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A B S T R A C T   

Purpose: Advanced image segmentation techniques like the Chan-Vese (CV) models transform the segmentation 
problem into a minimization problem which is then solved using the gradient descent (GD) optimization algo
rithm. This study explores whether the computational efficiency of CV can be improved when GD is replaced by a 
different optimization method. 
Methods: Two GD variants from the literature (Nesterov accelerated, Barzilai-Borwein) and a newly developed 
hybrid variant of GD were used to improve the computational efficiency of CV by making GD insensitive to local 
minima. One more variant of GD from the literature (projected GD) was used to address the issue of maintaining 
the constraint on boundary evolution in CV which also increases computational cost. A novel modified projected 
GD (Barzilai-Borwein projected GD) was also used to overcome both problems at the same time. The effect of 
optimization method selection on processing time and the quality of the output was assessed for 25 musculo
skeletal ultrasound images (five anatomical areas). 
Results: The Barzilai-Borwein projected GD method was able to significantly reduce computational time (average 
(±std.dev.) reduction 95.82 % (±3.60 %)) with the least structural distortion in the delineated output relative to 
the conventional GD (average(±std.dev.) structural similarity index: 0.91(±0.06)). 
Conclusion: The use of an appropriate optimization method can substantially improve the computational effi
ciency of CV models. This can open the way for real-time delimitation of anatomical structures to aid the 
interpretation of clinical ultrasound. Further research on the effect of the optimization method on the accuracy of 
segmentation is needed.   

1. Introduction 

Ultrasound (US) imaging is widely used in clinics around the world 
due to its high availability, non-invasive nature, and capacity for 
bedside monitoring of patients. However, US imaging remains operator- 
dependent and compared to other medical imaging modalities, the 
quality of the produced images is relatively low which can make their 
interpretation challenging. 

Computerized delineation algorithms based on deformable models 
are well suited for the analysis of US images [1,2] because of their 
flexibility and their ability to perform delineation with the use of con
straints (derived from image data) together with the prior knowledge of 
the shape, location or size of the targeted structures. Moreover, these 

models can better accommodate the shape variability of biological 
structures across individuals and they are robust to noise and boundary 
gaps because of the constraints imposed. The key idea of deformable 
model based segmentation is that a prior model of the structure of in
terest is represented either as a 2D curve or as a 3D surface in the image 
domain and this curve or surface undergoes deformation in an iterative 
manner to fit onto the boundary of the structure of interest. The defor
mation field that tells how the model should deform to fit onto the 
boundary of the structure of interest is obtained by the minimization of 
an energy functional. Therefore, the segmentation problem is now 
transformed into an energy functional minimization problem which can 
be solved with the help of an optimization algorithm [3,4]. 

This study will focus on one of the most representative and widely 

* Corresponding author. 
E-mail address: muthaiah66@gmail.com (M. Rajappa).  

Contents lists available at ScienceDirect 

Biomedical Signal Processing and Control 

journal homepage: www.elsevier.com/locate/bspc 

https://doi.org/10.1016/j.bspc.2021.102560 
Received 24 October 2020; Received in revised form 18 February 2021; Accepted 7 March 2021   

mailto:muthaiah66@gmail.com
www.sciencedirect.com/science/journal/17468094
https://www.elsevier.com/locate/bspc
https://doi.org/10.1016/j.bspc.2021.102560
https://doi.org/10.1016/j.bspc.2021.102560
https://doi.org/10.1016/j.bspc.2021.102560
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2021.102560&domain=pdf


Biomedical Signal Processing and Control 67 (2021) 102560

2

used deformable models called Chan–Vese (CV) model [5,6]. The CV 
model is a piecewise constant approximation of a global region infor
mation based deformable model called Mumford–Shah (MS) model [5, 
6].The CV model assumes that each region is homogenous with respect 
to grayscale intensities within a region and it uses the mean of grayscale 
intensities within a region as a region descriptor to generate a force that 
pulls the shape model (represented by level set) towards the organ of 
interest. At the end, CV partitions the image into distinct 
non-overlapping regions with just two levels of intensity: m1 and m2 
where m1 is the mean of grayscale intensities inside the contour and m2 
is the mean of grayscale intensities outside the contour [7]. 

The CV model is topologically flexible, less sensitive to noise and the 
initial position of the shape model and can segment structures with weak 
boundaries. However, one of the key limitations of the CV model is its 
high computational cost [5,6,8–10]. The causes of the computational 
inefficiency of the CV model are: a) the use of the gradient descent (GD) 
optimization technique to solve the non-convex optimization problem of 
CV and b) the need to use numerical remedies to maintain the constraint 
on level set function (LSF) during contour evolution [5,11,12]. In the 
literature, the numerical difficulties related to solving the non-convex 
optimization problem with GD (i.e. convergence towards local opti
mum and slow convergence towards optimum) were addressed either by 
using a convex relaxation approach or by using advanced alternatives to 
GD (second order optimization methods, subdivision schemes, stochas
tic optimization schemes) or by modifying the gradient descent search 
direction [12–15]. 

According to the convex relaxation approach, an energy functional 
that is non-convex in nature is transformed into an energy functional 
that is convex in nature by relaxing the constraint so that the resulting 
convex energy functional could be easily solved by using convex opti
mization schemes such as the split Bregman method. The split Bregman 
technique is a constrained optimization scheme that is suitable for faster 
minimization of a convex energy functional [13,14,16–18]. Even though 
the convex relaxation approach makes numerical implementation 
easier, this comes at the cost of compromised segmentation accuracy 
[13,14]. 

On the contrary, advanced alternatives of GD, such as subdivision 
schemes, could maintain the segmentation accuracy but they are highly 
complex in nature and as a result they are mainly limited to solving 
small problems. Similarly stochastic optimization techniques are loga
rithmically slow which also restricts their applicability [12]. Second 
order optimization methods, such as the Newton Raphson method, lead 
to faster convergence towards optimum. However, the limitation of 
Newton Raphson (Newtonian search direction) method is the need for 
the Hessian (second order derivative matrix) computation at each iter
ation. Explicit computation of matrix of second order derivatives can 
sometimes be a cumbersome, error-prone, and computationally expen
sive process [19]. 

Modifying the search direction in GD can improve the performance 
of GD when used to solve non-convex optimization problems while 
avoiding the complexity of more advanced optimization techniques with 
no compromise in segmentation accuracy (i.e. without making any 
changes in the original non-convex energy functional) [12]. Methods 
that modify the search direction in GD provide GD with the “intelli
gence” to escape local minima and ravines by using mathematical en
tities to adapt the search direction thereby leading to faster convergence 
towards an optimum solution [12]. Inspired from the key idea presented 
in Andersson et.al.(2013) [12], three variants of GD are proposed in the 
present study, which differ in the way they modify the search direction 
in GD. The first proposed variant of GD uses a smart momentum term to 
modify the search direction in GD. This proposed smart momentum term 
based GD is different from the ordinary momentum based GD in the 
sense that the new smart momentum term helps GD to escape local 
minima and ravine but at the same time, it wouldn’t make GD to run past 
the optimum solution (i.e.) GD will stop when the optimum is reached. 
This smart momentum based GD is called Nesterov accelerated gradient 

descent (NA-GD). This variant of GD is commonly used in machine 
learning applications for the updation of weights in neural networks. 
The second proposed variant of GD is called Barzilai and Borwein 
gradient descent method (BB-GD) and it is based on the idea of using a 
step size that enforces quasi-Newton property along with the negative 
direction of gradient [20–22]. The third proposed variant of GD is a 
novel modified NA-GD (hybrid method). This newly developed hybrid 
method is based on the idea of replacing the fixed step size in NA-GD 
with the step size formulation of BB-GD method so that the computa
tional efficiency of NA-GD could be improved. 

As previously mentioned, the second factor that interferes with the 
computational efficiency of the CV model is the requirement to maintain 
a specific constraint on LSF during contour evolution. More specifically, 
with the level set modelling of evolving boundaries in CV, it is necessary 
to maintain the LSF as a signed distance function (SDF) during contour 
evolution to avoid numerical errors and to preserve the stability of level 
set evolution [11,23–25]. In the literature, this constraint on LSF was 
maintained either by using a periodic re-initialization process or by 
adding a quadratic penalty term with the constraint to be enforced in the 
energy functional (penalty term approach) [11,24,26]. However, peri
odic re-initialization is a time-consuming process and it may move the 
zero level set away from the desired position [11,24]. At the same time, 
enforcing the constraint through a penalty term approach may cause 
undesirable side effects on the LSF which would in turn affect numerical 
accuracy [11,24]. This is because, the penalty term approach cannot 
guarantee that LSF will be maintained as SDF during contour evolution. 
More specifically, the weighting parameter associated with the 
quadratic penalty term should be sufficiently large to enforce the 
constraint while the step size in GD should be chosen to be sufficiently 
small to maintain the Courant–Friedrichs–Lewy (CFL) stability condi
tion [11]. However, the use of smaller step size in GD can significantly 
compromise the computational efficiency of the segmentation process. 
Therefore, these numerical remedies for maintaining the constraint on 
LSF end up being computationally intensive by themselves which in turn 
increases the computational cost of the CV model. 

An alternative way to solve the energy functional with a quadratic 
penalty term without violating the CFL condition was presented by Duan 
et al. (2014) [11]. According to their approach, a projection concept was 
applied to a subdivision scheme called augmented Lagrangian. Even 
though this approach does not solve the inherent problems of compu
tational efficiency associated with the use of GD, the concept of pro
jection appears to offer a noncomplex solution to maintain the constrain 
of LSF. 

Inspired from the idea of projection [11], we are proposing to use a 
first order constrained optimization scheme called projected gradient 
descent (PGD) to maintain the constraint on LSF during contour evolu
tion. In this case, the unconstrained non-convex optimization problem of 
the CV model is posed as a constrained non-convex optimization prob
lem and solved using PGD to find an optimum solution. The basic idea of 
PGD is that at each iteration, the solution is computed by traversing in 
the negative direction of the gradient and projecting the obtained so
lution onto the constraint set C [27]. In the present work, the constraint 
set C is formed by a set of all LSF’s (φ) that satisfy the constraint |∇φ| =
1, which is non-convex in nature. PGD indirectly forces the LSF to 
remain close to SDF with the help of the projection onto non-convex 
constraint set C thereby maintaining the constraint on LSF during con
tour evolution. PGD is the fourth variant of GD that will be tested in the 
present study. 

However, since PGD is just GD used to solve a constrained optimi
zation problem, the numerical difficulties related to solving a non- 
convex optimization problem with GD remain for PGD too. Therefore, 
the fifth and the final variant of GD is proposed based on the idea of 
using a step size that enforces quasi newton property within PGD 
formulation. This accelerated version of PGD, called Barzilai and Bor
wein projected gradient descent (BB-PGD), has the twofold advantage of 
maintaining the constraint on LSF during contour evolution in a smart 
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manner while helping GD to escape local minima and ravine [28]. 

2. Materials and methods 

2.1. CV models 

Two different versions of the CV model were included in this study: 
the conventional CV model [5,7] and its speckle noise handling modi
fication called modified Chan-Vese (MCV) model [29,30]. The energy 
functional of CV model and MCV model is given in Eqs. (1) and (2) 
respectively. 

ECV(m1,m2,Γ) = ρ.Length (Γ) + γ. area (in ( Γ) ) + β1

∫

Ω1

(z − m1)
2dx dy

+ β2

∫

Ω2

(z − m2)
2dx dy

(1)  

where z is the input image; Γ is the deformable boundary curve; in ( Γ)
is inside the boundary curve; Ω1 is the image region within the contour 
and Ω2 is the image region outside the contour. The first two terms in the 
energy functional denote the regularizer terms; the third and the fourth 
terms denote the data fidelity terms. β1and β2 are the weighing constant 
associated with the two data fidelity terms while ρ and γ are the 
weighting constants associated with the arc length term and the area 
constraint term respectively. 

The CV model implicitly assumes that the input image is perturbed 
by additive noise which is modelled by zero mean Gaussian probability 
density function (PDF).When this model is used to segment US images, it 
can produce sub-optimum results since US images are corrupted by 
speckle noise which is multiplicative in nature and it is modelled by non- 
Gaussian PDF [29–32]. In the literature, this problem was addressed by 
introducing physical noise modelling within the segmentation paradigm 
of the CV model through Bayesian modelling [29,33,34].With the dis
played US image being modelled by Loupas noise model, the energy 
functional of MCV model is given by (2). 

EMCV(m1,m2,Γ) = ρ.Length (Γ) + γ. area (in ( Γ) ) + β1

∫

Ω1

(z − m1)

m1

2

dx dy

+ β2

∫

Ω2

(z − m2)
2

m2
dx dy

(2) 

In CV and MCV models, the deformable curve is represented 
implicitly as a zero level set of a higher dimensional surface called LSF. 
The idea of level set method is to evolve the higher dimensional surface 
instead of evolving the curve. The LSF used is the SDF. An alternative 
representation of interface is through a regularized Heaviside function. 
The energy functional of CV and MCV models in level set framework is 
given by (3) and (4) respectively. 

ECVLS(m1,m2,φ) = ρ
∫

Ω

δε(φ)|∇φ| dx dy + β1

∫

Ω1

(z − m1)
2Hε(φ) dx dy

+ β2

∫

Ω2

(z − m2)
2
(1 − Hε(φ)) dx dy (3)  

EMCVLS(m1,m2,φ) = ρ
∫

Ω

δε(φ)|∇φ| dx dy + β1

∫

Ω1

(z − m1)

m1

2

Hε(φ) dx dy

+ β2

∫

Ω2

(z − m2)

m2

2

(1 − Hε(φ)) dx dy (4)  

where φ is the LSF; Hε(φ) is the regularized Heaviside function; δε(φ) is 

the derivative of regularized Heaviside function. 
The level set evolution equation of CV model is given by (5). 

∂φ
∂t

= −
∂ECVLS

∂φ
(5a)  

∂ECVLS

∂φ
= δε(φ)

[

− ρ div
(

∇φ
|∇φ|

)

+ β1(z − m1)
2
− β2 (z − m2)

2
]

(5b)  

∂φ
∂t

= δε(φ)
[

ρ div
(

∇φ
|∇φ|

)

− β1(z − m1)
2
+ β2 (z − m2)

2
]

(5c) 

To solve ∂φ
∂t in (5a) numerically, ∂φ

∂t is discretized using finite differ
ence implicit scheme and the level set updation equation for CV model is 
given by (6). 

φk+1 = φk − ξ
∂ECVLS

∂φ
(6a)  

φk+1 = φk + ξ
∂φk

∂t
(6b) 

The level set evolution equation of MCV model is given by (7). 

∂φ
∂t

= −
∂EMCVLS

∂φ
(7a)  

∂EMCVLS

∂φ
= δε(φ)

[

− ρ div
(

∇φ
|∇φ|

)

+ β1
(z − m1)

2

m1
− β2

(z − m2)
2

m2

]

(7b)  

∂φ
∂t

= δε(φ)

[

ρ div
(

∇φ
|∇φ|

)

− β1
(z − m1)

2

m1
+ β2

(z − m2)
2

m2

]

(7c) 

To solve ∂φ
∂t in (7a) numerically, ∂φ

∂t is discretized using finite difference 
implicit scheme and the level set updation equation for MCV model is 
given by (8). 

φk+1 = φk − ξ
∂EMCVLS

∂φ
(8a)  

φk+1 = φk + ξ
∂φk

∂t
(8b)  

where k is the iteration index; φk+1 is the value of φ at next step; φk is the 
value of φ at current step and ξ is the step size that decides how fast the 
solution converges towards optimum. (6b) and (8b) can be interpreted 
as: the shape model represented (via.) initial level set is deformed in the 
negative direction of the gradient to fit it onto the closed boundary of the 
structure of interest. The solution to the image processing problem 
(segmentation in this case) is obtained by solving (6b) and (8b) to steady 
state [7–9,29,30]. 

The detailed mathematical formulation of the conventional CV and 
MCV models can be found in Supplementary material A. 

2.2. Optimization methods 

Since the energy functional of both the CV and MCV models are non- 
convex in nature, the use of GD would lead to problems such as 
convergence towards local minima and slow convergence towards the 
global optimum due to its inability to come out of pathological curvature 
areas called ravines when trapped into it [5,8,12,35,36]. 

This limitation of GD has been addressed in literature by using 
mathematical entities that can change the search direction in GD to 
escape local minima and ravines. This approach can lead to faster 
convergence towards the optimum solution while avoiding the 
complexity of more advanced optimization techniques and with no 
compromise in segmentation accuracy (i.e. without making any changes 
in the original non-convex energy functional) [12,37]. In this context, 
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three variants of GD are used in the present study, which differ in the 
way the search direction in GD is modified [20–22]. 

• Nesterov accelerated GD (NA-GD): This method uses a smart mo
mentum term to modify the search direction in GD which avoids 
getting trapped in local minima and ravines but at the same time also 
avoids running past the optimum solution [20,22]. The level set 
evolution equation of the NA-GD method is given by (9). 

φk+1 = r k − ξ ∇f
(
r k) (9a)  

where r k = φk +

(
k − 1
k + 2

)
[
φk − φk− 1] (9b)   

• Barzilai and Borwein GD (BB-GD): This method improves the ef
ficiency of GD by changing the way that the step size is calculated in 
the search for global optimum [21]. The level set evolution equation 
of the BB-GD method is given by (10). 

φk+1 = φk − ξ
∂EMCVLS

∂ϕ
(10a)  

where ξ =
pk

uk (10b)  

pk = φk+1 − φk; uk =

(
∂EMCVLS

∂ϕ

)k+1

−

(
∂EMCVLS

∂ϕ

)k

(10c)    

• Hybrid method (Hybrid): The fixed step size in NA-GD is replaced 
by the step size formulation in BB-GD. The level set evolution 
equation of the hybrid method is given by (11). 

φk+1 = r k − ξ ∇f
(
r k) (11a)  

where r k = φk +

(
k − 1
k + 2

)
[
φk − φk− 1] (11b)  

ξ =
pk

uk ; pk = φk+1 − φk; uk =

(
∂EMCVLS

∂ϕ

)k+1

−

(
∂EMCVLS

∂ϕ

)k

(11c) 

One additional first order constrained optimization scheme was used 
to address the limitation associated with level set modelling of evolving 
boundaries (increased computational complexity) in the CV model and 
MCV model:  

• Projected GD (PGD): The basic idea of PGD is that at each iteration, 
the algorithm computes the solution by traversing in the negative 
direction of the gradient and project the obtained solution onto the 
constraint set C [27]. In our work, the constraint set C is formed by 
set of all φ’s that satisfy the constraint |∇φ| = 1 and this constraint 
set is non-convex in nature. PGD indirectly forces the LSF to remain 
close to SDF (via.) the projection onto non-convex constraint set C 

thereby maintaining the constraint on LSF during contour evolution 
in a smart manner. The constrained non-convex optimization prob
lem to be solved by using PGD is given in (12). 

EMCVLS(m1,m2,φ) = ρ
∫

Ω

δε(φ) |∇φ| dx dy + β1

∫

Ω1

(z − m1)

m1

2

Hε(φ) dx dy

+ β2

∫

Ω2

(z − m2)

m2

2

(1 − Hε(φ)) dx dy s.t. |∇φ|

= 1
(12) 

Generally, the projection of a point q onto set L is given by (13) 

ΠL(q) = min
l∈L

1
2
‖l − q‖2

2 (13) 

Level set updation equation using PGD is given by (14) and (15) 

φk+1 = ΠC φ̆k+1 (14)  

where φ̆k+1 = φk − ξ
∂EMCVLS

∂φ
(15) 

However, since PGD is just GD used to solve a constrained optimi
zation problem, the numerical difficulties related to solving a non- 
convex optimization problem with GD remain in PGD too. Therefore, 
to improve the efficiency of PGD, an accelerated version of PGD that 
uses the step size of BB-GD within the PGD formulation (BB-PGD) has 
been developed [28].  

• Barzilai-Borwein projected gradient descent (BB-PGD): BB-PGD 
has a twofold advantage of maintaining the constraint on LSF dur
ing contour evolution in a smart manner while helping GD to escape 
local minima and ravines. The constrained non-convex optimization 
problem to be solved by BB-PGD is given in (12) and its level set 
evolution by (16). 

φk+1 = ΠC φ̆k+1 (16a)  

where φ̆k+1 = φk − ξ
∂EMCVLS

∂ϕ
and ξ =

pk

uk (16b)  

pk = φk+1 − φk ; uk =

(
∂EMCVLS

∂ϕ

)k+1

−

(
∂EMCVLS

∂ϕ

)k

(16c) 

The sequence of steps in solving an energy functional minimization 
problem with the proposed variants of GD is as follows: 

Input: US image, maximum number of iterations N and step size ξ 
Models used: Conventional CV model and MCV model 
Output: Segmented image  

• Define an initial contour as scaled versions of circle within the image 
domain.  

• Calculate the stopping criterion threshold ζ using the relation ζ =

ξ× (0.18)2. 

for k = 1,2,……N  

• Compute m1 and m2 where m1 is mean of gray levels inside the 
contour and m2 is the mean of gray levels outside the contour.  

• Evolve the level set using GD and proposed variants of GD.  
• Compute d =

⃒
⃒φk+1 − φk

⃒
⃒

• Convergence criterion: Check if d ≤ ζ. Goto to next step if “no”. 
Stop the evolution process if “yes”.  

• Check if the iteration index k is less than or equal to maximum 
number of iterations N. Proceed with the evolution process if “yes”. 
Stop the evolution process if “no”. 

The efficiency of individual optimisation methods is demonstrated 
by their order of convergence in terms of iteration complexity for GD 
and the proposed variants of GD (Table 1). 

2.3. Case study 

The purpose of this case study was to assess whether the use of the 
alternative first order optimization methods could improve the 
computational efficiency of the CV or MCV models. The software plat
form used was MATLAB ® 2017b (Mathworks Inc., Natick, MA, USA) 
and all the experiments were performed using a computer system with i5 
core @1.8 GHz and 8 GB RAM. 
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In this study, two tendons (Achilles tendon and patellar tendon) were 
imaged in five healthy adults thereby producing ten images. Three 
muscles (biceps muscle, gastrocnemius muscle and tibialis anterior 
muscle) were also imaged in five more healthy adults increasing the 
total number of images to 25. The images of the two tendons were 
collected with the ankle and knee joints placed at 90 deg. The Achilles 
tendon’s insertion into the calcaneus or the patellar tendon’s insertion 
into the tibia respectively was identified first and then axial images were 
recorded as the probe was moved in the proximal direction. In both cases 
ultrasound imaging was performed using a linear probe (L12-5L40S-3 5- 
12 MHz 40 mm, MicrUs EXT-1H Telemed UAB, Vilnius, Lithuania) and a 
stand-off (Sonokit, Sonogel, Vertriebs, Gmbh, Sonic velocity 1405 m/s, 
absorption 0.09 dB/MHz.mm and reflection: 2.4 %) to improve docking 
between transducer and skin. Muscles were imaged both in the axial and 
longitudinal planes using a different linear probe (L18− 5 18− 5 MHz, 
Phillips Epiq). 

During the analysis of these images, the initial contour for segmen
tation was chosen to be a circle with radius (r) [7]. As a result, five 
hyperparameters (ρ, γ , β1, β2 and r) in total had to be defined to run the 
segmentation process. The values of some of these hyperparameters 
were defined based on literature (γ , β1, β2) while others (ρ, r) were 
defined to produce a satisfactory delineated output for GD; namely a 
delineated output that contains at least 80 % of the sub regions in the 
input image. The same values were used for both the models and for all 
GD variants. 

According to literature, the fitting terms were both set equal to one 
(β1 = β2 = 1) and the area constraint was ignored (i.e.) γ = 0 [7]. 
Parameter ρ was set to 0.0009 through a trial-and-error approach to 
provide a satisfactory delineated output. Parameter ρ should be rela
tively small when the segmentation process targets individual small 
structures, and it should be relatively large when larger structures or 
clusters of structure are to be detected. Even though changes in the value 
of ρ affect the delineated output, the relative computational efficiency of 
GD and its variants is not expected to be affected. 

The initial circle radius (r) was the only parameter that was set 
separately for each individual image based on the following sequence of 
steps: 

Step 1: Read the input image and perform convolution operation 

between the input image and the Laplacian kernel 

⎡

⎣
0 1 0
1 − 4 1
0 1 0

⎤

⎦ (i.e.) 

T⟵z ⋆L where z denotes input image; ⋆ denotes convolution oper
ation; L denotes Laplacian kernel and T denotes output image 

Step 2: In T, set the first row, first column, last row and last column 
to zero. Let this image be T0 

Step 3: Find the maximum value of absolute value of each column of 
the matrix T0. Form a row vector ( R1

̅→
) that contains the maximum value 

of absolute value of each of the columns of the matrix T0. 
R1
̅→⟵[max(|c1|),max(|c2|),max(|c3|),…….max(|cn|) ]; R1

̅→ denotes 
row vector; c1, c2….cn denotes the 1st, 2nd…. nth column respectively of 
matrix T0 

Step 4: Find a threshold value. Threshold value t = max( R1
̅→

)× 0.5 
Step 5: Form a matrix Y with absolute values of T0 that are greater 

than t (i.e.) Y⟵| T0| > t 

Step 6: idx
̅→

⟵

⎡

⎢
⎢
⎣

l1
l2
⋮
lj

⎤

⎥
⎥
⎦ where l1, l2….lj are linear indices of Y; idx

̅→
de

notes vector 

Step 7: Convert the linear index vector idx
̅→

into row column indices 
of a matrix that is of size of T0. Let row=row indices of the matrix and 
column = column indices of the matrix 

Step 8: cx⟵mean(row) and cy⟵mean(column)

Step 9: Radius of the circle (r)⟵max
(

2
3 × r1, rmax

)

; 

r1⟵min
(
(min(cx, p − cx),

(
min(cy, q − cy

) )
; p = number of rows in 

z ; q = number of columns in z ; rmax is varied between 50 and 150 pixels 
in steps of 50 pixels and the input image is processed using CV model 
with GD. The value of rmax for which the delineated output contains at 
least 80 % of the sub regions in the input image is used to calculate r 
according to step 9 (Table 2). 

In the case of GD, PGD and NA-GD optimization techniques, a fixed 
value of step size (ξ) also had to be defined. Choosing a relatively small 
step size unnecessarily slows down convergence while a relatively large 
step size could result in overshooting the optimum solution and cause 
problems with convergence. With this in mind, step size was optimised 
for GD (optimum ξ = 0.51) and the same value was then used for PGD 
and NA-GD. 

The performance of the five proposed variants of GD (NA-GD, BB-GD, 
hybrid, PGD, BB-PGD) was assessed with regards to their average pro
cessing time (in seconds) and average number of iterations to conver
gence. Furthermore, to test whether the use of the proposed variants of 
GD had a significant effect on the segmentation output, the similarity 
between the output of GD (reference) and the proposed variants of GD 
was also assessed. More specifically, the similarity between the refer
ence and the delineated output obtained by using each proposed GD 
variant was quantified using the structural similarity index (SSIM) and 
correlation coefficient (CC). CC is a metric that calculates the probability 
that a linear relationship exists between a reference image and a test 
image. Similarly, SSIM is a metric that reflects the degree of structural 
similarity between a test image and a reference image [39–45]. It is 
meaningful to compute SSIM only if correlation exists between the 
reference image and the test image and the degree of correlation should 
be at least 0.5 [46]. 

An optimization technique that speeds up the convergence process 

Table 1 
Order of convergence for GD and the proposed variants of GD.  

S. 
No. 

Optimization 
technique 

Iteration complexity 

1 GD 
O

(
1
ζ

)

[20]  
2 NA-GD 

O

(
1̅
̅̅
ζ

√

)

[20]  

3 BB-GD 
O

(

log⁡
(

log⁡
1
ζ

))

[38]  
4 Hybrid 

O

(

log⁡
(

log⁡
1
ζ

))

5 PGD For a non-convex function satisfying A restricted strong 
convexity and B restricted smoothness over a non- 

convex constraint set with 
B

A
< 2, the optimum will be 

obtained after O
(

A

2A − B
log⁡
(

1
ζ

))

iterations, which 

is much less than number of iterations required to 

obtain the optimum in GD (O
(

1
ζ

)

) [27]  
6 BB-PGD 

O

(

log⁡
(

log⁡
1
ζ

))

Table 2 
The average(±std.dev.) of the radius of the initial circle for segmentation (r) that 
was used for each tissue. Std.dev. = 0 when the same value was used for all five 
images.  

Anatomical region Number of 
images 

Average radius of the initial contour 
(ravg) in pixels  

Achilles tendon 5 80 (±0)
Patellar tendon 5 150 (±0)
Biceps muscle 5 58 (±10)
Gastrocnemius 

muscle 
5 72 (±21)

Tibialis anterior 
muscle 

5 92 (±40)

S.M. Ramu et al.                                                                                                                                                                                                                                



Biomedical Signal Processing and Control 67 (2021) 102560

6

without significantly changing the delineated output relative to GD is 
considered to be the most appropriate one. Optimum SSIM indicates 
least structural distortion (relative to reference) among the proposed 
variants of GD. In this case study, optimum refers to the greatest value 
among the available SSIM scores. Therefore, an optimization technique 
that gives an average CC of at least 0.5 together with the maximum 
average SSIM and a substantial reduction in computational cost will be 
considered as the most suitable optimization technique for processing 
US image of musculoskeletal tissues. 

All the US images analyzed in this study and a detailed list of 
hyperparameters used for each one them can be found in Supplementary 
material B. 

3. Results 

The overall average(±std.dev.) of processing time of the conven
tional CV model with GD for all 25 musculoskeletal US images was 125 s 
(±65 s), while solution was completed after 4735(±2380) iterations. 
The convergence of level set to steady state was substantially sped up by 
all proposed variants of GD (Fig. 1). When the achieved reduction in 
processing time was calculated separately for each individual image, it 
was found that on average, the NA-GD, BB-GD and hybrid method 
reduced processing time by 96.43 %(±1.56 %), 97.57 % (±1.04 %) and 
97.61 %(±1.02 %) respectively. A slightly lower reduction was achieved 
by BB-PGD (87.84 %(±5.20 %)) and a significantly lower reduction by 
PGD (5.14 %(±37.91 %)). This significant reduction in average pro
cessing time was achieved due to a substantial decrease in the average 
number of iterations taken for convergence of level set to steady state 
(Fig. 2). 

The average processing time and average number of iterations taken 
for processing the same musculoskeletal US images with the MCV model 
was significantly increased relative to the conventional CV model when 
the reference optimization technique (i.e.GD) was used. However, when 
the proposed variants of GD were used, the average processing time and 
average number of iterations dropped to the same level as for the CV 
model (Figs. 1 and 2). More specifically, the average(±std.dev.) pro
cessing time and average(±std.dev.) number of iterations taken for MCV 
model with GD were 1011s(±1181s) and 36,152(±37,838) respectively. 
Similar to before, the NA-GD, BB-GD and the hybrid methods achieved 
the highest reduction in average processing time (Fig. 1). On average, 
the processing time for each image was reduced by 98.89 %(±0.94 %), 
99.25 % (±0.77 %) and 99.23 %(±0.65 %) respectively. A slightly lower 
reduction was achieved by BB-PGD (95.82 %(±3.60 %)) and a signifi
cantly lower reduction was achieved by PGD (75.35 %(±18.46 %)). The 
average number of iterations was reduced between 99.61 %(±0.32 %) 
and 99.96 %(±0.04 %) by the proposed variants of GD in the case of the 
MCV model. 

Least structural distortion relative to GD can be inferred from the 
greatest average SSIM. From Fig. 3, out of all proposed variants of GD, it 
is evident that the combination of the MCV model with the BB-PGD 
optimization method has the greatest average SSIM (0.91 ± 0.06). 
Though, in this case, BB-PGD achieved the fourth best reduction in 
average processing time (95.82 %±3.60 %), it appears to be the best 
combination for processing US images of musculoskeletal tissues. 
Typical delineation results obtained by processing each musculoskeletal 
tissue under study with the MCV model and BB-PGD are shown in Fig. 4. 
The same optimization method was found to be the best for the con
ventional CV too. However, in that case, the achieved average SSIM 
score was relatively lower (0.81 ± 0.06). In all cases, CC was higher than 
0.5. 

4. Discussion 

The CV model and its speckle noise handling variant called MCV 
model were considered in this study. The difference between the two 
models is that MCV includes a physical modelling of speckle noise. Since 
speckle noise is the predominant type of noise in US imaging, MCV can 
be more robust to noise and, therefore, better suited for analysing US 
images. 

Though CV and MCV models are topologically flexible, less sensitive 
to noise and initial position of the shape model and can segment struc
tures with weak boundaries, a key limitation of these models is their 
computational inefficiency. The factors that hamper the computational 
efficiency of aforementioned models are the use of GD to solve the non- 
convex optimization problem of the CV and MCV models and the use of 

Fig. 1. The average processing time taken for segmenting musculoskeletal US 
images with the conventional CV and MCV model and different optimization 
methods. The exact value of average processing time is also shown for 
each case. 

Fig. 2. The average number of iterations that were needed to complete the 
segmentation process by the conventional CV and MCV model and different 
optimization methods. The exact average number of iterations is also shown for 
each case. 

Fig. 3. Assessment of the similarity between the delineated output of GD and of 
its proposed variants for the CV and MCV models. Similarity is assessed with the 
help of the structural similarity index (SSIM). SSIM takes values between 1 
(perfect similarity) and 0(no similarity at all). 
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numerical remedies to maintain the constraint on LSF during its evolu
tion. In this context, the purpose of this study was to test whether 
alternative first order optimization schemes could improve the compu
tational efficiency of the CV and MCV models. 

Three optimization techniques were proposed to overcome the nu
merical difficulties encountered while solving a non-convex optimiza
tion problem with GD (convergence towards local optima and slow 
convergence towards global optimum). Two variants of GD from liter
ature (NA-GD, BB-GD) and a newly developed hybrid method were 
proposed to address this issue. A fourth variant of GD from literature 
(PGD) was proposed to address the limitation associated with level set 
modelling of evolving boundaries which also can compromise the 
computational efficiency of the segmentation process. A fifth and final 
GD variant was developed here to try to address both aforementioned 
problems at the same time (BB-PGD). 

For both models (i.e. CV and MCV), the BB-GD and hybrid optimi
zation methods achieved the maximum reduction in computational time 
and appear to be the most computationally efficient ones (Fig. 1). At the 
same time, however, these methods also appear to affect the final 

delimited output. This is evident by the relatively low SSIM against the 
output of GD (i.e. against reference). 

When SSIM is taken into consideration, then the BB-PGD method 
emerges as the most appropriate one. More specifically, BB-PGD reduced 
the processing time by 87.84 %(±5.20 %) and 95.82 %(±3.60 %) for the 
CV and MCV models respectively, while achieving the minimum 
changes in the delineated output (SSIM scores of 0.81 ± 0.06 and 0.91 ±
0.06 respectively). 

Previous theoretical work has established that the BB-GD method 
converges globally both for bounded constrained and non-convex opti
mization problems [47]. A similar proof for the BB-PGD is not available 
[28]. Having said that, BB-PGD appears to be well suited for the specific 
application presented in this study. This is evident by the improved SSIM 
score relative to BB-GD. However, in the absence of a theoretical proof of 
global convergence, the validity of BB-PGD will have to be established 
on an application-specific basis. 

The existing approaches for delineation of target structures from an 
US video are either model based or tracking based. The most represen
tative model based and tracking based approaches are the snake contour 

Fig. 4. Comparison between the delineated outputs of GD and BB-PGD optimization methods. Typical images from all five anatomical are presented.  
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and Kalman filter respectively [48].Kalman filter and its variants 
(Extended and unscented Kalman filter) has the ability to track the 
substantial variation in the shape of boundary of target structures be
tween the frames [48–50]. However, the limitation of Kalman filter 
approach is that tracking fails when there is an irregular variation in 
boundary of the target structures between frames. On the other hand, 
snake contour has the ability to segment the irregular variation in shape 
of the boundary more accurately than the Kalman filter. However, since 
snake contour doesn’t have prior knowledge on interframe shape vari
ations of the target structures, it fails to accurately detect boundaries 
when there is a substantial movement or change in size of the target 
structures between frames [48,51]. Moreover, the inherent limitations 
of US images with respect to low contrast and image quality interferes 
with the performance of snake model since the external energy that pulls 
the initial contour towards the structure of interest is formed by gradient 
information. The gradient may not be well defined in the areas of low 
contrast and when the image is noisy. In addition, in the classical snake 
model, in order to get a satisfactory segmentation result, the initial 
contour should be placed close to the structures of interest. The solutions 
proposed in the literature to address the initialization sensitivity prob
lem are based on different choice of external energy such as multiscale 
Gaussian potential force, balloon force, distance potential force and 
gradient vector flow [3,52–54].The base idea behind these proposed 
solutions is to modify the external energy so that the capture range of the 
snake model is increased thereby circumventing the need to place the 
initial contour very close to the target structure. However, the snake 
model and its variants cannot delineate multiple target structures 
simultaneously due to its topological rigidity [2].CV model is the solu
tion proposed in the literature to handle the aforementioned limitations 
of snake model [2,53].The CV model is topologically flexible, less sen
sitive to noise and to the initial position of the shape model and can 
reliably segment structures with weak boundaries [3,8,9,52,53]. 

Deep learning-based approaches have also been successfully used in 
the analysis of US images and appear to offer promising possibilities for 
enhancing clinical research and diagnostic US [55]. At the same time, 
however, their use is also restricted by two key limitations: a) the ac
curacy of delineation depends strongly on the quality of the training 
dataset and b) they are computationally expensive [56–60]. On the 
other hand, deformable models do not require any training to learn 
about the shapes of structures of interest and constraints since these 
models delineate the structures of interest by minimization of an energy 
functional. In general, deformable model-based segmentation is also 
very computational expensive. However, the method proposed in the 
present study overcomes this limitation to open the way for its use in 
applications where noise-robust real-time delineation is needed (e.g. 
during US-guided interventions). 

To the authors’ knowledge, the present study is the first to demon
strate that the computational efficiency of deformable models can be 
substantially improved by using alternative first order optimization 
techniques. To this end, projection based first order optimization tech
niques from the literature (PGD, BB-PGD) were used for the first time in 
conjunction with the CV model. A new hybrid optimization method 
which combines the advantages of NA-GD and BB-GD was also devel
oped and tested. 

Even though this study focused on musculoskeletal images, the 
findings and proposed method for improving the computational effi
ciency of deformable model-based segmentation are transferable to the 
imaging of other anatomical areas too. Computerized delineation of 
structures of interest from US images can play a vital role in numerous 
clinical applications such as the quantification of tissue volume and the 
localization of pathological areas. However, in the vast majority of 
envisaged applications of computerized delineation, the assumption is 
that US images will be recorded first and then analysed which eliminates 
the possibility of real-time delineation [56,57,59,60].On the contrary, 
the substantial reduction in processing time that was achieved by the 
proposed optimization schemes can open the way for applications where 

US images are continuously analysed and displayed in real-time on the 
US unit’s screen. Being able to overlay a noise-robust sharp delineated 
image onto the conventional B-mode US image could provide clinicians 
working with US with an alternative way of viewing US to enhance and 
complement their work. This capability could be particularly useful to 
enhance US-guided interventions. 

At this point, it needs to be highlighted that the purpose of this study 
was to prove whether the computational efficiency of CV and MCV 
models could be substantially improved by using alternative first order 
optimization schemes. Further studies involving a greater number of 
images from more anatomical areas will be needed to identify and 
validate the most appropriate optimization method for the CV and MCV 
models. 
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[12] T. Andersson, G. Läthén, R. Lenz, M. Borga, Modified gradient search for level set 
based image segmentation, IEEE Trans. Image Process. 22 (2013) 621–630, 
https://doi.org/10.1109/TIP.2012.2220148. 

[13] E.S. Brown, T.F. Chan, X. Bresson, Completely convex formulation of the Chan- 
Vese image segmentation model, Int. J. Comput. Vis. 98 (2012) 103–121, https:// 
doi.org/10.1007/s11263-011-0499-y. 

[14] R. Chan, A. Lanza, S. Morigi, F. Sgallari, Convex non-convex image segmentation, 
Numer. Math. 138 (2018) 635–680, https://doi.org/10.1007/s00211-017-0916-4. 

[15] K. Saini, M.L. Dewal, M. Rohit, A fast region-based active contour model for 
boundary detection of echocardiographic images, J. Digit. Imaging 25 (2012) 
271–278, https://doi.org/10.1007/s10278-011-9408-8. 

[16] Y. Yang, B. Wu, Split Bregman method for minimization of improved active 
contour model combining local and global information dynamically, J. Math. Anal. 
Appl. 389 (2012) 351–366, https://doi.org/10.1016/j.jmaa.2011.11.073. 

[17] T. Goldstein, X. Bresson, S. Osher, Geometric applications of the split bregman 
method: segmentation and surface reconstruction, J. Sci. Comput. 45 (2010) 
272–293, https://doi.org/10.1007/s10915-009-9331-z. 

[18] Y. Yang, C. Li, C.-Y. Kao, S. Osher, Split bregman method for minimization of 
region-scalable fitting energy for image segmentation, in: G. Bebis, R. Boyle, 
B. Parvin, D. Koracin, R. Chung, R. Hammound, M. Hussain, T. Kar-Han, 
R. Crawfis, D. Thalmann, D. Kao, L. Avila (Eds.), Advances in Visual Computing, 
Springer, Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 117–128. 

[19] J. Nocedal, S. Wright, Numerical Optimization, 2006, https://doi.org/10.1007/ 
978-0-387-40065-5. 

[20] C. Jin, P. Netrapalli, M.I. Jordan, Accelerated Gradient Descent Escapes Saddle 
Points Faster Than Gradient Descent, 2017. 

[21] J. Barzilai, J.M. Borwein, Two-point step size gradient methods, IMA J. Numer. 
Anal. 8 (1988) 141–148, https://doi.org/10.1093/imanum/8.1.141. 

[22] Y. Sun, Notes on first-order methods for minimizing smooth functions. MS&E 318: 
Large-Scale Numerical Optimization, 2015. 

[23] V. Estellers, Geometric Variational Models for Inverse Problems in Imaging 
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[37] T. Andersson, G. Läthén, R. Lenz, M. Borga, A fast optimization method for level set 
segmentation, in: A.-B. Salberg, J.Y. Hardeberg, R. Jenssen (Eds.), Image Analysis, 
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 400–409. 

[38] M. Schmidt, Rates of Convergence, 2017. https://www.cs.ubc.ca/~schmidtm/Cou 
rses/540-W18/L5.pdf. 

[39] A. Geurts, G. Sakas, A. Kuijper, M. Becker, T. von Landesberger, Visual comparison 
of 3D medical image segmentation algorithms based on statistical shape models. 
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, 2015, 
pp. 336–344, https://doi.org/10.1007/978-3-319-21070-4_34. 

[40] V. Yeghiazaryan, I. Voiculescu, An Overview of Current Evaluation Methods Used 
in Medical Image Segmentation, 2015. 

[41] Z. Wang, A.C. Bovik, E.P. Simoncelli, 8.3 Structural Approaches to Image Quality 
Assessment, Academic Press, 2005. 

[42] G. Palubinskas, Image similarity/distance measures: what is really behind MSE and 
SSIM? Int. J. Image Data Fusion 8 (2017) 32–53, https://doi.org/10.1080/ 
19479832.2016.1273259. 

[43] Z. Wang, A.C. Bovik, Mean squared error : love it or leave it? IEEE Signal Process. 
Mag. 26 (2009) 98–117, https://doi.org/10.1109/MSP.2008.930649. 

[44] K. Seshadrinathan, T.N. Pappas, R.J. Safranek, J. Chen, Z. Wang, H.R. Sheikh, A. 
C. Bovik, Image Quality Assessment, 1st ed., Elsevier, 2009 https://doi.org/ 
10.1016/B978-0-12-374457-9.00021-4. 

[45] P. Ndajah, H. Kikuchi, M. Yukawa, H. Watanabe, S. Muramatsu, SSIM Image 
Quality Metric for Denoised Images, 2010. 

[46] P. Schober, L.A. Schwarte, Correlation coefficients: appropriate use and 
interpretation, Anesth. Analg. 126 (2018) 1763–1768, https://doi.org/10.1213/ 
ANE.0000000000002864. 

[47] Y. Xiao, H. Song, Z. Wang, A modified conjugate gradient algorithm with cyclic 
Barzilai–Borwein steplength for unconstrained optimization, J. Comput. Appl. 
Math. 236 (2012) 3101–3110, https://doi.org/10.1016/j.cam.2012.01.032. 

[48] S.-H. Lee, S. Lee, Adaptive Kalman snake for semi-autonomous 3D vessel tracking, 
Comput. Methods Programs Biomed. 122 (2015) 56–75, https://doi.org/10.1016/ 
j.cmpb.2015.06.008. 

[49] S.-H. Lee, S. Lee, Unscented kalman snake for 3D vessel tracking, J. Int. Soc. Simul. 
Surg. 2 (2015) 17–25, https://doi.org/10.18204/JISSiS.2015.2.1.017. 

[50] Z. Gao, Y. Li, Y. Sun, J. Yang, H. Xiong, H. Zhang, X. Liu, W. Wu, D. Liang, S. Li, 
Motion tracking of the carotid artery wall from ultrasound image sequences: a 
nonlinear state-space approach, IEEE Trans. Med. Imaging 37 (2018) 273–283, 
https://doi.org/10.1109/TMI.2017.2746879. 

[51] S. Zhao, Z. Gao, H. Zhang, Y. Xie, J. Luo, D. Ghista, Z. Wei, X. Bi, H. Xiong, C. Xu, 
S. Li, Robust segmentation of intima–Media borders with different morphologies 
and dynamics during the cardiac cycle, IEEE J. Biomed. Health Inform. 22 (2018) 
1571–1582, https://doi.org/10.1109/JBHI.2017.2776246. 

[52] T. McInerney, D. Terzopoulos, Deformable models in medical image analysis: a 
survey, Med. Image Anal. 1 (1996) 91–108, https://doi.org/10.1016/S1361-8415 
(96)80007-7. 

[53] R. Hegadi, A. Kop, M. Hangarge, A survey on deformable model and its 
applications to medical imaging, Int. J. Comp. Appl. RTIPPR (2010) 64–75. 

[54] Z. Zhang, C. Duan, T. Lin, S. Zhou, Y. Wang, X. Gao, GVFOM: a novel external force 
for active contour based image segmentation, Inf. Sci. 506 (2019), https://doi.org/ 
10.1016/j.ins.2019.08.003. 

[55] S. Liu, Y. Wang, X. Yang, B. Lei, L. Liu, S.X. Li, D. Ni, T. Wang, Deep learning in 
medical ultrasound analysis: a review, Engineering 5 (2019) 261–275, https://doi. 
org/10.1016/j.eng.2018.11.020. 

[56] D.L. Pham, J.L. Prince, A survey of current methods in medical image 
segmentation, IEEE Trans. Med. Imaging 18 (1999) 737–752. 

[57] A. Mansoor, U. Bagci, B. Foster, Z. Xu, G.Z. Papadakis, L.R. Folio, J.K. Udupa, D. 
J. Mollura, Segmentation and image analysis of abnormal lungs at CT: current 
approaches, challenges, and future trends, RadioGraphics. 35 (2015) 1056–1076, 
https://doi.org/10.1148/rg.2015140232. 

[58] T. Hoang Ngan Le, K. Luu, C.N. Duong, K.G. Quach, T.D. Truong, K. Sadler, 
M. Savvides, Active contour model in deep learning era: a revise and review, in: 
D. Oliva, S. Hinojosa (Eds.), Applications of Hybrid Metaheuristic Algorithms for 

S.M. Ramu et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/j.media.2014.12.005
https://doi.org/10.1016/j.media.2014.12.005
https://doi.org/10.1007/978-0-387-68343-0
https://doi.org/10.1016/B978-0-12-373904-9.X0001-4
https://doi.org/10.1007/978-0-387-73003-5_88
https://doi.org/10.1007/978-0-387-73003-5_88
https://doi.org/10.1016/j.mcm.2011.11.014
https://doi.org/10.1016/j.knosys.2016.12.023
https://doi.org/10.1016/j.knosys.2016.12.023
https://doi.org/10.1109/83.902291
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0040
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0040
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0045
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0045
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0045
https://doi.org/10.1016/j.patcog.2009.08.002
https://doi.org/10.1016/j.patcog.2009.08.002
https://doi.org/10.1186/1687-5281-2014-7
https://doi.org/10.1109/TIP.2012.2220148
https://doi.org/10.1007/s11263-011-0499-y
https://doi.org/10.1007/s11263-011-0499-y
https://doi.org/10.1007/s00211-017-0916-4
https://doi.org/10.1007/s10278-011-9408-8
https://doi.org/10.1016/j.jmaa.2011.11.073
https://doi.org/10.1007/s10915-009-9331-z
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0090
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0090
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0090
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0090
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0090
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0100
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0100
https://doi.org/10.1093/imanum/8.1.141
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0110
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0110
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0115
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0115
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0115
https://doi.org/10.1109/TIP.2010.2069690
https://doi.org/10.1016/j.camwa.2013.03.021
https://doi.org/10.1109/CVPR.2005.213
https://doi.org/10.1561/2200000058
https://doi.org/10.1007/s00211-004-0569-y
https://doi.org/10.1007/s00211-004-0569-y
https://doi.org/10.1201/9781315372273
https://doi.org/10.1109/CVPR.2005.331
https://doi.org/10.1109/CVPR.2005.331
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0155
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0155
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0155
https://doi.org/10.1016/j.patcog.2015.01.006
https://doi.org/10.1016/j.patcog.2015.01.006
https://doi.org/10.1155/2014/295320
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0170
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0170
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0170
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0170
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0175
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0175
https://doi.org/10.1007/978-3-319-07353-8_32
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0185
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0185
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0185
https://www.cs.ubc.ca/~schmidtm/Courses/540-W18/L5.pdf
https://www.cs.ubc.ca/~schmidtm/Courses/540-W18/L5.pdf
https://doi.org/10.1007/978-3-319-21070-4_34
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0200
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0200
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0205
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0205
https://doi.org/10.1080/19479832.2016.1273259
https://doi.org/10.1080/19479832.2016.1273259
https://doi.org/10.1109/MSP.2008.930649
https://doi.org/10.1016/B978-0-12-374457-9.00021-4
https://doi.org/10.1016/B978-0-12-374457-9.00021-4
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0225
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0225
https://doi.org/10.1213/ANE.0000000000002864
https://doi.org/10.1213/ANE.0000000000002864
https://doi.org/10.1016/j.cam.2012.01.032
https://doi.org/10.1016/j.cmpb.2015.06.008
https://doi.org/10.1016/j.cmpb.2015.06.008
https://doi.org/10.18204/JISSiS.2015.2.1.017
https://doi.org/10.1109/TMI.2017.2746879
https://doi.org/10.1109/JBHI.2017.2776246
https://doi.org/10.1016/S1361-8415(96)80007-7
https://doi.org/10.1016/S1361-8415(96)80007-7
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0265
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0265
https://doi.org/10.1016/j.ins.2019.08.003
https://doi.org/10.1016/j.ins.2019.08.003
https://doi.org/10.1016/j.eng.2018.11.020
https://doi.org/10.1016/j.eng.2018.11.020
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0280
http://refhub.elsevier.com/S1746-8094(21)00157-9/sbref0280
https://doi.org/10.1148/rg.2015140232


Biomedical Signal Processing and Control 67 (2021) 102560

10

Image Processing, Springer International Publishing, Cham, 2020, pp. 231–260, 
https://doi.org/10.1007/978-3-030-40977-7_11. 

[59] W. Wang, Y. Wang, Y. Wu, T. Lin, S. Li, B. Chen, Quantification of full left 
ventricular metrics via deep regression learning with contour-guidance, IEEE 
Access 7 (2019) 47918–47928, https://doi.org/10.1109/ACCESS.2019.2907564. 

[60] W. Shen, W. Xu, H. Zhang, Z. Sun, J. Ma, X. Ma, S. Zhou, S. Guo, Y. Wang, 
Automatic segmentation of the femur and tibia bones from X-ray images based on 
pure dilated residual U-Net, Inverse Probl. Imaging (2020) 1–15, https://doi.org/ 
10.3934/ipi.2020057. 

S.M. Ramu et al.                                                                                                                                                                                                                                

https://doi.org/10.1007/978-3-030-40977-7_11
https://doi.org/10.1109/ACCESS.2019.2907564
https://doi.org/10.3934/ipi.2020057
https://doi.org/10.3934/ipi.2020057

	A method to improve the computational efficiency of the Chan-Vese model for the segmentation of ultrasound images
	1 Introduction
	2 Materials and methods
	2.1 CV models
	2.2 Optimization methods
	2.3 Case study

	3 Results
	4 Discussion
	Contribution by authors
	Funding
	Availability of data and material
	Declaration of Competing Interest
	Appendix A Supplementary data
	References


