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Introduction 32 

Controlled release is increasingly studied in the context of protein therapeutics, for which 33 

spatiotemporal- and dosage-controlled delivery would be desirable.1 Controlled release of biologics 34 

such as recombinant proteins would be particularly beneficial to enhance their therapeutic efficacy, 35 

as they often present limited half-life and immunogenicity issues. Although improving the therapeutic 36 

window can be achieved by a slow and prolonged release of drugs using passive delivery systems, a 37 

triggerable drug delivery system that can respond to stimuli could control drug release more 38 

effectively.2 To address this, many remotely triggerable and stimuli-responsive materials have been 39 

developed for the design of novel drug delivery systems.3,4 Stimuli-responsive interfaces have been 40 

engineered to respond to either physiological changes (e.g., pH, redox potential, glucose 41 

concentration, specific enzymatic activity) or external stimuli, such as electric or magnetic fields, 42 

mechanical forces (e.g., ultrasound mediated), light and heat.  43 

Thermo-responsive materials are particularly promising due to the range of technologies that are 44 

already available to increase local temperatures on demand: i. focused ultrasound-mediated 45 

cavitation of microbubbles can heat tissue above 56°C within seconds;2 ii. tissue-penetrating near 46 

infrared light can be used to deliver local heat via nanomaterial-mediated photothermal effect;5 iii. 47 

magnetic fields can be used to increase temperatures in the presence of iron oxide nanoparticles, like 48 

those used in magnetic resonance imaging.6 As a consequence of multiple ways to deliver controlled 49 

heat locally, thermo-responsive materials such as hydrogels and polymers presenting sharp phase 50 

transition temperatures have been synthesised and used to encapsulate or cross-link drugs, including 51 

therapeutic proteins.1 Although thermo-responsive interfaces have been described mostly for their 52 

potential use in drug delivery, biomaterials that respond to thermal stimuli have also been applied in 53 

other contexts. Examples include protein affinity purification,7 rapid diagnostic assays,8 remotely-54 

controlled protein pores,9 and remote control of enzymatic activity.10 55 

To enable dynamic and reversible structural change or release of proteins from surfaces, several 56 

protein or peptide conformational switches have been studied.11 Bio-mimetic conformational 57 

switches have been engineered from natural systems, such as barnacle adhesive proteins-inspired 58 

self-assembling peptides,12 or de novo designed from canonical and predictable structural motifs such 59 

as α-helical coiled-coils and β-hairpins.13 Protein conformational switches can present on/off 60 

biomolecular recognition ability that can be triggered to release or capture another protein on 61 

demand, in response to external stimuli such as ion concentration14 or temperature.15–17  62 

Protein conformational switches are particularly relevant for the design of switchable surfaces and 63 

interfaces with programmable functionalities.16 Smart and functional materials that can be switched 64 



 

 

remotely will be increasingly used in applications beyond drug delivery and they have been already 65 

applied to control cell adhesion,18 assemble nanomaterials on surfaces,19 control biomolecular 66 

interactions for analytical devices15 and set the on/off state of bio-valves between catalytic nanoscale 67 

compartments.20 68 

We aimed to devise a binary protein complex capable of spontaneous self-assembly, on-demand 69 

disassembly in response to physical stimulus and re-assembly (Figure 1). We draw inspiration from 70 

neuronal SNARE complex, comprising three proteins: Syntaxin, SNAP25, and VAMP (Figure 2A).21  The 71 

complex assembles via the formation of a parallel coiled-coil of four α-helices, two contributed by 72 

SNAP25 (green in Figure 2A) and one each by Syntaxin and VAMP2 (red and blue respectively in Figure 73 

2A). The two helices of SNAP25 are kept together by a ~70 amino acid long linker that spans from the 74 

C-terminal of the first helix to the N-terminal of the second (unstructured, not represented in Figure 75 

2A and shown as a sketch in Figure 3A). Syntaxin presents extra N-terminal domains with regulatory 76 

function and a C-terminal transmembrane domain for anchoring to the cell membrane (both not 77 

represented in Figure 2A and shown as a sketch in Figure 3A). VAMP2 presents a C-terminal 78 

transmembrane domain which, in the living organism, is embedded in the membrane of synaptic 79 

vesicles. The domains that assemble into the tight and stable coiled-coil represented in Figure 2A are 80 

referred to as SNARE motifs: they are ~60 amino acids long and behave as unstructured proteins in 81 

solution. The SNARE motifs adopt stable α-helical structures only upon assembly with the other SNARE 82 

domains, driven by the alignment of several hydrophobic layers towards the core of the complex.21 83 

The native SNARE proteins retain their ability to form supramolecular complexes ex vivo and in vitro, 84 

but being a ternary system, the native SNAREs do not translate easily into biotechnology 85 

applications.22–24 We attempted to re-engineer two of the three native SNAREs to yield a simple and 86 

robust binary protein system. One of the two elements of the new system is capable of oriented and 87 

permanent immobilisation at a solid-liquid interface through an added glutathione S-transferase (GST) 88 

domain.25 A new complementary protein was therefore created by combining Syntaxin SNARE domain 89 

with that of VAMP using a designer linker made of a sequence of unstructured amino acids. We then 90 

tested whether this newly engineered component retained the ability to spontaneously and 91 

specifically self-assemble with the immobilised partner. We also tested whether it can be released in 92 

response to a local increase of temperature. The disassembly temperature of the engineered complex 93 

could be adjusted by as much as ~ 40C by altering the polypeptide length of a single SNARE domain.24 94 

To illustrate the thermo-responsive release of immobilised recombinant proteins from solid surfaces 95 

we tested two distinct polypeptide “tags” and showed that the immobilised tagged proteins are 96 

released selectively in a temperature dependent manner. The low temperature tag unfolds and 97 

disassembles at Tm=42.5°C, whilst the high-temperature tag remains bound up to Tm=79.6°C. 98 



 

 

Importantly, the released tags do not aggregate, making possible the regeneration of the interface. 99 

The low-temperature immobilisation system enables the decoration of dynamically switchable bio-100 

interfaces and it is suitable for the immobilisation of proteins or enzymes that can be released on 101 

demand by a mild local increase of the temperature. 102 

Results and discussion 103 

Reductionist re-engineering of ternary SNARE complexes yields temperature-104 

sensitive protein assembly 105 

First, we used minimised SNARE helixes and their native ternary SNARE protein architecture to check 106 

our hypothesis that thermal stability of the tetrahelical assembly can be regulated by adjusting just 107 

one of the -helixes. Recombinant SNAP25, Syntaxin and VAMP2 (VAMP2-L) were expressed and 108 

purified in E. coli and were used to characterise the thermal stability of the full-length SNARE complex 109 

in solution (Figure 2). To adjust the thermal stability of the complex while preserving the structural 110 

features that allow self-assembly, a shortened VAMP2 was synthesised (VAMP2-S). Whereas both 111 

VAMP2-L and Syntaxin were designed to span the entire SNARE motif (54 amino acids), VAMP2-S was 112 

only 25 amino acids long, with the C-terminal truncated just before the ionic layer. A rationale for the 113 

truncated design is presented in Supplementary Figure 1.  114 

The assembly of SNARE proteins mixtures was analysed using Synchrotron Radiation Circular 115 

Dichroism (SRCD) (Figure 2B). This was enabled by the fact that individual SNARE proteins are 116 

unstructured in solutions whereas the ternary complex formed by SNAP25, Syntaxin and VAMP2 is a 117 

highly structured coiled-coil. The far-UV SRCD spectra of both complexes containing SNAP25, Syntaxin 118 

and either VAMP2-L or VAMP2-S revealed α-helical structure. VAMP2-L complex yielded a more 119 

intense CD signal at the same molar concentration of VAMP2-S complex, consistent with longer 120 

structured α-helical domains. Unstructured individual SNARE proteins and binary mixtures from 121 

control tests (Supplementary Figure 2) confirmed that the minimalist, engineered, ternary SNARE 122 

complexes retain fundamental properties of the native SNARE complex, i.e, the ability of SNARE 123 

domains to interact tightly only when four of them form a helical bundle.26  124 

Temperature stability of the assembled protein complex was strongly affected by the length of the 125 

VAMP2 fragment used. Whilst both VAMP2-L and VAMP2-S complexes showed fully folded α-helical 126 

structure at 25°C, their stability at elevated temperatures was clearly very different. Melting 127 

temperature of the VAMP2-S complex was reduced compared to that of VAMP2-L complex by ~37°C 128 

(Figure 2C). 129 



 

 

Engineering of thermo-responsive, chimeric, binary protein complexes 130 

The results of Figure 2 informed the design of SNARE-derived immobilisation “tags” that can respond 131 

to different ranges of temperatures, with VAMP2-L and VAMP2-S suitable to be used for high- and 132 

low-temperature release respectively. The full potential of an immobilised protein system would 133 

benefit from being binary rather than ternary, so that one protein could be immobilised on a surface 134 

of interest and the thermo-responsive tag for controlled release fused to a protein of interest.22 To 135 

retain the thermal stability properties of the full-length and shortened SNARE complex, while reducing 136 

it to a binary system, we extensively re-engineered the native SNAREs by generating chimeras 137 

comprising sequences from all three proteins (Figure 3A). VAMP2-L (V-L) and VAMP2-S (V-S) were 138 

fused to Syntaxin (S) in tandem and separated by the polypeptide linker natively found between the 139 

helixes of SNAP25 protein, to allow the assembly of these two helixes in a parallel configuration (Figure 140 

3B). The new VS recombinant proteins were engineered to have either 54 amino acid domain (VS-L) 141 

or 25 amino acid long domain (VS-S), and they were successfully expressed in E. coli and purified.    142 

HH was engineered to contain shortened SNARE domains from SNAP25 so that the α-helices would 143 

be precisely 54 amino acids long and consistent with the longest domains of VS-L and VS-S. Since the 144 

native domain architecture of HH remained unchanged, we also retained the native linker domain 145 

(Figure 3A) connecting the two domains. The new HH was successfully expressed in bacteria. 146 

To assess the assembly properties of the new binary SNARE mimics we used SRCD and we found that 147 

HH assembles with either VS-L or VS-S to form α-helices similarly to their ternary counterpart (Figure 148 

3C). The far-UV SRCD spectra typical of α-helices were observed only where the pairs were combined, 149 

whereas no α-helices were detected with individual proteins, suggesting that the new fusions are also 150 

unstructured in solution unless assembled in a complex with specific partners, which is a feature 151 

inherited from native SNAREs (Supplementary Figure 4). The melting temperature of the full-length 152 

and shortened binary complexes was studied using SRCD temperature scans and the values obtained 153 

were 79.9°C and 43.3°C for HH/VS-L and HH/VS-S respectively (Figure 3D), which are very similar to 154 

the values obtained for the corresponding ternary complexes. To prove that the stability of the 155 

complex depends on the truncation of the V domain rather than the nature of the linker domain, we 156 

tested an entirely different linker, made of glycine and serine residues only, to connect V with C-157 

terminal S domains. Far-UV SRCD spectra and temperature scans of the new full-length VS-L2 158 

confirmed that there was no substantial difference between SV-L and SV-L2 (Supplementary Figure 5). 159 

Together, these results confirm that the new binary protein complexes retain the ability to self-160 

assemble in solution and possess thermal stability properties similar to that of the ternary protein 161 

complexes. 162 



 

 

Thermo-responsive release of surface-immobilised proteins 163 

HH was immobilised on porous Sepharose beads and the assembled VS-L and VS-S complexes' stability 164 

was studied at different temperatures. Sepharose beads derivatised with glutathione (GSH) were used 165 

to facilitate immobilisation of HH via a recombinant Glutathione S-Transferase (GST) tag fused at the 166 

N-terminal of HH (Figure 4A). The high affinity and remarkable stability of the GST/GSH interaction, 167 

combined with the high solubility of the GST tag, makes this system suitable for robust immobilisation 168 

of recombinant proteins on GSH-modified resins or other surfaces, such as plates, biosensors, 169 

magnetic beads. As GST also has high affinity to gold, this can also be used for direct decoration of 170 

gold nanoparticles.25 171 

The ability of the GST-HH modified surface to specifically capture VS-L and VS-S was assessed using a 172 

pull-down experiment. This was performed using Sepharose beads functionalised with either GST only 173 

(negative control) or GST-HH. Upon incubation with VS followed by extensive washing, Sepharose-GST 174 

was unable to bind VS-L or VS-S, whereas Sepharose-GST-HH could distinctively pull-down VS-L and 175 

VS-S, suggesting specific binding via HH/VS interaction and no background binding contributed by the 176 

GST tag or the surface (Figure 4B). As SDS-PAGE only provides a qualitative or semi-quantitative 177 

estimation of the amount of protein captured by the beads, VS-L and VS-S were fluorescently labeled 178 

to allow quantification of the captured protein. Labeling was achieved by chemical cross-linking Cy5-179 

maleimide to the thiol group of a cysteine residue deliberately introduced between the V domain and 180 

the flexible linker of both VS-L and VS-S (Supplementary Figure 6). Sepharose-GST-HH was incubated 181 

with an excess of fluorescent VS (VS-L-Cy5 and VS-S-Cy5), similarly to the pull-down described above. 182 

This time, fractions of the Sepharose-GST-HH/VS complexes were incubated at a set temperature and 183 

unbound protein removed using a washing buffer at the same incubation temperature. The residual 184 

Cy5 fluorescence intensity measured on the Sepharose beads represents the proportion of VS still 185 

bound to the surface at any tested temperature. The results of the pull-down performed at different 186 

temperatures show that both VS-L-Cy5 and VS-S-Cy5 are released from the resin upon incubation at 187 

80°C. However, a substantial proportion of VS-L-Cy5 remained bound to the surface at 65°C, whilst 188 

the bound VS-S-Cy5 dropped steeply and virtually none was still bound to the beads at the same 189 

temperature, with the majority released below 50°C (Figure 4C). The reduction of fluorescence 190 

intensity observed between 20°C and 35°C is due to the well documented temperature dependence 191 

of fluorescence quantum yield of carbocyanide dyes.27  192 

To test whether the system can work like an ideal thermo-responsive switch and capture another 193 

payload after a release cycle, an alternative payload was synthesised by conjugation of Cy3 to VS-S 194 

(VS-S-Cy3, Supplementary Figure 7). The Sepharose-GST-HH beads were first exposed to VS-S-Cy3, 195 



 

 

then heated at 50°C for 20’, washed and exposed to VS-S-Cy5 after cooling at 20°C. The beads were 196 

imaged using confocal microscopy and successful exchange of payload was confirmed by the sharp 197 

change of fluorescence emission (Figure 4D). 198 

The ability of Sepharose-GST-HH/VS-S-Cy5 system to preserve capture and release properties upon 199 

several cycles of heating at 50°C and cooling at 20°C was tested for up to 4 cycles (Figure 4E). The 200 

results show no substantial changes in the behaviour of the interface, most likely due to the 201 

unstructured nature of SNARE-derived peptides that do not aggregate even at higher temperatures. 202 

We also tested the ability of Sepharose-GST-HH/VS-L-Cy5 system to withstand cycles of heating at 203 

80°C and cooling at 20°C, and we observed that a significant amount of fluorescence intensity was lost 204 

after one cycle, but the remaining constructs were stable over 5 cycles. We attributed this to partial 205 

desorption of the incompletely folded recombinant GST portion of the recombinant protein at higher 206 

temperatures (Supplementary Figure 8). The correctly folded GST remains on beads and no further 207 

change in fluorescence is detectable. This is also consistent with the trend of the VS-L-Cy5 release 208 

observed in Figure 4C, which increases at a higher rate above 50°C, although still exhibiting a marked 209 

difference with the release trend of the shorter VS-S-Cy5. 210 

Finally, we tested the release rate of Sepharose-GST-HH beads loaded with VS-S-Cy3 at three different 211 

temperatures: 20, 37 and 45°C. At the lowest temperature, only background intensity of Cy3 212 

fluorescence was measured in the buffer surrounding the beads after 25 minutes. A mild increase of 213 

VS-S-Cy3 release was observed at 37°C (body temperature), suggesting that a delivery system based 214 

on this technology would have only moderate off-target loss of the payload. The release at 45°C 215 

(hyperthermia temperature) was instead substantial within the first 10 minutes and was complete 216 

after 20 minutes, suggesting sustained payload release happens above the engineered threshold 217 

temperature (Figure 5).  218 

 219 

The pull-down results and release curves together confirmed that, upon immobilisation, the thermo-220 

responsive HH/VS interaction preserves the interesting thermal stability properties found in solution 221 

and, therefore, can be used as an effective way to release proteins from a surface in response to a 222 

local temperature increase. No irreversible protein aggregation was observed, unlike other common 223 

protein-protein interactions for which extensive optimisation is required to limit aggregation 224 

propensity.28 The refolding ability of proteins at the interface and the regeneration of the surface 225 

following subsequent cycles of capture and release was tested successfully, suggesting that the 226 

interactions involved are fully reversible and therefore compatible with dynamic and programmable 227 

surfaces involving biomolecules.16 228 



 

 

Importantly, informed engineering of the coiled-coil structure of the neuronal SNARE complex allowed 229 

modulation of the disassembly temperature down to physiologically attainable conditions for in vivo 230 

applications. Research into stimuli-responsive nanomaterials suggested many approaches to 231 

engineering environmentally controlled molecular systems. Temperature and pH are the two stimuli 232 

most physiologically relevant to drug delivery and release applications. Such systems are typically 233 

based on temperature-sensitive spontaneously aggregated or polymerised molecules which undergo 234 

depolymerisation or disassembly stimulated by the change in the external conditions. One group of 235 

applications rely on spontaneously formed hydrogels which entrap typically small molecule drugs for 236 

delayed, sustained or environmentally dependent release.29,30 Another category relies on micellar 237 

delivery systems which are typically used for the delivery of poorly soluble low molecular weight (LMW) 238 

therapeutics and for sustained drug delivery in diverse scenarios, including controlled delivery of 239 

multiple drugs for synergistic effect, as elegantly exemplified by Emamzade et al.31 Another common 240 

approach relies on self-assembled nanoparticles, optionally with added stimuli sensitivity, such as 241 

Redox or enzyme sensitive nanoparticles.32-35 Polymeric carriers are especially suitable for payloads 242 

such as conventional organic drugs which are physically entrapped in the polymer networks. Such 243 

entrapment is strongly affected by the size and physical properties of the LMW drugs, and typically no 244 

defined molecular ratio of polymer to drug could be specified. In contrast, the described system, which 245 

relies on engineered interacting proteins, includes defined molar ratio of the captured protein to the 246 

molecular anchor and is likely unaffected by the size or nature of the protein payload. The high 247 

specificity and affinity of the interaction between the two protein components exceeds that of typical 248 

polymers by far and the stimuli-sensitivity of their interaction can be engineered in a rational manner 249 

as described in this paper. Another key distinction is that our system allows multiple rounds of re-250 

assembly, whilst hydrogels, micelles and nanoparticle-based systems assume single use; whilst that 251 

may not have implications in therapeutic applications, the reversibility of the protein interface 252 

provides additional advantages for biotechnology applications. Importantly, the proteinaceous nature 253 

of the SNAREs mimic-based system reported here makes it particularly suitable for the thermo-254 

responsive release of proteins, thus expanding the use of thermo-responsive drug delivery towards 255 

the vast arsenal of bio-therapeutics. We envisage that combining the thermo-responsive capabilities 256 

described here with designer nanocarriers will be especially useful for the development of 257 

hyperthermia-directed protein therapeutics.36 Elsewhere, peptide-lipid hybrid nanoscale thermo-258 

responsive vesicles were tested in vivo and successful release of doxorubicin following hyperthermia 259 

treatment was observed.37 Magnetic hyperthermia, which makes use of iron oxide nanoparticles to 260 

induce local increase of temperature, is clinically approved in Europe for the treatment of 261 



 

 

glioblastoma38 and it represents a promising approach for magneto-responsive local release of 262 

therapeutics, towards which the thermo-responsive protein interface described here may contribute. 263 

The use of thermo-responsive, nanoparticle-based systems for local delivery is not limited to magnetic 264 

materials activated by alternate magnetic fields but, for example, nanomaterials with the ability to 265 

extensively absorb energy in the near-infrared (NIR) spectrum can be used to trigger a localised and 266 

controlled increase of temperature in vivo, as radiation in this window has minimal absorbance by 267 

tissues and can penetrate to a depth of micrometers to centimeters, making photo-thermal drug 268 

release possible.2 Dedicated nanomaterials such as gold nanorods with a strong absorbance in the NIR 269 

range have been developed and their ability to trigger conformational changes on gold-conjugated 270 

biomolecules in response to NIR irradiation has been previously reported in vitro and in vivo.39,40  We 271 

believe that the thermo-responsive protein release tag properties reported here make it a suitable 272 

interface for magneto-responsive and photo-thermal therapy. 273 

Experimental 274 

Cloning, protein expression, purification and analysis 275 

DNA inserts were purchased as synthetic genes (Dundee Cell Products) and introduced into pGEX-KG 276 

GST gene fusion system (Addgene). The resulting sequences are reported in Supplementary Table 1 277 

and secondary structure data are presented in Supplementary Figures 2 and 3. All plasmids were 278 

expressed in BL21(DE3)pLysS E.coli strain (Thermo Fisher Scientific); the expressed recombinant 279 

proteins were purified by affinity chromatography using Glutathione Sepharose 4B resins (GE 280 

Healthcare). The GST tag was removed by thrombin cleavage, with the exception of GST and GST-HH 281 

for which the tag was preserved. Fluorescently labeled proteins were incubated with an excess of Cy5- 282 

or Cy3-maleimide at this stage. All proteins were further purified by size exclusion chromatography 283 

using ÄKTA Pure chromatography system (GE Healthcare) equipped with a Superdex 75 10/300 GL 284 

column. All proteins were stored and analysed in 100 mM NaCl, 20 mM HEPES pH 7.3. Protein 285 

concentration was determined using BCA assay (Thermo Fisher Scientific). SDS-PAGE was performed 286 

using 12% RunBlue SDS protein gels (Expedeon), stained using InstantBlue (Expedeon) and imaged 287 

using a ChemiDoc imaging system (Biorad). Alternatively, an Odyssey Imaging System (LI-COR 288 

Biosciences) was used for visualisation of fluorescently labeled protein. Quantification of fluorescent 289 

protein in solution or immobilised on beads was done using an Infinite 200 Pro plate reader (TECAN). 290 

Synchrotron radiation circular dichroism 291 



 

 

Far UV SRCD spectra were recorded at the B23 beamline for SRCD of the Diamond Light Source (UK)41 292 

using protein solutions at the concentrations indicated in the figure legends diluted in 25 mM NaCl, 5 293 

mM HEPES pH 7.3 in a rotating cylindrical cuvette with 0.2mm optical path (Starna) at 20°C. SRCD 294 

spectra of thermal unfolding were recorded from the same solutions in the 25-95°C temperature 295 

range with an interval of 2.5°C. Temperature was raised at the rate of 1°C per minute and the solutions 296 

were allowed to equilibrate for 2 min before collecting the spectra. The thermal unfolding curves were 297 

plotted by selecting the data points at 222 nm over the range of temperatures scanned.42 The melting 298 

temperature (Tm) of the complexes was obtained by interpolation of the temperature at which half of 299 

the signal was lost. All SRCD spectra were processed using the software CDApps.43 300 

Protein pull-down and controlled release 301 

5 µM GST-HH and 7.5 µM VS were incubated at room temperature for 2 hours with Glutathione 302 

Sepharose 4B beads (GE Healthcare) under constant agitation. Excess protein was removed by 303 

repeated centrifugation and washing using 100 mM NaCl, 20 mM HEPES pH 7.3. Total protein load 304 

was assessed following complete denaturation in hot RunBlue LDS sample buffer (Expedeon) followed 305 

by SDS-PAGE using 12% RunBlue SDS protein gels (Expedeon), stained using InstantBlue (Expedeon) 306 

and imaged using a ChemiDoc imaging system (Biorad). Controlled release was obtained by incubation 307 

of the GST-HH/VS beads at a set temperature for 20 minutes, followed by a wash at the same 308 

incubation temperature. The beads for confocal imaging were prepared in the same way, but exposed 309 

to VS-S-Cy3 first and to VS-S-Cy5 after release at 50°C and cooling at 20°C. Repeated heating and 310 

cooling cycles were performed on 5 different sets of solutions, each subjected to 0 to 4 cycles as 311 

described for the pull-down above before analysis of retained protein was performed. To obtain 312 

release curves, Sepharose-GST-HH beads were loaded with VS-S-Cy3 using the same approach above. 313 

Three fractions were diluted 5 times and incubated at 20, 37 and 45°C. The beads were quickly 314 

sedimented by centrifugation every 5 minutes and the concentration of VS-S-Cy3 released into the 315 

buffer was assessed.  Quantification of retained fluorescent protein or protein fluorescence released 316 

in solution was conducted using an Infinite 200 Pro plate reader (TECAN). 317 

Confocal microscopy 318 

Images were obtained using a Leica TCS SP8 confocal microscope (20X objective) from VS-S-loaded 319 

Sepharose-GST-HH beads dispersions on a glass coverslip. False colour scanning images were obtained 320 

using 552 nm laser excitation and 554-630 nm emission window (Cy3 channel) and 638 nm laser and 321 

650-750 nm emission (Cy5 channel). 322 



 

 

Conclusions 323 

The results reported here show that modulation of the release temperature of engineered SNARE 324 

complexes can be achieved by changing the length of just one SNARE motif which could also be fused 325 

to Syntaxin SNARE motif to form a binary interaction complex. The engineered protein interface can 326 

be expressed by recombinant means and its thermo-responsive properties adjusted within a broad 327 

range of temperatures in the 40-80°C range. To fully exploit the potential of this new protein interface, 328 

the immobilisation on surfaces other than GSH-crosslinked Sepharose beads should be explored 329 

further. For example, GST could be replaced by available peptides with affinity to specific materials or 330 

the SNAREs directly linked to the surface using available chemical bioconjugation methods.44,45 Once 331 

fused to thermo-responsive VS proteins, other recombinant proteins could be potentially immobilised 332 

and released from HH-modified materials, irrespective of HH’s immobilisation method. On the other 333 

hand, HH-activated materials could be used for the immobilisation and release of any VS-tagged 334 

recombinant protein, highlighting the modularity and flexibility of the system described here. It is 335 

likely that thermo-responsive SNARE-derived tags will have a role in future design of interfaces with 336 

programmable, protein-mediated functions 337 
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Figure legends 419 

Figure 1. Schematic of the reversible, thermo-responsive protein release system. (A) Reversible 420 

temperature sensitive release of a payload (e.g., therapeutic protein) in response to heat activation 421 

of a molecular thermal switch (T) which opens at temperatures above ~45°C; the system can be loaded 422 

again by dropping the temperature below the threshold. (B) Engineering of the molecular thermal 423 

switch: the self-assembling SNARE proteins ternary complex has been re-engineered into a new binary 424 

protein complex capable of sequence specific self-assembly. Tuning the temperature stability of the 425 

complex is achieved by modifying the interface region (T). The complex re-assembles if cooled to 426 

below the temperature threshold. 427 

Figure 2. Length of SNARE motif affects thermal stability of the SNARE complex. (A) Structural 428 

representation of the SNARE complex (based on PDB ID: 1SFC). The structures highlighted in colour 429 

indicate the portions of SNARE motifs that have been used in this work: blue indicates 54 or 25 amino 430 

acid long VAMP2 motifs, Syntaxin protein is highlighted in red and SNAP25 motifs in green. The parts 431 

of the ribbons highlighted in yellow correspond to the ionic layer. (B) Far-UV SRCD spectra of VAMP2-432 

L and VAMP2-S complexes, each molecule at  2 μM concentration, pH=7.3, 20°C.  The peak at 222 nm 433 

is highlighted and indicates the wavelength that was used to quantify unfolding and disassembly 434 

shown in panel C. (C) CD temperature scan of VAMP2-L and VAMP2-S SNARE complex. The data 435 

represent unfolding expressed as % of increase of CD signal at 222 nm over a value of 100 extrapolated 436 

to infinite temperature. The melting temperature Tm is derived by fitting the data to a sigmoid and 437 

represents the temperature value at which 50% unfolding is achieved. 438 

Figure 3. Engineering of a binary SNARE complex with altered thermal stability. (A) Schematic of the 439 

native SNARE proteins and their domains, used as building blocks for the engineering of binary artificial 440 

complexes. Colour code: blue = domain V from VAMP2, red = domain S from Syntaxin, green = linker 441 

and the two SNARE domains from SNAP25. Cylinders represent α-helixes, the yellow rectangle 442 

represents the membrane into which the SNARE proteins are embedded via an α-helical 443 

transmembrane domain (VAMP2 and Syntaxin) or palmitoylated cysteine residues (4 zig-zag segments 444 

on the SNAP25). The amino acid numbers of the domains effectively used for the engineering of the 445 

binary complexes are displayed near the coloured domains, which also correspond to the colour coded 446 

highlights of Figure 2A. (B) Schematic of the recombinant SNARE mimics. Cylinders represent SNARE 447 

domains highlighted in panel A, whereas the green lines correspond to the naturally occurring linker 448 

between the two α-helices of SNAP25 with four cysteine residues mutated into alanines (orange dots, 449 

also highlighted by arrows in the HH sketch) and one introduced cysteine residue exposing a free thiol 450 

group (SH) for site directed labelling (yellow dot in VS-L and VS-S). (C) Far-UV SRCD spectra of binary 451 



 

 

complexes (8 μM of each molecule, pH=7.3, 20°C) and (D) temperature scans have been obtained as 452 

in Figure 2 and resulted in very similar assembly and disassembly properties. 453 

Figure 4. Assembly of binary SNARE complexes on GSH activated Sepharose beads and thermo-454 

responsive release of VS. (A) Schematic of HH immobilisation strategy via GST/GSH interaction. The 455 

structure of GST is based on PDB ID 1UA5. (B) SDS-PAGE of the pull-down of VS-L and VS-S by 456 

functionalised Sepharose beads. Lanes 1 and 2 show eluates from Sepharose-GST incubated with VS-457 

L and VS-S respectively: for both lanes, only a band corresponding to GST was visible (28.6 kDa, 458 

indicated by the arrow on the right), suggesting that there is no specific interaction of VS with GST or 459 

the surface. Lanes 3 and 4 show eluates from Sepharose-GST-HH incubated with VS-L and VS-S 460 

respectively: besides the bands corresponding to GST-HH protein (45.3 kDa, indicated by the arrow), 461 

one intense extra band per lane was detected, corresponding to the mass of VS-L protein (21.3 kDa, 462 

lane 3) and VS-S protein (17.2 kDa, lane 4), suggesting specific binding via HH/VS interaction. The lane 463 

with the protein marker (PM) allows comparison of the relative mass of the proteins loaded on the 464 

SDS-PAGE (relative masses of the standards are listed on the left). (C) Residual fluorescence intensity 465 

from Sepharose-GST-HH bound VS-L-Cy5 and VS-S-Cy5 after incubation at different temperatures. 466 

Data points and error bars represent the average of three measurements and standard error 467 

respectively. (D) Confocal microscopy of representative Sepharose-GST-HH beads exposed to VS-S-468 

Cy3 first (upper panels), regenerated by heating and exposed to VS-S-Cy5 (lower panels). Left and right 469 

panels show the fluorescence at the Cy3 and Cy5 emission wavelengths respectively. Scale bars are 50 470 

μm. (E) Fluorescence intensity of captured VS-S-Cy5 after Sepharose-GST-HH was heated and cooled 471 

for 0 to 4 cycles. Average of three measurements, error bars represent the standard error. 472 

Figure 5. Release of VS-S-Cy3 into the buffer upon incubation at three representative temperatures of 473 

loaded Sepharose-GST-HH beads.   474 
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