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Abstract

Condition monitoring for helicopters has always been one of the most
critical technologies to guarantee the integrity of the rotorcrafts, enhance
operational and personnel safety, and reduce the overall maintenance costs.
Over the past decades, health and usage monitoring system (HUMS) has
been developed and implemented in helicopters to monitor the health status
for the main gearbox (MGB) and other key components of the transmission
system, improving condition-based maintenance for helicopters. However,
many studies have indicated that current HUMS has a limited sensitivity
to MGB planetary bearing defects. To enhance HUMS’ performance, this
paper presents an approach based on frequency domain analysis techniques
to diagnose planetary bearing defects using real helicopter data collected
from a CH-46E helicopter aft MGB. Vibration data was processed using sig-
nal processing techniques including self-adaptive noise cancellation (SANC),
discrete-random separation (DRS), cepstrum editing, kurtogram, envelope
analysis and iterative envelope cancellation. Processing results conclude that
frequency domain analysis techniques can provide distinct and intuitive in-
dications of the seeded defects at both the inner race and the outer race of
the faulty planetary bearing.
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1. Introduction

The helicopter transmission system is vitally important for transferring
power to main rotor, tail rotor and other accessory systems [1]. The trans-
mission system mainly consists of helicopter main gearbox (MGB), tail rotor
gearbox (TGB), drive shafts and other components including gears, bearings,
clutches and freewheel units. A helicopter’s transmission system facilitates
manoeuvres that cannot be performed by a traditional fixed wing aircraft.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSBU Research Open

https://core.ac.uk/display/401536257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Examples of such manoeuvres including vertical take-off and landing, flying
backward and sideways, hovering and many others. Therefore, it is crucial
to monitor the condition of helicopter transmission system and maintain an
overall healthy status for the rotorcrafts, so that catastrophic failures can
be prevented. For such purpose, development of helicopter health and us-
age monitoring system (HUMS) was initiated in early 1990s [2]. HUMS has
drawn extensive attentions since then. Being implemented for almost 30
years, HUMS has been proven to be effective in reducing accidents rate and
overall maintenance costs, enhancing operational safety and improving rotor-
crafts airworthiness [3, 4, 5]. Nonetheless, since the first HUMS system went
operational in 1991, the significance of validating HUMS and new signal
processing algorithms has been emphasised numerous times [6, 7]. More-
over, recent helicopter accidents related to MGB failures [8, 9] and studies
published by several researchers [10, 11] suggested that, HUMS has limited
sensitivity to the detection of MGB planetary bearing faults. As such, al-
though vibration analysis techniques for fixed shaft, simple bearing system
have been relatively well developed, it is essential that effective modifications
to those techniques and combination of processing procedures to be further
investigated for improving HUMS capabilities to diagnose planetary bearing
defects in MGB.

In this paper, vibration data collected from a CH-46E helicopter aft MGB
with seeded defects formed the basis of the investigation, which explored var-
ious frequency domain signal processing techniques for fault identification.
Signal processing techniques including iterative envelope cancellation, self-
adaptive noise cancellation (SANC), discrete random separation (DRS) and
cepstrum editing were applied to separate planetary bearing signals from
overwhelming gear mesh signals and suppress excessive frequency sidebands.
Kurtogram and envelope analysis were employed as benchmark methods to
detect and extract hidden diagnostic information from signal envelope. In-
tuitive diagnosis results were acquired via signal processing with aforemen-
tioned techniques.

2. A description of the CH-46E aft gearbox seeded test

The vibration data was collected from a series of seeded defect tests in
a CH-46E aft gearbox by Westland Helicopter Limited, and digitalised by
NRAD (Naval Research and Development Centre) in 1993 [12]. According
to the test report of this datasets [7], eight conditions were tested, including
seven seeded defect conditions and a no-defect condition. Only one type of
defect was introduced during each defect tests. These test conditions are
listed as follows:
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• No defect

• Planetary gear bore/bearing inner race corrosion

• Spiral bevel input pinion spalling

• Helical input pinion chipping

• Collector gear cracking

• Quill shaft cracking

• Input pinion bearing corrosion

• Helical idler gear cracking

In this paper, data collected from the condition “Planetary gear bore/bearing
inner race corrosion” was analysed.

There were eight “Endevco 7259A” accelerometers installed on the test-
rig. This type of accelerometer has a wide dynamic range from -500 g to
+500 g, and a flat frequency amplitude response to up to 50 kHz [13]. An
optical tachometer was also fitted near scavenge pump drive. All data was
recorded via a 28-Channel Racal Storehorse tape recorder, which had an
aggregate 2 MHz sampling rate or throughput for all channels. Recorded
data was then digitalised at a sampling frequency of 103116.08 Hz. The
installation of some of the accelerometers is presented in Figure 1.

Figure 1: Sketch of installed accelerometers in CH-46 helicopter aft gearbox [12]

Vibration data from accelerometer 5 and 6 in Figure 1 were employed
for this investigation (Y6 and Y7 channel respectively). These sensors were
closely located to the MGB planetary speed reduction module, where the
bearing corrosion defects were seeded. An optical tachometer was also em-
ployed (Y10 channel).
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Table 1 details all relevant frequency components associated with the
test-rig. The planetary bearing inner race defect frequency FIRD and outer
race defect frequency FORD are calculated according to the bearings’ geome-
try structure and rotating speed. In practice, the observed defect frequencies
could have slight deviations from the calculated values, due to the random-
ness induced by the slip of bearing rolling elements.

Table 1: Rig related parameters

MGB input shaft speed 324.6 Hz

MGB output shaft speed 4.4 Hz

Sampling frequency 103116.1 Hz

Data recording length 21.9 s

Tachometer shaft speed 114.4 Hz

Bearing outer race defect FORD 68.4 Hz

Bearing inner race defect frequency FIRD 101.7 Hz

3. Signal processing techniques

3.1. Overview of helicopter planetary bearing fault diagnosis

Vibration-based healthy monitoring (VHM) is one of the most common
monitoring techniques for rotating machines. The HUMS system also utilises
VHM to monitor the health condition of the helicopters’ key transmission
components by collecting vibration data through installed accelerometers. A
typical methodology to monitoring vibration levels is via the use of condi-
tion indicators (CIs), which are based on time series vibration data associ-
ated with gears, bearings and shafts [14]. Normally CIs have pre-determined
thresholds, which generate warnings or alarms once breached. However, he-
licopter accidents that occurred recently ([8, 9]) indicated that HUMS failed
to provide reliable and accurate fault diagnosis, especially for planetary bear-
ing defects in the MGB. The fundamental reasons are that vibration data
is susceptible to many factors including signal transmission paths, signal at-
tenuation, machine operating noise and background noises. The other major
problem is that, in relation to helicopter planetary bearing monitoring, an
extra modulation of the bearing vibration signal exists as the planetary bear-
ing is orbiting around the carrier shaft simultaneously with planetary gears,
rendering CI-based algorithms less sensitive to bearing fault signatures.

Frequency-based analysis techniques are essential for extracting defect-
induced repetitive signal patterns in frequency domain, therefore providing
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more indications of defects that cannot be discovered in the time domain.
Specifically, for bearing fault diagnosis, demodulating structural-related high
frequency resonances where bearing signals are amplified is effective in miti-
gating amplitude modulations, speed fluctuations and the gear meshes [15].
To enhance such processing approach, techniques can be applied to separate
non-deterministic bearing signals from deterministic gear signals [16, 17, 18].
To benefit from envelope demodulation, the kurtogram was developed to
identify the frequency band that contains the most impulsive signals as-
sociated with structural resonances [19, 20, 21]. Frequency-domain signal
processing techniques that were implemented and evaluated in this study are
introduced in the rest of this section.

3.2. Gear and bearing signal separation techniques

The exact planetary bearing configuration was not given in the origi-
nal research report [7], therefore, a general sketch of a planetary bearing is
given in Figure 2. Unlike normal bearings that are installed in simple me-
chanical systems, the planetary bearing in a helicopter MGB is integrated
with the planetary gear whose inner bore is the outer raceway of the bear-
ing. Therefore, when the planetary gears and rollers are rotating around
the carrier shafts, inherently weak bearing signals are overwhelmed by deter-
ministic gear meshes. However, it has been discovered that bearing signals
have certain degrees of randomness due to the slip of the bearing rollers.
This feature can be utilised to distinguish non-deterministic bearing signals
from deterministic gear signals using adaptive filters, as deterministic signals
theoretically have longer correlation length [22].

Figure 2: Sketch of planetary gear configuration in G-REDL accident report [9]

Generally, a mixed signal that consists desired signal D(t) and unwanted
noise N(t) which is to be filtered, should be adopted as primary input P (t)
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for the adaptive filter. A stand-alone noise signal N0 that is correlated with
unwanted noise N(t) in primary signal should be utilised as a reference input
R(t). This is described in equations below.

P (t) = D(t) +N(t) (1)

R(t) = N0(t) (2)

Since reference noise signal N0(t) is correlated with unwanted noise N(t),
but not correlated with desired signal D(t) in primary input, N(t) can be
adaptively predicted based onN0(t) and subtracted from P (t), leaving output
signal with mostly desired D(t).

Based on this notion, Ho and Randall proposed separating random bear-
ing signals and discrete gear mesh signals with an adaptive filter [23], where
the reference signal is substituted by a delayed version of primary signal
P (t−∆t). This technique is called self-adaptive noise cancellation (SANC)
because it does not require extra reference signals. Taking most commonly
implemented least-mean-square (LMS) adaptive filtering method as an ex-
ample, the SANC algorithm is demonstrated in Figure 3.

Figure 3: Schematic diagram of SANC

LMS adaptive rules are defined as [23, 24]:

e(n) = P (n)−W T
n × P (n−∆n) (3)

Wn+1 = Wn + µ× e(n)× P (n−∆n), (4)

where µ is the convergence factor which determines the adaptation step, e(n)
is the output error and W is the LMS filter coefficients. For a discrete time
series input P (n), by utilising an optimal delay ∆n when random bearing
signals lose their correlations while deterministic gear meshes remain corre-
lated, the bearing signals can no longer be accurately predicted. The output
error is produced to drive the adaptation of LMS filter W . Through adap-
tive filtering, gear meshes can be consistently predicted and subtracted from
P (t).
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Although theoretically SANC can achieve almost complete removal of
undesired gear meshes, it has been reported that finding the optimal filter
length, delay ∆n and convergence factor µ can be cumbersome. Time delay
affects the result of SANC directly. While a short delay has limited separation
effectiveness, a delay that is too long may have the complete opposite effect.
Moreover, a small convergence factor can render the algorithm unstable while
a large µ provides coarse separation results.

Antoni and Randall proposed a separation technique in [18] as an ade-
quate substitute to SANC, namely discrete random separation (DRS). DRS
achieves similar or slightly compromised results compared with SANC, though
for much more computational efficiency. DRS constructs the filter based on
the concept of frequency response function (FRF ), which is achieved by
blocking original data into several windowed segments to prevent frequency
leakage, and then calculating FRF of each block with its corresponding de-
lays. The process is defined as:

H(f) =
E[Gb(f) ·G∗

a(f)]

E[Ga(f) ·G∗
a(f)]

, (5)

where E[·] is expectation operator. Ga and G∗
a are conjugate pairs of current

windowed segment’s fast Fourier transform (FFT ), and Gb is its delayed
signal’s FFT . This averaging process is continuously conducted, to eventu-
ally produce a normalised indicator containing values from 0 to 1, where 0
stands for index of random frequency components and 1 represents discrete
frequency components. A filter thus can be developed and applied back on
time series signals to filter out the unwanted discrete gear mesh signals. It
has been recommended that a rule-of-thumb for selecting possible delays is
about 100 periods of the centre frequency of demodulated frequency band.
In practical this value could be 3 times larger [22].

DRS has been extensively discussed in [15, 22]. Multiple articles have
claimed successes on applying DRS for bearing and gear signal separation
[17, 25, 26, 27, 28, 29]. It is also worth noticing that, although DRS has an
advantageous processing efficiency, its performance is susceptible to varying
rotating speed due to the lack of adaptive process.

3.3. Cepstrum editing

Cepstrum was first developed for applications in seismology and speech
analysis, but it was then discovered by Randall that cepstrum analysis is
competent to suppress gear-shaft related frequency sidebands efficiently with
tolerance of varying rotating speed [30] . Generally, complex cepstrum is
described as “the power spectrum of the logarithm of the power spectrum”.
Given that:
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X(f) = F [x(t)] = A(f) · ejφ(f) (6)

ln[X(f)] = ln[A(f)] + jφ(f), (7)

where F is the operator for fast Fourier transform (FFT ), X(f) is the Fourier
transform of time domain signal x(t), ln is the natural logarithm and A(f),
φ(f) are amplitude and phase of X(f) respectively, complex cepstrum is
defined as [31]:

Cepstrum = F−1[ln(X(f))] (8)

Equation 8 transforms signal in time domain firstly to frequency domain,
then to “quefrency” domain. Editing components in quefrency domain, for
instance, eliminating certain quefrency components will suppress all corre-
sponding frequency components including harmonics and sidebands in fre-
quency domain. While the phase φ(f) can be conveniently set to zero to gen-
erate the real cepstrum, it cannot be inversed back to time domain directly
after being edited due to the loss of phase information. In [32, 33, 31, 34, 30],
researches all concluded that for bearing fault diagnosis, it is usually unneces-
sary to use complex cepstrum, since the editing on complex cepstrum cannot
be observed directly in time domain, and the edited complex signal phase
may have distortions. Thus, a modified real cepstrum editing method is
advocated, which reserves the phase information from FFT , and then com-
bines phase information with edited real cepstrum. Therefore, the edited real
cepstrum can be inversed back to time domain for post-analysis.

Cepstrum editing benefits the suppression of the periodic frequency side-
bands, rather than complete removal of discrete gear mesh frequencies. In
[35], the authors set the entire quefrency zone to 0 except for quefrency at
the very beginning whose reciprocate represents very high frequency con-
tents. They reported that since bearing signals were not strictly periodic,
they did not present strong peaks in the absolute value of the cepstrum and
were not affected by the liftering. Other than this processing approach, expo-
nential window based cepstrum editing method was proposed in [31], which
essentially lifters cepstrum using an exponential window with the form of
e−σ·t, where σ is a time constant and should be determined by system modal
information. Applying such exponential lifter can smoothly suppress high
quefrency components (gear-related) and pass low quefrency components
(bearing-related). In practice, it was recommended to apply cepstrum editing
as a pre-processing step before other techniques that alter the composition
of entire spectrum [33].
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3.4. Envelope analysis and iterative envelope cancellation

Envelope analysis has been established as benchmark processing tech-
nique for bearing fault diagnosis for over 40 years [36]. Traditionally, envelope
analysis requires pre-acquired knowledge of the mechanical system structural
resonances. Weak bearing signals modulate the amplitude of these reso-
nances, which in return, retains the bearing information in the resonances’
envelopes. By demodulating signal in the optimal high frequency band, the
fault-excited repetitive patterns can be extracted from the envelope spectrum
of demodulated resonances. Hilbert transform specifically facilitates the im-
plementation of envelope analysis, by converting signal to an analytical form,
whose magnitude is original signal’s envelope.

However, the effectiveness of envelope analysis is heavily dependent on the
selection of the optimal structural resonances. Although such resonances are
correlated with bearing geometry and can be estimated in a simple system, it
becomes tremendously difficult if the target bearing is located in a complex
rotational system, i.e. a helicopter gearbox. If the optimal demodulation
band is unable to be discovered, it could be tedious to manually select and
test every possible resonance in frequency domain.

One solution for this issue is to use a very efficient and fast-calculative
algorithm, namely the iterative envelope cancellation. This algorithm was
proposed recently by Ming et al. [37], which utilises iterative envelope cal-
culations to suppress gear mesh signals in frequency domain. Their research
specifically studied the effect of Hilbert transform on discrete gear mesh sig-
nals and random bearing signals. Mathematical deduction was elaborated in
their study, concluding that through iteratively calculating signal squared en-
velope using Hilbert transform and subtracting DC components, the discrete
frequency components suffer larger attenuation in amplitude, compared with
that of bearing-related components. The reasons are that bearing-related sig-
nals can be modelled as a train of high frequency transient impulses, while
gear meshes are periodic cumulations. Square envelope of the signal poten-
tially introduces cross-terms between these two types of signals, weakening
the pattern of periodic cumulations. The schematic diagram of iterative
envelope cancellation is demonstrated in Figure 4.

In Figure 4, the stop point of the iteration is determined by control factor
η, which is defined as [37]:

η =
|2× 〈Envk−1, Envk〉|

〈Envk−1, Envk−1〉+ 〈Envk, Envk〉
, (9)

where k represents current iteration index, 〈·〉 represents inner product oper-
ator. η described the extent of difference between current k iteration calcu-
lated signal envelope with k−1 iteration envelope. For instance, η = 1 means
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the two envelopes are exactly the same, hence more iterations of calculation
are redundant. Based on processing experiences, stop factor η0 should be
wisely chosen between 0.8 up to 0.95 for distinct gear mesh suppression and
subsequent envelope spectrum analysis.

Figure 4: Schematic diagram of iterative envelope cancellation

Iterative envelope cancellation solves the problem of traditional envelope
analysis by evading the selection of optimal frequency band. Instead, the
application of sub-optimal frequency band is remedied by iterative calcu-
lations and high-pass the input signal at a relatively high frequency where
resonance spikes are more concentrated, which only requires rough knowledge
from observing frequency spectrum of input signal.

3.5. Kurtogram

Another method for finding the optimal demodulation frequency band
is kurtogram. Kurtogram was developed by Antoni and Randall [20] from
the concept of kurtosis and spectral kurtosis. Classical condition indicator
kurtosis is extensively used for determining to what extent a signal is peaky.
However, kurtosis becomes less sensitive as the machine condition goes sev-
erer. This issue can be addressed by examining the spectral kurtosis of signal
in different frequency band ∆f with centre frequency fc. Spectral kurtosis
(SK) was first devised by Dwyer in [38] for detection of randomly occurring
signals [39]. Antoni gave a detailed study of SK in [19, 20]. By his definition,
SK of a time domain signal x(t) is produced from short-time Fourier trans-
form (STFT), X(t, f), which is quantitatively the local Fourier transform of
original signal at time index t with a sliding window moving across the entire
signal record. The mathematical form of spectral kurtosis is defined as [22]:
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SK(f) =
E{|X(t, f)|4}
E{|X(t, f)2|}2

− 2, (10)

where E[·] is the expectation operator. In order to fully examine possible
combination of ∆f and fc for envelope demodulation, Antoni and Randall
proposed a way to calculate SK not only as function of t and f , but also as
function of frequency bin ∆f , namely the kurtogram. Kurtogram facilitates
the application of envelope analysis by providing potential demodulation cen-
tre frequency and frequency band, which contains most impulsive signal that
could be excited by bearing defects. Nonetheless, it has been reported that
the indication of kurtogram is not always correct, especially for processing
fault signal captured from a complex mechanical system such as a planetary
gearbox [40].

4. CH-46E helicopter data processing results

The schematic diagram for signal processing is depicted in Figure 5. The
strategy adopted to diagnose CH-46 helicopter planetary bearing fault was
firstly extracting faulty bearing related signals from the originally acquired
vibration data using SANC or DRS, followed by applying iterative enve-
lope cancellation technique. Cepstrum editing was employed as an optional
step before SANC or DRS, where there were requirements to suppress exces-
sive frequency sidebands that cannot be eliminated by separation techniques.
Kurtogram combined with envelope analysis were implemented as a bench-
mark method for comparison with iterative envelope cancellation.

Figure 5: Schematic diagram of signal processing procedures

Basic inspection of the raw vibration data spectrum was first conducted
for Y6 and Y7, as shown in Figure 6. The FFT calculation was carried out
with 2260992 data points which was the data recording length, rendering
0.456 Hz resolution.
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Figure 6: Amplitude spectrum of raw vibration data
(a), (c): Amplitude spectrum of Y6 and zoomed spectrum Y6
(b), (d): Amplitude spectrum of Y7 and zoomed spectrum Y7

From Figure 6, some elemental observations can be made that:

• Very limited information can be found in bandwidth higher than ap-
proximately 10 kHz. It is inferred that frequency contents higher than
10 kHz were pre-filtered during the acquisition process.

• From zoomed spectrum, no existence of inner race or outer race defect
frequency can be observed. Discrete frequency spikes that are related
to gear meshes and shaft rotations are dominant in (c) and (d).

DRS and SANC were then applied to provide comparative separation
results for iterative envelope cancellation. To determine the best delays for
both techniques, a range of time delays from 100 to 300 periods of 10 kHz
were considered, according to the recommendations of Randall and Antoni
[22] . In Figure 7, the separation using DRS for Y6 is demonstrated. The
delay was selected to be 1400 points, filter length was chosen to allow 2000
times of averages to mitigate potential speed fluctuations. It is clearly shown
that large discrete frequency components in Figure 7(a) have been effectively
eliminated in Figure 7(b).
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Figure 7: Demonstration of DRS separation effect for Y6, delay = 1400
(a): Amplitude spectrum of Y6, raw data
(b): Amplitude spectrum of Y6, after DRS

The separated signals were then utilised as inputs for iterative envelope
cancellation. For Y6 signal, to control the optimal output with least inter-
ferences, a 5 kHz high-pass filter was applied to further reduce low frequency
gear meshes. A stop factor η0 was selected at 0.85. The output of iterative
envelope cancellation was squared envelope spectrum, which were zoomed
into 0-300 Hz range for defect frequency identification.

Figure 8: Squared envelope spectrum with DRS and iterative envelope cancellation, Y6
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Figure 8 clearly demonstrates the existence of the 70.28 Hz outer race de-
fect frequency and the 101.02 Hz inner race defect frequency. The presence
of 13.18 Hz, which is 3 times the planetary carrier shaft speed (4.4 Hz), is as-
sociated with the planetary gear rotation speed, i.e. 4.4×117/39 = 13.2 Hz,
where 117 is the number of ring gear tooth and 39 is the number of planet
gear tooth. The frequency at 105.4 Hz was noted as a modulation sideband
that resulted from 4.4 Hz drive shaft frequency. To further suppress un-
wanted frequency components, cepstrum editing was attempted to Y6 data.
The real cepstrum of Y6 is shown in Figure 9.

Figure 9: Real cepstrum of Y6

In Figure 9, it is evident that the 0.23 quefrency which corresponds to
4.4 Hz is dominant. In order to retain the characteristics of low quefrency
contents and suppress high quefrency contents, a short-pass lifter was applied
for all quefrency components below 1/114.2 Hz. The pass region is marked
in Figure 9.
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Figure 10: Squared envelope spectrum with cepstrum editing, DRS and iterative envelope
cancellation, Y6

Figure 10 shows the squared envelope spectrum after cooperating short-
passed cepstrum editing. The inner race defect frequency of FIRD at 101.02 Hz
is more distinct compared with that shown in Figure 8, while the outer
race defect frequency FORD at 70.28 Hz has been suppressed. However, the
65.9 Hz component which is a 4.4 Hz sideband of FORD can still be observed.
The other interferential sidebands have been largely suppressed.

Comparatively, the results using cepstrum editing, SANC and iterative
envelope cancellation are shown in Figure 11. In Figure11(a), it is demon-
strated that, using SANC with iterative envelope cancellation can reveal
inner race defect frequency at 101.2 Hz. However, only 4.4 Hz sideband of
outer race defect frequency can be observed at 74.67 Hz. In Figure 11(b),
the result suggests that combining cepstrum editing and SANC can achieve
suppression of 101.02 Hz FIRD component, but revealing 70.27 Hz FORD.
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Figure 11: Squared envelope spectrum of Y6 data, processed using:
(a): SANC and iterative envelope cancellation
(b): Cepstrum editing, SANC and iterative envelope cancellation

The signal processing for Y7 data followed similar procedures. Cepstrum
editing, DRS separation and iterative envelope cancellation techniques were
applied to Y7 data. The results are shown in Figure 12.
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Figure 12: Squared envelope spectrum of Y7 data, processed using:
(a): DRS and iterative envelope cancellation
(b): Cepstrum editing, DRS and iterative envelope cancellation

In Figure 12(a), the diagnosis result is conclusive. The 101.02 Hz FIRD
was clearly evident, as well as the 4.4 Hz drive shaft speed, while the FORD
is still masked. Practically at this point, applying cepstrum editing could be
redundant since the sidebands around FIRD are not dominant, but for the
investigation of FORD, cepstrum editing is performed in Figure 12(b). Result
proves that cepstrum editing may render some losses for inner race defect
bearing signal, whereas the 70.3 Hz FORD is revealed.

Comparatively, squared envelope spectrum results produced using SANC
as separation technique is demonstrated in Figure 13. Applying SANC with-
out cepstrum for Y7 data can reveal the fault-related sideband 105.4 Hz, but
no direct indication of fault frequency can be observed for both FIRD and
FORD. Moreover, applying cepstrum editing in Figure 13(b) tends to severely
eliminate residual bearing signal under this circumstance.

17



Figure 13: Squared envelope spectrum of Y7 data, processed using:
(a): SANC and iterative envelope cancellation
(b): Cepstrum editing, SANC and iterative envelope cancellation

Kurtogram combined with envelope spectrum analysis were implemented
as a comparison to the optimal results demonstrated in Figure 8 and Figure
12. DRS filtered Y6 and Y7 data were adopted as inputs for kurtogram.

Kurtogram indication for Y6 data and corresponding squared envelope
spectrum are shown in Figure 14. It is indicated that the optimal band-
pass centre frequency is 12889.5 Hz with a bandwidth of 25779.02 Hz. The
demodulated squared envelope spectrum in Figure 14(b) contains distinct in-
dication of FIRD near 101 Hz and FORD near 70 Hz, however, the sidebands
and harmonics are excessive compared with result shown in Figure 8 using
iterative envelope cancellation techniques. Similarly, processing result using
kurtogram for Y7 data is shown in Figure 15, where fault frequencies can
be identified, but the spectrum is also contaminated by excessive frequency
sidebands and harmonics.
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Figure 14: Kurtogram indication of DRS filtered Y6 data in (a); corresponding squared
envelope spectrum in (b)

Figure 15: Squared envelope spectrum of DRS filtered Y7 data

5. Discussion and conclusion

In this paper, the helicopter planetary bearing inner race defect and outer
race defect were successfully diagnosed for both Y6 and Y7 channel by imple-
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menting frequency domain analysis techniques including DRS, SANC, cep-
strum editing, iterative envelope cancellation and kurtogram combined with
envelope analysis. Decisive indications of fault-related frequency components
can be directly observed in squared envelope spectrum shown in Figure 8 and
Figure 12. Processing techniques were evaluated in terms of their efficacy and
effectiveness. Regarding the CH-46E helicopter dataset, due to the high data
sampling frequency (103116.08 Hz) and large data size, SANC is less efficient
which is attributed to its adaptive process. Meanwhile, the DRS technique
performs considerably well in combination with the iterative envelope can-
cellation technique, which is capable of suppressing residual gear mesh and
frequency sidebands. Cepstrum editing can be adopted as an additional tech-
nique to deal with frequency sidebands, but it could also potentially hinder
the weak bearing signal extraction, e.g. Y7 data in our case. Kurtogram has
given reliable diagnosis results as a benchmark technique.

The successful extraction of frequency domain diagnostic information has
produced intuitive indications for CH-46E helicopter planetary bearing de-
fects. This study benefits not only the enhancement of HUMS performance,
but also the improvement of accuracy for the established classification-based
diagnosis algorithms. For future research, the authors would like to utilise the
outcome of this study to achieve automated diagnosis process for helicopter
gearbox planetary bearings.
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