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Summary 15 

Tanystropheus longobardicus is one of the most remarkable and iconic Triassic reptiles. Mainly 16 
known from the Middle Triassic conservation Lagerstätte of Monte San Giorgio on the Swiss-Italian 17 
border, it is characterized by an extraordinarily long and stiffened neck that is almost three times 18 
the length of the trunk, despite being comprised of only 13 hyper-elongate cervical vertebrae [1-8]. 19 
Its palaeobiology remains contentious, with both aquatic and terrestrial lifestyles having been 20 
proposed [1, 9-12]. Among the Tanystropheus specimens, a small morphotype bearing tricuspid 21 
teeth and a large morphotype bearing single-cusped teeth can be recognized, historically 22 
considered as juveniles and adults of the same species [4]. Using high-resolution synchrotron 23 
radiation microtomography (SRµCT), we three-dimensionally reconstruct a virtually complete but 24 
disarticulated skull of the large morphotype, including its endocast and inner ear, to reveal its 25 
morphology for the first time. The skull is specialized towards hunting in an aquatic environment, 26 
indicated by the placement of the nares on the top of the snout and a ‘fish-trap’ type dentition. 27 
The SRµCT data and limb bone palaeohistology reveal that the large morphotype represents a 28 
separate species (Tanystropheus hydroides sp. nov.). Skeletochronology of the small morphotype 29 
specimens indicates that they are skeletally mature despite their small size, thus representing 30 
adult individuals of Tanystropheus longobardicus. The co-occurrence of these two species of 31 
disparate size ranges and dentitions provides strong evidence for niche partitioning, highlighting 32 
the surprising versatility of the Tanystropheus bauplan and the complexity of Middle Triassic 33 
nearshore ecosystems. 34 
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Results 37 

Systematic palaeontology 38 

Diapsida Osborn, 1903 [13] 39 

Archosauromorpha von Huene, 1946 [14] 40 

Tanystropheidae Camp 1945 [15] 41 

Tanystropheus von Meyer, 1852 [16] 42 

Tanystropheus hydroides sp. nov. 43 

Etymology 44 

‘Hydra’ refers to the long-necked mythical sea monster of Greek antiquity; the suffix -oides means 45 
‘related to’ or ‘resembling’ in Ancient Greek. The name refers to the resemblance of T. hydroides to 46 
this famous mythological creature. 47 

Holotype 48 

PIMUZ T 2790, a semi-articulated specimen consisting of a virtually complete yet strongly 49 
compressed skull and the first eight cervical vertebrae. 50 

Referred material 51 

PIMUZ T 2787, PIMUZ T 2793, PIMUZ T 2818, PIMUZ T 2819, PIMUZ T 183, SNSB-BSPG 1953 XV 2, 52 
MSNM V 3663. A synonymy list is provided in ref. [17] (as the large morphotype of T. longobardicus). 53 

Locality 54 

Monte San Giorgio on the border of Switzerland (canton Ticino) and Italy (Lombardy). 55 

Horizon 56 

Besano Formation, Anisian-Ladinian boundary, Middle Triassic. 57 

Diagnosis 58 

The recently revised generic diagnosis for Tanystropheus remains valid [17]. The following diagnosis 59 
distinguishes Tanystropheus hydroides from other Tanystropheus species (autapomorphies among 60 
Triassic archosauromorphs indicated by an asterisk): premaxilla lacking a postnarial process; single 61 
cusped marginal dentition; dentary tooth piercing through a foramen in the maxilla*; depression on 62 
the dorsal surface of the nasals; straight suture between frontals; fused parietal; conspicuously 63 
hooked dorsal quadrate head; wide and anteriorly rounded vomers with a single row of large 64 
recurved teeth along its outer margin*; edentulous palatine and pterygoid; dentary bearing a distinct 65 
ventral keel at its anterior end*; a maximum total length of over 5 metres. 66 

Cranial Description of Tanystropheus hydroides 67 

The fossilised skull of PIMUZ T 2790 is heavily compressed, obscuring much of its anatomy (Figure 68 
1A). However, the compression caused individual bones to disarticulate rather than deform, so they 69 
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largely maintain their three-dimensional morphology. Furthermore, the dorsal part of the skull has 70 
been displaced posteriorly, essentially folding over the rest of the skull bones. Consequently, many of 71 
the bones of the posterior part of the skull are well-preserved underneath the large frontals, which 72 
cover them. The digital models rendered from the SRµCT dataset allow the elements to be placed 73 
into their in-vivo position, thus ‘re-assembling’ the skull (Figures 1G and 2). The skull is virtually 74 
complete and only parts of the nasal and anterior palatal elements are missing. For some paired 75 
bones, only a single element was well-preserved, in which case a copied and mirrored version of the 76 
best represented or only available element was added to the digital model in Blender (see Table S1). 77 

The digital model of PIMUZ T 2790, supplemented by information from other specimens, allows for 78 
the detailed reconstruction of the skull of T. hydroides (Figure 3A-C), which strongly deviates from 79 
the previous reconstruction of the large morphotype of T. longobardicus [4].  80 

The premaxilla is dorsoventrally tall and lacks both prenarial and postnarial processes that are 81 
common in early archosauromorphs and of which the latter is well-developed in T. longobardicus 82 
(Figures 2 and 3) [1, 18]. It bears six long curved fangs, of which the anterior three are the largest and 83 
interlocked with the corresponding fangs of the dentary to form a ‘fish-trap’ dentition, similar to that 84 
described for Triassic sauropterygian predators such as Nothosaurus jagisteus (SMNS 56618) and 85 
Yunguisaurus liae (NMNS 004529/F003862) [19, 20]. The maxillary teeth are smaller and peg-like; 86 
they are largest at mid-length of the maxilla and gradually reduce in size towards the anterior and 87 
posterior ends of the bone. Marginal dentition was subthecodont, with all teeth lacking serrations 88 
but bearing clear proximodistal striations. The 10th dentary tooth pierced through the maxilla above. 89 
This can be observed on both sides of PIMUZ T 2790, and a similar opening is also present in the right 90 
maxilla of T. hydroides specimen PIMUZ T 2819 (Figure S1A-B). The maxilla curves strongly medially 91 
at its dorsal margin, indicating that the nasals were entirely dorsal facing and only minimally visible in 92 
lateral view.  93 

Only fragments of the nasals are preserved in PIMUZ T 2790, but they bear a clear concavity, which 94 
can also be seen on the fragmentary nasal remains of PIMUZ T 2819 (Figure S1A-B, see also figure 3 95 
of ref. [21]). This concavity resembles the narial recess of the closely related, aquatic 96 
archosauromorph Dinocephalosaurus orientalis (IVPP V13767) [22]. The outline of the nasal and its 97 
articulation with the frontal can be inferred from the T. hydroides specimen PIMUZ T 2787 (Figure 98 
S2B), which reveals that the nasals were broad, plate-like elements, with an anterolateral process but 99 
lacking an anteromedial process. The absence of the anteromedial process of the nasal and the 100 
prenarial process of the premaxilla implies that an internarial bar was absent and that the external 101 
nares were confluent. As such, the overall construction of the snout and external nares is reminiscent 102 
of that of crown-group crocodylians, in particular that of Purussaurus spp. (Figure 3B) [23]. 103 

The frontals are unfused and very broad, largely flattened elements. As such, they formed a wide 104 
surface of the skull roof above the orbits, which were largely laterally facing (Figures 2-3B). The 105 
lateral margin of each frontal is slightly curved and forms the dorsal rim of each orbit. 106 

The configuration of the temporal region of Tanystropheus differs strongly from that of other early 107 
archosauromorphs. The supratemporal fenestrae are entirely dorsally facing, and the intertemporal 108 
bar is formed jointly by a dorsoventrally tall postorbital and squamosal (Figure 1F). The fused parietal 109 
possesses pronounced anterolateral and posterolateral processes and bears deep, largely laterally 110 
facing, supratemporal fossae (Figure 3B). The squamosal bears a peculiar socket for the reception of 111 
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the quadrate on its posteroventral surface (Figure 1E). This socket is profoundly deep and was likely 112 
covered by a cartilaginous cap. The dorsal head of the quadrate is extended posteriorly to form a 113 
posteroventrally directed hook (Figure 1F), similar to that described for the allokotosaur 114 
Azendohsaurus madagaskarensis (FMNH PR 2751) [24]. The posteriorly enlarged articulation surface 115 
on the dorsal head of the quadrate and the deep socket on the squamosal allowed for an 116 
anteroposteriorly sliding contact between them. This indicates the presence of streptostyly, or the 117 
ability of the quadrate to move independently of other cranial bones [25], which has previously been 118 
tentatively suggested for Tanystropheus [4]. A quadratojugal is identified confidently for the first 119 
time in Tanystropheus. It is a small and curved, rod-like bone (Figures 1F, 2-3). Ventrally it connects 120 
to a facet on the lateroventral condyle of the quadrate and connects to the quadrate and squamosal 121 
on its dorsal end. As such it does not contact the posterior process of the jugal and thus the 122 
infratemporal bar is incomplete. 123 

The palatal elements almost completely enclosed the palatal surface, similar to D. orientalis (IVPP 124 
V13898) [22]. The internal choanae were narrow, as indicated by the wide and plate-like vomers. The 125 
vomer has a continuously curved outer margin, along which a single row of 15 enlarged recurved 126 
teeth is arranged (Figure S2A). The anterior rami of the pterygoids are poorly preserved in PIMUZ T 127 
2790, but their shape can be inferred from PIMUZ T 2787, which reveals that they were wide and 128 
anteriorly rounded (Figure S2C). Both the pterygoid and palatine are edentulous. This is in stark 129 
contrast to T. longobardicus, in which the shape of the vomer, palatine, and pterygoid is distinctly 130 
different and all these elements are tooth-bearing (Figure 3F) [17]. The ectopterygoid identified in 131 
PIMUZ T 2790 differs strongly in shape from former interpretations, as this element was probably 132 
misidentified previously (Figures 2D and 3C) [4]. 133 

The SRµCT data also allows for the first detailed observation of the braincase of Tanystropheus and 134 
reveals the presence of a small laterosphenoid that dorsally encloses the opening for cranial nerve V 135 
(Figure S1C). This represents the most stem-ward known occurrence of a laterosphenoid in the 136 
archosaur lineage [26-28]. The excellent preservation of the braincase also allowed for the partial 137 
reconstruction of the endocast and endosseous labyrinth (Figure 1D). The flocculus, part of the 138 
cerebellum, forms a laterally protruding, bulbous lobe in T. hydroides. The endosseous labyrinth is 139 
complete except for the anterior semicircular canal. However, its shape can be roughly inferred from 140 
the shape of the flocculus, over which this canal would have curved.  141 

The dentary bears a distinct ventral keel at its anterior end, which is absent in T. longobardicus 142 
(Figures 2A-B and 3). The posterior margin of the glenoid fossa forms a short vertical bony protrusion 143 
that would have prevented the quadrate from dislocating from the mandible during retraction. The 144 
articular forms a distinct but not upturned retroarticular process.  145 

Discussion 146 

The lifestyle of T. hydroides and T. longobardicus 147 

Inferences for the diet of T. hydroides can be made based on stomach contents that have been 148 
identified in at least two different specimens. In PIMUZ T 2793 a large number of belemnoid 149 
cephalopod hooklets are scattered in the area between the articulated gastralia and in PIMUZ T 2817 150 
a large accumulation of ganoid fish scales is present in the stomach region [4]. The new skull 151 
reconstruction adds crucial information vital to confidently assess the palaeobiology and feeding 152 
mechanism of T. hydroides. Suction feeding can be excluded, since the lower jaws are tightly 153 
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connected at the symphysis and would not have allowed the required expansion of the buccal cavity 154 
and because the hyoid apparatus lacks an ossified hyoid corpus or robust hyobranchial elements 155 
present in suction-feeding amniotes [4, 29, 30]. Furthermore, the large fang-like anterior teeth of T. 156 
hydroides would interfere with the prey item entering the buccal cavity during suction feeding. The 157 
most likely feeding strategy for T. hydroides is that of a ‘ram-feeder’ (sensu ref. [30]). By employing a 158 
laterally directed snapping bite, a prey item would be secured by the procumbent fang-like marginal 159 
teeth, aided by the second row of sharp teeth on the outer margin of the vomers. The flattened 160 
shape of the snout and the placement of the external nares on its dorsal surface support an at least 161 
semi-aquatic lifestyle for T. hydroides and would have reduced drag when the head was moved 162 
laterally (Figures 2 and 3A). 163 

The poor hydrodynamic profile and limited appendicular adaptations to an aquatic lifestyle indicate 164 
that both T. hydroides and T. longobardicus were neither fast nor efficient swimmers (Figure 3G) [1, 165 
31], unlike the closely related D. orientalis [22, 32]. Furthermore, the elongate and gracile 166 
semicircular canals of the endosseous labyrinth of T. hydroides reveal that it did not have a pelagic or 167 
deep-diving lifestyle (Figure 1D) [33-36]. This indicates that T. hydroides was likely restricted to 168 
coastal and possibly freshwater environments, which is supported by the occurrence of 169 
Tanystropheus-like cervical vertebrae in fluvial deposits in North America [37]. It is highly unlikely 170 
that T. hydroides was able to catch fast moving prey such as actinopterygian fishes and belemnoid 171 
cephalopods through active pursuit. Rather it seems that T. hydroides was an ambush predator. The 172 
head is particularly small given the overall size of the animal and is positioned on an extraordinarily 173 
long and slender neck. Therefore, T. hydroides might have been able to approach its prey whilst 174 
being positioned on the sea floor or let its prey approach it without triggering a flight response, 175 
especially in turbid water, as has also been hypothesised for certain long-necked plesiosaurs [31, 38]. 176 

Niche partitioning in a highly specialized reptile 177 

LAGs are periodically formed when bone growth is drastically slowed down during cyclical annual 178 
events that reduce metabolism and energy intake (e.g. cold seasons or dry periods), and therefore 179 
can be used to approximate the age of an individual [39, 40]. When LAGs occur in close succession at 180 
the outer margin of the cortex (i.e. OCL), this implies that growth in the individual had drastically 181 
decreased, indicating skeletal maturity. The combined presence of a large number of LAGs and an 182 
OCL in the limb elements of the small morphotype specimen PIMUZ T 1277 is a clear indication that 183 
this individual was skeletally mature when it died (Figure 4A, C-D) [41]. The total body length of 184 
PIMUZ T 1277 is approximately 1.5 metres [5], whereas the largest known specimen of T. hydroides is 185 
more than 3.5 times longer (Figure 3G) [4]. From this large size discrepancy, it can unequivocally be 186 
determined that the specimens bearing tricuspid teeth represent a small species distinct from T. 187 
hydroides. Together with their distinctly different dentitions (Figure 3A-F), this implies that T. 188 
hydroides and T. longobardicus certainly exploited different food sources. The tricuspid dentition 189 
seen in T. longobardicus has a broad utilization among extant squamates and is widespread among 190 
insectivores and omnivores [42]. Therefore, a possible broad diet comprised of small animals 191 
including soft-shelled invertebrates such as decapod crustaceans is here proposed for T. 192 
longobardicus.  193 

Both T. hydroides and T. longobardicus are known from several articulated and disarticulated 194 
specimens from the Besano Formation of Monte San Giorgio. Although it cannot be excluded that 195 
the carcasses of these taxa were transported to their bedding position after death, both species 196 
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show a similar taphonomic pattern [9], and it is most likely that both taxa co-occurred in the same 197 
habitat. The clear distinction in feeding strategy thus presents a strong indication of niche 198 
partitioning between these two species. Niche partitioning has previously been reported for 199 
Mesozoic marine reptiles [43, 44], and was tentatively suggested for Tanystropheus material from 200 
the Middle Triassic Maktesh Ramon locality of Israel [17, 45]. Niche partitioning has also been 201 
invoked for the actinopterygian Saurichthys [8, 46, 47] and amongst perleidid fishes [48] from the 202 
Middle Triassic of Monte San Giorgio. Indeed, habitat partitioning appears to be a repeated pattern 203 
in Triassic marine basin biota. It is remarkable that such a striking partitioning occurred 204 
comparatively soon after the End-Permian mass extinction in a highly specialized genus. Previously it 205 
was considered that the neck of Tanystropheus formed a morphological constraint and severely 206 
limited its ecological adaptability [49, 50]. Our findings reveal that the neck of Tanystropheus was 207 
more multifunctional than previously considered and allowed the exploitation of various food 208 
sources. Furthermore, the wide distribution of specimens that are morphologically indistinguishable 209 
from T. hydroides across the Tethys basin highlights the efficiency of the Tanystropheus bauplan [6, 210 
17]. 211 

Conclusions 212 

Reconstructing the morphology and palaeobiology of long extinct organisms without close modern 213 
analogues is crucial in our understanding of biological diversity through time and approximating the 214 
ecomorphological limitations of life. The bizarre Tanystropheus represents a particularly interesting 215 
case study in this regard due to its unique morphology among tetrapods, exemplified by its 216 
extremely long neck consisting of only 13 very elongate vertebrae. The skull of PIMUZ T 2790 reveals 217 
that the cranial morphology of T. hydroides deviated strongly from that of other early 218 
archosauromorphs. The cranial reconstruction indicates that T. hydroides hunted in an aquatic 219 
environment, using its long fang-like teeth and a lateral snapping bite to seize its prey. Tanystropheus 220 
hydroides and T. longobardicus were two closely related species that almost certainly co-occurred in 221 
the same habitat. This remarkable case of niche partitioning highlights the versatility of the 222 
Tanystropheus bauplan and the complexity of Middle Triassic marine trophic networks, within 10 223 
million years after the End-Permian extinction event, and the major role of reptiles therein. 224 
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Main Figure Titles and Legends 244 

Figure 1. The skull of Tanystropheus hydroides sp. nov. holotype PIMUZ T 2790. (A) The complete 245 
skull in dorsal view. (B) Digital rendering of the skull in dorsal view, (C) and ventral view. This model is 246 
also presented in Video S1. (D) Digital rendering of the endocast and endosseous labyrinth 247 
(mirrored). (E) Digital rendering of the right squamosal in posterolateral view. (F) Reconstruction of 248 
the temporal region in oblique right lateral view, highlighting the streptostylic articulation of the 249 
quadrate and squamosal. (G) The digitally ‘re-assembled’ skull of PIMUZ T 2790 in angled left lateral 250 
view. This model is also presented in Video S2. Bone colour codings can be found in Table S1. 251 
Abbreviations: CN, cranial nerve. 252 

Figure 2. The complete ‘re-assembled’ digital model of PIMUZ T 2790. (A) Right lateral, (B) left 253 
lateral, (C) occipital, (D) ventral, and (E) dorsal view. This model is also presented in Video S2. Bone 254 
colour codings can be found in Table S1. 255 

Figure 3. Interpretative reconstruction drawings of Tanystropheus hydroides sp. nov. and 256 
Tanystropheus longobardicus. Reconstruction drawings of the skull and mandible of Tanystropheus 257 
hydroides sp. nov. in (A) left lateral, (B) dorsal, and (C) ventral view, and Tanystropheus longobardicus 258 
in (D) left lateral, (E) dorsal, and (F) ventral view. A revision of the cranial morphology of 259 
Tanystropheus longobardicus is provided in Methods S1. Important morphological details from 260 
Tanystropheus specimens other than the SRµCT scanned PIMUZ T 2790 can be found in Figures S1 261 
and S2, in addition to a digital rendering of the right braincase showing the laterosphenoid in PIMUZ 262 
T 2790. (G) Complete skeletal reconstructions of Tanystropheus hydroides and Tanystropheus 263 
longobardicus with the outline of a 170 cm tall human in scuba diving equipment for scale. 264 
Abbreviations: an, angular; ar, articular; bo, basioccipital; de, dentary; ect, ectopterygoid; fr, frontal; 265 
j, jugal; la, lacrimal; mx, maxilla; na, nasal; pa, parietal; pal, palatine; pbs, parabasisphenoid; pmx, 266 
premaxilla; po, postorbital; pof, postfrontal; pra, prearticular; prf, prefrontal; pt, pterygoid; q, 267 
quadrate; qj, quadratojugal; sq, squamosal; vo, vomer. 268 

Figure 4. Palaeohistological sections of Tanystropheus longobardicus. (A) Close-up of the cortex of 269 
the femur of PIMUZ T 1277 in normal transmitted light. (B) Close-up of the cortex of the femur of 270 
PIMUZ T 2484 in normal transmitted light. (C, D) Overview of complete cross-section and close-up of 271 
the cortex of the zeugopodial element of PIMUZ T 1277. Image (C) in normal transmitted light; image 272 
(D) in cross-polarised light using lambda compensator. Small arrow heads in (A) indicate growth 273 
marks within the cortical outer circumferential layer, whereas larger arrow heads generally indicate 274 
LAGs in the deeper parts of the cortex. Abbreviations: LZB, lamellar-zonal bone; ocl, outer 275 
circumferential layer (= external fundamental system); rc, radial vascular canals. All histological 276 
samples are presented in Figure S3 and described in Methods S1. 277 

STAR Methods 278 
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Resource Availability 279 

Lead contact 280 

Further information and requests for resources and reagents should be directed to and will be 281 
fulfilled by the Lead Contact, Stephan N.F. Spiekman (stephanspiekman@gmail.com). 282 

Material availability 283 

This study did not generate new unique reagents. 284 

Data availability 285 

The digital models and SRµCT data of PIMUZ T 2790 can be found at https://www.paleo.esrf.fr. All 286 
histological slides used in the study are provided in Figure S3. 287 

Institutional repositories 288 

Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany (BSPG); Field Museum 289 
of Natural History, Chicago, USA (FMNH); Institute of Vertebrate Paleontology and Paleoanthropology, 290 
Beijing, China (IVPP); Museo di Storia Naturale, Milan, Italy (MSNM); National Museum of Natural 291 
Science, Taichung City, Taiwan (NMNS); Paläontologisches Institut und Museum der Universität Zürich, 292 
Zurich, Switzerland (PIMUZ); Staatliches Museum für Naturkunde, Stuttgart, Germany (SMNS). 293 

Experimental Model and Subject Details 294 

The experimental subjects of this study comprise several fossil specimens belonging to the 295 
tanystropheid archosauromorph genus Tanystropheus, most notably PIMUZ T 2790, which was 296 
subjected to SRµCT scanning. Tanystropheus longobardicus specimens PIMUZ T 2484 and PIMUZ T 297 
1277 were sectioned for bone histology. The cranial reconstructions of both Tanystropheus species 298 
were made based on morphological observations made from PIMUZ T 2790, PIMUZ T 2819, PIMUZ T 299 
2787, and PIMUZ T 2484. All specimens and histological slides are reposited at the Palaeontological 300 
Institute and Museum of the University of Zurich, Switzerland (PIMUZ). 301 

Method details 302 

Synchrotron micro Computer Tomography acquisition and image processing 303 

The specimen was scanned at the BM05 beamline of the European Synchrotron Radiation Facility 304 
(ESRF, Grenoble, France) using propagation phase contrast synchrotron radiation micro-computed 305 
tomography. The experimental setup consisted of: filtered white beam (bending magnet, filters: 18 306 
rods of Al, 5 mm in diameter and 10 cm in length, Mo 0.25 mm) with a total integrated detected 307 
energy of 115 keV, a sample-detector propagation distance of 4 m and an indirect detector (2 mm 308 
LuAG scintillator 0.25x magnification, CCD FReLoN 2K camera) producing data with a measured 309 
isotropic voxel size of 46.76 µm. To image the full sample, the centre or rotation was shifted to 310 
increase the lateral field of view by ~30%, and 77 acquisitions were necessary on the vertical axis 311 
(keeping a 50% overlap between consecutive scans). Each acquisition consisted of 2999 projections 312 
of a total integration time of 0.3 seconds (10 frames of 0.03 second per projection in accumulation 313 
mode [51]) over a rotation of 360°. Tomographic reconstruction was achieved with PyHST2 [52], 314 
using the single distance phase retrieval approach [53]. Post processing included: modification of the 315 
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bit depth from 32 bits to 16 bits as a stack of tiff, merging of the 77 datasets using a weighted 316 
average on overlapping parts, ring correction [54];  cropping of the volume.   317 

The data was segmented and reconstructed in Mimics Research v19.0 318 
(https://biomedical.materialise.com/mimics; Materialise NV, Leuven, Belgium). The models of the 319 
individual elements were imported as PLY files into Blender 2.7 (https://blender.org; Stitching 320 
Blender Foundation, Amsterdam, the Netherlands), a 3D modelling and visualisation program in 321 
which the elements could be rotated and moved independently, and images could be rendered, 322 
applying colours and texture to the models. As an aid to establish bone contacts, most elements 323 
were printed using a MakerBot Replicator 2X 3D printer (https://makerbot.com; MakerBot 324 
Industries, LLC, New York City, USA). This way, using both the digital and printed models, the 325 
connections between the bones could be restored in high detail, allowing for the confident 326 
reconstruction of the skull. 327 

Bone histology 328 

Three bones of two separate specimens of T. longobardicus were sampled for analysis of bone 329 
histology. From PIMUZ T 1277 we sampled a femur and a zeugopodial element and from PIMUZ T 330 
2484, we sampled a femur. Thin slices of the bones were removed from the slabs using a small 331 
diamond-studded saw blade on a Dremel drill. The samples were then embedded in synthetic resin 332 
and ground down to about 60-100 microns thick slides using SIC powders (220, 500 and 800), 333 
following standard protocols [55]. The thin-sections were studied and photographed using a LEICA 334 
compound microscope DM 2500 M equipped with digital camera DFC 420C (an overview of the slides 335 
can be found in Figure S3).  336 

Quantification and Statistical Analysis 337 

Phylogenetic analysis 338 

The interrelationships of tanystropheid archosauromorphs have previously been tested with a 339 
dedicated character matrix [56], which has subsequently been modified and expanded upon in order 340 
to investigate broader archosauromorph and early diapsid phylogeny [57-59]. We modified the most 341 
recent iteration of this matrix [60] in order to evaluate the implications of our findings for 342 
tanystropheid and early archosauromorph phylogeny. Colobops noviportensis is known from a single 343 
skull of a likely very early juvenile individual. Although recovered as an early diverging rhynchosaur in 344 
ref. [60], a recent re-analysis of this taxon has revealed it is actually a rhynchocephalian 345 
lepidosauromorph [61]. The inclusion of a poorly known rhynchocephalian based on an 346 
ontogenetically early specimen is not beneficial in resolving early archosauromorph phylogeny and 347 
might introduce unnecessary biases, and therefore C. noviportensis was excluded here. Boreopricea 348 
funerea is also known from a single specimen that is poorly preserved and several elements of this 349 
specimen have likely been misplaced, which introduces the possibility of unreliable character 350 
observation [18, 62], and it was therefore also excluded. The modifications made to the characters 351 
and the updated data matrix can be found in Methods S1. We analysed the matrix according to the 352 
maximum parsimony criterion in TNT 1.5 [63], using the Traditional Search algorithm. The same 353 
parameters described in ref. [60] were used to analyse the data and calculate the support values, in 354 
order to directly compare results. Three most parsimonious trees with 1125 steps were recovered 355 
(CI=0.324; RI=0.648) (the complete strict consensus tree, including Bootstrap and Bremer support 356 
values, can be found in Figure S4). 357 

https://biomedical.materialise.com/mimics
https://blender.org/
https://makerbot.com/
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Methods S1. Revision of Tanystropheus longobardicus, related to Figure 3D-F. Description of 358 
histological sections, related to Figure 4. Results and discussion of phylogenetic analysis, related to 359 
STAR Methods. 360 

Multimedia Files 361 

Video S1. Rotating video of the in-situ model of the skull of PIMUZ T 2790. Related to Figure 1. 362 

Video S2. Rotating video of the ‘re-assembled’ model of the skull of PIMUZ T 2790. Related to 363 
Figures 1 and 2. 364 

Data S1. Nexus file with the modified character matrix of Pritchard et al. (2018) [S23]. Related to 365 
STAR Methods. 366 
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Figure 3. 547 
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Key Resources Table 552 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Biological Samples   
Tanystropheus hydroides (skull, mandibles, atlas-axis 
complex, and cervical vertebra 3) 

This paper PIMUZ T 2790 

Tanystropheus longobardicus (femur thin-section) This paper PIMUZ T 1277 
Tanystropheus longobardicus (zeugopodial element 
thin-section) 

This paper PIMUZ T 1277 

Tanystropheus longobardicus (femur thin-section) This paper PIMUZ T 2484 
Tanystropheus longobardicus (disarticulated skull) This paper PIMUZ T 2484 
Tanystropheus hydroides (skull) This paper PIMUZ T 2819 
Tanystropheus hydroides (disarticulated skull) This paper PIMUZ T 2787 
Deposited Data 
SRµCT data of PIMUZ T 2790 This paper https://www.paleo.es

rf.fr. 
The digital models of PIMUZ T 2790 This paper https://www.paleo.es

rf.fr. 
Palaeohistological thin sections This paper Figure S3 
Nexus file for phylogenetic analysis This paper Supplementary data 

file 
Video files of digital models of PIMUZ T 2790 This paper Supplementary data 

file 
Software and Algorithms 
Mimics Research v19.0 https://biomedical.mat

erialise.com/mimics  
N/A 

Blender 2.7 https://blender.org  N/A 
TNT 1.5 [63] N/A 

 553 
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Methods S1 555 

Revision of Tanystropheus longobardicus 556 

Systematic palaeontology 557 

Diapsida Osborn, 1903 [S1] 558 

Archosauromorpha von Huene, 1946 [S2] 559 

Tanystropheidae Camp 1945 [S3] 560 

Tanystropheus von Meyer, 1852 [S4] 561 

Tanystropheus longobardicus Bassani, 1886 [S5] 562 

Note to family-group name 563 

Gervais (1858) has widely been cited as first mentioning the family-group Tanystropheidae. However, 564 
this text contains no reference to either Tanystropheidae or Tanystropheus [S6]. Tanystropheus 565 
remains are referred to as “Les Tanystrophes” in Gervais (1859), but this does not constitute a valid 566 
family-group name [S7]. Instead, Camp (1945) first published the family-group name 567 
Tanystrophaeidae, based on Tanystrophaeus (introduced by Cope, 1887 [S8]), which is an incorrect 568 
spelling of Tanystropheus von Meyer, 1852 [S3]. Therefore, the corrected name should be 569 
Tanystropheidae Camp, 1945 following article 35.4.1 of the ICZN.  570 

Neotype 571 

PIMUZ T 2791, a nearly complete semi-articulated specimen missing the posterior tail section. 572 

Referred material 573 

PIMUZ T 2779, PIMUZ T 2781, PIMUZ T 2795, PIMUZ T 2485, PIMUZ T 2482, PIMUZ T 2484, PIMUZ T 574 
3901, PIMUZ T 1277, MSNM BES SC 265, MSNM BES SC 1018. A synonymy list is provided in ref. [S9] 575 
(as small morphotype T. longobardicus). 576 

Locality 577 

Monte San Giorgio on the border of Switzerland (canton Ticino) and Italy (Lombardy). 578 

Horizon 579 

Besano Formation, Anisian-Ladinian boundary; and Meride Limestone, Cassina beds, Ladinian; both 580 
Middle Triassic. 581 

Emended diagnosis 582 

Tanystropheus longobardicus is distinguished from other Tanystropheus species by the following 583 
combination of characters: Premaxilla with a pronounced postnarial process; tricuspid dentition on 584 
the maxilla and dentary; no dentary tooth piercing through a foramen in the maxilla; dorsal surface 585 
of the nasals is flattened; interdigitating suture between frontals; unfused parietals; dorsal head of 586 
quadrate without a conspicuous hook; elongate and narrow vomer bearing small teeth; palatine and 587 
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pterygoid tooth bearing; dentary lacking a ventral keel on its anterior end; maximum total body size 588 
of less than 2 metres. 589 

New insights into the cranial morphology of T. longobardicus 590 

The cranial morphology of T. longobardicus was previously described in detail (at the time considered 591 
as the small morphotype or juvenile form of T. longobardicus) [S10, 11]. Our new findings for T. 592 
hydroides and a re-evaluation of the specimens of T. longobardicus allow for the reinterpretation of 593 
some aspects of the morphology of T. longobardicus that were previously misinterpreted due to the 594 
lack of three-dimensionally preserved specimens in this species (Figures 3D-F and S2D-E). 595 

Tanystropheus longobardicus was previously reconstructed with an internarial bar formed by a long 596 
anteromedial process of the nasal [S10, 11]. As in T. hydroides, the nasals are generally poorly 597 
preserved, and the only complete nasals for T. longobardicus are known from the disarticulated 598 
specimen PIMUZ T 2484 (Figure S2D). By comparing the articulation surfaces of the nasals and 599 
frontals, it is revealed that the nasals are only able to connect to the frontals when the anterior 600 
process of the nasal is located at the anterolateral rather than the anteromedial side of the element 601 
(Figure S2D-E). Based on this interpretation, it becomes clear that like T. hydroides, T. longobardicus 602 
also lacked an internarial bar and consequently possessed confluent external nares (Figure 3D-E). 603 

Similar to T. hydroides, the frontals of T. longobardicus are broad and they were interpreted to 604 
overhang the orbits laterally [S10]. However, based on the reinterpretation of the articulation 605 
between the nasals and frontals of T. longobardicus, it becomes clear that the prefrontal and possibly 606 
the lacrimal would have articulated with the anterolateral margin of the frontal. As such, the frontal 607 
would not have projected out over the orbit, but rather would have formed a wide dorsal skull roof 608 
surface between both orbits (Figure 3E). Therefore, as in T. hydroides, the orbits of T. longobardicus 609 
would have largely faced laterally. 610 

The preservation of the squamosal and postorbital in PIMUZ T 2790 (Figure 1F) allows for several 611 
reinterpretations of these elements for T. longobardicus (Figure 3D-F). Based on elements identified 612 
as the squamosal in the neotype PIMUZ T 2791, in PIMUZ T 2484, and MSNM BES SC 265, the 613 
squamosal of T. longobardicus was previously reconstructed as being a thin ‘boomerang-shaped’ 614 
element that bears two elongate and curved processes and a much smaller third process [S10, 11]. 615 
This morphology stands in stark contrast to the morphology of the squamosal of T. hydroides but 616 
strongly corresponds to the morphology of its postorbital as they are confidently established here. 617 
These elements are therefore re-identified as postorbitals, and their morphology is in congruence 618 
with the correctly identified postorbital of T. longobardicus specimen MSNM BES SC 1018 [S10]. 619 
Similarly, the elements identified as the squamosals in the T. hydroides specimen PIMUZ T 2787 also 620 
represent postorbitals and the element identified as the postorbital in that specimen represents a 621 
squamosal [S11]. The morphology of the squamosal is poorly represented in any of the known 622 
specimens of T. longobardicus. 623 

A small, curved quadratojugal oriented parallel to the shaft of the quadrate has been unequivocally 624 
identified here for T. hydroides. This element was previously considered to be absent in both the 625 
large and small morphotype of T. longobardicus. It is possible that this element was also present in 626 
the newly diagnosed T. longobardicus. However, it cannot be confidently identified among the 627 
specimens currently available [S10, 11]. 628 
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 629 

Description of histological sections 630 

The cross section of the femur of PIMUZ T 1277, a specimen of Tanystropheus longobardicus, exhibits 631 
lamellar-zonal compact bone (Figures 4A and S3A), as was previously also described for the genus 632 
[S12]. This structure is typical of a ‘slow-growing’ reptile and is found in many extant squamates and 633 
crocodylians [S13-17]. The outer cortex of the bone is only preserved along a small section and was 634 
elsewhere partially destroyed during acid preparation of the specimen. At least 12 lines of arrested 635 
growth (LAGs) are present, although their exact number could not be established. Eight of the LAGs 636 
are tightly bundled together near the outer margin of the bone to form an outer circumferential 637 
layer (OCL; also known as an external fundamental system or EFS), indicating that the growth of the 638 
animal had effectively ceased at the end of the life of this individual [S18]. The sampled zeugopodial 639 
element confirmed the high number of growth marks and the presence of an OCL/EFS (Figures 4C-D 640 
and S3B), whereas the femur of PIMUZ T 2484 shows LAGs throughout the cortex, but an OCL/EFS 641 
was not obvious (Figures 4B and S3C). 642 

 643 

Phylogenetic analysis 644 

The following characters were modified from Pritchard et al. 2018 [S19] (modifications indicated in 645 
bold): 646 

6) Premaxilla, posterodorsal process, maxilla contact: (0) simple, straight suture; (1) margin/knob on 647 
the posterior margin of the posterodorsal process of the premaxilla fits into notch in the anterior 648 
surface of the maxilla; (2) anterior lamina of maxilla laps laterally over posterodorsal process of 649 
premaxilla; (3) posterodorsal process of premaxilla laterally overlaps anterior lamina of maxilla. 650 
 651 
10) Maxilla, lateral surface near anteroposterior midpoint: (0) marked by subequal neurovascular 652 
foramina; (1) bears single neurovascular foramen that is anteroposteriorly longer than all others; (2) 653 
no maxillary neurovascular foramina present.  654 
 655 

Phylogenetic implications 656 

Our analysis recovered a monophyletic Tanystropheidae as one of the earliest diverging lineages 657 
within the archosaur stem-group Archosauromorpha, corresponding to ref. [S19] (Figure S4). Within 658 
Tanystropheidae, Tanystropheus hydroides and Tanystropheus longobardicus represent sister taxa. In 659 
contrast to ref. [S19], our results indicate that Tanystropheidae are more closely related to 660 
Archosauriformes than Allokotosauria. Tanystropheidae shares the following synapomorphies with 661 
rhynchosaurs, Prolacerta broomi, and Archosauriformes: distally bifurcating second sacral rib (131-1), 662 
coracoid lacking a tubercle (146-1), humerus with a low double distal condyle (156-1), absence of a 663 
medial centrale of the manus (158-0). Previously, allokotosaurs were considered to be closely related 664 
to Archosauriformes [S20]. Our results challenge this hypothesis and indicate that there is currently 665 
no clear consensus regarding the interrelationships of non-archosauriform archosauromorph clades.  666 

As the best-known member of Tanystropheidae, which is one of the earliest and most stemward 667 
archosauromorph clades, Tanystropheus is crucial in understanding the origin of the modern 668 
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archosaur and lepidosaur lineages. Unfortunately, cranial material for other tanystropheid taxa is 669 
currently limited, except for Macrocnemus spp. [S21, 22]. Although they reveal a strong similarity in 670 
the morphology of the postcranial skeleton, the cranial morphology between Tanystropheus and 671 
Macrocnemus is remarkably different. This suggests that Tanystropheidae were considerably more 672 
ecomorphologically diverse than can currently be appreciated. Furthermore, the occurrence of a 673 
highly specialized taxon that adapted to exploit different food sources indicates the variability within 674 
stem-archosaurs and highlights their diversity during the Middle Triassic. 675 
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Supplemental data 740 

 741 

 742 

Figure S1. The skull and braincase of Tanystropheus hydroides sp. nov. Related to Figure 3. (A) 743 
Complete skull of PIMUZ T 2819. (B) Close-up of the right anterior snout region of PIMUZ T 2819 744 
revealing the opening for a dentary tooth in the right maxilla. (C) Digital rendering of the right partial 745 
braincase of PIMUZ T 2790 in lateral view. 746 
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 747 

Figure S2. Specific anatomical details of additional Tanystropheus specimens. Related to Figure 3. 748 
(A-C) Tanystropheus hydroides sp. nov. PIMUZ T 2787. (D-E) Tanystropheus longobardicus PIMUZ T 749 
2484.  750 
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 751 

Figure S3. Overview of the studied histological sections in normal transmitted light. Related to 752 
Figure 4. (A) Mid-shaft section of the femur of PIMUZ T 1277, (B) mid-shaft section of the 753 
zeugopodial element (radius or ulna) of PIMUZ T 1277, (C) mid-shaft section of the femur of PIMUZ T 754 
2484. 755 

756 
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  757 

Figure S4. Complete strict consensus tree of the three most parsimonious trees (1125 steps; 758 
CI=0.324; RI=0.648). Related to STAR Methods. Bremer values above 1 are indicated above each 759 
node and Bootstrap frequencies above 50% are shown below each node. 760 

 761 
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Elements Colour Preserved element 
Premaxilla Green Both 
Maxilla Orange Both 
Nasal Blue Both (partially) 
Lacrimal Purple Left (mirrored for right) 
Prefrontal Green Left (mirrored for right) 
Frontal Yellow Both 
Parietal Purple Single element 
Postfrontal n/a Absent 
Postorbital Green Both 
Jugal Purple Right (partially reconstructed, 

mirrored for left) 
Squamosal Red Both 
Quadrate Tan Left (mirrored for right) 
Quadratojugal Light blue Both 
Vomer Light blue Both (partially) 
Palatine Red Left (partially, mirrored for 

right) 
Ectopterygoid Tan Right (mirrored for left) 
Pterygoid Pink Both (partially) 
Epipterygoid Yellow Both 
Basioccipital Light blue Single element 
Parabasisphenoid Red Single element 
Exoccipital, opisthotic, 
supraoccipital, prootic, 
laterosphenoid (fused) 

Orange Both 

Dentary Blue Both 
Splenial Green Both 
Angular Pink Both 
Surangular Light blue Both (only isolated left) 
Prearticular Yellow Both (only isolated left) 
Articular Green Both (only isolated left) 
Teeth Grey Various both sides 

 762 

Table S1. An overview of the bones of the digitally reconstructed model of Tanystropheus 763 
hydroides sp. nov. PIMUZ T 2790. Related to Figures 1 and 2. 764 

 765 
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