𝑡 = 𝑡𝑓, the response 

remains stable and control over the actuator is maintained. Aside from the effects of the shock 

introduced by reversing an external force of this magnitude at 𝑡 = 𝑡𝑓, the response of the system 

remains acceptable and well behaved. The estimate of the modified hydraulic force is given in Figure 

23f along with the hydraulic force used in the SSL, which is seen to behave in a calmer manner around 

𝑡 = 𝑡𝑓. This is because the hydraulic force reacts to mechanical oscillations of the combined mass of 

the piston and the load resulting from the reversal of the external force, whereas the modified 

hydraulic force reacts only to the commanded motion, viscous friction and the external force itself.  

  

Time [s]Time [s]

P
o

si
ti

o
n

 [
m

]

V
el

o
ci

ty
 [

m
/s

]
V

al
v

e 
O

p
en

in
g

 [
-]

V
al

v
e 

C
o

m
m

an
d

 [
-]

E
x

te
rn

al
 F

o
rc

e 
[k

N
]

P
re

ss
u

re
s 

[b
ar

]

(a)

(c)

(e)

(b)

(d)

(f)

𝑡𝜔1 𝑡𝐹 𝑡𝜔2 𝑡𝜔1 𝑡𝐹 𝑡𝜔2

Figure 22. System response with variable external force, |Fext| = 1 kN (VSL): (a) position; (b) velocity;
(c) valve command; (d) valve opening; (e) pressures; (f) the external force and its estimate.Actuators 2020, 9, x FOR PEER REVIEW 20 of 25 

 

 

Figure 23. System response with variable external force, |𝐹𝑒𝑥𝑡| =  0𝑘𝑁  (VSL): (a) position; (b) 

velocity; (c) valve command; (d) valve opening; (e) pressures; (f) the hydraulic force and the estimate 

of the modified hydraulic force. 

The system is then simulated using the VSL for a wide range of values of the external force, with 

the external force variable and the commanded motion as in the preceding simulations. The results 

are given by Table 3, where the behavioral mode of the system is reported along with the number of 

valve switches and the minimum pressure occurring in either of the cylinder chambers, denoted 

𝑝𝑚𝑖𝑛 . The column denoted controllability indicates whether or not control over the actuator is 

maintained throughout the simulation.  

Table 3. System behavior using the VSL. 

|𝑭𝒆𝒙𝒕| (𝒌𝑵) Controllability 𝒑𝒎𝒊𝒏 (𝒃𝒂𝒓) Behavior 
Valve 

Switches 

0  30 Fixed 0 

0.1  30 Fixed 0 

0.2  24 Virtual 1 

0.3  24 Virtual 1 

0.4  25 Virtual 1 

0.5  25 Virtual 1 

1  28 Virtual 1 

2.5  29 Virtual 1 

5  28 Virtual 1 

7.5  26 Virtual 1 

10  23 Virtual 1 

 

From the table it is seen that controllability is maintained and cavitation avoided for all operating 

points, as 𝑝𝑚𝑖𝑛 > 0 𝑏 𝑟. Mode switching is also avoided with only a single switch of the valves taking 

place. The results thus demonstrate proper behavior of the system when controlled using the VSL for 

a wide range of operating conditions 

Next, higher speed and loading conditions are evaluated using the same velocity command as 

in Figure 17 (|𝜔| =  500𝑟𝑝𝑚). The response of the system for a constant external force of 𝐹𝑒𝑥𝑡 =  𝑘𝑁 

and 𝐹𝑒𝑥𝑡 =  0𝑘𝑁 is given by Figures 24 and 25, respectively. Compare to Figures 17 and 18 (SSL). 

Time [s]Time [s]

P
o

si
ti

o
n

 [
m

]

V
el

o
ci

ty
 [

m
/s

]
V

al
v

e 
O

p
en

in
g

 [
-]

V
al

v
e 

C
o

m
m

an
d

 [
-]

H
y

d
ra

u
li

c 
F

o
rc

e 
[k

N
]

P
re

ss
u

re
s 

[b
ar

]

(a)

(c)

(e)

(b)

(d)

(f)

𝑡𝜔1 𝑡𝐹 𝑡𝜔2 𝑡𝜔1 𝑡𝐹 𝑡𝜔2

Figure 23. System response with variable external force, |Fext| = 10 kN (VSL): (a) position; (b) velocity;
(c) valve command; (d) valve opening; (e) pressures; (f) the hydraulic force and the estimate of the
modified hydraulic force.

The system is then simulated using the VSL for a wide range of values of the external force, with
the external force variable and the commanded motion as in the preceding simulations. The results
are given by Table 3, where the behavioral mode of the system is reported along with the number of
valve switches and the minimum pressure occurring in either of the cylinder chambers, denoted pmin.
The column denoted controllability indicates whether or not control over the actuator is maintained
throughout the simulation.
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Table 3. System behavior using the VSL.

|Fext| (kN) Controllability pmin (bar) Behavior Valve Switches

0 X 30 Fixed 0
0.1 X 30 Fixed 0
0.2 X 24 Virtual 1
0.3 X 24 Virtual 1
0.4 X 25 Virtual 1
0.5 X 25 Virtual 1
1 X 28 Virtual 1

2.5 X 29 Virtual 1
5 X 28 Virtual 1

7.5 X 26 Virtual 1
10 X 23 Virtual 1

From the table it is seen that controllability is maintained and cavitation avoided for all operating
points, as pmin > 0 bar. Mode switching is also avoided with only a single switch of the valves taking
place. The results thus demonstrate proper behavior of the system when controlled using the VSL for a
wide range of operating conditions.

Next, higher speed and loading conditions are evaluated using the same velocity command as in
Figure 17 (|ω| = 1500 rpm). The response of the system for a constant external force of Fext = 1 kN and
Fext = 10 kN is given by Figures 24 and 25, respectively. Compare to Figures 17 and 18 (SSL).Actuators 2020, 9, x FOR PEER REVIEW 21 of 25 
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Figure 24. System response for higher velocity, low load condition, Fext = 1 kN (VSL): (a) position;
(b) velocity; (c) valve command; (d) valve opening; (e) pressures; (f) the hydraulic force and the estimate
of the modified hydraulic force.
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Figure 25. System response with variable external force, |Fext| = 10 kN (VSL): (a) position; (b) velocity;
(c) valve command; (d) valve opening; (e) pressures; (f) the hydraulic force and the estimate of the
modified hydraulic force.

In Figure 24, only a single switch of the valves takes place (t = tω2), without the valves switching
back after reversal of the actuator. This is because of the increased velocity of the actuator, causing the
viscous friction to become greater in magnitude than the external force (which is why both F̂m and
Fhyd are negative in Figure 24f). In Figure 25, however, the external force is much larger and is not
overcome by viscous friction and the valves therefore switch back after having switched transiently to
accommodate for the reversal of the actuator. In both cases, the response of the system is well behaved.

In this section it has been demonstrated that, in using the proposed VSL, the system behaves in
the intended manner, with valve switches occurring only due to the factors for which the algorithm
was designed to execute switches. In this case, the control algorithm was designed to execute switches
based on the external force, commanded acceleration and viscous friction, excluding switches due to
pressure transients arising from previous switches and mechanical oscillations. The concepts presented
here, however, may be used to model any type of switching behavior deemed desirable for a given
system configuration. The proposed implementation provides a high degree of flexibility as the
algorithm may be easily adjusted in software if performance issues were to arise for a given application.
In contrast, previous works have focused primarily on hydraulic implementations, where the control
algorithm may not be easily adjusted after the system has been constructed.

6. Conclusions

The results of the paper may be summarized as follows:

• Mode switching using the steady-state switching law (SSL) recently proposed by Costa and
Sepehri has been investigated.

• It was shown that, as with its predecessor (switching based on p1 = p2), mode switching may
occur under certain operating conditions, resulting in degraded performance or loss of control
over the actuator.

• A theoretical analysis was conducted and two underlying mechanisms were identified for this type
of behavior, each leading to a distinct type of mode switching. For this reason, the classification of
type 1 and type 2 mode switching was introduced.
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• It was shown that, although the SSL results in the correct operating quadrant and proper behavior
steady-state, both type 1 and type 2 mode switching may occur due to dynamic considerations.
Using the SSL, type 1 mode switching could not be eliminated by filtering of the hydraulic force
nor by the introduction of artificial damping.

• A novel control strategy consisting of a more sophisticated algorithm, based on the new quadrant
division recently introduced by Costa and Sepehri, was proposed and investigated.

• Numerical results demonstrated proper behavior, and the absence of both type 1 and type 2
mode switching, using the proposed strategy for a wide range of operating conditions, including
situations under which use of the SSL, leads to improper operation and loss of control over
the actuator.

To the best of the authors’ knowledge, this is the first paper reporting mode switching using the
SSL. Experimental validations are therefore called for. An experimental system suitable for this purpose
is currently being constructed. Unlike previous works on mode switching, the results presented here
are based on the novel quadrant division of Costa and Sepehri. The validity of this quadrant division
is neither questioned nor disputed here. In fact, as with the SSL, the proposed strategy is based on this
quadrant division.

It has, however, been shown that improper operation may result even with strategies based on this
new quadrant division, and further investigations of such phenomena, are therefore, warranted. As
with the early works on mode switching using the previous quadrant division, the analysis presented
here involves certain simplifying assumptions (e.g., the absence of nonlinear friction, line losses and
varying bulk moduli). This has been done with a view of first studying the problem at its core to
establish a fundamental understanding. Future works should include investigations of how breaking
these assumptions affects performance and regions of stable operation.

The strategy, presented here, has so far shown great promise for the elimination of mode switching,
and could possibly be a final decisive solution, or provide the motivation for a new research direction
within the field of mode switching in pump-controlled single-rod cylinders, focusing on sophisticated
control algorithms implemented in software.
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Nomenclature

Abbreviations
EVi Electrohydraulic valves
SSL Steady-state switching law
VSL Virtual system switching law
Symbols
A1 Piston-side area
A2 Rod-side area
Ad Discharge area
b Viscous friction coefficient
c Pump leakage coefficient
Cd Discharge area
Fext External force
Fhyd Hydraulic force
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Fmod Modified hydraulic force
Ka Acceleration feedback gain
Ka,virt Acceleration feedback gain, virtual system
Kobsv,F Feedback gain, external force observer
Kv,virt Velocity feedback gain, virtual system
m Total mass of piston and load
p1 Piston-side pressure
p2 Rod-side pressure
p−2 Switching threshold
p3 Accumulator pressure
pmin Minimum pressure of the cylinder chambers
p1virt Piston-side pressure, virtual system
p2virt Rod-side pressure, virtual system
Qp Pump flow
Q1 Flow through EV1

Q2 Flow through EV2

s Maximum cylinder stroke
u1 EV1 valve command
u2 EV2 valve command
um, f ilt Motor velocity command, filtered
VL1 Piston-side line volume
VL2 Rod-side line volume
x Cylinder position
.
x Cylinder velocity
.
xvirt,re f Velocity reference of the virtual system
y1 Threshold limit, virtual control algorithm
y2 Threshold limit, virtual control algorithm
β1 Piston-side bulk modulus.
β2 Rod-side bulk modulus.
ω Rotational velocity of the electric motor.
τm Time constant of the electril motor
τre f ,virt Filter time constant, velocity reference of the virtual system
τv Time constant of the electrohydraulic valves
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