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Summary 

Hepatitis C virus (HCV) causes a chronic infection in the majority of infected patients, 
ultimately leading to liver cirrhosis and hepatocellular carcinoma (HCC). Although the roles 
of the HCV proteins in the viral life cycle are increasingly understood, the precise function of 
the HCV NS5A protein has yet to be elucidated. To date, the only putative direct function 
attributed to NS5A is its transcriptional transactivation properties. Our group has previously 
shown that quasispecies variants of NS5A isolated from the serum samples of the same 
patient bear different transactivating properties according to their amino acid sequence. Based 
on these observations, we performed preliminary phylogenetic and functional analysis of 
NS5A variants isolated from liver tissue of individuals infected with HCV of genotype 1b. 
This analysis revealed genetic and functional compartmentation of NS5A variants in tumoral 
and adjacent non-tumoral tissue. We hypothesized that the natural variability of NS5A may 
impact its proposed transactivation properties. We also hypothesized that NS5A’s putative 
transactivation properties could play a role in HCV replication and in liver pathogenesis. The 
aim of the study presented in this thesis was to investigate the role of NS5A transactivation 
properties in the development of HCV-induced liver pathogenesis as well as in viral 
replication.  

To study the role of NS5A transcriptional activation properties in liver pathogenesis, we 
developed lentiviral vectors for the expression of selected NS5A variants bearing different 
transactivation potentials in cultured primary human hepatocytes. We now intend to extend 
these preparations using RNAseq technology to analyse the, transcriptome of primary 
hepatocytes transduced with lentiviral vectors encoding strongly and weakly transactivating 
NS5A variants to identify the cellular pathways targeted by NS5A, allowing us to decipher 
the role of NS5A mediated host gene regulation in development of HCV induced 
pathogenesis. For in vivo studies, we have begun the development of transgenic mice allowing 
liver-specific conditional expression of NS5A variants with high and low transactivation 
potentials. These transgenic mice will be used to study the possible role of NS5A 
transactivation properties in development of HCC. 
 
To study the role of NS5A transcriptional activation properties in HCV RNA replication, we 
used the sub-genomic replicon system expressing previously characterized NS5A sequences.. 
Using this system, we have demonstrated that a subset of NS5A protein can translocate to the 
nucleus and is recruited to cellular promoters of host cell genes known to be required for 
efficient replication of HCV replicon RNA as well as those implicated in pathogenesis. 
Moreover, we have shown that NS5A directly regulate the expression of these genes. 
Consequently, it was observed that replicons encoding NS5A variants with different 
transactivation potentials exhibited different replication capacities, and that this correlated 
with the transactivation potential of the corresponding NS5A variant. In agreement with these 
observations, inhibition of nuclear translocation of NS5A resulted in the inhibition of 
replication of the HCV subgenomic replicon, further confirming the role of NS5A 
transactivation properties in viral RNA replication.  

In conclusion, we have demonstrated that NS5A-mediated transcriptional regulation of 
cellular genes is required for HCV replication. Such NS5A-mediated modulation of cellular 
genes may also constitute one of the mechanisms involved in HCV-related liver pathogenesis 
and development of HCC, an aspect which is currently under investigation using the tools 
developed during this project. This study will contribute towards deciphering the role of 
NS5A in viral replication as well as providing insight into its role in HCV-induced liver 
pathogenesis. Furthermore, these data might open new anti-HCV drug developments based on 
inhibition of NS5A nuclear translocation.   
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Résumé 

Le virus de l’Hépatite C (VHC), de la famille Flaviviridae, est à l’origine d’une pandémie 
mondiale. L’infection par le VHC provoque le dévelopment d’hépatites chroniques, de 
cirrhoses et de carcinomes hépatocellulaires (CHC). Les fonctions de la majorité des protéines 
virales sont connues, mis à part pour NS5A dont la seule fonction directe attribuée à ce jour, 
équivaut à celle d’un facteur d'activation transcriptionnelle. Notre laboratoire a montré 
précédemment que les variants de quasiespèce de NS5A isolés à partir du sérum d’un même 
patient présentaient des différences significatives dans leurs propriétés intrinsèques de 
transactivation. Fort de ces résultats, nous avons analysé des variants de NS5A isolés à partir 
de tissu hépatique d’un patient chroniquement infecté par le VHC de génotype 1b. Ces 
analyses ont révélé une compartimentation génétique et fonctionnelle des variants de NS5A 
entre le tissu tumoral et le tissu non-tumoral adjacent. Nous avons donc émis l’hypothèse que 
les propriétés transactivatrices de NS5A pourraient jouer un rôle dans la pathogenèse ainsi 
que dans la réplication virale, et que la variabilité naturelle de NS5A pourrait influencer ses 
propriétés transactivatrices. L’objectif de ce travail de thèse était d’analyser le rôle des 
propriétés transactivatrices de NS5A dans la pathogenèse hépatique viro-induite ainsi que 
dans la réplication virale. 

Pour étudier le rôle des propriétés de transactivation de NS5A dans la pathogenèse hépatique, 
nous avons développé des vecteurs lentiviraux pour exprimer dans les hépatocytes primaires 
humains les variants choisis de NS5A portants différents potentiels de transactivation. En 
utilisant la technologie RNA-Seq d’Illumina, l’analyse des transcriptomes d’hépatocytes 
transduits exprimant les variants transactivateurs fort et faible de NS5A, sera utiliser pour 
identifier les voies cellulaires ciblées par les propriétés transactivatrices de NS5A. Pour les 
études in vivo, nous avons lancé le développement des souris transgénique permettant 
l’activation conditionnelle de l’expression des variants de NS5A avec fort et faible potentiel 
de transactivation, spécifiquement dans le foie. Ces souris transgéniques seront utilisées pour 
étudier le rôle potentiel des propriétés transactivatrices dans la pathogenèse VHC induite et 
plus particulièrement dans le développement des cancers. 

Pour étudier le rôle des propriétés de transactivation de NS5A dans la réplication virale, nous 
avons utilisé le système de réplicon subgénomique de VHC exprimant les variants de NS5A 
précédemment caractérisés. Pour exercer ses propriétés transactivatrices, NS5A doit être 
localisée au moins partiellement dans le noyau. Nous avons démontré qu’une partie de NS5A 
se retrouve dans noyau et est recruté sur des promoteurs cellulaires, modulant ainsi 
directement l’expression de gènes cellulaires essentiels pour la réplication de l’ARN viral. 
Nous avons observé que les variants de NS5A avec différents potentiels de transactivation, 
confèrent différentes capacités de réplication au réplicon subgénomique, et corrèlent avec le 
potentiel de transactivation de variant correspondant. En accord avec ces observations, 
l’inhibition de translocation nucléaire de NS5A entraine une inhibition de la réplication virale, 
suggerant un rôle potentiel des propriétés transactivatrices de NS5A dans la réplication l’ARN 
virale. 

En conclusion, nous avons démontré que l’activation transcriptionnelle des gènes cellulaires 
par la NS5A est essentielle pour la réplication de l’ARN du VHC. Cette modulation des gènes 
cellulaires pourrait également être impliquée dans les mécanismes de la pathogenèse viro-
induite. Nous confirmerons cette hypothèse grâce aux souris NS5A. Par ailleurs, ces résultats 
pourraient contribuer au développement de nouvelles thérapies anti-VHC, basées sur 
l’inhibition de translocation nucléaire de NS5A. 
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1.1. Hepatitis C  
 

1.1.1. Discovery of the Pathogen 
 
Before the discovery of hepatitis C virus (HCV), two viral pathogens were known to cause 

hepatitis: hepatitis A (HAV) and B (HBV) viruses.  However, many patients with hepatitis did 

not harbor HAV or HBV infection, and their disease was thus referred to as non-A non-B 

hepatitis (NANBH). NANBH was demonstrated to be infectious and could be transmitted by 

blood transfusion, suggesting the involvement of a viral factor (Bradley et al., 1986). 

Research efforts using novel molecular biology techniques resulted in identification of a new 

RNA virus, renamed hepatitis C virus (HCV), in sequence libraries made from the serum of a 

chimpanzee suffering from chronic NANBH (Choo et al., 1989). It is now estimated that 170 

million people worldwide are chronically infected by hepatitis C virus (WHO, 2000). Even 

two decades after the discovery of pathogen, no vaccine is available against HCV and to date; 

all treatments against HCV are only partially efficient. 

 

1.1.2. Epidemiology and Transmission 
 
Hepatitis C virus is a pandemic infection and is a major public health problem. Industrialized 

countries of North America and Western Europe have the lowest prevalence rates (below 2%) 

whereas HCV infects more than 10% of people in Mongolia, Bolivia and Egypt, the latter 

having the highest prevalence rate (22% , Figure 1.1) (Lavanchy 2011). Use of contaminated 

syringes in nationwide schistosomiasis treatments during the 1970s is considered to be the 

cause of such a high seroprevalence of HCV in Egypt (Frank et al., 2000). France has a 0.84% 

seroprevalence, with an estimated 367,055 people having antibodies to HCV (Figure 1.2) 

(INVS, 2005). 

 

HCV is primarily transmitted through exposure to infected blood. Blood from unscreened 

donors was a major factor in its transmission before the development of systematic blood 

screening methods in the early 1990s (Huber et al., 1996). Currently, injecting drug abuse has 

become the predominant mode of transmission of HCV in industrialized countries whereas 

contaminated blood transfusions and therapeutic injections are still the most frequent modes 

of transmission in the developing world (Figure 1.3) (Shepard et al., 2005). In children, 

mother-to-infant vertical transmission is the most frequent mode of transmission of HCV 

(Alter 2007). Although significant, sexual transmission of HCV is far less frequent than other 

sexually transmitted viruses (Alter 2007).  
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Figure 1.1: The estimated global prevalence of HCV infection in 2010 (% population infected) 
(Lavanchy 2011). 

 

 

 

 

 

Figure 1.2: The estimated prevalence of HCV in France (Source: INVS 2005). 
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Figure 1.3: Sources of HCV infection in the USA (Source: CDC 2009) 

 

 

1.1.3. Natural History and Physiopathology of HCV infection 
 
In majority of cases, acute HCV infection is asymptomatic, although approximately 20-30 % 

of acutely infected patients may develop typical hepatitis symptoms such as weakness, 

anorexia and jaundice 3 to 12 weeks after infection (Alter et al., 2000). HCV RNA can be 

detected in patient serum within 1-2 weeks of exposure to the virus (Thimme et al., 2001). In 

some cases, symptoms of acute infection may be severe, and rapid fulminant hepatitis have 

been reported (Farci et al., 1996). 

 

Although acute infection is self-limiting in 15-25 % of patients, in the majority of cases HCV 

escapes the immune response and infection persists over six months, leading to chronic 

hepatitis (Shimotohno 2000). The majority of chronically-infected patients develop chronic 

hepatitis with symptoms such as lobular injury and portal inflammation (Di Bisceglie 1998).  

The transition to chronic HCV infection is influenced by a wide range of factors such as sex, 

age, co-infection with HIV or HBV and some genes of major histocompatibility complex 

(Lavanchy 2009). Approximately 20 % of chronically-infected patients develop liver cirrhosis 

within 15-20 years post-infection (Yano et al., 1996). Males aged over 50 and consumers of 

alcohol are more prone to cirrhosis development (Lavanchy 2009). Recent data have shown 

that HCV-induced liver injury is responsible for 40-50% of orthotopic liver transplantations in 

the USA (Figure 1.4) (Brown 2005).   
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It is estimated that every year 1-4% of HCV infected cirrhotic patients develop primary liver 

cancer or hepatocellular carcinoma (HCC) (Di Bisceglie 1998; Gordon et al., 1998). Chronic 

HCV infection has become the principal cause of primary liver cancer in Japan as 80-90 % of 

HCC patients are carriers of HCV. Moreover, modeling of ongoing epidemics predicts a 

similar trend in Europe (Aizawa et al., 2000; Kiyosawa et al., 2004; El–Serag et al., 2007). In 

Western Europe, HCV infection is prevalent in the majority of HCC patients, ranging from 

44-66 % in Italy, 27-58 % in France and 60-75 % in Spain (El–Serag et al., 2007). It has been 

estimated that HCV infection increases HCC risk by 17 fold as compared to non-infected 

subjects (Donato et al., 2002). The mean time to develop HCC in HCV infected patients has 

been estimated to be 28+/-11 years post infection (Tong et al., 1995). In industrialized 

countries, liver transplantation has become the principal long term treatment for severe HCV-

induced cirrhosis or HCC (Charlton 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: The various outcomes of HCV infection (Adapted from (Patel et al., 2006)) 

 

 

1.2. Therapeutic Treatment of HCV Infection 
 
Interferon-α treatment was noticed to be beneficial to NANBH patients long before the 

discovery of HCV itself (Hoofnagle et al., 1986). It was demonstrated that interferon-α 

induces an anti-viral state by inducing interferon stimulated genes (ISGs) within infected and 

neighboring cells (Sen 2001). This antiviral state leads to a rapid decline in HCV RNA levels 
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in serum (Lau et al., 1998). However, only 16-20 % of HCV-infected patients showed a 

sustained anti-viral response when treated with interferon-α (Di Bisceglie et al., 2002). The 

number of patients eliciting such a response was increased by two fold with the use of the 

broad spectrum anti-viral drug Ribavirin in combination with interferon-α therapy 

(McHutchison et al., 1999). Ribavirin is a guanosine analogue that has been shown to have 

anti-viral activity against several DNA and RNA viruses such respiratory syncytial virus, 

bovine viral diarrhea virus, and GB virus B. (Lau et al., 1999; Lanford et al., 2001). Despite 

detailed studies, the exact mechanism(s) of action of ribavarin still remains elusive. 

Incorporation of ribavirin by the HCV RNA-dependent RNA polymerase results in chain 

termination, leading to inhibition of viral replication (Maag et al., 2001). It has also been 

suggested that ribavirin causes lethal mutagenesis mediated by RNA-dependent-RNA-

polymerase (Cameron et al., 2001). However, the  study of viral kinetics in ribavirin-treated 

patients showed that chain termination events induced by ribavirin is not the only mechanism 

of action of ribavirin in combination therapy (Pawlotsky et al., 2004).  It has also been 

suggested that ribavirin may exert its anti-viral activity by modulating the immune system and 

interferon signaling pathways (Tam et al., 1999; Feld et al., 2005). Today, interferon-α has 

been replaced by Pegylated interferon-α that has a longer half-life and achieves a better 

virological response (Glue et al., 2000; Bailon et al., 2001). 

 

Currently, combination therapy with pegylated interferon-α and Ribavirin has become the 

standard-of-carefor HCV infection. However, only 40-50% patients infected with genotype 1 

and up to 80% patients with genotypes 2 and 3 can achieve a sustained virological response 

with this therapy (reviewed in (Pawlotsky 2011a)). However, the high rate of non-responders, 

especially in genotype 1 infected patients, and the adverse side effects of the standard 

treatment regimen have necessitated the development of new treatments against HCV. 

Recently, research efforts have focused on the development of direct acting antivirals (DAAs) 

such as inhibitors of viral enzymes and nucleic acid based agents to destroy viral RNA such 

as antisense oligonucleotides and siRNAs (reviewed in (De Francesco et al., 2005)). These 

efforts have resulted in the development of many promising DAAs that are in early or late 

stages of clinical trials, or that are now licensed for use in clinical settings such as telaprevir 

(Kwong et al., 2011) and boceprevir (Poordad et al., 2011).  

 

However it has been demonstrated that DAAs may lead to selection of resistant viruses and 

that they must not be used alone (Tarik 2011; Pawlotsky 2011a). Keeping in mind the 
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possible selection of resistant viruses by DAAs, efforts are underway to develop inhibitors of 

host cell proteins important for viral replication, such as inhibitors of cyclophilins (Goto et 

al., 2006; Paeshuyse et al., 2006). Besides DAAs and cyclophilin inhibitors, synthetic 

immunomodulatory agents such as agonists of toll-like receptors (TLRs) 7 and 9 have shown 

promising potential to control HCV infection (De Francesco et al., 2005). 

 

 

1.3. Hepatitis C Virus 
 

1.3.1. Classification and Genomic Variability of HCV 
 

Early analysis of the HCV genome classified it as a member of Flaviviridae family, at that 

time consisting of two genera: the Flaviviruses (Dengue Virus, West Nile Virus, Yellow 

Fever Virus etc.) and the Pestiviruses (such as Bovine Viral Diarrhea Virus). Similar to 

Flaviviruses and Pestiviruses, the HCV genome consists of single strand RNA of positive 

polarity and codes for a single polyprotein. However due to low sequence homology with 

these viruses, HCV was classified as the sole member of a novel genus Hepacivirus (Miller et 

al., 1990; Choo et al., 1991; Houghton et al., 1991).  

 

Analysis of a large number of sequences of HCV from all over the world demonstrated that 

HCV could be divided into six genotypes that differ by 30-35% in nucleotide homology 

(Figure 1.5) (Simmonds 2004). Similarly, each genotype has been subdivided into several 

subtypes; differing by 20-25% nucleotide sequence homology (Simmonds 2004). HCV 

genotypes and subtypes are heterogeneously distributed in the world. Genotypes 1a and 1b are 

more frequent in America and Europe whereas genotype 3 is dominant in South East Asia. 

Genotype 4 is predominant in Egypt whereas genotype 5 is predominant and almost 

completely limited to South Africa. Similarly, genotype 6 is mainly found in East Asia 

(Figure 1.6) (Zein 2000). 

 

The RNA-dependent RNA polymerase of HCV lacks 5’-3’ exonuclease proofreading activity, 

which leads to the introduction of frequent mutations in viral genomic RNA. Since the rate of 

mutation is very high, HCV evolves at an astonishing rate (Okamoto et al., 1992).  This high 

mutation rate leads to significant variability not only between viral populations amongst 

different patients, but also between viruses in a single infected patient, giving rise to 

quasispecies. Viral quasispecies are composed of a dynamic and complex mixture of 
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genetically distinct but closely related variants (Pawlotsky 2006). Quasispecies confer a 

greater adaptability to HCV and may have important implications in viral persistence, 

treatment response and pathogenicity. (Forns et al., 1999; Lyra et al., 2004; Lerat et al., 

2008). 

 

 

 

 

 

 

Figure 1.5: HCV genotype diversity: 
Neighbor-joining tree of the complete 
genome sequences that formed the basis for 
the plot of the complete genome distances 
(Source: HCV Sequence Database) 

 

 

 

 

 

 

 

Figure 1.6: Global distribution of HCV genotypes (Source: WHO 2009) 
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1.3.2. Virion Morphology 
 
Electron microscopy studies have indicated that in vitro-produced HCV virions have a 

diameter of 50-60 nm, consisting of a nucleocapsid of 30-35 nm and an envelope containing 

viral glycoproteins E1 and E2 (Wakita et al., 2005) (Figure 1.7). This is similar to virions 

produced in vivo and secreted into the serum of infected humans or chimpanzees (Kaito et al., 

1994; Shimizu et al., 1996). HCV virions found in patients’ sera are attached to lipoproteins 

of low or very-low density (LDLs or VLDLs) (Andre et al., 2002). It has also been 

demonstrated that buoyant density of secreted virions (1.03-1.16 g/ml) is lower than that of 

intracellular virions (1.15-1.20 g/ml) (Gastaminza et al., 2006). These observations suggested 

that virions acquire these lipoproteins during the secretion process. Recently, it has been 

demonstrated that in vitro secretion of HCV particles by infected hepatocytes is tightly 

dependent on the secretion of VLDLs (Gastaminza et al., 2008). It has been further 

demonstrated that, even in the absence of other viral proteins, secreted E1 and E2 proteins are 

associated with lipoproteins (Icard et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: HCV Virion Morphology (Image from Louis E. Henderson (Frederick Cancer Research 
Center))  
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1.3.3. Genome Structure 
 
The HCV genome comprises of a positive sense single stranded 9.6 kbp RNA molecule 

containing a single open reading frame (ORF), encoding a polyprotein of about 3000 amino 

acids, depending on the genotype. This ORF is flanked by highly conserved 5’ and 3’ non-

translated regions (NTRs) of 341 and 230 bp respectively (Penin et al., 2004a) (Figure 1.8a).  

 

1.3.3.1. Non-translated Regions 
 
The highly conserved 5’ NTR is essential for genome translation and replication. It is highly 

structured and contains four major secondary structure domains known as domains I, II, III 

and IV. The 5’ NTR contains an internal ribosome entry site (IRES) that is comprised of 

domains II, III and IV along with the first 30 nucleotides of the ORF, which, in the absence of 

a 5’ cap, ensures translation of the HCV genome (reviewed in (Lindenbach et al., 2005). 

Besides its important role in genome translation, many studies have demonstrated that 5’NTR 

is also crucial for efficient replication of viral RNA (Friebe et al., 2001; Kim et al., 2002; 

Appel et al., 2006). It has been demonstrated that binding of the host cell-encoded microRNA 

(miR-122) to the 5’NTR is essential for viral replication (Jopling et al., 2005). However these 

observations are not supported by  in vivo data, as recently it has been demonstrated that mir-

122 levels are reduced in HCV infected patients poorly responding to interferon therapy 

(Sarasin-Filipowicz et al., 2009). 

 

The length of the 3’ NTR varies between different genotypes. It has a tripartite structure 

differentiated into three regions: a highly variable region of 30-40 nucleotides, a poly-

uracil/pyrimidine tract of variable length and a conserved sequence of 98 nucleotides that is 

organized into three stem-loop structures termed SL1, SL2 and SL3 (reviewed in (Chevaliez 

et al., 2006)). The variable region is not essential for HCV RNA replication in cell culture 

models, whereas the  poly-uracil/pyrimidine region contains a segment of uridine and cytidine 

residues that must be longer than 25 nucleotides to allow viral RNA replication (Friebe et al., 

2002). The conserved region containing SL1, SL2 and SL3 has been demonstrated to be 

indispensable for HCV replication and infectivity (Yanagi et al., 1999; Yi et al., 2003). 
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Figure 1.8: HCV 5’ and 3’ NTRs, Genome organization and Polyprotein processing. (adapted 

from (Dustin et al., 2007)) a) RNA secondary structures in 5’ and 3’ UTRs. b) HCV genome 
translation produces polyprotein precursor. ARFP denotes alternative reading frame protein 
also termed “F” protein c) Polyprotein precursor is processed into mature structural and non-
structural proteins. 
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1.3.3.2. HCV Proteins 
 
The translation of the HCV ORF produces a large polyprotein precursor which is processed 

by viral and cellular proteases to produce eleven viral proteins that make up viral particles 

(structural) or viral replication complex (non-structural) (Figure 1.8b). Host cell proteases 

such as endoplasmic reticulum signal peptidase, first cleave the polyprotein to liberate 

structural proteins, followed by further processing of non-structural proteins by viral proteases 

NS2-3 and NS3-4A (Chevaliez et al., 2006). The amino terminal proteins core and 

glycoproteins E1 and E2 are virion structural proteins whereas a small protein p7 has been 

suggested to function as ion channel (Griffin et al., 2003; Pavlović et al., 2003; Griffin et al., 

2004). The non-structural proteins NS2, NS3, NS4A, NS4B, NS5A and NS5B are 

intracellular coordinators of the viral life cycle (Lindenbach et al., 2005). 

 

 

1.3.3.3. Core Protein  
 
The core protein is the first protein encoded by the HCV genome. It is a highly basic, RNA 

binding protein and the putative construction unit of viral nucleocapsid that encapsulates the 

viral genome (Hijikata et al., 1991). After cleavage from the polyprotein, the immature form 

(21-23kDa) of core undergoes another round of cleavage to produce the 19kDa mature form 

of core (Santolini et al., 1994; Hussy et al., 1996). The mature core protein is organized into 

two domains termed domains 1 (D1) and 2 (D2). D1 is rich in acidic amino acids and interacts 

with the 5’ end of the viral genome to initiate its encapsidation (Boulant et al., 2005). The 

hydrophobic domain 2 of the core protein is essential for its localization on the ER membrane 

as well as its trafficking to lipid droplets (Hope et al., 2000; Suzuki et al., 2005). Core protein 

is essential for viral particle assembly and mutations that disrupt its trafficking to LDs result 

in a significant loss of production of infectious viral particles (Boulant et al., 2007; Miyanari 

et al., 2007; Murray et al., 2007). Although not absolutely indispensible for HCV RNA 

replication, it has been suggested that core protein plays an important role in recruiting viral 

replication complexes  to lipid droplet-associated membranes (Miyanari et al., 2007). More 

recently, core has been reported to induce redistribution of lipid droplets in the cell through its 

interaction with microtubules, bringing them in close contact with membranes bearing viral 

replication complexes, possibly to initiate viral assembly in infected cells (Boulant et al., 

2008; Roohvand et al., 2009). These observations clearly suggest that core protein plays an 

essential role in viral particle assembly and is essential for infectious virion production. 
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Besides being a part of viral capsid, core protein has been shown to interact with host cell 

pathways, possibly contributing to HCV-associated pathogenesis. Transgenic mice expressing 

core protein demonstrate reduced activity of microsomal triglyceride transfer protein (MTP) 

resulting in reduced secretion of VLDL (Perlemuter et al., 2002). In addition, some studies 

have suggested that core protein may stimulate lipogenesis and play a role in liver steatosis in 

HCV infected patients (Piodi et al., 2008; Roingeard et al., 2008). It is interesting to notice 

that HCV might perturb the production of lipids and lipid droplets which are essential for 

HCV life cycle, although no clear relation has been shown so far between steatosis and HCV 

replication. 

 

Although still controversial, it has also been reported that core protein transcriptionally 

regulates host cell proto-oncogenes and bear transforming properties resulting in 

transformation of rat primary hepatocytes (Ray et al., 1996a; Ray et al., 1996b). Another 

study has demonstrated that hepatic expression of core protein induces the development of 

hepatocellular carcinoma in core transgenic mice (Moriya et al., 1998). However these 

findings have been negated by other investigators who have reported no transforming or 

cytopathic effects of core protein on livers of transgenic mice expressing core protein 

(Pasquinelli et al., 1997). 

 

Although core protein has been shown to carry a nuclear localization signal and translocate to 

the nucleus, no precise nuclear function has been ascribed (Suzuki et al., 2005). Core has been 

reported to induce cell growth (Fukutomi et al., 2005) and has also been shown to have 

controversial effects on cell apoptosis (Kountouras et al., 2003; Meyer et al., 2005). More 

recently it has been demonstrated that core protein plays an important role in the development 

of liver fibrosis via interaction with TLR2 (Coenen et al., 2011; Feng et al., 2011). 

 

1.3.3.4. Envelope Glycoproteins E1 and E2 
 
Glycoproteins E1 and E2 are components of the viral envelope and are essential for viral entry 

into the host cells (Nielsen et al., 2004). Depending on the genotype, E1 and E2 are 33-35 

kDa and 70-72 kDa respectively (Deleersnyder et al., 1997). E1 and E2 form stable non-

covalent heterodimers anchored into the endoplasmic reticulum membrane (Ralston et al., 

1993; Dubuisson et al., 1994; Deleersnyder et al., 1997; Michalak et al., 1997). Both E1 and 
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E2 contain hyper variable regions (HVR) that are highly immunogenic and thought to be 

responsible for viral escape from host immune system (Weiner et al., 1991). 

 

1.3.3.5. p7 
 
p7 is a small hydrophobic polypeptide of 63 amino acids (Lin et al., 1994) and is an integral 

membrane protein (Carrere-Kremer et al., 2002). Classified as a member of viroporin family 

of proteins, p7 has been shown to function as cation channel (Griffin et al., 2003; Griffin et 

al., 2004; Steinmann et al., 2007). Although not required for viral RNA replication, p7 is 

essential for release of virions and in vivo infectivity in chimpanzee (Sakai et al., 2003) and 

thus represents a promising target for development of antiviral HCV drugs (Griffin 2010). It 

has been demonstrated that it is essential for infectious virus production and adaptive 

mutations enhance virus production in vitro (Steinmann et al., 2007; Russell et al., 2008). 

Very recently it has been demonstrated that p7 plays an essential role in targeting of NS2 to 

viral replication complexes, and in its interaction with NS5A (Tedbury et al., 2011). 

 

1.3.3.6. Non-structural protein 2 (NS2) 
 
NS2 is a 23kDa non-glycosylated trans-membrane protein that localizes to the ER membrane 

(Santolini et al., 1995). Cleavage of NS2 from the polyprotein is achieved by both cellular 

and viral proteases. NS2 is cleaved from the polyprotein by a host signal peptidase at its N-

terminus, whereas its C-terminus is auto-proteolytically cleaved by the NS2-3 metalloprotease 

on (Lin et al., 1994). Once cleaved from polyprotein, it has a very short half-life and is 

degraded by the proteasome (Franck et al., 2005). NS2 is not required for viral RNA 

replication but it is indispensable for infectious virus production. Recently it has been 

demonstrated that NS2 plays a vital role in organization of virion assembly (Jirasko et al., 

2010).  

 
1.3.3.7. Non-structural protein 3 and 4 (NS3/4A) 

 
NS3 is a 70 kDa multifunctional protein that carries a serine protease activity in its N-

terminus and a helicase/NTPase activity in C-terminal region (reviewed in (Chevaliez et al., 

2006)). NS3 interacts with NS4A as its co-factor (Lin et al., 1994; Failla et al., 1995). NS3 

serine protease activity is required for polyprotein cleavage at the junctions of NS2/3, 

NS3/NS4A, NS4A/4B, NS4B/5Aand NS5A/5B (Grakoui et al., 1993; Kolykhalov et al., 

1994). The NTPase domain of NS3 helicase- binds to RNA, hydrolyses NTPs and uses this 
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energy to travel along the nucleic acid polymer, removing both the complementary strand and 

bound proteins. NS3-NS4A has also been shown to prevent dsRNA detection and the 

subsequent interferon response to viral infection by interfering with toll like receptor 3 

(TLR3) and interferon regulatory factor 3 (IRF3) signaling pathways (Foy et al., 2003; Li et 

al., 2005).  

 

Because it plays a pivotal role in viral life cycle, NS3/4A has been identified as an important 

target for anti-HCV therapy. Two potent inhibitors of NS3 protease activity; Telaprevir and 

Boceprevir have recently been licensed for therapy against HCV (Kwong et al., 2011; 

Poordad et al., 2011; Vermehren et al., 2011). 

 

1.3.3.8. Non-structural protein 4B (NS4B) 
 
NS4B is a 261aa, 27 kDa highly hydrophobic protein that localizes to the endoplasmic 

reticulum. It induces the formation of a specific membrane structure designated the 

membranous web, although the exact mechanisms are still unknown,. This membranous web 

has been shown to serve as a scaffold for HCV RNA replication complex formation (Egger et 

al., 2002; Konan et al., 2003). Besides functioning as a membrane anchor for viral replication 

complexes, NS4B also plays an important role in viral assembly (Jones et al., 2009). 

 

NS4B also plays a role in the pathogenesis of hepatitis C by several mechanisms. It has been 

demonstrated that NS4B induces activation of endoplasmic reticulum stress pathways (Tardif 

et al., 2002). Some studies have suggested that NS4B upregulates fatty acid synthesis and 

play a role in steatosis in chronically infected patients (Waris et al., 2007; Park et al., 2009). 

NS4B has also been reported to transform NIH-3T3 cells when co-expressed with Ha-Ras as 

well as being shown to modulate cellular genes involved in tumor suppression, oncogenesis 

and cellular stress, suggesting that NS4B possesses transforming properties and may play a 

role in carcinogenesis (Park et al., 2000; Zheng et al., 2005). Although the mechanisms 

involved in NS4B-mediated cellular transformation are still not clear, it has been 

demonstrated that GTPase activity of NS4B nucleotide binding motif is essential for its 

transformation activity (Einav et al., 2008). 

 

The non-structural 5A (NS5A) protein, subject of the work presented in this thesis, will be 

described in further detail in Section 1.6. 
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1.3.3.9. Non-Structural Protein 5B (NS5B) 
 
NS5B is a 68 kDa membrane associated protein that functions as an RNA dependent RNA 

polymerase. It is anchored to the ER  through an α-helical transmembrane domain in its C-

terminal region (Moradpour et al., 2004). It possesses typical features of a polymerase such as 

“fingers, palm and thumb” structure and Gly-Asp-Asp (GDD) motif (Poch et al., 1989; Ago 

et al., 1999; Bressanelli et al., 1999). The ‘finger’ and ‘thumb’ comprise the template RNA 

binding channel, whereas the ‘palm’ carries the catalytically active GDD motif (Penin et al., 

2004a). Since NS5B is catalytic machinery responsible for viral genome synthesis and 

replication, it has become a very important target for antiviral therapy (Pawlotsky 2006a; 

Koch et al., 2007). 

 

Both viral and cellular proteins interact with NS5B and modulate its activity. NS3 and NS5A 

have both been reported to modulate the activity of NS5B (Piccininni et al., 2002; Shirota et 

al., 2002). Similarly, a cellular protein, cyclophilin B (CypB) has been reported to interact 

with NS5B and modulate its RNA binding capacity,  thus modulating viral replication 

(Watashi et al., 2005). 

 

 

1.4. Model Systems to Study HCV Life Cycle and Pathogenesis 
 

The discovery of the causative agent for non-A non-B hepatitis helped to diagnose and 

prevent new infections, especially in blood receivers through detection of HCV specific 

antibodies in the serum of potentially infected blood donors. However, the lack of robust cell 

culture and small animal models initially made it the study of the viral life cycle and host-

pathogen interactions extremely difficult. However, over the last fifteen years several models 

have been developed and successfully used to study different steps of viral life cycle and to 

identify novel drug targets. Some of the most relevant models have been reviewed in the 

following sections. 

 
1.4.1. In vitro infections 

 
Initially all research related to HCV was conducted almost exclusively by epidemiological 

and serological studies. Cultured cell lines were not susceptible to HCV infection, whilst 

cultured primary hepatocytes isolated from chronically infected patients harbored a very low 

level of viral replication. Many efforts were made to infect in vitro cultured primary 
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hepatocytes by using sera from HCV-infected patients; however, these efforts were hampered 

by low level of HCV replication (Ito et al., 1996; Fournier et al., 1998). Despite low level of 

HCV replication, such experiments have allowed the study of several host cell receptors 

required for HCV infection, as well as the analysis of anti-viral therapies (Castet et al., 2002; 

Molina et al., 2007; Molina et al., 2008). Similarly, in vitro cultured primary hepatocytes 

from Tupaia belangeri were also shown to be infectable by sera from HCV-infected 

individuals (Zhao et al., 2002). However such in vitro infection models are hampered by 

problems with low reproducibility. In addition, the infectivity of patients’ sera differs greatly, 

despite having similar HCV RNA titers. Moreover, viral replication must be estimated by 

negative strand-specific methods, which have several problems including the detection of 

very low levels of negative strand RNA, contamination and false positives due to self-priming 

of viral RNA (Gunji et al., 1994; Lanford et al., 1994; Takyar et al., 2000). Alternatively, 

another group demonstrated that hepatocytes cultured in a 3-D radial flow bioreactor could 

produce infectious viral particles after inoculation with HCV-infected sera (Aizaki et al., 

2003). However, the complexity and cost of this system are major obstacles in its widespread 

use. 

 
1.4.2. Pseudo-Particle Model 

 
HCV pseudo-particles (HCVpp) are chimeric virus particles that are produced by 

incorporation of HCV glycoproteins E1 and E2 into murine leukemia virus (MLV) or human 

immune deficiency virus (HIV) viral capsids containing either GFP or Luciferase reporter 

genes (Hsu et al., 2003; Bartosch et al., 2003a) (Figure 1.9). This model has allowed the 

identification of several cellular receptors that are essential for HCV entry into cells, such as 

LDLR, DC-SIGN, L-SIGN, Claudin-1, Claudin-6, Claudin-9 and most recently Occludin 

(von Hahn et al., 2008; Ploss et al., 2009a). This model is limited to the study of HCV entry 

into cells or to the study of antibodies directed against the HCV envelope proteins (Bartosch 

et al., 2005; Lavillette et al., 2005). 
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Figure 1.9: Production of HCV pseudo particles (adapted from (Voisset et al., 2004). Ѱ indicates the retroviral packaging signal, LTR indicates Lateral Terminal Repeats.  

1.4.3. HCV infectious clones. 
 
 
The genomic amino acid sequence of HCV has been obtained from multiple PCR 

amplifications of HCV infected sera. In the late 1980s, PCR techniques lacked efficient 

proofreading polymerases and amplified HCV fragments contained many mutations, which 

impaired HCV protein functions and lead to non-replicable clones. Based on this assumption, 

different groups tried to repair these mutations to generate a consensus HCV clone which 

would be fully replicative in chimpanzees. Several groups reported the successful infection of 

chimpanzees by intrahepatic inoculation of infectious HCV RNA transcribed from consensus 

cDNAs constructed by comparison with several full-length clones (Kolykhalov et al., 1997; 

Beard et al., 1999; Lanford et al., 2001). Inoculation of these constructs made the animals 

seropositive for HCV, although these transcripts could not replicate in cell culture 

(Kolykhalov et al., 1997). 
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1.4.3.1. JFH-1 Infectious Clone 
 
A serious drawback of replicon system had been the failure to produce viral particles and the 

ability to passage the infection to naïve cells. A major breakthrough came when a full-length 

replicon was constructed using the JFH-1 clone (Figure 1.10), a genotype 2a HCV genome 

isolated from a Japanese patient suffering from fulminant hepatitis. This replicon efficiently 

replicated in cell culture without the need of any adaptive mutations and produced viral 

infectious particles (Lindenbach et al., 2005; Wakita et al., 2005). These viral particles could 

be isolated by sucrose gradient centrifugation and could be visualized by immuno-electron 

microscopy. Such particles could infect naïve Huh7 cells in culture, and were also infectious 

in vivo when injected in chimpanzees (Wakita et al., 2005; Lindenbach et al., 2006). The 

replication and virion production capacities of JFH-1 replicon were improved by constructing 

a chimeric replicon of JFH-1 that contained structural proteins from another 2a isolate termed 

J6 (Pietschmann et al., 2006). The development of JFH-1 has allowed the study of the 

complete viral life cycle in vitro, including steps that were previously inaccessible such as 

viral particle assembly and infectious particle secretion. 

 

 
1.4.4. HCV Replicon Model 

  
In 1999 Lohmann et al., made a major breakthrough in HCV research when they reported the 

development of the HCV replicon system (Lohmann et al., 1999). It was hypothesized that 

the HCV genome should adapt to the particular environment of cancer-derived hepatocytes in 

culture to form infectious clones. In order to achieve stable autonomous replication of 

subgenomic HCV RNA, this new replicon system contained a Neomycin selection marker 

(Lohmann et al., 1999). The coding sequence of the structural proteins and NS2 of the Con1 

consensus sequence was replaced by Neomycin Phosphotransferase (a selectable antibiotic 

resistance marker) together with the EMCV IRES to produce a bicistronic replicon (Figure 

1.10). When this subgenomic replicon was transfected into HuH7 cells, neomycin sulphate-

resistant colonies were obtained that contained autonomously replicating replicon RNAs 

(Lohmann et al., 1999)., Several mutations (now termed as cell culture adaptive mutations) 

were identified in these autonomously replicating RNAs and it was demonstrated that these 

mutations significantly enhanced the replication of the replicon RNAs (Krieger et al., 2001; 

Lohmann et al., 2001). A major cluster of such mutations was found in NS5A, that increased 

the RNA replication by almost 10,000 fold, along with some mutations present in NS3 and 
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NS5B (Blight et al., 2000; Lohmann et al., 2001). Although some of these mutations have 

been shown to alter the phosphorylation status of NS5A, the exact mechanisms are largely 

unknown (Evans et al., 2004). In 2002 Pietschmann et al. modified the subgenomic replicon 

and generated a selectable full-length replicon containing the entire genome of HCV 

(Pietschmann et al., 2002). This replicon clone could autonomously replicate in vitro, 

although it did not produce any viral particles. Pietschmann et al. hypothesized that Huh7 

cells may lack certain factors that are indispensable for virion production; however this theory 

was disproved by production of viral particles in the same cells by infection with the JFH-1 

clone (Wakita et al., 2005). However, due to the expression of functional viral enzymes, the 

HCV replicon system has proved to be the model of choice for study of viral RNA 

replication, host-pathogen protein interactions and antiviral drug design. 

 

 

Figure 1.10: Schematic representation of the HCV Replicon System. A) sub-genomic replicon, B) 
sub-genomic replicon with all non-structural proteins, C) JFH1 full-length replicon, D) JFH1-J6 
hybrid full-length replicon. Neomycin resistance gene (NeoR) can be replaced by a reporter gene such 
as Luciferase or Secreated Alkaline Phosphatase (SEAP) to produce replicon constructs that can be 
used in transient replication assays. 
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1.4.5. Animal Models 
 
A small animal model is very important to understand the mechanisms that underlie viral 

pathogenesis and would expedite the development of new therapies against HCV infection 

(Ploss et al., 2009b). However HCV has a very limited natural species tropism for humans 

and chimpanzees. Even before the discovery of HCV, infectious studies revealed that the 

chimpanzee (Pan troglodytes) was susceptible to infection by the then-unknown causative 

agent of non-A non-B hepatitis (Alter et al., 1978). Many early studies of NANBH used the 

chimpanzee model. Indeed, the first isolation of HCV was performed in NANBH-infected 

chimpanzee (Choo et al., 1989; Bradley et al., 1991). HCV infection in chimpanzees follows 

a similar course to that observed in humans. Viral RNA is detectable in the plasma within a 

few days after infection, followed by acute hepatitis characterized by a rise in serum 

aminotransferase levels within 2-12 weeks of infection and development of HCV-specific 

antibodies. Although the chimpanzee model has proved to be a relevant model for study of 

functional viral genomics, monoclonal infections, host immune responses and liver gene 

expression (reviewed in (Couto et al., 2006)), its use as an experimental model for HCV 

research is limited for several reasons: firstly, there is a low rate of chronic infection; a lack of 

fibrosis;  a limited availability of animals; their protected species status; ethical constraints 

and high cost of experimentation. The Tupaia belangeri is another primate model of HCV 

infection; however, in a manner similar to chimpanzees, acute infection is quickly resolved 

and these animals rarely develop chronic infection (Xie et al., 1998). No other non-human 

primate has been shown to be permissive to HCV infection.  

 

Perhaps the most promising animal models in the study of HCV are murine models. Several 

groups have developed transgenic mice expressing either one or more HCV proteins (Moriya 

et al., 1997; Pasquinelli et al., 1997) or the complete ORF of HCV (Lerat et al., 2002). 

Although transgenic mouse models have been very useful in study of virally-induced 

pathogenesis, a major drawback of such models is the absence of an immune response against 

these viral proteins. To overcome this limitation, conditional transgenic mice have been 

developed by using Cre/loxP system, in which transgene expression is activated only after 

infection with an adenoviral vector that expresses Cre recombinase (Wakita et al., 2000). 

However, a major flaw of this model is the fact that adenovirus alone has been shown to cause 

hepatitis, hence it remains unclear whether the pathogenic effects observed were caused by 

HCV proteins or by adenoviral proteins.  
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Another murine model is that of xenografted chimeric liver mice, in which human 

hepatocytes, which are permissive for HCV infection, are transplanted into mice. In one such 

model, immunodeficient SCID mice are used which contain a lethal transgene encoding 

urokinase type plasminogen activator (uPA) under the control of a liver specific promoter, 

leading to the targeted destruction of hepatocytes (Mercer et al., 2001; Meuleman et al., 

2005). These depleted hepatocytes are then replaced by a graft of human hepatocytes. These 

mice have been shown to develop a prolonged HCV infection and produce infectious virus 

after inoculation with infected patient’s serum (Mercer et al., 2001) Similarly JFH1 infectious 

viral particles have also been shown to be infective in these mice (Lindenbach et al., 2006; 

Kaul et al., 2007). A similar model was developed by re-colonizing murine liver with human 

hepatocytes in normal mice whose hematopoietic system was reconstituted by using the bone 

marrow of SCID mice after full body irradiation (Ilan et al., 2002). Use of uPA lethal 

transgene makes these mice very difficult to handle because of early hepatotoxicity. Recently 

another similar mouse model, termed the FRG model, has been developed, which  unlike 

uPA-SCID mice, the FRG model allows the prevention of very early hepatotoxic effects via 

the use of 2-(2-nitro-4-trifluoromethylbenzyol)-cyclohexane-1,3-dione (NTBC), thus making 

the mice easier to handle (Azuma et al., 2007).  Despite the fact that these models allow 

researchers to bypass the species barrier of HCV infection, these models have a single major 

drawback: the absence of an immune response. To overcome this flaw, several groups have 

developed parallel xenograft mouse models in which the murine immune system is replaced 

by a functional human immune system by injecting human hematopoietic stem cells. In one 

example, after reconstitution of the immune system, the murine liver cells are destroyed by 

the expression of activated caspase 8 under the control of an inducible liver-specific promoter. 

The murine liver is then re-colonized by human hepatocyte progenitor cells (Washburn et al., 

2011).  

 

As well as being susceptible to HCV infection, these chimeric xenograft mouse models have 

been successfully used in several investigations to test antiviral compounds (Kneteman et al., 

2006; Bissig et al., 2010). Although these models exhibit symptoms of acute HCV infection, 

the development of pathologies associated with chronic infection such as cirrhosis and HCC 

have not yet been reported, indicating that these models are of limited interest for the study of 

chronic HCV associated pathologies (Lerat et al., 2011). In addition, these models require 

human hepatocytes as well as specialized surgical skills, making them technically complex 

models that are therefore not widely available.  
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1.4.6. Viral Vectors for HCV protein expression  

 

HCV subgenomic and full-length replicon systems have been extensively used to study viral 

replication, pathogenesis and protein properties. However, to study the functions and 

pathogenic properties of a particular protein, it may be necessary to analyze that protein out of 

context of other viral proteins or in context of only a few selected viral proteins. Often 

transfection of naked plasmid DNA encoding the gene of interest is used to express a 

particular protein in cultured cells. However, this approach has several drawbacks. Certain 

cell types, particularly primary cells, are resistant to transfection (Gardmo et al., 2005). In 

addition, transfections performed by electroporation or by using transfection reagents affect 

the viability of the transfected cells. Moreover, naked DNA transfections cannot be used to 

deliver transgenes in vivo. Therefore, viral vectors have been developed to as an alternative to 

transfections for delivery of expression vectors into cells. Viral vectors have several 

advantages over transfections: a high transduction efficiency can be achieved without causing 

serious harm to cells, and viral vectors can be used to express transgenes in vivo. However, 

the construction of viral vectors is relatively laborious, hence naked DNA transfections are 

still a method of choice for certain applications.  

 

Hepatoma cells, which are required for efficient culture of HCV in vitro, harbor multiple 

genomic mutations and deletions which impact several cell signaling pathways involved in 

carcinogenesis, therefore impairing any related studies. Therfore, primary cultures of human 

or murine hepatocytes are considered to be the most relevant tools for in vitro studies for 

HCV-induced liver pathogenesis. However, such cells are difficult to transfect by traditional 

methods (as mentioned above). Many studies have reported that viral vectors can be used for 

efficient delivery of transgenes into in vitro cultured primary hepatocytes (Ohashi et al., 2002; 

Seppen et al., 2002), including adeno-associated viral vectors (Snyder et al., 1999; Palmer et 

al., 2005) and baculovirus-derived viral vectors (McCormick et al., 2004), although the latter 

have proved to be less efficient than adenoviral and lentiviral vectors. 

 

1.4.6.1. Adenoviral Vectors 

Adenoviruses are dsDNA viruses of 60-90nm diameter. The main targets of adenoviruses are 

epithelial cells and they cause mild infections of the upper respiratory and gastrointestinal 

tracts. Most infections are self-limiting and asymptomatic, and to date no association between 

adenoviral infections and neoplastic disease has been reported. When injected intravenously, 
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adenoviruses show efficient infection of liver endothelial cells and hepatocytes (Chan 1995). 

This has made modified adenoviruses a promising vehicle for transgene delivery (Benihoud et 

al., 1999). The last-generation adenoviral vector, also called ‘Helper dependent Adenoviral 

vector (HdAd)’ or “gutless adenoviral vector”, has become a vector of choice for in vivo 

transgene delivery (Palmer et al., 2003; Jozkowicz et al., 2005). HdAd are developed by 

deleting all coding sequences from the viral genome and leaving only the inverted terminal 

repeats (ITRs) and a packaging signal ψ (Figure 1.17) (Palmer et al., 2003). The deleted viral 

genes are replaced with a transgene expression cassette and “stuffer” sequence (Kochanek et 

al., 1996). Besides making HdAd safer, the removal of coding sequences also allows the use 

of larger transgene cassettes (Segura et al., 2008). The recombinant adenoviral particles are 

then produced by co-transfection of helper adenovirus genomes into producer cells to obtain 

high titer HdAd vector preparations (Palmer et al., 2003; Sakhuja et al., 2003). These vectors 

have demonstrated an enormous potential as hepatic transgene delivery vehicle without 

causing any chronic inflammation (Brunetti-Pierri et al., 2004; Palmer et al., 2005). Besides 

the high efficacy of transduction, these vectors have been also used for long term transgene 

expression with a single injection of recombinant adenovirus particles (Kim et al., 2001). 

Another important advantage of adenoviral vector is that it is not integration competent and 

has not been associated with any malignant transformations following transduction (Palmer et 

al., 2005). 

 

 

 

Figure 1.11: A schematic diagram of the Helper dependent Adenoviral vector (HdAd) genome. 
The transgene cassette and Stuffer DNA is flanked by inverted terminal repeates (ITR) along with a 
packaging signal (Ψ). 
 
 

1.4.6.2. Lentiviral Vectors 

 

Lentiviral vectors (LVs) developed from Moloney Murine Leukemia Virus (MoMLV) or 

Human Immunodeficiency Virus 1 (HIV-1) have a broad tropism and can stably transduce 

hard-to-transfect quiescent cells (such as neurons and cultured primary hepatocytes) (Lewis et 

al., 1994; Zufferey et al., 1998). Upon entry into the host cell, the ssRNA genome of LVs is 
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reverse transcribed into dsDNA that is actively transported to the host cell nucleus without the 

need of cell division as is  required for other retroviruses (Bukrinsky et al., 1993; Naldini 

1998). Once in the nucleus, viral dsDNA genome is integrated into the host cell DNA hence 

stably transducing the target cell. These characteristics have made LVs an attractive vehicle 

for transgene delivery into mammalian cells. The last generation LVs are replication deficient 

and also lack the accessory genes vpr, vif, nef and vpu hence improving vector safety. Despite 

being replication deficient, LVs are integration competent and have a tendency to integrate 

into transcriptionally active regions (Schroder et al., 2002). This leads to insertional 

mutagenesis and has been reported to cause malignant transformations (Hacein-Bey-Abina et 

al., 2008). The carcinogenetic potential of LVs has created complications for their use as gene 

therapy vectors, although they remain very attractive transgene delivery vehicles for in vitro 

cultured cells (Naldini 1998; Williams 2009). 

 

 

1.5. HCV Life Cycle 
 

Although the liver has been identified as the primary site for HCV replication, some studies 

have suggested the existence of extra-hepatic sites of viral replication. Studies using highly 

specific methods for detection of HCV negative strand RNA have demonstrated that 

peripheral blood mononuclear cells (PBMCs) are permissive for very low levels of HCV 

replication (Cribier et al., 1995; Lerat et al., 1996). It has been further reported that the 

presence of HCV RNA negative strand in PBMCs was higher for genotype 1-infected patients 

as compared to other genotypes and that negative strand RNA could be detected in 

polymorphonuclear leukocytes, monocytes and B lymphocytes but not in T lymphocytes 

(Lerat et al., 1998). Another study has reported the detection of negative strand viral RNA in 

brain tissue of patients with recurrent HCV infection after liver transplantation (Vargas et al., 

2002). However, the existence of extra hepatic reservoirs of HCV is still disputed and role of 

such HCV replication in pathogenesis is yet to be studied. The majority of studies on HCV 

have therefore focused on its hepatic life cycle. 

 

The development of in vitro models capable of sustaining HCV replication and producing 

infectious HCV virions (Lohmann et al., 1999; Wakita et al., 2005); described in detail in 

Section 1.4), have allowed an understanding of viral entry and RNA replication, although the 
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relatively recent discovery of the JFH-1 infectious clone of HCV means that HCV assembly 

and release remain poorly understood (Figure 1.12).  

 

 
 
 

 
 
 
 
 
Figure 1.12: The HCV Life Cycle (from (Pereira et al., 2009) 
The viral particles attach to the cell surface by interacting with receptors. Following endocytosis-
mediated internalization (1, 2), capsids are disintegrated leading to release of genomic RNA into the 
cytoplasm (3). Genomic RNA is used as an mRNA to translate viral proteins (4). Translated viral 
proteins use the genomic RNA to produce negative strand RNA which is then used as template to 
synthesize new genomic RNA strands (5). The new virions are assembled from translated proteins (6) 
and newly-synthesised RNA and exported to the cell surface (7).  

 

 

1.5.1. Virion Attachment and Entry 
 
The viral life cycle starts with virion attachment and subsequent entry into the host cell. Initial 

attachment of the virus to a host cell is believed to be random and nonspecific. It is well 

established that viral particles circulating in the blood of an infected patient are associated 

with LDLs or VLDLs (Nielsen et al., 2006). It has been demonstrated that antibodies against 
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LDL-R or the apo-E and apo-B lipoproteins can inhibit HCV infection in a dose-dependent 

manner, suggesting that HCV targets host cells via interaction with the LDL receptor LDL-R 

(Bartosch et al., 2003b; Chang et al., 2007; Molina et al., 2007). Glycosaminoglycans 

(GAGs) have been shown to play an essential but undefined role in HCV virion attachment 

and thus entry into target cells (Barth et al., 2003; Koutsoudakis et al., 2006). It has also been 

reported that two molecules of the C-Type Lectin family; L-SIGN and DC-SIGN, like LDL-R 

and GAGs, help to capture and concentrate circulating viral particles, although they are not 

involved in viral entry(Lai et al., 2006). 

 

Following nonspecific receptors mediated attachment of viral particles to the cell surface; 

virions interact with specific receptors to promote entry into the host cell (reviewed in 

(Dubuisson et al., 2008)).. Several studies have identified four different specific receptors. 

CD81 was the first molecule to be identified as an HCV-specific receptor (Pileri et al., 1998). 

The viral E2 protein has been shown to interact with large extracellular loop (LEL) of CD81 

via four conserved residues L162, I182, N184 and F186 (Drummer et al., 2002; Owsianka et 

al., 2006; Helle et al., 2008). Several studies have confirmed that CD81 is essential for viral 

entry in target cells both in HCVpp and HCVcc models (Bartosch et al., 2003b; Cormier et 

al., 2004; Kapadia et al., 2007). Recently a study has identified certain mutations in envelope 

glycoproteins E1 and E2 that increase their interaction with murine CD81 and enhance viral 

entry into murine hepatocytes by more than 100 fold in the absence of human entry factors 

(Bitzegeio et al., 2010). Although CD81 binding is essential, it is not sufficient for viral entry 

(Zhang et al., 2004; Owsianka et al., 2006).  

 

Another specific viral receptor; the scavenger receptor class B type 1 (SR-B1) is a cell surface 

glycoprotein comprised of two transmembrane domains, one large extracellular loop and two 

short intracellular domains. Inhibition of SR-B1 expression or anti-SR-B1 antibodies have 

been shown to inhibit HCVpp and HCVcc internalization (Voisset et al., 2005; Catanese et 

al., 2007) whereas its over-expression has been shown to increase viral internalization 

(Schwarz et al., 2009). Recently a study has confirmed that SR-B1 plays a specific and direct 

role in HCV penetration into target cells (Catanese et al., 2010). 

 

CD81 and SR-B1 are required but not sufficient for viral entry into target cells. Attempts 

made to identify cellular genes that can render non-permissive cells susceptible to HCV 

infection resulted in identification of Claudin-1 (CLDN1) as an essential viral entry receptor 
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(Evans et al., 2007). CLDN1 is a member of tetraspanin tight junction protein superfamily 

which have play an important role in maintenance of cell permeability and polarity in 

epithelial and endothelial tissues (Lal-Nag et al., 2009). It has been proposed that CLDN1 is 

involved in later stages of viral penetration into target cells, after HCV interaction with CD81 

(Evans et al., 2007). Very recently it has been demonstrated that monoclonal anti-claudin1 

antibodies inhibit HCV infection in cultured primary human hepatocytes (Fofana et al., 2010). 

Although knock-down of CLDN1 expression in cultured hepatocytes makes them less 

permissive, overexpression of CLDN1 does not increase permissiveness to viral entry (Evans 

et al., 2007; Schwarz et al., 2009). 

 

Recently another study has identified another tight junction protein, Occludin (OCLN); as a 

cofactor required for HCV entry (Liu et al., 2009; Ploss et al., 2009a). As for CD81 and SR-

B1, OCLN directly interacts with glycoprotein E2 and functions at late stages of viral entry in 

a similar fashion to CLDN1 (Benedicto et al., 2009; Liu et al., 2009).  

 

When the above described four receptors of human origin (CD81, SR-B1, CLDN1 and 

OCLN) are overexpressed in non-permissive murine or hamster cells (CHO and NIH3T3) 

these cells become infectable by HCVpp suggesting that these four receptors are sufficient for 

viral entry into target cells (Ploss et al., 2009a). These observations gave rise to hopes that a 

murine model permissive to HCV infection was feasible. However  it has been reported that 

transgenic mice expressing all four receptors of human origin were not permissive to infection 

by HCV from patients’ sera nor to entry of HCVpp into hepatocytes (Hikosaka et al., 2011). 

Interestingly, it has been reported very recently that expression of the minimal human factors 

CD81 and occludin is sufficient to allow HCV infection of fully immunocompetent mice 

(Dorner et al., 2011). 

 

It has been suggested that after receptor binding, HCV virions internalized by clathrin-

mediated endocytosis (Hsu et al., 2003; Blanchard et al., 2006; Meertens et al., 2006). After 

endocytosis, viral glycoproteins fuse with the endosomal membrane and release the viral 

genome into cytoplasm (Hsu et al., 2003; Koutsoudakis et al., 2006; Meertens et al., 2006). 

However the detailed mechanisms involved in the fusion and release of viral genetic material 

are still elusive, and require further study. 
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1.5.2. RNA Translation and Polyprotein Processing 
 
Like other single-stranded positive sense RNA viruses, genomic HCV RNA is directly 

translated upon release of the viral genome into the cytoplasm. Host cell ribosomal machinery 

is used to translate the viral genome into the viral polyprotein precursor. Contrary to cellular 

mRNAs, genomic HCV RNA translation is not cap-dependent. Instead, translation occurs 

after binding of the ribosomal 40S subunit to domain II of the IRES, allowing the recruitment 

of eukaryotic initiation factor eIF3 and the subsequent assembly of a complete ribosomal 

complex that translates the viral genome into a polyprotein precursor (Figure 1.13) (Fraser et 

al., 2007) (Tsukiyama-Kohara et al., 1992). This polyprotein precursor is then cleaved by 

viral and cellular proteases to produce ten viral proteins (Grakoui et al., 1993) (for details 

please refer to section 1.3.3.2). 

 

 

 

 

 

Figure 1.13: Schematic diagram of the role of 
the HCV IRES in the assembly of ribosomal 
complexes and translation initiation (adapted 
from (Fraser et al., 2007). 
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1.5.3. RNA Replication, Virion Assembly and Release 
 
HCV genome translation and polyprotein processing leads the release of the HCV proteins, 

and the initiation of viral replication complex formation. The viral replication complex (RC) 

is thought to be formed in modified endoplasmic membrane structures called membranous 

webs (Gosert et al., 2003; Shi et al., 2003). The formation of membranous webs is thought to 

be mediated by NS4B, and it has been demonstrated that NS4B alone can induce such 

structures (Egger et al., 2002). RCs formed inside the membranous web contain the complete 

cellular machinery needed for viral RNA replication (Egger et al., 2002; Waris et al., 2004). 

In a manner similar to other positive strand RNA viruses, the viral genome is transcribed into 

an intermediate RNA of negative polarity which serves as template for the synthesis of 

multiple viral genomic RNAs of positive polarity (Fong et al., 1991; Lohmann et al., 1999). 

Recently it has been demonstrated that negative and positive strand RNAs form a double-

stranded RNA intermediate which undergoes strand displacement to produce nascent strands 

(Targett-Adams et al., 2008). Synthesis of negative polarity RNA as well as positive polarity 

RNA is catalyzed by the viral RNA dependent RNA polymerase (RdRp) NS5B (for detailed 

description of NS5B, please refer to section 1.3.3.9). NS5B has the potential to synthesize 

long RNA molecules without any need of other viral or host cell factors; however, it lacks 

template specificity (Lohmann et al., 1997). It has been propose that other factors (viral and 

cellular) present in the replication complex may play a role to ensure the template specificity 

of the viral RdRp. 

 

The mechanisms surrounding the later steps in viral production are still unclear. It has been 

demonstrated that core protein is found on lipid droplets (LDs) that colocalize with replication 

complexes (Miyanari et al., 2007) and that disruption of interaction between lipid droplets 

and core protein, reduces the production of infective viral progeny (Boulant et al., 2007). 

Newly synthesized viral RNAs destined to serve as genomes for new virions interact with 

LD-associated core protein, inducing its oligomerization and leading to the formation of 

nucleocapsids, which then acquire an envelope derived from host cell membranes carrying 

viral glycoproteins (Figure 1.14) (Tanaka et al., 2000; Nakai et al., 2006; Suzuki 2011). 

Besides the structural proteins, non-structural proteins also play an important role in viral 

assembly. Certain mutations in NS5A that abolish the interaction between NS5A and LDs 

have been shown to reduce the production of infectious particles (Miyanari et al., 2007). 

Other studies have demonstrated important interactions between NS5A and core protein that 
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are essential for viral assembly (Appel et al., 2008; Masaki et al., 2008; Tellinghuisen et al., 

2008). Similarly, several publications have reported the implication of NS2 and NS3 in viral 

assembly (Ma et al., 2008; Dentzer et al., 2009).  

 

 

 

 
Figure 1.14: Assembly of HCV particles. Newly synthesized genomic RNAs (left) come into contact 
with LD–associated Core protein, possibly via an interaction between NS5A and Core. This 
interaction of genomic RNA with Core protein ultimately leads to its encapsidation and nucleocapsid 
formation (right). Then, through still unknown mechanisms, E1 and E2 are added to the nucleocapsid 
and virions are then exported to the cell surface.  

 

 

Newly synthesized virions are then exported to the cell surface via an as-yet-unknown 

mechanism and released into extracellular medium. Not much is known about the further 

maturation and export of virions after nucleocapsid assembly and acquiring of their envelope. 

Some studies have suggested that HCV may exploit LDL/VLDL synthesis and secretion 

pathways to transport progeny virions into the extracellular medium. Another study has 

suggested that, besides secretion, the VLDL secretion pathway may well be important during 

virion assembly (Chang et al., 2007). It has been observed that inhibition of VLDL synthesis 

by inhibitor molecules or by siRNAs targeting apoB reduces the production of infectious 

virions (Huang et al., 2007b; McLauchlan 2009b).   
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1.5.4. Regulation of HCV replication by host factors. 
 

Besides the viral proteins, many host proteins have also been reported to directly or indirectly 

participate in viral replication. HCV RCs appear to be transported to lipid rafts, where HCV 

RNA replication may take place, and it has been demonstrated that HCV replication is closely 

tied to host lipid metabolism (Aizaki et al., 2004). Accordingly, it has been demonstrated that 

apolipoprotein E (apoE) is indispensible for both production and infectivity of virions (Chang 

et al., 2007). More recent studies have reported that the lipid kinase PI4KIIIα is a key factor 

in HCV RNA replication. It has been demonstrated that NS5A plays a role in the activation of 

PI4KIIIα via a direct interaction, and that this interaction is critical for the stability of the 

membranous compartment surrounding the viral RNA replication complex (Borawski et al., 

2009; Vaillancourt et al., 2009; Reiss et al., 2011).  

 

Several host proteins have been reported to directly or indirectly interact with viral proteins 

involved in replication. Cyclophilin B has been shown to directly interact with NS5B, 

regulating its association with viral RNA, and inhibitors of cyclophilin B have been shown to 

reduce viral replication (Watashi et al., 2005). Similarly, cyclophilin A has been reported to 

be essential for HCV replication and suggested to play a role in polyprotein cleavage (Kaul et 

al., 2009). Furthermore, yet other studies have reported that FKBP9, hsp90 and hVAP-B 

proteins interact with NS5A and this interaction is indispensible for viral replication 

(Hamamoto et al., 2005; Okamoto et al., 2006). 

 

Many efforts are currently being made to identify host proteins involved in viral replication. 

Several studies using high-throughput RNAi based screening methods have reported the 

identification of several cellular proteins that are essential for HCV replication (Ng et al., 

2007; Randall et al., 2007; Supekova et al., 2008; Borawski et al., 2009). Although the exact 

mechanisms are not known, these studies have identified several host factors (for example 

TBXA2R, TRAF2, SNARK and PI4KIIIα) whose expression is necessary for efficient HCV 

replication in vitro (Ng et al., 2007). Another study found several host nuclear proteins that 

are essential for viral replication, suggesting that host proteins may also indirectly regulate 

viral replication, possibly via the activation of host cell pathways which impact on HCV RNA 

replication (Li et al., 2009).  
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The high mutation rate of HCV results in the emergence of viral mutants that are resistant to 

antiviral therapies that target viral proteins. Moreover, current antiviral treatment consisting of 

interferon and ribavirin is not equally efficient across different genotypes. Although our 

knowledge about host proteins involved in HCV replication is still very limited, targeting 

interactions between viral and host proteins has been suggested to be a promising approach 

for future design drugs with a greater barrier of resistance as well complementing currently 

available antiviral therapies (Flisiak et al., 2008; Pawlotsky 2011a). 

 

 

1.6. Non-Structural Protein 5A (NS5A) 
 
NS5A is a 446aa proline rich phosphoprotein of 49kDa calculated mass but exists in two 

phosphorylated isoforms: a basal (56kDa) and a hyperphosphorylated (58kDa) form (Tanji et 

al., 1995; Reed et al., 1997). NS5A is a predominantly hydrophilic protein anchored to the ER 

membrane through an amphipathic α-helix present in its N-terminal (Brass et al., 2002; Penin 

et al., 2004b). Despite being essential to viral replication, no precise enzymatic activity has 

been ascribed to it and it is hypothesized that it plays a role in viral replication through its 

interaction with both viral and cellular proteins. 

 
1.6.1. NS5A Structural Features 

 
NS5A is organized into three domains called Domain I (residues 27-213), Domain II (residues 

250-342) and Domain III (residues 356-447) (Figure 1.15) (Tellinghuisen et al., 2004). These 

domains are separated by two linkers known as Low Complexity Sequences (Tellinghuisen et 

al., 2004). The N-terminal region of NS5A carries a highly conserved hydrophobic 

amphipathic alpha helix (residues 1-26) which serves as an ER membrane anchor for NS5A 

(Brass et al., 2002). It has also been suggested that NS5A is a zinc-metalloprotein and can 

form dimers that contain a potential RNA binding groove (Tellinghuisen et al., 2004), a 

suggestion further confirmed by X-ray crystallography studies of NS5A showing that Domain 

I is a zinc binding domain with potential RNA-binding activity (Huang et al., 2005). Recently 

it has been reported that Domain I can also adopt an alternative structure that may be required 

for RNA replication or viral particle assembly (Love et al., 2009). Although the precise 

enzymatic function of Domain I remains elusive, it has proved to be a promising target for 

anti-HCV drugs (Gao et al., 2010). In contrast, Domains II and III are natively unfolded 

(Tellinghuisen et al., 2004; Liang et al., 2007; Hanoulle et al., 2009a; Hanoulle et al., 2010). 
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Although some parts of Domain II can be deleted without any effects, it is indispensible for 

viral RNA replication (Appel et al., 2008; Tellinghuisen et al., 2008; Yang et al., 2010). A 

recent study has demonstrated that Domain II is a substrate for the Peptidyl-prolyl cis/trans 

Isomerase (PPIase) Activity of Cyclophilins A and B (Hanoulle et al., 2009b). Domain III has 

been shown to be not required for viral RNA replication but is essential for viral particle 

assembly in the JFH1 model (Appel et al., 2008; Tellinghuisen et al., 2008). 

 

 

 

Figure 1.15: Schematic diagram of NS5A representing the major structural and functional features. 
NS5A is divided into three domains; Domain I (aa 1- 213), Domain II (aa 250-342) and Domain III 
(aa 356-447) (adapted from (He et al., 2006). 
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1.6.2. Role of NS5A in the viral life cycle 
 
Although no precise enzymatic function is currently known for NS5A, it is an absolutely 

essential component of the HCV replication complex. As described previously, NS5A is a 

zinc binding metalloprotein that is organized into three distinct structural domains 

(Tellinghuisen et al., 2004). The N-teminal Domain I of NS5A has been shown be involved in 

the homodimerization of NS5A. This dimerization results in the formation of a basic cleft that 

shows a high affinity for pyrimidine rich sequences in the untranslated regions of HCV 

genomic RNA (Huang et al., 2005; Tellinghuisen et al., 2005; Love et al., 2009). Interaction 

of NS5A with viral genomic RNA is thought to be critical for viral replication (Huang et al., 

2005). Recently, it has been suggested that NS5A homodimers may come together in large 

oligomer arrays that may transport viral RNA within the cell (Gao et al., 2010). A drug 

(BMS-790052) that is thought to disrupt such NS5A oligomers has proved to be a potent 

inhibitor of HCV replication and is in early clinical trials for anti-HCV therapy (Gao et al., 

2010). 

 

Domain I of NS5A is essential for its interaction with lipid droplets and hence critical for 

virus production (Miyanari et al., 2007). Similarly, Domain III has been shown to play an 

essential role in viral particle assembly (Appel et al., 2008; Tellinghuisen et al., 2008). 

Current data show that there is an inverse correlation between NS5A adaptive mutations that 

facilitate RNA replication and particle assembly (Appel et al., 2005a; Tellinghuisen et al., 

2008). A recent study has reported that phosphorylation of serine 457 in JFH1 replicon 

system regulates viral particle production (Tellinghuisen et al., 2008).  

 

1.6.2.1. NS5A phosphorylation modulates its functions. 
 
NS5A is phosphorylated by several cellular kinases such as casein kinase I-α (CKI-α), casein 

kinase II (CKII), Mitogen activated protein kinase (MAPK), Protein Kinase B (Akt), 

Mitogen-activated protein kinase kinase 6 (MKK6), Glycogen synthase kinase 3 (GSK3) and 

protein kinase alpha (PKA) (Ide et al., 1997; Reed et al., 1997; Kim et al., 1999; Coito et al., 

2004). However, only CKI-α has been shown to be involved in its hyperphosphorylation 

(Quintavalle et al., 2007). NS5A carries three conserved serine clusters in its central and C-

terminal region. These clusters serve as phosphorylation sites; however, only cluster I is 

thought to be responsible for hyperphosphorylation (Quintavalle et al., 2006). It has been 

reported that NS5A phosphorylation occurs after its cleavage from polyprotein precursor and 
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depends upon proper conformation of the protein. Besides cleavage and conformation, NS5A 

phosphorylation also depends on interactions with other viral proteins, for example, 

hyperphosphorylation of NS5A requires the presence of NS3, NS4A and NS4B (reviewed in 

(Huang et al., 2007a)). Although phosphorylation of NS5A does not affect its subcellular 

localization (Tanji et al., 1995), the half-life of NS5A appears to be inversely correlated to its 

degree of phosphorylation (Pietschmann et al., 2001). Cell culture-adaptive mutations 

observed with the subgenomic replicon system which lead to loss of NS5A 

hyperphosphorylation have been reported to enhance viral RNA replication (Blight et al., 

2000; Appel et al., 2005a). Similarly, inhibition of NS5A hyperphosphorylation by using 

small molecule kinase inhibitors enhanced replicon RNA replication (Neddermann et al., 

2004). Moreover, only basally phosphorylated form of NS5A (p56) is found in the 

membranous web along with other viral proteins that make the replication complex (Waris et 

al., 2004). These observations suggest that only the hypo-phosphorylated p56 isoform of 

NS5A is required for HCV RNA replication. As the phosphorylation state of NS5A does 

affect its binding capacity to NS5B RdRp, it was hypothesized that NS5A phosphorylation 

mediates RNA replication through indirect mechanisms. In agreement, it was reported that 

hyperphosphorylation of NS5A inhibits its interaction with human vesicle-associated 

membrane protein-associated protein (hVAP-33) which is involved in intracellular vesicular 

trafficking. This results in a disruption of replication complex formation and an inhibition of 

viral RNA replication (Evans et al., 2004; Gao et al., 2004). More recently it has been 

demonstrated that NS5A phosphorylation may also play direct role in inhibition of viral RNA 

replication by modulating the binding of NS5B to the RNA template (Ivanov et al., 2009).  

 

Taken together, these observations suggest that NS5A may function as a molecular switch 

between viral RNA replication and particle assembly, depending on its phosphorylation state.  

 

1.6.3. Interactions of NS5A with key actors of host cell pathways 
 
Many of the HCV viral proteins interact with host cell signal pathways to modulate them in a 

targeted manner. HCV NS5A has been reported interact with numerous host cell proteins. It 

can be envisaged that both differences in phosphorylation, and the natively unfolded nature of 

Domains II and III,  gives NS5A the ability to adopt different conformations and thus interact 

with many different host proteins (Hanoulle et al., 2009a; Hanoulle et al., 2010). Numerous 

studies have demonstrated that NS5A is involved in the modulation of host immune responses 
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as well as control of the cell cycle and programmed cell death (Gale et al., 1997; Tan et al., 

2001; Macdonald et al., 2005; Verdegem et al., 2011). 

 

NS5A has been implicated in the modulation of host immune responses, especially in the 

inhibition of interferon induced antiviral response through its interaction with the dsRNA-

activated protein kinase (PKR) through its PKR binding region (residues 237-302) (Gale et 

al., 1997). PKR is well known to be involved in the interferon-mediated cellular response to 

viral infections (Hovanessian 1989). However, different studies have shown conflicting 

results regarding the consequences of the interaction between NS5A and PKR. It has been 

reported that NS5A prevents PKR dimerization and thus inhibits interferon antiviral activity 

(Gale et al., 1997; Gale et al., 1998). On the other hand, some studies have suggested that 

NS5A does not interact with PKR and that NS5A-induced inhibition of interferon signaling is 

independent of PKR (Ezelle et al., 2001; Podevin et al., 2001). It has been suggested that, 

besides direct inhibition of the interferon response through interaction with PKR, NS5A may 

also indirectly disrupt interferon response via its interaction with the MAPK signaling 

pathway (He et al., 2002). Furthermore, NS5A has been shown to up-regulate interleukin8 

(IL8, also termed CXCL8) expression, which is known to reduce the antiviral activity of 

interferon, resulting in a weakening of the host antiviral response (Khabar et al., 1997; Polyak 

et al., 2001b). 

Evasion of apoptosis and maintenance of cell survival are very important strategies adopted 

by viruses to ensure persistence of infection. NS5A is able to modulate apoptosis and cell 

growth by interfering with several cellular pathways. Recently it has been described that 

NS5A interacts with FK506-binding protein 38 (FKBP38) and impairs its interaction with 

mammalian target of rapamycin (mTOR) resulting in activation of the mTOR pathway 

leading to inhibition of apoptosis (Peng et al., 2010). Similarly, interactions between NS5A 

and Growth receptor binding protein 2 (Grb2) results in reduced activity of extracellular 

signal regulated kinase (ERK) and MAPK signal transduction pathways resulting in inhibition 

of apoptosis (Chang et al., 2001; He et al., 2002; Georgopoulou et al., 2003). In addition, it 

has been reported that NS5A can interact with the cellular tumor suppressor p53 to cause its 

retention in cytoplasm and reduction of nuclear p53 leading to inhibition of apoptosis (Lan et 

al., 2002). p53 is a transcription factor that induces the transcription of several pro-apoptotic 

genes while inhibiting the transcription of anti-apoptotic genes. Survivin, an anti-apoptotic 

protein that is highly expressed in tumors and often associated with metastasis, is negatively 

regulated by p53 (Muchmore et al., 2000; Sah et al., 2006). A recent study has reported that 
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NS5A activates survivin via the enhanced degradation and interference of nuclear 

translocation of p53, thus contributing to the inhibition of apoptosis in NS5A-expressing 

hepatocytes (Jiang et al., 2011). NS5A has also been reported to interfere with the PI3K-Akt 

cell survival pathway thus providing protection against apoptosis in NS5A expressing cells or 

replicon transfected cells (Street et al., 2004; Macdonald et al., 2005). These studies have 

demonstrated that NS5A can directly activate PI3K through its interaction with p85 regulatory 

subunit and p110 catalytic subunit of PI3K (He et al., 2002). NS5A has also been shown to 

inhibit TNF-dependent apoptosis. It has been demonstrated that NS5A interacts with TNF-R1 

associated death domain (TRADD) and interrupts the TRADD-FADD signaling pathway 

(Majumder et al., 2002; Park et al., 2002; Miyasaka et al., 2003). In addition, another study 

has suggested that NS5A may interact with Bcl2 family proteins to block apoptosis (Chung et 

al., 2003). However these studies have been conducted using either over-expressed or purified 

NS5A and must be interpreted carefully. 

 

Besides preventing programmed cell death by apoptosis, NS5A also induces cell proliferation 

by interfering with cell cycle regulatory pathways. Some studies have suggested that NS5A 

perturbs cell growth by interacting with Grb2 via its C-terminal proline rich region (Tan et al., 

1999; He et al., 2002). NS5A-mediated repression of the Grb2 pathway results in inhibition of 

downstream ERK and MAPK activation (Georgopoulou et al., 2003). Among many other 

activities, the MAPK signaling pathway is known to regulate cell proliferation, suggesting 

that, by interfering with Grb2 and downstream MAPK pathways, NS5A may influence the 

cell cycle.  Cyclin dependent kinases (Cdks) are cell cycle regulatory proteins that control the 

cell cycle progression. The Cdks are in turn regulated by inhibitory proteins such as p15, 

p19and p21Waf1/cip1. Several studies have demonstrated that p21Waf1/cip1 is down-regulated by 

NS5A, resulting in increased cell proliferation (Majumder et al., 2001; Qadri et al., 2002). It 

has been demonstrated that this down regulation of p21Waf1/cip1 byNS5A is dependent on p53, 

where cytoplasmic sequestration inhibition of transcriptional activity of p53 by NS5A results 

in inhibition of p21Waf1/cip1(Majumder et al., 2001; Gong et al., 2004). However these results 

have never been reproduced in vivo or in replicon models that do not use over-expressed 

NS5A. Another study has demonstrated that NS5A forms a heterotrimeric complex with 

TATA box binding protein (TBP) and p53 thus preventing their function as transcription 

factors (Qadri et al., 2002). Although NS5A interactions with cell cycle regulatory proteins 

have been demonstrated, the precise effects of these interactions still remain elusive and need 

further study. 
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Besides above stated pathways, NS5A has been reported to interact with several other cellular 

proteins such as Src-family kinases (Lyn, Lck, Fyn, Hck) (Macdonald et al., 2004), 

amphiphysin II (Zech et al., 2003), karyopherin β3 (Chung et al., 2000) and many others for 

whom exact physiological role remains to be studied. Indeed, some studies have reported that 

inhibition of interaction between a cellular geranylgeranylated protein FBL2 and NS5A 

significantly reduces HCV RNA replication, although the mechanisms underlying these 

observations remain to be detemined (Ye et al., 2003; Wang et al., 2005). 

 

Taken together, these reports suggest that NS5A perturbs the regulation of both apoptosis and 

cell cycle, and therefore may be involved in the initiating events of liver carcinogenesis. 

 

 

1.6.4. Transcriptional activation of host cell genes by NS5A 
 
The central region of NS5A contains two acidic rich (AR) regions: AR1: residues 2143-2184 

and AR2: residues 2220-2273, and one proline rich region (residues 2282-2328) (Figure 1.16) 

(Tanimoto et al., 1997; Tan et al., 1999). These structural characteristics are a typical feature 

of many viral and eukaryotic transcription factors (Hope et al., 1988; Lillie et al., 1989). It has 

been demonstrated that, for transcriptional activation by the HIV-Tat and c-Jun transcriptional 

activators, both acidic and proline-rich regions are essential (Subramanian et al., 1994). In 

accordance with these observations, the central region (residues 163-359) of NS5A has been 

shown to carry transcriptional activation properties and is termed the ‘transcriptional 

activation region’ (Chung et al., 1997; Kato et al., 1997; Tanimoto et al., 1997; Fukuma et al., 

1998). This region is able to transactivate the transcription of the Gal4-lacZ fusion protein in 

yeast simple hybrid experiments. Moreover, it was demonstrated by our group that NS5A 

quasispecies variants isolated from the serum of the same patient, possess different levels of 

transcriptional activation potential in this yeast simple hybrid system (Pellerin et al., 2004). 

The proline rich region of NS5A may play a role in transcriptional activation by providing a 

potential SH3 binding site (Tan et al., 1999; Macdonald et al., 2004). Moreover NS5A also 

carries a putative functional Nuclear Localization Signal (NLS: PPRKKRTVV, residues 354-

362) immediately downstream of the transcriptional activation region.  Although the precise 

role of this NLS is unknown, its presence suggesting that NS5A could be translocated to the 
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nucleus where it may utilize its transcriptional activation properties (Figure 1.13) (Ide et al., 

1996).  

 

 

 

 
Figure 1.16: Schematic representation of the transcriptional activation domain of NS5A. 

 

 

Although NS5A carries a functional NLS, NS5A is localized predominantly in perinuclear 

region (Ide et al., 1996) as it has been demonstrated that the 27 N-terminal amino acids of 

NS5A constitute a small amphipathic alpha-helix that serves as an ER-membrane retention 

signal (Brass et al., 2002). Accordingly, N-terminal deletion mutants of NS5A almost 

exclusively localize to the nucleus, whereas this 27aa alpha helix is sufficient to retain a 

nuclear protein in the cytoplasm (Satoh et al., 2000; Brass et al., 2002). These findings 

suggest that for the NLS to induce nuclear localization, NS5A must first be liberated from its 

N-terminal region anchored into the ER membrane. Accordingly, several studies have 

reported that NS5A is indeed cleaved by both cellular caspases and calpain-like enzymes to 

produce shorter isoforms of NS5A, and that this proteolytic processing of NS5A could be 

inhibited by universal caspase inhibitor zVAD-fmk (Satoh et al., 2000; Goh et al., 2001; 

Kalamvoki et al., 2004). In addition, a recent study has demonstrated that caspase-cleaved 

isoforms of NS5A can translocate to the nucleus (Sauter et al., 2009). 

 

These observations suggest that N-terminally truncated forms of NS5A can translocate to the 

nucleus, where they may play a role in the transcriptional activation of host cell genes. 

Transcriptional activation of host genes by viral proteins may be one of the mechanisms 

adopted by the viral pathogen to interfere with the host immune response and cell cycle and to 

activate the expression of host factors required for viral replication. Such transactivation by 
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viral proteins may also have important consequences in pathogenesis. For example, chronic 

HCV infection is associated with increased serum IL8 levels that may play an important role 

in interferon resistance (Khabar et al., 1997; Polyak et al., 2001a). IL8 is known to reduce the 

antiviral activity of interferon, thus weakening the host cell response against viral pathogens 

(Khabar et al., 1997). It has been demonstrated that by its transactivation activity, NS5A can 

directly enhance activity of the IL8 promoter in reporter construct assays (Polyak et al., 

2001b; Girard et al., 2002).  

 

As mentioned in section 1.1.3, chronic infection by HCV often leads to the development of 

liver cirrhosis and primary hepatocellular carcinoma (HCC). Although cirrhosis is an 

important factor in development of HCC in HCV infected patients, it is likely that the viral 

proteins also play a direct role in the carcinogenesis, although this role is still unclear. As 

previously mentioned, NS5A has been shown to interact with cellular proteins such as p53 to 

modulate the expression of host genes involved in apoptosis and cell cycle regulation. It is 

also possible that the transcactivational activity of NS5A may also play a direct role in the 

development of these pathologies. As described above, NS5A can transactivate the IL8 

promoter (Polyak et al., 2001b). Besides inhibiting IFN response, aberrant levels of IL8 are 

also known to induce angiogenesis, an important factor in development of tumors (Lin et al., 

2004). Similarly, it has been shown that NS5A can transactivate the NS5ATP9 protein (Shi et 

al., 2008). NS5ATP9, also called p15PAF, has been shown to be over-expressed in many 

tumoral tissues including esophageal tumor tissue (Yu et al., 2001), pancreatic cancer cells 

(Hosokawa et al., 2007) and thyroid carcinoma cells (Mizutani et al., 2005), suggesting that 

NS5A mediated activation of NS5ATP9 may play a role in tumorigenesis.  

 

Taken together, these observations suggest that cleavage and translocation of NS5A to the 

nucleus could result in transcriptional activation or inhibition of certain cellular genes, 

including those linked with oncogenesis. Indeed, many viral oncogenic proteins have 

transcriptional regulation activity and can regulate host cell gene expression (Yoshida 1994; 

Kovelman et al., 1996; Van Tine et al., 2004). This hypothesis is further supported by the fact 

that NS5A is the only nonstructural protein of HCV that can be trans-complemented, 

suggesting that NS5A plays a key role in viral replication independent from its role in 

replication complex (Appel et al., 2005b). However, no experimental proof currently exists 

which demonstrates a direct role of NS5A in transcriptional regulation of cellular genes. One 

of the major focuses of research described in this thesis has been to study the direct role of 
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NS5A in transcriptional regulation of cellular genes. As described in the Results section of 

this thesis, I have successfully demonstrated that NS5A is recruited to host gene promoter 

sequences and can control their transcription to enhance HCV RNA replication.  

 

 

1.7. Aims of the Study 

 

As is evident from the above review regarding the functions of the NS5A protein, we are still 

lacking a comprehensive understanding of the complex mechanisms of HCV replication and 

HCV pathogenesis involving NS5A. Although indispensable for HCV replication, no clear 

direct NS5A function have been described so far. 

 

As stated above, HCV is a highly variable virus: in an infected individual, it exists in the form 

of a quasispecies; a complex, unstable mixture of genetically distinct but closely-related 

variants arising from the same inoculum. We propose that the random introduction of 

mutations in the HCV genome may confer novel or enhanced functions to the various HCV 

proteins. This may happen in any given hepatocyte and as a consequence, may trigger 1) the 

initiation of mechanisms leading to the development of liver pathologies such as 

hepatocellular carcinoma and 2) may confer different replication advantages to the 

corresponding virus. In agreement with this hypothesis,  it has been previously demonstrated 

in our laboratory that the transcriptional activation potential differs significantly between 

different NS5A quasispecies variants isolated from serum of an HCV infected patient 

(Pellerin et al., 2004).  

 

Based on these findings, we hypothesized that: (i) similar differences in terms of 

transcriptional activation potential may exist among naturally occurring NS5A quasispecies 

variants isolated from the liver tissue of an HCV infected patient; (ii) that NS5A variants with 

high transcriptional activation properties might interfere with cellular mechanisms thus 

exerting transforming effects on hepatocytes and may result in development of HCC; (iii) and 

that NS5A variants with high transcriptional activation potentials might give replication 

advantages to the corresponding virus in the tumoral environment. 

 

In this context, the initial aims of this project were to develop a novel murine model in which 

patient-isolated NS5A sequences were to be chronically expressed in a liver specific fashion 
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by using a last generation helper dependent adenoviral vector (HdAd). Such a vector would 

also be used for the transduction of difficult-to-transfect primary cell cultures. Then, this new 

model was to be used to understand the impact of the natural variability of NS5A on both the 

replication of viral RNA and on viral pathogenesis. 

 

 

Experimental design:  

 

NS5A variants were first isolated from a patient chronically infected with genotype 1b HCV. 

For the study of the role of NS5A transactivation properties in the development of liver 

pathology, different NS5A variants were screened according to their transactivation properties 

tested in the yeast one-hybrid model. Selected clones were then cloned into a helper 

dependent adenoviral vector, with a view to inducing a lifelong transgene expression in 

transduced mice to enable the study of HCV-related liver pathologies. However, due to 

insurmountable technical difficulties with this system, alternative viral vectors were 

developed. These permitted the pangenomic analysis of cell transcriptomes from NS5A-

expressing primary hepatocytes to identify host cell pathways targeted by NS5A 

transactivation function. In parallel, a sub-genomic HCV replicon model was used to study 

the role of NS5A transactivation properties in viral RNA replication. 
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             2 - MATERIALS AND METHODS 
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2.1. Genetic and phylogenetic analysis of NS5A transcriptional activation domain 
quasispecies compartmentalization 
 

Nucleotide and amino acid sequences were aligned with the Clustal X program, 

version 1.8. Distances between pairs of sequences were calculated using the DNADIST and 

PROTDIST modules of the PHYLIP package, version 3.572. The calculation was based on a 

Kimura two-parameter distance matrix with a transition-to-transversion ratio of 4.0 (Smith et 

al., 1997). The mean±SEM within-sample genetic distances were calculated for each sample, 

as well as the mean±SEM between-sample genetic distances (i.e. the genetic distances 

between different compartments from the same patient). To determine whether or not the viral 

quasispecies isolated from different compartment in the same patient were genetically 

different, the mean within-sample and between-sample genetic distances were compared by 

means of the t test. The average number of synonymous substitutions per synonymous site 

was compared to the average number of nonsynonymous substitutions per nonsynonymous 

site within and between each sample, after calculation by means of the Jukes-Cantor 

correction for multiple substitutions (Nei et al., 1986) with the program MEGA [S. Kumar, K. 

Tamura, M. Nei, Molecular Evolutionary Genetics Analysis (MEGA) version 1.02, Institute 

of Molecular Evolutionary Genetics, Pennsylvania State University].  

For phylogenetic analysis, the median branch lengths were calculated by means of a Kimura 

two-parameter distance matrix to create a neighbor-joining tree using the NEIGHBOR 

program in PHYLIP (Felsenstein, J., Cladistics 1989). Bootstrap support was determined by 

1000 resamplings of the sequences. Phylogenetic trees were constructed with both nucleotide 

and amino acid sequences 

 
2.2. Cell Culture 
 
2.2.1. Human Primary Hepatocyte Culture 
 
Cryopreserved primary human hepatocytes were purchased from ZenBio Inc, NC, USA. 

Hepatocytes were thawed according to supplier’s instructions. After thawing, hepatocytes 

were centrifuged for 10 minutes at 4 °C and 100 g, on a PBS-buffered 25% Percoll (Sigma 

Aldrich, St. Louis, MO, USA) gradient prepared in Hepatocyte Plating Medium (ZenBio 

Inc.). Supernatant was discarded and the hepatocyte pellet was resuspended in cold Plating 

Medium. The number and viability of resuspended hepatocytes was analysed using Trypan 

blue (Sigma Aldrich) and a haemocytometer. After counting, cells were resuspended in warm 

Plating Medium and were plated into six-well Primaria Culture Plates (BD Bioscience, MA, 
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USA) at 7.5 x 105 cells/well. Seeded hepatocytes were maintained at 37 °C with 5% CO2 

throughout the experiment. Eight hours post-plating, Plating Medium was replaced with 2mL 

Hepatocyte Maintenance Medium (ZenBio Inc.). 

 

 

2.2.2. NG and 293FT Cells Culture 

 

Hepatoma (NG; Abbott Laboratories, IL, USA) cells were maintained in Dulbecco’s Modified 

Eagle’s Medium (DMEM) supplemented with 10% Fetal Calf Serum (FCS), 100 units/ml 

Penicillin and 100µg/ml Streptomycin (Invitrogen Life Technologies, CA, USA). Human 

kidney cells (293FT; Invitrogen, CA, USA) cells were cultivated in identical media 

supplemented with 1X Non-Essential Amino Acids (Invitrogen).  

 

 
2.3. RNA Isolation 

 
2.3.1. RNA Isolation from Liver Tissue 
 
Liver tissue samples were obtained from patients infected with HCV of genotype 1b. Total 

RNA was isolated from hepatic tissue using a PARIS kit (Ambion, TX, USA) according to 

the manufacturer’s protocol. The quantity and quality of RNA were determined by NanoDrop 

and Agilent Bioanalyser analyses respectively (Agilent Technologies, CA, USA). Only the 

RNA samples with RNA integrity (RIN) > 8 were retained for downstream experiments. RNA 

was stored at -80°C until use. 

 

2.3.2. RNA Isolation from Cultured Cells 
 
RNA was isolated from cultured cells using a PARIS kit, and the quantity and quality of the 

resulting RNA was analysed as described above (section 2.2.1). 

 
2.4. Complementary DNA (cDNA) Synthesis 

 
Total RNA (2µg) isolated from liver tissues or cultured cells was used as a template to 

synthesize complementary DNA using a High Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems, CA, USA) according to the manufacturer’s protocol and stored at -

20°C.   
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2.5. Molecular Cloning 
 

2.5.1. Restriction Enzymes Digests 
 
Typically, two micrograms of DNA were digested with 10-15 U of the  respective restriction 

enzyme (Promega Corporation, Madison, WI, USA; New England BioLabs, Ipswich, MA, 

USA) in a total volume of 50µl using the manufacturer’s recommended buffer. Digestion 

reactions were incubated at 37 °c for 1 hour. After digestion, DNA was treated with 1µl SAP 

(Promega Corporation) which was then inactivated by incubation at 85 °C for 10 minutes. 

Digested DNA samples were electrophoresed on 1% agarose gels, and bands corresponding to 

the expected size(s) were excised and purified with a QIAQuick Gel Extraction Kit (Qiagen, 

Hilden, Germany) according to the manufacturer’s protocol. Purified DNA was eluted in 20µl 

Elution Buffer and stored at -20 °C. 

 
 
2.5.2. Ligation Reactions 
 
Ligation reactions were performed with the Rapid DNA Ligation Kit (Roche Applied Science, 

Indianapolis, IN, USA) according to the manufacturer’s instructions. Fifty nanograms of 

digested and dephosphorylated vector DNA was used for each ligation reaction, with a 1:3 

molar ratio of vector: insert. Ligation reactions were incubated for 10 minutes at room 

temperature and then kept on ice. 

 
 
2.5.3. TOPO Cloning 
 
For all TOPO cloning reactions, 1 µl of purified PCR product was mixed with 1µl TOPO 

Vector (Invitrogen), 1 µl of Salt Solution (Invitrogen) and 3 µl of DNase-free water. 

Reactions were incubated at room temperature for 5 minutes and then kept on ice. 

 

 
2.5.4. Transformation of competent bacteria 
 
For each transformation reaction, 25 µl Top10 One Shot competent E. coli (Invitrogen) were 

thawed on ice. Two microliters of ligation mixture was mixed with competent cells and 

incubated on ice for 15 minutes, followed by heat shocking at 42 °C for 30 seconds in a water 

bath. Cells were again incubated on ice for 2 minutes followed by the addition of 250 µl pre-

warmed SOC medium without antibiotics (Invitrogen) and incubated at 37 °C for 1 hour in 
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shaker incubator at 200 rpm. Cells were then spread on BHI-agar plates containing the 

appropriate antibiotics and plates were incubated at 37 °C overnight. 

 

 

2.5.5. Colony Screening 
 
Colony screening was performed by PCR analysis. The appropriate PCR primers flanking the 

insertion site in the vector were used to amplify the insert. Selected colonies were picked with 

sterile inoculation loops (Sarstedt, France) and resuspended in 25 µl sterile nuclease free 

water in 96-well plates. Five microliters of this suspension was used as a template for 

screening PCR, and a further 5µl was used to inoculate 4 mL of liquid BHI medium (BD 

Bioscience) containing the appropriate antibiotics to make stock cultures for subsequent 

plasmid DNA isolations. 

 

Amplified PCR products were analyzed on 1 % agarose gels, and colonies that produced 

appropriately sized fragments were considered positive. The amplification products from 

these positive colonies were sequenced to confirm the orientation and integrity of the insert.  

 
 
2.5.6. Nucleotide Sequencing 
 
To identify quasispecies variants, to determine orientation of insert or to confirm the integrity 

of cloned constructs, DNA was sequenced by the dye termination method in an ABI 377 

DNA Sequencer (Applied Biosystems) with the ABI PRISM BigDye Terminator v3.0 Cycle 

Sequencing Kit (Applied Biosystems) according to the manufacturer’s instructions. The 

sequence data obtained were analyzed using BioEdit and Vector NTI (Invitrogen) software. 

 
 
2.5.7. Plasmid DNA Purification 
 
2.5.7.1. Small Scale DNA Purification 
 
Plasmid minipreps were performed by alkaline lysis method using a PureLink HQ Plasmid 

Miniprep Kit (Invitrogen) according to manufacturer’s protocol. Plasmid DNA was eluted 

with 75µl TE buffer and quantified with a spectrophotometer using 260 nm wavelength. DNA 

purity was evaluated by ratio of optical density at 260 nm over 280 nm. Only the samples that 

showed 260/280 ratio greater than 1.6, were used in downstream applications. Purified DNA 

was stored at -20°C.  
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2.5.7.2. Large Scale Isolation 
 
Plasmid maxipreps were performed by alkaline lysis method using PureLink HiPure 

Maxiprep Kit (Invitrogen) according to manufacturer’s protocol. After elution, DNA was 

precipitated with isopropanol after centrifugation at 10000 xg for 45 minutes at 4 °C. After 

centrifugation, supernatant was discarded and DNA pellet was air dried and resuspended in 

300µl nuclease free water. DNA was quantified using a spectrophotometer as described 

previously (section 2.4.7.1). DNA concentration was adjusted to 1 µg/µl and stored at -20 °C. 

 

2.5.8. Yeast One-Hybrid Assays 
 

To create yeast one-hybrid vectors, the transcriptional activation domain of isolated NS5A 

sequences (aa 163-359) were cloned into yeast expression vector pGBT9 (Clontech, Takara 

Bio Inc. Shiga, Japan) (Figure 2.1). The NS5A transcriptional activation domain sequences 

were amplified using NS5A-tr-EcoRI and NS5A-tr-BamHI primers. Amplified PCR products 

were purified by a Microcon PCR Purification Column (Millipore, MA, USA). Two 

micrograms of purified DNA and 2µg pGBT9 vector DNA was digested with EcoRI and 

BamHI and ligated to obtain pGBT9-NS5Atr (Figure 2.1). Ligation products were 

transformed into competent cells and colonies were screened as described in sections 2.4.4 

and 2.4.5 respectively. 
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Figure 2.1: Cloning of NS5A transcriptional activation domain into pGBT9. pGBT9 
plasmid DNA and amplified NS5A transcriptional activation domains were digested with 
EcoRI and BamHI enzymes and ligated to produce pGBT9-NS5Atr. 
 

 

2.5.9. Mammalian Expression Vector 
 
For expression of NS5A in cultured cells, HCV quasispecies variants were cloned into the 

pHM6 vector (Roche Life Science). For this purpose, full-length NS5A sequences were PCR 

amplified with NS5A-HindIII and NS5A-BamHI primers. Amplified DNA and vector DNA 

was digested with the appropriate restriction enzymes and then ligated as described in sections 

2.4.1 and 2.4.2 respectively to give pHM6-NS5A (Figure 2.2). Ligation products were 

transformed into competent cells and colonies were screened for the correct inserts as 

described in sections 2.4.4 and 2.4.5 respectively. 
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Figure 2.2: Vector map of pHM6-NS5A. NS5A was cloned into pHM6 using the HindIII 
and BamHI restriction sites. Expression of NS5A in eukaryotic cells is driven by the CMV 
promoter. 
 
 

2.5.10. Subgenomic Replicon Shuttle Vector 
 
A shuttle Vector (p1071) for the subgenomic HCV replicon (genotype 1b) was obtained from 

the Global Research and Development Center (Abbott Laboratories, IL, USA). This replicon 

shuttle vector carries NotI and PacI restriction sites in the 3' regions of NS4B and NS5A 

respectively (Figure 2.3).. However, as the NotI restriction site is present in NS4B at 97 bases 

upstream of NS5A, this site could not be used to clone already isolated full-length NS5A 

quasispecies variant sequences not containing downstream 97 bases of NS4B. To enable the 

cloning of already isolated NS5A quasispecies variants, a silent mutation encoding a 

restriction site for SacII was introduced in both the shuttle vector and in patient derived NS5A 

inserts by site directed mutagenesis 88 bp into NS5A. Subsequently, the region between the 

NotI and PacI restriction sites encoding NS4B and the N-teminus of NS5A was PCR-

amplified from p1071 and cloned into pCR2.1-TOPO. The SacII-PacI fragment 

(encompassing nucleotides 89-1328 of NS5A) in pCR2.1-TOPO was then replaced with the 

SacII-PacI fragment of patient isolated NS5A sequences. Finally the NotI-PacI fragment from 

intermediate vector containing patient derived NS5A, was cloned into replicon shuttle vector 

(Figure 2.3). In addition, the in vitro fitness mutation S2204I (REF) was introduced by site 
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directed mutagenesis into all NS5A sequences before being cloned into replicon shuttle 

vector.  

 

 
 
Figure 2.3: The subgenomic replicon shuttle vector. Patient isolated NS5A sequences were 
cloned using NotI and PacI restriction sites. 
 

 

2.5.11. Lentiviral NS5A Expression Vector 
 
For cloning into a Lentiviral expression vector, full-length NS5A sequences were amplified 

by PCR using NS5A-kozak-S containing a modified kozak sequence followed by a start 

codon and NS5A-stop-AS containing two stop codons. Amplification was performed with 

Advantage 2 Polymerase Mix (Clontech) and following cycle: 
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Amplified NS5A fragments were cloned into pLenti6.3/V5-TOPO Vector (Invitrogen) as 

described in section 2.4.3 and ligation products were transformed into Stbl3 competent cells 

(Invitrogen) as described in section 2.4.4. Colonies were screened and the inserts were 

sequenced to verify their integrity, as described in section 2.4.5. The pLenti6.3/V5-TOPO 

vectors containing cloned transgene sequences were used to produce Lentiviral particles 

(described in section 2.7). 

 

 

 

Figure 2.4: Vector map of pLenti6.3/V5-TOPO-NS5A. After amplification with NS5A-
kozak-S and NS5A-stop-AS primers, TOPO-TA cloning (section 2.4.3) was used to clone 
NS5A inserts into this vector. 
 

 

2.5.12. Functional analysis of Acid Rich 2 region of NS5A 
 
To study the role of naturally occurring mutations present in Acid Rich 2 region (AR2) of 

NS5A, AR2 regions from strong and weak transactivating NS5A variants were swapped using 

a PCR based swapping strategy adapted from (Deminie et al., 1993) as illustrated in Figure 

2.5. Briefly, AR2 amplification primers B-NS5A-swap and C-NS5A-swap were designed 

such that their 5’ ends were complementary to the ‘receiving’ NS5A sequence whereas their 

3’ ends were complementary to the ‘donor’ NS5A. Primers A (NS5A-NotI primer) and D 

(NS5A-HindIII primer) were entirely complementary to the receiving NS5A sequence. In the 

first step, NS5A fragments that flank the AR2 sequence were amplified from receiving NS5A 
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by primer sets AB and CD, whereas the AR2 sequence was amplified from donor NS5A using 

primer set BC. In the second step, these three fragments were mixed and PCR was performed 

by primer set AD to amplify full-length chimeric NS5A sequences. 

 

 

 
 

Figure 2.5: Schematic representation of PCR based strategy to produce chimeric NS5A 
by exchanging AR2 sequence from another NS5A variant. The dashed lines represent the 
variant NS5A-a while solid lines represent the NS5A-b variant. Straight arrows (labeled A, B, 
C, D, E and F) represent oligonucleotides while bent arrows indicate that oligonucleotide is 
homologous to NS5A-a in one half and to NS5A-b in other half. AB, CD and EF represent 
three amplification products. Adapted from (Deminie et al., 1993). 
 

 

2.5.13. Site-Directed Mutagenesis 
 
To introduce point mutations in cloned sequences, PCR based site-directed mutagenesis was 

performed using the QuickChange II XL Site-Directed Mutagenesis Kit (Agilent 
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reaction was performed according to the manufacturer’s protocol using 50 ng of template 

DNA.  

 

2.6. Construction of an NS5A Adenoviral Vector 
 

To clone patient-isolated NS5A sequences into the helper dependent adenoviral vector, we 

developed a strategy that uses two intermediate plasmids that can be easily recombined by 

Gateway LR recombination to produce the complete NS5A expression cassette. Gateway LR 

recombination uses the specific recombination sites of bacteriophage  and allows quick and 

efficient insertion of a DNA sequence into a plasmid without any restriction digestion. The 

two intermediate plasmids are termed as the Entry and Destination Vectors. The Entry Vector 

contains patient-isolated NS5A sequence that is transferred to the Destination Vector after 

recombination. The Destination vector contains the rest of the sequences required for liver-

specific expression of NS5A (notable: the PEPCK promoter, human factor IX, huGHpA and 

polyadenylation signal). Construction of these vectors and recombination are described in 

following sections. 

 
 
2.6.1. Construction of the Entry Vector 
 
The construction of the entry vector was carried out in following steps: 
 
1)  The T2A chisel sequence was synthesized by PCR using two complementary primers that 

also introduced SrfI and BglI restriction sites at the 5’ and 3’ ends of the T2A sequence 

respectively. The PCR-generated T2A sequence was cloned into pCR2.1-TOPO vector 

(Invitrogen) to produce pCR2.1-TOPO-T2A-SrfI-BglI. Then the sequence between SrfI and 

XhoI sites (125bp) was PCR amplified from pCR2.1-TOPO-T2A-SrfI-BglI using CACC-SrfI-

T2A-S and TopoT2A-XhoI-AS primers. This fragment was cloned into pENTR/D-TOPO 

(Invitrogen) between the attL1 and attL2 sites. This plasmid, pENTR-T2A-XhoI, contained a 

BglI restriction site immediately downstream of the T2A sequence.  

 

2)  As the AscI restrictions sites of pENTR-T2A-XhoI were to be used to clone the complete 

expression cassette into adenoviral genome, the elimination of an extra AscI restriction site in 

pENTR-T2A-XhoI was necessary. To remove this restriction site, pENTR-T2A-XhoI was 

digested with AscI and then treated with the Klenow fragment of Polymerase I (Invitrogen) to 
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fill-in the sticky ends. The blunt ends obtained were ligated with Rapid DNA Ligation Kit 

(Roche Lifescience) to obtain pENTR-T2A-XhoI-ΔAscI. 

 

3) Patient-isolated NS5A sequences were amplified with Bgl1-NS5Apop28-S and NS5A-

Stop-XhoI-AS primers containing BglI and XhoI restriction sites respectively. NS5A-Stop-

XhoI-AS primer also introduced a stop codon at the 3’ end of NS5A.NS5A sequences were 

cloned into the BglI and XhoI restriction sites of pENTR-T2A-XhoI-ΔAscI, and the resulting 

vector was termed pENTR-T2A-NS5A.  

 

2.6.2. Construction of the Destination Vector 
 
A plasmid (pPEPCK-FIX) containing all the sequences required for liver-specific expression 

of the target gene (NS5A) was kindly provided by Dr. Nicola Brunetti-Pieri at Department of 

Molecular and Human Genetics, Baylor College of Medicine, Houston, USA. Two stop 

codons immediately downstream of human Factor IX (FIX) sequence in pPEPCK-FIX 

plasmid were removed by site-directed mutagenesis using QuickChange Mutageneis Kit 

(Agilent Technologies). After deleting the two stop codons, pPEPCK-FIX was converted into 

a Gateway Destination Vector using the Gateway Vector Conversion System (Invitrogen). 

This kit allows the insertion of an LR recombination cassette into any plasmid to convert it to 

a Destination Vector. This kit also allows the insertion of recombination cassette in any of the 

three reading frames to allow continued translation from upstream sequences. We inserted the 

recombination cassette for Reading Frame A (RFA). For this purpose, pPEPCK-FIX was 

digested with SrfI and RFA cassette was ligated into pPEPCK-FIX vector to produce 

pPEPCK-FIX-Dest (Figure 2.10). The ligation products were transformed into ccdB Survival 

Cells (Invitrogen). The RFA gateway conversion cassette encodes a gene conveying 

Chloremphenicol Resistance (CmR) as transformation selection marker as well as the ccdB 

gene  that functions as negative selection lethal gene after homologous recombination (Figure 

2.10). The insertion sites were sequenced to confirm insertion and integrity of the correct 

reading frame.  

 
 
2.6.3. Generation of an NS5A Expression cassette by LR Recombination 
 
The Entry Vector (pENTR-T2A-NS5A) and Destination Vector were recombined to obtain a 

final expression clone (pPEPCK-FIX-T2A-NS5A (Figure 2.11)) containing patient-isolated 
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NS5A sequences as well as all sequences required for their liver-specific expression. This 

recombination was performed using LR Clonase II Enzyme (Invitrogen) according to 

manufacturer’s instructions. Recombination results in the production of a complete expression 

clone and another byproduct plasmid that contains the ccdB lethal gene. After transformation 

of bacteria, expression of ccdB lethal gene results in elimination of all cells that contain the 

byproduct plasmid thus resulting in the survival of only those colonies that contain pPEPCK-

FIX-T2A-NS5A.  

 
2.6.4. Production of Recombinant Adenoviral Particles 
 
Recombinant helper-dependent adenoviral particles were produced in collaboration with Dr. 

Nicola Brunetti-Pieri as described in (Palmer et al., 2003). Briefly, the complete NS5A 

expression cassette (pPEPCK-FIX-T2A-NS5A) was cloned into the AscI restriction sites of 

the helper-dependent adenoviral genome. Recombinant helper-dependent viral genomes was 

transfected into 293Cre cells along with the helper virus AdNG163 . Recombinant viral 

particles were characterized as previously described (Palmer et al., 2003). 

 
 

Figure 2.6: Schematic representation of helper-dependent adenoviral particle 
production. Ѱ indicates the viral genome packaging signal whereas ΔѰ indicates non-functional packaging signal. ITR = inverted terminal repeats. Red color indicates the adenoviral sequence. Green color indicates stuffer DNA sequence while yellow color indicates our transgene expression cassette (Adapted from (Palmer et al., 2003)). 
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2.7. Injection of Recombinant Adenoviruses into Mice 
 
Four month old C57Bl6 male mice were transduced with 5 x 105 vp/Kg recombinant 

adenoviruses encoding NS5A or hFIX. Mice were anaesthetized with intra-peritoneal 

injections of 40 mg/Kg body weight sodium pentobarbital (Sigma Aldrich). A fine catheter 

was surgically inserted into the jugular vein and a 20 µl suspension of viral particles in sterile 

isotonic saline solution was administered into jugular vein through the catheter. After 

administration of the viral particles, the catheter was retrieved, the open area was sutured and 

mice were kept in aseptic cages. Blood samples were collected by tail vein incision. Sacrifice 

took place by CO2 euthanasia to collect blood, liver, spleen and kidney tissue samples. 

 

 

2.8. In vitro Transcription and Purification of Replicon RNA 
 
2.8.1. Plasmid Linearization 
 
Twnety-five micrograms of replicon plasmid DNA was linearized by XhoI digestion in a  

final reaction volume of 200µl. After XhoI digest, plasmid DNA was purified by 

Phenol:Chloroform extraction. For this, 200µl Phenol: Chloroform: Isoamyl alcohol (25:24:1) 

(Invitrogen) was mixed with the digested DNA and the sample was transferred to a microfuge 

tube containing PhaseLock Heavy Gel (5Prime). The sample was centrifuged at 10000 g for 5 

minutes to separate the phases, and the aqueous phase was transferred to a new microfuge 

tube.  Then 1/10 volume of 3M NaOAc and 2.5 volumes of 100% ethanol were added, and the 

mixture incubated at -20 °C for 1 hour. Samples were centrifuged at 14000 g for 20 minutes, 

the supernatant discarded and the DNA pellet was washed with ice cold 70% ethanol. The 

resulting pellet was air dried and resuspended in 30 µl of nuclease free water. Linearized 

replicon plasmid DNA was analyzed on a 0.8% agarose gel along with 0.5µg 1kb DNA 

Ladder Plus (Fermentas). DNA concentration was determined using GeneTools software 

(SynGene). 

 

 

2.8.2. In vitro Transcription 
 
Replicon RNA was transcribed from the linearized replicon plasmid DNA using T7 

MegaScript Kit (Ambion) according to the manufacturer’s instructions. 
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2.8.3. Purification and Quantification of in vitro Transcribed RNA  
 
In vitro transcribed RNA was purified using the RNeasy Mini Kit (Qiagen) according to the 

RNA Cleanup Protocol provided by the manufacturer. Purified RNA was quantified with a 

spectrophotometer and the final RNA concentration was adjusted to 1µg/µl. The RNA sample 

was divided into 2µl single use aliquots and stored at -80°C. 

 
 
2.9. Generation and Titration of Lentiviral Particles 
 
pLenti6.3/V5-TOPO vectors containing cloned NS5A sequences (section 2.4.11) were used to 

produce lentiviral particles using the ViraPower HiPerform Lentiviral Expression System 

(Invitrogen) according to the following protocol: 

 
 
2.9.1. Transfection of 293FT Cells 
 
The day before transfection, 5x10 6 293FT cells (Invitrogen) were plated in 10 cm tissue 

culture plates. The next day, culture medium was replaced with 5 mL of Opti-MEM I Medium 

(Invitrogen) supplemented with 10% fetal calf serum and NEAA. In a sterile 15 mL tube, 9 

µg of ViraPower Packaging Mix and 3 µg of pLenti expression plasmid were mixed with 36 

µl Lipofectamine 2000 in 3 mL Opti-MEM I Medium without serum. The mix was incubated 

at room temperature for 20 minutes to allow the DNA-Lipofectamine 2000 complexes to 

form. After incubation, the complexes were added drop-wise to the monolayer of 293FT cells. 

The plates were then incubated at 37 °C in a humidified incubator with 5% CO2. Six hours 

after transfection, the medium was replaced with 10 mL fresh culture medium without 

antibiotics (DMEM supplemented with 10% serum). Transfected 293FT cells were then left 

for 72 hours before harvesting of the infected media. 

 
 
2.9.2. Harvest and Concentration of Lentiviral Particles 
 
Seventy-two hours after transfection, virus-containing culture medium was transferred to a 15 

mL falcon tube and centrifuged at 2000 x g for 15 minutes at 4°C to pellet cellular debris. 

After centrifugation, virus-containing supernatant from three replicate transfections was 

pooled into a fresh 50 mL tube. The cleared supernatant  was mixed with 10mL of 4X LentiX 

Concentrator (Clontech) and incubated at 4 °C for 2 hours, before being centrifuged at 1500 x 

g for 45 minutes at 4°C. After centrifugation, the supernatant was discarded and the virus-
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containing pellet was re-suspended in 3 mL DMEM. The viral suspension was divided into 

single use aliquots containing 1 x 106 cfu and stored at -80°C. 

 
 
2.9.3. Titration of Lentiviral Stock   
 
For the titration of lentiviral stocks, 1 x 105 Huh7.5 cells/well were plated in 6-well cell 

culture plates (Day 0). The next day, the culture medium was replaced with 1 mL of 10-fold 

serial dilutions (10-1, 10-2, 10-3, 10-4, 10-5 and –ve Control) of lentiviral stocks prepared in 

complete culture medium (DMEM supplemented with 10% fetal calf serum and antibiotics) 

(Day 1). The following day, the culture media was replaced with fresh complete culture media 

(Day 2). On day 3, the selection antibiotic Blasticidin (Invitrogen) was added to the culture 

media to a final concentration of 4µg/mL. The culture media was replaced every three days 

with fresh culture medium containing 4µg/mL Blasticidin. On day ~13, when no living cells 

were evident in non-transduced control wells, the cells were fixed with 1 % paraformaldehyde 

in PBS and stained with 0.1 % Crystal Violet in 10 % ethanol. The number of colonies was 

counted in each well and the viral titer was calculated for each well using the following 

formula. The average viral titer for all wells was considered as the viral titer of the stock. 

 
No. of Colonies     = cfu/mL  D = Dilution Factor 
       D x V    V= Volume of diluted virus added to the well 

 
 
2.9.4. Transduction of Cultured Cells 
 
2.9.4.1. Transduction of Primary Hepatocytes 
 
Primary human hepatocytes (1 x 106 cells/well) were plated in 6-well culture plates as 

described in section 2.1.1. Eight hours after plating, Plating Medium was replaced with 1 mL 

Maintenance Medium. Aliquots of lentiviral stocks were thawed at 37 °C in a water bath, and 

3 x 106 cfu (an MOI of 3) was added to each well of primary hepatocytes. The next day, the 

medium was replaced with 2 mL of fresh Maintenance Medium. 

 
 
2.9.4.2. Transduction of Huh7.5 Cells 
 
Huh7.5 cells (2 x 105 cells/well) were plated in 6-well culture plates as described in section 

2.1.2. Six hours after plating, aliquots of lentiviral stocks were thawed at 37 °C in a water 
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bath and 2 x 105 c.f.u (an MOI of 1) were added to each well. The following day, the culture 

medium containing lentiviral particles was replaced with 2 mL of fresh complete medium. 

 
 
2.10. Cell Transfections 

 
2.10.1. Transient DNA Transfections 
 
Transient DNA transfections were carried out using Lipofectamine LTX (Invitrogen) and Plus 

Reagent (Invitrogen). Briefly, NG cells were seeded at 1.5 x 105 cells/well in 6-well culture 

plates in complete culture medium. The next day, liposome complexes containing 2 µg of 

plasmid DNA were prepared according to the manufacturer’s instructions, and incubated at 

room temperature for 30 minutes to allow the formation of DNA-liposome complexes. During 

incubation, the culture medium of cells was replaced with 1.5 mL DMEM supplemented with 

5 % fetal bovine serum. After incubation, 500 µl of the DNA-liposome mix was added drop 

wise to each monolayer and incubated at 37 °C in a humidified incubator with 5 % CO2. After 

6 hours, the culture media was replaced with 2 mL fresh culture medium.  

 
 
2.10.2. RNA Transfections 
 
Transient RNA transfections were carried out using a TransIT mRNA Kit (Mirus Bio LLC, 

WI, USA). Huh7.5 cells were seeded at 2 x104 cells/well in 48-well culture plates in complete 

culture medium. The next day, 250 ng RNA was diluted in 25 µl Opti-MEM I Medium 

(Invitrogen), and  0.25 µl of RNA Boost Reagent was added. Then, 0.5 µl TransIT mRNA 

Reagent was added, mixed well and RNA-liposome complexes incubated at room temperature 

for 5 minutes. During incubation, the culture medium of cells was replaced with 100 µl Opti-

MEM I supplemented with 5 % fetal bovine serum. After incubation, 25 µl of RNA-liposome 

mix was added drop wise to the monolayers, which were then incubated at 37 °C in a 

humidified incubator with 5 % CO2. After 4 hours, the culture media was replaced with 200 

µl fresh culture medium. 

 
 
2.11. Inhibition of Cellular Caspases 
 
To inhibit the activity of cellular caspases, the pan-caspase inhibitor z-VAD-fmk (R&D 

Systems, MN, USA) was added to the culture medium at a final concentration of 20 µM. If 
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the cultured cells were to be kept more than 24 hours, fresh z-VAD-fmk was added every 24 

hours.  

 
 
2.12. Immunofluorescence Analysis 
 
Monolayers of cells were grown on 4-chamber Labtek Chamber Slides (Thermo Scientific). 

The following day, the media was removed and the monolayers were washed twice with PBS. 

Cells were then fixed with -20 °C 100 % Methanol at room temperature for 10 minutes. After 

three further rinses in PBS, cells were incubated with the appropriate primary antibodies in 

PBS for 90 minutes. Cells were again washed three times with PBS, and incubated for one 

hour at room temperature with the appropriate fluorophore-coupled secondary antibodies. 

Cells were then washed twice with PBS and incubated for five minutes at room temperature 

with 1 nM of To-Pro-3 Stain (Invitrogen). Finally, cells were washed two times with PBS and 

once with distilled water and air dried for two minutes before being mounted mounted with 

VectaShield Mounting Medium (Vector Laboratories Inc., CA, USA). 

 

Cells were observed with confocal laser scanning microscope (Leica DMRE-7/TCSSP2, 

Wetzlar, Germany) in conjunction with 62X and 40X objectives using 488 nm argon and 633 

nm He-Ne lasers. Image acquisition and analysis was performed with Leica TCS SP Software 

(Leica Microsystems), and reconstruction of 3D image projections from confocal z-stacks was 

done using Imaris Software (Bitplane AG, Zurich). 

 
 
2.13. Real Time Quantitative Gene Expression Profiling 
 
The expression of cellular geneswas analyzed using custom designed TaqMan Gene 

Expression Array plates (Applied Biosystems) according to the manufacturer’s guidelines. In 

brief, 20 ng of cDNA was used per well (reverse transcribed from total RNA as described in 

section 2.3) and reactions were performed with an Applied Biosystems 7300 Thermal Cycler.  
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2.14. Chromatin Immunoprecipitation Assay 
 
Chromatin Immunoprecipitation (ChIP) assays were performed as described below: 

 
2.14.1. Antibody coating of Protein A Mag Sepharose Beads 
 
Ten microliters of Protein A Mag Sepharose beads (GE Life Sciences, Chalfont St-Giles, UK) 

were resuspended in 1 mL PBS containing 5% bovine serum albumin (Sigma) and 1X 

Protease Inhibitor Cocktail (Roche Life Science). After incubation at 4°C for 3 hours on a 

rotator, an appropriate amount of beads were isolated for use as a Bead Only Control (BOC), 

and8 µl anti-NS5A sheep serum was added to the remainder. Both tubes were then incubated 

at 4°C overnight on a rotator. The following day, 200 µl aliquots of antibody-coated beads 

were transferred to fresh 1.5 mL microfuge tubes and kept on ice until use. 

 
 
2.14.2. Cross-linking and preparation of Chromatin 
 
Transduced Huh7.5 cells or primary human hepatocytes (described in section 2.7.4)  were 

harvested after 72 hours post-transduction. Briefly, the culture medium from cells was 

removed and 2.7 mL fresh DMEM containing 10% FCS was added. Then cells were 

crosslinked by the addition of 0.3 mL 10% formaldehyde solution for 10 minutes at RT. To 

stop cross-linking, 0.3 mL 1.375M Glycine solution was added. Plates were transferred to ice 

and washed three times with cold PBS containing 0.5 mM PMSF. Monolayers were scraped 

and the cells transferred to a fresh 1.5mL microfuge tube, with cells from duplicate wells 

being pooled into a single tube. After centrifugation at 1500 g to pellet the cells, the 

supernatant was discarded and cell pellets were resuspended in 300 µl ChIP Lysis Buffer (10 

mM HEPES, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT, 0.1% NP-40, 1X Protease Inhibitor 

Cocktail). After incubation on ice for 20 minutes, tubes were centrifuged at 5000 g for 5 

minutes at 4 °C to isolate nuclei. The supernatant was discarded and nuclei were resuspended 

in 400 µl Nuclei Lysis Buffer (50 mM Tris-HCl pH 8, 10 mM EDTA, 1% SDS, 1X Protease 

Inhibitor Cocktail). After 30 minutes incubation on ice, each sample was sonicated with a 

VibraCell 75115 Sonicator (BioBlock) for 7 cycles of 20 seconds each at 25% amplification 

with 60 seconds interval on ice after each cycle. After sonication, lysates were centrifuged at 

10000 g for 10 minutes at 4 °C and the resulting chromatin was transferred to a fresh tube. 

The upper lipid layer was discarded. Chromatin was pre-cleared with 5 µl Protein A Mag 

Sepharose beads, and the pre-cleared chromatin was transferred to fresh microfuge tubes and 
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kept on ice. A 50 µl aliquot of pre-cleared chromatin was transferred to another tube and 

stored at -80°C for preparation of Input DNA. 

 
2.14.3. Immunoprecipitation, Washes and Elution of Immune Complexes 
 
For immunoprecipitation, the supernatant of antibody-coated beads (section 2.12.1) was 

removed and 300 µl of pre-cleared chromatin was added. Tubes were incubated at 4 °C 

overnight on a rotator. The next day, tubes were placed on a magnetic rack and supernatant 

was discarded. Beads were then washed three times with 300 µl ChIP Lysis Buffer and 

transferred to fresh microfuge tubes. Immune complexes were eluted by adding 50µl ChIP 

Elution Buffer (20 mM Tris-HCl pH 8, 5 mM EDTA, 1% SDS, 50 mM NaCl, 50µg/ml 

proteinase K) and incubating at 68 °C for 15 minutes in a water bath. This step was repeated 

twice and the two elutes were pooled together. In parallel, input DNA samples were thawed 

and 100µl Elution buffer was added. 

 
 
2.14.4. Reverse cross-linking and DNA purification 
 
Both Input DNA samples and eluted immune complexes were incubated at 68 °C for 6 hours 

to reverse cross-linking.  The volume of each sample was brought to 300 µl with nuclease free 

water and 300 µl Phenol/Chloroform/Isoamyl alcohol (25:24:1) was added to each sample. 

Tubes were vortexed and samples were centrifuged at 10000 g for 5 minutes at 4 °C. The 

resulting aqueous phases were transferred to fresh tubes and 1.5 µl GenElute-LPA DNA 

carrier (Sigma) was added to each sample. DNA was precipitated by adding 0.1 volumes of 

3M NaOAc and 2.5 volumes of cold 100% ethanol. Following incubation for 30 minutes at -

20 °C, tubes were centrifuged at 15000 g for 15 minutes at 4 °C. The supernatant was 

discarded and DNA pellets were rinsed with 70 % ethanol before air drying. The purified 

DNA pellets were resuspended in 20 µl nuclease free water and stored at -20 °C until 

analysis. 

 
 

2.14.5. PCR Analysis 
 
PCR was used to detect the presence of specific promoter DNA sequences in ChIP samples. 

One microliter of ChIP DNA was used in each PCR reaction using the primers described in 

Table 2.1 (sequences in Appendix: Primers). PCR was performed with Advantage Polymerase 

in a Mastercycler Ep thermocycler (Eppendorf). PCR conditions were as follows: 95°C for 5 
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minutes; then 35 cycles of 95°C for 20 seconds, annealing temperature (Table 2.1) for 30 

seconds, 70°C for 45 seconds; followed by 70°C for 10 minutes. Amplification products were 

analyzed on a 1.5 % agarose gel. 

 
 

Gene Primers Annealing 
temperature 

Expected 
Product Size 

Interleukin 8 (IL8) IL8-prom3-S 
IL8-prom3-AS 

60 °C 252 bp 

Lymphotoxin β (LTB) LTB-prom1-S 
LTB-prom1-AS 

58 °C 155 bp 

NUAK2 NUAK2-prom1-S 
NUAK2-prom1-AS 

58 °C 175 bp 

TRAF2 TRAF2-prom-S 
TRAF2-prom-AS 

59 °C 249 bp 

MAP2K7 MAP2K7-prom-S 
MAP2K7-prom-AS 

57 °C 231 bp 

FBXL2 FBXL2-prom-S 
FBXL2-prom-AS 

57 °C 200 bp 

 
 
Table 2.1: List of primers used for ChIP Assays (sequences detailed in Appendix: Primers).  
 
2.15. Protein Analysis 

 
2.15.1.   Protein Quantification 
 
The protein content of cellular lysates was quantified using the Dc Protein Assay (BioRad) 

according to manufacturer’s instructions. Briefly, 2 µl sample aliquots of samples were 

analyzed by a modified Lowry assay, and the resulting absorbance at 690nm was measured. 

Protein concentrations were calculated with reference to the absorptions of protein standards, 

and were expressed as µg/µl total protein. 

 
 
2.15.2.   Western Blotting 
 
2.15.2.1. Denaturing Polyacrylamide Gel Electrophoresis (SDS-PAGE) 
 
Thirty micrograms of protein were combined with XT Sample Buffer (BioRad) and XT 

Reducing Agent (BioRad) at final concentrations of 1X in a total volume of 30 ul. 

Polypeptides were denatured by incubation for 10 minutes at 95 °C and then kept on ice. 

Twenty micrograms denatured samples were loaded on 4-12% Bis-Tris Criterion XT Precast 
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Gels (BioRad) and electrophoresed in XT-MOPS Buffer (BioRad, CA, USA) using Criterion 

Electrophoresis Cells (BioRad) according to manufacturer’s instructions.  

 
 
 
2.15.2.2. Immunoblotting of Polyacrylamide Gels 
 
After electrophoresis, separated proteins were transferred to a Hybond-ECL Nitrocellulose 

Membrane (GE Lifescience) in Transfer Buffer (25 mM Tris, 192 mM glycine, 20% 

methanol).  for 1 hour at 100 V. After transfer, membranes were stained with Ponceau S 

Solution (BioRad) to confirm protein transfer. After saturation for 1 hour in 5 % milk powder 

in TBS containing 0.1% Tween-20 (Sigma), membranes were incubated overnight with 

primary antibodies diluted in 5% fat-free milk in TBST at 4°C on a tube roller. The following 

day, membranes were washed three times with TBS containing 0.1% Tween-20 (TBST) and 

then incubated for 1 hour with the appropriate HRP conjugated secondary antibody diluted in 

5% fat-free milk in TBST. Membranes were again washed three times with TBST, and bound 

antibody was detected with ECL Advance (GE Lifescience) according to manufacturer’s 

instructions. Bands were visualized using a ImageQuant LAS 4000 Mini System (GE 

Lifescience). 

 
 
2.16. Yeast One-Hybrid Assay 

 

For yeast one hybrid assays, S. cerevisiae reporter strain Y187 (MATa, ura3-52, his3-200, 

ade2-101, trp1-901, leu2-3, 112, met-, gal4D, gal80D, URA3::GAL1UAS-GAL1TATA-lacZ 

; Clontech) was used (Clontech).  Y187 contains a stably integrated LacZ reporter gene 

regulated by a wild-type GAL1 promoter. Yeast were transformed with plasmids encoding the 

transcriptional activation domains of isolated NS5A (section 2.4.8) by the lithium acetate 

method following the manufacturer’s recommended protocol provided with the YeastMaker 

Yeast Transformation System (Clontech). pCL1 plasmid (Clontech), encoding wild-type 

GAL4, was used as a positive control for transformation. Transformants were grown on 

tryptophan-deficient synthetic dropout (SD) (trp-) media plates for 3 days at 30 °C. 

 

Reporter gene β-galactosidase activity was measured by a quantitative luminescent assay 

using the Galacto Star kit (Tropix, Perkin Elmer) according to the manufacturer’s protocol. 

Briefly, well-isolated transformed yeast colonies were grown overnight in trp- SD medium for 
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plasmid maintenance. When the optical density (OD600) reached 1.5, 2 ml of this culture was 

then used to inoculate 8 ml of YPD medium (1% bacto-yeast extract, 2% bacto-peptone, 2% 

dextrose) and grown in a shaking incubator at 30 °C up to mid-log phase (OD600 : 0.4 to 0.6). 

A 1.5 mL aliquot was used to prepare cell extracts. For this, the culture was centrifuged and 

the yeast pellet was resuspended in 300 µl of Z lysis buffer provided in the Galacto Star kit. A 

100 µl aliquot was subjected to 2 freeze-thaw cycles, and 20 µl was mixed with 300 µl of 

reaction buffer containing the Galacto Star substrate. After incubation for 20 min at room 

temperature, light emission was measured using Mithras LB940 Luminometer (Berthold 

Technologies). All assays were repeated in triplicate using three independent transformants 

for each construct. The β-galactosidase activity was calculated as a relative value over that of 

vector pGBT9 alone. 

 
 
2.17. Luciferase Reporter Activity Assay 
 
Cells transfected with subgenomic HCV replicons containing the luciferase reporter gene 

were washed with PBS and lysed with Cell Culture Lysis Buffer (Promega). Fifty microliters 

of the lysate was mixed with 25µl Luciferin solution (Promega) and luciferase activity was 

measured with a Mithras LB940 Luminometer (Berthold Technologies). All luciferase 

activity measurements were performed in triplicate. 
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3. - RESULTS 
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 Phylogenetic and functional analysis of NS5A quasispecies variants 

 
3.1.1. Genetic Compartmentalization of NS5A Quasispecies Variants 
 
In order to investigate the quasispecies sequence variability in the liver tissues, total RNA was 

isolated from tumoral and adjacent non-tumoral liver tissues from six patients infected with 

genotype 1b HCV, and the NS5A sequences amplified by RT-PCR and cloned into pCR2.1-

TOPO vector. For each sample, 30 randomly generated colonies were selected and the 

corresponding NS5A transcriptional activation domain was sequenced. A total of 358 

sequences were generated. Phylogenetic analysis of these sequences allowed the 

characterization of NS5A quasispecies variants in both tumoral and non-tumoral adjacent 

tissue in terms of both quasispecies complexity (Figure 3.1-A) and genetic distance (Figure 

3.1-B). Such analyses revealed that there was lower quasispecies complexity within tumoral 

tissue (lower Shannon Entropy). Moreover, for 3 out of 6 patients, we observed a higher 

genetic distance between quasispecies variants isolated from tumoral tissue versus those 

isolated from non-tumoral adjacent tissue.  
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[B] 

  Amino acid distances +/‐ SD  t test p value 

Patients  Inter N versus T  Intra N  Intra T  N versus T 

1  0.020  0.018  0.020  NS 

2  0.017  0.017  0.015  0.001 

3  0.010  0.007  0.011  0.001 

4  0.030  0.023  0.022  NS 

5  0.044  0.019  0.032  0.001 

6  0.023  0.018  0.018  NS 

 

 
Figure 3.1: The complexity of NS5A transcriptional activation domain quasispecies 
variants in non-tumoural and tumoural liver. [A] A: Normalized Shannon’s entropy was 
calculated for NS5A transcriptional activation domain quasispecies variants (amino acid 
sequences) isolated from tumoral and non-tumoral adjacent tissues from all 6 patients. 
Shannon’s entropy value is 0 when there is no difference i.e., only one variant whereas it is 1 
when all variants differ from each other and are equally represented. [B] To calculate genetic 
distances, CLUSTAL W program was used to align amino acid sequences Distances between 
pairs of amino acid sequences were calculated by using the PROTDIST module in the 
PHYLIP package version 3.572. Calculation was based on a Kimura two-parameter distance 
matrix with a transition-transversion ratio of 4.0. The mean +/-standard deviation within-
sample genetic distances were calculated for each tissue. 
 
 
3.1.2. Functional Compartmentalization of NS5A Quasispecies Variants 
 
As described above, phylogenetic analyses showed a genetic compartmentalization of NS5A 

quasispecies variants in tumoral and non-tumoral adjacent tissues. I next hypothesized that the 

genetic compartmentalization was linked to a functional compartmentalization of NS5A 



Results 
 

 
71 

NS5APatient’s cDNA

BamH1EcoR1

NS5A TrD

VariantGAL4 DNA BD

BamH1EcoR1

pGBT9-NS5A TRP1 AMP

quasispecies variants. As described in section 3.1, our group has previously demonstrated that 

there is a significant difference of transcriptional activation potential among NS5A 

quasispecies variants isolated from serum of an HCV infected patient (Pellerin et al., 2004). 

Therefore, to investigate this hypothesis, I studied the transcriptional activation potential of 

NS5A quasispecies variants.  

 

For this purpose, I cloned the transcriptional activation domains of the isolated NS5A 

quasispecies variants into the yeast one hybrid vector pGBT9 (Figure 3.2) and performed 

yeast one-hybrid assay to analyse the ability of different variants to transactivate the yeast 

GAL4 promoter.  

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.2: Schematic representation of yeast one-hybrid constructs encoding NS5A 
variants. The NS5A transcriptional activation domains (NS5A TrD) were amplified from 
patient’s cDNA and cloned into pGBT9, giving fusions of the Gal4 DNA binding domain 
(BD) with the respective NS5A transactivation domains for each variant. 
 

 

In agreement with previous results (Pellerin et al., 2004), the results of these analyses 

demonstrated that the isolated quasispecies variants of NS5A possessed significantly different 

transcriptional activities irrespective of the compartment (non-tumoral vs tumoral) studied 

(Figure 3.3).  
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Figure 3.3: Transcriptional activation potential of NS5A variants.  The transcriptional 
activation domains of NS5A quasispecies variants isolated from the patients were cloned into 
yeast one-hybrid vector pGBT9 as described in figure 3.3. Yeast one hybrid vectors 
expressing NS5A TrD – GAL4 DNA BD fusion proteins were transfected into yeast. The 
potential of the hybrid proteins to activate transcription of LacZ gene was analyzed by 
quantification of β-galactosidase activity. Results obtained from the variants isolated from 
two of the six patients are expressed as mean ± SEM transactivation levels obtained from at 
least three independent experiments. Dotted bars represent major variants. AU = arbitrary 
units. 
 

 

Interestingly, statistical analysis of the distribution of variants according to their 

transactivation potential and tissue origin demonstrated a significant functional 
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compartmentalization of variants for 4 out of 6 patients (patients 3, 4, 5, 6; Figure 3.4). 

Among these 4 patients, 3 (patients 3, 4 and 6) exhibited a trend whereby variants with 

highest transactivation properties were in tumoral tissue, while one patient (patient 5) 

displayed the opposite trend. Interestingly, of the six patients, the two which developed 

cirrhosis were the two which displayed no functional compartmentalization of NS5A variants. 

 
 

 
 
 
Figure 3.4: Functional compartmentalization of NS5A variants. To analyze the functional 
compartmentalisationtion of NS5A quasispecies variants, the transactivation potential of 
variants isolated from tumoral and non-tumoral adjacent tissues was statistically analyzed 
using a Mann Whitney Rank Sum test. Results are illustrated as box plots, with the median 
transactivation potential of all NS5A variants isolated from tumoral or non-tumoral adjacent 
tissues of each patient depicted. Empty and shaded boxes represent non-tumoral adjacent 
tissues and tumoral tissues respectively. 
 

 

Two hypotheses could be drawn from these observations: i) That quasispecies variants with 

high transcriptional activation potentials were involved in the onset or development of HCC 

by transactivating genes involved in carcinogenesis, and viruses bearing these variants had 

since replicated in the tumors; ii) that variants with high transcriptional activation potentials 

were better adapted to the selective tumoral environment (e.g. highly replicating hepatocytes) 

and were selected for at the expense of others. We investigated both hypotheses, and the 
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results are dealt with in section 3.2 (the first hypothesis) and section 3.3 (the second 

hypothesis) 

 
 
3.2. Role of NS5A transactivational properties in HCV-induced liver pathogenesis 
 
In order to study the role of NS5A variants in cellular transformation and development of 

HCC, we required an expression vector that could be used for long-term expression of NS5A 

variants in vivo in murine livers, as well as for in vitro transient expression in cultured 

primary hepatocytes. We chose to use an adenoviral vector as, on one hand, it can be used to 

transduce mice for long term in vivo expression of transgene, and on the other hand it can be 

used to transduce in vitro cultured primary human or murine hepatocytes for transient 

transgene expression.  To study the role of naturally occurring NS5A quasispecies variants in 

transformation of hepatocytes in vivo and development of hepatocellular carcinoma, we 

selected two NS5A variants from those isolated from tumoral tissues based on their 

transactivation potential and cloned them into a helper dependent adenoviral transgene 

expression vector. 

 
 
3.2.1. Construction of NS5A Adenoviral Vector 
 
Two NS5A variants isolated from patient 4 bearing high and low transactivation potentials 

were selected for the construction of adenoviral vectors for in vivo and in vitro expression of 

NS5A. These variants, renamed from 4T17 and 4T26 to NS5A-V1 and NS5A-V5 

respectively, were selected because they respectively showed the highest and lowest 

transactivation potentials in yeast one-hybrid assays (Figure 3.3). Construction of 

recombinant adenoviral vectors was performed in two major steps; i) Construction of NS5A 

expression cassettes and ii) cloning of NS5A expression cassettes into helper-dependent 

adenoviral genomes and production of recombinant adenoviral particles. 

 
 
3.2.1.1. Construction of NS5A expression cassette 
 
NS5A expression cassettes were designed as bicistronic constructs for the hepatic expression 

of NS5A concomitantly with the expression of human factor IX as a reporter gene (Figure 

3.5). We used the PEPCK promoter to drive liver-specific transgene expression. Human factor 

IX was chosen as reporter gene due to its easy detection by ELISA in the plasma of 
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transduced animals, to the absence of interference with murine hepatocyte functions and its 

non-immunogenicity in mice.  

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5: NS5A expression cassette for adenoviral vector development. The bicistronic 
expression cassette for NS5A, containing the PEPCK promoter and human Apo1 intron 
sequences located upstream of an open reading frame (ORF) consisting of human factor IX, 
T2A chisel and NS5A sequences, in turn followed by the polyadenylation signal from human 
growth hormone was cloned into a helper-dependent adenoviral vector using AscI restriction 
sites. The recombinant adenoviral genome was then used to produce adenoviral particles 
carrying NS5A expression cassettes in their genome. 
 

 

The construction of NS5A expression cassette necessitated a strategy to easily clone patient-

isolated NS5A sequences. To achieve this, the NS5A expression cassette was constructed by 

Gateway homologous recombination which consists of a recombination of two plasmids 

termed Entry and Destination vectors. The entry vector (pENTR-T2A-NS5A) contained T2A 

Chisel and NS5A variant sequences flanked by the homologous recombination sites attL1 and 

attL2. The 2A-like peptide from the insect virus Thosea asigna (TaV), abbreviated as T2A 

peptide, is a small polypeptide of 19 residues (Donnelly et al., 2001a). All 2A-like peptides 

have a rare consensus motif associated with a novel cleavage mechanism. This cleavage does 

not occur by classical proteolytic mechanism, but rather by inducing a “ribosomal skip” that 

impairs normal peptide bond formation between two amino acids without affecting the 

continuity of downstream translation (Donnelly et al., 2001b). We used the T2A sequence in 

place of an IRES in our bicistronic transgene expression cassette since the use of 2A peptides 

has been demonstrated to produce equal quantities of all genes in a multicistronic transgene 

cassette. Moreover, the relatively small sequence length of 2A peptides (57 bases compared to 

> 300 bases for IRES) can help reduce expression cassette size. 
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The destination vector (pPEPCK-FIX-DEST) contained factors needed for efficient 

expression of NS5A including the PEPCK promoter, the human ApoA intron, human factor 

IX, a polyA signal and a homologous recombination cassette inserted between human factor 

IX and the polyA signal. Phosphoenolpyruvate Carboxykinase (PEPCK) is a key enzyme in 

glucose synthesis pathway and is specifically expressed in liver and to a very small extent in 

kidney cells (Hanson et al., 1997). Thanks to the liver-specific expression of PEPCK, the 

PEPCK promoter sequence has become one of the promoters of choice for use in in vivo long-

term liver specific transgene expression (Perales et al., 1994; Kiang et al., 2006). The PEPCK 

promoter is not as strong a promoter as some other liver specific promoters such as hAAT and 

Albumin; indeed it has been demonstrated that PEPCK promoter is ~20 fold weaker than 

albumin promoter, and is hence better adapted to achieve physiologically relevant levels of 

transgene expression for which strong expression is not desired such as viral pathogen 

proteins (Hafenrichter et al., 1994). Human factor IX (FIX) is a blood coagulation factor of 54 

KDa consisting of 415 residues. It has been observed that human FIX is not immunogenic in 

C57BL/6 mice and can be expressed in immunocompetent mice without provoking an 

immune reaction (Herzog et al., 1997). Human FIX is secreted into blood plasma and can be 

easily quantified by ELISA, and can thus be used as a heterologous reporter gene for in vivo 

transgene expression studies in C57BL/6 mice. 

 
 
3.2.1.1.1. Construction of entry vector 
 
The entry vector was constructed in two steps: i) cloning of T2A sequence into pENTR/D-

TOPO to produce pENTR-T2A-XhoI and ii) cloning of NS5A variants into pENTR-T2A-

XhoI. In the first step, the T2A sequence and downstream BglI and XhoI restriction sites was 

amplified by PCR, and cloned into pENTR/D-TOPO by TOPO-TA cloning. (strategy outlined 

in Figure 3.6).  
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An undesirable AscI restriction site in pENTR/D-TOPO was removed by AscI digestion of 

plasmid DNA followed by filling in sticky ends using Klenow fragment of DNA polymerase 

I. Upon relegation, the plasmid was now termed pENTR-T2A-XhoI-ΔAscI (Figure 3.7). 

 

 
 

 

 

 

 

 

 

 

 

Figure 3.7: Construction of entry vector: Removal of AscI restriction site. To remove the 
unwanted AscI restriction site present in pENTR-T2A-XhoI, plasmid DNA was digested with 
AscI, then treated with Klenow fragment of Polymerase I to fill-in the sticky ends before 
religation. 
 

 

In the second step, patient-derived NS5A sequences were amplified and cloned into pENTR-

T2A-XhoI-ΔAscI to give pENTR-T2A-NS5A (Figure 3.8A). Successful cloning was 

confirmed by BglI and XhoI digestion of plasmid DNA isolated from several colonies. 

Agarose gel electrophoresis analysis of digested DNA revealed two bands corresponding to 

expected fragments of 1343bp and 2661bp (Figure 3.8B). Integrity of the insert was verified 

by nucleotide sequencing. 
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Figure 3.8: Construction of entry vector: Cloning of NS5A into Entry Vector. [A]. NS5A 
was PCR amplified using primers containing BglI and XhoI restriction sites. The amplified 
NS5A was cloned between these sites in pENTR-T2A-XhoI-ΔAscI to obtain pENTR-T2A-
NS5A. [B] Insertion of NS5A into pENTR-T2A-XhoI-ΔAscI vector was confirmed by 
digestion of plasmid DNA with BglI and XhoI, revealing bands of the expected sizes. 
 
 
 
 

[A]

[B]
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3.2.1.1.2. Construction of destination vector 
 
The plasmid pPEPCK-FIX containing all sequences required for liver-specific expression of 

NS5A was kindly provided by Dr. Nicola Brunetti-Pierri  (Baylor College of Medicine, 

Houston, TX). As decribed in Materials and Methods, two stop codons present immediately 

downstream of human Factor IX (FIX) were first removed by site directed mutagenesis 

(Figure 3.9).  

 

 

 

Figure 3.9: Construction of destination vector: Strategy for the removal of stop codons. 
To allow continued expression of downstream sequences, two stop codons present at the end 
of FIX sequence in pPEPCK-FIX plasmid were removed by site directed mutagenesis. 
 

 

pPEPCK-FIX was next converted into a Gateway Destination Vector (Figure 3.10A). A CmR 

resistance marker in the conversion cassette allowed the selection of colonies that contained 

the gateway conversion cassette insert. Restriction analysis of plasmid DNA isolated from 

several colonies by digestion with AscI enzyme revealing the two fragments of expected sizes 

corresponding to 2872bp and 6339bp, confirming the conversion of the plasmid into a 

Gateway Destination Vector (Figure 3.10B). Finally the plasmid DNA was sequenced to 

confirm the integrity and orientation of the insert.  
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Figure 3.10: Construction of destination vector: Generation of Destination Vector [A] To 
convert the vector pPEPCK-FIX-delStop to a gateway cloning compatible destination vector, 
Reading Frame A (RFA) conversion cassette was ligated into blunt ends of SrfI digested 
plasmid pPEPCK-FIX-delStop. The complete destination vector was termed pPEPCK-FIX-
DEST. [B] AscI restriction analysis of plasmid DNA isolated from several colonies to confirm 
the insertion of RFA conversion cassette. 
 
 
3.2.1.1.3. Generation of complete NS5A expression cassette 
 
The Entry (pENTR-T2A-NS5A) and Destination (pPEPCK-FIX-Dest) vectors were 

recombined to obtain pPEPCK-FIX-T2A-NS5A plasmid that carried a complete NS5A 

expression cassettealong with the PEPCK promoter, human Factor IX, human ApoA1 intron, 

T2A, NS5A and human GH pA term sequences (Figure 3.11A). A byproduct plasmid 

produced during recombination was eliminated by antibiotic resistance selection of bacteria 

transformed with the recombination products. Insertion of the T2A and NS5A sequences was 

confirmed by AscI restriction analysis of plasmid DNA isolated from transformed colonies 

[A]

[B]
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(Figure 3.11B). The integrity of inserted sequence, continuity of the reading frame and correct 

orientation of the insert were analyzed by nucleotide sequencing of the resulting vector. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3.11: Generation of complete NS5A expression cassette. [A] Entry and destination vectors 
were recombined to generate the plasmid that carried the complete NS5A expression cassette. This 
plasmid was termed pPEPCK-FIX-T2A-NS5A and contained NS5A and T2A sequences fused in 
frame with human factor IX reporter gene sequence. [B] AscI restriction analysis of pPEPCK-FIX-
T2A-NS5A-v1 (Lane 1) and pPEPCK-FIX-T2A-NS5A-v5 (Lane 2) plasmid DNA. 
 

[A]

[B]
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3.2.1.2. Production of recombinant adenoviral particles 
 
Before proceeding to the production of adenoviral vector particle stocks, pPEPCK-FIX-T2A-

NS5A carrying complete expression cassettes for NS5A variants v1 or v2 were transfected 

into Huh7 cells and NS5A expression was analyzed 48 hours after transfection by western 

blot. As demonstrated in figure 3.12, no NS5A could be detected in transfected cells, 

suggesting that the vectors did not express NS5A in vitro.  

 
 

 
 
Figure 3.12: Immunoblotting for NS5A expression in transfected cells. Protein extracts 
from cells transfected with indicated plasmids were analyzed by western blotting to detect 
NS5A. Polyclonal sheep anti-NS5A serum was used at 1/500 dilution to detect NS5A. HRP 
conjugated rabbit anti-sheep antibody at 1/10000 dilution was used as secondary antibody. 
Western blot was revealed with ECL Advance reagent. Cells transfected with plasmids 
pHM6-NS5A-V1 and pHM6-NS5A-V5 were used as positive control for NS5A expression. 
 
 

During the course of these experiments, a literature search revealed that the PEPCK promoter 

is strongly suppressed by glucose and insulin, both of which are present at high 

concentrations in cell culture medium (Quinn et al., 2005). This suggested that, although the 

adenoviral vector construct may be functional, the expression of NS5A in transfected cells 

may have been suppressed in cell culture, although this may not have been the case in vivo. 

Following this, we decided to continue with the production of adenoviral particle stocks. 

Plasmids encoding complete expression cassettes for NS5A variants v1 and v2 were sent to 

Dr. Nicola Brunetti-Pierri’s  laboratory where further cloning of NS5A expression cassettes 

into helper dependent adenoviral vector genome and production of infectious adenoviral 

particles was performed. A plasmid carrying expression cassette encoding human FIX was 
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used to produce adenoviral particles to be used as a negative control for adenoviral vector 

based experiments. These cloning and adenoviral production procedures were performed as 

published previously (Palmer et al., 2003). Adenoviral particle stocks were produced for 

NS5A-v1, NS5A-v2 and human FIX and termed as Ad-NS5A-v1, Ad-NS5A-v5 and Ad-FIX 

respectively.  Viral titers of these stocks were determined to be 1.27 x 1013 vp/mL, 5.15 x 1012 

vp/mL and 9.7 x 1012 vp/mL respectively.  

 
3.2.2. Transduction of Murine Livers with NS5A Adenoviral Vectors 

 
Adenoviral vector particles were used to infect mice to induce hepatic expression of the 

various NS5A variants. To study the contribution of NS5A transactivation properties in 

development of HCC, it was important to express equal quantities of both NS5A variants. 

This necessitated the injection of precisely the same number of infectious adenoviral particles 

for each recombinant virus. The tail vein is often used for intravenous injections in mice: 

however, this vein is very fragile and not suitable for the precise injection of small volumes 

(20-30 µl) since a non-quantifiable loss of viral particles into tail tissues cannot be excluded. 

Therefore we chose to inject the viral particles through the jugular vein, after prior insertion 

of a fine catheter by minor surgery. This technique allows the delivery of precise small 

volume doses (20-30µl) without any loss into surrounding tissues. Three C57Bl6 mice per 

clone were injected with recombinant adenoviruses Ad-NS5A-v1, Ad-NS5A-v5 and Ad-FIX 

as described in section 2.6. Blood samples were collected at day 0 (D0; before injection), D1, 

D3, D5, D7, D14 and D21. . As the PEPCK promoter is involved in gluconeogenesis and its 

maximum activation is achieved during fasting, mice were fasted for 12 hours before being 

sacrificed. Sacrifice took place at D3, D7 and D21 by CO2 euthanasia to collect blood, liver, 

spleen and kidney tissue samples. Hepatic protein extracts of sacrificed mice were separated 

on 12 % SDS-PAGE gels, and western blotting was performed to detect NS5A or human FIX 

proteins. Protein extracts from NG cells transfected with pHM6-NS5A plasmid, and human 

serum, were used as positive controls for NS5A and human FIX respectively. Such analyses 

revealed that only mice infected with Ad-FIX expressed human factor IX in their livers. 

Specific bands for neither FIX reporter protein nor NS5A could be detected in Ad-NS5A-v1- 

and Ad-NS5A-v5-transduced mice (Figure 3.13 A and B). GAPDH was used as loading 

control.  
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Figure 3.13: Immunoblotting for FIX and NS5A proteins in transduced mice. Protein 
extracts from the liver tissues of HdAd-infected mice were analyzed by western blotting to 
detect reporter gene human factor IX [A] and NS5A [B]. Pooled human plasma was used as a 
positive control for human FIX western blotting, whereas proteins from liver tissue of a non-
transduced mouse served as a negative control. Similarly, proteins from NG cells transfected 
with pHM6-NS5A were used as a positive control for NS5A western blotting whereas 
proteins from liver tissue of a non-transduced mouse served as negative control. GAPDH was 
used as endogenous loading control. Bands corresponding to 55kDa human FIX, 56kDa 
NS5A and 36kDa GAPDH are indicated. Data are representative of two independent 
experiments. 
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Serum samples from injected mice were assayed by ELISA to detect the presence of secreted 

human FIX. Pooled human serum was used as a positive control. These experiments 

confirmed the presence of secreted human factor IX in plasma of Ad-FIX transduced mice, 

whereas it was absent from the plasma of Ad-NS5A-v1 and Ad-NS5A-v5 transduced mice 

(Figure 3.14). 

 
 

 
 
 

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 3.14:  ELISA for FIX protein secretion in the plasma of adenovirus-transduced 
mice. Expression of secreted human factor IX reporter protein was analyzed by ELISA in 
plasma of mice transduced with indicated adenoviruses at the indicated time intervals. Pooled 
plasma from non-transduced mice served as negative control. 
 

Taken together, these results suggested that mice infected with adenoviruses encoding NS5A 

(Ad-NS5A-v1 and Ad-NS5A-v5) failed to express both the reporter gene and NS5A transgene 

in transduced mice. One of the possible reasons for these observations may be the low number 

of adenoviral particles used to transduce the mice. To investigate this hypothesis, we repeated 

the above experiment using three times higher doses of adenoviral particles i.e., 1.5x106 vp / 

Kg. However the use of higher doses of adenoviral vector particles resulted in the death of 

injected mice within 24 hours, suggesting a strong acute immune reaction to the higher dose 

of adenoviral vector particles injected intravenously. For these mice, we were not able to 

harvest any blood or tissue samples. 
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3.2.3.  Alternative Strategy: Development of Lentiviral Vector for NS5A Expression 
and Transgenic Mice Expressing NS5A in Liver Tissue 

 
As described in the previous section, we failed to efficiently express NS5A variants in vivo 

using adenoviral vectors. Besides adenoviral vectors, two other viral vectors are appropriate 

for efficient transgene delivery:  retroviral and lentiviral vectors. Two serious drawbacks of 

retroviral vectors are their inability to transduce non-dividing cells such as cultured primary 

hepatocytes, and the random insertion of the viral genome into the host cell DNA. In contrast, 

lentiviral vectors can efficiently transduce non-dividing cells, and thus were chosen as an 

alternative approach to express NS5A variants in cultured hepatocytes, in order to study the 

role of these variants in transactivating host genes. However, as for retroviral vectors, the 

lentiviral vector genome is integration competent, and its use as an in vivo transgene delivery 

vehicle is often associated with cellular transformations leading to development of carcinoma. 

Because of this oncogenic potential, the lentiviral vector system cannot be used for long-term 

in vivo liver transduction, and therefore not for the study of role of NS5A in liver 

carcinogenesis. As an alternative solution for the long-term in vivo expression of NS5A 

variants, we decided to produce transgenic mice expressing strong and weak transactivating 

NS5A variants (detailed in section 3.1.2). 

 
 
3.2.3.1. Construction of Lentiviral Vector for the in vitro study of NS5A 
transactivation properties and their role in pathogenesis 
 
Lentiviral vectors were constructed in two steps: i) the cloning of NS5A into the lentiviral 

vector genome, and ii) the production and characterization of recombinant lentiviral particles. 

 
 
3.2.3.1.1. Cloning of NS5A into lentiviral vector genome 
 
To clone high- and low-transactivating NS5A variants into the lentiviral vector genome, 

NS5A variants v1 and v5 were amplified by PCR (Figure 3.15A) as described in section 

2.4.11. The amplified NS5A fragments were cloned into pLenti6.3/V5-TOPO by TOPO-TA 

cloning and plamsid DNA from the resulting colonies was restriction digested with BamHI 

and analyzed by agarose gel analysis to confirm the insertion of NS5A into the vector (Figure 

3.15D). pLenti6.3-NS5A-v1 and pLenti6.3-NS5A-v5 (Lanes 1 and 3 of Figure 3.15D) exhibited a 

band corresponding to the expected size of 9047 bp, while empty control vector (Lane 2) did not. 

Moreover the plasmid DNA was sequenced to confirm the integrity and orientation of NS5A 

fragments. The resulting plasmids were termed pLenti6.3-NS5A-v1 and pLenti6.3-NS5A-v5 
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pLenti6.3-NS5A
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NS5A‐V5cPPT pCMV WPRE pSV40

Β‐GalcPPT pCMV WPRE pSV40

(Figure 3.15 B and C). A similar plasmid expressing β-Galactosidase (pLenti6.3-βGal) instead 

of NS5A was used as a negative control. 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

 
 
Figure 3.15: Schematic representation of NS5A cloning into lentiviral vector. [A] NS5A 
sequences were amplified using the NS5A-kozak-S and NS5A-stop-AS primers. The amplified NS5A 
sequences were then cloned between TOPO cloning sites in the pLenti6.5/V5-TOPO vector. Dotted 
lines depict continued sequences. A complete plasmid map of pLenti6.3-NS5A vector is presented in 
panel [B]. [C] Schematic representation of lentiviral vectors containing indicated NS5A variants or β-
galactosidase gene. [D] Vector DNA was linearized by digestion with BamHI and electrophoresed on 
0.8% agarose gel.  
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3.2.3.1.2. Production and characterization of recombinant lentiviral particles 
 
To produce recombinant lentiviral particles encoding NS5A variant sequences, pLenti6.3-

NS5A was transfected into 293FT cells along with ViraPower Packaging Mix as described in 

section 2.7. Lentiviral particles were harvested from the culture supernatant and titrated using 

NG cells as described in section 2.7.3. The titrations of Lenti-NS5A-v1 and Lenti-NS5A-v5 

are represented in figures 3.16 A and B respectively. Viral titers were determined to be 1.59 x 

106 cfu/mL and 6 x 106 cfu/mL for NS5A-v1 and NS5A-v5 respectively. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3.16: Characterization of lentiviral vector stocks: Titration [A] and [B] NG cells 
monolayers in 6-well culture plates were transduced with indicated 10 fold serial dilutions of lentiviral 
particle stocks Lenti-NS5A-v1 or Lenti-NS5A-v5 respectively. Colonies of transduced cells were 
selected against blasticidin resistance and revealed as Crystal Violet stained colonies.  
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To characterize the NS5A expression in hepatocytes transduced with these lentiviruses, 

cultured human primary hepatocytes were transduced with Lenti-NS5A-v1, Lenti-NS5A-v5 

and Lenti-βGal stocks at an MOI of 3. Extracts of transduced cells were prepared at 72 hours 

post-transduction and examined by western blot analysis (Figure 3.17). NS5A was expressed 

in both Lenti-NS5A-v1 and Lenti-NS5A-v5 transduced cell extracts, but not in Lenti-βGal 

transduced cell extracts. These results demonstrated that lentiviral vector particles for NS5A 

expression could efficiently transduce primary hepatocytes and express the NS5A variants 

encoded. 

 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.17: Characterization of lentiviral vector stocks: Immunoblotting. NS5A expression in 
lentivirus transduced cells. Protein extracts of primary human hepatocytes transduced with indicated 
lentiviruses was analyzed by immuno-blotting at 72 hours post transduction. Actin was used as 
endogenous loading control. Specific bands for 56kDa NS5A and 42kDa actin are indicated. 
 
 
 
3.2.3.1.3. Effect of NS5A transactivation properties on global host cell gene 
expression 
 
We hypothesized that the transactivation properties of NS5A could interfere with host cell 

mechanisms and have a transforming effect on liver cells. In order to investigate this 

hypothesis, we studied the impact of naturally-occurring NS5A variants with high and low 

transactivation potentials on host cell gene expression. For this, cultured primary human 

hepatocytes (from commercially available batches) were transduced with Lenti-NS5A-v1, 

Lenti-NS5A-v2 or Lenti-βGal stocks at an MOI of 3. At 72 hours post-transduction cells were 

harvested and total RNA was extracted. RNA from two independent experiments was pooled 

and subjected to RNAseq analysis using Illumina deep sequencing in collaboration with 

GenoScreen Laboratories in Lille, France. This collaboration is ongoing, and the results of 

these analyses are not yet available.  
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3.2.3.2. Transgenic mice for in vivo studies 
 
As described above, the in vivo study of the role of NS5A transactivation properties in liver 

pathogenesis requires the stable expression of patient-isolated NS5A variants in the hepatic 

tissues of mice. However our first attempt to achieve this goal by using helper-dependent 

adenoviral vectors was unsuccessful, as mice transduced with these vectors failed to express 

NS5A. As an alternative approach, we chose to develop transgenic mice for conditional 

expression of patient-isolated NS5A variants. Traditional methods of transgenesis are based 

on the injection of foreign DNA into the male pronucleus, leading to the random insertion of 

transgene DNA into the host genome. However, such random insertion presents several 

problems, notably the mutation or inactivation of host genes affected by transgene insertion. 

Another problem associated with random insertion is the high variability of transgene 

expression dependent upon the integration site. Therefore, to develop our transgenic mouse 

models, we chose a recently developed technique termed as “Quick knock-in”. This technique 

allows the targeted insertion of transgene DNA into the Rosa26 locus, a neutral locus situated 

in euchromatin. This targeted transgenesis bypasses the risk of host gene mutations and the 

variable expression levels of transgenes. 

 

Using Quick knock-in, we have started the development of two transgenic mouse lines 

expressing NS5A-v1 and NS5A-v5, the highly and weakly transactivating NS5A variants 

respectively. This targeted transgenesis will be combined with a strategy for the conditional 

activation of transgene expression by inserting a loxP-flanked STOP codon between the 

ubiquitous promoter and NS5A transgene sequences. Thus, the activation of NS5A expression 

can be controlled by the expression of the Cre recombinase enzyme, which will be introduced 

by crossing the NS5A transgenic mice with Alb-Cre transgenic mice in which the expression 

of Cre recombinase is controlled by the Albumin promoter. This strategy therefore limits the 

expression of NS5A transgene to the hepatic tissues. 

 

These transgenic mice are being currently developed in collaboration with genOway, a 

company that specializes in transgenesis. The mice are expected to be generated and validated 

within 12 months, at which point studies on the modification of cellular pathways leading to 

cellular transformation and carcinogenesis by NS5A can begin. The data collected from the 

studies will hopefully allow us to demonstrate a direct role of NS5A transactivation properties 
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in the modulation of genes linked to carcinogenesis and the development of hepatocellular 

carcinoma.  

 
3.2.4. Conclusions: 
 
During the course of the studies presented in this thesis, NS5A quasispecies variants isolated 

from HCV 1b infected individuals were characterized in terms of their transactivation 

potentials, and their impact on HCV-induced pathogenesis and in the HCV life cycle was 

studied. 

 
Our results revealed for some patients a genetic compartmentalization of NS5A variants 

between tumoral and adjacent non-tumoral hepatic tissues, suggesting for these patients the 

existence of a selective environment in tumoral or non-tumoral tissues which results in this 

genetic compartmentalization within the same infected organ at a single time point. It was 

further revealed that NS5A quasispecies variants isolated from the liver tissue of HCV-

infected individuals possess different transcriptional activation properties. The high variability 

of the results between patients, and the small number of patients in our cohort did not allow us 

to draw general conclusions on a specific tissue compartment harboring particular NS5A 

transactivation levels during HCV infection in a liver tumor bearing patient. However, a 

functional compartmentalization of quasispecies was demonstrated in a few patients of our 

cohort, for which tumoral tissues were harboring NS5A variants with the highest 

transactivation potential. 

Altogether, these observations led to two hypotheses: i) that quasispecies variants with higher 

transactivation potentials were involved in the onset or development of hepatocellular 

carcinogenesis and ii) such variants were better adapted to the selective tumoral environment 

(e.g. highly replicating hepatocytes, oxidative stress, vascularization etc.) and were selected 

for. We investigated these hypotheses by studying the role of NS5A transactivation properties 

in pathogenesis using murine-based models, and by examining the role of NS5A 

transactivation properties in HCV RNA replication using a subgenomic replicon model.  

 

To study the role of NS5A transactivation properties of NS5A in the perturbation of pathways 

implicated in liver carcinogenesis, an adenoviral vector for NS5A protein expression was 

developed. This adenoviral vector consisted of a last generation helper-dependent adenoviral 

vector (HdAd) in which the transgene expression cassette is inserted in a viral genome that is 

devoid of all coding sequences except inverted terminal repeat sequences and a packaging 
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signal. We successfully constructed NS5A transgene expression cassettes which were inserted 

in HdAd. Recombinant viral stocks were thus produced and used to transduce mice with the 

aim of inducing long-term stable hepatic expression of NS5A. However, our adenoviral 

vector failed to express both the NS5A transgene and the selected reporter gene. As an 

alternative strategy, we chose two complimentary approaches for in vivo and in vitro studies. 

For in vivo studies of the role of NS5A transactivation properties in liver pathogenesis, we 

have begun the development of two transgenic mouse lines expressing NS5A proteins with 

high or low transactivation properties. For in vitro studies on NS5A transactivation properties, 

we have successfully developed lentiviral vectors to express NS5A proteins in cultured 

primary human hepatocytes. To study the effect of these NS5A proteins on host-cell gene 

expression, we are currently performing global transcriptome analyses on primary hepatocytes 

transduced with these lentiviral vectors. This genome-wide approach is being performed by 

deep-sequencing RNAseq technology by Illumina.  
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3.3. Article: Regulation of Hepatitis C Virus Replication by Nuclear Translocation of 
Nonstructural 5A Protein and Transcriptional Activation of Host Genes 
 
As described in previous sections, we have demonstrated that NS5A possesses transcriptional 

activation properties. Furthermore, we have demonstrated that quasispecies variants of NS5A 

possess significantly different potentials of transactivation. However, the physiological 

relevance of these observations is still not clear. Several studies have suggested that 

transactivation potential of viral proteins could play an important role in the replication of the 

corresponding viruses (Tang et al., 2005; Althaus et al., 2010). Therefore we hypothesized 

that the transactivational properties of NS5A may play a role in HCV replication. To test our 

hypotheses we used the sub-genomic replicon model of HCV to study the effect of NS5A 

transactivation capacity on HCV RNA replication. This study has been submitted to the 

Journal of Virology and is presented here in the submitted article form. 
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ABSTRACT 

 

Hepatitis C virus (HCV) non-structural protein 5A (NS5A) is involved in regulating 

viral replication through its direct interaction with the HCV RNA-dependent RNA 

polymerase. NS5A also alters infected cell metabolism through complex interactions 

with numerous host cell proteins. NS5A has been suggested to act as a 

transcriptional activator, although the impact on viral replication is unclear. 

To study this, HCV NS5A variants were amplified from hepatic tissue from an HCV-

infected patient, and their abilities to activate gene transcription were analyzed in a 

single hybrid yeast model. Strikingly, different variants isolated from the same patient 

displayed different transactivational activities. When these variants were inserted into 

the HCV subgenomic replicon system, they demonstrated varying levels of RNA 

replication. Moreover, the replication of these replicons correlated with their 

transactivational activities. We showed that the C-terminal fragment of NS5A was 

localized to the nucleus, and that a functional NS5A NLS and cellular caspase 

activity were required for this process. Furthermore, nuclear localization of NS5A was 

necessary for viral replication. Finally, we demonstrate that nuclear NS5A binds to 

host-cell promoters of several genes previously identified as important for efficient 

HCV RNA replication, inducing their transcription. Taken together, these results 

demonstrate a new mechanism by which HCV modulates its cellular environment, 

thereby enhancing viral replication. 
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INTRODUCTION 

 

Hepatitis C Virus (HCV) infection is characterized by its high frequency of chronicity 

leading to about 130 million carriers, e.g. 2.2% of the worldwide population (27). 

Chronic HCV infection is a major risk factor in the development of chronic hepatitis, 

cirrhosis. It is responsible for development of hepatocellular carcinoma (HCC) or 

primary liver cancer at a rate of 1-4% of cirrhotic patients per year (11, 16). It has 

become the principal cause of primary liver cancer in Japan and modeling of the 

ongoing epidemics predicts a similar trend in Europe (2, 25).  

HCV proteins evolved in their sequence and functions to adapt the fitness of its 

replication in response to the immune and cellular environments. In that matter, the 

non-structural HCV proteins 5A (NS5A) precise enzymatic function remains largely 

unclear. However it has been shown to be a pleiotropic serine phosphoprotein, 

involved in many aspects of viral replication as well as interactions with host cell 

mechanisms (28). NS5A is an essential component of the HCV replication complex 

and plays a key role in viral RNA replication (34, 55). Many studies have suggested 

the potential role of NS5A protein in chronicity of HCV infection and subsequent 

carcinogenesis (32).  

 

HCV NS5A is localized predominantly in the cytoplasm and perinuclear regions 

despite the presence of a functional nuclear localization signal (NLS) in its C-terminal 

region (21, 23). Studies have shown that a small amphipathic α-helix in N-terminus of 

NS5A acts as an ER membrane retention signal (8). Accordingly, the NS5A mutants 

lacking N-terminus region, are almost exclusively localized in the nucleus. It has also 

been demonstrated that cellular caspases cleave the full-length NS5A to produce N-
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terminally deleted products that could translocate to the nucleus and may function as 

transcription factors (15, 23, 42). A recent study using the infectious HCV clone 

JFH1, has demonstrated that N-terminally truncated forms of NS5A are produced 

during viral infection and that these fragments of NS5A translocate to the nucleus 

(43). However physiological relevance of caspase mediated cleavage and nuclear 

localization of NS5A remains elusive.  

 

In this study we demonstrate that HCV NS5A protein nuclear localization is essential 

for in vitro viral RNA replication and that replication capacity is significantly impaired 

when caspase-mediated cleavage of NS5A and its release from endoplasmic 

reticulum is inhibited. We also demonstrate that NS5A transcriptional regulation 

capacity correlates with HCV RNA replication capacity in vitro.  

 

MATERIALS AND METHODS 

 

Cells 

NG cells, highly permissive to HCV RNA replication, were obtained from Abbott 

Laboratories (Abbott Park, IL). This cell line was derived by treatment with interferon-

α from Huh-7 cells carrying a stably-maintained replicon as described previously (31). 

These cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% fetal calf serum, 100 IU/ml penicillin and 100 µg/mL 

streptomycin. 
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Plasmid construction 

HCV subgenomic replicon shuttle vector. A subgenomic replicon shuttle vector 

(genotype 1b, strain Con1) was obtained from Abbott Laboratories (50, 58). This 

shuttle vector contains two unique restriction sites to facilitate the cloning of patient-

derived NS5A sequences: a single NotI site present within NS4B, 97 nt upstream of 

NS5A, and a PacI site present within NS5A, 18 nt upstream of NS5B. NS5A 

originating from pHCV-N (genotype 1b, acc. number #AF139594) was cloned into 

this vector to create SGR-Nim. Cloning of NS5A sequences isolated from patients 

were performed as described (50). 

Isolation and cloning of quasispecies variants. Total hepatic RNA was isolated from a 

single liver biopsy from a patient infected with HCV genotype 1b using a PARIS kit 

(Ambion, Austin, TX) according to the manufacturer’s protocol. Complementary DNA 

was synthesized from isolated RNA using a Superscript III Reverse transcription Kit 

(Life Technologies, Carlsbad, CA). Five NS5A quasispecies variants were amplified 

from patient cDNA using a nested PCR technique as described previously (50). 

Flanking restriction sites NotI and PacI, together with the adaptive mutation S2204I 

were introduced into all amplified NS5A sequences by PCR. Variants were cloned 

into the NotI-PacI site of the subgenomic replicon shuttle vector, and verified by 

sequencing. 

Site-directed mutagenesis. Site directed mutagenesis was performed using a 

QuickChange II XL kit (Agilent Technologies, Santa Clara, CA) according to the 

manufacturer’s instructions. NS5A Nuclear Localization Signal (NLS) was invalidated 

by mutagenesis as previously described by Yeh et al., 2005 (57) using the following 

primers: CCCCTCCAATACCACCTCCAGGGGGAATGGGGACGGTTGTCCTAACAG 

(forward) and 
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CTGTTAGGACAACCGTCCCCATTCCCCCTGGAGGTGGTATTGGAGGGG 

(reverse). Using this approach, the nuclear localization signal was mutated from 

PPPRRKRTVVLTESTL to PPPGGMGTVVLTESTL. Similarly, site-directed 

mutagenesis was performed to introduce a D154E mutation to invalidate a caspase 

cleavage site in NS5A, as described by Kalamvoki et al. (22). The following primers, 

adapted to the HCV 1b sequence, were used: 

ATTCTTCACAGAGGTGGAAGGGGTGCGGC (forward) and 

TAAGAAGTGTCTCCACCTTCCCCACGCCG (reverse). 

 

Lentiviral vector production 

NS5A variants were cloned into pLenti6.3/V5-TOPO (Life Technologies, Carlsbad, 

CA), and the nucleotide sequence of all constructs was verified by DNA sequencing. 

Recombinant lentiviral vector particles were synthesized by using the ViraPower 

HiPerform Lentiviral Expression System (Life Technologies) according to the 

manufacturer’s instructions. Briefly, lentiviral vector particles were produced by 

transient transfection of 5 x 106 293FT cells with pLenti vectors containing different 

NS5A sequences and the ViraPower packaging mix using lipofectamin 2000 (Life 

Technologies). The particles produced were used to transduce 2 x 105 Huh7.5 cells 

in 6-well culture plates to determine viral titer according to the manufacturer’s 

instructions.  

 

Transient replication assay 

Replicon shuttle vector DNA was linearized and purified by phenol-chloroform 

extraction. One microgram of purified DNA was used as a template for RNA 

synthesis using the T7 Megascript Kit (Life Technologies) according to the 
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manufacturer’s instructions. Synthesized RNA was purified using RNeasy Mini Kit 

(Qiagen, Hilden, Germany). 

Monolayers of NG cells seeded in 48-well plates (2 x 104 cells/well) were transfected 

with 0.25 µg RNA/well using TransIT-mRNA reagent (Mirus Bio LLC, Madison, WI) in 

Opti-MEM reduced serum medium (Life Technologies) containing 5% fetal calf serum 

(Life Technologies). Transfected cells (6 wells per construct) were divided into two 

equal samples: three wells harvested at 4 h post-transfection, and three wells 

harvested at 96 h post-transfection. Cells were washed, lysed in Cell Culture Lysis 

Buffer (Promega Corporation, Madison, WI), and the resultant luciferase activity was 

measured with a Mithras LB940 luminometer (Berthold Technologies, Bad Wildbad, 

Germany) in conjunction with luciferin substrate (Promega Corporation). All luciferase 

activity measurements were done in triplicate. Replication efficiency for each replicon 

clone was calculated as described previously (50). 

 

Yeast simple hybrid assay 

Nucleotide sequences encoding the NS5A transactivation domain (nt 6405-6981 of 

the subgenomic replicon) of selected variants was amplified by PCR as described 

previously by Pellerin et al. (38) and cloned into the BamHI-EcoRI sites of the yeast 

expression vector pGBT9 (Clontech, Takara Bio Inc. Shiga, Japan) to generate a 

fusion protein consisting of the NS5A transcriptional activation domain and the GAL4 

DNA-binding domain. The resulting plasmids were transformed into Y187 yeast using 

a Yeast Maker yeast transformation kit (Clontech). Transformants were grown on 

tryptophan-deficient (Trp–) synthetic dropout plates for 3 days at 30 °C, and screened 

by PCR. 
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Transcriptional activation of NS5A-GAL4 fusions were measured by a quantitative 

luminescent ß-galactosidase assay based on the Galacto Star kit (Tropix, Bedford, 

MA) according to the manufacturer’s protocol using an automated Mithras LB940 

luminometer. All assays were repeated with three independent transformants for 

each construct, each analysed in duplicate.  

 

Immunofluorescence 

For immunofluorescence studies, NG cells (0.5 x 105 cells/well) cultured in LabTek 4-

chamber slides (Thermo Fisher Scientific Inc., Waltham, MA) were transduced with 

lentivirus particles at multiplicity of infection (MOI) of 1.5. Forty-eight hours post-

transduction, cells were fixed with ice-cold 100% methanol at room temperature for 

five minutes, washed with PBS and incubated for 2 hours at room temperature with 

rabbit anti-NS5A polyclonal antibody (9). Bound antibody was detected with anti-

rabbit FITC-conjugated secondary antibody (Sigma Aldrich, St. Louis, MO), and 

cellular DNA marked with 1 µM of To-Pro-3 DNA stain (Life Technologies).  Samples 

were analyzed with a confocal laser scanning microscope (Leica DMRE-7/TCSSP2, 

Wetzlar, Germany) in conjunction with a 63X oil immersion objective and 633 HeNe 

and 488nm argon lasers. Confocal image z-stacks were obtained using optical slice 

intervals of 0.2 µm from the bottom to top of the cell, with three scans made per slice. 

The mean of the signal was recorded, and Imaris software (Bitplane AG, Zurich, 

Switzerland) was used to reconstruct 3D image projections. 

 

Immunoblotting 

Cells were lysed with Cell Culture Lysis Reagent (Promega), separated by SDS-

PAGE, and immobilized onto Hybond ECL Nitrocellulose membrane (GE Healthcare, 
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Chalfont St-Giles, UK). Bound polypeptides were detected using sheep anti-NS5A 

antibody (kindly provided by Pr Mark Harris, University of Leeds, UK), rabbit anti-

GAPDH (Abcam, Cambridge, UK), or mouse anti-actin antibody (Sigma Aldrich, St. 

Louis, MO). Immunodetection was achieved by enhanced chemiluminescence (GE 

Healthcare) in conjunction with horse-radish peroxidase conjugated anti-sheep 

(Sigma Aldrich) or anti-mouse (Sigma Aldrich) antibodies. Chemiluminescent signals 

were detected and quantified using an Image Quant Las 4000 Mini scanner and 

Image Quant software (GE Healthcare). 

 

Caspase inhibition assays 

NG cells were treated with the pan-caspase inhibitor z-VAD-fmk (R&D Systems Inc., 

Minneapolis, MN) at 10 µM or 20 µM final concentrations, two hours prior to 

transfection with replicon RNA. Four hours post-transfection, culture medium was 

changed and fresh z-VAD-fmk was added at the appropriate concentrations. 

 

Real-time quantitative gene expression assay 

Total RNA was extracted from NG cells transduced with the appropriate lentiviral 

expression vector particles (72 hours post-transduction) using a PARIS RNA Isolation 

Kit (Ambion). RNA quality and quantity were determined using a 2100 Bioanalyser 

and RNA Nano Chips (Agilent Technologies, Santa Clara, CA). RNA integrity number 

was calculated using the Agilent software, and samples displaying an RNA integrity 

number below 6 were discarded. 

Complementary DNA was synthesized using a High Capacity cDNA Synthesis Kit 

(Applied Biosystems, Life Technologies). Quantitative PCR was performed on pooled 

cDNA from two independent experiments using Applied Biosystems 7300 Thermal 
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Cycler and Taqman reagents (Applied Biosystems; see table 1 for primer 

information).  

 

Chromatin Immunoprecipitation 

NG cells were transduced with lentiviral vector particles at an MOI of 1.5. Forty-eight 

hours post-transduction, cells were fixed with 1% formaldehyde, lysed in 10 mM 

HEPES, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT, 0.1% NP-40 and protease 

inhibitors cocktail (Roche Applied Science, Indianapolis, IN), and nuclei were 

recovered and lysed in 50 mM Tris-HCl pH 8, 10 mM EDTA, 1% SDS, and protease 

inhibitors, and DNA sheared by sonication. Sheared chromatin was pre-cleared by 

incubation with Protein G Mag Sepharose beads (GE Healthcare) and incubated with 

rabbit-anti NS5A antibody. The precipitated DNA was purified by phenol/chloroform 

extraction and amplified by PCR using the following primers: IL8 5’-

GTTGTAGTATGCCCCTAAGAG-3’ (forward) and 5’-

CTCAGGGCAAACCTGAGTCATC-3’ (reverse); LTΒ 5’-

TACGGGCCTCTCTGGTACAC-3’ (forward) and 5’-ATATTCCCTCACCCCACCAT-3’ 

(reverse); NUAK2 5’-CCTGAAGTTGCTGCTGTGAA-3’ (forward) and 5’-

CCTGAAGGCCTAGAGAACACA-3’ (reverse); MAP2K7 5’-

AACGAGGTTCCAGGAATGC-3’ (forward) and 5’-GAAGGATGACGCCACCTAGA-3’ 

(reverse); TRAF2 5’-GGGAAGGGACCCAATTAGC-3’ (forward) and 5’-

CAGCCCTCAGGAAGCTGTAG-3’ (reverse); FBXL2 5’-

TGGGGTGAGTGTCGTTTTATC-3’ (forward) and 5’-

CGTATCTGGTCCATCCTCTCA-3’ (reverse). DNA immunoprecipitated from cells not 

expressing NS5A was used as a negative control. 
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Statistics 

Statistical comparisons of the data were performed using a Mann-Whitney test where 

appropriate. P values of less than 0.05 were considered statistically significant. All 

error bars indicate standard error of the mean. 

 

RESULTS 

Naturally occurring NS5A variants are associated with different transcriptional 

activation capacities in vitro 

The sequence of the five NS5A full length variants amplified from an HCV-infected 

patient’s liver extract is shown in Figure 1. Amino acid differences were observed 

over the full NS5A sequence, but were more frequent between amino acids 210 and 

450, a region which encompass the NS5A transactivation domain. In order to verify 

our previous findings that naturally occurring NS5A variants are associated with 

different transcriptional activation capacities in vitro (38), the NS5A transactivation 

domain (underlined in Figure 1) was amplified by PCR. The amplified domains, which 

were confirmed to be identical in sequence to the full-length variants, were 

subsequently cloned into the pGBT9 yeast expression vector to generate fusion 

proteins consisting of the NS5A transcriptional activation domain fused to the GAL4 

DNA-binding domain (Figure 2A). The capacity of each fusion protein to activate lacZ 

transcription (and thus β-galactosidase expression) was assayed in yeast. As shown 

in Figure 2B the five tested variants (v1 to v5) exhibited markedly different 

transcriptional activities in vitro, with the weakest activator (NS5A-v5) exhibiting 

transcriptional activities approximately 1 log below the activity of the strongest 

activator (NS5A-v1). 
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Naturally occurring NS5A variants are associated with different HCV RNA 

replication efficiencies in vitro  

To test the hypothesis that NS5A mutations naturally occurring in vivo could be 

associated with different replication capacities of the corresponding variants, the five 

distinct NS5A variants isolated from the liver of a patient infected with HCV genotype 

1b (variants v1 to v5) were cloned into a subgenomic replicon shuttle vector (50) 

containing a luciferase reporter gene and the replication capacity of the 

corresponding replicons was measured (Figure 3A). Western blotting analysis 

revealed that the five variants expressed NS5A at the same level 4 hours post-

transfection, i.e. in the timeframe of translation of the transfected RNA (Figure 3B, 

top panel). In contrast, at 96 hours post-transfection, the different constructs 

exhibited different levels of NS5A expression, suggesting that different NS5A variants 

could be associated with different replication capacities of the corresponding 

replicons (Figure 3B, lower panel).  

To assess the replication efficiencies of replicons harboring the different NS5A 

variant sequences, we quantified the luciferase activity from replicon-transfected cell 

extracts (Figure 3C). Different replication levels were observed, including higher (v1), 

nearly identical (v2 and v3) and lower replication efficiencies as compared to the wt 

subgenomic replicon (Figure 3C). In the latter, the replication level was close to that 

of a replicon containing a deficient RNA polymerase. Together, these results 

demonstrate that naturally occurring NS5A variants are associated with different RNA 

replication efficiencies in vitro. 
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HCV RNA replication efficiency in vitro correlates with NS5A variant 

transcriptional activation capacity 

As shown in Figure 3D, we found a statistically significant correlation (R2=0.9801, 

p<0.01) between the transactivation capacities of NS5A variants in vitro and the in 

vitro replication efficiency of the corresponding replicons. This result suggests that 

HCV RNA replication efficiency is, at least partly, related to the transcriptional 

activation properties of NS5A. 

 

NS5A nuclear localization is dependent upon NLS-driven nuclear import and 

cellular caspase activity. 

The transcriptional activation function of NS5A requires that at least a subset of this 

protein be translocated into the nucleus. In order to determine whether NS5A re-

locates to the nucleus, we performed immunofluorescence analysis of cells harboring 

the stable subgenomic replicon I389-neo/NS3-3’/5.1 (1), by means of confocal 

microscopy and 3D-reconstruction. A proportion of NS5A localized to the nucleus of 

cells stably harboring I389-neo/NS3-3’/5.1 (Figure 4A). To confirm these results in 

the absence of viral replication, we cloned NS5A-v1 or NS5A-v5 into a lentivirus 

vector (Figure 4B), and verified the expression of NS5A in cell transduced with these 

viruses (Figure 4C). Moreover, cells transduced with these lentiviruses also 

demonstrated a proportion of NS5A localized to the nucleus (Figure 4D). 

 

To confirm the role of the NS5A NLS in this process, we invalidated the NLS by site-

directed mutagenesis as previously described (57) (Figure 5A). After verifying that 

the constructs expressed similar amounts of NS5A (Figure 5B), immunofluorescence 

analyses were performed. As shown in Figure 5C (upper panel), abolition of the NLS 
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drastically reduced, but did not abolish, NS5A translocation to the nucleus. Taken 

together, these results indicate that the NLS of NS5A is functional and plays an 

important role in NS5A translocation to the nucleus. However, passive nuclear 

translocation of NS5A could also occur in this system. 

As NS5A is released from the ER membrane by caspase-mediated cleavage (20, 

42), we assessed in parallel whether caspase-mediated cleavage of NS5A is 

necessary for nuclear localization of NS5A. Mutation of the putative caspase 

recognition site at position 154 of the N-terminus of NS5A (D154E, Figure 5A) 

completely abolished nuclear translocation of NS5A (Figure 5C, lower image), 

demonstrating the importance of caspase cleavage in the release of NS5A from the 

ER before its subsequent translocation to the nucleus. 

 

HCV RNA replication efficiency in vitro is dependent upon nuclear 

translocation of NS5A 

To investigate whether NLS-mediated NS5A nuclear localization is important in HCV 

RNA replication, we analyzed the impact of NS5A NLS invalidation on replication of 

the sub-genomic replicons. Replicons encoding two different NS5A variants 

associated with high replication levels (v1 and v2) in which the NLS of NS5A was 

mutated (Figure 6A) exhibited reduced NS5A expression after 96h post-transfection 

(Figure 6B, lower panel), despite a similar expression at 4h (Figure 6B, upper panel), 

and a corresponding reduction in replicon replication in vitro (Figure 6C). These 

results demonstrate the importance of a functional NS5A NLS for efficient replication 

of the HCV subgenomic replicon. However, invalidation of the NLS did not completely 

abolish replication, in line with our findings that a proportion of NS5A translocates to 

the nucleus in the absence of a functional NLS (Figure 5C, upper panel).  
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In order to investigate the importance of caspase cleavage of NS5A in HCV 

replication, cells harboring sub-genomic replicons were treated with the pan-caspase 

inhibitor z-VAD-fmk and replication capacity was analyzed. As shown in Figure 6D, 

inhibition of cellular caspase activity substantially reduced, but did not abrogate, 

replicon replication. To verify that this result was not due to a non-specific effect of 

caspase activity inhibition, we analyzed the replicative capacity of an SGR mutated in 

the putative N-terminal caspase cleavage site (D154E) of NS5A (Figure 6D, inset). 

This mutation resulted in the complete loss of subgenomic replicon replication 

(Figure 6D).  

Taken together, these results demonstrate that caspase-mediated cleavage of NS5A, 

its release from the endoplasmic reticulum, and its subsequent localization to the 

nucleus is essential for the replication of the subgenomic HCV replicons. They are in 

line with the correlation between HCV replication efficiency and the NS5A 

transcriptional activation capacities. 

 

Different NS5A transcriptional activation properties are associated with 

differential expression of host cell genes essential for HCV RNA replication 

To better understand the mechanisms involved in regulation of HCV replication by 

NS5A transcriptional activation, the expression of 28 cellular genes previously shown 

to be essential for replication (listed in table 1) was analyzed in cells harboring 

replicons carrying an NS5A variant with high transcriptional and replication capacity 

(v1) and with low transcriptional and replication capacities (v5). When RTqPCR 

screening was used on cells harboring SGR-NS5A-v1 or SGR-NS5A-v5, no 

significant difference in gene expression profiles was observed (data not shown). 

Because the large number of untransfected cells in these transient assays could 
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have masked any differences, we made use of our lentivirus vectors expressing 

NS5A-v1 or NS5A-v5 (Figure 4B), allowing the transduction of a high proportion of 

cells and thus increasing signal-to-noise ratios. Analysis of host-cell gene expression 

in lentivirus-transduced cells revealed significant differences in the expression of five 

of the 28 genes analyzed. As shown in Figure 7, the genes of interleukin 8 (IL-8), 

lymphotoxin beta (LTΒ) and SNF-like kinase 2 (NUAK2) were significantly up-

regulated by Lenti-NS5A-v1, whereas they were either weakly up-regulated (IL-8 and 

NUAK2) or down-regulated (LTΒ) by Lenti-NS5A-v5. Expression of β-galactosidase 

using an identical lentiviral backbone had no impact on the expression of these 

genes, indicating that our observations were specifically due to expression of NS5A. 

In addition, MAP2K7 and TRAF2 genes were down-regulated by Lenti-NS5A-v5, 

whereas their levels were not significantly changed by Lenti-NS5A-v1. Together, 

these results suggest that NS5A variants with different transcriptional activation 

properties differentially regulate transcription of host-cell genes previously shown as 

required for viral replication and that this may impact HCV RNA replication.  

 

NS5A is recruited to host-cell promoters 

The deregulation of host-cell gene expression observed above might be due either to 

a direct interaction of NS5A with the promoter sequence of these genes, or to an 

indirect regulation involving NS5A-protein interactions. To investigate whether NS5A 

was capable of binding to the promoters of the genes identified above, we performed 

chromatin immunoprecipitation assays (ChIP) on nuclear extracts from cells 

transduced with lentiviruses encoding NS5A-v1 or NS5A-v5. Such experiments 

revealed that both NS5A-v1 and NS5A-v5 were able to bind specifically to the 

promoters of IL-8, LTΒ and NUAK2, but were absent from the promoters of MAP2K7, 
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TRAF2 and FBXL2 (Figure 8). The latter gene was included as a negative control, as 

its expression was unaltered by NS5A in previous experiments (data not shown). 

These data suggest that the regulation of MAP2K7 and TRAF2 by NS5A occurs via 

indirect mechanisms, which do not require the presence of NS5A on their respective 

promoters. Taken together, these results strongly suggest that NS5A directly 

interacts with the promoters of IL8, LTΒ and NUAK2, and that regulation of their 

expression through its intrinsic transactivation properties is important in modulating 

HCV replication. 

 

DISCUSSION: 

It is well established that in an infected individual, HCV exists as a quasispecies; a 

complex mixture of genetically distinct but closely related variants (33, 56). Using a 

functional analysis in a yeast single hybrid model, we have demonstrated that NS5A 

is able to transactivate the GAL4 minimum promoter. This is in agreement with 

previous reports in yeast and mammalian cells (10, 24, 44, 49). Moreover, 

quasispecies variants isolated from the liver tissue of an HCV-infected patient 

possessed different transactivation potentials. These data are in agreement with our 

previous observations of variants isolated from serum samples of HCV infected 

patients (38).  

We studied the effect of NS5A transactivation potential on HCV RNA replication 

using a subgenomic HCV replicon model in an Huh-7 derived cell line (50). 

Significantly different replication capacities were observed for replicons bearing 

NS5A variants with different transactivation potentials, despite similar levels of NS5A 

expression at 4 hours post-transfection. Moreover, we observed a significant 

correlation between NS5A transactivation potential and the replication capacity of the 



Results 
 

 
112 

subgenomic HCV replicon, indicating that NS5A transactivation could play a role in 

viral replication. It has previously been demonstrated that certain adaptive mutations 

in NS5A significantly increase the replication capacity of replicons by as yet unknown 

mechanisms (3, 6). Although none of our NS5A variants carried any of these 

previously identified mutations, our results suggested that the mutations carried by 

these variants played a similar role. Since this domain of NS5A is not well structured 

(18), any mutations in this area in our variants are unlikely to perturb the structural 

integrity of NS5A. As we suggested in our previous work (38), only a global change 

of the physical properties of this domain (e.g.: charge) might be involved in the 

modulation of its transactivation properties.  

 

Native NS5A is retained to the endoplasmic reticulum via trans-membrane 

sequences in domain 1, whereas to be able to directly exert its transcriptional 

activation functions, NS5A must translocate to the nucleus. Immunofluorescence 

confocal microscopy and 3D reconstruction analysis in cells harboring a stable 

subgenomic HCV replicon revealed a proportion of nuclear NS5A, demonstrating that 

NS5A could translocate to the nucleus. This was further confirmed by similar 

analyses of cells transduced with lentiviral vectors expressing NS5A-v1 and NS5A-

v5. We found that, both NS5A variants could translocate to the nucleus regardless of 

their transactivation potential, suggesting that the difference in transactivation 

properties between these variants was not due to their ability to translocate to the 

nucleus.  

 

Some studies have previously suggested that NS5A carries a functional NLS in its C-

terminal region and that N-terminally truncated forms of NS5A could translocate to 
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the nucleus (24, 46). In agreement with these findings, we observed that invalidation 

of the NS5A NLS provoked a significant reduction in the quantity of nuclear NS5A. 

However, a small proportion of NS5A was able to localize to the nucleus in the 

absence of a functional NLS, probably via passive diffusion. Previous studies have 

demonstrated that proteins up to 60kDa can passively diffuse through the nuclear 

pores even in the absence of active nuclear import (36, 45, 54). This suggested that, 

although not absolutely required, the NLS of NS5A plays an important role in its 

active nuclear translocation. In parallel, we found a significant reduction in the 

replication capacity of replicon whose NS5A NLS was invalidated, highlighting the 

importance of a functional NS5A NLS for HCV RNA replication. However, the 

replication capacity of these modified replicons was not completely abolished, in line 

with our observations that a proportion of NS5A could still translocate to the nucleus 

by passive diffusion in the absence of a functional NLS. It is probable that passively 

diffused NS5A may exert a role in the nucleus which may suffice for reduced viral 

replication. 

As previously mentioned, NS5A carries a small amphipathic α-helix in its N terminus 

that functions as an ER membrane retention signal (8). To be able to translocate into 

the nucleus, NS5A must be released from this anchor. Some studies have 

demonstrated that NS5A can be cleaved by cellular caspases to produce N-

terminally truncated fragments, which may represent a mechanism to release NS5A 

from the ER to allow its nuclear translocation and exert its transactivational function 

(15, 42). We inhibited this cleavage using either a pan-caspase inhibitor or a 

mutation in the putative N-terminal caspase cleavage site of NS5A. The former 

partially inhibited NS5A re-localization into the nucleus, while the latter resulted in a 

complete loss of nuclear NS5A, both without influencing its expression level. These 
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data strongly suggest that caspase-mediated release of NS5A from its N-terminal ER 

membrane anchor is indispensible for its translocation into the nucleus. More 

importantly, mutation of the conserved caspase cleavage site of NS5A resulted in 

complete loss of replication of the corresponding subgenomic replicon. These results 

are in contrast to those of Sauter et al. (43) who observed an inhibition of JFH1 

replication in Huh-7.5 cells over-expressing N-terminal truncated NS5A. These 

discrepancies may be due to the amount of nuclear NS5A produced in this system 

and the absence of characterization of the transactivation potential of NS5A in their 

model.  

 

NS5A has previously been demonstrated to modulate cellular responses to viral 

infection through interaction with several proteins involved in host cell signaling 

pathways related to interferon response, cell cycle and apoptosis etc. (4, 12, 13). We 

hypothesized that direct regulation of host gene transcription by NS5A represents 

another mechanism employed by HCV to achieve similar goals, providing a possible 

explanation for the correlation between HCV replication and NS5A transactivation 

properties observed. We therefore analyzed the expression of a subset of cellular 

genes whose expression has been previously described to be required for efficient 

HCV RNA replication (7, 14, 17, 35, 41, 47, 48, 51, 53). Our results indicated a 

significant difference in the expression of several of these genes between cells 

expressing NS5A-v1 and –v5. The mRNAs of interleukin 8 (IL8; also called CXCL-8), 

lymphotoxin beta (LTβ) and SNF like kinase 2 (NUAK2; also called SNARK) were 

significantly more abundant in cells expressing NS5A-v1 compared to NS5A-v5-

transduced cells. Furthermore, we demonstrated a direct interaction between NS5A 

and the promoters of these cellular genes. Modulation of IL-8 expression via NS5A 
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transactivation is in keeping with previously published results (39). In addition, JFH1 

infection stimulates the expression of this proinflammatory cytokines (5, 26) and high 

level of IL-8 are found in chronically infected patients (40). HCV RNA synthesis in 

replicon harboring cells was inhibited by IL-8 siRNA knockdown. IL-8 protein levels 

correlated positively with HCV RNA levels in subgenomic and genomic replicon lines. 

However, IL-8 may have opposing antiviral and proviral effects depending on the 

level of HCV replication, the cellular context, and whether the infection is acute or 

chronic (26). Moreover, HCV infection triggers dsRNA signaling pathways that induce 

IL-8 expression via transcriptional activation, and mutations of the interferon-

stimulated response element (ISRE) and NF-kappaB binding sites of this IL-8 

promoter reduced and abrogated IL-8 transcription (52). Overall, the regulation of IL-

8 gene transcription by HCV might involve multiple pathways, including a direct 

transactivatory effect of NS5A, leading to the inhibition of the antiviral actions of IFN, 

thus enhancing HCV replication. 

 

Knock-down of the membrane protein LTβ and the kinase NUAK2  in Huh-7 derived 

cells containing a subgenomic replicon identical to the one used in our study 

correlated with a 60 to 80% decrease in HCV replication (35). Our data suggest that 

NS5A directly activates the transcription of both these genes. LTβ is a member of the 

TNF superfamily which controls cell survival. Similarly to IL-8, this signaling pathway 

leads to the activation of NF-kappaB. In contrast, very little is known about the link 

between NUAK2 and HCV replication, although it is interesting to note that NUAK2 

might be an NF-kappaB-regulated anti-apoptotic gene (29). Interestingly, HCV 

infections have been described to increase the hepatic expression of LTΒ (30) whose 



Results 
 

 
116 

sustained expression in turn has been shown to represent an important pathway in 

HCV induced primary liver tumors (19).  

 

Although we found that NS5A-v5 decreased the abundance of TRAF2 mRNA, we 

observed no direct interaction between NS5A and the TRAF2 promoter. It has been 

previously reported that TRAF2 and NS5A directly interact which results in an 

inhibition of NF-κB activation (37). Taken together, it is likely that NS5A modulates 

TNF-receptor signaling through direct interaction with its signaling complex rather 

than through repression of TRAF2 gene expression. 

 

In conclusion, we have demonstrated a novel mechanism by which HCV regulates 

host-cell gene expression. We observed that the ability of NS5A to transactivate a 

cellular promoter was correlated with the replication efficiency of HCV replicons. 

Furthermore, efficient replication of HCV RNA is dependent upon the caspase-

mediated release of NS5A and its subsequent NLS-mediated translocation to the 

nucleus. Finally, we provide compelling evidence that NS5A binds directly to cell 

promoters, thus modulating their activity. These data present a new mechanism by 

which HCV modulates its cellular environment, thereby enhancing viral replication. 
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FIGURE LEGENDS: 

 

Figure 1. Amino acid sequence alignment of isolated NS5A variants. Amino acid 

sequences of NS5A quasispecies variants (V1 to V5) isolated from the liver of a 

patient infected with HCV genotype 1b aligned with the SGR-Nim NS5A sequence 

used as a reference sequence. Numbers represent amino acid positions within 

NS5A. The underlined sequence represents the NS5A transactivation domain. * 

denotes mutations not conserved between all 5 variants. ~ indicates a deletion. 

 

Figure 2. Analysis of the transactivation properties of NS5A variants.  

(A) Schematic representation of yeast one-hybrid constructs encoding NS5A variants 

V1 to V5. The NS5A transcriptional activation domains (NS5A TrD) were amplified 

from patient cDNA and cloned into plasmid pGBT9, giving fusions of the GAL4 DNA 

binding domain (BD) with the respective NS5A transactivation domains of each 

variant (pGBT9-NS5A-v1 to v5).  

(B) Yeast one-hybrid vectors pGBT9-NS5A-v1 to v5 (described above) were 

transfected into yeast strain Y187. The potential of the hybrid proteins to activate 

transcription of the LacZ gene was analyzed by quantification of β-galactosidase 

activity, and the results are expressed as mean ± SEM transactivation levels 

obtained from at least three independent experiments. AU = arbitrary units.  

 

Figure 3. Impact of HCV NS5A transactivation properties on replication 

efficiency of subgenomic HCV replicons harboring different NS5A 

quasispecies variants. (A) Schematic representation of sub-genomic replicon 

constructs encoding NS5A variants V1 to V5. NS5A variant sequences were cloned 
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into a sub-genomic replicon shuttle vector. Filled triangles indicate the introduction of 

cell culture adaptive mutation S2204I. An open triangle indicates the introduction of 

the GDD to GND mutation in the NS5B polymerase. SGR-NS5A-vX is the 

subgenomic replicon carrying NS5A variant sequence vX; SGR-Nim is the wt replicon 

(50); SGR-GND is the nonreplicative control replicon. (B) NS5A protein expression in 

NG cells transfected with subgenomic replicons encoding different NS5A variants as 

analyzed by western blotting at 4 and 96 hours post-transfection. Actin expression 

was used as a loading control. Bands corresponding to 56 kDa NS5A or 42 kDa actin 

are indicated. (C) Replication efficiency of HCV sub-genomic replicons carrying 

different NS5A variants was analyzed in the cell lysates detailed in (B). Luciferase 

activities were assayed in transfected cells, and the replication efficiency was 

calculated as a percentage of that obtained with replicon SGR-Nim (represented by 

the dashed line). Data is indicative of mean±SEM replication efficiencies obtained 

from 7 independent experiments carried out in triplicate. (D) Relationship between 

the transcriptional activation capacities of NS5A variants and the replication 

efficiencies of the corresponding subgenomic replicons. Data points represent the 

mean transactivational capacities and replication efficiencies for each variant.  

 

Figure 4. Subcellular localization of NS5A. 

(A) Cells harboring the subgenomic replicon I389-neo/NS3-3’/5.1 were analyzed by 

confocal microscopy using anti-NS5A antibody in conjunction with anti-rabbit FITC-

conjugated secondary antibody. Nuclei were stained with To-Pro-3. Three-

dimensional representations were reconstructed from image z-stacks. Scale bar = 10 

μm. * denotes non-replicon harboring cells. (B) Schematic representations of 

lentivirus vectors carrying NS5A variants V1 and V5 and β-galactosidase. Filled 
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triangles indicate the presence of cell culture adaptive mutation S2204I. (C) 

Immunoblotting analysis of NS5A expression in cells transduced for 72 hours with the 

lentiviruses described in (B). Bands corresponding to 56 kDa NS5A or 42 kDa actin 

are indicated. (D) Confocal analysis of cells transduced with lenti-NS5A-v1 or –v5 

was carried out as described in (A). Scale bar = 10 μm. * denotes non-transduced 

cells. 

 

Figure 5. Analysis of mechanisms surrounding NS5A nuclear localization. 

(A) Schematic representations of lentivirus vectors carrying mutated NS5A-v1. An 

open triangle denotes invalidation of the NS5A NLS, a closed triangle indicates 

mutation of the caspase recognition site at amino acid position 154. (B) Western 

blotting analysis of NS5A expression in cells transduced for 72 hours with the 

mutated and non-mutated NS5A-v1 lentiviruses. Bands corresponding to 56 kDa 

NS5A or 39 kDa GAPDH are indicated. (C) Confocal analysis of cells transduced with 

the mutated and non-mutated NS5A-v1 lentiviruses was carried out as described in 

figure 4. Scale bar = 10 μm. * denotes non-transduced cells.  

 

Figure 6. The contribution of nuclear NS5A localization to HCV RNA replication. 

(A) Schematic representation of sub-genomic replicons encoding NS5A-v1 or v2 

containing mutated NLS. An open triangle denotes invalidation of the NS5A NLS, and 

a closed triangle indicates the presence of the cell culture adaptive mutation S2204I. 

(B) Western blotting analysis of NS5A expression in cells transfected with NLS-

mutated and non-mutated v1 and v2 replicons at 4 and 96 hours post-transfection. 

Actin expression was used as a loading control. Bands corresponding to 56 kDa 

NS5A or 42 kDa actin are indicated. (C) Replication efficiency of HCV sub-genomic 
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replicons carrying NS5A variants encoding mutated NLS was analyzed in the cell 

lysates 96h post-transduction. The replication efficiencies were calculated as 

described in the legend to Figure 3C. Data is indicative of the mean ± SEM 

replication efficiencies obtained from 7 independent experiments carried out in 

triplicate. The statistical significance of these data was analyzed unsing a Mann-

Whitney test. (D) The effect of caspase cleavage of NS5A on HCV replicon 

replication. (Upper panel) Schematic representation of a sub-genomic replicon 

encoding NS5A-v1 with a mutated caspase cleavage site. An open triangle denotes 

mutation of the caspase recognition site at amino acid position 154, and a closed 

triangle indicates the presence of the cell culture adaptive mutation S2204I. (Lower 

panel) Replication efficiency of the indicated subgenomic replicons was analyzed in 

the presence or absence of the caspase inhibitor z-VAD-fmk at the indicated 

concentrations. Data represents the mean ± SEM replication efficiencies obtained 

from 3 independent experiments carried out in triplicate. 

 

Figure 7. Gene expression analyses of cells expressing NS5A variants. 

mRNA expression in NG cell cultures transduced with Lenti-NS5A-v1 and Lenti-

NS5A-v5. The expression levels of the indicated genes were determined by 

quantitative real-time PCR from the pooled RNA of three independent experiments. 

The results were normalized to expression of GAPDH, and the mean ± SEM mRNA 

quantities are expressed in relation to control cells transduced with Lenti-β-gal. 
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Figure 8. Chromatin immunoprecipitation analyses of cells expressing NS5A-

V1 and -V5 

Chromatin was immunoprecipitated using an anti-NS5A antibody from NG cells 

transduced with lentiviruses expressing NS5A-V1 or NS5A-V5. Immunoprecipitated 

chromatin and input DNA were amplified using primers spanning the promoters of the 

indicated genes. The PCR products were analyzed by agarose gel electrophoresis. 

Cells transduced with Lenti-β-gal were used as a control. The promoter of FBXL2 

was amplified as a negative control. Numbers on the left indicate sizes in bp of the 

DNA ladder. 
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Table 1: RTqPCR Taqman probes for gene expression analysis. 

Primers Gene Acc. No. Assay ID Gene Name 

GAPDH 
 

NM_002046.3 Hs99999905_m1 Glyceraldehyde-3-phosphate dehydrogenase 

CDC42 
 

NM_001791.3 Hs03044122_g1 Cell division cycle 42 (GTP binding protein, 25kDa) 

COPZ1 
 

NM_016057.1 Hs00255433_m1 Coatomer protein complex, subunit zeta 1 

CSK 
 

NM_001127190.1 Hs01062579_g1 c-src tyrosine kinase 

CYP1A1 
 

NM_000499.3 Hs01054797_g1 Cytochrome P450, family 1, subfamily A, polypeptide 1 

DDX3X 
 

NM_001356.3 Hs00606179_m1 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked 

DICER1 
 

NM_030621.3 Hs00998582_g1 Dicer 1, ribonuclease type III 

EIF2S3 
 

NM_001415.3 Hs00831673_gH Eukaryotic translation initiation factor 2, subunit 3 
gamma, 52kDa 

FBXL2 
 

NM_012157.3 Hs00247211_m1 F-box and leucine-rich repeat protein 2 

HAMP 
 

NM_021175.2 Hs01057160_g1 Hepcidin antimicrobial peptide 

JAK1 
 

NM_002227.2 Hs01026996_m1 Janus kinase 1 

LTΒ 
 

NM_009588.1 Hs00242739_m1 Lymphotoxin beta (TNF superfamily, member 3) 

MAP2K7 
 

NM_145185.2 Hs00178198_m1 Mitogen-activated protein kinase kinase 7 

NFKB2 
 

NM_001077493.1 Hs00174517_m1 Nuclear factor of kappa light polypeptide gene enhancer 
in B-cells 2 (p49/p100) 

NUAK2 
 

NM_030952.1 Hs00388292_m1 NUAK family, SNF1-like kinase, 2 

PI4KA 
 

NM_058004.2 Hs00176931_m1 Phosphatidylinositol 4-kinase 

PI4KB 
 

NM_002651.1 Hs00356327_m1 Phosphatidylinositol 4-kinase, catalytic, beta 

PPIA 
 

NM_021130.3 Hs99999904_m1 Peptidylprolyl isomerase A (cyclophilin A) 

RELA 
 

NM_001145138.1 Hs00153294_m1 v-rel reticuloendotheliosis viral oncogene homolog A  

SLC12A4 
 

NM_001145961.1 Hs00957122_m1 Solute carrier family 12 (potassium/chloride 
transporters), member 4 

SLC12A5 
 

NM_001134771.1 Hs00221168_m1 Solute carrier family 12 (potassium-chloride 
transporter), member 5 

TBXA2R 
 

NM_201636.2 Hs00169054_m1 Thromboxane A2 receptor 

TRAF2 
 

NM_021138.3 Hs00184186_m1 TNF receptor-associated factor 2 

TXNIP 
 

NM_006472.3 Hs01006900_g1 Thioredoxin interacting protein 

VAPA 
 

NM_194434.2 Hs00427749_m1 VAMP (vesicle-associated membrane protein)-
associated protein A, 33kDa 

VAPB 
 

NM_004738.3 Hs00191003_m1 VAMP (vesicle-associated membrane protein)-
associated protein B and C 

VRK1 
 

NM_003384.2 Hs00177470_m1 Vaccinia related kinase 1 

IL8 NM_000584.2 Hs99999034_m1 Interleukin 8 
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PLK1 NM_005030.3 Hs00983233_g1 Polo-like kinase 1 
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Figure 2A 
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Figure 3A 
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Figure 3C 
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Figure 4A 

 

 

 

 

Figure 4B 
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Figure 4C 
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Figure 5A 
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Figure 5C 
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Figure 6A 
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Figure 6C 
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Figure 6D 
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Figure 7 
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3.4. The AR2 Region of NS5A bears the transactivation potential of NS5A (Additional 
data not included in the J Virol paper.) 
 
As described above, NS5A quasispecies variants isolated from the hepatic tissue of an HCV-

infected individual demonstrated significantly different transactivation potentials. Sequence 

analysis of the transactivation domains of these variants demonstrated no correlation between 

specific amino acid residues and the transactivation potential of a variant (Figure 1 of the 

submitted article). These observations suggested that the transactivation potential of an NS5A 

variant may depend on the global physical properties of the region. Previously our group has 

reported that the calculation of hydrophobicity and the prediction of secondary structures by 

various methods reveal very close values and conformational differences amongst variants 

(Pellerin et al., 2004). In addition, in the same study it was suggested that amino acid 

substitutions among variants may affect the global charge of the polypeptide and may thus 

influence NS5A interactions and functions. To investigate this hypothesis, we correlated the 

global charge of each NS5A transactivation domain with the transactivation potential of the 

corresponding variant. Our results indicated a significant correlation between the global 

charge of the transactivation domain and its transactivation potential (Figure 3.18B). The 

transcriptional activation domain of HCV NS5A has been shown to contain two regions rich 

in acidic amino acids termed AR1 and AR2 (Figure 3.18A) (Tanimoto et al., 1997). To 

investigate whether one or both of these regions play a role in transactivation, we studied the 

correlation between the global charges of these acid-rich regions and the transactivation 

potential of the corresponding variant. For this, all isolated NS5A variants were divided into 

three categories based on their transactivation potential i.e., strong, average and weak 

transactivators. The global charge of polypeptides corresponding to the transactivation 

domain, AR1 or AR2 regions of variants in these categories were plotted. We observed a 

significant correlation between the global charge of AR2 and transactivation potential of the 

variant, although no such correlation was observed for AR1 (Figure 3.18B). These 

observations suggested that AR2 could play a major role in the transactivation properties of 

NS5A.  
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Figure 3.18: Role of AR2 in the transactivational properties of NS5A. [A] Schematic 
representation of acid rich regions AR1 and AR2 of the NS5A transactivation domain. [B] 
Correlation between the global charge of NS5A transcriptional activation domain, AR1 or 
AR2 and the transactivation potential of NS5A variants. Each bar represents the mean global 
charge of the indicated polypeptide region of all NS5A variants in the indicated group. 
 
 

 

To experimentally confirm these observations, we exchanged the AR2 region sequences 

between strong and weak transactivating NS5A variants (v1 and v5) as described in section 

2.4.12. We then cloned these chimeric variants into our yeast one-hybrid and sub-genomic 

replicon systems to study the subsequent effect NS5A transactivation properties and HCV 

RNA replication capacity.  
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Figure 3.19: Role of AR2 in NS5A transactivation and HCV RNA replication. The AR2 
region of the NS5A transactivation domain of strongly (NS5A-v1) and weakly (NS5A-v5) 
transactivating NS5A variants were swapped with each other (left). The effect of this 
exchange on NS5A transactivation properties and HCV RNA replication was studied in yeast 
one-hybrid (blue) and subgenomic replicon models (red) respectively. Error bars indicate 
SEM.  These results are indicative of three independent experiments. 

 

 

The results shown in figure 3.19 demonstrate that both the transactivation potential of the 

variant and the HCV RNA replication capacity of a replicon bearing such a variant were 

strongly reduced when the AR2 region of a strongly transactivating variant was replaced with 

that of a weakly transactivating variant. On the other hand, whilst the transactivation potential 

of a weakly transactivating variant increased significantly when the AR2 domain was 

replaced with that of a strongly transactivating variant, the corresponding replication capacity 

was nearly unaffected. Together these observations suggest that the AR2 region of NS5A is 

necessary but not sufficient for its transcriptional activity and its effect on HCV RNA 

replication. 
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With more than 170 million carriers around the world, HCV represents a serious public health 

problem. HCV infection becomes chronic in more than 80% of the patients and is often 

associated with liver steatosis, fibrosis, cirrhosis, and is a major risk factor for the 

development of hepatocellular carcinoma. Little is known about the mechanisms surrounding 

HCV-induced pathogenesis and it is unclear what, if any, role the direct HCV proteins play in 

these processes remains to be defined. In this context, we have investigated the role of the 

HCV NS5A protein, especially its transactivation properties, on viral replication and in liver 

pathogenesis. 

NS5A is a nonstructural protein and is an essential component of HCV replication complex, 

although no precise enzymatic function has been attributed to it. Some studies have suggested 

that N-terminal deletion mutants of HCV NS5A possess transcriptional activation properties, 

although the exact mechanisms involved are unclear (Kato et al., 1997; Tanimoto et al., 1997; 

Pellerin et al., 2004). It is well established that in an infected individual, HCV exists as a 

quasispecies; a complex mixture of genetically distinct but closely-related variants (Weiner et 

al., 1991; Martell et al., 1992). Using phylogenetic and functional analyses we demonstrated 

that hepatic quasispecies variants of NS5A possessed different levels of transactivation 

potential, suggesting that the accumulation of genetic mutations randomly generates viral 

protein variants with quantitatively different functional properties in infected cells. These data 

extend previous observations made using quasispecies variants isolated from serum samples 

(Pellerin et al., 2004). Moreover, our analysis of NS5A sequence distributions within a given 

patient revealed a genetic compartmentalization between tumoral and adjacent non-tumoral 

hepatic tissues. However, this finding was not observed in all patients from our cohort. This 

genetic compartmentalization was most evident in patients with non-cirrhotic liver tissues, 

although it is difficult to draw a valid conclusion from such a small group (n=4). Both 

decreased Shannon entropy of NS5A quasispecies and lower virus titers (HL, personal data) 

were observed in the tumoral tissue of these patients, indicating restrictions on virus genetic 

diversity in the tumoral environment. One possible explanation is that reduced genetic 

diversities and viral titers were due to a more recent infection of the tumoral tissues by HCV 

from the adjacent tissues. Similar virus diversity was proposed in the case of lymphoid and 

central nervous system tissues infection by neuropathogenic SIVsmmFGb. (Reeve et al., 

2009; Reeve et al., 2010). These studies also pinpointed that such compartmentalization 

evolved over the time of infection, therefore complicating any conclusions that may be drawn 

from such analyses. 
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A study has reported that HCV core protein sequences isolated from tumoral tissue could 

interact with the cellular transcription factor Smad3 and inhibit the TGF-β pathway, but that 

variants isolated from adjacent non-tumoral tissues could not (Pavio et al., 2005), thus 

demonstrating a functional compartmentalization of core protein. In our study, due to high 

variability between patients, we were unable to conclude that a specific tissue compartment 

was harboring particular NS5A transactivation levels.  

We found that the transactivation properties of a given NS5A variant and the amino-acid 

sequence of its transactivating domain were related, with certain regions exclusively mutated 

in variants with high transactivatory potentials. However, we did not observe any correlation 

between specific amino acid residues and transactivation properties, suggesting that the 

transactivation potential of a variant may rather depend on global physical properties of the 

polypeptide. Indeed, analysis of the variants revealed a significant correlation between their 

global charge and transactivation potential, confirming hypotheses posed by Pellerin et al. 

(2004). The central region of NS5A contains two domains rich in acidic amino acids and one 

proline rich region ((Tanimoto et al., 1997; Tan et al., 1999). Interestingly these structural 

characteristics are a typical feature of many viral and eukaryotic transcription factors such as 

HIV Tat, HSV VP16 and c-Jun (Hope et al., 1988; Lillie et al., 1989; Kamine et al., 1991; 

Tiley et al., 1992; Subramanian et al., 1994). We were able to pinpoint the domain AR2 as 

essential for NS5A transactivation properties. 

Although it has previously been suggested that NS5A protein may possess transactivation 

properties, the impact of such activity was not known. Here, we showed that NS5A 

transactivation potentials positively correlated with viral replication capacity. Thus, one 

possibility is that HCV NS5A may act in a manner analogous to HIV Tat and HSV-1 VP16 

during viral replication. Tat and VP16 are viral transactivators shown to be essential for viral 

replication as they are required for efficient transcription of viral genomes (Arya et al., 1985; 

Fisher et al., 1986; Tal-Singer et al., 1999).  

We have further shown that that NS5A transactivational activity plays an important role in 

viral replication by modulation of the host cell genes required for efficient replication of 

HCV. Indeed, other viral transactivators such as HIV Tat have also been shown to regulate 

HIV replication and chronicity by transactivating cellular genes (Buonaguro et al., 1992). 

Although NS5A has previously been shown to play a role in viral regulation by modulating 

the cellular responses through interactions with several proteins involved in host cell signaling 
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pathways related to interferon response, cell cycle and apoptosis (Gale et al., 1997; Gale et 

al., 1999; Arima et al., 2001), we have demonstrated that direct regulation of host gene 

transcription by NS5A represents another mechanism employed by HCV to achieve similar 

goals, providing a possible explanation for the correlation between HCV replication and 

NS5A transactivation properties observed.  

The translocation of a protein to the nucleus is essential for it to exert any putative 

transactivational activity. In line with this, we demonstrated that that caspase-mediated release 

of NS5A from its ER retention signal and its translocation to the nucleus is essential for HCV 

RNA replication in vitro. Although our study does not provide any data about the mechanisms 

by which NS5A may function as transcriptional activator, the use of formaldehyde in our 

ChIP experiments demonstrate that NS5A closely interacts with the cellular gene promoters. 

It is well known that different transcription factors function as transcriptional regulators by 

interacting with specific DNA elements (Kang et al., 2010). However as NS5A amino acid 

sequence does not contain any know DNA binding motif, it is less likely that it may interact 

directly with DNA. Interestingly, it has been demonstrated that NS5A colocalizes with Snf2-

related CREBBP activator protein (SRCAP), a cellular transcription factor, suggesting that 

NS5A may interact with cellular transcription factors to modulate their activity (Ghosh et al., 

2000b). Other viral transactivators that modulate host cell gene expression, such as Tat, have 

been shown to  target protein kinases involved in the phosphorylation of polymerase II C-

terminal domain thus influencing the transcription initiation as well as elongation (Herrmann 

et al., 1996; Gold et al., 1998). Recently, it has been suggested that viral transactivators such 

as VP16 may also function by enhancing the polyadenylation of targeted precursor mRNAs 

(Nagaike et al., 2011). It is possible that NS5A may act in a manner similar to these viral 

transactivators, although further work remains to be performed on the exact manner(s) in 

which NS5A exerts its transactivational activities. 

To completely understand the mechanisms of NS5A transactivation, it will be critical to 

characterize the cellular promoters bound by NS5A. Chromatin immunoprecipitation coupled 

with last-generation genome-wide deep sequencing (ChIP-seq) represents a powerful strategy 

to analyze the possible targets of transactivation by viral proteins (Kennedy et al., 2010). We 

are currently performing ChIP-seq analysis on primary human hepatocytes expressing weakly 

and strongly transactivating NS5A variants. Such analysis, coupled with transcriptome 

analysis of these cells, will allow us to define the complement of cellular genes transactivated 
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by NS5A. Using these data, we may be able to suggest a DNA motif necessary for NS5A 

DNA binding or transcription factors targeted by NS5A. 

Apart from enhancing HCV replication, NS5A mediated modulation of host cell gene 

expression may represent a mechanism by which HCV can override cellular control 

mechanisms such as the interferon response, cell cycle progression and apoptosis, 

contributing to persistent infection. We have demonstrated that NS5A can directly modulate 

the expression of several cellular proteins such as CXCL8, LTB, NUAK2, In agreement with 

our observations, it has been previously  demonstrated that NS5A induces the activity of 

CXCL8 promoter in reporter gene assays (Polyak et al., 2001b). Moreover it has been 

demonstrated that CXCL8 is induced to high levels by replicons with high replicative 

capacity (Koo et al., 2006). Interestingly our results demonstrated that NS5A variant with 

higher transactivation potential, induced higher levels of CXCL8 as well as conferred higher 

replication to corresponding replicon, suggesting that NS5A transactivation of CXCL8 may 

play an important role in enhancing the replication of HCV. NS5A transactivation of CXCL8 

may also represent one of the mechanisms involved in HCV induced pathogenesis. It has been 

demonstrated that increased expression of CXCL8 in HCV infected patients is associated to 

inhibition of antiviral effects of interferon (Polyak et al., 2001a). HCV has been suggested to 

increase levels of LTβ in liver tissues (Lowes et al., 2003) whose sustained expression 

represents an important factor in liver inflammation and HCV-induced HCC (Lowes et al., 

2003; Haybaeck et al., 2009). We observed a strong upregulation of LTβ by strongly 

transactivating NS5A variant, suggesting that NS5A mediated transcriptional activation may 

account for at least a partial increase in liver LTβ levels thus inducing liver inflammation. 

Similarly, NUAK2 is a potent anti-apoptotic kinase involved in increased death resistance and 

invasiveness of tumor cells (Legembre et al., 2004; Kim et al., 2008). No direct link between 

HCV and NUAK2 is known. However, it is a very important cell cycle regulator, therefore its 

modulation by NS5A might be one of the mechanisms by which HCV regulates the cell cycle 

thus play a role in HCV-induced pathogenesis. 

To study the role of NS5A transactivation in HCV induced pathogenesis in vivo, we tried to 

develop an adenoviral vector system to express well-characterized NS5A variants in murine 

hepatic tissues. However, our adenoviral vector system failed to efficiently express the NS5A 

transgene in vivo. We therefore decided to use two complementary approaches to study our 

hypotheses that the natural variability of NS5A may impact its proposed transactivation 

properties and that NS5A’s putative transactivation properties could play a role in liver 
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pathogenesis. Our alternative strategy was to use a lentiviral vector for in vitro studies, 

whereas for in vivo studies we developed transgenic mice expressing the patient-isolated 

NS5A variants we previously characterized. In order to investigate the role of NS5A 

transactivation in host gene regulation, we performed genome wide RNA-seq differential 

transcriptome analysis on in vitro cultured primary human hepatocytes transduced with 

lentiviral vectors encoding weakly and strongly transactivating NS5A variants. Such primary 

human cells were chosen because we assumed that major cellular pathways in these cells were 

closer to those found in patients than those of hepatoma cells (Huh-7 and derived clones). The 

data obtained will allow us to identify the host cell molecular pathways differentially 

regulated by NS5A variants. The role of NS5A variants in differential regulation of identified 

pathways and eventually the potential mechanisms of pathogenesis will be the subject of 

future studies. As with our previous approach, this approach is also based on expression of 

NS5A alone. This might represent a caveat in this study since during HCV lifecycle, NS5A is 

part of a multiprotein replication complex, absent from our models. The results obtained from 

this approach should then be confirmed using other models harboring the full HCV protein 

repertoire. Such full-length or infectious HCV replicon systems bear numerous other caveats, 

mainly concerning the cell types used. A better approach might involve recently developed in 

vivo infectious model in humanized mice (Mercer et al., 2001; Strick-Marchand et al., 2004; 

Meuleman et al., 2005). 

As described above, we are developing transgenic mice expressing NS5A variant proteins. 

Making use of advanced targeted transgenesis techniques, in which the transgene is inserted 

into a neutral locus, and is able to be conditionally expressed in a liver-and time-specific 

fashion, we have begun the development of transgenic mice expressing NS5A variants v1 and 

v2. We expect to obtain the first mice in March 2012.The double transgenic mice for both 

hepatic Cre recombinase and NS5A variants will be followed for 18 months to study the 

incidence of both spontaneous and chemically-induced HCC as a function of transactivation 

properties of NS5A variants, using Cre-negative littermates as negative controls. The absence 

of other viral proteins may be one of the limiting factors in the development of HCC: to 

overcome this problem, the Alb-Cre/NS5A mice will also be crossed with FL-N/35 mice 

(Lerat et al., 2002) that express the entire protein complement of HCV. Host cell pathways 

identified as potential targets of NS5A-mediated transcriptional regulation in in vitro RNAseq 

studies will be studied in these transgenic mice and their implication in HCV-induced 

pathogenesis will be defined. 



Discussion 
 

 
153 

In conclusion, the work presented in this thesis demonstrates that quasispecies nature of HCV 

gives rise to a large number of variant proteins with different functional properties. The 

difference of functional and biological properties among quasispecies variant proteins might 

play an important role in the development of HCV-induced liver pathogenesis. We have 

demonstrated a novel mechanism by which HCV regulates host-cell gene expression to 

facilitate HCV replication. We have further provided compelling evidence that NS5A directly 

interacts with cell promoters, thus modulating their activity. As a result, host genes involved 

in cell multiplication, apoptosis or other pathways key for cell fate are modulated by NS5A 

and might lead to perturbations of host cell functions, liver functions and the common 

pathologies observed in HCV-induced chronic hepatitis. It will be difficult, but interesting, to 

understand the origins of the modulation of the HCV cellular environment: are they collateral 

damages due to properties of HCV proteins originally involved in viral genome replication, or 

virus-targeted modulations of the host cell?  
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Appendix-Oligonucleotides 

Primer Name Primer Sequence (5’-3’) 
  

Bgl1_NS5Apop28_S GCAGCCCATCCGGCTCGTGGCTGAGGGA 

B-NS5A-swap CAAAGAAGGCGCAGACAACTGGCTAGC 

CACC-SrfI-T2A-S CACCTGCCCGGGCGA GGGCAGAGG 

C-NS5A-swap TTCCCCCCAGCGATGCCCATATGG 

E-NS5A-swap GCTATCCAGTTGTCTGCGCCTTCTTGT 

FBXL2-prom-AS CGTATCTGGTCCATCCTCTCA 

FBXL2-prom-S TGGGGTGAGTGTCGTTTTATC 

F-NS5A-swap CCCATATGGGCATCGCTGGGGGGA 

IL8-Prom3-AS CTCAGGGCAAACCTGAGTCATC 

IL8-Prom3-S GTTGTAGTATGCCCCTAAGAG 

LTB-prom1-AS ATATTCCCTCACCCCACCAT 

LTB-prom1-S TACGGGCCTCTCTGGTACAC 

MAP2K7-prom-AS GAAGGATGACGCCACCTAGA 

MAP2K7-prom-S AACGAGGTTCCAGGAATGC 

NS5A_Stop_XhoI_AS GTCCTCGAGTCAGCAGCAGGCGACGTTCTC 

NS5A-c1167a-AS CTTAGCAGCCGGCAGCTTTCGCCGTGC 

NS5A-c1167a-S GAATCGTCGGCCGTCGAAAGCGGCACG 

NS5A-HindIII GGAAGCTTGTCCGGCTCGTGGCTAAGG 

NS5A-kozak-S GCCACCATGTCCGGCTCGTGGCTA 

NS5A-NotI-S TAGCGGCCGGGAGCAGCAAACGACGTCCTC 

NS5A-PacI-AS CCTCTTAATTAACTCCTCGCTCACGGTAGACCAAGACCC 

NS5A-stop-AS CTACTAGCAGCAAACGACGTCCTC 

NS5A-t462a-AS TAAGAAGTGTCTCCACCTTCCCCACGCCG 

NS5A-t462a-S ATTCTTCACAGAGGTGGAAGGGGTGCGGC 

NUAK2-prom1-AS CCTGAAGGCCTAGAGAACACA 

NUAK2-prom1-S CCTGAAGTTGCTGCTGTGAA 

p1071-NLSmut-AS CTGTTAGGACAACCGTCCCCATTCCCCC 

TGGAGGTGGTATTGGAGGGG 

p1071-NLSmut-S CCCCTCCAATACCACCTCCAGGGGGAAT 

GGGGACGGTTGTCCTAACAG 

TopoT2A-XhoI-AS  ATGCATGCTCGAGCGGCCGC 
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TRAF2-prom-AS CAGCCCTCAGGAAGCTGTAG 

TRAF2-prom-S GGGAAGGGACCCAATTAGC 

 

 



 

 

Notes 

  



 

 

Notes 

 

 

  



 

 

Notes 

 

  



 

 

Summary 

Hepatitis C virus (HCV) causes a chronic infection in the majority of infected patients, 
ultimately leading to liver cirrhosis and hepatocellular carcinoma (HCC). Although the roles 
of the HCV proteins in the viral life cycle are increasingly understood, the precise function of 
the HCV NS5A protein has yet to be elucidated. To date, the only putative direct function 
attributed to NS5A is its transcriptional transactivation properties. Our group has previously 
shown that quasispecies variants of NS5A isolated from the serum samples of the same 
patient bear different transactivating properties according to their amino acid sequence. Based 
on these observations, we performed preliminary phylogenetic and functional analysis of 
NS5A variants isolated from liver tissue of individuals infected with HCV of genotype 1b. 
This analysis revealed genetic and functional compartmentation of NS5A variants in tumoral 
and adjacent non-tumoral tissue. We hypothesized that the natural variability of NS5A may 
impact its proposed transactivation properties. We also hypothesized that NS5A’s putative 
transactivation properties could play a role in HCV replication and in liver pathogenesis. The 
aim of the study presented in this thesis was to investigate the role of NS5A transactivation 
properties in the development of HCV-induced liver pathogenesis as well as in viral 
replication.  

To study the role of NS5A transcriptional activation properties in liver pathogenesis, we 
developed lentiviral vectors for the expression of selected NS5A variants bearing different 
transactivation potentials in cultured primary human hepatocytes. We now intend to extend 
these preparations using RNAseq technology to analyse the, transcriptome of primary 
hepatocytes transduced with lentiviral vectors encoding strongly and weakly transactivating 
NS5A variants to identify the cellular pathways targeted by NS5A, allowing us to decipher 
the role of NS5A mediated host gene regulation in development of HCV induced 
pathogenesis. For in vivo studies, we have begun the development of transgenic mice allowing 
liver-specific conditional expression of NS5A variants with high and low transactivation 
potentials. These transgenic mice will be used to study the possible role of NS5A 
transactivation properties in development of HCC. 
 
To study the role of NS5A transcriptional activation properties in HCV RNA replication, we 
used the sub-genomic replicon system expressing previously characterized NS5A sequences.. 
Using this system, we have demonstrated that a subset of NS5A protein can translocate to the 
nucleus and is recruited to cellular promoters of host cell genes known to be required for 
efficient replication of HCV replicon RNA as well as those implicated in pathogenesis. 
Moreover, we have shown that NS5A directly regulate the expression of these genes. 
Consequently, it was observed that replicons encoding NS5A variants with different 
transactivation potentials exhibited different replication capacities, and that this correlated 
with the transactivation potential of the corresponding NS5A variant. In agreement with these 
observations, inhibition of nuclear translocation of NS5A resulted in the inhibition of 
replication of the HCV subgenomic replicon, further confirming the role of NS5A 
transactivation properties in viral RNA replication.  

In conclusion, we have demonstrated that NS5A-mediated transcriptional regulation of 
cellular genes is required for HCV replication. Such NS5A-mediated modulation of cellular 
genes may also constitute one of the mechanisms involved in HCV-related liver pathogenesis 
and development of HCC, an aspect which is currently under investigation using the tools 
developed during this project. This study will contribute towards deciphering the role of 
NS5A in viral replication as well as providing insight into its role in HCV-induced liver 
pathogenesis. Furthermore, these data might open new anti-HCV drug developments based on 
inhibition of NS5A nuclear translocation.  


