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With the ever-increasing human population, use of plant products is likely to be reinforced to face different types 

of demands. Food is and will remain the first destination for crop plants for human consumption of cereals, 

vegetables, and derived products, but also for feeding cattle animals. Moreover, plants will have to satisfy new 

demands such as biofuel or drugs or will have to render ecological services. For these reasons, plant production 

has to increase in the next decades on a worldwide basis and this will require an extended use of water. 

Moreover, the climatic changes going on in the biosphere will globally lead to an increased demand for water by 

agriculture due to increased temperature and evaporative demand. At the same time, competition for water will 

be increasing with other usages (drinkable water, industry, natural ecosystems). Therefore, one of the main 

challenges for plant research community in the coming years will be to help breeders to select water-efficient 

varieties and species and for that, to decipher the mechanisms that allow plants to adapt to changing 

environments. These advances will be made possible by using the existing genetic diversity within germplasm 

collections, or by re-introducing new sources of tolerance present within wild relatives that have evolved to adapt 

to a varieties of environments whereas northern crops have often been selected for productivity rather than for 

their resource use efficiency. For this issue, a single approach is unlikely to be appropriate, as a diversity of 

ideotypes will be necessary to continue to meet the demands of regional environments, economic and social 

constraints, and cultural preferences.  

 

Water is one of the most important environmental factors for plant productivity and the scenarios for global 

environmental change suggest a future increase in the frequency and intensity of drought periods in many areas 

of the earth (IPCC, 2001, Parmesan et al., 2006). Drought is the result of a difference between water supply and 

demand and both can be promoted by various climatic variables such as high temperatures, low precipitations, 

low air humidity, high irradiance or salinity. Drought can also be observed for plants that grow in soil that are not 

able to retain water, even if the evaporative demand is low and water supply is sufficient (Monneveux et 

al., 1996). Drought scenarii can also be different according to regions of the world, and according to plant 

growing season. For example, Mediterranean regions are characterized by a very hot summer, with high levels 

of evaporative demand, and the plants of these regions are often exposed to drought conditions. But drought 

events can also be reported in continental regions, in which the temperature variation can be extreme. This 
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diversity of drought has led to the natural selection of various types of tolerance mechanisms at different level of 

plant organisation (molecule, cell, organ, whole plant) that alter physiological processes and can have 

consequences for growth, development and survival of plants (Hsiao et al., 1973, Muller et al., 2011). The 

timing, intensity and duration of stress episodes are pivotal to determine the effects produced by drought on 

plant morphology and physiology. Among the many biochemical and developmental processes that are affected 

by water stress, such as the decrease of photosynthesis (Bradford and Hsiao, 1982, Chaves et al., 2003), 

changes in water fluxes within the plant (Olien and Lakso, 1986), reduction of both cell division and expansion 

(Hsiao and Acevedo, 1974, Tisné et al., 2008), and accumulation of sugars and osmoticum (Wang et al., 1995, 

Hummel et al., 2010), have been proposed as candidate mechanisms involved in reduction of productivity 

(reviews by Chaves et al., 2003). Some of these responses are often proposed to be mediated by hormonal 

signalling, in particular abscissic acid (ABA) (Davies and Zhang, 1991, Voisin et al., 2006, Parent et al., 2009). 

At the whole plant level, water deficit is known to affect plant leaf area, biomass accumulation, organ number 

and assimilate partitioning (Hsiao et al., 1973, Cativelli et al., 2008, Chaves 2002, Muller et al., 2011). It also 

affects the trade-off between the different organ growth, or within the organs (Turner, 1997; Lei et al., 2006). 

While shoot growth is early and strongly reduced by water deficit conditions, the response of root growth seems 

to be more complex and variable, and can be reduced, maintained or stimulated depending on cases (Poorter 

and Nagel 2000). Moreover, the relationship between these morphological modifications and the ability of plants 

to tolerate drought remains unclear. While an increased root growth can be favourable in some instances 

(Tuberosa et al., 2006), the reverse has been also observed for instance when soil depth is limited (Bruce et al., 

2003). Tolerance to water deficit could thus reside in adequate trade-off between root growth allowing water 

uptake and shoot growth allowing adequate photosynthesis. 

 

Since it was created in 1993, the laboratory of plant ecophysiology under environmental stresses (LEPSE, 

Montpellier) has been focusing on plant responses to drought. As part of the INRA (National Institute for 

Agronomical Research), its research was originally focused on main crops such as maize, pea and sunflower, 

revealing the first importance of growth and stomatal adjustments and clearly showing that these changes tend 

to prevent cellular dehydratation. Landmark papers on the effect of water deficit on shoot growth rate were 

released on important crop species such as maize (Salah et al., 1997, Tardieu et al., 1999), pea (Lecoeur et al.,, 

1995), sunflower (Granier and Tardieu 1999), sorghum (Lafarge et al., 1998), grapevine (Lebon et al., 2006) and 

more recently on rice (Parent et al., 2010). Noteworthy, only a few studies were performed on the impact of 

water deficit conditions on root growth (Freixes et al., 2002). In the early 2000’s, the model plant Arabidopsis 

thaliana was added to the panel of species studied as a model dicotyledone because genetic resources in crop 

species were much more limited and omic tools were emerging in this species. Moreover, because of its short 

life cycle and small size, it became clear that this species could be used at high throughput in small spaces 

allowing genetic analysis of plant response to drought (Granier et al., 2002, Cookson et al., 2005, Granier et al., 

2006). In parallel, genetics studies were performed to identify QTL of variable traits linked to plant response to 
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drought. In maize, QTL related to the variations of leaf elongation rate (Tardieu et al., 2003, Reymond et al., 

2003, Tardieu and Tuberosa 2010), or flowering (Welcker et al., 2007) were identified. The set-up of platforms 

for high-throughput phenotyping in Arabidopsis (Granier et al., 2006) and maize (Sadok et al., 2007) opened the 

door for genetic studies on large populations of genotypes in Arabidopsis. In Arabidopsis, QTL explaining the 

variation of traits related to plant growth under water deficit conditions were identified using RIL populations 

(Tisné et al., 2008, Tisné et al., 2010).  

 

The Max Planck Institute (MPI) for Biology in Tübingen was refounded in 1948, as successor to the Kaiser 

Wilhelm Institute for Biology in Dahlem (Berlin). The virus research at the institute gave rise to an institute on 

virology, which was renamed to MPI for Developmental Biology in 1985. The department of molecular biology 

was newly established in 2001 and is one of the six departments of this institute. One team of this department is 

interested in elucidating the mechanisms that produce natural variation as a result of evolutionary processes in 

the wild. Recently, it has pioneered the use of next-generation sequencing for establishing a catalogue of 

genome wide polymorphism (www.1001genomes.org; Weigel and Mott, 2009; Cao et al., 2011). One of its aims 

is to understand the evolutionary basis of adaptation to environmental constraints (Clark et al., 2007). 

 

The work presented in this thesis originates from early discussions between the two institutions with the idea to 

put together the phenotypic capacity of the LEPSE for drought responses with the powerful genetic tools 

developed at the MPI. This program was made possible by the KBBE FP6 ARABRAS project led by Marteen 

Koornneef and designed to find connections between genetic basis of Arabidopsis and brassica relatives 

responses to abiotic stresses (low nitrogen, low water). The objective of the present work that will be detailed 

below is the identification of the genetic basis of Arabidopsis responses to soil water deficit in terms of organ 

growth and biomass partitioning between roots and shoots. It combines the use of two types of genetic material, 

a population of RIL and a collection of accessions collected in a variety of sites throughout Eurasia. It combines 

the use of a high throughput phenotyping platform PHENOPSIS (Granier et al., 2006) that has already proved 

efficiency in genetic analysis (Tisné et al., 2008; 2011) with well-established techniques for QTL detection (El-

Lithy et al., 2004; Loudet et al., 2005), innovative techniques to take relationship between variables into account 

as well as breakthrough techniques linked to genome wide genetic analysis using available single nucleotide 

polymorphisms (SNP) along the genome of these accessions (Cao et al., 2011).  

 

This manuscript is composed of six parts among which four are proposed as independent papers that are or will 

be submitted for publication in the coming months. Main concepts and general considerations of the topic are 

exposed in a first part of bibliography review. These bibliographic elements will in particular highlight states of 

the art and concepts within the various disciplines used in this study.  
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The first chapter tackles the problem of interconnection of genetic basis for root and shoot growth in the absence 

of water deficit (in hydroponics). It uses a population of recombinant inbred lines (Bay-0 x Shahdara, Loudet et 

al., 2002) and proposes the use of various analytical tools (coordinates on principle component analysis axes, 

residuals from main trends) to identify QTL involved in the degree of coupling between root and shoot variables.  

 

The second chapter shows how the global responses of plant growth and biomass partitioning to soil water 

deficit are conserved between both the Bay x Sha RIL population and the collection of 88 accessions originating 

from a large range of regions of the northern hemisphere. This chapter also challenges the idea that drought 

tolerance could be associated with one or more of the measured variables, in particular those related to biomass 

partitioning.  

 

Chapter 3 aims at testing the hypothesis that drought tolerance in the wild is related to the climate of origin. We 

use available climatic data collected from databases and show after an extended analysis that no single variable 

is identified accounting for intra- or inter-region variation. However, we were able to derive a variable that could 

be best related to drought as the balance between precipitation and potential evapotranspiration. This variable 

was remarkably able to account with a unique relationship for drought tolerance within three distinct regions 

(Spain, Caucasus and Asia) where climatic gradients were the largest within the collection. We also show that 

flowering strategies (vernalization) are also related to tolerance.  

 

The identification of loci responsible for these responses in both the accessions and the Bay x Sha RIL 

population are explored in chapter 4. Genome wide analysis points to few loci having most important effects and 

genes associated are listed and their possible role discussed. In parallel, the QTL analysis confirms the strong 

relationship between root and shoot growth loci, but specific regions controlling either shoot or root growth could 

be detected, more specifically under water deficit conditions, confirming the hypothesis that water deficit could 

uncouple root and shoot genetic dterminisms. A final part provides a conclusion to the whole study and proposes 

some perspectives that could be followed to further understand plant adaptation to water deficit. 

 

'





Fig. 1. Biomass allocation of leaf-pruned (  ), root-pruned (  ) and control plants (  ) of Hordeum vulgare 

plotted as a function of total plant mass. (A) Shoot:root ratio; (B) leaf mass fraction; (C) stem mass fraction; 

(D) root mass fraction. (from Poorter and Nagel, 2000)  
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1. Plant growth and biomass partitioning between shoots and roots 

 

1.1 Coordination between root and shoot growth 

 

Contrary to animals, almost all plants are able to produce the energy that they need to grow. Through 

photosynthesis reactions, leaves produce assimilates from the carbon dioxyde that is taken up with the 

ambient air through stomata. This source of carbohydrates is essential for plant growth. They are used at the 

shoot level but are also translocated to reach the other parts of the plant. Roots are heterotrophic organs for the 

carbon sources (Freixes et al., 2002). They do not produce biomass by themselves, and their growth (defined as 

the accumulation of dry mass) is completely dependent on assimilates coming from the leaves. This is illustrated 

by experiments in which reducing irradiance, and then biomass production by leaves, affects the elongation rate 

of primary roots (Aguirrezabal et al., 1994, in sunflower; Muller et al., 1998 in maize). In the same way, 

defoliating a plant causes a rapid decrease in primary and secondary root elongation rate (Bingham et al., 1996). 

A classical experiment on the regulation of biomass allocation is that of Brouwer (1962). He removed either half 

of the leaves or half of the roots, and observed, within one week of pruning, a remarkably restored initial 

proportion between root and shoot mass (Fig. 1)8 But its dependancy of roots towards the shoots is reciprocal, 

and root system has also essential functions for global plant growth. It provides anchorage in the soil, but is also 

crucial to extract water and nutrients stored in the soil. For instance, soil water deficit is known to have a strong 

impact on shoot growth (Tardieu et al., 1999; Reymond et al., 2003; Muller et al., 2011). In the same way, Zhao 

et al" showed that sorghum plants grown under soil nitrogen deficiency had reduced levels of photosynthesis, 

lower stomatal conductance and lower shoot growth than control plants (Zhao et al., 2005). A similar reduction in 

photosynthesis and biomass production was also observed under phosphorus deficiency (Chapin and 

McNaughton, 1989).   

 

Thus, shoots and roots are connected and their respective growth is integrated and coordinated at the whole 
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plant level. The mechanisms allowing this coordination imply hormonal (Werner et al., 2003, Teale et al., 2006) 

and metabolic signals (Freixes et al., 2002) among others. Production of phytohormones such as auxins: 

cytokinins or abscissic acid is strictly controlled, and modifications of their relative abondance at different 

developmental stages or in response to environment drive the growth of the different organs. For instance, the 

ratio between auxins (mainly synthesized in leaves and translocated to root through phloemian vessels) and 

cytokinins in the root system has a strong impact on rhizogenesis, and this ratio varies over time during plant 

development or in response to environmental conditions, such as light intensities (Fett-Neto et al., 2001; Laplaze 

et al., 2007). Coordination of shoot and root growth in response to soil water deficit involves the synthesis of 

abscissic acid, another phytohormone, that is mainly translocated from the roots to the leaves in response to 

water constraints (Sobeih et al., 2004, Tardieu et al., 2011). Metabolic signals such as the quantity of soluble 

sugars can also help to adjust the coordination of root and shoot growth (Freixes et al., 2002). The mechanisms 

which regulate the assimilate partitioning between roots and shoots are difficult to decipher (Wardlaw, 1990, 

Minchin and Lacointe, 2005). Diverse modelling approaches have been used to analyse the correlation between 

root/ shoot signalling and organ growth, through the evaluation of assimilates transport in phloemian vessels 

(Lacointe, 2000, Minchin and Lacointe, 2005), or through estimation of the sink strength of the organs (Ho, 1988, 

Drouet and Pagès, 2006; Christophe et al., 2008). In ecology, allometric relationships between roots and shoots, 

especially as an estimator of plant fitness (Penning de Vries and Van Laar, 1982; Enquist and Niklas 2002) have 

been widely investigated. !

 

 

1.2 Environmental conditions modify the biomass allocation patterns between shoots and 

roots 

 

Plants are also able to modify their growth and to adjust allocation patterns between the organs in response to 

environment. When a resource is limited, an increased biomass allocation can be observed towards the organ 

responsible of the limiting resource acquisition. This theory has been called the " functional equilibrium theory ", 

formalized first by Brouwer in 1962, and assumes that the organ involved in the acquisition of a resource has 

priority over that resource. This theory is a cornerstone of many others in all domains of plant biology, from 

ecology and evolution to modelling and ecophysiology (Grime 1979; Shipley and Peters 1990; Lacointe, 2000). 

An implied assumption of this is that there are trade-offs in allocation between leaf, stem and root parts of plants 

(Thornley 1972; Bloom et al., 1985). Plants shift their allocation towards shoots if the carbon gain of the shoot is 

impaired by a low level of above-ground resources, such as light and carbon dioxyde. Similarly, plants shift 
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allocation towards roots at a low level of below-ground resources, such as nutrients and water. These shifts 

could be seen as adaptive, as they enable the plant to capture more of those resources that most strongly limit 

plant growth. At low irradiance, shoots (leaves) retain more of the limiting amount of assimilates, leaving less 

carbon for root growth. At low nutrient and water availability, roots use relatively more of these resources, 

leaving less for the shoots. Consequently, leaf growth is limited by the supply of nutrients and water and less 

assimilates are incorporated above-ground. The excess assimilates are then transported to the root, enhancing 

root growth relative to that of shoots (Wison et al., 1988; Ericsson, 1995; Reynolds and D’Antonio, 1996; Farrar 

and Gunn, 1998; Grechi et al., 2007). This integration of environmental conditions at the whole plant level can 

also be illustrated by split root experiments. In that case, a part of the root system is submitted to a treatment, 

and the perception of this treatment will have effects not only on the treated part, but also on growth and 

development of the rest of the plant (Gansel et al., 2001, Dong et al., 2010, Girin et al., 2010). Other examples of 

the integration of environmental signals at the whole plant level are the tight relationship that has been observed 

between root growth and PPFD (photosynthetic photon flux density) in sunflower (Aguirrezabal et al., 1994) or 

between shoot growth and the light quality through red/far red ratio (Robin et al., 1994, Christophe et al., 2006).!

 

 

1.3 Variations of growth and biomass allocation patterns during plant development  

 

Despite many studies showing results in accordance with the functional equilibrium theory, its generality has 

been questioned (Coleman, McConnaughay & Ackerly 1994; Coleman & McConnaughay 1995; Muller, Schmid 

& Weiner 2000; Reich 2002). Specifically, much of the variation in biomass partitioning in a given environment 

could, in fact, be driven by differences in plant size, or developmental stage (Coleman et al., 1994; Pigliucci et 

al., 1996; Schlichting & Pigliucci, 1998; Cheplick, 2003; Valladares et al., 2006). Indeed, biomass allocation 

patterns are not constant during plant life cycle (Troughton 1956). For example Goudriaan and Van Laar 1994 

(on wheat) or Leblon and Guérif, 1992 (on rice) showed that the proportion of biomass allocated to roots was 

particularly variable, reaching 50% at the beginning of the vegetative phase and tends to 0 at flowering. Biomass 

production rate is maximal when the rosette is totally deployed, and biomass production per unit leaf area starts 

to decrease when the leaves are overlapping (Marcelis et al., 1998). After the flowering, leaves become more 

and more senescent and biomass is reinvested in the developing seeds (Christophe et al., 2008). The root 

system grows at its maximal rate just after plant emergence and stops its development after the apparition of the 

inflorescence (Christophe et al., 2008)8 Therefore, the timing of the analysis of root/shoot allocation has to be 

considered.!



Fig. 2. Plant water balance (from Tardieu et al., 2006) 

Plant water balance corresponds to the amount of water available for the plant. It results from water imput 

(blue arrows: precipitations, irrigations, and water rising by capillarity), and from water output (drainage, 

transpiration, evaporation). 
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2. Plant responses to water deficit 

 

2.1 Water, drought and agriculture  

 

Water is an essential component of plant life through several functions. It is involved in a large variety of 

biochemical reaction. Its movement into cells contribute to turgor maintenance. Its transport out of the plant 

(transpiration) contributes to temperature maintenance (cooling effect). The amount of water necessary to plant 

build-up is as high as 300-500 kg/kg of fresh plant material produced depending on species efficiencies. High 

yielding western agriculture uses massive amounts of water, in particular through irrigation. Debits of water for 

irrigation are estimated at 15% of the total water debits (industry, drinkable water, energy production). But since 

agriculture releases less water in the environment than the other activities, the net debit raises to almost 50%, 

and can reach 90% in summer, when water demand by crops is at its maximum (IFEN, French institute for 

environment, 2003). This high demand for water by agriculture faces a high level of competition for this resource 

in many regions of the world. In regions with chronic water deficit or inadequate water management, water deficit 

is considered as the main limiting factor for crop yield (Tardieu et al., 2006). 

 

The plant world is one of the components of the soil-plant-atmosphere continuum and water deficit is the result 

of an imbalance between water supply and demand in this continuum. It can then be the result of either a lack of 

water in the soil and/or a high evaporative demand by the atmosphere. The extractable water in the soil is the 

difference between the amount of water in the soil volume explored by the root system at full capacity, and the 

amount of water remaining at the permanent wilting point. This amount depends on rains, irrigations, and of 

water stored in the deep soil layers that can be released by capillarity. At the other end of the continuum, the 

evaporative demand of the atmosphere is a direct function of air temperature, windspeed, irradiance and relative 

air humidity, well approached by the Penman-Monteith equation (Beven, 1979; Fig. 2). 95% of water circulating 

within the plant only transfers the excess of temperature caused by the sun. 

 

In this context, two types of strategies are classically engaged and combined by farmers. The first strategy 

consists in the choice of the species to be grown considering the position of the crop cycle during the year 
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(winter-spring or spring-summer) and of course the expected economic yield. In several regions of the world, 

drought is likely to be more probable in summer and dry seasons and focusing on spring-winter crops is thus 

assimilated to an escape strategy. In the wild several species use this strategy to complete their cycle before 

summer drought. Some crop species (as grapevine and alfalfa), are well adapted to drought because they can 

develop long root systems able to extract water from deep soil layers. Other species are known as drought 

tolerant (eg sunflower and sorghum) as they display high yield maintenance to water deficit associated with 

adequate maintenance of vegetative and reproductive growth and development. At the other end of the 

tolerance spectrum, species such as maize or pea are very sensitive to water stress (and thus require heavy 

irrigation) during their life cycle. Maize, in spite of its C4 metabolism that confers an elevated water use 

efficiency, is very sensitive to water deficit, especially around flowering (Claasen and Shaw, 1970; Zinselmeyer 

et al., 1999). This paradox and the major role of maize in the worldwide production of cereals, justify that many 

scientific projects targeting drought tolerance have been performed on maize.  

 

The choice of cultivars is also crucial as a large range of variation for drought tolerance exists in several species 

(sunflower, Chimenti et al., 2002; maize, Bruce et al., 2003). However, this range could have been narrowed 

during human selection for high yielding varieties grown under optimal conditions. Therefore, attemps to re-

introduce sources of tolerance in ancestors or wild relatives are going on (for example in durum wheat, Ashraf et 

al., 2010). Moreover, the concept of neo-domestication has been developed recently to reshape crop species 

based on current needs for tolerant crops (such as in sunflower, Nooryazdan et al., 2011). Beside acting on 

genetic sources of tolerance, crop management is also a powerfull leverage for improving water use efficiency 

by actiong on sowing date, tillage, soil coverage (Debaecke and Aboudrare 2004))8!

 

 

2.2- Plant phenotypic plasticity in response to water deficit 

 

Environments are highly heterogeneous both in space and time, and organisms must either acclimate to, or 

escape from, adverse conditions. Phenotypic plasticity, or the capacity of a given genotype to render different 

phenotypes under different environmental conditions, is a means to cope with environmental heterogeneity that 

is particularly adequate for sessile organisms (Bradshaw, 1965; Sultan, 2000; Sultan, 2001; González & Gianoli, 

2004; Saldaña et al., 2005). Many studies have shown that plants are plastic for numerous ecologically 

important traits, ranging from morphology, physiology and anatomy, to developmental and reproductive timing, 
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breeding system and offspring developmental patterns (Sultan, 2000). In the last two decades phenotypic 

plasticity of plants has become a central issue of ecological and evolutionary research (Scheiner, 1993; Sultan, 

1995, 2001; Pigliucci, 2001; Schlichting, 2002; DeWitt & Scheiner, 2004; van Kleunen & Fischer, 2005; 

Valladares et al., 2006).  

 

There is abundant evidence that plant species and populations may differ remarkably in the extent of their plastic 

responses to comparable environmental challenges (Schlichting & Levin, 1984; Valladares et al., 2000, 2002a; 

Balaguer et al., 2001; Sultan, 2001). Because phenotypic plasticity can be very advantageous for plants, the 

question arises of why plasticity is not always maximal. The fact that plasticity observed in nature is often lower 

than that expected suggests the existence of costs and limits of plasticity. The costs and limits of phenotypic 

plasticity are not as well understood as its benefits (DeWitt et al., 1998; Givnish, 2002). The potential plastic 

response in a given trait may be large but the observed plasticity can be lowered by resource limitation or 

environmental stress (van Kleunen & Fischer, 2005).  

 

In the specific case of water deficit, all plant processes (organogenesis, morphogenesis, and metabolism) 

display a considerable plasticity to deal with the constraint. Metabolic responses are observed as short-term 

responses to water deficit, whereas plant structure modifications result from long period of water deficit 

conditions. However, it is possible to group plant responses in four axes: (i) Limitation of water loss by stomata 

adjustments (Tanaka et al., 2005), (ii) Limitation of water loss reducing the exchange area, the shape and the 

number of leaves (Reymond et al., 2003), (iii) Increase of water absorption, increasing the soil volume explored 

by the roots (Turner et al., 2001, Chaves et al., 2002; Costa França et al., 2000, Zlatev 2005), (iiii) Limitation of 

tissue dehydratation by osmotic adjustment (involving inorganic ions, carbohydrates, and organic acids) (Munns 

1988; Save et al., 1993; Nguyen et al., 1997; Hummel et al., 2010) or by the production of heat shock proteins 

that will protect the organites and the membranes (Burke et al., 1985; Wang et al., 2004).  

 

Those responses appear in the order precised above following soil water deficit. Depending on the water deficit 

intensity, all or only a part of these responses may occur. The first response can take place very quickly (a few 

minutes), and is reversible, whereas the others need a few hours at least to be carried out and are generally 

irreversible when they affect plant structure (organ sizes or shapes). If soil dessication continues, the plant will 

die from tissue dehydratation. These responses, including temporary responses, induce adverse reactions as a 

decrease in photosynthetic activity, or as the loss of vegetative and reproductive organs that can make the 

biomass production and yield lower. At the whole plant level, the decrease of the rate of shoot growth is one of 
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the earliest phenotypic responses to water deficit (Hsiao 1973; Boyer 1970; Muller et al., 2011). It occurs before 

stomata closure and photosynthesis reduction (Bogeat-Triboulot et al., 2007) and well before cellular processes 

associated with tolerance to dehydration take place (Tardieu 1999). !

!

Following the functional equilibrium theory, drought-stresses plants should increase root biomass allocation. 

Whereas shoot growth is well known to be early and strongly reduced by water deficit (Tisné et al., 2010; Parent 

et al., 2009), the response of root growth seems more complex and variable. Indeed, it has been reported to be 

reduced, unchanged or stimulated, depending on cases (e.g. Poorter and Nagel 2000). However, in all cases, 

root growth seems to be less affected than shoot growth (Spollen et al., 1993; French and Turner, 1991, Shao et 

al., 2008), which could lead to an increased root/shoot ratio. This is observed in many cases (Chartzoulakis et 

al., 1993, Turner et al., 1997 in wheat ; Asseng et al., 1998, Bogeat-Triboulot in poplar ; Lei et al., 2006, Hsiao et 

al., 2000 in maize Padilla et al., 2009, Erice et al., 2010, Wu et al., 2008, van den Boogaard et al., 1996), but not 

in all the cases. Some studies report a constancy of the root/shoot ratio under water deficit conditions (Shone et 

al., 1983, Osorio et al., 1998, Heilmeier et al., 2001), or even a root/shoot decrease under such conditions (Rice 

et al., 1979, Hirai et al., 1994, Asch et al., 2004). This absence of consensus on the root/shoot ratio could be 

explain by the equal importance of shoot and root growth maintenance for plant to maintain water and mineral 

uptake by conserving root growth, and to maintain photosynthesis and biomass production at the shoot level. !

!

Another trait reflecting the trade-off between leaf expansion and biomass allocation or production within leaves is 

the Specific leaf area (ie leaf area per unit dry mass, Specific leaf area). The Specific leaf area is often used as 

an indirect indicator of leaf thickness, and reported to be reduced under drought conditions (Marcelis et al., 

1998, Liu and Stützel 2004). Decrease in Specific leaf area in droughted plants could be due to the different 

sensitivity of photosynthesis and leaf area expansion to drought (Jensen et al., 1996, Tardieu et al.,!1999, 

Hummel et al., 2010). Reduction of Specific leaf area is assumed to be a way to improve water use efficiency 

(WUE) (Wright et al., 1994, Craufurd et al., 1999), because thicker leaves usually have a higher density of 

chlorophyll and proteins per unit leaf area and, hence, have a greater photosynthetic capacity per unit leaf area 

than thinner leaves. The root equivalent of Specific leaf area, the Specific root length, is an indirect indicator of 

root thickness. Specific root length illustrates the trade-off between long and thin roots (high Specific root length) 

or short and thick roots (low Specific root length) with the same biomass. High Specific root length has been 

shown to be favourable to exploit water in the deep soil layers while low Specific root length could contribute to 

root growing more easily in a compact drying soil (Yoshida 1982, Eissenstat 1991, Zheng et al., 2000). Specific 

root length has been reported to be either decreased (Kage et al., 2004 on cauliflower) or increased (Azhiri-

Sigari et al., 2000 on rice) in droughted plants8 Nevertheless the correlation between modification of specific root 
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length and plant tolerance to drought is still under debate (Schwinning et al., 2001, Vamerali et al.,!2003).!

!

Besides, phenotypic plasticity is a source of ample phenotypic variation that may promote adaptive divergence 

and, thus, evolution and speciation (West-Eberhard, 2003).!

 

 

3. How to connect phenotypic and genotypic variation? Quantitative genetics  

 

3.1. Concepts 

 

Trait variation can be continuous or discrete. Formal genetic was originally based on the study of traits for which 

the phenotypic variation is discrete, and that can be spread into classes without necessarily quantifying the 

phenotype by measurements (i.e., tall vs. short, large vs. small, etc...). That was the analysis frame of the green 

pea of Mendel, but this is also the case for example in all the studies of mutants recovered from forward genetic 

screens, which normally only consider individuals that are many standard deviations away from the population 

mean.  These variations were explained by a monogenic factor, for which we compare the effect of two different 

alleles. The observation of this type of variation is related to the terms “wild-type” and “mutant”, designing the 

two phenotypic classes, or the two alleles. However, most of the traits of interest for breeders and agronomists 

do not follow this description. These traits present continue phenotypic variation, corresponding to a complex 

determinism, and then controlled by the action of several genetic and environmental factors (Gallais, 1989). 

Those traits are quantitative because the individuals cannot be arranged into classes, but their phenotype is 

measured. Precocity, enzyme activity, organ sizes and weights, or grain yield for example, are quantitative traits. 

The phenotypic trait is described by its distribution, often assimilated or brought down to normal distribution, and 

characterized by the mean and the variance measured in a sample of individuals. In parallel, each individual is 

characterized by its genotype, corresponding to the allele combination that it has at one or several loci. The 

whole factors that can affect the phenotypic value of a trait, in addition of its genotype is called environment 

(Johannsen, 1909; East, 1916).  

 

Two main methods have been developed to identify genotype/phenotype relationships. The first one is called 
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linkage mapping, or QTL mapping (for Quantitative Trait Loci), and the first QTL analysis was done in the 20s, 

with the studies of Sax (Sax, 1923), which aimed at identifying genes influencing the seed mass with markers 

that were morphological at this time (seed pigmentation and shape). Since the 1990s, the discovery of molecular 

markers and the advances in rapid and cost-effective genotyping methods and the development of statistical 

methods for QTL mapping have revolutionized the field of mapping quantitative traits. The landmark paper by 

Lander and Botstein (1989) launched an avalanche of QTL studies (Mackay et al., 2009). The second approach 

is called linkage disequilibrium mapping, or association mapping (Mackay and Powell, 2007). Both QTL and 

association mapping rely on the use of recombination events in populations that have fragmented the genome of 

each individual into small parts that can be associated with the measured variation of phenotypic traits. 

Considering this aspect, linkage mapping is a specific case of association mapping, but these methods differ in 

particular in the source of recombination. Both approaches were used in this study, and will be detailed in the 

next sections. 

 

 

3.2. QTL mapping 

 

The accuracy of any QTL analysis mapping depends on many elements (Carbonell and Asíns 1996). The type of 

segregating population, its size, the heritability of the trait, the number and contribution of each quantitative trait 

locus to the total genotypic variance, their interactions, their distribution over the genome, the number and 

distance between consecutive markers, the percentage of codominant markers, the reliability of the order of 

markers in the linkage map, the evaluation of the trait, and the statistical detection method influence the power 

and resolution of QTL mapping. 

 

3.2.a. Segregating mapping populations 

There are several types of experimental designs that are suitable for QTL analysis, depending on the mating 

system of the species. But the populations used for QTL studies have in common to be artificially created from a 

cross between parental lines (generally two) so that the recombination events that occur within the population 

are known. In autogamous species, QTL mapping studies make use of F2 or backcross progenies because they 

are the easiest and earliest to obtain (only two crosses). But these populations have the disadvantages not to be 

fixed as homozygous, and each individual plant is unique and cannot be multiplied. The F2 and backcross 

populations have therefore to be re-created and re-genotyped for each experiment, which is time and money 





Fig. 3. Creation of Recombinant Inbred Lines (RIL) population and principles of mapping quantitative trait loci 

( adapted from Mauricio, 2001). 

The basic strategy behind mapping quantitative trait loci is illustrated here for (a) the density of trichomes hat 

occur on a plant leaf. Inbred parents that differ in the density of trichomes are crossed to form an F1 population 

with an intermediate trichome density. (b) An F1 individual is selfed to form a population of F2 individuals. (c) 

Each F2 is selfed for six additional generations, ultimately forming several recombinant inbred lines (RIL). Each 

RIL is homozygous for a section of a parental chromosome. The RIL are scored for several genetic markers, as 

well as for the trichome density phenotype. In c, the arrow marks a section of chromosome that derives from 

the parent with low trichomes density. The leaves of all individuals that have inherited that section of 

chromosome from the parent with low trichome density also have low trichome density, indicating that this 

chromosomal region probably contains a QTL for this trait.  
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consuming. On the other hand, F2 and backcross populations, because they conserve many heterozygous loci, 

can be used to detect both additive and dominance genetic effects, the latter being only expressed when the 

QTL locus is heterozygous. By contrast, recombinant inbred lines (RIL) are fixed, homozygous individuals, 

obtained from successive selfing generations starting from F2. At each generation, the level of heterozygosity 

decreases, and after six generations, the proportion of the heterozygosity along the genome is theoretically 3.1 

%. Moreover, at each generation, crossing-overs split up the parental genomes into fragments. Finally, each RIL 

corresponds to a specific combination of the parental alleles at each locus (Fig. 3, Mauricio 2001). Once the 

population has been genotyped, RIL can be multiplied, allowing repeated measurements of various traits in 

different conditions (Doerge, 2002). This "immortality" confers a real advantage, especially to study traits that 

have a low heritability (Knapp and Bridges, 1990; Lander and Botstein, 1989). But the low amount of 

heterozygosity makes it impossible to detect dominant effects. 

!

The first populations created for the QTL analysis in Arabidopsis were F2/F3 families (Koornneef et al., 1983; 

Chang et al., 1988; Nam et al., 1989). These types of populations are still used (Xiong et al., 1999; Mei et al., 

2004). The two Arabidopsis RIL populations that have been used most frequently have been derived mainly from 

laboratory accessions, namely Ler/Col (Lister and Dean 1993) and Ler/Cvi (Alonso-Blanco et al., 1998), and 

QTL for drought or ozone tolerance, flowering time, plant or seed size, seed dormancy and pathogen resistance 

have been identified (review in Alonso-Blanco and Koornneef 2000). The Bay/Sha RIL population (Loudet et al., 

2002), obtained from the cross of Bay-0, coming from fertile plains of Germany, and Shahdara, collected in the 

high mountains of Tadjikistan has been shown to display large variability of growth related traits, especially 

associated to root architecture (Loudet et al., 2005), in response to various environmental conditions (Loudet et 

al., 2003b; Reymond et al., 2006). Moreover, recent studies showed that Central-Asian accessions, such as 

Shahdara represent an original material, genetically distant from globally unstructured European accessions 

such as Bay-0 (Innan et al., 1997; Sharbel et al., 2000). The Bay/Sha RIL population was chosen for this study, 

as the phenotypic variation resulting from such a cross is expected to reflect the adaptation to their specific 

habitat and the genetic distance between them. 

 

3.2.b. Genetic linkage and QTL maps 

The analysis of the segregation of parental alleles in a population requires the use of molecular markers. These 

markers should present several characteristics:  They have to be polymorphic (reflect the the genomic diversity 

between the individuals), at least biallelic, codominant (none of the parental allele shoud mask the presence of 

the others), and neutral (no effect on the phenotype) (de Vienne and Santoni, 1998; Santoni et al., 2000). 



Fig. 4. Schematic representation of the absence (a) or presence (b) of a quantitative trait loci on the distribution 

of a quantitative trait (from Segura, 2006). 

The QTL identified in the b case is due to the substitution of the A allele by the B allele for allelic classes AA 

and AB at one specific marker. µ: general mean value, µAB: mean of the allelic class AB, !µ: Difference 

between the mean of AA and AB allelic classes (effect of the substitution of A by B allele). P: Phenotypic value, 

D: Density. 



"#$%&!'()*&%++,! ! !!!!!!!!!4(5*&6*!

!

 ;7

Several types of molecular markers exist (AFLP, RFLP, SNP, microsatellites), and their identification is based on 

different types of polymorphism (of length, of presence/absence of restriction sites).  

 

The genetic map of the Bay/Sha RIL populations was initially constructed with 38 (Loudet et al., 2002) and later 

69 microsatellite markers (or SSR for simple sequence repeat). These markers consist in the repeat of a short 

sequence of nucleotides (one to five in general). Their polymorphism depends on the number of repeats of these 

short sequences in the different individuals. Characterizing a population of individuals with molecular markers 

allow to build genetic maps. The principle of genetic map building relies on the concept of genetic linkage. In the 

absence of recombination, the whole genetic information of one chromosome and the molecular markers 

associated, thereby physically linked, must be transmitted to the next generation as one block. During meiosis, 

crossing overs lead to recombinations between these different groups of linked markers, and markers of the 

same chromosome can be rearranged (Morgan, 1911). The number of these recombinations is as a first 

approximation proportional to the distance between the two loci on the chromosome. The estimation of the 

distance between two loci allows building a genetic map, which is a network covering the whole genome, and 

based on markers. The genetic map is termed saturated when each point of the genome is linked to at least one 

marker. The advantage of these genetic maps is to enable, for each individuals in the population, the estimation 

of the genotype at each point of the genome, knowing the genotype at the markers linked to this point.  

 

3.2.c. Methods for QTL detection  

QTL mapping consists in searching for statistical correlations between a phenotype and the polymorphism of 

markers in the whole population, i.e the analysis of phenotypic mean values of the different allelic classes (Fig. 

4). The first QTL analyses, in the 80s, consisted in testing the effects of markers one by one, with a simple 

analysis of variance (Tanksley et al., 1982; Edwards et al., 1987; Paterson et al., 1988). In that case, if the 

marker polymorphism has an effect on the mean phenotypic value, a significant difference between the allelic 

classes will be detected. But this method, with each marker tested one by one, does not enable determining 

whether a marker is linked to one or several QTL; does not enable to precisely determine the QTL position, and 

is not very powerful because of confounding effects of recombination events between the marker and the QTL 

(Lander and Botstein, 1989; Zheng et al., 1994).  

 

Other methods, termed Interval Mapping (Lander and Botstein, 1989), have been developed subsequently, 

taking into account genetic information between two adjacent markers, infered by probabilistic models.  The 

most commonly used test is a likelihood ratio test (LRT, Lander and Botstein, 1989), producing a logarithm of the 
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odds ratio, or LOD score, which corresponds to the likelihood to have a QTL anywhere along the genome, even 

between the markers. With a fine-scale genetic marker map throughout the genome, Interval mapping can be 

performed at any position covered by markers to produce a continuous LRT statistical profile along 

chromosomes. The position with the significantly largest LRT statistic in a chromosome region is an estimate of 

QTL position. Many studies have shown that interval mapping method is more powerful than the marker-by-

marker method, in particular when the number of markers is low (Zeng et al., 1994; Rebai et al., 1995). The main 

problem for interval mapping methods lies in the consideration of QTL one by one during the analysis, which 

could be a problem when many QTL control the variation of one trait (Haley and Knott, 1992; Lander and 

Botstein, 1989).  

 

To take these multiple QTL into account, new methods based on a combination of interval mapping and multiple 

regression was developed, termed Composite interval mapping (Zheng et al., 1994) or Multiple-QTL model 

(Jansen and Stam, 1994). This approach is performed in two steps: The markers that appear in a first run to be 

linked to a QTL (high LOD score) are used as cofactors in a second run of QTL detection. Decreasing the 

residual variance, this method increases the power of QTL detection, and enables to separate linked QTL 

(distant only from 20cM) compared to Interval mapping (van Ooijen, 1994; Utz and Melchinger, 1994). For 

mapping multiple QTL, Kao et al., (1999) and Zeng et al., (1999) developed a method that fits a multiple-QTL 

model including epistasis on a trait and simultaneously looks for the number, positions, and interaction of QTL. 

This method, called Multiple Interval Mapping (MIM), is based on maximum likelihood and combined with a 

model selection procedure and criterion. The multiple QTL model is tested again and again until obtaining the 

model explaining most of the variance of the trait. Compared with Interval Mapping and Composite Interval 

Mapping, Multiple Interval Mapping has a number of advantages, such as the improved statistical power in 

detecting multiple QTL (Zeng et al., 2000), facilitation for analyzing QTL epistasis, and coherent estimation of 

overall QTL parameters.  Even if some problems may arise, due to the complexity of automatic procedures in 

the model (Zheng et al., 1999), this method has been successfully used in recent QTL studies (Kao et al., 2004; 

Hao et al., 2010).  

 

3.2.d. Factors limiting relevance and statistical power of a QTL study 

QTL studies could have different objectives: Understanding the genetic architecture of a specific trait, looking for 

markers to select favourable alleles, or cloning of genes implied in the determinism of a specific trait. But 

whatever the objective is, we have to optimize the QTL detection considering different factors that have an 

impact on QTL detection. First, QTL detection accuracy strongly depends on the number of individuals in the 
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population. The more individuals are used, the more the QTL detected will be accurate, and numerous (van 

Oiijen, 1992; Charcosset and Gallais, 1996; Charmet 2000). The studies that use the information of many 

markers to separate the effect of linked QTL profit from a large number of individuals, because this allows to 

increase the number of observed recombination events between QTL (Goffinet and Mangin, 1998). Noteworthy, 

the different types of QTL populations differ in the number of recombination events, with RIL populations 

therefore supporting more QTL than F2 ones (de Vienne, 1998). A second factor that can interfere with QTL 

detection power is the density of markers considered, and studies report that the ideal genetic marker density 

would be one marker every 20cM (Darvasi and Soller, 1994; Charmet 2000). However, if the genotyping means 

are limited, increasing the number of individuals genotyped would be more efficient for QTL detection power 

than increasing the number of markers (Charmet et al., 2000). Finally, the third important factor to take into 

account for QTL detection is the heritability of the trait considered. By definition, traits that display high 

heritabilities are less affected by the environment (or genotype by environment interactions), leading to a higher 

part of the total variance being explained by genetics (QTL) (Zheng et al., 1994; Charmet 2000; Asins 2002)8!

!

3.2.e. Landmark QTL studies 

QTL mapping has historically been used as the main approach to map genes responsible for variation in 

ecologically and evolutionary significant traits (Lynch and Walsh 1998) and QTL studies have identified 

numerous loci that may be responsible for growth traits variation. Many studies that examine growth do so by 

contrasting growth in different abiotic environments (Maloof, 2003). QTL that have significantly different effects 

accross the environments will be associated with substantial genotype by enviroment (GxE) interaction effects. 

Such GxE interaction effects can be indicative of QTL that are specific to a particular environment, wheras a lack 

of GxE interaction can suggets that a QTL is a more general growth regulator.  

 

Many QTL studies have examined plant growth or morphology characteristics in response to abiotic 

environment. For instance, QTL studies have examined root growth characteristics as they relate to growth 

under drought stress (Price et al., 2002). In maize, one study examined the weight of adventitious roots and the 

length, diameter, and weight of primary roots, in hydroponics. QTL for each of these traits were compared to 

those of grain yield under well watered and water deficit conditions (Tuberosa et al., 2002). Price and colleagues 

identified QTL that affect the weight, length and thickness of roots in drought stressed and watered rice (Price et 

al., 2002). Shoot growth characteristics have also been widely studied. For instance, the shoot growth of 

Arabidopsis RIL in varying nitrogen conditions has been investigated (Loudet et al., 2003). Some of all these 

QTL of interest have been cloned by map-based cloning in Arabidopsis, rice, and tomato for example, 

suggesting that QTL cloning could be a feasible way to investigate the genetic bases of growth variations in 
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response to environment (Frary et al., 2000; Remington et al., 2001; Maloof, 2003).!

 

 

3.3. Association mapping  

 

3.3.a. Natural populations and linkage disequilibrium 

As for linkage mapping, the precision of association studies depends on the presence of recombination between 

the markers. But contrary to linkage mapping studies, which use populations in which the recombination is 

controlled and known, the association mapping studies take advantage of recombination that occurred during all 

the evolutionary history of the population of natural accessions. In the absence of physical link between two loci, 

they segregate randomly in the individuals of a population. Conversely, linkage disequilibrium refers to the non 

random segregation of loci. It is the correlation between polymorphisms [e.g., single nucleotide polymorphisms 

(SNP)] that is caused by their shared history of mutation and recombination (Kim et al., 2007). Thus, the 

genotyped markers become proxies, or sentinels, for the functional variant because their genotypes are highly 

correlated with the genotypes of the functional variant. In a large, randomly mating population with loci 

segregating independently, but in the absence of selection, mutation, or migration, polymorphic loci will be in 

linkage equilibrium (Gupta et al., 2005). In contrast, linkage, selection, and admixture will increase levels of 

linkage disequilibrium.  The distance over which linkage disequilibrium persists will determine the number and 

density of markers, and experimental design needed to perform an association analysis.  

 

Because allele frequency and recombination between sites affect linkage disequilibrium, most of the processes 

observed in population genetics are reflected in linkage disequilibrium patterns (Flint-Garcia et al., 2003). 

Mutation provides the raw material for producing polymorphisms that will be in linkage disequilibrium. 

Recombination is the main phenomenon that weakens intra-chromosomal linkage disequilibrium, whereas inter-

chromosomal linkage disequilibrium is broken down by independent assortment. Population size also plays an 

important role. In small populations, the effects of genetic drift result in the consistent loss of rare allelic 

combinations, which increase linkage disequilibrium levels. Population mating patterns and admixture can 

strongly influence linkage disequilibrium (Gupta et al., 2005). Generally, linkage disequilibrium decays more 

rapidly in outcrossing species as compared to selfing species (Nordborg, 2000). This is because recombination 

is less effective in selfing species, where individuals are more likely to be homozygous, than in outcrossing 

species. But the linkage disequilibrium also depends on the population used (Storz and Kelly, 2008) and of the 
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genomic region in which it is measured (Barnaud et al., 2006). Indeed, a region that is strongly conserved from 

generations to generations will display a larger linkage disequilibrium than others (Palaisa et al., 2004). 

 

Most of the linkage disequilibrium research in plants has been carried out in maize (Labate et al., 2000; 

Remington et al., 2001; Tenaillon et al., 2001; Rafalski et al., 2002) and Arabidopsis (Nordborg et al., 2002 Kim 

et al., 2007) and rice. The linkage disequilibrium pattern in Arabidopsis thaliana is a sharp contrast to the pattern 

in maize. As expected, linkage disequilibrium extends much farther in Arabidopsis because it is a highly selfing 

species (Nordborg, 2000). Hagenblad and Nordborg (2002) sequenced 14 short fragments from a 400kb region 

of the flowering time locus FRIGIDA. They found that linkage disequilibrium decayed within 250kb, equivalent to 

1 cM. Analysis of 163 genome-wide SNPs in 76 accessions also revealed that linkage disequilibrium decayed 

within 250kb (Nordborg et al., 2002) and even within 5kb in another population (Kim et al., 2007). This extensive 

linkage disequilibrium may be due to the limited number of recombination events that have occurred over the 

past 200 years. As mentioned above, this extensive linkage disequilibrium in Arabidopsis has the advantage to 

decrease the number of markers necessary to map the genome of this species, but also decreases the 

resolution of the association detected is the number of marker is just sufficient to map these recombination 

events. 

 

3.3.b. Association studies models 

Using natural populations enable to capture most of the genetic diversity of a species. This makes the 

association studies very powerful to detect interesting allelic combinations (Yu et al., 2006). Even with a large 

extent of linkage disequilibrium in Arabidopsis thaliana, association studies are likely to be more accurate than 

QTL studies, that face the same low number of recombination events. Association studies therefore represent a 

good choice when positional cloning is unfeasible (Neale and Savolainen, 2004). Depending on the attempts of 

the association study, it will focus only on a candidate region, or on the whole genome. The first association 

study of a quantitative trait based on a candidate gene was the analysis of flowering time and the dwarf8 gene in 

maize (Thornsberry et al., 2001), and other candidate gene analyses have been performed (Hagenblad and 

Nordborg 2002; Caicedo et al., 2004). Recently, with the advances of the new techniques of sequencing, large 

markers densities can be determined for the whole genome, allowing genome-wide association studies 

(Aranzana et al., 2005; Zhao et al., 2007; Atwell et al., 2007; Mariac et al., 2011).  

 

The statistical models used for association mapping do not dramatically differ from those of QTL studies, with the 

same equation: Pij = µ + !i + "ij (de Vienne and Causse, 1998), where Pij is the phenotypic value measured in the 
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genotype j carrying the allele i, µ is the mean value of the population, !i is the random effect of the allele i, and "ij 

is the residual error term. But contrary to the models for QTL studies, the allelic effects are here considered as 

fixed, that enable to test their significance by simple ANOVA or logistic regression (Thornsberry et al., 2001). But 

two problems specifically related to association mapping have to be considered, the effect of the relatedness 

between individuals of natural populations (Pritchard et al., 2000b), and the effect of multiple testing. 

 

> Correction for population structure and of relatedness between individuals 

Except in population genetics theory, randomly mating populations probably do not exist. Populations of natural 

accessions evolve under different selection pressures (mutation, migration, genetic drift and selection) from a 

common ancestor. Therefore, individuals of these populations cannot be considered as independent. In 

association mapping, complex patterns of genetic relatedness among individuals can be problematic when trying 

to map a phenotype whose variation is correlated with genetic relatedness. In such cases of genotype-

phenotype covariance, many genetic markers across the genome will appear to be associated with the 

phenotype, when in fact these genetic markers simply capture the genetic relatedness among individuals. This 

problem is particularly apparent when trying to map traits that have been subject to adaptation to local 

environments that vary systematically with geography (such as temperature or growing season length), like 

flowering time or plant size (Aranzana et al., 2005; Flint-Garcia et al., 2005, Atwell et al., 2007) because variation 

in these phenotypes between populations is highly correlated with allele frequency differences between 

populations. This covariance can lead to spurious associations, and extremely high false positive rates (Lander 

and Schork, 1994; Myles et al., 2009). 

!

Two main corrections have been developed to take the population structure into account (Yu et al., 2006). The 

first one considers the degree of genetic correlation between each individuals and an ancestral population, from 

which it would be derived. Then, all the individuals assigned to the same ancestral population would more likely 

share phenotypic and genetic variation. Following this idea, each individual can also be "attributed" to several 

ancestral populations. This was formalized in 2001 by the Structured association model of Thornsberry in 2001 

(Thornsberry 2001). Many methods have been proposed to statistically infer this degree of population structure 

defining ancestry coefficients, based either on a bayesian method, as implemented in the STRUCTURE program 

(Pritchard et al., 2000b) or on principal components analysis, in which each axis corresponds to an ancestral 

population (Pritchard et al., 2000a). However, the degree of belonging to ancestral populations does not reflect 

the relatedness between individuals taken two by two (Yu et al., 2006; Saidou et al., 2009). This relatedness 

leads to alleles that are common to both individuals and inherited from a common ancestor. This second 
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dimension of population structure is refered as the definition of the level of relatedness between pairs of 

individuals, defining kinship matrix that could be integrated to the model (Saidou et al., 2009). 

 

> Correction for multiple testing 

The multiple independant tests performed could lead to the detection of false positives simply associated by 

chance. Several methods have been proposed to calculate the number of false positives, and to include a 

correction term in the association model. The first one has been proposed by Bonferroni, and is calculated as: # 

= !/n (where ! is the risk threshold, and n the number of tests). But this correction is very drastic, and could lead 

to an increased detection of false negatives. An elegant way to deal with the problem, that was recently 

advocated for ecological studies by Garcı´a (2003, 2004), is to control the proportion of significant results that 

are in fact type I errors (‘false discoveries’) instead of controlling the chance of making even a single type I error, 

as Bonferroni correction does. This new approach, called False discovery rate, was developed by Benjamini and 

Hochberg (1995). 

 

FDR control provides a sensible solution: it offers an easily interpretable mechanism to control type I errors while 

simultaneously allowing type II errors to be reduced (Verhoeven et al., 2005)8 Control of the false discovery rate 

is being widely adopted in genomic research. Genomewide associations studies necessitate the interpretation of 

hundreds or thousands of simultaneous tests, and minimizing the chance of making even a single type I error 

can keep the vast majority of true effects from being detected. FDR control can address a much wider range of 

multiple testing problems in evolution and ecology as well (García 2003, 2004), where the loss of power inherent 

to strict Bonferroni control does not do justice to the nature of many experiments. FDR control is more powerful 

and often is more relevant than Bonferroni´s correction. It is also flexible, and ease of interpretation is not 

affected by changing the significance threshold. Sensible biological interpretation of multiple testing results may 

therefore benefit more from FDR than from Bonferroni´s correction8!

 

 

3.4. Combination of both QTL and Association mapping 

 

Both association mapping and classical linkage mapping studies have been successful in the identification of 

genomic regions linked to important phenotypes (Loudet et al., 2005, Atwell et al., 2007). But they both have pro 





Tab. 1. Advantages and drawbacks of methods for identifying genetic basis of complex traits in 

Arabidopsis thaliana  (from Bergelson and Roux, 2010) 
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Fig. 5. Advantages of combining association and traditional linkage mapping methods. (from Bergelson and 

Roux, 2010). 

Dual linkage– association mapping allows true positives and false negatives to be distinguished from false 

positives. True positives are causative SNPs that have been detected by genome-wide association (GWA) 

mapping and are overlapped by quantitative trait locus (QTL) regions. Population structure corrections highlight 

false positives that correspond to false phenotype–genotype associations. Because statistical methods that 

control for population structure only reduce (but do not abolish) the inflation of false positives, false positives 

may remain (grey arrow). In such cases, the remaining false positives are not validated by QTL regions, 

demonstrating the added value of QTL mapping in the detection of true positives. False negatives are causative 

SNPs that are lost as an artefact of population structure corrections but can be validated by QTL regions. The 

horizontal red line indicates the significance threshold for a phenotype–genotype association. 
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and cons, and one way to avoid these difficulties could be to combine both approaches. A very interesting paper 

has been recently published by J. Bergelson and F. Roux (Bergelson and Roux, 2010), and reviews the 

advantages and drawbacks of methods that can enable to identify genes associated to complex traits. The 

development of new mapping populations, such as Nested association napping in maize (Yu and Buckler 2006) 

or MAGIC lines (Multiparent advanced generation inter-cross lines) in Arabidopsis (Kover et al., 2009) is 

discussed (Tab. 1). These new genetic material generally allow to combine the advantages of QTL analysis 

(control of recombination events, known population structure, easy statistical tests, rapidity of analysis) with the 

ones of association mapping (high allelic diversity, evolutionary considerations, ...). A second way of taking 

advantages of both approaches would be to use both QTL and association mapping successively or in parallel (Fig. 5). !

 

 

4. Arabidopsis thaliana, a suited species to investigate genetic bases of plant tolerance 

to drought  

!

In this study, we aimed at identifying the genetic basis of natural variation in drought tolerance. Therefore, the 

choice of the species studied was important. Ideally, it may combines both the advantages of a good model for 

genetic studies, and also display large natural variation of drought tolerance in diverse habitats. !

 

Arabidopsis thaliana appeared to be well suited for our purpose8 It is widely used as a model system in genetic 

studies for 30 years (Meinke et al., 1998), because of specific characteristics that makes the species particularly 

appropriate for such analyses. Its genome size is very small (120 Mb) compared to other species such as rice 

(450Mb), or maize (2500Mb) (Barakat et al., 1998) and concentrated on five chromosomes. This small genome 

size represents a great advantage for the construction of genetic map, because of limited number of markers will 

be sufficient to cover the entire genome. However, if the small genome size is an advantage for genetic studies, 

the small number of chromosomes could also represent a drawback, because it will lead to lower number of 

recombinations (Mauricio, 2001). The organization of the genome is also an asset for genetic studies, as it is 

composed predominantly of single-copy sequences and high level of information density (Pruitt and Meyerowitz, 

1986; Szymanski, 2003). Since the choice of Arabidopsis as a model plant for genetic studies, the number of 

resources available for this species did not stop to increase. The genome of the reference accession, Col-0, was 

fully sequenced in 2000 (AGI, 2000). Several projects have followed (Clark et al., 2007) and are still running 

(1001 genomes project, Weigel and Mott, 2009; Cao et al., 2011) to increase again the genomic data available 



Tab. 2. Examples of ecological and evolutionary questions that can be addressed using model systems 

such as Arabidopsis thaliana (Mitchell-Olds, 2001) 

Johanson et al., 2000 

Dorn et al., 2000 

Schenk et al., 2000; Reymond et al., 2000 

Koch et al., 2001 

McKay et al., 2001 

Lynch et al., 2000 

Nasrallah et al., 2000 



"#$%&!'()*&%++,! ! !!!!!!!!!4(5*&6*!

!

 =2

for this species. Large collections of mutants or EST, targeting specific known biological or physiological 

functions, have been developed and are now available in the stock centers (Bouche and Bouchez, 2001). The 

ever-increasing number of laboratories using this species also leads to the development of large databases such 

as TAIR (the Arabidopsis Information Resource), that include the complete genome sequence along with gene 

structure, gene product information, metabolism, gene expression, DNA and seed stocks, genome maps, 

genetic and physical markers that are crucial informations for geneticists. Biological characteristics of 

Arabidopsis thaliana make it also particularly appreciated for genetic studies. Its small size makes it easy to grow 

a large number of individuals in small spaces, and many experiments can be planned over the year because of 

its short generation time (around 6-8 weeks for early genotypes). The transformation with Agrobacterium 

tumefaciens is relatively easy in Arabidopsis, facilitating direct validation of specific gene functions in transgenic 

lines (Pitzsche et al., 2011)8!

 

If the interests of Arabidopsis thaliana for genetic studies is now widely recognized, ecologists and evolutionary 

biologists have turned their attention to this species only much more recently and almost reluctantly. The reason 

for this is the perception that Arabidopsis thaliana is not particularly interesting ecologically and that it represents 

an oddity from an evolutionary standpoint (Pigliucci, 2002)8 Nevertheless, the crucifer Arabidopsis thaliana and 

its wild relatives provide a model system that has a vast array of molecular tools, genetic resources and 

biological information that can be used to address fundamental questions in ecology and evolution (Tab.2; 

Mitchell-Olds 2001)8 Arabidopsis thaliana is a widespread annual weed of rocky places and disturbed sites, 

native to Europe and central Asia and naturalized in North America, and thousands of accessions are now 

identified in the stock centers (Bevan et al., 1999; Pigliucci et al., 1998). Across this geographic range, it 

experiences a broad range of climatic conditions and selective pressures (Shindo et al., 2007). This huge 

genetic variation has been exploited to analyse the genetic determinism of important adaptive traits, such as 

flowering time, plant and seed size, seed dormancy, pathogen resistance, and tolerance to abiotic stresses (for 

review, see Alonso-Blanco and Koornneef, 2000; Koornneef et al., 2004). Considering flowering, Arabidopsis 

thaliana is a facultative long-day plant that varies among ecotypes as to its requirement for vernalization (over-

wintering) (Hopkins et al., 2008)8 In this species, environmental signals are processed by genetic pathways 

responding to day length, vernalization, ambient temperature and plant age, among others (Baurle and Dean, 

2006). These pathways converge on a set of genes known as the ‘floral pathway integrators’, which ultimately 

will promote the transition to flowering (Kobayashi and Weigel, 2007). The interaction of these multiple pathways 

ensures a high degree of predictive power for the overall programme – allowing the plant to accurately 

determine what time of year it is and whether those conditions are suitable for flowering, according to climatic 

conditions (Amasino 2010). Interestingly, the genetic basis of vernalization requirement is not strictly conserved 

and utilizes distinct genetic components in different taxa (Alexandre and Hennig, 2008), indicating that this 
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environmental response may have evolved many times independently.  

 

Moreover, Arabidopsis thaliana has a high frequency of self-pollination in the wild, hence individuals are 

homozygous at most loci. Such high rates of self-pollination may influence patterns of linkage disequilibrium, 

which helps to infer the evolutionary history of the species (Sharbel et al., 2000; Beck et al., 2007), but also 

provides the basis for association studies8 !
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Abstract 

 

Root growth and architecture are major components of plant nutrient and water use efficiencies and these traits 

are the matter of extensive genetic analysis in several crop species. Because root growth relies on exported 

assimilate from the shoot, and changes in assimilate supply are known to alter root architecture, we 

hypothesized (i) that the genetic bases of these traits could be intertwined with the genetic bases of shoot 

growth and (ii) that the link could be either positive, with alleles favouring shoot growth also favouring root 

growth, or negative, because of competition for assimilates. We tested these hypotheses using a quantitative 

genetics approach in the model species Arabidopsis thaliana and the Bay-0 x Shahdara recombinant inbred 

lines population. In accordance with our hypothesis, root and shoot growth traits were strongly correlated and 

most root growth quantitative trait loci (QTLs) colocalized with shoot growth QTLs with positive alleles originating 

from either the same or the opposite parent. In order to identify regions that could be responsible for root growth 

independently of the shoot, we generated new variables either based on root to shoot ratios, residuals of root to 

shoot correlations or coordinates of principal component analysis. These variables showed high heritability 

allowing genetic analysis. They essentially all yielded similar results pointing towards two regions involved in the 

root – shoot balance. Using Heterogeneous Inbred Lines (a kind of near-isogenic lines) segregating in these two 

regions, we validated six main effect QTLs. Our study thus highlights the difficulty of disentangling intertwined 

genetic bases of root and shoot growth and show that this difficulty can be overcome by using simple 

mathematical tools.  

 

 

 

Key words: Arabidopsis thaliana, root growth, shoot growth, QTL analysis, multivariate analysis, Heterogeneous 

Inbred Families 
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Introduction 

 

Although roots are underground and therefore not easily visible, they are finally receiving an increasing attention, 

in particular in the context of a changing agriculture and climate. Their development, growth and architecture are 

thought to be major components of plant nutrient and water use efficiencies (Ochoa et al., 2006; MacMillan et 

al., 2006; Manschadi et al., 2008). Thus, they are proposed to be one of the leverage for the next green 

revolution (Lynch, 2007). Moreover, roots can substantially contribute directly or indirectly to carbon 

sequestration (Deyn et al., 2008) making them key actors in global earth carbon budget. Interspecific and 

intraspecific variation for root growth and architecture have been repeatedly reported in various species or 

genera opening the door to the design and breeding of crop or varieties carrying most useful root features 

adapted to various environmental conditions (de Dorlodot et al., 2007). Reports are now convincingly 

accumulating showing that such strategy can bring substantial improvement of plant fitness and production 

(Sanguineti et al., 2007; Hochholdinger and Tuberosa, 2007; Hammer et al., 2009). Moreover, the partitioning of 

biomass between the root and the shoot is a key parameter strongly related to plant growth rate, life habitats and 

responses to environmental constraints such as nutrient deficiencies, drought or light (Poorter and Nagel, 2000; 

Poorter et al., 2005). 

 

Genetic analysis leading to the identification of regions (QTL) responsible for the variation of root variables have 

been conducted in a variety of species, the earliest reports being on rice (Price and Tomos, 1997) to more 

recently tree species (Kenis and Keulemans, 2007). QTL have thus been reported for total root biomass (Price 

and Tomos, 1997; Reiter et al., 1991), root length (Zhang et al., 2001), root branching (Robinson et al., 1986; 

Chevalier et al., 2003), proportion of shallow vs.deep roots (Liao et al., 2004) or root angle (Giuliani et al., 2005). 

QTL analysis in the model species Arabidopsis thaliana have also been engaged in a variety of mapping 

populations (Loudet et al., 2002; El-Lithy et al., 2004) as well as in other material such as advanced intercross 

RIL (Balasubramanian et al., 2009; Kover et al., 2009). Focused on root growth, such studies have pointed 

towards QTL involved in either constitutive (also called intrinsic) root variables (Loudet et al., 2005) or QTL 

associated with root responses to the environment. The later concern a variety of root responses to low 

phosphate (Reymond et al., 2006; Li et al., 2009), low nitrogen (Rauh et al., 2002), water deficit (Courtois et al., 

2000; Cui et al., 2008), or osmotic stress (Xiong et al., 2006; Gerald et al., 2006). These distinct variables types 

(intrinsic and response) are thought to reflect the probable different nature of the molecular pathways involved 

(Malamy, 2005). Whether constitutive or environmentally determined, very few root QTLs have been conducted 

to cloning, all being in Arabidopsis (Mouchel et al., 2004; Sergeeva et al., 2006; Svistoonoff et al., 2007). 
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Among genetic studies published so far on the mechanisms determining root system architecture or dimension, 

only a few have incorporated analysis of the aerial part as a possible co-variable of the root variables (Poorter et 

al., 2005; Laperche et al., 2006). However, roots, as sink organs, strongly rely on the continuous supply of 

assimilate from the shoot for both their growth and expansion, as well as for the establishment of their 

architecture. Indeed, changes in shoot biomass, shoot growth or intercepted irradiance can deeply modify root 

growth and architecture (Farrar and Jones, 1986; Aguirrezabal et al., 1994; Freixes et al., 2002). Intuitively, 

promoting root and shoot growth could be expected to be either favorable or not for plant growth. Favorable 

because a higher shoot growth is expected to increase carbon capture and energy production and defavorable 

because it may yield to competition for assimilates. Arguments for the occurrence of both situations have been 

reported. Root elongation rate is decreased by shoot pruning that reduces the source of carbon (Farrar and 

Jones, 1986). Similarly, root elongation rate is increased by increasing irradiance (Aguirrezabal et al., 1996, 

Muller et al., 1998) in association with higher sugar content in the root (Freixes et al., 2002). By contrast, in some 

species, flushes of shoot growth strongly impair root growth when they occur (Thaler and Pagès, 1996) probably 

as a result of competition for assimilates (Thaler and Pagès, 1998). Both responses could contribute to the long 

depicted root and shoot growth co-ordination also called “functional equilibrium” describing how the growth of 

both organs rapidly respond to challenging external conditions (Brouwer 1962; Poorter and Nagel, 2000). At a 

much broader scale, root and shoot biomass partitioning is known to operate along a very narrow range when a 

large spectrum of species is considered (Enquist and Niklas 2002). 

 

From these informations, we hypothesized that at least part of the basis for root growth variation could be related 

to shoot growth variation. To test this hypothesis, we conducted a series of experiments with Arabidopsis 

thaliana as a model species using a collection of recombinant inbred lines (RIL) derived from the Bay-0 x 

Shahdara cross (Loudet et al., 2002) whose parents were expected to display contrasting root characteristics. 

The results of these experiments were also compared to what could be observed in a collection of accessions 

displaying widespread geographical origins. Then, a series of heterogeneous inbred families (HIF, equivalent to 

families of Near Isogenic Lines, Loudet et al., 2005) were used to validate two of the QTL detected. In order to 

have easy access to the root system, all experiments were performed in hydroponics.   

 

 

Materials and methods 
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Genetic material 

 

For this study, we used three sets of genotypes. The first one is a sub-population of 165 RIL from the Bay-0 x 

Shahdara RIL population (Loudet et al., 2002), chosen to capture maximum recombination. This population is 

genotyped with 69 microsatellites markers. Complete genetic and phenotypic information on this population is 

available at http://dbsgap.versailles.inra.fr/vnat/Documentation/33/DOC.html. A second set of genotypes was 

used for QTL validation. Heterogeneous Inbred Families (HIF) lines were derived from residual heterozygosity 

remaining in some of the F6 RIL at markers of interest (Loudet et al., 2005). For each of these lines, 20 plants 

were individually genotyped at the segregating markers and two homozygous plants for each of the parental 

alleles (Bay or Sha) were selected and selfed to produce seeds for further phenotypic analysis. All this material 

was obtained from Versailles Biological Resource Centre (http://dbsgap.versailles.inra.fr/vnat/). Finally, a 

collection of 20 accessions that were the first one sequenced in a large SNP sequencing project (Clark et al., 

2007) was used. Seeds were obtained from the Max Planck Institute for Developmental Biology (Tübingen, 

Germany). 

 

 

Plant growth conditions 

 

Seeds were surface-sterilised for 15 minutes in a mixture of bleach in 50% (v/v) ethanol, rinsed once in ethanol 

and then 3 times in sterile water. Two seeds were laid down at the surface of small cones (bottom part of 0.5 ml 

Eppendorf cut at both ends) filled with nutritive media (agar 0.65% w/v + nutrient solution). Cones were stored in 

Petri plates at 4°C in darkness during 24 hours. Petri plates were installed in the growth chamber for 5 days to 

allow seed germination. Then, cones were transferred to the hydroponic system composed of 20 x 30 cm 

styrofoam plates (thickness 1.0 cm) pierced by 96 holes and adjusted to float on nutrient solution in 5L 

containers. The solution (one-tenth-strength modified Hoagland solution) was renewed every 3 days. All 

experiments were performed in a set of identical, 1m! growth cabinets, under the following climate: temperature 

was kept constant at 21°C days and night, relative air humidity was set at 80% in order to reach an air vapor 

pressure deficit of 0.6 kPa, light was 180 "mol.m-2.s-1 provided by a mixture of sodium and HQI lamps, during a 

12h photoperiod. To avoid any unconsidered bias due to location within the growth cabinet, containers were 

randomly moved from one location to another every day.  
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Experiments  

!

During experiment 1, only the parental lines Bay-0 and Shahdara were grown. Sixty cones per accession were 

used, from which 30 homogeneous plants were selected 12 days after sowing. Then, 6 plants of each accession 

were randomly chosen for harvest at 13, 17, 20, 24, 27 days after sowing. During experiment 2, the 165 RIL of 

the BayxSha population and the two parental lines were grown. 15 cones were used per RIL from which 8 

homogeneous plants were selected 12 days after sowing. Four plants randomly selected among the 8 were then 

harvested at 20 and 24 days after sowing. The 15 cones of every RIL were shared out in three different 

containers to avoid possible block effect. To lighten the daily work load, experiment 2 was performed as 3 waves 

of sowing spaced by 3 days with 55-56 RIL at each date. Experiment 3 was devoted to phenotyping a collection 

of 20 accessions (Bay-0, Bor-4, Br-0, Bur-0, C24, Col-0, Cvi-0, Est-1, Fei-0, Got-7, Ler, Lov-5, Nfa-8, RRS-10, 

RRS-7, Shahdara, Tamm-2, Ts-1, Tsu-1, Van-0). The same experimental design was used than for experiment 

2. Finally, experiments 4, 5, and 6 were dedicated to the culture of HIF. For each QTL to be validated, 2 

independent HIF were available and used for phenotyping. On average, 80 plants of each HIF were cultivated, 

and at least 12 homogeneous plants per line were selected 16 days after sowing for the two harvests (at 20 and 

day 24 after sowing). 

!

!

Variables measurements and data acquisition 

!

At each date of harvest, all the replicate plants of each genotype were gently removed from the hydroponic 

system, and their shoot and root parts were separated. Each leave (blades) of the rosette was detached, spread 

out and stuck with double-sided adhesive on a sheet of paper. Total leaf area was determined as the sum of the 

areas of each leaf blade. Blades were then gathered for estimation of dry weight following 2 days at 80°C. In 

order to capture root architecture, root systems were gently spread at the surface of large (20 x 20 cm) Petri 

plates filled with water and a numerical image was taken at 800 dpi using a scanner in transmission mode. 

Images were later analysed using Image-J software and customized macros. After image capture, root systems 

were individually stored into 96 well plates each containing pre-weighed aluminium cell-cup to facilitate weighing. 

The plates were then oven dried for 2 days at 80°C and cups were weighed using a 5 digits balance to measure 

root dry weight. 
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Figure 1. Correlation matrix between the different root and shoot growth variables at 24 days 

after sowing within the 165 individuals of the Bay-0 x Shahdara RIL population. Dots represent 

the mean  values  of  each   RIL (4  individuals), and Bay-0 and Shahdara parental lines are indicated. 

Pearson’s coefficients  (r) associated  to  correlations are  shown  with  their  p-value  (***,  p-value < 

0.001,  **,  p-value<0.01,  *,  p-value<0.05,  ns,  p-value>0.05). Shoot and root dry weight are 

expressed in mg, rosette area in cm!, total and primary root length in cm. 
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QTL detection and statistical analysis 

 

All statistical analyses were performed using the computer package SPSS 11.0.1 for Windows (SPSS) and the R 

software (R Development Core Team, 2007). Statistical differences between HIF lines were tested by t-test. 

Correlation were analysed using Pearson statistics. Normality of the distributions of each variable among the 

lines was verified by evaluating skewness. Heritability (broad sense) was estimated as the proportion of variance 

explained by between-line differences based on measurements of four plants per line, at each date of harvest. A 

first QTL detection using simple interval mapping (IM) was performed with the MapQTL5 software (MAPQTL®5, 

Kyazma BV, Wageningen, the Netherlands). Cofactors were then selected using the ‘automatic cofactor 

selection’ (ACS) chromosome per chromosome, and were used for Multiple QTL Mapping (MQM). The cofactors 

for which no QTL were detected (LOD score under a 95% LOD threshold (LOD < 2.4) estimated by permutation 

tests implemented in MapQTL5 using at least 1,000 permutations of the original dataset) were removed. The 

Epistat software was used to detect epistatic interactions between QTL  (Chase et al., 1997). Then, global QTL 

models combining main effects QTL and epistatic QTL were statistically tested using the GLM of the statistical 

package of SPSS 11.0.1 for Windows. The estimated additive effect, the percentage of variance explained by 

each individual QTL, and the total variance explained by the QTL model were obtained using the same package. 

 

 

Results 

 

Tight correlations between root and shoot growth variables in RILs  

A large variability among the RILs was observed for each of the 5 variables with ample transgression from the 

parents (Figure 1 and Figure S2A). At 24 days after sowing (Figure 1), shoot dry weight varied from 2 to 10 mg, 

root dry weight varied from 0.5 to 2 mg while primary root length varied between 12 and 24 cm. A similar range 

of variation was observed at 20 days after sowing (Figure S2A). 

Except the correlation between shoot dry weight and primary root length, which was not significant, all shoot and 

root variables were significantly and positively correlated one to another, with Pearson’s coefficients ranging 

from 0.14 to 0.90, 24 days after sowing (Figure 1)  (0.29 to 0.89 at 20 days after sowing, Figure S2A). Strong 
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Figure 2. Genetic map of the QTL detected in the Bay-0 x Shahdara for shoot and root growth 

variables. A. Map of the LOD score values all along the genome using Interval Mapping analysis. A color 

code indicates the parental allele which increases the value of the variables at the marker (blue for Sha 

alleles, and red for Bay alleles). The LOD score value is shown as different color intensities. B. Map of the 

regions involved in models combining main effects and epistatic QTLs. A color code indicates both the 

allele which increases the value of the variable at one specific region and the percentage of variance 

explained by the QTL. Identical numbers are indicated in the two partners of the epistatic interaction. C. 

Broad-sense heritability and r2 of the QTL models shown in B.  Data are those obtained 24 days after 

sowing (the map at 20 days after sowing is shown as supplementary material). 
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correlations were observed in all cases between shoot dry weight and rosette area, indicative of a limited 

variation of the specific leaf area. Correlations between shoot and root variables were the tightest with root dry 

weight, slightly less tight with total root length and much weaker with primary root length. Correlations between 

shoot variables and both root dry weight and total root length were of the same strength at both dates whereas 

the strength of the correlations between shoot variables and primary root length strongly decreased between 20 

and 24 days after sowing (Figure S2B). Correlations were strong between root dry weight and total root length 

and much weaker between these variables and primary root length. The ranking of the correlations based on 

their strength was essentially maintained at both dates (Figure S2B). 

 

Correlations between shoot and root growth translated at the genetic level with common 

QTLs 

Broad-sense heritability of root and shoot growth variables was high, ranging from 0.54 to 0.77, slightly higher 

for shoot than for root variables, and for the first date of harvest as compared to the second (Figure 2C at 24 

days after sowing and Figure S3C at 20 days after sowing). A first detection of genomic regions involved in the 

control of these variables was performed using Interval Mapping (Figure 2A). However, despite the high 

heritability recorded for these variables, only few regions showing significant QTL (i.e. with LOD > 2.4) were 

detected. Two regions showed a significant effect on almost all variables. The most important region was located 

at the top of chromosome 2, with Sha alleles contributing positively to the variables with LOD score ranging from 

3 to 5 for all variables except for primary root length. The middle of chromosome 1 was also important, with Bay 

alleles contributing positively to all variables but total root length with the strongest effect on primary root length. 

The middle of chromosome 5 was also involved in shoot and root variables with positive effects of Sha alleles. 

The top of chromosome 3 was involved for shoot variables only. Both the top of chromosome 2 and the middle 

of chromosome 5 were strongly involved in all roots and shoot variables at 20 days after sowing (Figure S3A). 

This first analysis thus revealed some similarities of LOD profiles for shoot variables, root variables, but also 

between shoot and root variables. 

 

An analysis was performed to identify possible epistatic interactions between markers. These epistatic 

interactions were individually tested before they were included in a global model gathering epistatic and main 

effect QTLs (Figure 2B). The percentage of variance explained by the QTL models accounted for 46 to 51% of 

the phenotypic variance (Figure 2C), that corresponded to 60 to 90% of the genetic variance. This percentage 

was slightly higher at 24 days than at 20 days after sowing (Figure 2C, and Figure S3C), but similar markers 

were involved at both dates (Figure 2B and S3B). For all variables, genetic models were supported by both main 
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Figure 3. Principal component analysis based on root and shoot growth variables. As 

indicated at the bottom left of each circle, the first component (PC1) gathers 71.4% of the total 

variance whereas PC2, PC3 and PC4 gather 16.8, 7.4 and 3.4% of the total variance, respectively. 

The positions of the different variables, Rosette area (AREA), Shoot dry weight (SDW), total root 

length (TRL), primary root length (PRL), root dry weight (RDW) are represented. Data are those 

obtained 24 days after sowing. 
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effect QTLs and epistatic interactions involving interactors in the five chromosomes. As for the interval mapping 

analysis, shoot and root growth variables were determined by similar genomic regions (Figure 2B and S3B). The 

first epistasis (squares numbered 1 on Figure 2B) between the top of chromosome 1 (F21M12 marker) and the 

bottom of chromosome 3 (MSAT3.70) explained between 10 and 20% of total variance of all root and shoot 

variables, with positive effect of Bay allele at both loci except for primary root length at MSAT3.70. The second 

epistasis (squares #2) involved the bottom of chromosome 1 (F5I14, positive effect of Bay allele) and the top of 

chromosome 2 (MSAT 2.38, positive effect of Sha allele), and explained 15 to 21% of the variance of all shoot 

variables as well as primary root length. A third epistasis was essentially associated with the middle of 

chromosome 1 (IND1136, positive effect of Bay allele) and the middle of chromosome 3 (MSAT3.21, positive 

effect of Bay alleles except for primary root length). Finally, an interaction between the top of chromosome 3 

(squares #4, NGA172, positive effect of Sha allele) and the top of chromosome 4 (NGA8, positive effect of Bay 

allele), explained 10-15% of each variable, with an effect on shoot variables only. Interestingly, the region at the 

top of chromosome 3 also contained main effect QTLs controlling root variables with a positive effect of Bay 

allele. Analysis at 20 days after sowing (Figure S3B) pointed to essentially the same regions except that the third 

epistasis was not present. Even considering epistatic QTL models, very few QTLs specific for root growth 

variables were detected either at 24 days after sowing, or at 20 days after sowing (Figure S3B). Noteworthy, in 

many of the regions harbouring common QTLs for root and shoot variables, the same parental allele affected 

positively root and shoot variables except in the case of the bottom of chromosome 1 (although root and shoot 

QTL peaks were separated by 2 markers) and the top of chromosome 3, parental alleles had opposite effects on 

shoot and root variables. This feature was visible at both dates of harvest (Figure S3B). 

 

Uncoupling root and shoot variables 

In order to disentangle the intertwined genetic bases of root and shoot growth, three sets of variables were 

calculated. First, a principal component analysis (PCA) was performed using all five shoot and root variables on 

the whole RIL dataset at 24 days after sowing (Figure 3). The first principal component (PC1) captured most of 

the inertia of the data (71% of total variance) and was strongly related to all variables but primary root length. 

This component was thus considered as accounting for whole plant growth. The second one (PC2) explained 

16.8% of the variance of the population, and was mainly driven by the primary root length that accounted for 

66% of the variation of this PC. The third principal component (PC3) accounted for 7.4% of the total variance 

and was mainly driven by total root length (that accounted for 44% of the variation along this component). 

Finally, principal component 4 (PC4) accounted for only 3.4% of the total variance and was mainly accounted for 

by root dry weight (accounting for 37% of the variation). Four additional variables were thus calculated as the 

coordinates of each RIL on these 4 PC. The same analysis was performed with data at 20 days after sowing (not 



Figure 4. Genetic map of the QTLs detected for root to shoot ratio, residuals of correlations 

between root variables and shoot dry weight and coordinates in the principal component 

analysis. A. Map of the LOD score values all along the genome using Interval Mapping analysis. A 

color code indicates the parental allele which increases the value of the variables at the marker (blue 

for Sha alleles, and red for Bay alleles). The LOD score value is shown as different color intensities. 

Arrows a to d refer to regions described in the text. B. Map of the regions involved in models 

combining main effects and epistatic QTLs. A color code indicates both the allele which increases the 

value of the variable at one specific region and the percentage of variance explained by the QTL. 

Identical numbers are indicated in the two partners of the epistatic interaction. A and B rectangles 

refer to regions controlling root related variable but not involved in global plant growth. Data are 

those obtained 24 days after sowing (the map at 20 days after sowing is shown as supplementary 

material). QTLs not retrieved in the map from 20 days after sowing plants are shown with a 

translucent color. C. Broad-sense heritability and r2 of the QTL models shown in B.  
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shown). Second, for each RIL, the orthogonal residuals of the correlations (Figure 1) between root variables 

(root dry weight, total root length, and primary root length) and shoot dry weight were calculated. These 

residuals are indicative of the deviation of root (or shoot) growth from the main trend linking both variables. RILs 

located above the main trend were thus having relatively higher root growth and lower shoot growth than the 

average trend. Finally, ratios of root variables (root dry weight, total root length or primary root length) to shoot 

dry weight were calculated. These calculated variables all displayed medium to high heritability ranging from 

0.42 to 0.68 (Figure 4C and Figure S4C).  

 

Identification of QTLs involved in the root-shoot balance 

QTL detection was performed on residuals of root to shoot correlations, PC coordinates and root to shoot ratios. 

A first detection was performed using Interval Mapping (24 days after sowing, Figure 4A, and 20 days after 

sowing, Figure S4A). Four main regions were identified in this analysis (arrows a to d). The first principal 

component, corresponding to whole plant growth was mainly controlled by the middle of the first chromosome (c 

arrow, MSAT1.42) and by the top of chromosome 2 (arrow d, MSAT2.38). Among the root variables, only those 

related to primary root length showed association with these two QTLs controlling plant growth, with the same 

positive effect of Bay allele in c region, and opposite allelic effects in d region. Variables related to primary root 

length (PC2, residual of the correlation between primary root length and shoot dry weight, and the ratio between 

primary root length and shoot dry weight) were mainly controlled by the top of chromosome 3 (b arrow, 

AthCHIB2). This region was also associated with variables related to total root length and to root dry weight. For 

those variables related to total root length and root dry weight, another region at the bottom of chromosome 1 (a) 

was consistently involved. For the b region, a positive effect of the Bay allele was identified for all the root 

variables (primary root length, total root length, and root dry weight related variables). By contrast, the a region 

showed opposite allelic effect on either primary root length (positive effect of the Bay allele) or total root length 

and root dry weight (positive effect of Sha allele). Interestingly, among these four regions, the a and b regions 

were clearly detected at both 20 and 24 days while c and d regions were less clearly visible at 20 days after 

sowing (Figure S4A). 

 

As with raw variables, several significant epistatic interactions (P<0.05; Table S3) were detected for each of 

these variables. QTLs models gathering main effect and epistatic QTLs individually explained 36 to 67% of total 

variance (Figure 4C and S4C). A major difference with the analysis from raw variables (Figure 2B) was that more 

regions, spread along the genome were involved, with some being involved in one specific variable, or at one 

date. Interestingly, we were able to detect some QTLs specific for plant growth (squares #4 in Figure 4B). Very 

few QTLs were associated with both whole plant growth and root related variables (eg MSAT2.38 and IND628 in 
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Figure 5. Mean values of root-related variables for the RILs in each of the four allelic classes 

for the 6 epistatic interactions involving the A and B regions : SS, SB, BS and BB refers to the 

RILs with the Sha allele at both markers indicated, the Sha allele at the first marker, and the Bay 

allele at the second, the Bay allele at the first marker, and the Sha allele at the second, and the Bay 

allele at both markers. Bars correspond to standard deviation. 
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Figure 4B and S4B) suggesting that our analysis was successful to separate these components from whole plant 

growth. Indeed, we detected several QTLs associated with root-shoot balance and/or root specific variables only 

with no overlap with PC1 associated regions either at 24 days after sowing, or at 20 days after sowing. This was 

particularly the case for two regions labelled A and B on Figure 4B. These regions were already detected on the 

QTL analysis using raw data but they were then associated with both root and shoot QTLs. Moreover, root QTLs 

in these regions were clearly reinforced with a higher density of main-effect QTLs accounting for a higher 

proportion of the variance. We therefore focused our attention on these two regions.  

 

Using HIF to validate the role of A and B QTLs, specifically controlling root-shoot balance 

and/or root specific variables 

According to our analysis, A and B regions were involved in a total of 4 epistasis with other regions of the 

genome, among which one (F5I14 x MSAT2.38) affected 3 different variables. The barplots representing the 

mean value of variables for each allelic class is shown in Figure 5. The mean value of raw variables (primary 

root length, total root length, root dry weight and shoot dry weight) are indicated in Table S4. Region A (F5I14-

MSAT127088) was involved in an interaction with the top of chromosome 2 (MSAT2.38) to control 3 variables 

(primary root length, see Figure 2B, the root dry weight to shoot dry weight ratio and the residual of the 

correlation between root dry weight and shoot dry weight correlation, see Figure 4B). Region A was also 

associated with MSAT4.35 to control the residual of the correlation between primary root length and shoot dry 

weight, and with MSAT3.117 to control the ratio between total root length and shoot dry weight. Region B 

(MSAT3.99) was associated with NGA8 to control principal component 4. The main effect QTLs and the epistatic 

interactions involving the A and B regions are shown on the genetic map on Figure 6A. 

 

In order to validate A and B main effect QTLs, we used a set of Heterogeneous Inbred Families (HIF) generated 

from residual heterozygosity detected at the F6 generation of the RIL. We therefore compared "sisters" HIFs 

generated from the same RIL, but carrying either the Sha or Bay allele at the fixed region. Because the A and B 

QTLs were partly epistatic, we needed to consider the allele at the interactor (Figure 6B). We used two HIF 

segregating at the A region (HIF083 segregating at both F5I14 and MSAT1.13 and HIF107 segregating at 

MSAT1.13 only, Figure 6B) and two other HIF segregating in the B region (HIF004 segregating from ATCHIB2 to 

MSAT3.117 and HIF338 segregating from NGA172 to MSAT305754. Shoot dry weight, root dry weight, primary 

root length, total root length were measured in the different HIFs and ratios of root variables to shoot dry weight 

were computed (Figure 6C).  

For both HIF083 and HIF107, a highly significant (p<0.001) positive effect of Bay allele on primary root length 
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Figure 6. Validation of the role of A and B regions using heterogeneous Inbred Families (HIF). 

A. Synthesis of the epistatic interactions involving either the bottom of chromosome 1 (A region) and/

or the top of the chromosome 3 (B region) for root related variables. The markers involved in the 

interactions are colored in blue or red depending on the allele that increases the value of the trait, Sha 

or bay respectively. B. Genetic map of the RILs that were selfed to produce HIFs from residuals of 

heterozygosity in F6 generation of the RILs. Blue and red is for Sha and Bay alleles respectively. 

Yellow show heterozygous regions in RILs in F6. These regions are then fixed in the HIF progeny. C. 

Validation of the presence of two root QTLs on chromosome 1 and 3 using the four HIFs generated. 

The percentage of change of the variable induced by Bay allele compared to the Sha allele at the 

segregating region is indicated with the t-test p-value associated. Data shown gather harvests 

performed from 20 to 24 days after sowing. The number of individuals and experiments analyzed is 

indicated. 
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was found, that increased the variable by 7,5 - 11%. It confirmed the effect of the F5I14 marker (A region) on this 

variable (Figure 2). This F5I14 marker was often detected in interaction with MSAT2.38. Indeed, in the RIL 

population (Figure 5), the effect of the interaction was maximal with Bay allele at F5I14 and Sha allele at MSAT 

2.38, and lower but still visible with Bay alleles at both F5I14 and MSAT2.38. In that case, both HIF083 and 

HIF107 had a Bay allele at the interactor (MSAT2.38), so only the effect of the A region alone can be confirmed 

(Figure 6B).. No other QTL was validated using HIF083 and HIF107 although QTLs had been detected at this 

region with raw variables (as main effect QTL) and with composite variables both as main effect and epistatic 

QTLs (Figures 2B and 4B). In particular the epistatic interaction controlling the root dry weight to shoot dry 

weight ratio was not confirmed maybe because of the absence of the favourable allele (Sha) at the interactor 

MSAT2.38 in both HIF083 and HIF107 (Figure 6A and 6B).  

 

The two HIF used to validate the QTLs at the top of chromosome 3 originated from RIL displaying partly 

overlapping heterozygous regions with the HIF004 and HIF338 lines representing the most distal and proximal 

portion of the NGA172 – MSAT3.117 region respectively. Both lines validated the presence of QTLs in this 

region. Four main effect QTLs were confirmed for primary root length, the primary root length to shoot dry weight 

ratio, the root dry weight and the root dry weight to shoot dry weight ratio with a positive effect of Bay ranging 

from 7.6 % (primary root length) to 28% (ratio between primary root length and shoot dry weight). No effect on 

total root length was confirmed in line with the lack of QTL for that variable in that region (Figure 2). The QTL 

responsible for shoot dry weight and rosette area variation at NGA172 was not confirmed using those lines. This 

marker interacts with NGA8 on chromosome 4, and the two HIF004 and HIF338 did not have the favourable 

allele (Bay) at this marker. The QTLs effects were almost similar for HIF004 and HIF338. A major difference 

between the two HIFs was the lack of confirmation of the QTL for root dry weight using the HIF338 which could 

indicate that the causal locus for this variable is located between MSAT305754 and MSTA3.19, a region that 

segregates only in HIF004. Finally, there was a difference in the response of the two HIF for the primary root 

length to shoot dry weight ratio, with a stronger effect of the QTL on HIF338.  

 

 

 

Discussion 

 

Coupling of root and shoot growth is translated at the genetic level 
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At the interspecific level, a strong coupling between root and shoot dimensions has been reported and 

conceptualised (Enquist and Niklas, 2002) suggesting that the diversification of biomass allocation strategies in 

plants has occurred within a narrow developmental window. Our results suggest that similar constraints also limit 

allocation patterns at the intraspecific level. Indeed, root to shoot biomass ratio only varied in a very narrow 

range among the set of 20 Arabidopsis accessions when grown under the same environmental conditions, 

despite their wide geographical and climatic origins. This is in line with recent findings showing no correlation 

between root-to-shoot ratio and climatic feature of the habitats of a range of Arabidopsis populations 

(Montesinos-Navarro et al., 2010). Interestingly, the strong shoot - root linkage was partly loosen using a 

population of RIL that displayed root-to-shoot biomass ratio varying by a much larger factor associated with a 

large transgression of parental values. These results suggest that rules determining allometry in a plant are 

strong but can be partly dissected using adequate genetic material. Biomass allocation in a plant strongly 

depends on environmental conditions (Poorter and Nagel, 2000) with classically reported root-to-shoot increases 

under low nutrient (McConnaughay and Coleman, 1998) or low water (Hummel et al., 2010). Moreover, 

determinism of intrinsic and environmentally-related variation of root growth and architecture are likely to differ 

(Malamy et al., 2005). In the present study, plants were grown in the absence of stress and results are thus likely 

to highlight intrinsic rules of root system development and biomass allocation. It will however be interesting to 

evaluate how the main results found here withstand environmental variation.  

 

Correlation between root and shoot variables were clearly translated at the genetic level with an essentially 

common set of main effect or epistatic QTL. Similar findings have been reported in previous reports in which 

roots and shoots parts were both considered. Some common QTL for shoot weight and root length, number and 

weight have been reported in maize (Hund et al., 2004) as well as in rice (Kamoshita et al., 2002; Cui et al., 

2008). In Arabidopsis grown under a range of N sources, some QTL overlapped between root and shoot 

dimensions or biomass (Rauh et al., 2002). In winter wheat, shoot and root biomass QTL were partly 

overlapping under the strong influence of the dwarfing gene Rht-B1 (Laperche et al., 2006). By contrast, some 

studies report little or no correlation and no QTL overlap between shoot and root variables but these correspond 

most often to nutrient limiting situations. For instance, under low phosphate conditions, correlation between 

shoot dry weight and seminal root length in maize was moderate (Zhu et al., 2006). In Arabidopsis, low nitrate 

conditions led to a lack of common QTL between root and shoot variables (Rauh et al., 2002). In our work, the 

strength of the correlation and the degree of overlap between genetic models was higher than ever reported 

before. A possibility is that the hydroponic culture systems favoured a strong coupling between root and shoot, 

because the liquid medium did not mechanically impede root growth as would a solid substrate. Favouring this 
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hypothesis, our own results show that root - shoot coupling is looser with plants grown on solid substrate (see 

Chapter 4 of this document). 

 

 

A large proportion of epistatic QTL  

 

Very few of the regions identified pointed to significant, main effect QTL and QTL models considering epistasis 

were much more successful in accounting for the genetic variance of all variables measured. Epistasis is clearly 

acknowledged as being the rule when complex variables are considered (Carlborg and Haley, 2004; Cooper et 

al., 2009). For instance, recent studies suggest that epistatic effects are more important than additive effects for 

fitness traits, (Malmberg, 2005; Mei et al., 2005), flowering time (Juenger et al., 2005) and metabolism (Rowe et 

al., 2008). In several instances, epistasis has been resolved at the gene level, including for growth-related traits 

(Kroymann and Mitchell-Olds, 2005; Bikard et al., 2009; Vlad et al., 2010). Our QTL analysis on raw variables 

highlighted several epistatic interactions in which the same interactors were essentially involved in the control of 

different variables. These epistatic interactions controlling whole plant growth were not in the scope of the 

present study and clearly need further attention. Recently, a two-way epistasis was shown to be responsible for 

leaf growth maintenance under water deficit in Arabidopsis (Tisné et al., 2010).   

 

 

Different relationships between shoot and root variables are consistent with carbon 

partitioning rules governing root - shoot balance 

 

A consistent outcome of our study is that the strength of correlations between root and shoot variables and the 

degree of overlap between shoot and root QTL model depend on the root variables considered. The loosest 

correlations and overlaps were found between shoot variables and primary root length. If we follow the rationale 

that root growth relies on exported assimilates from the shoot (i.e. the source in a source – sink terminology), our 

results suggest that primary root length is under loose source limitation. This view fits well with recurrent findings 

that primary root elongation rate (by contrast with that of lateral roots) is unaltered when assimilate supply is 

modified (Farrar and Jones, 1986; Muller et al., 1998; Freixes et al., 2002). In other words, primary root is a first-

priority sink in the root system that generally experience much looser response to environmental constraints 

such as carbon (Farrar and Jones, 1986; Bingham and Stevenson, 1993) or minerals (Lopez-Bucio et al., 2002). 
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Another noticeable feature of both the correlation analysis and QTL results is that shoot-root correlations were 

stronger with root dry weight than with total root length. Because total root length is mainly determined by lateral 

root, this is indicative that some genetic variation exists for Specific Root Length (i.e. the root length to dry 

weight ratio) that could buffer variation in assimilate supply (Robinson, 1988; Ryser and Eek, 2000; Aguirrezabal 

et al., 1994; Ostonen et al., 2007).  

 

This interpretation of the results leads to the idea that genetic correlations found between root and shoot 

variables are linked to genetic determinism of assimilate partitioning. Such determinism could be associated with 

functional and/or structural variations in the sink itself (e.g. metabolic rates in root meristems or root meristem 

sizes, Muller et al., 1998), in the source part of plant (e.g. phloem loading rates or photosynthetic capacities) or 

along the path (e.g. sieve tube size or number, Wardlaw, 1990). The main effect QTL identified at the top of 

chromosome 3 and validated (see below) offers the possibility to further explore this hypothesis. 

 

 

Using composite variables to disentangle intertwined root and shoot variables and identify 

root QTLs  

 

Multivariate analysis such as principle component analysis for genetic analysis has previously been used to 

simplify datasets and generate composite variables. For instance, it was used to identify QTL associated with 

complex variables such as leaf shape in Arabidopsis (Langlade et al., 2005), in Brassica oleracea (Sebastian et 

al., 2002), or grain shape in wheat (Iwata et al., 2010). In the present study, principle component analysis was 

used in order to extract components that show orthogonality to main trend, clearly driven by plant size 

(synthesized by PC1). PC2, 3 and 4 allowed to uncouple root variables (primary root length, total root length and 

root dry weight respectively) from plant size. The coordinates along these axes, ratios and residuals of 

correlation are by construction different mean to account for a variation to a main trend and were therefore used 

in combination to strengthen the analysis.  

 

Consistent with the initial assumption, the two main regions associated with PC1 were also the two main regions 

responsible for the control of all (root and shoot) raw variables with the same alleles favouring growth of organs. 

Moreover, the main QTL regions involved in the genetic control of root-related variables (bottom of chromosome 

1 and top of chromosome 3) were independent of PC1 suggesting that our analysis successfully separated root 
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and shoot component of plant growth. The role of these two regions was further examined by using HIF. The 

role of the first region was validated for primary root length determinism with the same allelic effect than in the 

QTL analysis but did not validated the role of this regions for other root related variables. One explanation could 

be linked to the absence of the favourable allele (Sha) at the epistatic site of this QTL (MSAT2.38) in both HIF 

(083 and 107) used that may have lowered the detection power. The second region analysed yielded more 

clear-cut results, possibly associated with a higher density of main effects QTL and the strongest epistatic QTL 

for root related variables. In contrast with the region at the bottom of chromosome 1, this could compensate the 

lack of the favourable epistatic partner in the HIF. Except for the root dry weight, similar effects were detected in 

both HIF 004 and 338 suggesting they point to the overlapping hererozygous region between them as being 

responsible for the QTL.  

 

The two regions highlighted co-locate with previously reported root QTL. The QTL localised in the lower half of 

chromosome 1 localized close to a root growth QTL previously identified as being related to a cell wall invertase 

gene (Sergeeva et al., 2006). It also co-locates with QTL for both lateral root length and density in the same 

population, grown in Petri plates on agar media (Loudet et al., 2005). The top of chromosome 3 was previously 

shown to control lateral root length (Loudet et al., 2005) as well as osmotic stress response of roots (Loudet O., 

unpublished data) and other growth related loci in another RIL set involving the Shahdara accession (El Lithy et 

al., 2004).  
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name RootLength(pixels) RootLength(mm)

RIL220_harvest2 b.tif 45109.46 1432.23

Root system scan 
(800 dpi) 

Root measurement 
macro 

Root skeleton Skeleton length 
measurement 

Figure S1. Root length measurements using a macro developped on Image J by Volker Backer 

(Montpellier Rio Imaging), and available at http://bioweb.supagro.inra.fr/phenopsis/

MacroImageJ.php. 
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Figure S2 A. Correlation matrix between the 

different root and shoot growth variables within 

the 165 individuals of the Bay-0 x Shahdara RIL 

population. Data are those obtained 20 days after 

sowing. Dots represent the mean  values  of  each   

RIL (4  individuals), and Bay-0 and Shahdara 

parental lines are indicated. Pearson’s coefficients  

(r) associated  to  correlations are  shown  with  their  

p-value  (***,  p-value < 0.001,  **,  p-value<0.01,  *,  

p-value<0.05,  ns,  p-value>0.05). Shoot and root 

dry weight are expressed in mg, rosette area in cm!, 

total and primary root length in cm. B. Pearson 

coefficients for all correlations among the Bay-0 x 

Shahdara RIL population at both 20 and 24 days 

after sowing (DAS). 



A 

B 

Variables 

Variables 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 2 

3 

3 

3 

3 

3 

3 

3 

3 

4 

4 

4 

4 

4 5 

4 

4 

4 

5 2 

Shoot dry weight  

Rosette area 

Primary root length 

Total root length 

Root dry weight 

!"#!$%%

#!"&!$%%

&!"'!$%%

'$()*+),-.$./01)+,.2$$#11.1.$3+45$)$067+8(.$

.9.-4$6,$4*)+4$()1:.$$

()*"!%

+,)%

;<=$4>0.$

-./01)23%456%

7)/8%9:931%456%

Shoot dry weight  

Rosette area 

Primary root length 

Total root length 

Root dry weight 

C 

0 1 2 3 4 5 >5 2 1 3 4 5 >5 

Sha allele Bay allele 

LODscore 

Chr. 1 Chr. 2 Chr. 3 Chr. 4 Chr. 5 

M
S

A
T

1
0
0
8
 

T
1
G

1
1
 

F
2
1
M

1
2
 

IN
D

4
9
9
2
 

IN
D

6
3
7
5
 

M
S

A
T

1
.1

0
 

M
S

A
T

 1
0
8
1
9
3
 

N
G

A
2
4
8
 

IN
D

1
1
3
6
 

T
2
7
K

1
2
 

M
S

A
T

1
.4

2
 

N
G

A
1
2
8
 

IN
D

2
1
8
8
 

d
C

A
P

s
A

P
R

2
 

F
5
I1

4
 

M
S

A
T

1
.1

3
 

M
S

A
T

1
2
7
0
8
8
 

M
S

A
T

1
.5

 

M
S

A
T

2
.5

 
M

S
A

T
2
0
0
8
9
7
 

M
S

A
T

2
.3

8
 

IN
D

6
2
8
 

M
S

A
T

2
.3

6
 

M
S

A
T

2
.4

1
 

C
Z

S
O

D
2
 

M
S

A
T

2
.7

 
IN

D
2
1
6
1
9
9
 

M
S

A
T

2
.1

0
 

M
S

A
T

2
.2

2
 

N
G

A
1
7
2
 

M
S

A
T

3
.9

9
 

A
T

H
C

H
IB

2
 

M
S

A
T

3
0
5
7
5
4
 

M
S

A
T

3
.1

9
 

M
S

A
T

3
.1

1
7
 

M
S

A
T

3
.3

2
 

M
S

A
T

3
.2

1
 

M
S

A
T

3
1
8
4
0
6
 

M
S

A
T

3
.6

5
 

M
S

A
T

3
.1

8
 

M
S

A
T

3
.7

0
 

M
S

A
T

4
.3

9
 

M
S

A
T

4
.8

 
M

S
A

T
4
.4

3
 

N
G

A
8
 

M
S

A
T

4
.3

5
 

M
S

A
T

4
.1

5
 

C
IW

7
 

M
S

A
T

4
.1

8
 

M
S

A
T

4
.9

 
M

S
A

T
4
.6

8
 

M
S

A
T

4
.3

7
 

M
S

A
T

5
0
0
0
2
7
 

N
G

A
2
2
5
 

N
G

A
2
4
9
 

N
G

A
1
5
1
 

M
S

A
T

5
.1

4
 

N
G

A
1
3
9
 

M
S

A
T

5
1
2
1
1
0
 

M
S

A
T

5
.2

2
 

M
S

A
T

5
.5

9
 

M
S

A
T

5
.9

 
M

S
A

T
5
1
8
6
6
2
 

M
S

A
T

5
2
0
0
3
7
 

M
S

A
T

5
.1

2
 

J
V

6
1
6
2
 

J
V

7
5
7
6
 

M
S

A
T

5
.1

9
 

K
9
I9

 

Chr. 1 Chr. 2 Chr. 3 Chr. 4 Chr. 5 

M
S

A
T

1
0
0
8
 

T
1
G

1
1
 

F
2
1
M

1
2
 

IN
D

4
9
9
2
 

IN
D

6
3
7
5
 

M
S

A
T

1
.1

0
 

M
S

A
T

 1
0
8
1
9
3
 

N
G

A
2
4
8
 

IN
D

1
1
3
6
 

T
2
7
K

1
2
 

M
S

A
T

1
.4

2
 

N
G

A
1
2
8
 

IN
D

2
1
8
8
 

d
C

A
P

s
A

P
R

2
 

F
5
I1

4
 

M
S

A
T

1
.1

3
 

M
S

A
T

1
2
7
0
8
8
 

M
S

A
T

1
.5

 

M
S

A
T

2
.5

 
M

S
A

T
2
0
0
8
9
7
 

M
S

A
T

2
.3

8
 

IN
D

6
2
8
 

M
S

A
T

2
.3

6
 

M
S

A
T

2
.4

1
 

C
Z

S
O

D
2
 

M
S

A
T

2
.7

 
IN

D
2
1
6
1
9
9
 

M
S

A
T

2
.1

0
 

M
S

A
T

2
.2

2
 

N
G

A
1
7
2
 

M
S

A
T

3
.9

9
 

A
T

H
C

H
IB

2
 

M
S

A
T

3
0
5
7
5
4
 

M
S

A
T

3
.1

9
 

M
S

A
T

3
.1

1
7
 

M
S

A
T

3
.3

2
 

M
S

A
T

3
.2

1
 

M
S

A
T

3
1
8
4
0
6
 

M
S

A
T

3
.6

5
 

M
S

A
T

3
.1

8
 

M
S

A
T

3
.7

0
 

M
S

A
T

4
.3

9
 

M
S

A
T

4
.8

 
M

S
A

T
4
.4

3
 

N
G

A
8
 

M
S

A
T

4
.3

5
 

M
S

A
T

4
.1

5
 

C
IW

7
 

M
S

A
T

4
.1

8
 

M
S

A
T

4
.9

 
M

S
A

T
4
.6

8
 

M
S

A
T

4
.3

7
 

M
S

A
T

5
0
0
0
2
7
 

N
G

A
2
2
5
 

N
G

A
2
4
9
 

N
G

A
1
5
1
 

M
S

A
T

5
.1

4
 

N
G

A
1
3
9
 

M
S

A
T

5
1
2
1
1
0
 

M
S

A
T

5
.2

2
 

M
S

A
T

5
.5

9
 

M
S

A
T

5
.9

 
M

S
A

T
5
1
8
6
6
2
 

M
S

A
T

5
2
0
0
3
7
 

M
S

A
T

5
.1

2
 

J
V

6
1
6
2
 

J
V

7
5
7
6
 

M
S

A
T

5
.1

9
 

K
9
I9

 

Figure S3. Genetic map of the QTL detected in the Bay-0 x Shahdara for shoot and root growth 

variables. Data are those obtained at 20 days after sowing. A. Map of the LOD score values all 

along the genome using Interval Mapping analysis. A color code indicates the parental allele which 

increases the value of the variables at the marker (blue for Sha alleles, and red for Bay alleles). The 

LOD score value is shown as different color intensities. B. Map of the regions involved in models 

combining main effects and epistatic QTLs. A color code indicates both the allele which increases 

the value of the variable at one specific region and the percentage of variance explained by the 

QTL. Identical numbers are indicated in the two partners of the epistatic interaction. C. Broad-sense 

heritability and r2 of the QTL models shown in B.   
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Figure S4. Genetic map of the QTLs detected for root to shoot ratio, residuals of 

correlations between root variables and shoot dry weight and coordinates in the principal 

component analysis. Data are those obtained 20 days after sowing. A. Map of the LOD score 

values all along the genome using Interval Mapping analysis. A color code indicates the parental 

allele which increases the value of the variables at the marker (blue for Sha alleles, and red for 

Bay alleles). The LOD score value is shown as different color intensities. Arrows a and b refer to 

regions described in the text. B. Map of the regions involved in models combining main effects and 

epistatic QTLs. A color code indicates both the allele which increases the value of the variable at 

one specific region and the percentage of variance explained by the QTL. Identical numbers are 

indicated in the two partners of the epistatic interaction. A and B rectangles refer to regions 

controlling root related variable but not involved in global plant growth. QTLs not retrieved in the 

map from 24 days after sowing plants are shown with a translucent color. C. Broad-sense 

heritability and r2 of the QTL models shown in B.   



Table S1. QTL models for the shoot and root growth variables. AREA, SDW, PRL, TRL and RDW 

refer to rosette area, shoot dry weight, primary root length, total root length, and root dry weight 

respectively. Models are shown for both data at 20 and 24 days after sowing. The percentage of variance 

explained by the QTL model (R2 QTL model), the markers involved as main effect or epistasic, the p-

value of the t-test, the percentage of variance explained by each term of the model, and the 

corresponding additive effect are indicated.  



Table S2. QTL models for three types of calculated variables. Ratio between root variables (Root 

dry weight (RDW), Total root length (TRL), and Primary root length (PRL)) and Shoot dry weight 

(SDW), PCA coordinates on principal components 2, 3 and 4 (that are accounted for by primary root 

length, total root length and root dry weight respectively), and residuals of the correlations between 

root variables and shoot dry weight (SDW), at 20 days after sowing. The percentage of variance 

explained by the QTL model (R2 QTL model), the markers involved as main effect or epistasic, the p-

value of the t-test, the percentage of variance explained by each term of the model, and the 

corresponding additive effect are indicated.  



Table S3. QTL models for three types of calculated variables. Ratio between root variables (Root 

dry weight (RDW), Total root length (TRL), and Primary root length (PRL)) and Shoot dry weight 

(SDW), PCA coordinates on principal components 2, 3 and 4 (that are accounted for by primary root 

length, total root length and root dry weight respectively), and residuals of the correlations between 

root variables and shoot dry weight (SDW), at 24 days after sowing. The percentage of variance 

explained by the QTL model (R2 QTL model), the markers involved as main effect or epistasic, the p-

value of the t-test, the percentage of variance explained by each term of the model, and the 

corresponding additive effect are indicated. 
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Abstract 

 

Drought is a common environmental threat experienced by plants worldwide that is expected to become more 

acute in the next decades, due to concomitant increase of temperatures, and competition for water usage for 

purposes other than agriculture. In the plant, drought is known to severely reduce the expansion of leaves but 

the impact on root growth is debated since it has been reported to be reduced, unchanged or stimulated. Beyond 

this Root/shoot biomass partitioning issue, the response to soil water deficit of the partitioning of biomass within 

roots and shoots evaluated through the Specific leaf area (leaf area per mass) and Specific root length (root 

length per mass) have also been debated since they could contribute to improving water use efficiency and soil 

exploration. Moreover, it is not known if and to what extend high Root/shoot ratio, dense leaves or thin roots are 

beneficial or not to drought tolerance. 

 

In this study, we evaluated the effect of severe soil water deficit conditions on plant growth, and biomass 

partitioning both between and within shoot and roots. We used Standardized Major Axis (SMA) analysis to 

account for ontogenic effect that may bias the analysis. We used two sources of genetic variation, a 

Recombinant Inbred Lines population (RIL, Bay x Sha) and a collection of 100 natural accessions. As expected, 

shoot expansion was strongly affected by water deficit, while root response was lower, leading to average 

positive increase in Root/shoot ratio. Moreover, under water deficit, Specific leaf area strongly decreased while 

Specific root length remained unchanged. Interestingly, the shoot response to soil water deficit (used as an 

evaluation of drought tolerance) was well correlated with both Specific leaf area in optimal conditions and its 

response to soil water deficit. Moreover, the later was much steeper in accessions as compared to the RIL 

suggesting natural combinations of alleles allow responses that are partly lost in artificial genetic combinations. 

Tolerance to soil water deficit (in term of maintenance of dry weight accumulation) was thus on average a 

combination of small size, high Root/shoot ratio, high Specific leaf area as well as a capacity to strongly 

decrease it upon water deficit, thereby maintaining dry weight accumulation despite reduced leaf area.   

 

 

Key words: Arabidopsis, water deficit, root growth, shoot growth, Root/shoot, Specific leaf area, Specific root 

length, Standardized major axis correlation, multiple regression 
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Introduction 

 

Soil water deficit is a common environmental stress experienced by plants worldwide. In the near future,  

increased temperatures will also contribute to higher evaporative demands (Qaderi!et al., 2006) and water deficit 

will to continue to be a major abiotic factor affecting global crop yields and ecosystem production (Parmesan, 

2006). Understanding the basis of adaptation in the wild is a major avenue of research for possibly orienting 

breeding programs of crop plants towards potentially more tolerant genotypes. In natural ecosystems, plants use 

various strategies to cope with drought, depending on factors such as species, genotypes, natural habitat, 

strength and timing of drought periods. For example, annual species that live in dry habitats classically develop 

drought escape strategies that consist in early flowering, allowing completion of life cycle before drought 

becomes too severe (Turner et al., 2001; Xu et al., 2005; Sherrard et al., 2006). In parallel to this escape 

strategy, plants can also develop avoidance strategies that rely on decreasing water loss through transpiration, 

and/or increasing water uptake at the root level. Reduction of leaf expansion, rapid stomatal closure, and 

increased cuticular resistance are examples of ways to avoid water loss by transpiration. At the root level, water 

uptake can be enhanced through the development of a large and deep root system (Costa França et al., 2000; 

Turner et al., 2001; Chaves et al., 2002; Zlatev 2005). At the cellular level, maintaining adequate cell turgor by 

osmotic adjustment (involving inorganic ions, carbohydrates, and organic acids) while preventing disruptions in 

cellular metabolism (Munns 1988; Save et al., 1993; Nguyen et al.,!1997; Hummel et al., 2010) and controlling 

cell-wall extensibilty (Lockardt et al., 1968; Touchette et al., 2006; Muller et al., 2007) can also allow growth 

maintenance under limited water availability.  

!

Among these modifications, the decrease of shoot growth rate is observed very early during the establishment of 

soil water deficit (Boyer 1970; Hsiao 1973; Muller et al., 2011). It occurs before stomatal closure and 

photosynthesis reduction (Bogeat-Triboulot et al., 2007) and well before cellular processes associated with 

tolerance to dehydration take place (Tardieu et al., 1999). Because access to the root system is more complex, 

experiments taking it into account are rarer. Moreover, root growth and development has also been extensively 

studied in hydroponics or Petri plates, especially in the model plant Arabidopsis thaliana (Loudet et al., 2005; 

chapter 1). Attempts to mimic water deficits in such conditions have been done, essentially using osmotic agents 

such as PEG or mannitol (van der Weele, 2003). However, the several drawbacks of these protocols (anoxia, 

rapid shock rather than slowly establishing stress, toxicity of the molecules) make them strongly debated 

(Spollen et al., 2000) and it is therefore highly desirable to use more realistic conditions. Even under realistic 

conditions, there is no consensus on the root system response to water deficit. Indeed, it has been reported to 

be reduced, unchanged or stimulated, depending on cases (e.g. Poorter and Nagel 2000). However, in most 
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reported cases, root growth seems to be less affected than shoot growth (French and Turner, 1991; Spollen et 

al., 1993; Shao!et al.,!2008). As a result, an increased Root/shoot ratio was frequently observed in droughted 

plants (Turner et al., 1997 in wheat; Asseng et al., 1998 in wheat; Hsiao et al., 2000 in maize; Lei et al., 2006 

and Bogeat-Triboulot et al., 2007 in poplar).  

 

As roots are heterotrophic organs, their growth depends on carbon capture in shoots through photosynthesis. 

Therefore, a tight relationship between the root and shoot biomass has been frequently reported (see chapter 1 

and Enquist and Niklas 2002 for a trans-species generalization). Brouwer´s pruning experiments also illustrate 

the remarkable capacity of the plant to re-adjust the Root/shoot ratio in just a few days after it has been 

artificially modified (Brouwer 1962, Poorter and Nagel 2000, Farrar and Gunn 1998). How the tight Root/shoot 

relationship is affected under water deficit and how the shoot response relates to the root response are not 

known. Intuitively, a larger shoot growth reduction could lead to more carbon being available for root growth 

under water deficit (Hummel et al., 2010). By contrast, because roots are strongly dependent on shoot for their 

growth, stronger shoot reduction could lead to stronger root reduction.  

 

Another issue that we aimed to address in this study was the potential role of biomass growth and partitioning 

traits in improving drought tolerance. Biomass partitioning variables are particularly important since they usually 

constitute a trade-off between different strategies. The Root/shoot ratio is a first variable of interest. Whether 

genotypes having high or low Root/shoot ratio under optimal conditions is related to drought tolerance is not 

known. Intuitively, high Root/shoot could help the plant to forage the soil volume and have a better access to the 

water resource. However, this strategy can be cost full in term of assimilate. Another trait reflecting the trade-off 

between leaf expansion and biomass allocation or production within leaves is the Specific leaf area (ie leaf area 

per unit dry mass, Specific leaf area). The Specific leaf area is often used as an indirect indicator of leaf 

thickness, and reported to be reduced under drought conditions (Marcelis et al., 1998, Liu and Stützel 2004). 

Decrease in Specific leaf area in droughted plants could be due to the different sensitivity of photosynthesis and 

leaf area expansion to drought (Jensen et al., 1996, Tardieu et al.,!1999, Hummel et al., 2010). Reduction of 

Specific leaf area is assumed to be a way to improve water use efficiency (WUE) (Wright et al., 1994, Craufurd 

et al., 1999), because thicker leaves usually have a higher density of chlorophyll and proteins per unit leaf area 

and, hence, have a greater photosynthetic capacity per unit leaf area than thinner leaves. The root equivalent of 

Specific leaf area, the Specific root length, is an indirect indicator of root thickness. Specific root length illustrates 

the trade-off between long and thin roots (high Specific root length) or short and thick roots (low Specific root 

length) with the same biomass. High Specific root length has been shown to be favourable to exploit water in the 

deep soil layers while low Specific root length could contribute to root growing more easily in a compact drying 
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soil (Yoshida 1982, Eissenstat 1991, Zheng et al., 2000). Specific root length has been reported to be either 

decreased (Kage et al., 2004 on cauliflower) or increased (Azhiri-Sigari et al., 2000 on rice) in droughted plants8 

Nevertheless the correlation between modification of Specific root length and plant tolerance to drought is still on 

debate (Schwinning et al., 2001, Vamerali et al.,!2003).  

 

In this study, we have addressed the above questions in the model species Arabidopsis thaliana by combining 

two sources of genetic variation. The first source is natural, provided through a collection of 100 Arabidopsis 

accessions collected along the northern hemisphere essentially in Eurasia. The second is artificial, provided 

through a collection of recombinant inbred lines obtained from the cross between a European (Bay-0) and an 

Asian (Shahdara) accession (Loudet et al., 2002). The experiments were performed using the Phenopsis 

platform (Granier et al., 2006) at two levels of soil water content, corresponding to well-watered and severe soil 

water deficit. Growth variables refer to dry mass and size of roots and shoots, whereas biomass partitioning 

variables correspond to calculated ratio (Root/shoot ratio, Specific leaf area, Specific root length). Correlative 

relationships under both environmental conditions were used to characterize the water deficit response of the 

relationships between variables in these two sets of genotypes.  !

 

 

Materials and methods 

 

Plant material 

 

Two sets of genotypes were used in this study: The first one corresponds to a sub-population of 130 

Recombinant Inbred Lines from the Bay-0 x Shahdara core-collection (Loudet et al., 2002) genotyped with 69 

microsatellites markers was selected to capture maximum recombination. This material was obtained from 

Versailles Biological Resource Centre http://dbsgap.versailles.inra.fr/vnat/8 Complete genetic and phenotypic 

information on this population are available at http://dbsgap.versailles.inra.fr/vnat/Documentation/33/DOC.html.  

  

The second set of genotypes corresponded to a collection of 100 accessions. This collection included 20 

accessions that had been selected to represent the entire genetic diversity of the species along with 88 

accessions that represented 8 geographic regions from the Eurasian range of the species. The two sets had 8 

common accessions (see Appendix 1). The parental lines of the RIL population, Bay-0 and Shahdara are also 
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present in these two collections of accessions. The 20 accessions were the first ones sequenced in a large SNP 

sequencing project and were chosen to capture most of the common sequence variation of the worldwide 

Arabidopsis population (Clark et al.,!2007). The 88 accessions were collected in specific regions in Europe and 

Asia that are know to have been species refugees during the last glaciation (Sharbel et al., 2000; Schmid et 

al.,!2006). Those accessions were also chosen as a starting point of an ambitious sequencing program of 

hundreds Arabidopsis accessions (www/1001genomes.org, Weigel and Mott, 2009). Seeds of these collections 

were obtained from the Max Planck Institute for Developmental Biology (Tübingen, Germany).  

 

!

Plant growth conditions 

 

All the experiments were performed in the PHENOPSIS automated phenotyping platform (Granier!et al., 2006). 

In each experiment, all micro-meteorological conditions were kept constant during the whole growing period. 

Day-length was maintained at 10 h to prevent early flowering, and light was provided by HQI lamps with 

additional cool white fluorescent tubes. Photosynthetic photon flux density (PPFD) was measured continuously 

at the plant level, using a photosynthetic sensor (LI-190SB, Li-Cor, Lincoln, NE, USA) and set to 180 "mol/m!/s 

in all cases. Air temperature and relative humidity were measured every 20 s (HMP35A Vaisala Oy, Helsinki, 

Finland) and set to 20-21°C (day and night) and 75% respectively. All measurements of temperature, PPFD and 

relative humidity were averaged and stored every 600 s in a data logger (Campbell Scientific, LTD-CR10Wiring 

Panel, Shepshed, Leicestershire, UK) and automatically sent to a database 

(http://bioweb.supagro.inra.fr/phenopsis/). !

 

Seeds were sown in 200 mL conical pots (9 cm height and 4.5 cm diameter) filled with a mixture (1:1, v/v) of a 

loamy soil and organic compost. Soil water content was determined before sowing and set to 0.35 g(H20). g(dry 

soil)
-1

. Subsequent changes in pot weight were attributed to a change in soil water status. Soil water content was 

adjusted daily automatically with the automaton in the PHENOPSIS platform to two different values, 0.35 g H2O 

g
-1

 dry soil corresponding to well-watered (WW), and 0.18 g H2O g
-1

 dry soil corresponding to water deficit (WD) 

conditions (Granier et al., 2002)8 These values correspond to a predawn leaf water potential of -0.3 MPa, and -

1.1 MPa respectively (Granier et al., 2006; Hummel et al., 2010).!

 

 

Experiments and treatments  
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Plants were grown in four independent experiments. During the first two experiments, RILs were grown first at 

optimal soil water content (RIL WW experiment) or under soil water deficit conditions (RIL WD experiment). In 

the next 2 experiments, accessions were grown at optimal soil water content (Acc WW experiment) and under 

soil water deficit conditions (Acc WD experiment). In all cases, germination occurred within 3-6 days after 

sowing. Pots were maintained at a soil water status of 0.35 g H2O g
-1

 dry soil corresponding to well-watered 

conditions during the first 15 days after germination, and the soil water status was either maintained at this value  

(RIL WW and Acc. WW experiments) or reduced down to 0.18 (RIL WD and Acc. WD experiments). This value 

was reached within 3-4 days. Then soil water content was kept at this value by automatic irrigation twice a day. 

Each RIL and accession was grown in 3 and 5 pots respectively, randomly located within the same number of 

blocks. The lack of block effect was later tested using ANOVA. After 2 weeks, each pot was thinned to 1 to 3 

homogeneous plants per pot, depending on plant size to avoid overlapping8 !

 

 

Variables measurements and calculation 

 

Plants were then harvested 10 days after the onset of water deficit corresponding to 28-31 days after sowing 

and 25 days after germination. 6 to 9 individual plants per genotype were collected and individually measured. At 

this time, a run of images of the rosette was taken by the automaton. Photos were further used to estimate 

projected Rosette area of each individual plant using Image-J software and customized macros. At harvest, all 

pots corresponding to one genotype were gathered, plants were gently removed from the pot, and rosettes were 

separated from the root system. Rosettes were then stored in paper bags for further measurements of Shoot dry 

weight after the tissues had been dried down after 2 days at 80°C. In order to capture root biomass and 

dimension, the root system was cleaned from every soil particles, and, spread at the surface of large (20 x 20 

cm) Petri plates filled with water and a numerical image was taken at 600 dpi using a scanner in transmission 

mode. Total root length and Primary root length were measured on those images, using Image-J software and 

customized macros. After image capture, root systems were individually stored into 96 well plates each 

containing pre-weighed aluminium cell-cup to facilitate weighing of dry material. The plates were then oven dried 

for 2 days at 80°C and the cups were weighed to measure Root dry weight. All weights were measured using a 5 

digits balance. Root/shoot ratio was calculated as the ratio between Root dry weight and Shoot dry weight, 

whereas Specific leaf area and Specific root length were calculated as the ratio between rosette area and Shoot 

dry weight and between Total root length and Root dry weight, respectively. The response to water deficit was 

expressed as the ratio between the value in water deficit condition to the value in well-watered conditions (and 



Two different tests in Standardized Major Axis regressions. A collection of accessions is grown in two 

different environmental conditions (Condition 1, black points, and condition 2, white points). Two tests 

can be performed, the first is to test differences in slopes between black and white points (1), the 

second is to test differences in elevation between black and white points (2). A difference between 

slopes means that the relationship between the X variable and the Y variable depends on the value of 

the variables, whereas a difference between the elevations means that the environmental condition 

modifies the allometric coefficient between both variables, whatever their values. 

lo
g
 (

y
) 

log (x) 

2. Test for differences in elevations between black and white points 

log (x) 

lo
g
 (

y
) 

log (x) log (x) 

1. Test for differences in slopes between black and white points 

How to use of Standardized Major Axis analyses in allometric studies? 

“Allometry is the study of variations of shapes and processes according to size effects (Niklas, 1994). 

The aim is to establish a functional relationship (in its mathematical sense) and its significance between 

one biological variable (or more) and the size of one organism (or of one part of this organism).The most 

widely used allometric equation for biology is the power function: Y = b. Xa; where Y is the variable of 

interest, and X the size variable. The a and b parameters describing the relationship between X and Y 

are called  “exponent” and “allometric coefficient”, respectively (Müller et al., 2000). The previous 

equation becomes linear after a logarithmic transformation: log Y = log b + a.logX. Then, the allometric 

coefficient (a) becomes the slope of the relationship between X and Y, and log b corresponds to the 

intercept.” (from Vile D. thesis, 2005) 

Box 1. Allometric relationships 
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called ‘response ratio’ hereafter).  

 

 

Statistical analysis 

 

All the statistical analyses were performed using R software (R Development Core Team, 2009). One-way 

analysis of variance was used to examine differences for each set of genotypes, between variables under water 

deficit and well-watered conditions. Standardized major axis (SMA) regression was used to describe the 

relationship between each possible pairwise combination of variables. This method is appropriate when the 

purpose of the study is to describe how variables are related (i.e. scaling relationships) (Warton et al., 2006). Our 

aim was to estimate the line best describing the bivariate scatter of two variables, and SMA regression is 

considered to estimate lines with greater precision than major axis regression (Warton et al.,!2006; see Box. 1). 

Using log transformed variables, regression describes the best-fit scaling relationship between pairs of traits. 

When comparing the cloud of points that describe the pairwise relationship of traits from the different plant types, 

several outcomes are possible: (1) the slope of the line of best fit may differ between plant types; (2) if the slopes 

do not differ (are homogeneous), the clouds of points may completely overlap, or may be shifted along the 

common slope relative to each other, and/or may be shifted in one dimension only, resulting in a difference in 

elevation. SMA slopes were fitted for each combination of set of genotype/water treatment, and differences 

between slopes and/or elevations were tested. SMA regression analyses were performed using smatr software 

(Falster et al., 2006), with significance tested at # = 0.05. Multiple regression models were used to quantify the 

combined effects of growth and biomass partitioning variables on shoot response to water deficit. Broad sense 

heritabilities were calculated fro each variable as the ratio of genetic variance over total variance.!

 

 

Results 

 

Substantial genetically determined variation could be reproducibly observed 

To evaluate the consistency of the dataset and of the responses recorded: the accessions Bay-0 and Shahdara 

that were always present in all experiments were compared (Fig. 1A). The values recorded both under well-

watered and water deficit conditions were not significantly different for each variable either under well-watered 

conditions or under water deficit conditions in the different experiments. Shahdara displayed a greater shoot and 



Fig. 1. Reproductibility of experiments. A. Shoot dry weight of Bay-0 and Shahdara lines in the four 

experiments (RIL WW, RIL WD, Acc. WW and Acc. WD). Bars represent the mean value of 9 individual values. 

Error bars represent standard deviation. B. Results of a PCA performed on the whole dataset, including for the 

four experiments shoot and root dry weight, rosette area, total and primary root length, as well as Root/shoot 

ratio, Specific leaf area and Specific root length. Each point represent a genotype. Blue and green points 

represent accessions and RIL under well-watered conditions, respectively. Red and pink points represent 

accessions and RIL under water deficit conditions, respectively.  
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Fig. 2. Value of growth (A. Shoot dry weight, Rosette area, Root dry weight, Total root length, Primary root 

length), and biomass partitioning (B. Root/Shoot ratio, Specific leaf area, and Specific root length) variables in 

the two sets of genotypes (RIL and accessions), for the two levels of soil water status (white boxes: well-

watered (WW), grey boxes: water deficit (WD)). The boundary of the box closest to zero indicates the 25th 

percentile, the line within the box marks the median and the boundary of the box farthest from zero indicates the 

75th percentile. Whiskers above and below the box indicate the 90th and 10th percentiles. A one-way ANOVA 

was performed to analyze the effect of water treatments for each set of genotypes (*:p-value<0.05; ***:p-

value<0.001; ns: non significant). 
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root biomass compared to Bay-0 (Fig. 1A only shows Shoot dry weight measurements).  In order to provide a 

broad view on the experiments, the whole dataset (Shoot and Root dry weight, Rosette area, Total and Primary 

root length, as well as Root/shoot ratio, Specific root length and Specific leaf area) was subjected to a Principal 

Component Analysis (Fig. 1B). The first two axes of the PCA accounted for 72 and 18% of total variance 

respectively. The first axis was driven by water deficit that affected biomass and size consistently. The centroids 

of genotypes were very similar between the two sets of genotypes (RIL, Accession) subjected to the same water 

treatment but the spread of the accessions was slightly higher than for RIL.  

 

The part of the total variance attributable to genetic variance was estimated by calculating broad sense 

heritabilities of each variable (not shown). These heritabilities were high, ranging from 0.49 (Specific root length 

in water deficit conditions), to 0.71 (rosette area in optimal conditions) depending on variable and water 

treatment. Heritability was higher for shoot than for root variables, maybe due to a slightly higher error term for 

root variables.  

 

!

Soil water deficit affected root and shoot growth differently, leading to modifications of 

biomass allocation patterns 

 

Soil water deficit treatment had very consistent effects on all variables measured in the two sets of genotypes 

(Fig. 2). After almost 10 days of water deficit, Shoot dry weight and Rosette area were on average reduced by 

about 2/3 and $ respectively (Fig. 2A). Root dry weight and Total root length were on average reduced by 1/3 to 

% whereas Primary root length was on average not affected. For these biomass and dimension variables, there 

was a slight but consistent tendency towards a lower variation in the RILs exposed to soil water deficit as 

compared to the accessions. In line with this, a ranking analysis detected that the 10 least sensitive genotypes 

(showing the lowest reduction of the variable) were essentially composed of accessions. The response of 

biomass allocation patterns to water deficit, within shoots and roots as well as between shoots and roots is 

shown in Fig. 2B. In both RIL and accessions, soil water deficit increased on average the root / shoot ratio by 

about 1/3. It also decreased the Specific leaf area but this effect was two times more pronounced in the 

accessions (-41%) than in the RIL population (-16%).  Finally, the Specific root length (ie the root length per unit 

root biomass) was on average slightly increased (+10%), indicating that roots were on average thinner and/or 

less dense under water deficit.  
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Fig. 3. Standardized major axis regressions (SMA) of Root dry weight (A), Rosette area (B), and Total root 

length (C) according to Shoot dry weight, and Total root length according to Root dry weight (D). This analysis 

was performed for both sets of genotypes (asterix: RIL, circles: accessions) in well-watered (WW, blue) and in 

water deficit (WD, red) conditions. The thin lines correspond to regression lines for the RIL population, and the 

thick line to regression lines for the collection of accessions. Values are log transformed. The bottom-right 

legend indicates for both sets of genotypes (RIL and accessions), for both water treatments (WW and WD): 

(From the left to the right) the Pearson´s coefficient (r) , the associated p-value (***:p-value<0.001; ns: non 

significant), the slope and elevation of the correlation. The top-left legend indicates the water deficit effect on the 

slopes of the correlations and, if the slopes are not different, between the elevations of the correlations.  
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Soil water deficit consistently affected the allometric relationships between roots and shoot, 

within the shoot but not within the root 

 

We aimed at evaluating how water deficit affected the allometric relationships and if this effect was similar on the 

different sets of genotypes. Standardized major axis (SMA) regressions were performed on log transformed data 

(see a recent example of the use of SMA for allometric analysis in Liu et al, 2010). This technique is particularly 

useful to take into account ontogenic effects that are not seen when ratio are simply compared between two 

situations. Strong and significant correlations were detected between Shoot dry Weight and Root dry Weight 

(Fig. 3A), as well as between Shoot dry Weight and Rosette area (Fig. 3B) in both RILs and accessions, with an 

average Pearson coefficient of 0.8. Correlations between Shoot dry weight and Total root length were weaker 

but significant, with Pearson coefficients around 0.6 (Fig. 3C). The correlation between Root dry weight and 

Total root length was significant in both water treatments (Fig. 3D). For the four sets of correlations (with one 

exception), the slopes were close to 1, indicating that the partitioning of biomass towards roots did not depend 

on plant size. Only in the case of the Shoot dry weight/Root dry weight correlation for the RIL: the slopes were 

higher than 1 in RIL (1.21 and 1.46 in well-watered and water-deficit respectively) indicating that in that case, the 

proportion of biomass allocated to roots increased with plant size.  

 

Slopes were not significantly affected by water deficit, except for the Total root length vs. Shoot dry weight 

correlation in the accessions, for which the slope increased under water deficit conditions. Thus, in all other 

cases, test for differences in elevation were performed, and a strong effect of water deficit on these elevations 

was observed. Consistent with the mean variations observed (Fig. 2), water deficit modified the equilibrium 

between root and shoot growth, favoring the root system, both in terms of dry weight and length (Fig. 3). Indeed, 

the elevations of the correlations between Shoot dry weight and Root dry weight and Shoot dry weight / Total 

root length increased under water deficit conditions, whereas it decreased for the Rosette area / Shoot dry 

weight correlation. Water deficit also modified the allocation patterns within the shoot, by changing the 

relationship between Rosette area and Shoot dry Weight illustrated by a decreased elevation under water deficit 

conditions. Interestingly the vertical shift of the correlation was significantly different between both genetic 

sources with a steeper reduction in the accessions than in the RILs. By contrast, water deficit had no effect on 

the Specific root length since the root length vs root biomass correlations remained unaffected both in slope and 

elevation. Noteworthy, as observed on Fig. 2, the variability of biomass and dimension variables under water 

deficit was larger for accessions than for RIL (visible in Fig. 3B). !

 



Fig. 4. Standardized major axis regressions (SMA) of the Shoot dry weight response to water deficit (ie, ratio of 

Shoot dry weight under water deficit conditions over Shoot dry weight under well-watered conditions) and the 

Shoot dry weight under well-watered conditions in both sets of genotypes (asterix: RIL, circles: accessions). The 

thin line corresponds to regression lines for the RIL population, and the thick line to regression line for the 

collection of accessions. Values are log transformed. The bottom-right legend indicates for both sets of 

genotypes (RIL and Acc): (From the left to the right) the Pearson´s coefficient (r) , the p-value associated (***:p-

value<0.001; ns:non significant), and the slope and elevation of the correlation. The bottom-left legend indicates 

the effect of the set of genotypes on slope and elevation of the correlation. 
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Fig. 5. Standardized major axis regressions (SMA) of the Shoot dry weight and the Root/Shoot (A), the Specific 

leaf area (B) or the Specific root length (C) in both sets of genotypes (asterix: RIL, circles: Accessions) in “well-

watered” (WW) conditions. When the correlation is significant, thin lines correspond to regression lines for the 

RIL population, and thick lines to regression lines for the collection of accessions. Values are log transformed. 

The top-right legend indicates for both sets of genotypes (RIL and accessions): (From the left to the right) the 

Pearson´s coefficient (r) , the p-value associated (*:p-value<0.05; ***:p-value<0.001; ns: non significant), the 

slope and elevation of the correlation. The bottom-left legend indicates the effect of the set of genotypes on 

slope and elevation of the correlation. 
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Fig. 6. Standardized major axis regressions (SMA) of the Shoot dry weight response to water deficit (ie, ratio of 

Shoot dry weight under water deficit conditions over Shoot dry weight under well-watered conditions) and the 

Root/shoot (A), the Specific leaf area (B) or the Specific root length (C) in “well-watered” (WW) conditions, in 

both sets of genotypes (asterix: RIL, circles: accessions). When correlations are significant, thin lines 

correspond to regression lines for the RIL population, and thick line to regression lines for the accessions. 

Values are log transformed. The bottom-right legend indicates for both sets of genotypes (RIL and accessions): 

(From the left to the right) the Pearson´s coefficient (r) , the p-value associated (*:p-value<0.05; ***:p-

value<0.001; ns: non significant), the slope and elevation of the correlation. The bottom-left legend indicates the 

effect of the set of genotypes on slope and elevation of the correlation (When slopes are significantly different, 

differences for elevations are not tested (-)). 
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The maintenance of Shoot dry weight under water deficit was negatively correlated with the 

Shoot dry weight under well-watered conditions  

 

A highly significant negative correlation was observed between the Shoot dry weight response to water deficit 

and the Shoot dry weight value in well-watered conditions (Fig. 4). As this ratio is log transformed, a value close 

to 0 indicates that the genotype maintains its Shoot dry weight under water deficit conditions. Correlation 

coefficients were high for the RIL population (-0.73) and lower but still significant for the accessions (-0.27) 

suggesting a size effect on the tolerance to soil water deficit. The genotypes with smallest biomass values under 

well-watered conditions were less affected by water deficit. The slopes and the elevations of this correlation were 

not significantly different between the two sets of genotypes.!

!

In order to evaluate the link between rosette biomass and biomass partitioning variables, the relationships 

between the three biomass partitioning variables (Root/shoot ratio, Specific leaf area, Specific root length) under 

well-watered conditions and the Shoot dry weight under well-watered conditions were drawn (Fig. 5). The 

correlation between Root/shoot ratio and Shoot dry weight was not significant for both sets of genotypes (Fig. 

5A). The correlations between Shoot dry weight and Specific root length was significant but very weak (r = -0.17) 

for RIL and for accessions (Fig. 5C). By contrast, an important (accounting for 10 to 35% of the variance) 

negative correlation between Specific leaf area and Shoot dry weight was detected (Fig. 5B). Slopes and 

elevations were not significantly different for both sets of genotypes. These results suggest that larger genotypes 

have a slight tendency to develop denser leaves and roots. !

 

 

Root/shoot and Specific leaf area under well-watered conditions were slightly associated to 

growth maintenance of the Shoot dry weight under water deficit conditions  

 

We aimed at finding potential variables whose value under well-watered conditions could be related with plant 

growth maintenance under water deficit. A negative correlation between plant size under well-watered conditions 

and growth maintenance in water deficit was previously observed (Fig. 4). We therefore examined the 

correlations between partitioning variables (Root/shoot ratio, Specific leaf area, Specific root length) and Shoot 

dry weight response to water deficit in both RIL and accessions (Fig. 6). Correlations were either non-significant 



Tab.1. Multiple regression linear models using biomass partitioning variables (Root/shoot ratio, Specific leaf area, 

Specific Root Length) in well-watered conditions to explain the Shoot dry weight response to water deficit. Values 

were log transformed. For accessions and RIL, the coefficients in the model and the p-value associated is 

indicated when significantly associated to Shoot dry weight response to water deficit associated (*:p-value<0.05; 

**:p-value<0.01). The percentage of variance explained by the global model is indicated. 

log Root/shoot WW log Specific leaf area 
WW 

log Specific root 

length WW 

% variance explained by the 

model 

Accessions +0.48(**) 0.14 

RIL +0.35(**) +0.39(*) 0.21 



Fig. 7. Standardized major axis regressions (SMA) of the correlation between Shoot dry weight response to 

water deficit and Root dry weight response to water deficit (ie, ratio of the variable value under water deficit 

conditions over variable value under well-watered conditions)  in both sets of genotypes (asterix for RIL, circles 

for accessions). The thin lines correspond to regression lines for the RIL population, and the thick line to 

regression lines for the collection of accessions. Values are log transformed. The bottom-right legend indicates 

for both sets of genotypes (RIL and accessions): (From the left to the right) the Pearson´s coefficient (r) , the p-

value associated (***:p-value<0.001;ns:non significant), the slope and elevation of the correlation. The top-left 

legend indicates the effect of set of genotypes on slope and elevation of the correlation. 
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Fig. 8. Standardized major axis regressions (SMA) of correlations between the Shoot dry weight response and 

the response of Root/shoot (A), Specific leaf area (B), and Specific root length (C) to water deficit (ie, ratio of the 

variable value under water deficit conditions over variable value under well-watered conditions), in both sets of 

genotypes (asterix for RIL, circles for accessions). The thin lines correspond to regression lines for the RIL 

population, and the thick line to regression lines for the collection of accessions. Values were log transformed. 

The bottom-right legend indicates for both sets of genotypes (RIL and accessions): (From the left to the right) 

the Pearson´s coefficient (r) , the p-value associated (*:p-value<0.05; **:p-value<0.01; ***:p-value<0.001; ns: 

Non significant), the slope and elevation of the correlations. The bottom-left legend indicates the effect of set of 

genotypes on slopes and elevations of the correlations. 
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or very moderate in all cases. The only significant correlation involved the Root/shoot ratio for the RIL (Fig. 6A) 

and the Specific leaf area for the accessions (Fig. 6B). In both cases, the correlation accounted for less than 

10% of total variance. The Specific root length was not significantly correlated with the maintenance of the Shoot 

dry weight in water deficit conditions, whatever the set of genotypes (Fig. 6C)8!

!

In order to further explore the possibility that response of Shoot dry weight to water deficit would be explained by 

biomass partitioning variables and since they all were only weakly correlated to plant size, multiple regression 

models using those variables were tested (Tab. 1). This analysis confirmed that Specific leaf area was the only 

factor positively associated to Shoot dry weight response to water deficit in the collection of accessions, 

explaining 14% of the variance of Shoot dry weight response to water deficit. In the RIL population, the Root / 

shoot was positively involved in Shoot dry weight response, as well as the Specific root length. These two 

factors explained together 21% of the variance8!

!

!

Growth maintenance under water deficit was positively correlated to the response of the other 

growth variables, and negatively correlated with the response of biomass partitioning 

variables 

 

We then investigated the correlation between both the response of growth and biomass partitioning variables 

and the Shoot dry weight response. The correlation coefficient between the Root dry weight response and the 

Shoot dry weight response to water deficit was very high, 0.89 and 0.69 for the RIL and the accessions 

respectively (Fig. 7). The slopes and elevations of the correlations were not significantly different8 The same 

trend was observed for the correlations between the response of other growth variables (Rosette area, Total root 

length, Primary root length) and the Shoot dry weight response (not shown).  

 

Significant correlations were also detected between Shoot dry weight response and response of biomass 

partitioning variables (Fig. 8). In particular, strong significant correlations were detected for both RIL and 

accessions with the response of the Specific leaf area though with a lower slope for the accessions than for the 

RIL (Fig. 8B). Root / shoot response was only correlated with Shoot dry weight response in the accessions (Fig. 

8A). By contrast, no significant correlation was detected with Specific root length response (Fig. 8C).  !



Tab.2. Multiple regression linear models using the response of biomass partitioning variables (Root/shoot 

ratio, Specific leaf area, Specific root length) to water deficit to explain the Shoot dry weight response to 

water deficit. Values were log transformed. For accessions and RIL, the coefficients in the model and the p-

value associated is indicated when significantly associated to Shoot dry weight response to water deficit 

associated (*:p-value<0.05; **:p-value<0.01; ***:p-value<0.001). The percentage of variance explained by 

the global model is indicated. 
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!

An attempt was made to correlate the Shoot dry weight response to a combination of responses of the biomass 

partitioning variables (Tab. 2). Both the Specific leaf area and the Root/shoot ratio showed highly significant 

parameters in a linear model accounting for shoot biomass response to water deficit. The coefficients of the 

regression had higher values in the case of the accessions but the percentage of variance explained was slightly 

higher in the case of the RIL8 By contrast, Specific root length response was not involved in any of the models.!

 

 

Discussion 

 

In this study, plant response to a severe soil water deficit was investigated in two different sets of genotypes, a 

RIL population derived from two parents and thus having only limited genetic diversity, and a collection of 

accessions that represented much of the world-wide genetic diversity present in the species. The purpose of this 

combined analysis was to identify common responses of the two collections with regard to response to soil water 

deficit, focusing on organ biomass and dimension. We also aimed at identifying possible differences between a 

set of naturally selected genotypes originating from very contrasted areas of the northern hemisphere and a set 

of recombinant inbred lines that by construction represent artificial combinations of alleles that may not be 

present in natural conditions because some specific combinations might be maladaptive in the wild. This 

analysis was conducted by evaluating coordination between variables through correlations analysis. Another 

purpose was to evaluate to what extent the biomass partitioning variables or their plasticity could be related to 

plant tolerance to soil water deficit.  

!

!

Water deficit differentially affects biomass allocation to the organs 

 

The first objective was to characterize the effect of a severe soil water deficit on plant growth. As expected, the 

prolonged (10 days) exposure to soil water deficit led to a strong decrease of growth. Except the Primary root 

length, which was on average unaltered by water deficit, all the shoot and root growth variables were affected. In 

particular, the rosette area was strongly decreased by water deficit. This response related to the sensitivity of 

leaf expansion to drought is widely reported in the literature (reviewed by Granier and Tardieu 2010) and is 

thought to contribute to water saving by reducing transpiring surfaces. Root variables were less affected and this 
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contributed to a strong increase of the Root/shoot ratio. While several studies have reported an increase of the 

Root/shoot ratio in response to soil drying (Kalapos et al., 1996 on wheat; Mingo!et al., 2004 on tomato, Padilla 

et al., 2009 on different shrubs species), a significant number of other studies have reported a lack of effect or 

even a decrease (Rice et al., 1979 on sorghum; Asch et al., 2004 on rice). These differences could be due to 

intrinsic factors such as species, ecological origin (drought-prone environments, or more wet climates), but could 

also be explained by the design of the experiment itself. For example, Erice and coworkers (Erice et al.,!2010) 

reported that the strength of the water deficit influenced the effect on the Root/shoot. In experiments similar to 

ours (Hummel et al., 2010), an increase of the Root/shoot ratio was already visible seven days after exposure to 

a moderate water deficit suggesting this effect is robust across temporal and intensity scales. By contrast, a 

significant proportion of the accessions evaluated (16/100) did not show any increase of this ratio suggesting the 

occurrence of a large genetic variation for this trait.!

!

As severe water deficit had a stronger effect on Rosette area than on Shoot dry weight, a decrease of Specific 

leaf area was observed. This response has been reported in several studies, on various species (Cabuslay et 

al., 2002 on rice; Liu and Stützel 2004 on amaranth; Chenu et al.,!2008 on maize). In our study, all the 

accessions and the RILs showed decreased Specific leaf area in response to soil water deficit and this response 

was also observed for shorter or milder stresses (see Hummel et al., 2011). Variations of Specific leaf area could 

correspond to a mean to maintain a tight balance between transpiration and biomass production. Indeed, 

Specific leaf area is negatively correlated with water-use efficiency (Wright et al., 1994, Craufurd et al., 1999). 

Then, a reduction of Specific leaf area could then be associated with waterAuse efficiency improvement. This 

point would deserve further consideration by actually measuring transpiration in these lines.  

 

Finally, the Specific root length (Total root length/ Root dry weight) was on average slightly increased under 

water deficit conditions but the SMA analysis showed that this trend was due to ontogenic effects rather than 

direct effect. There is no consensus in the literature on the modifications of the Specific root length in response 

to drought (decreased, Kage et al., 2004 on cauliflower; or increased, Azhiri-Sigari et al., 2000 on rice). In citrus, 

a higher Specific root length in some cultivars was correlated to a better soil water uptake, through higher root 

hydraulic conductivity and higher root proliferation (Eissenstat et al., 1999). Our analysis thus could tend to rule 

out a rolle for Specific root length as a syndrome of different strategies of plants facing drought conditions. 

 

Our analysis also suggests that modifications of Root/shoot and Specific leaf area significantly contribute to 

tolerance to water deficit when this is defined as the maintenance of Shoot dry weight under water deficit 
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conditions. More precisely, a higher tolerance was achieved through the combination of a poorly increased 

Root/shoot ratio, and a strongly decreased Specific leaf area (Fig. 8 and Tab. 2). Increasing the soil exploration 

by increasing the Root/shoot ratio may not be an advantage in our conditions in which pot size is limited. This 

could also be the case in the wild in the frequent situations of limited soil volumes. The strong involvement of the 

Specific leaf Area (high Specific leaf area in optimal condition and being strongly reduced under water deficit) in 

tolerance could illustrate that tolerant genotypes maintain a good trade-off between the necessity to avoid water 

loss by reducing leaf expansion (and thus stomatal density), and the maintenance of leaf area to achieve a 

sufficient level of photosynthesis. This result is in line with recent ones in other species but on much narrower 

genetic range, showing that Specific leaf area variation (Erice et al., 2009; Tezara et al., 2011) is positively 

related to drought tolerance. Interestingly, low Specific leaf area in optimal (thick, dense leaves) has in the past 

been rather associated with higher drought tolerance (Zhang et al., 1997; Marron et al.,!2003). In our case, we 

observe the opposite on a much broader genetic panel. A possible interpretation of our results is that the 

accessions with a high Specific leaf area in optimal condition have a better ability to reduce Specific leaf area in 

water condition than the accession displaying low Specific leaf area in optimal condition.!

 

!

Global allocation patterns are conserved in both sets of genotypes, but accessions displayed 

a larger plasticity than RIL 

 

Strong correlations were found between the shoot and root growth variables, both under well-watered and water 

deficit conditions (Fig. 3). One of the main conclusions of this correlation analysis was the remarkable constancy 

of the allometric relationships between the variables in both sets of genotypes studied (RIL and accessions). The 

allometric coefficients (slopes) were not differentially affected by water deficit in both RIL and accessions. 

Contrary to that, the modification of elevations illustrated the effect of water deficit conditions on the biomass 

partitioning variables (Root/shoot, Specific leaf area) previously observed.  

 

Water deficit induced different response range in both sets of genotypes. Especially, the modification of the 

relationship between Shoot dry weight and Rosette was lower for RILs than for accessions whereas the 

scatterplots of these two sets of genotypes were almost superimposed under well-watered conditions (also 

shown in the boxplots), the RIL seemed to less reduce their Rosette area for the same Shoot dry weight (ie their 

Specific leaf area) in water deficit conditions than the accessions. Moreover, the range of variability in the 

response of Specific leaf area to water deficit was larger in the collection of accessions. Contrary to RIL, in which 
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the response is very similar between genotypes, the different accessions displayed a large range of responses 

to water deficit conditions, with accessions that were able to maintain a high shoot growth under drought, and 

other accessions that were considerably affected. This difference could be explained by the genetic architecture 

of these two sets of genotypes. RIL correspond at the genetic level to a mosaic of randomly associated alleles, 

inherited from two parental lines, whereas in the collection of accessions, genome architecture is the result of 

evolutionary processes that allow the accession to adapt to its local environment (Orr et al., 2005), with a large 

diversity of alleles that are not randomly distributed. This adaptation could have favoured very specific plant 

behaviour, enabling it to face different types of drought into the wild (see chapter 3; Yin et al., 2005). Against the 

diversity of drought scenarii, a one-size-fits-all strategy is unlikely to be appropriated, and evolution could have 

favoured differentiation of phenotypic plasticity (Cornwell and Ackerly, 2009; Erice et al., 2010) that could not be 

observed in RIL because of the fragmentation of the genomic regions involved in this plasticity.!

 

 

How does plant tolerance to drought relates to its characteristics under optimal conditions and 

plasticity of biomass partitioning variables? 

 

A negative correlation between tolerance to water deficit and plant size under well-watered conditions was  

observed, especially in the RILs (Fig. 4). This "plant size effect" was also observed in several other datasets, 

including RIL population (Vile et al.,!unpublished; Tisné et al., 2010), a collection of mutants (original data from 

Skirycz et al., 2011), another collection of accessions (original data from Bouchabke et al., 2008), as well as in 

other species (Monclus et al., 2005, in poplar; He et al., 2010, in Centaurea stoebe). By contrast, plant size was 

found to have no effect on plant response to drought stress in other studies (Boogaard et al., 1996, on wheat; 

Yue et al., 2006 on rice). Boogaard et al., 1996 reported that the differences in allocation patterns or size found 

under well-watered conditions on wheat cultivars persisted under dry conditions. One hypothesis could be that 

our result is due to a bias of the experimental design. Indeed, large plants display a larger transpiration per day 

and thus may experience a lower soil content between 2 irrigations. However, in our experiments, plants were 

watered twice daily and the amount of evapotranspiration was rarely higher than 3 g / pot, which corresponds to 

2% relative soil water content and variation between small and large accession was never higher than 1.5 g / pot 

which corresponds to 1% difference in relative soil water content. Such a small variation is unlikely to induce 

massive differences in water potential. Moreover, in our experiments, this negative relationship was retrieved 

when plants were watered once or twice daily (not shown). !

 !
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An explanation may reside in some characteristics associated with small plants. There was a clear trend 

between plant size (Shoot dry weight) and Specific leaf area (Fig. 5), whereas no or looser relationships were 

detected with Root/shoot. Moreover, it has been shown that tolerance is related to the capacity to decrease 

Specific leaf area and this feature is associated with a large Specific leaf area and a small size. The importance 

of the Root/shoot and the Specific leaf area was different in RIL and accessions, with a stronger effect of the 

Root/shoot in the RIL population, and of Specific leaf area in the collection of accessions. These two inherent 

characteristics of genotype are both probably important under drought. A high Root/shoot is likely to favour water 

uptake, while the Specific leaf area reflects the trade off between leaf expansion and biomass accumulation that 

can be later used if conditions become better. The differences between Root/shoot and Specific leaf area 

importance in RIL and accessions could be explained by a stronger selective pressure on Specific leaf area, as 

compared to Root/shoot. Specific leaf area is a trait whose variation could have followed the worldwide spread of 

the different accessions used in this study and their adaptation to local environments (Ramirez-Valiente et al., 

2011). 

!

!

 

 

!

!
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Abstract 

!

Drought is one of the major constraints for plant growth in natural and cultivated areas and is thought to have 

shaped the genetic make-up of wild species. Drought tolerance encompasses various responses including 

dehydration avoidance (as in resurrection plants), drought escape (early flowering), dehydration avoidance 

(stomatal control and improved water uptake by root growth) or stress tolerance (growth maintenance). The later 

strategy is targeted in crop plants which are bred for production maintenance under drought but is also found in 

wild species since biomass production can be an important component of fitness. Understanding how climates in 

the wild have shape stress tolerance is therefore important to decipher the basis of adaptation.  

In this study, eight populations of Arabidopsis thaliana collected in contrasted environments of Eurasia, from 

Iberian peninsula-North africa to Central Asia were grown in controlled conditions, with or without severe soil 

water deficit. Stress tolerance was characterized as the capacity to maintain shoot biomass under stressful 

conditions. Two geographic regions, Iberian peninsula-North africa and Central Asia, displayed higher levels of 

tolerance to drought, but also larger variability of climates at collection sites. High levels of tolerance were 

associated with warmer temperatures within Spanish accessions, whereas tolerance of Asian accessions was 

mainly associated with differences of hygrometry (air relative humidity, number of rainy days). For both regions 

and to a lesser extend for Caucasus, the climatic water balance (difference between the precipitations and the 

potential evapotranspiration) was negatively associated to plant tolerance, but the strength of this correlation 

varied according to seasons. The importance of seasonal climates was also illustrated by the flowering 

strategies of these accessions. We investigate the response to prolonged cold treatment (vernalization) and 

found differences between vernalization requirements of the accessions. Non vernalization-requiring accessions 

were generally more tolerant to drought conditions, maybe because of dryer environmental conditions that they 

encountered in nature at the time of year these plants complete their life cycle. 

!
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Introduction 

!

Natural variation in ecologically important traits is considered to be strong evidence for adaptation to the 

environment to geographically varying factors (Mayr, 1956; Endler, 1977; Stinchcombe et al., 2004; Stillwell et 

al., 2007). Sessile organisms, such as plants, can experience considerable variation in natural selection across 

their range, and local adaptation to such selection can result in geographic differentiation of populations (Joshi et 

al., 2001; Streisfeld & Kohn, 2005; Springer, 2007). 

 

Arabidopsis thaliana grows in a wide variety of climates across its native range (Hoffmann, 2002). The analyses 

of the amount and patterns of genetic variation on a worlwide scale have found significant population structure in 

the native Eurasian rang in the different world regions (Sharbel et al., 2000; Nordborg et al., 2005; Ostrowski et 

al., 2006; Schmid et al., 2006; Beck et al., 2008, Platt et al., 2010). In addition, several laboratories have recently 

initiated the development of new Arabidopsis thaliana collections to study population structure on a regional 

scale in regions of the native distribution area such as northern Europe (Stenøien et al., 2005; Bakker et al., 

2006), France (Le Corre 2005), central Asia (Schmid et al., 2006), and China (He et al8: 2007). Phenotypic 

variation, suggestive of adaptive differentiation in these different populations, has recently been observed in 

several ecologically important traits such as flowering time (Stinchcombe et al., 2004; Wilczek et al., 2009), 

response to vernalization (Hopkins et al., 2008), freezing tolerance (Hannah et al., 2006; Zhen & Ungerer, 2008), 

and size and growth rate (Li et al., 1998), among others. However, the study of the natural variation in 

ecologically important traits in the field and its ecology in natural populations (Montesinos et al., 2009; Bomblies 

et al., 2010) is just beginning. An understanding of the process of adaptive evolution in Arabidopsis thaliana in 

nature requires the identification of adaptive traits and the linkage of these traits to the key environmental 

features that are known to exert selective pressures (Metcalf & Mitchell-Olds, 2009).  

!

Drought is well known to affect distribution of plant species worldwide (Schimper, 1903, Cornwell and Grubb, 

2003, Engelbrecht et al., 2007). With climate change scenarios predicting increased aridity in many regions on 

the globe (Hulme et al., 2005), efforts to understand the basis of plant adaptation to water deficit are essential, to 

give insights into potential impacts of climate change on natural variation, and to define targets to improve plant 

tolerance to such changes (Araus et al., 2002).  

!

Drought is the consequence of a difference between water supplies (precipitations, plus irrigation in agricultural 
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areas) and demand. The demand for water depends on evaporative demand, driven by climatic factors and 

stomatal control. Evaporative demand is driven by air humidity, leaf and air temperature, wind-speed and solar 

radiation (Monteith, 1973). At the plant level, a variety of strategies have been selected essentially falling in one 

of the following categories: dessication tolerance (involving survival at low water, such as in resurrection plants 

or in seeds), dehydration avoidance (maintenance of cell water status by stomatal control and increased soil 

water uptake), drought escape (= early flowering, Lempe et al., 2005; Sherrard and Maherali, 2006; Franks et 

al., 2011) and stress tolerance (= growth and production maintenance). These strategies can be favoured by a 

variety of mechanisms at different levels (molecule, cell, organ, plant, canopy) (Geber and Dawson 1990; Ingram 

and Bartels 1996; Ackerly et al., 2000; Araus et al., 2002; Maggio et al., 2006, see Chapter 2). Dehydration 

tolerance is not related to other types of tolerance. Indeed, cells enter dehydration and peculiar metabolisms are 

engaged. Accordingly, it was recently found that mutant impaired in genes showing up in extreme dehydration 

are not stress tolerant (Skirycz et al., 2011).  

 

Adaptation of phenology is a typical drought escape strategy that enables plant to complete its life cycle before 

the onset of summer drought and display large genetic variation along environmental gradients (Amasino et al., 

2010, Koornneef et al., 2004). Moreover, drought escape and stress avoidance (WUE) are negatively related 

(McKay et al., 2003) suggesting the occurrence of a trade-off between both strategies. Whereas growth 

maintenance has been often focused on in crop plants as a major determinant of production maintenance, it has 

been less often studied in wild species and results suggesting the physiological basis of growth maintenance are 

rare (Cody and Monney, 1978; Lei et al., 2006; Liu et al., 2010). Recently a major QTL accounting for growth 

maintenance in Arabidopsis was detected from the Ler x An1 population (Tisné et al., 2010). 

!

The purpose of the present study was to explain differences in soil water deficit tolerance in natural populations 

of Arabidopsis thaliana, using climatic characteristics of their habitat of origin8 Eight populations of Arabidopsis 

thaliana (88 accessions in total) were chosen for this study because they are widespread throughout Europa and 

Asia, therefore reflecting adaptations to a large range of environments. These populations are also supposed to 

reflect the evolutionary history of the species colonization. They were grown in a growth chamber under 

controlled conditions, with or without soil water deficit, and their response to water deficit was characterized. In 

parallel, climatic features of the natural habitats in which these accessions were collected were obtained from 

databases. 

 

 





Fig. 1. Location of the 80 accessions, in the eight geographic regions sampled (Spain, South Italy, Caucasia, 

South Tyrol, East. Europa, Central Asia, Tübingen, Russia). The Tübingen region is not indicated to scale. Pie 

charts indicate STRUCTURE results for 5 genetic clusters. 

 (Cao et al., 2011, submitted to Nature genetics) 
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Materials and methods 

!

Plant material and experiments 

 

A collection of 88 accessions was used in this study. They were collected in specific regions in Eurasia that are 

known to have been refugees during the last glaciation (Sharbel et al., 2000; Schmid et al., 2006). Those 

accessions were also chosen as a starting point of an ambitious sequencing program of hundreds Arabidopsis 

accessions (www/1001genomes.org, Weigel and Mott, 2009). The genetic structure of 80 of these accessions 

has been analysed using the STRUCTURE program (Pritchard et al., 2000), choosing 5 genetic clusters (k=5) 

(see Fig.1). Seeds of these collections were obtained from the Max Planck Institute for Developmental Biology 

(Tübingen, Germany). 

 

!

Experiments and plant growth conditions 

!

Plants were grown in four independent experiments. Experiments 1 and 2 were performed in the PHENOPSIS 

automated phenotyping platform (Granier et al., 2006) in Montpellier, whereas experiments 3 and 4 were 

performed in the growth chambers, in Tübingen.  

 

Growth experiments 

During the experiments 1 and 2, the 88 accessions were grown under well-watered and water deficit conditions, 

respectively. All micro-meteorological conditions were kept constant during the whole growing period. Day-length 

was maintained at 10 h, and light was provided by HQI lamps with additional cool white fluorescent tubes. 

Photosynthetic photon flux density (PPFD) was measured continuously at the plant level, using a photosynthetic 

sensor (LI-190SB, Li-Cor, Lincoln, NE, USA) and set to 180 "mol mA! sA
1
 in all cases. Air temperature and 

relative humidity were measured every 20 s (HMP35A Vaisala Oy, Helsinki, Finland) and set to 21-2<°C (day 

and night) and 75% respectively. All measurements of temperature, PPFD and relative humidity were averaged 

and stored every 600 s in a data logger (Campbell Scientific, LTD-CR10Wiring Panel, Shepshed, Leicestershire, 

UK) and automatically sent to a database (http://bioweb.supagro.inra.fr/phenopsis/).  
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Seeds were sown in 200 mL conical pots (9 cm height and 4.5 cm diameter) filled with a mixture (1:1, v/v) of a 

loamy soil and organic compost. Soil water content was determined before sowing and set to 0.35!g(H20) g(dry 

soil)
-1

. Subsequent changes in pot weight were attributed to a change in soil water content. Soil water content 

was adjusted daily automatically with the automaton in the PHENOPSIS platform to two different values, 0.35 g 

H2O g
-1

 dry soil corresponding to well-watered (WW), and 0.18 g H2O g
-1

 dry soil corresponding to water deficit 

(WD) conditions (Granier et al., 2002). These values correspond to a predawn leaf water potential of -0.3 MPa, 

and -1.1 MPa respectively (Granier et al., 2006; Hummel et al., 2010).!

!

In all cases, germination occurred within 3-6 days after sowing. Pots were maintained at a soil water status of 

0.35 g H2O g
-1

 dry soil corresponding to well-watered conditions during the first 15 days after germination, and 

the soil water status was either maintained at this value in experiment 1, or reduced down to 0.18 in experiment 

2. This value was reached within 3-4 days. Then soil water content was kept at this value by automatic irrigation 

twice a day. Each accession was grown in 3 and 5 pots respectively, randomly located in the growth chamber. 

The lack of block effect was later tested. After 2 weeks, 1 to 3 homogeneous plants were kept per pot, 

depending on plant size to avoid overlapping. Plant were harvested 25 days after germination, and six to ten 

plants per accession were collected and individually measured. 

!

Flowering time experiments 

Experiments 3 and 4 were dedicated to flowering time measurements. Plants were grown in controlled growth 

rooms with 16 hours of light, a temperature of 23°C (± 0.1°C) under a 1:1 mixture of Cool White and Gro-Lux 

Wide Spectrum fluorescent lights, providing a PPFD of 150 µmol m
-2

 s
-1

. All light bulbs were of the same age. 

Maximal humidity was 65%. Light, temperature, and humidity were continuously monitored online and logged 

data were stored in a Structured Query Language (SQL) database. Seeds were stratified at 4°C for 7 days (to 

minimize variation due to differences in stratification requirements) in 0.1% agarose, and then sown at the 

surface of a compost-like substrate. For the "long-days" experiment (expt. 3), plants were maintained in the 

growth room until the flowering. For the "Long days + vernalization" experiment (expt. 4), seed germination was 

induced at 23°C for 24 h, before the plants were transferred for 6 weeks at 4°C in a vernalization room with 8 h 

light of about 50 µmol m-2 s-1. After this "cold" treatment, they were transferred again in the 23°C long days 

room. !

 

 

Plant growth measurements and statistical analysis 





Box plots of daily deviations between 

empirical and Penman-Monteith models, 

from April to September. Lower and upper 

limits show the 1st and 9th deciles. Lower and 

upper sides of the boxes show the 1st and 4th 

quartiles. Central white point is the mean error 

(bias). 

Details of the different formulae available in the literature to calculate the potential evapotranspiration 

Calculation of the potential evapotranspiration 
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!

In experiments 1-2, 25 days after germination, six to ten plants of each accession were harvested. Different 

growth and biomass partitioning variables were measured (Rosette area, Shoot dry weight, Total and Primary 

root length, and Root dry weight) or calculated (Root/shoot, Specific leaf area (ratio of the Rosette area over the 

Shoot dry weight) and Specific root length (ratio of the Total root length over the root dry weight) following the 

methods fully described in the chapter 2. For all these variables, the response to water deficit was expressed as 

the ratio between the value in water deficit condition and the value in optimal well-watered conditions. In 

experiments 3-4 flowering time was scored as the number of days between the transfer into the 23°C long days 

room, and the opening of the first flower. All the statistical analyses (one-way ANOVA, clustering, Principle 

Component Analysis) were done with R (R Development Core Team, 2009). The clustering analysis was 

performed with the hclust function in R, using the Ward method of distance calculation.  

 

 

Climatic variables acquisition 

 

All the climatic variables used in this study were obtained from a database of the Climatic Research Unit 

(http://www.cru.uea.ac.uk/cru/data/hrg.htm). This database stores the mean monthly climatology of a 10’ 

latitude/longitude grid of surface climate over global land areas, excluding Antarctica (for details, see New et al., 

2002). The climatology comprises a suite of variables collected at a daily timestep: Mean temperature, daily 

temperature range, air relative humidity, sunshine duration, ground-frost frequency, rainy-day frequency, wind 

speed and precipitations. The place where each accession was collected into the wild was identified by its 

latitude/longitude coordinates, which allowed extracting precisely climatic data from this database. The monthly 

data were extracted and averaged over the year or on a 3 months basis corresponding to seasons (autumn, 

spring, summer, winter for sept-nov, dec-feb, march-may and june-august respectively). Potential Evapo-

Transpiration (PET) and Climatic water balance (Difference between precipitations and PET) was estimated 

using available methods used to estimate the Penman-Monteith PET when some of the variables needed are 

lacking (Bois et al., 2005). We choose a method based on the average temperature, the daily temperature 

variation and total irradiance intercepted by the earth surface at each location (Hargreaves-Samani 1982, HT 

method in Table below). This method showed minimum error and lack of bias when tested on Mediterranean, 

semi-continental and oceanic climate (Figure below from Bois et al., 2005). Extra-terrestrial radiation was 

evaluated from databases using latitude and longitudes. !



Fig. 2. Boxplots of the Shoot dry weight in well-watered conditions (A), and of the Shoot dry weight response to 

soil water deficit (ie, ratio of Shoot dry weight under water deficit conditions over Shoot dry weight under well-

watered conditions) in the eight geographic regions. Data correspond to the mean values of all the accessions 

in each region. The boundary of the box closest to zero indicates the 25th percentile, the line within the box 

marks the median, and the boundary of the box farthest from zero indicates the 75th percentile. Whiskers 

above and below the box indicate the 90th and 10th percentiles. 
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Sequence analysis of FRI and FLC alleles 

 

The sequence patterns of FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) alleles of all the accessions 

studied were analysed to determine whether they were functional or not. These multiple sequence alignments 

were carried out by Clustal-X version 2.1 (Thompson et al., 1997). Naturally occurring loss-of-function of FRI 

gene can be largely explained by two major haplotypes, a Col-type 16bp deletion in the coding region causing 

frame-shift stop codon or Ler-type 345bp deletion in the 5' promoter region (Johansson et al., 2000). These 

types of sequence variations were investigated, and then any deleterious sequence variations, such as a large 

deletion in the coding region or stop codon caused by nonsense change or insertion/deletion based frame-shift 

change were evaluated. Several independent large insertions, disrupting FLC function in the FLC 1st intron that 

have been reported in the literature (Liu et al., 2004; Lempe et al., 2005) were not detected in this analysis. 
 

 

Results 

!

Variability of plant size and responses to soil water deficit  

!

Variability of Shoot dry weight in well-watered conditions was very high among the accessions (Fig. 2A), ranging 

from 2.2 to 10.9 mg of Shoot dry weight for an accession (DOG-4) of Caucasia and an accession (ICE-79) 

originating from south Tyrol respectively. Within each geographic region, accessions showed similar variation in 

Shoot dry weight by 5 mg on average from the smallest to the largest accession. There was a slight general but 

non-significant trend towards an increased median shoot dry weight with higher latitude, except for the Russian 

accessions. The accessions originating from South Italy and Iberian peninsula-North africa, at low latitudes, had 

on average a lower weight (4.5 mg) than the accessions originating from Caucasia, South Tyrol, Eastern 

Europa, or Central Asia (5 to 6.5 mg). Plant tolerance to soil water deficit was estimated from the ratio of shoot 

dry weight under water deficit vs. control conditions (Fig. 2B). Individual tolerance ranged from 0.2 (ie a 80% 

decrease in Shoot dry weight) for some Tübingen accessions to 0.8 (ie a 20% decrease in Shoot dry weight) for 

some Spanish accessions. On average, Spanish and Asian accessions displayed the highest level of tolerance, 



Fig. 3. Clustering of the accessions based on the different growth variables responses to water deficit (Shoot 

dry weight, Rosette area, Root dry weight, Total root length, Primary root length, Root/Shoot ratio, Specific leaf 

area, Specific root length). The response to water deficit is defined for each variable as the ratio of the value 

under water deficit conditions over the value under well-watered conditions. A. Clustering diagram. B. 

Schematic representation of the importance of each geographic region in each clusters. C. Shoot dry weight 

response of the accessions of the three different clusters. 
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with a shoot dry weight response of 0.62 and 0.50 respectively. In the other six regions, the response ranged 

from 0.39 (Tübingen) to 0.46 (South Italy). 

 

 

Region-specific differences in tolerance to water deficit 

 

In order to confirm the unequal proportion of geographical origins within tolerant and sensitive lines, we 

performed a clustering analysis based on the responses to water deficit (ratio of the value under water deficit 

conditions over the value under well-watered conditions) of growth variables (Shoot dry weight, Rosette area, 

Root dry weight, Total root length, Primary root length, Root/shoot ratio, Specific leaf area, Specific root length) 

(Fig. 3).  Three main clusters could be defined (Fig. 3A), and the accessions of the different geographic regions 

were not equally partitioned in these three clusters (Fig. 3B). Whereas accessions from some regions such as 

Russia or Caucasia were equally partitioned in the three clusters, accessions from other regions were mainly 

represented in only one or two clusters. This is observed for the accessions from South Italy, Eastern Europa 

(mainly in clusters 1 and 2), or Tübingen (mainly in clusters 1 and 3). To a higher extent, accessions originating 

from Iberian peninsula-North africa and central Asia were almost only represented in the cluster 3. As expected, 

the accessions belonging to three clusters displayed very different values of Shoot dry weight response to water 

deficit (Fig. 3C), ranging from 0.32 for the accessions of cluster 1, 0.44 for cluster 2, and 0.58 for cluster 3.  

 

 

Absence of clear correlation between local climate and tolerance to water deficit 

 

As differences between tolerances of the accessions originating from different geographic regions were 

observed, we hypothesized that these differences could be partially related to climatic features of the different 

regions. We first characterized the climate encountered by the accessions in their region of origin with different 

annual climatic variables (see Material and methods for a complete description of these variables). In order to 

provide a broad view on the climate of the geographic regions synthetically, we performed a PCA on their annual 

climate (Fig. 4A). The first two axis of the PCA captured most of the inertia of the data, with 34 and 30% of 

variance explained for principle component 1 and principle component 2 respectively. The first two principal 

components successfully separated hygrometric variables (number of rainy days and air relative humidity), day-



PC2: 29.6% 

Fig. 4. A. Principal components 1 and 2 of a Principal component analysis performed with nine annual climatic 

variables describing the original habitat of the 88 accessions: Frost (number of days with negative temperature 

per month averaged on the year), Precipitations (mm.month-1), air Relative humidity, Rainy days (number of 

days with precipitations>0.5mm per month, averaged on the year), Sunshine duration (% of day-length with 

full light), daily mean air temperature (°C), temperature variation (difference between daily minimal and 

maximal temperature, °C), windspeed (m.s-1). B,C. Correlations between the Shoot dry weight response to 

water deficit (ie, ratio of Shoot dry weight under water deficit conditions over Shoot dry weight under well-

watered conditions) for the accessions in the different clusters (white for cluster 1, grey for cluster 2, and black 

symbols for cluster 3), and the coordinates of the climatic values of the habitat of these accessions on principal 

components 1 (B) and 2 (C).  
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Fig. 5. Projection on principal components 1 and 2 of climatic characteristics of the habitats for the accessions. 

A. Projections are gathered according to the eight geographic regions (South Italy, Spain, Caucasia, South 

Tyrol, East Europa, Central Asia, Tübingen and Russia). Correlations between the Shoot dry weight response 

to water deficit (ie, ratio of Shoot dry weight under water deficit conditions over Shoot dry weight under well-

watered conditions) for the accessions coming from central Asia and coordinates of climatic values of their 

habitat on principle component 1 (B), and between shoot dry weight response of accessions coming from 

Spain and coordinates of climatic values of their habitat on principle component 2 (C). Pearson´s coefficients 

value (r), and the p-value associated (**:p-value<0.01) are indicated. 
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night temperature variation and sunshine duration on principle component 1, and mean temperature and days 

under frost on principle component 2. Annual precipitations were mainly represented on the third principle 

component that accounted for 14% of the total variance of the data (Suppl. Fig. S1). There was no clear 

correlation between the coordinates of the climatic characteristics of the geographic region in which accessions 

were collected and the tolerance of these accessions to water deficit, neither for the whole accession set, nor 

considering the three clusters previously defined (Fig. 4B). 

!

!

Variation in tolerance within different regions explained by climate variables 

 

Gathering projections of the climate characteristics of the habitat of the accessions on the principal components 

1 and 2 of the previously described PCA revealed that distinct geographic regions have distinct climate (Fig. 5A). 

The inter-regions variability of climate was mainly described by the second principal component, which 

represented a temperature gradient. South Italy climate was the warmest and Russia and central Asia climate 

the coldest. The principal component 1, related to hygrometric variables (see Fig. 4) did not really discriminate 

the different regions, apart from Tübingen, where climate was more humid compared to the mean climate of 

Caucasia, central Asia and Iberian peninsula-North africa regions.  

 

Climatic variability was also observed within regions and to a lesser extent for Tübingen, Russia and South Italy.  

In these three regions, climatic variability was low and then could not be discriminated by any of the three 

climatic components. The locations in which accessions were collected in Iberian peninsula-North africa 

displayed the greater variability. This variability was described by both principal components 1 and 2. Central 

Asia and East Europa climates were mainly discriminated by principle component 1, whereas Caucasia and 

South Tyrol climates were mainly described by principle component 2.  A large part of this climatic variability was 

related to the size of the region in which accessions were collected (see Fig. 1).  

 

Noteworthy, significant correlations between tolerance to water deficit and climatic characteristics were observed 

in the two regions displaying the highest levels of climatic variability, central Asia and Iberian peninsula-North 

africa (Fig. 5B and Fig. 5C). For central Asia accessions, Shoot dry weight response to water deficit was strongly 

negatively correlated with the first principal component coordinates of the climatic characteristics of the locations 

in which accessions were collected in this region (r=0.77) (Fig. 5B). This suggests that tolerance in central Asia 



Fig.6. A. Correlations between summer or annual climatic water balance (difference between precipitations 

and potential evapotranspiration) and Shoot dry weight response to water deficit for the whole set of 

accessions (black symbols), or for accessions for which the correlation is significant (represented by colored 

symbols: Accessions coming from central Asia ( grey symbols), from Spain (red symbols), or from Caucasia 

(green symbols). B. Pearson´s coefficients of the correlations between climatic water balance and Shoot dry 

weight response to water deficit, averaged on year, or by seasons (spring, summer, autumn, and winter), in the 

different geographic regions. A one-way ANOVA was performed to test for differences between mean values. 

***, pvalue<0.001; **, p-value<0.01; *, p-value<0.05; ns:non significant. 
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is higher under dry and sunny locations with high temperature fluctuations (see Fig. 4A). The low variability of 

Asian climates as expressed in the second principal component could explain the absence of correlation 

between this component and tolerance to water deficit. For Iberian peninsula-North africa, a negative correlation 

was observed between shoot dry weight response to water deficit and the second principal component (r=0.53) 

(Fig. 5C). This suggests that tolerance in Iberian peninsula-North africa is higher under warmer regions.  

 

 

Negative correlation between climatic water balance and tolerance to water deficit in specific 

regions 

 

Temperature gradients, sunshine duration and relative humidity that are well represented on the two first 

principal components, are the main determinants of potential evapotranspiration (Allen et al., 1998) (Suppl. Fig. 

S2). We then calculated the daily mean value of this variable during the year (see material and methods) for the 

locations in which the 88 accessions were collected. Potential evapotranspiration was correlated to Shoot dry 

weight response to water deficit, both for accessions originating from central Asia (r=0.84, p-value<0.01) and 

from Iberian peninsula-North africa (r=0.61, p-value<0.05) (not shown). Nevertheless, potential 

evapotranspiration only refers to the evaporative demand and does not completely describe plant water balance, 

as water supplies are not taken into account. We therefore calculated the climatic water balance as the 

difference between precipitations and potential evapotranspiration. A low value of this variable refers to drought 

conditions. Considering all the accessions together, no correlation was observed between annual climatic water 

balance and the Shoot dry weight response to water deficit (Fig. 6A). However, a strong and unique negative 

correlations between annual climatic water balance and Shoot dry weight response to water deficit was 

observed for accessions originating from central Asia (r=-0.47), and Iberian peninsula-North africa (r=-0.51). In 

these two regions, the most tolerant accessions are found in locations in which they face water deficit conditions 

on a yearly average8 Interestingly, the strength of this correlation varied when considering the climatic water 

balance at a seasonal scale (Fig. 6B). For Asian accessions, the coefficient of this correlation was stronger in 

summer (r=-0.87), and not significant for the other seasons. For spanish accessions, there was less variability of 

this relationships, and a negative correlation between tolerance to water deficit and climatic water balance was 

observed all along the year (except during winter). Noteworthy, the tolerance of accessions originating from 

Caucasia and to a lesser extent from Russia was also negatively related to seasonal water balance while the 

correlation did not appear at an annual scale. For Caucasian accessions, the shoot dry weight response to water 

deficit was negatively correlated to water balance in spring and summer, but positively in autumn. 



Fig. 7. Histograms of the flowering time observed in the 88 accessions, in long days conditions (A.16h 

daylength, 23°C), and in long days conditions (B.16h daylength, 23°C) preceded by a period of 6 weeks at 4°C 

that mimics the vernalization process that occurs into the wild. The flowering time corresponds to the number of 

days until the opening of the first flower, from the sowing for the “Long days” experiment, and without 

considering the 6 weeks at 4°C for the “Long days + vernalization” experiment. 

 Long days experiment Long days + vernalization 
treatment experiment 

 Total number of accessions 

that flowered: 35 
 Total number of accessions 

that flowered: 63 

 Days after sowing  Days after sowing 

A B





Fig.8. Correspondence between the functionality of FRIGIDA and Flowering Locus 

C (FLC) alleles in the 88 accessions (red cases when the allele is non-functional, 

green cases when the allele is functional), and the expected FLC function (red cases 

when the FLC function is expected to be weak, green when expected to be strong). 

The experimental validation of this vernalization requirement is indicated, with black 

cases when accessions flowered in long day conditions, without vernalization, and 

white cases when vernalization treatment was required for flowering to occur. 





Fig. 9: Interaction between vernalization and tolerance to soil water deficit. On the right, the shoot dry weight 

response to water deficit is shown for accessions that need (V) or not (NV) vernalization to flower. Results 

correspond to the 4 regions that showed a relation between the Shoot dry weight response to water deficit and 

the climatic water balance, or for the whole dataset. On the left is shown the seasonal climatic water balance in 

those regions where the accessions of the 4 regions were collected. A t-test was performed to test for 

differences between mean values. ***, pvalue<0.001; **, p-value<0.01; *, p-value<0.05; ns: non significant. 
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Importance of the growing period for drought adaptation: response to vernalization 

 

The correlation observed between water availability and tolerance to water deficit was variable according to 

seasons (Fig. 6B). We therefore hypothesized that this correlation could depend on the growing period of the 

accessions in the different geographic regions, that can occur at two different periods in Arabidopsis, either 

during Spring-Summer, or from Autumn to Spring, with a period of slow growth during winter (vernalization). In 

order to evaluate to what extent this vernalization requirement could interfere with tolerance, the flowering time 

was evaluated in dedicated experiments, performed with or without a period of cold8 This analysis showed that 

60% of the accessions used in this study flowered only after being exposed to this prolonged cold period (Fig. 7) 

(these accessions are called vernalization-requiring accessions because they need vernalization to flower, 

whereas non vernalization-requiring accessions do not need it). Moreover, a quantitative effect of this 

vernalization treatment was observed, as the flowering time was shortened (80 days after sowing in Long day 

experiment, 30 days after sowing for long day with vernalization experiment), even for non-vernalization 

requiring accessions. Whether accession need or not vernalization to flower is mainly determined by the activity 

of two genes, FRIGIDA (FRI) and Flowering Locus C (FLC). When the alleles of these two genes are both 

functional, the FLC protein strongly repress flowering, which is overcome after plants being exposed to a 

prolonged period of cold. We therefore determined the functionality of the FRI and FLC alleles of the 88 

accessions (Fig. 8). Except for two accessions (Ice 1 and Ped-0), there was a complete agreement between the 

vernalization requirement observed during the experiments and the status of the FLC protein. Interestingly, the 

proportion of "non-vernalization requiring" and "vernalization requiring" accessions was different in the different 

geographic regions. All the Tübingen accessions do not need vernalization to flower, and in Iberian peninsula-

North africa, the proportion of "non-vernalization requiring" accessions is greater than in South Tyrol, South Italy, 

or Caucasia. 

 

 

Non-vernalization-requiring accessions tend to be more tolerant to water deficit 

 

The shoot dry weight response to water deficit of "vernalization requiring" and "non-vernalization requiring" 

accessions was compared (Fig89). When all the accessions were considered, the "non-vernalization requiring" 
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accessions were significantly more tolerant than the "vernalization requiring" ones (0.50 vs 0.44, p=0.04). The 

same trend was observed within the subset of regions in which a relationship was found between tolerance and 

climatic water balance (Iberian peninsula-North africa, Central Asia, Caucasus, Russia; 0.56 vs. 0.47, p=0.02). 

The greater tolerance to water deficit of "non-vernalization requiring" accessions was also associated to climatic 

characteristics encountered by these accessions in their natural habitats. Indeed, "non-vernalization requiring" 

accessions habitats were wetter in winter and dryer in summer. !

!

 

Discussion 

!

Evidence for variation in drought tolerance and drought escape 

 

Drought escape is certainly the best understood strategy for wild species (McKay et al., 2003; Li et al., 2010). It 

relates to early flowering time in order to avoid drought conditions, in particular in summer. Adaptation is 

suspected to occur very rapidly over just few years as recently demonstrated using brassica populations 

harvested before or after a series of droughted years (1999-2003, Franks, 2011). Drought escape is also 

recorded after breeding schemes in crop plants such as maize (Bolanos and Edmeades, 1993) or rice (Lafitte et 

al 2007). In crop species, stress tolerance, ie. growth maintenance under drought, has been extensively studied 

since it directly relates to yield maintenance and is therefore a positive trait to breed for. By contrast, 

demonstration of growth maintenance in wild species is rarer (but see Bouchabke et al., 2008: Tisne et al., 

2010). In the present study, we show that such strategy exists in Arabidopsis and displays a large degree of 

variation, from 0.2 to 0.8  (expressed as a ratio of stressed / non stress shoot biomass, after 10 days of severe 

soil water deficit). It thus confirms earlier results showing that the species carries some important sources of 

tolerance, especially in particular accessions (such as An-1, Granier et al., 2006, Aguirrezabal et al., 2007, or Bl-

1, Bouchabke et al., 2008). Here we show that sources of tolerance exist in all regions sampled suggesting 

selection has operated independently in various regions. 

 

 

High variability of drought tolerance was identified between defined geographic regions but no 

climatic trend was able to account for inter-regions variation.  
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Stress tolerance was on average variable between the various regions. This was highlighted by our box plot 

analysis but as well by our clustering analysis. Central Asia and Iberian peninsula-North africa were 

overrepresented in the cluster associated with tolerance whereas east Europa and Tübingen were more 

abundant in the sensitive cluster. The climatic analysis (PCA) separated climates humidity on PC1 (coastal vs 

continental, little vs high temperature variation), climate temperature on PC2 and precipitation on PC3. Neither 

individual climate variable, nor any of these 3 composite axis integrated over the whole year or over single 

season was able to account for dry weight accumulation maintenance under drought. The same conclusion was 

drawn either using the whole population or averaging values for individual regions. The variability of the climates 

of collection among sites within individual regions differed strongly between Asia (massive variation) and 

Tübingen (almost no variation). This prompted us to search for correlations within those regions showing climate 

variation.  

 

 

A strong relation between drought  tolerance and water balance. 

 

A first analysis identified correlation between Principal components 1 and 2 and tolerance. However, these 

correlations were not unique as Asia and Iberian peninsula-North africa showed correlation with PC1 and 2 

respectively suggesting tolerance was higher in accessions originating from warm sites in Iberian peninsula-

North africa and dry sites in central Asia8 In order to get closer to the drought regime of the climate of collection 

site, we evaluated the local potential evapotranspiration using commonly used models and PET was well 

correlated with PC1. This estimate was subtracted from precipitations to approach a climate water balance (P-

PET). This balance was in summer strongly related to growth maintenance in Iberian peninsula-North africa, 

Asia and Caucassus with a unique relationship. Relationship during other seasons were on average weaker but 

remained significant on a yearly basis for Iberian peninsula-North africa and Central Asia. This result is one of 

the first demonstrating a strong link between local climate and stress tolerance despite several attempts. The 

unique nature of the correlation suggests that drought has driven adaptation in a similar way in independent 

regions. In the past years, a series of converging results were accumulating to support such hypothesis but it 

was remaining undemonstrated yet. Indeed, using a range of sensitive and tolerant tree species along the 

Panama canal, Engelbrecht et al., (2007) demonstrated a relationship between species sensitivity and their 

presence along a climatic gradient from the wet Atlantic to the dry Pacific side along the canal. Joshi et al., 

(2001) showed in forage species using reciprocal transplant experiments that local genotypes performed better 

in their native environment than any other. Li et al., (2010) showed a correlation between latitude and presence 

of flowering time alleles. Weisshuhn et al., (2011) were able to connect responsiveness to drought in root 
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allocation and climate at the site of connection but no relation was found with drought tolerance. In our case, the 

link between tolerance gradient and biomass partitioning remains to be done. 

 

Although we did not have access to the irradiance and were not able to estimate the ‘Penman-Monteith’ 

Potential Evapotranspiration, we used a method that proved robustness and lack of bias in a variety of climates 

(see Material and Methods). Although errors are possible because of the low resolution of our climatic template 

(400 km!), this is not likely to contradict the results obtained.  

!

Our results remain however puzzling since the strongest correlations were obtained with summer climate 

whereas Arabidopsis is thought to have completed its cycle in April-May in the wild. This could be due to the fact 

that summer water balance is a better descriptor of aridity than winter water balance. This point clearly needs 

further examination. 

 

While we found correlations between climatic components and plant tolerance to drought in three regions, 

Iberian peninsula-North africa, Caucasus and central Asia, we failed to identify such correlations in the other 

regions (South Italy, Russia, Tübingen, South Tyrol, Caucasia, Eastern Europa). In these regions, the variability 

of climate was limited, mainly because the collection strategy was to get geographically close populations and 

study local adaptation. However, there was an appreciable variation of tolerance in these regions suggesting 

climate itself (at least as it was estimated here since the climate grid is 400 km!) is unable to account for 

tolerance. This is suggestive that factors other than climate operate and edaphic conditions are obvious 

candidates. For most of the accessions collected, we had information on the precise collection site but the 

description was too limited (rocky path, meadow…) and the number of individuals within each region was too low 

to allow conclusions to be driven. The drivers of local adaptation are the matter of studies in the ecology and 

evolution community (eg Joshi et al., 2001). In this line, it was shown that populations of the rare endemic plant 

Arabis fecunda are physiologically adapted to the local microclimate despite the absence of divergence at 

almost all marker loci and very small effective population sizes (McKay et al., 2001).  

 

By contrast with the Tübingen accessions, the accessions originating from Southern Italy and from Russia, 

displayed a relatively low variability of responses to drought. Therefore, it was difficult to find causal relationships 

between climatic features of these environments and tolerance to water deficit. A large geographic area was 

sampled to collect these accessions, but the phenotypic variability may not be representative of the variability of 

drought tolerance in these two regions. Indeed, these populations were collected because they represented a 
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genetic gradient reflecting the evolutionary history of the species, and not in the specific goal to distinguish 

phenotypic responses to dry environments.  

 

 

Vernalization requirement appears to be a consequence of adaptation to specific climates 

 

Because Spanish and Asian accessions showed gradients of tolerance depending on average temperature and 

temperature variation, we hypothesized that these gradients could be linked to flowering strategies associated 

with winter-spring or spring-summer growth habits. In order to indirectly approach this strategy, we evaluated the 

vernalization requirement of these accessions (ie the need to experience long term exposure to cold 

temperature to induce flowering, Bastow et al., 2004; Amasino, 2005; Trevaskis et al., 2007). This was done 

both using molecular information and a dedicated experiment. In Arabidopsis thaliana, the flowering response to 

vernalization requires the interaction of two genes, FLOWERING LOCUS C (FLC) and FRIGIDA (Michaels and 

Amasino, 1999; Sheldon et al., 1999; Johanson et al., 2000). Having functional alleles at both FRI and FLC loci 

imply that the accession FT will be modified by vernalization. FLC is a MADS domain-containing transcription 

factor that acts as a floral repressor, and FRI is a plant-specific gene of unknown biochemical function that is 

required for high levels of FLC expression. From an ecological point of view, rapid cycling corresponds to a 

summerAannual habit, whereas functional alleles at both FRI and FLC loci confer a winter-annual habit (Shindo 

et al., 2005). Natural allelic variation at the FLC locus has also been identified, suggesting that non-vernalization 

requiring accessions have been derived from late-flowering ancestral accessions through lossAof-function 

mutations of FRI and/or FLC (Gazzani et al., 2003; Michaels et al., 2003).  

 

Experiments and molecular analysis gave similar results with very few exceptions since vernalization requiring 

accessions were those carrying the functional alleles at both FRI and FLC loci. Vernalization significantly 

shortened the vegetative phase duration and tended to homogenize flowering time for all the accessions. We 

can raise the hypothesis that vernalization requiring accessions grow through winter whereas non vernalization 

requiring ones are more likely to grow during spring - early summer. Indeed, differences in vernalization 

requirements seem to be an adaptive response to temperature and season length in a particular latitude (Boudry 

et al., 2002) 

 

Plant tolerance was higher in "non-vernalization requiring" accessions, compared to "vernalization requiring" 
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ones. If we assume that non vernalization requiring accessions grow later in the season, they should be likely to 

experience more negative water balance during their cycle than vernalization requiring ones. This result would 

then fit with the idea that drought experienced by the plants during their development contributes to selecting 

growth maintenance phenotype, maybe for guaranteeing biomass production and fitness.!

 

 

 

 

 







PC3: 14.1% 

PC1: 34.4% sunshine duration 

relative humidity 

temperature variation 

R! = 0.43 
0 

1 

2 

3 

4 

-4 -3 -2 -1 0 1 2 3 4 

C
li

m
a

ti
c

 w
a

te
r 

b
a

la
n

c
e

 (
m

m
.d

a
y

-1
) 

PC1 annual climate 

Fig S2. Correlation between the daily mean evapotranspiration calculated for the location of each 

accessions, and the coordinates of these locations on the principal component 1 of the PCA performed 

with nine annual climatic variables. 

A

Fig. S1. Principal components 1 and 3 of a Principal component analysis performed with nine annual climatic 

variables describing the original habitat of the 88 accessions: Frost (number of days with negative temperature per 

month averaged on the year), Precipitations (mm.month-1), air Relative humidity, Rainy days (number of days with 

precipitations>0.5mm per month, averaged on the year), Sunshine duration (% of day-length with full light), daily 

mean air temperature (°C), temperature variation (difference between daily minimal and maximal temperature, °C), 

windspeed (m.s-1).  



Tab. S1. Pearson´s coefficients of the correlation between the shoot dry weight response to water deficit of 

asian and spanish accessions, and (A) raw climatic variables (either averaged by year, or by seasons 

(autumn, winter, spring, summer)), or  (B) principal components 1 and 2 of the PCA performed on climatic 

variables, either averaged by year, or by seasons. 

B

A
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Abstract 

 

Drought tolerance partly relates on the phenotypic plasticity, ie the capacity for growth adjustment in the face of 

water deficit. While several QTL studies have been performed to identify genetic basis of shoot growth response 

to soil water deficit, analysis performed on root growth response are much rarer. Moreover, QTLs studies suffer 

from the limited allelic range while genome wide association mapping using large natural panels open the door 

to the identification of loci involved using a broader allelic source. In this study, we used growth and biomass 

partitioning data obtained from a population of Recombinant Inbred Lines originating from Bay-0 x Shahdara 

cross, and a collection of 88 accessions collected in very diverse habitats throughout Eurasia. These two sets of 

genotypes were grown in a soil based substrate under well watered and severe water deficit condition in the 

Phenotyping platform PHENOPSIS.  

Results are globally very consistent across the two mapping populations with several regions in common, some 

of them controlling the same variable. To a much larger extend than in a previous study using hydroponics, 

specific regions were found for either root and shoot growth, in particular under water deficit conditions 

suggesting drought impairs shoot dependence of root growth. Regions specifically responsible for the response 

to soil water deficit were also detected. A series of candidate genes were identified and their expression profile 

stored in databases was examined. Among them, ACD6 on the chromosome 4, and two other regions on 

chromosome 5 (At5g14920 and AGL101) already appear as valuable candidates controlling plant tolerance to 

water deficit. 

 

 

 

Key words: Arabidopsis thaliana, shoot and root growth, plant tolerance to water deficit, Recombinant Inbred 

Lines, Quantitative trait Loci, genome wide association, expression profiles!
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Introduction 

 

Plant growth is a complex trait that is controlled by many loci (Glazier et al., 2002; Holland et al., 2007; Mitchell-

Olds, 2010; see Chapter 1), and which are exposed to important Genotype x environment interactions (Stanton 

et al., 2000; van Eeuwijk et al., 2010; Vlad et al., 2010; Tardieu et al., 2011; see Chapter 2). Identifying the loci 

involved in plant response to environmental constraints and especially to water deficit is required for deciphering 

mechanisms involved in this process as well as for helping breeding programs (Araus et al., 2002; Chapman et 

al., 2007; Cativelli et al.,!2008). Several studies reported the identification of loci responsible for variation of plant 

growth in response to water deficit (Price et al., 2002; Welcker et al., 2007; Mathews et al., 2008; Hao et 

al.,!2009, Tisné et al., 2008, 2010). Most of these analyses focused on either shoot or root traits. Shoot growth 

variation under drought conditions has been analysed at different scales, such as organ (Reymond et al., 2003; 

Chenu et al., 2009), or cell (Tisné et al., 2008) or in different species (Welcker et al., 2007 on maize; Mathews et 

al., 2008 on wheat; Tisné et al., 2008 on Arabidopsis).  The genetic basis of the response to water deficit has 

also been characterized through changes of leaf physiology, such as modifications of transpiration and water-

use efficiencies (McKay et al., 2003; Haussman et al., 2005; McKay et al., 2008). Several studies have also 

been performed on genetic bases of root growth variation (de Dorlodot et al., 2007), and especially under 

drought conditions on rice (Price et al., 2002; Zheng et al., 2003; Cui et al., 2008), maize (Giuliani et al., 2005), 

or Arabidopsis (Vartanian et al., 1994; van der Weele et al., 2000; Verslues and Bray, 2006; Xiong et al., 2006). 

However, tolerance to drought implies a necessary optimization of both root and shoots growth, to maintain an 

efficient balance between water and minerals uptake on one hand and biomass production through 

photosynthesis on the other hand (see Chapter 2). The relative importance of root and shoot growth depends on 

biomass allocations patterns within the plant and even within the organs, and have been described through a 

series of dedicated variables : Root/shoot, Specific leaf area, and Specific root length (see Chapters 1&2). To 

our knowledge, only a very few studies have considered the genetic bases of these different growth and 

biomass partitioning variables (Cui et al., 2008) and none has considered these variables under drought 

conditions. 

 

The different studies evocated allowed the identification of Quantitative trait loci (QTL) in segregating 

populations (such as Recombinant Inbred Lines populations). But these populations are generally obtained from 

biparental crosses, and therefore only represent the allelic variation existing in parental lines. That leads to a 

limited genericity of the QTL detected (Bergelson and Roux, 2010), and could highlight polymorphisms that are 

specific to these crosses. For instance, QTL of leaf expansion detected under drought conditions in the Ler xAn-

1 RIL population (Tisné et al., 2008) were strongly linked to the erecta mutation, specific of the Landsberg erecta 
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(Ler) parent.  

 

Association studies have recently emerged as an alternative to QTL studies to identify genomic regions 

responsible for the variation of quantitative traits (Rafalski et al., 2002; Zhu et al., 2008). These methods use the 

recombination events accumulated through the evolution of natural populations (Flint-Garcia et al., 2003; Gupta 

et al., 2005). Using natural populations allows increasing the allelic diversity compared to biparental populations 

(Bergelson and Roux, 2010). Nevertheless it also generates high levels of spurious associations due to 

confounding effects of population structure and relatedness between the accessions (Myles et al., 2009; Platt et 

al., 2010; Qin et al., 2010; Mezmouk et al., 2011). Association studies have been successfully performed as 

candidate genes approaches, to identify polymorphisms associated with resistance to pathogens (Nemri et al., 

2010), anthocyan synthesis (Fournier Level et al., 2009), abcisssic acid content (Setter et al., 2010) or flowering 

time (Zhao et al., 2007) in various species, even without full sequence information (Saidou et al., 2009). 

Recently, due to the increased number of genomic sequences available (Borevitz and Nordborg, 2003; Nordborg 

and Weigel, 2008; Weigel and Mott, 2009), association studies without a priori (genome wide) have been 

conducted on traits such as resistance to pathogens, leaf architecture (Tian et al., 2011), flowering time (Atwell 

et al., 2010), and adaptation along environmental gradients (Mariac et al., 2011).  

 

In this study, two types of analyses were performed to identify the genetic basis of shoot and root growth 

response to water deficit conditions in Arabidopsis thaliana. The first one consisted in a QTL analysis using the 

Bay x Sha RIL population that was chosen because Bay-0 and Shahdara accessions displayed contrasted root 

architecture in response to various abiotic stresses (Loudet et al., 2002, 2005), possibly related to adaptation to 

diverse natural habitats (Bay-0 was collected in fertile plains of Gerseveral near Bayreuth, whereas Shahdara 

originates from high mountains of Tadjikistan, Loudet et al., 2002). The second one consisted in a genome wide 

association study performed on a population of 88 accessions from throughout the Eurasian range of the 

species that has been shown to display a large variability of growth response to water deficit (see Chapter 3), 

reflecting the adaptation of these accessions to various drought conditions in their natural habitats. Genomic 

regions that control root and shoot growth under well-watered conditions and in response to water deficit 

conditions were identified combining the two approaches, and were compared to decipher polymorphisms 

related to plant drought tolerance using natural allelic variation.  

 

 

Materials and methods 
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Plant material 

 

wo sets of genotypes were used in this study: The first one corresponds to a population of 130 Recombinant 

Inbred Lines from the Bay-0 x Shahdara core-collection (Loudet et al., 2002) genotyped with 69 microsatellites 

markers, selected to capture maximum recombination. This material was obtained from Versailles Biological 

Resource Centre (http://dbsgap.versailles.inra.fr/vnat/). Complete genetic and phenotypic information on this 

population are available at http://dbsgap.versailles.inra.fr/vnat/Documentation/33/DOC.html8  

The second set of genotypes included two collections of 80 and 8 accessions (see Appendix 1 and Chapter 3). 

The parental lines of the RIL population, Bay-0 and Shahdara were also present in this collection of accessions. 

The 88 accessions were collected in specific regions in Europe and Asia that are know to have been the native 

range of the species (Sharbel et al., 2000; Schmid et al., 2006). Those accessions were also chosen as a 

starting point of an ambitious sequencing program of hundreds Arabidopsis accessions 

(www.1001genomes.org, Weigel and Mott, 2009, Clark et al., 2007, Cao et al., 2011).  

 

!

Plant growth conditions 

 

All the experiments were performed in the PHENOPSIS automated phenotyping platform (Granier et al.,!2006). 

In each experiment, all micro-meteorological conditions were kept constant during the whole growing period. 

Day-length was maintained at 10 h, and light was provided by HQI lamps with additional cool white fluorescent 

tubes. Photosynthetic photon flux density (PPFD) was measured continuously at the plant level, using a 

photosynthetic sensor (LI-190SB, Li-Cor, Lincoln, NE, USA) and set to 180 "mol mA! s
-1

 in all cases. Air 

temperature and relative humidity were measured every 20 s (HMP35A Vaisala Oy, Helsinki, Finland) and set to 

20-21°C (day and night) and 75% respectively. All measurements of temperature, PPFD and relative humidity 

were averaged and stored every 600 s in a data logger (Campbell Scientific, LTD-CR10Wiring Panel, Shepshed, 

Leicestershire, UK) and automatically sent to a database (http://bioweb.supagro.inra.fr/phenopsis/). !

 

Seeds were sown in 200 mL conical pots (9 cm height and 4.5 cm diameter) filled with a mixture (1:1, v/v) of a 

loamy soil and organic compost. Soil water content was determined before sowing and set to 0.35 g(H20). g(dry 

soil)
-1

. Subsequent changes in pot weight were attributed to a change in soil water status. Soil water content was 
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adjusted daily automatically with the automaton in the PHENOPSIS platform to two different values, 0.35 g H2O 

g
-1

 dry soil corresponding to well-watered (WW), and 0.18 g H2O g
-1

 dry soil corresponding to water deficit (WD) 

conditions (Granier et al., 2002)8 These values correspond to a predawn leaf water potential of -0.3 MPa, and -

1.1 MPa respectively (Granier et al., 2006; Hummel et al.,!2010).!

 

!

Experiments and treatments  

 

Plants were grown in four independent experiments. During the first two experiments, RIL were grown at optimal 

soil water content and under soil water deficit conditions respectively.  In two other experiments, accessions 

were grown at optimal soil water content and under soil water deficit conditions respectively. In all cases, 

germination occurred within 3-6 days after sowing. Pots were maintained at a soil water status of 0.35 g H2O g
-1

 

dry soil corresponding to well-watered conditions during the first 15 days after germination, and the soil water 

status was either maintained at this value  (well-watered experiments) or reduced down to 0.18 (water deficit 

experiments). This value was reached within 3-4 days. Then soil water content was kept at this value by 

automatic irrigation twice a day. !

!

Each RIL and accession was grown in 3 and 5 pots respectively, randomly located in the growth chamber. The 

lack of block effect was later tested. After 2 weeks, each pot was thinned to let 1 to 3 homogeneous plants per 

pot, depending on plant size to avoid overlapping8 !

 

!

Variables measurements and calculation 

 

Plants were then harvested 10 days after the onset of water deficit corresponding to 28-31 days after sowing. 6 

to 9 individual plants per genotype were collected and individually measured. At this time, images were taken by 

the automaton. Photos were further used to estimate projected rosette area and rosette leaf number of each 

individual plant using Image-J software and customized macros. At harvest, all pots corresponding to one 

genotype were gathered, plants were gently removed from the pot, and rosettes were separated from the root 

system. Rosettes were then stored in paper bags for further measurements of shoot dry weight after the tissues 

had been dried down after 2 days at 80°C. In order to capture root biomass and dimension, the root system was 
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cleaned from every soil particles, and, spread at the surface of large (20 x 20 cm) Petri plates filled with water 

and a numerical image was taken at 600 dpi using a scanner in transmission mode. Total root length and 

primary root length were measured on those images, using Image-J software and customized macros. After 

image capture, root systems were individually stored into 96 well plates each containing pre-weighed aluminium 

cell-cup to facilitate weighing of dry material. The plates were then oven dried for 2 days at 80°C and the cups 

were weighed to measure root dry weight. All weights were measured using a 5 digits balance. Root/shoot ratio 

was calculated as the ratio between root dry weight and shoot dry weight, whereas Specific leaf area and 

Specific root length were calculated as the ratio between rosette area and shoot dry weight and between total 

root length and root dry weight, respectively. The response to water deficit was expressed as the ratio between 

the value in water deficit condition to the value in well-watered conditions.!

 

 

QTL detection  

 

All analyses were performed using the computer package SPSS 11.0.1 for Windows (SPSS) and the R software 

(R Development Core Team, 2008). Normality of the distributions of each variable among the lines was verified 

by evaluating skewedness. Heritability (broad sense) was estimated as the proportion of variance explained by 

between-line differences based on measurements of nine plants per line on average, at the harvest.  

 

A first QTL detection using simple interval mapping (IM) was performed with the MapQTL5 software 

(MAPQTL®5, Kyazma BV, Wageningen, the Netherlands). Cofactors were then selected using the ‘automatic 

cofactor selection’ (ACS) chromosome per chromosome, and were used for Multiple QTL Mapping (MQM). The 

cofactors for which no QTL were detected (LOD score under a 95% LOD threshold (LOD < 2.4) estimated by 

permutation tests implemented in MapQTL5 using at least 1,000 permutations of the original dataset) were 

removed. The Epistat software was used to detect epistatic interactions between QTL (Chase et al., 1997). 

Then, global QTL models combining main effects QTL and epistatic QTL were statistically tested using the GLM 

of the statistical package of SPSS 11.0.1 for Windows. The estimated additive effect, the percentage of variance 

explained by each individual QTL, and the total variance explained by the QTL model were obtained using the 

same package. 
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88 accessions genotypic information 

 

For 80 of the accessions and the reference Col-0, we considered genotypic information that has been published 

in the context of the 1001 Arabidopsis project (www.1001genome.org; Cao et al., 2011), and that has been 

projected on a SNP collection interrogated in a larger number of accessions with a custom Affymetrix single 

nucleotide polymorphism (SNP) chip containing 250k SNP (Kim et al., 2007). For the 8 additional accessions 

(see Appendix 1), we used genotype information corresponding to the same 250k SNP chip and that has 

previously been published (Clark et al., 2007). !

All genotypes were binarized, distinguishing between the most frequent variant among the 88 accessions (major 

allele) and the second most frequent variant (minor allele). If other variants existed these were marked as 

missing values and ignored.  

 

 

Association testing 

 

Linear regression and linear mixed models (Kang et al., 2008; Kang et al., 2010; Zhang et al., 2010) were used 

for association testing. For both models, p-values were computed from likelihood ratio tests, using a Chi-squared 

distribution with one degree of freedom.!

Linear mixed models were applied in a two-step process. First, we estimated the genetic similarity matrix K 

between the strains by computing covariance based on all 216k standardized SNP, using the STRUCTURE 

program (Pritchard et al., 2000)8 Covariance between two strains i and j was computed as Kij=1/S ( Xi - E[Xi] )T ( 

Xj - E[Xj] ), where S denotes the number of SNP and Xi is the vector of all SNP of individual i8 

Then we used the similarity matrix to model random effects and the SNP weight plus a bias term as fixed effects 

in the mixed model. The mixed model likelihood with random effects integrated out is fully specified by N( y | 

Xw+b , e2 I+g2 K ), where X, y and b denote the SNP vector across all individuals, the phenotype vector across 

all individuals and the bias term respectively. e2 denotes the environmental variance and g2 denotes the 

variance of the random effects. The model parameters w, b were estimated by maximum likelihood. To speed up 

computation, the ratio =e2/g2 of the variance components was estimated on the null model only, as has also 

been done in (Kang et al., 2010; Zhang et al., 2010). 

 





heritability

% variance 

explained by 

QTL models

SDW 65.2 54.9

AREA 71.2 57.4

RDW 66.5 61.5

TRL 58.9 42.5

PRL 59.2 47.8

RS 61.2 55.3

SLA 58.4 51.1

SRL 61.9 54.1

SDWstress 61.5 53.4

AREAstress 66.9 61.3

RDWstress 62.1 57.8

TRLstress 56.9 47.9

PRLstress 58.3 44.1

Rsstress 64.3 46.6

SLAstress 61.1 53.5

SRLstress 59.5 47.4

SDWresponse 66.4 58.9

AREAresponse 63.9 55

RDWresponse 62.2 57.2

TRLresponse 64.9 53.8

PRLresponse 61.2 58.9

Rsresponse 65.3 48.3

SLAresponse 65.8 62.9

SRLresponse 60.3 56.2

Tab. 1. Heritabilities and percentage of variance explained by 

the QTL models for each variable in each condition.  
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Gene expression patterns 

 

The expression profiles of target genes underlying the detected associations were investigated with the meta 

profile analysis of Genevestigator (Hruz et al., 2008), using the ATH1 22k array. This method, based on a survey 

of literature, allowed to investigate the differential expression levels of target genes in different plant tissues or in 

response to specific environmental condition (ABA treatment and different drought conditions in that case). 

 

 

Results 

 

Two analyses were performed to explore the genetic basis of growth traits related to drought tolerance. The first 

one consists in a QTL analysis using the Bay-0 x Shahdara RIL population that was genotyped with 69 

microsatellites markers, and the second one corresponds to a genome wide association study on 88 accessions, 

with a 250K high-resolution SNP dataset. !

 

 

QTL clusters affecting plant growth and biomass partitioning in the Bay-0 x Shahdara RIL 

population 

 

Quantitative trait loci (QTL) were detected for eight variables related to growth or to biomass partitioning: Shoot 

dry weight, Rosette area, Root dry weight, Total root length, Primary root length, Root/shoot ratio, Specific leaf 

area, and Specific root length (Tab.1). QTL detection was performed for these variables under well watered and 

under water deficit conditions, but also on the variables corresponding to the response of each variable to water 

deficit conditions (i.e. ratio of the water deficit value over the well watered value). Heritability for these variables 

varied between 47 and 63 % (Tab 1). Both main effect and epistatic significant QTL (i.e. with LOD > 2.4) were 

detected for each variable, but the number of main effect QTL was lower than the number of epistatic ones 

(Figs. A). The QTL models including all the QTL detected for each variable explained a large part of the trait 

variance, ranging from 42.5% of the Total root length variance under well-watered conditions, and 62.9% for 

Specific leaf area response to water deficit conditions. Noteworthy, the percentage of variance explained by QTL 
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models for root variables was lower than for shoot variables. QTL were detected on the five chromosomes, with 

a roughly identical repartition of the QTL on each chromosome.  

One of the main results of this analysis is the relative continuity in the allelic effect along the five chromosomes. 

At the top of the chromosome 1, for all the QTL detected, positive effects were associated with alleles of Sha, 

whereas Bay alleles had a positive effect for all the QTL detected at the bottom of chromosome 1. Bay alleles 

also had a positive effect on the value of almost all the variables for which QTL were detected on chromosome 3 

and 5, whereas Sha alleles were associated with increased values of all variables for QTL detected on 

chromosome 2 and 4. A second main result of this analysis is the great importance of a few numbers of regions 

per chromosome, which were involved in the control of several variables. Interestingly, those regions were 

generally specific to one growth condition (well watered, water deficit), or to the response to water deficit.  

 

On the chromosome 1 (Fig. 1A), four regions appeared: the first region is located around the markers F21M12 

and IND4992, and is mainly involved in the control of plant growth under stress, or in response to water deficit 

conditions, with in particular a very strong effect on Root/shoot response to water deficit. A second region 

located at the marker MSAT108193 was detected, and was completely "root specific", since Sha alleles 

increased the value of Root dry weight, Total root length, Root/shoot and Specific root length under well watered 

conditions, and in water deficit conditions for Root/shoot. Two other regions are involved in the control of global 

plant growth at the bottom of chromosome 1, around the F5I14-MSAT1.13 region, and at MSAT1.5. In these 

regions, Bay alleles increased the value of both shoot and root variables, with stronger on shoot variables. Three 

QTL that explained more than 20% of the variance were detected for Shoot dry weight under water deficit 

conditions (main effect QTL), for Rosette area response to water deficit and for Specific leaf area response to 

water deficit. 

 

On chromosome 2 (Fig. 2A), three regions that had very strong effects on all the variables were also detected, 

around the MSAT2.38, IND628, and CZSOD2 markers. Around these markers, Sha alleles increased the values 

of variables. Very strong QTL were detected for Root dry weight, Total root length, Shoot dry weight and Rosette 

area at MSAT 2.38 either in well watered or in water deficit conditions, whereas the response of shoot and root 

variables to water deficit was mainly controlled by QTL at IND628 and CZSOD2 markers. At the bottom of the 

chromosome 2, a QTL that explains more than 20 % of the variance of Shoot dry weight and Rosette area under 

well-watered conditions was detected at the MSAT 2.22. 

 

Bay alleles had a positive effect on the QTL located on the chromosome 3 (Fig. 3A), except for one important 
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region at the top of the chromosome, near the NGA172 marker. In this region, the effects of QTL associated with 

shoot variables (Shoot dry weight and Rosette area) were associated with Sha alleles, whereas Bay alleles 

increased the value of root variables. The same effect of Bay alleles on root variables was observed for QTL 

located at the following markers (MSAT3.99, AthCHIB2, MSAT305754) with very important QTL related to the 

Root/shoot response to water deficit in particular. Another important region was detected near the MSAT318406, 

with a QTL that explain more than 20% of the variance of Rosette area, Total root length, and Primary root 

length under water deficit, and of the response of Rosette area to water deficit conditions (23% of explained 

variance). Lower on the chromosome 3, near the MSAT3.18, several QTL were detected, with Bay alleles 

increasing the value of shoot and root variables, mainly under well-watered conditions, but two QTL explaining 

more than 20% of the variance (both in interaction with the MSAT5.9 region on chromosome 5) were also 

detected for Root/shoot and Specific root length under water deficit conditions.  

 

On chromosome 4 (Fig. 4A), QTLs were grouped around the MSAT4.15 marker. An epistatic QTL explaining 

21% of the Rosette area variation under well watered in interaction with the NGA172 region on chromosome 3 

was detected. Epistatic QTL for Specific leaf area under well watered conditions, and for Shoot dry weight, Total 

root length and Specific leaf area under water deficit conditions were also detected. Noteworthy, a main effect 

QTL explaining 12% of the variance of Rosette area response was found in this region. 

 

The QTL explaining the largest part of trait variance on chromosome 5 were observed in five distinct regions 

(Fig. 5A). The first one is located at the NGA249 marker, and is involved in the control of Shoot dry weight and 

Rosette area under well-watered conditions in interaction with the MSAT2.22 on chromosome 2. At marker 

NGA151, a QTL controlling both Shoot dry weight and Primary root length response to water deficit was 

discovered in interaction with marker IND4992 on chromosome 1. Progressing on the chromosome 5, we found 

a region (NGA139) specifically involved in the control of shoot and root response to water deficit, with an 

important epistatic QTL associated with Total root length and Specific leaf area response, and to a lesser extent, 

to Shoot dry weight, Root dry weight, and Root/shoot response to water deficit. A root specific region was found 

near the MSAT5.9 marker, with epistatic QTL involved in the control of Root dry weight, Total root length, and 

Root/shoot under well watered conditions, and Root/Shoot and Specific root length under water deficit 

conditions. Finally, at the bottom of chromosome 5 (K9I9 marker), several QTL were detected, that were mainly 

associated with plant growth under water deficit conditions, in interaction with other genomic regions, such as 

the MSAT318406 region on the chromosome 3, for the control of Rosette area, Primary root length and Specific 

leaf area under water deficit. Positive effects of QTL on these variable values were associated with the presence 

of Sha alleles at this K9I9 marker. 
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GWA mapping of plant growth under different water regimes 

 

We conducted genome-wide association (GWA) mapping of the variables that were used for the QTL analysis in 

a collection of 88 accessions, using the phenotypic data described in the previous chapters, and adding 

flowering time measurements (in long days, or in long days with vernalization).  

 

A total of 114 significant associations (i.e. with a Q-value of False Discovery rate <0.1) were detected for the 

eight variables studied, under well-watered, water deficit, and in response to water deficit conditions (Fig.1B, 2B, 

3B, 4B, 5B). 50% (69) of these SNP were in coding sequences. 10 SNP on average were associated with the 

variation of each variable, and these SNP explained on average 6% of the trait variance, with a LOD of 12. The 

maximal LOD (19.6) corresponded to a SNP associated with Primary root length on the chromosome 5. As for 

the QTL analysis, the most significant SNP detected will be described for each chromosome, progressing from 

top to bottom. At the same time, they will be compared to the QTL detected for the same region in the QTL 

analysis, and the genes associated with these regions, if any, will be identified. Finally, using data available in 

the databases (ATH1 in Genevestigator), expression profiles of these genes in the different organs of the plant 

(rosette, roots, seed, flower) (Fig.1C, 2C, 3C, 4C, 5C), and in response to different growth conditions related to 

drought (soil water deficit, ABA treatment) (Fig.1D, 2D, 3D, 4D, 5D) will be presented, chromosome by 

chromosome. 

 

Ten highly significant (Qvalue <0.01, shown in bold in Fig 1B) associations were detected on the chromosome 

1 (Fig. 2A). One SNP located at the position 1_445336 accounted for 4.8% of the Specific root length variation 

under well-watered conditions (LOD =16.9), and was located in the gene AT1G02270, encoding an 

endonuclease. Three SNP were detected for the response of the Rosette area and Shoot dry weight to water 

deficit, and for Specific leaf area under well-watered conditions in the same region (around 1_4 450 000), and 

two of them were located in different genes, AT1G12805 encoding a nucleotide binding protein, and the other 

AT1G13390 gene for an unknown protein. A SNP associated with the Rosette area response to water deficit 

was detected at the position 1_6696977, with a LOD of 16.1. Another SNP associated with total root length 

response to water deficit was located in the same region. Interestingly, we also found QTL associated with the 

same trait in this region in the QTL analysis BayxSha, near the MSAT108193. Going down on the chromosome 

1, three SNP were detected with a LOD score higher than 12, for primary root length under water deficit (1_13 





5C 

Common legend to Figures 1-5: For each of the five chromosomes: A. Results of the QTL analysis in the 

Bay x Sha RIL population, for eight growth and biomass partitioning variables (SDW, Shoot dry weight, 

AREA, Rosette area, RDW, Root dry weight, TRL, Total root length, PRL, Primary root length, RS, Root/shoot 

ratio, SLA, Specific leaf area, SRL, Specific root length), under well-watered, water deficit (stress), or in 

response to water deficit conditions (response).The 69 microsatellites markers of the Bay xSha genetic map 

are indicated. When Sha alleles increase the trait value, the QTL is blue (orange when Bay alleles increase the 

trait value). The darker the color is, the higher the variance explained by the QTL is. Main effects QTL are black 

framed, and epistatic ones are indicated with the same number for both QTL in epistasis. B. Results of the 

genome wide association study on the 88 accessions, for the same variables than in the QTL analysis, and 

for Leaf number under well-watered, water deficit, and in response to water deficit, and for Flowering time 

under long day well-watered conditions (FT LD) and Flowering time under long day well-watered with a 

prolonged cold treatment that mimics vernalization process that occurs into the wild (FT LDV). Only the 

significant associations are presented (q-value of False Discovery Rate <0.1). The most significant 

associations (q-value of False Discovery Rate < 0.01) are in bold characters. For each significant  association 

detected, the SNP position, the LOD score, the percentage of variance explained by the association, and the 

Q-value of False Discovery Rate are indicated. The gene in which the SNP detected is located is indicated 

(number and annotation). A summary of the results of the expression profiles of these genes in the different 

organs/tissues (see C) is given to facilitate the interpretation of the figure. C. Heat map of expression profiles 

of the genes detected in the different plant organs/tissues. D. Heat map of the expression profiles of 

the genes detected in response to drought conditions or ABA treatments, in different studies reported in 

the literature. (C,D, the number of genes indicated is lower than the number of genes detected in the GWA 

studies, because expression data of some of these genes were not available in the Genevestigator database. 

When information were not available, the cases are grey colored). 

Sha Bay

0-10% variance explained main effect QTL

10-20% variance explained 1 epistatic QTL

>20% variance explained

55C 
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458 534), for the rosette area response (1_ 18 232 779) and for Root/shoot under water deficit. The later SNP 

detected was located in a gene (At1g52130) encoding an F-box protein. Three SNP controlling flowering time 

variation under long day with vernalization were also detected at the bottom of chromosome 1, corresponding to 

the region around the F5I14 and MSAT 1.13 markers, that were shown to have a strong effect on several 

variables in the QTL analysis. The SNP detected in this region all encode different genes. In this region, a gene 

coding for a vacuolar invertase (At1g62660) was identified, and its expression profiles indicates that it is 

specifically expressed in roots (Fig. 1C), and is differentially expressed according to drought (downregulation) 

and ABA treatments (upregulation) (Fig. 1D).   

 

Five highly significant associations were detected on chromosome 2 (Fig. 2B). The first one controlled the 

specific leaf area under water deficit conditions (LOD = 11.1) in both QTL and GWA analysis, and is located in a 

gene encoding a carbohydrate binding protein (At2g02320). Unfortunately, no information about the expression 

of this gene was available. Two SNP accounting for the variation of rosette area response to water deficit were 

identified, and colocalized with several QTL controlling root and shoot traits in the RIL population. These two 

SNP were located in two different genes (At2g21930 and At2g24010) encoding an F-box family protein and a 

serine carboxypeptidase respectively (2B). A SNP associated with the root dry weight variation under water 

deficit (2_ 14846319) was detected and the corresponding gene encodes a plastid developmental protein. This 

SNP colocalized with a QTL controlling the variation of the root/shoot ratio in the QTL analysis. Three SNP 

controlling the variation of shoot traits (Leaf number, shoot dry weight and flowering time under well-watered 

conditions) were detected at the bottom of the chromosome 2 in both QTL and GWA studies (MSAT 2.22), and 

were associated with three different genes, one of them (At2g42620) encoding an ubiquitin ligase called MORE-

AXILLARY-BRANCHES-2, that is specifically expressed in the stele (Fig. 2C), and shows little variation in 

response to ABA (Fig. 2D). 

 

A region specifically controlling root variables (root/shoot well-watered, specific root length and total root length 

responses to water deficit) was identified at the top of chromosome 3, in both QTL (MSAT 305754, MSAT3.19, 

MSAT3.117, MSAT3.32) and GWA analyses (positions 3_4 743 548 to 3_12 648 056) (Fig. 3B). One gene 

(At3g25250), encoding an oxidative-signal inducible kinase was expressed root tissues (Fig. 3C) and apparently 

upregulated by drought conditions (Fig. 3D) was detected in this large region. Another interesting SNP was 

associated with flowering time variation in long days (3_17 185 050). Several QTL were detected at this locus in 

the BayxSha population, with very strong effects on shoot and root growth. This SNP was associated with a 

transcription factor (At3g46640) called PHYTOCLOCK1, expressed in seeds and sperm or proliferating cells 

(Fig. 3C), and strongly upregulated in response to ABA treatments (Fig. 3D). Another region of the chromosome 
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3 also affected root and shoot variables in both QTL (MSAT 3.18) and GWA analysis (positions 3_20 337 151 to 

3_20 980 556). A SNP associated with the rosette area response to water deficit (3_20 980 556) displayed a 

very high LOD score (17.2) and explained a significant part of the variance of this trait (9%). At the very bottom 

of this chromosome, a region specifically controlling shoot traits (shoot dry weight and specific leaf area 

responses to water deficit) in the RIL population (near MSAT 3.70) colocalized with SNP associated with shoot 

traits (rosette area and shoot dry weight under water deficit conditions, and specific leaf area response to water 

deficit), some of them displaying high LOD score values (14.7). The two SNP associated with rosette area 

response corresponded to genes encoding a RWP-RK domain protein (At3g59580) slightly upregulated in 

response to drought conditions or ABA treatments, and an F-box protein, poorly expressed, and showing no 

variation with drought or ABA. 

 

Nine SNP controlling root variables (root dry weight, primary and total root length, root/shoot) under different 

conditions (well watered, water deficit and in response to water deficit) were detected at the top of chromosome 

4 (Fig. 4B). This region was associated with a QTL of shoot dry weight response to water deficit in the QTL 

analysis (Fig. 4A). One of these SNP had a very high LOD score (16.3), and the corresponding gene 

(At4g03510) encodes a Ring finger protein RMA1. This gene is expressed in leaves, and moderately 

upregulated in response to drought or ABA (Fig. 4C and 4D). A very interesting region was identified in the 

middle of chromosome 4, both in QTL analysis (MSAT 4.15) and in GWA study (around 4_8 300 000), and was 

associated with the variation of shoot variables such as specific leaf area, and rosette area, under water deficit, 

and in response to water deficit. Sha alleles increased the values of these variables in the QTL analysis, and 

noteworthy, in the GWA studies, Bay-0 and Shahdara had different alleles at one specific SNP (4_ 8 298 111), 

with Sha alleles increasing the value of rosette area response to water deficit. This SNP was located in a gene 

called ACD6, encoding a transmembrane ankyrin repeat protein, specifically expressed in rosettes and cauline 

leaves (Fig. 4C), and downregulated in several rought experiments (Fig. 4D). Another SNP (4_ 8 764 497) 

associated with specific leaf area response to water deficit identified in this region, a little bit far away on the 

chromosome 4, encodes a cytochrome P450 (At4g15350). A SNP associated with the Root/shoot variation 

under well-watered conditions was detected (4_ 10 037 409), with a high LOD score value (16.3), and was 

located in a gene (At4g18110) encoding a zinc-finger protein. A SNP associated with specific root length 

variation under water deficit conditions was detected (4_10 939 704) and colocalized with QTL for the same 

variable in the RIL population (near the MSAT 4.18). Finally, SNP controlling specific root length well-watered 

and root dry weight response to water deficit were identified at the very bottom of the chromosome 4, with 

averaged LOD scores of 12 (4B). 
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Three regions controlling growth response to water deficit were identified at the top of the chromosome 5 (Fig. 

5B). The first SNP controlling shoot dry weight under well-watered conditions colocalized with QTL for the same 

variable in the RIL population, at the NGA249. In the NGA151 region, controlling several root and shoot traits in 

the QTL analysis, and especially shoot dry weight response to water deficit, one SNP was also associated with 

rosette area response to water deficit (5_4 826 809). This SNP was located in a gene (At5g14920) encoding a 

gibberellin regulated family protein that appeared to be downregulated in response to drought or ABA treatments 

(Fig. 5D). Around the NGA 139 marker, two SNP associated with variation of rosette area were detected (5_7 

375 002 and 5_9 520 549). The latter is located in a gene encoding an agamous-like transcription factor 

(At5g27050). A very significant SNP (LOD score of 19.6), associated with primary root length under well-watered 

conditions in the GWA study (5_16 939 987) and to other root variables in the QTL study was identified, 

corresponding to a gene encoding an unknown protein (At5g42370) that was not differentially expressed in the 

different organs and in response to drought/ABA treatments (Fig. 5C and 5D). Two other SNP were identified at 

the bottom of the chromosome 5. The first one (5_21 654 684) was associated with the rosette area response to 

water deficit, and colocalized with a QTL controlling the rosette area under water deficit conditions in the RIL 

population (JV6162). The last one (5_23 116 869) was associated with the variation of root/shoot under well 

watered conditions with a very high LOD score (16.9), and corresponded to a gene expressed in roots (5C) 

encoding an ATPase ACA8"!

!

 

Discussion 

 

Genomic regions controlling either shoot or root growth were detected in both QTL and GWA 

analyses 

 

Shoot and root growth are strongly interdependent through physiological connections related to carbon, mineral, 

and water exchange (see "Context" part, Poorter and Nagel, 2000). At the genetic level, under optimal growth 

conditions, root and shoot traits can also controlled by similar regions, in several species (see Chapter 1; Hund 

et al., 2004; Cui et al., 2008). Here, QTL specific of either shoot or root growth variables were identified. For 

instance, at the bottom of chromosome 2, near the MSAT 2.22 (around 2_18150000 for GWA), QTL specific of 

Shoot dry weight, Rosette area, and Leaf number were detected under well watered conditions. Two other 

regions specifically controlling shoot growth traits were identified, on the chromosome 4 and at the top of 

chromosome 5. On chromosome 4, this region was located near the MSAT4.15 marker, corresponding to a 
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region containing the ACD6 gene (Rate et al., 1999; see end of this discussion section). This region was 

associated with the control of Rosette area and Specific leaf area under well watered conditions, but also to 

Shoot dry weight and Specific leaf area under water deficit conditions, and to the maintenance of Rosette area 

under water deficit conditions (main effect QTL), both for QTL and GWA analysis. No root specific QTL were 

detected in this region. On chromosome 5, QTL controlling Shoot dry weight and Rosette area under well 

watered conditions were detected near the NGA249 marker in both analyses.  

 

Root specific QTL were also identified. For instance, near the MSAT108193 marker, QTL controlling root dry 

weight, total root length, root/shoot and specific root length were identified, under well watered conditions, water 

deficit conditions, and in response to water deficit conditions. Another root specific region was detected near the 

MSAT3.117, on the chromosome 3. 

Interestingly, genomic regions affecting shoot and root growth variables together (F5I14, MSAT2.38, MSAT3.18, 

NGA172) identified in this study were also detected in previous hydroponic experiments (see Chapter1), with 

similar allelic effect. At the bottom of chromosome 1 (F5I14), and at the middle of chromosome 3 (MSAT3.18), 

Bay alleles were associated with plant growth, whereas shoot and growth are increased when Sha alleles were 

present on chromosome 2 (MSAT2.38). Unfortunately, Bay-0 and Shahdara carried the same alleles for almost 

all the SNP detected in the GWA study, which did not allow distinguishing these effects. 

 

 

QTL specific to water deficit conditions affect root growth  

 

When the environmental conditions are modified such as water deficit (chap 2) or mineral supply (eg Lopez-

Bucio et al., 2003), the strong root-shoot correlation is altered. For instance, under low phosphate, correlation 

between shoot dry weight and seminal root length in maize was moderate (Zhu et al., 2006). In Arabidopsis, low 

nitrate conditions led to a lack of common QTL between root and shoot variables (Rauh et al., 2002). Soil water 

deficit is known to uncouple shoot and root growth by changes in carbon metabolism or water fluxes (Muller et 

al., 2011). Therefore, one of the hypothesis of the genetic analysis presented here was that water deficit could 

uncouple the strong overlap between shoot and root growth QTLs. Our analysis confirmed this hypothesis, since 

genomic regions controlling growth variables specifically under water deficit conditions were detected.  

 

Most of the regions specifically identified under water deficit conditions, or in response to water deficit conditions, 
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were associated with root growth variation. Two root specific region were identified at the top of chromosome 3 

in the RIL population (MSAT305754, MSAT3.32), and in the GWA study. These regions were also identified in 

other studies, with QTL of Lateral root length (Loudet et al., 2005), or water and nitrate content variation (Loudet 

et al., 2003). Another region specific of root growth under water deficit was found at the MSAT 3.65 marker. On 

chromosome 4 (MSAT4.35), QTL detected in both QTL and GWA analysis were associated with root growth 

variation.  

 

 

Five candidate genes affecting tolerance to water deficit identified in QTL and GWA studies  

 

Ten regions on average were associated with plant growth tolerance to soil water deficit in both QTL and GWA. 

Five of these regions were common to both analyses. The first common region is located at the top of 

chromosome 1, and encodes a nucleotide binding protein (At1g12805). A second common region responsible 

for plant growth response to water deficit was detected on chromosome 2, near the CZSOD2 marker, and covers 

two genes involved in this response, the At2g21930 gene, encoding an F-box protein that is expressed in sperm 

cells only, and the At2g24010 that encodes a serine carboxy-peptidase, expressed in all the organs. The role of 

these two enzyme families on plant response to water deficit has been previously reported. F-Box family genes 

are required for panicle, leaf, and seed development (Durfee et al. 2003; Woo et al. 2001) and are regulated by 

light and temperature stress (Oono et al., 2006; Calderon-Villalobos et al" 2007). Several F-box proteins have 

been reported to be involved in the ABA pathway (AtTLP9, Ko et al., 2006) and in response to drought stress 

(Qin et al., 2009), and another F-box gene detected in this study and controlling shoot growth at the bottom of 

chromosome 2, ORE9 (Woo et al., 2001) is induced by drought conditions. Carboxypeptidases are enzymes 

responsible for the release of free amino acids by hydrolyzing a peptidic bond, and have been shown to be 

overexpressed under drought conditions (Kawasaki et al., 2000). !

!

A third region controlling plant tolerance to drought in both QTL and GWA analyses is located at the bottom of 

chromosome 3, near the MSAT3.70 marker. This region covers a gene encoding a Receptor like protein kinase 

(RWP-RK), with little expression level. This gene family is known to be involved in nitrogen sensing and 

metabolism (Castaings et al., 2009), and seems to be slightly overexpressed by drought conditions and ABA 

treatments.  
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The fourth region affecting plant tolerance to drought in both studies is located at the middle of the chromosome 

4 (MSAT 4.15). This region covers a gene called ACD6 for accelerated cell death 6 that encodes a 

transmembrane ankyrin protein (Rate et al., 1999) mainly expressed in rosette and cauline leaves. This gene is 

responsible for a trade-off between plant growth and susceptibility to a wide range of pathogens (Todesco et al., 

2010). A specific allele of ACD6, that differs from the reference allele of Col-0, strongly enhances resistance to a 

broad range of pathogens, but at the same time slows the production of new leaves and greatly reduces the 

biomass of mature leaves. This allele segregates at intermediate frequency throughout the worldwide range of 

Arabidopsis thaliana, consistent with this allele providing substantial fitness benefits despite its marked impact 

on growth. In our QTL study, Sha allele at the marker MSAT4.15, close to ACD6, contributed to plant growth 

maintenance (Rosette area, Shoot dry weight and Specific leaf area) under drought conditions. Interestingly, 

Bay-0 and Shahdara accessions had different alleles of ACD6 in the GWA study, again with Sha allele 

maintaining plant growth under drought conditions. Sha allele of ACD6 was as divergent from the Col-0 

reference allele as it was from a specific strain of Arabidopsis lyrata, and could have played a role in the 

evolution of the species (Todesco et al., 2010). Noteworthy, ACD6 gene was observed to be downregulated in 

several accessions or mutants under drought conditions and in response to ABA in the literature. 

 

The last genomic region involved in plant growth variation under drought conditions was located at the top of 

chromosome 5, encompassing a large genomic region (NGA151 and NGA139), with multiple QTL in both QTL 

and GWA studies. The GWA study enabled to identify two genes related to plant tolerance to drought. The first 

one encodes a gibberellin-regulated family protein. Gibberellins have been convincingly shown to play a 

prominent role in growth regulation under optimal, but also, under stress conditions (Achard et al., 2006; Ubeda-

Tomas et al., 2009), and especially under drought conditions, by repressing the levels of DELLA proteins, known 

to inhibit growth, via interactions with ABA and ethylene pathways (Achard et al., 2006). A survey of the literature 

showed that this gibberellin-regulated gene is downregulated under drought conditions, and in response to ABA 

treatment. The second gene identified in this region is an agamous-like gene, encoding a MADS box protein 

responsible for floral transition in Arabidopsis (Lehti-Siu et al., 2005). These genomic regions controlling plant 

response to water deficit in both the RIL population and the collection of accessions reveal genes that are very 

conserved, even throughout widespread Arabidopsis accessions that have evolved to adapt to a range of 

environmental conditions.  

 

Other regions responsible for variation of plant growth under drought conditions either in the RIL population or in 

the collection of accessions were also identified. These regions were located near the MSAT 1.13 

(chromosome1), IND628 (chromosome2), NGA172 (chromosome3) and MSAT4.43 (chromosome4) for the RIL 
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population, and near the MSAT108193 (chromosome1), MSAT3.18 (chromosome3), and JV6162 

(chromosome5) for the accessions. Contrary to the common regions previously described, identifying specific 

regions according to the allelic variants could highlight a possible selection of these alleles through evolutionary 

processes, for these accessions being more adapted to specific environmental conditions. 

 

Two regions related to plant growth response to water deficit were identified specifically in the QTL analysis. At 

the bottom of the chromosome1, near the F5I14 and MSAT 1.13 markers, and around the MSAT 318406 on 

chromosome 3, strong QTL controlling shoot and root growth, and their response to drought conditions were 

detected. Interestingly, in the GWA study, QTL were identified for flowering time in these two regions, and not for 

growth response to drought, highlighting the strong linkage between flowering time and growth patterns, 

especially under drought conditions. The F5I14 region was previously detected as being involved in the control 

of shoot and root growth traits in hydroponics (see Chapter1). A gene coding for a vacuolar invertase (Sergeeva 

et al., 2006), involved in root elongation, and specifically expressed in root cells has been identified in this 

region. This gene appeared to be downregulated under drought conditions.  

 

!

Conclusion 

 

Our analysis showed that as in the case of hydroponics, several QTLs common to root and shoot growth were 

detected. However, these were rarer than in hydroponics, suggesting hydroponics could amplify the source-

limitation of root growth. possibly with revealed substantial overlap between genomic regions identified through 

classical QTL mapping and GWA. However, several QTLs were root or shoot specific, especially under drought 

conditions, suggesting drought partly uncouples root and shoot growth. Several QTLs pointed towards 

interesting candidate regions. In particular, a root specific vacuolar invertase was associated with flowering time. 

Moreover, ACD6 was very consistently associated with a series of variable, in particular SLA and SLA response 

to soil water deficit, making it a good candidate for drought tolerance (see chap 2). A functional approach is now 

needed to confirm some of these QTLs (experiments are in progress) and start the functional analysis of the 

relationship between their function and drought tolerance. 
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Coordination between shoot and root growth with or without soil water deficit   

 

• At the onset of the present work, previous studies had highlighted the strong coupling between root and shoot 

growth at the inter-specific level but evidence for coupling at the intra-specific level were sparser. At several 

occasions, our study has highlighted the strong linkage between root and shoot growth, translated both through 

correlation (chap 2) and common genetic models (chap 1 and 4). The later conclusion holds for both the genetic 

models build using 2 alleles (Bay-0 x Sha) or a range of alleles (88 accessions). The coordination was very high 

in hydroponics and apparently higher than in soil conditions suggesting that hydroponics represent a potentially 

biased device in which mechanical constraints are low and root growth essentially source limited. It would have 

been valuable to see if such tight relationships are weaker under higher C availability (eg high light or high CO2).  

• In soil-based substrate, genetic models for shoot and root growth variables were also strongly overlapping. 

However, several shoot or root specific regions were identified. Moreover, soil water deficit tended to uncouple 

root and shoot genetic models allowing thus to identify regions responsible for root growth maintenance under 

water deficit, independently of shoot growth. This result is in line with the idea that root growth tend to be sink 

rather than source limited upon water deficit.  

 

 

Growth maintenance is favoured by a series of traits, including biomass partitioning   

 

• One of our hypothesis was that root-shoot ratio would contribute to stress tolerance. Our results tend to exclude 

a strong role of this ratio, at least under our conditions in which the soil volume was limited. This could also be a 

reason why the specific root length was not related to tolerance. By contrast, our results have highlighted the 
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strong contribution of the specific leaf area. Tolerant genotypes where those with high SLA able to be strongly 

decreased upon stress, thus maintaining dry weight accumulation despite reduced surface expansion.  

• Size or not size effect ? In line with other studies (ongoing meta-analysis by Denis Vile at LEPSE), drought 

tolerance through growth maintenance is negatively correlated with size. This result is also visible under N 

deficiency (O Loudet, pers comm) and could represent a general ecological rule that would thus deserve a 

renewed and concerted analysis.  

 

 

Growth maintenance under drought is related to climate aridity   

 

• Within regions displaying the largest range of climate, growth maintenance was related to climate aridity as 

evaluated through climatic water balance, especially in summer. A tendency was detected between tolerance 

and vernalization suggesting tolerant accessions could be more often summer annual while sensitive would be 

more often behaving as winter annuals.  

 

 

GWA identified candidate genes for growth maintenance under drought   

 

• Specific regions for root and shoot growth under well water or water stress conditions as well as regions 

responsible for controlling response to soil water deficit were identified both using classical QTL determination 

and GWA. This result suggest that drought tends to uncouple root from shoot growth. 

• Few but promising regions were detected associated with growth maintenance. Among them, several 

transcription factors (AGL, F-box…) were detected as well as ACD6, previously described as responsible for a 

trade-off between plant growth and susceptibility to a wide range of pathogens known (Todesco et al., 2010).  

The gene list can be intuitively extended to a cell wall root invertase  INV, previously reported as being involved 

in root growth control and a carboxy-peptidase, involved in amino acids reprocessing during stress. The later 

could then be associated with osmotic adjustment under stress since amino acids have been shown to be 

involved in this response (Hummel et al., 2011) 

 

 

What next ? 
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!

Short term perspectives!

!

Among the data collected, a limited number remain to be analysed. This is the case of the zenithal images taken 

daily during the experiments. They could provide an estimate of relative expansion rate of the rosette and thus 

an additional variable to link in our analysis.  

In this line, several analysis remain to be done. (i) using residual or PCA coordinates such as those performed in 

Chap 1 in genetic studies. This could further contribute to identifying root or shoot specific regions. (ii) Linking 

climate based tolerance gradients such as those identified in chap 3 to biomass partitioning variables (Root-

shoot, Specific leaf area and Specific root length) to further explore if natural selection has operated through 

common leverage effect in different regions!

An experiment using ACD6 mutant, complemented lines and constitutive overexpressors is ongoing in order to 

validate the major QTL on chr 4.  

Another QTL of interest is located at the top of chr3, and controls root-shoot partitioning in all experiments 

performed. SNPs in two genes have been detected and the importance of these two genes would deserve 

dedicated experiments, at least using available SALK mutants.  

 

 

Mid-term perspectives 

 

Other strategies are escape and increased WUE. This could be addressed through dedicated experiments in 

which growth in followed non-destructively to preserve plants for flowering recordings. This could extend the 

analysis of MacKay et al., (2003) showing a pleiotropic link between escape and WUE.  

An analysis similar to that performed here but on a much narrower geographical panel would provide a vast 

amount of information on the climatic sources of trait variation. This can be rapidly envisaged since collections 

are available, in particular in those most promising regions, Spain and Central Asia. This could be done in 

collaboration with Carlos Alonso-Blanco and Karl Schmidt respectively since they have performed an extensive 

sampling in these regions. Recent studies in Spain are in line with this idea (Pico et al., 2009; Montesinos et al., 

2010) 
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In some on-going or already performed PHENOPSIS studies in the Montpellier group, an increasing proportion 

are considering the same variables than the ones focused on in our study (studies by D Vile, R Valluru notably) 

in various genetic panels or sub-panels. The central importance of SLA could thus be further explored on such 

extended dataset. 

Other research programs in the Montpellier group aim to relate growth patterns to functional traits such as 

photosynthesis, conductance, C metabolism. Similar approaches are performed in various labs (eg at IPK 

Gatersleben R Meyer, T Altmann). We could use a structured panel along a gradient of tolerance (Spain and 

Central Asia) in order to explore their main metabolic and functional feature in relation with candidate processes 

involved (C metabolism, hydraulic network, respiration…) 

We have used a raw protocol for evaluating local climates which does not take into account either local climatic 

particularities (related to slopes, cloudiness), or edaphic characterization. This could be done using model aided 

characterization of climatic constraints as recently shown using the crop model APSIM (Chenu et al., 2011) 

 

 

Long-term perspectives 

 

!

This thesis has open the door to further characterization of an ambitious characterization of functional variables 

associated with selection of a wild species in front of water deficit. Currently, discussions are on-going in the 

group to envisage the following steps of that work. Clearly, 2 directions can be taken. (i) extending the accession 

panel to perform more powerfull stats and avoid false positive hits. (ii) focusing on detailed geographic regions 

that share the same history in term of settlement and similar genetic structure. This would be very helpful to 

detect drivers of local adaptation to environmental constraints, the Holy Grail widely chased by several groups 

worldwide. 

 

 

 

!
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Appendix / Description of the genotypes used 

in each chapter 

 

 

 

 

 

 

informations

and

genotypic

data

Chapter1

Chapter2

Chapter3

Chapter4

165 RIL 130 RIL origin origin origin

BAY0 Germany BAK2 Caucasia SHA CentralAsia
BOR4 East Europa BAK7 Caucasia BOR4 EastEuropa
BR0 East Europa DOG4 Caucasia BR0 EastEuropa

BUR0 Ireland ISTISU1 Caucasia EST1 EastEuropa
C24 Spain KASTEL1 Caucasia C24 Spain

COL0 USA LAG22 Caucasia FEI0 Spain
CVI0 Cape Verde LERIK13 Caucasia TS1 Spain
EST1 East Europa NEMRUT1 Caucasia BAY0 Germany
FEI0 Spain VASH1 Caucasia
GOT7 Germany XAN1 Caucasia
LER Germany YEG1 Caucasia

LOV5 Sweden ICE150 CentralAsia
NFA8 England ICE152 CentralAsia

RRS10 USA ICE153 CentralAsia
RRS7 USA ICE60 CentralAsia
SHA Central Asia ICE61 CentralAsia

TAMM2 Finland ICE70 CentralAsia
TS1 Spain ICE73 CentralAsia
TSU1 Japan ICE75 CentralAsia
VAN0 Canada SHA CentralAsia

BOR4 EastEuropa
BR0 EastEuropa

DEL10 EastEuropa
EST1 EastEuropa
ICE1 EastEuropa
ICE21 EastEuropa
ICE29 EastEuropa
ICE33 EastEuropa
ICE36 EastEuropa
ICE63 EastEuropa
ICE7 EastEuropa

KOCH1 EastEuropa
ICE127 Russia
ICE130 Russia
ICE134 Russia
ICE138 Russia
ICE71 Russia
ICE72 Russia
ICE102 SouthItaly
ICE104 SouthItaly
ICE106 SouthItaly
ICE107 SouthItaly
ICE111 SouthItaly
ICE112 SouthItaly
ICE119 SouthItaly
ICE120 SouthItaly
ICE91 SouthItaly
ICE92 SouthItaly
ICE93 SouthItaly
ICE163 SouthTyrol
ICE169 SouthTyrol
ICE173 SouthTyrol
ICE181 SouthTyrol
ICE212 SouthTyrol
ICE213 SouthTyrol
ICE216 SouthTyrol
ICE226 SouthTyrol
ICE228 SouthTyrol
ICE79 SouthTyrol
ICE97 SouthTyrol
ICE98 SouthTyrol
AGU1 Spain
C24 Spain

CDM0 Spain
DON0 Spain
FEI0 Spain

ICE49 Spain
ICE50 Spain
LEO1 Spain
MER6 Spain
PED0 Spain
PRE6 Spain
PRO0 Spain
QUI0 Spain
TS1 Spain
VIE0 Spain

EY152 Tubingen
HKT24 Tubingen
NIE12 Tubingen

RU3127 Tubingen
STAR8 Tubingen

TUSB302 Tubingen
TUSCHA9 Tubingen

TUV12 Tubingen
TUWA12 Tubingen

WALHASB4 Tubingen
BAY0 Germany

Acc8

Loudet et al.,

2002
Clark et al., 2007

1001genomes.org, Cao

et al., 2011
Clark et al., 2007

RIL Acc20 Acc80
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 Growth maintenance under water deficit mainly results from the maintenance of water uptake at the root level, 

and assimilates production by leaves. To optimize both processes, plant need to adjust organ growth and biomass 

allocation patterns between roots and shoots (root/shoot ratio), but also within the organs, through specific leaf area 

and specific root length variations. The main objectives of this study were (i) to evaluate the impact of growth and 

biomass allocation patterns modifications on growth maintenance under drought conditions, (ii) to rely the genotypic 

responses to water deficit conditions and the climatic features of the natural environment in which they evolved, and 

(iii) to identify the key genetic regions responsible for shoot and root growth variation in response to water deficit 

conditions. We used different sets of genotypes, a population of recombinant inbred lines, and different sets of 

accessions of Arabidopsis thaliana, collected in a wide range of environments. An analysis of the allometric 

relationships between shoot and root growth related variables under both well watered and water deficit conditions 

allowed to highlight the importance of specific leaf area plasticity to maintain plant growth under water deficit. A 

detailed climatic characterization of the natural habitats of the accessions studied, combined to the evaluation of 

growth response to water deficit in these accessions allowed connecting low climatic water balance to better tolerance 

to water deficit conditions in specific regions, suggesting that this climatic feature could have shaped the evolution of 

genotypes in certain regions. Finally, using these two sets of genotypes, joint linkage and linkage disequilibrium 

analysis were performed on growth related traits under well watered and water deficit conditions. Some genetic regions 

involved in the control of root and shoot related traits were strongly coupled, especially in well watered experiments, 

but we managed to identify root specific regions using calculated variables that takes global plant growth as a cofactor. 

Under water deficit, the regions controlling root and shoot growth were less associated, and very strong QTL were 

detected, specifically associated to one or the other part. Genomic regions associated to growth response to water 

deficit were also detected, and the accuracy of association mapping enabled to identify target genes that could be play 

a role in growth maintenance under drought. 


