
          
 

 

 
 
 
 
 

 
 

UNIVERSITÉ PARIS-SUD     UNIVERSITÉ POLITEHNICA  
ÉCOLE DOCTORALE : STITS     DE BUCAREST 
Laboratoire de Signaux et Systèmes  Automatic Control and Systems Eng. Dept.  

 
 
 

THÈSE DE DOCTORAT 
 

soutenue le 23/11/2012 

 
 

par 
 

Valentin TANASĂ 

 

Development of theoretical and computational 
tools for the design of control strategies for 

nonlinear sampled-data systems 

Développement d’outils de calcul et de logiciels 
pour la réalisation et l’implantation de stratégies 

de commande non linéaires échantillonnées 
 
 
Directeur de thèse :             Dorothée NORMAND-CYROT Directeur de recherche (L2S-CNRS, France) 

Co-directeur de thèse :  Dumitru POPESCU  Professeur  (Université Politehnica de Bucarest) 

 
Composition du jury : 
 
Président du jury :   Patrick BOUCHER  Professeur (Supelec, France) 
Rapporteurs :     Jean-Pierre BARBOT Professeur (ENSEA - ECS, France) 
    Vladimir RĂSVAN  Professeur (Université Craiova, Roumanie) 
Examinateurs :              Salvatore MONACO Professeur (Università La Sapienza, Italie) 
    Silviu-Iulian NICULESCU Directeur de recherche (L2S-CNRS, France) 
    Cristian OARĂ  Professeur (Université Politehnica de Bucarest)   
 

[ November 28, 2012 at 8:46 – classicthesis final version ]
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A B S T R A C T

This thesis is concerned with the sampled-data control of non-linear continuous-time systems. Sampled-

data systems are present in all computer controlled, hybrid or embedded systems. The design and

computation of suitable digital controllers represent unavoidable tasks since both continuous and

discrete-time components interact.

The basic framework of this work takes part of a wide research activity performed by S. Monaco

and D. Normand-Cyrot regarding non-linear sampled-data systems. The underlying idea is to design

digital controllers that recover certain continuous-time properties that are usually degraded through

sampling as it is the case when continuous-time controllers are implemented by means of zero-order

holder devices (emulated control).

This thesis brings contributions into three different directions. The first one, regards theoretical

developments: a new digital backstepping-like strategy design for strict-feedback systems is proposed.

This method is compared with other strategies proposed in the literature.

The second contribution is the development of a control designer and of a simulation toolbox (in

Matlab) for non-linear sampled-data systems. This toolbox includes different digital design strategies

such as: multi-rate control, input-output/Lyapunov matching, digital backstepping design, etc.

The third contribution concerns several case studies conducted to highlight the performances of

the sampled-data controller designs, computed by the means of the software toolbox. Experimental

and simulation results are described for various real examples especially in the area of electrical and

mechanical processes.
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R É S U M É

Cette thèse concerne la conception de commandes échantillonnées pour les systèmes non-linéaires

en temps continu. Les systèmes échantillonnés sont des éléments inhérents aux systèmes contrôlés

par ordinateur, les systèmes hybrides ou les systèmes embarqués. La conception et le calcul des

contrôleurs numériques appropriés sont des taches difficiles car ils contiennent des composants à la

fois continu et en temps discret.

Ce travail s’inscrit dans une activité de recherche menée par S. Monaco et D. Normand-Cyrot dans

le domaine des systèmes échantillonnés non-linéaires. L’idée de base est de concevoir des contrôleurs

digitaux qui permettent de récupérer certaines propriétés en temps continu qui sont généralement

dégradées par l’échantillonnage. Tel est le cas de l’émulation lorsque les contrôleurs en temps continu

sont mis en œuvre en utilisant des bloqueurs d’ordre zéro.

Cette thèse apporte des contributions dans trois directions complémentaires. La première concerne

les développements théoriques: une nouvelle conception de type “backstepping digital" est proposée

pour les systèmes en forme “strict-feedback". Cette méthode est comparée à d’autres stratégies pro-

posées dans la littérature.

La deuxième contribution est le développement d’un logiciel pour la synthèse des contrôleurs et

d’une “boîte à outils" pour simuler (en Matlab) les systèmes échantillonnés non-linéaires et leurs

contrôleurs. Cette boîte à outils inclut plusieurs algorithmes pour la synthèse de contrôleurs échantil-

lonnés tels que: commande de type multi-échelle, reproduction entrée-sortie/Lyapunov, backstepping

digital, etc.

La troisième contribution concerne plusieurs études de cas menées pour mettre en évidence les

performances des contrôleurs échantillonnés, calculés avec l’aide du logiciel. Des résultats expéri-

mentaux et des simulations sont décrits pour divers exemples réels dans les domaines électriques et

mécaniques.
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R E Z U M AT

Teza de faţă se concentrează asupra studiului controlului eşantionat pentru sisteme neliniare în timp

continuu. Sistemele eşantionate sunt componente indispensabile oricăror sisteme de control bazate pe

dispozitive de calcul, sisteme hibride sau sisteme embedded. Sinteza şi calculul comenzilor digitale,

potrivite pentru astfel de sisteme, devine o sarcină dificilă o dată ce presupune existenţa de dinamici

în timp discret respectiv în timp continuu.

Cadrul de bază al acestei lucrări se regăseşte în activitatea de cercetare realizată de Salvatore

Monaco şi Dorothée Normand-Cyrot în domeniul sistemelor eşantionate neliniare. Ideea care stă

la bază este de a sintetiza comenzile digitale urmărind menţinerea unor proprietăţi impuse în timp

continuu sub eşantionare. Aceste proprietăţi sunt în general degradate sub eşantionare cum este cazul

comenzilor emulate, când comenzile continue sunt implementate practic cu ajutorul extrapolatoarelor

de ordin 0.

Această teză îşi aduce aportul în 3 direcţii complementare. Prima adresează dezvoltările teore-

tice unde o nouă sinteză de tip backstepping digital este propusă pentru sisteme în formă <strict-

feedback>. Această metodă, dezvoltată în două versiuni, este comparată cu alte strategii similare

propuse în literatură.

A doua contribuţie a tezei este legată de dezvoltarea unui toolbox software pentru sinteza de

controllere digitale pentru sisteme nelinare sub eşantionare. Acest toolbox include strategii diferite

pentru sinteza eşantionată precum: comandă de tip multi-rate, reproducere intrare-ieşire/Lyapunov,

backstepping digital şi alte soluţii care sunt obiectul unor noi extensii.

A treia contribuţie este dată de studiile de caz dezvoltate pentru a scoate în evidenţă performanţele

comenzilor eşantionate testate şi calculate cu ajutorul aplicaţiei software. Rezultatele experimentale şi

de simulare sunt obţinute pentru diverse exemple reale din domeniul electric şi mecanic.
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The thesis is structured into three main parts, as is described below. The contributions of the author

are indicated for each chapter concerned.

part i . theoretical developments

In this part, theoretical elements related to the design of sampled-data controller are recalled. A close

attention is paid to recalling some basis elements of nonlinear control theory for discrete time and

sampled-data systems and some basic mathematical tools.

In Chapter 3 there is described the mathematical framework which is preliminary to the controller

designs proposed in Chapter 4. Two new digital designs for systems admitting strict-feedback forms

are presented in Chapter 4. Both solutions are based on the concept of the input/Lyapunov matching.

The first design concerns a single-rate version, and the second design concerns a multi-rate control

scheme. The stabilizing properties of the designs are analyzed through the Lyapunov techniques.

The results are extended to systems with multiple cascade connections and illustrated on academic

examples. A literature survey is conducted and the performances of similar approaches are recalled

and compared with the ones here proposed.

Author’s contributions:

• Extension of the input/Lyapunov matching framework in Chapter 3 to the case of MIMO sys-

tems and to systems with relative degree higher than 1, respectively. Some aspects concern the

paper [C08] from author’s publication list.

• A stability analysis by means of Lyapunov techniques for the proposed sampled-data controllers

is discussed in Chapter 3 and Chapter 4 (also in [S1],[P1])

• The design of two new backstepping-type digital controllers: a single-rate version (with F.

Tiefensee) ([C02]) and a multi-rate version respectively ([S1],[P1]).

• The literature survey concerning digital backstepping designs and the performance evaluation

of the new controller designs on academic examples are in Chapter 4 and also in [S1].

xxiii
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part ii . simnlsys - sampled-data controller design toolbox

In this part is described the SimNLSys software application developed in the Matlab environment.

Its main goal is to aid the design and computation of sampled-data controllers for nonlinear systems.

These designs are carried out for a number of nonlinear strategies such as: LgV control , backstepping

control, nonlinear optimal control, passivity based control. This toolbox computes symbolically the

expressions of the sampled-data state-feedback controllers.

The software application offers a simulation toolbox, especially dedicated to the analysis of the

behavior of sampled-data controllers in terms of the sampling period value and of the order of the

controllers’ approximations2. These simulation tests offer a complete view of these digital design

performances compared with that of the continuous-time solution (ideal case) and emulated3 solution.

A discussion about the symbolic algorithms used and tested is given. The limitation and also the

benefits of our techniques are revealed.

Many aspects discussed in this part are presented in papers [C01], [C03] (from author’s publication

list 1).

part iii . case studies

In this part, 5 case studies are discussed, each one illustrating a distinct advantage or the methodolo-

gies behind the proposed digital solutions. The diversity of the applications shows the wide area of

the applicability of our approach.

The first case study (Chapter 7) is about a single-rate version of a backstepping digital design for an

eletro-magnetic pendulum system. The obtained results concern simulations and also implementation

on an experimental plant available at the Département d’Automatique of Supelec (P. Boucher). The

results show a good performance of such strategy compared with the emulated solution. The results

are in [C04] (from Contribution list).

The second case study (Chapter 8) concerns a digital implementation of a passivity based control

for the level control of a coupled-tanks system. The results obtained here are experimental. The results

of this work are in [C05] (from Contribution list).

The third case study (Chapter 9) concerns the problem of designing digital stabilizing controllers in

the presence of delays, when the system has a finite sampled equivalent. This study is conducted on

2 The notion of the order of a controller’ approximations will be introduced in Chapter 3 where an exact digital controller is computed

as an infinite series in the sampling period. For practical implementations, a truncation of certain orders of the series is needed
3 “Emulated” stands for continuous-time controllers that are digitally implemented by means of Zero Order Hold (ZOH) devices
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a practical example which consists in computing the trajectories of a two-wheeled robot. The study is

included in [C11] and some theoretical parts are available in [C10].

The fourth case study (Chapter 10) presents the digital energetic management of a fuel cell system

with super-capacitors. This system is developed for electrical cars. This study proposes two sampled-

data controllers, starting from the ones set in the continuous-time domain on the basis of two different

nonlinear strategies. This study was part of a larger project supported by the CNRS-INSIS through

the project PEPS "Automatique" - GESE - Gestion Echantillonnée des Systèmes Energétiques, 2010.

The results reported in this thesis are published in [C06], [C08] and it follows to the collaborations

with M. Hilairet, O. Bethoux, M. Ghanes and F. Tiefensee.

The last case study (Chapter 11) is analyzing the effects of the quantization error in sampled-data

systems with the backstepping controllers proposed in Chapter 4. The analysis is performed on the

same academic example developed in Chapter 4 in order to verify the degradation of the stabilizing

properties. Part of the work is included in [S2].

other contributions

Other works have been performed during the PhD period and have not been included in this thesis

due to the exploratory nature of these works, which reflect the directions of interest of the research

teams where the author was engaged.

The work carried out in ([C07],[S3]) represents a first attempt in formulating new conditions for

solving the problem of output regulation for the case of Multiple Input Multiple Output (MIMO) sys-

tems, which are not necessary square. The future works include also the problem of output regulation

in the case of sampled-data systems.

The work ([C09]) is also a first attempt to the problem of designing digital optimal stabilizing con-

troller for nonlinear sampled-data systems. This work exploits the fact that optimality is linked with

passivity, and the previous results obtained by the authors on the passivity and Lyapunov stabiliza-

tion, under digital control, can be successfully addressed.
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C O N T R I B U T I O N D E L’ A U T E U R E T O R G A N I S AT I O N D E L A T H È S E

La thèse est structurée en trois parties principales, comme décrit ci-dessous. Les contributions de

l’auteur sont indiquées pour chaque chapitre concerné.

première partie . les développements théoriques

Dans cette partie, des éléments théoriques sont rappelés sur la conception des contrôleurs échantillon-

nés abordés dans cette thèse. Une attention particulière est portée sur le rappel des éléments de base

de la théorie de la commande non linéaire (analyse de stabilité, degré relatif, fonction Lyapunov, etc),

sur les systèmes échantillonnés et sur les outils mathématiques utilisés.

Dans le Chapitre 1, on décrit le cadre mathématique qui est préliminaire à la conception des con-

trôleurs proposée dans le Chapitre 3. Deux nouvelles conceptions digitales sont proposées au Chapitre

4 pour des systèmes admettant une forme “strict-feedback”. Les deux solutions sont basées sur l’ideé

de reproduire la liaison entrée / Lyapunov. La première solution concerne une version avec une seule

échelle de temps, et la deuxième solution concerne la conception d’un contrôleur multi-échelles. Les

propriétés de stabilisation de ces solutions sont analysées à travers des techniques de Lyapunov. Les

résultats sont étendus à des systèmes avec de multiples connexions en cascade et sont illustrés sur

des exemples académiques. La littérature est étudiée et les performances d’approches similaires sont

rappelées et comparées à celles obtenues ici.

Les contributions de l’auteur :

• l’extension de la méthodologie de reproduction entrée/Lyapunov dans le Chapitre 4 au cas des

systèmes MIMO, respectivement au cas des systèmes de degré relatif supérieur à 14. Certains

aspects font l’objet de [C08] dans la liste des publications de l’auteur.

• une analyse de stabilité par des techniques de Lyapunov pour les contrôleurs échantillonnés

dans les Chapitres 3, 4 (aussi dans [S1], [P1])

• la synthèse de deux nouveaux contrôleurs digitaux de type “backstepping”: une solution avec

une échelle de temps ([C02]) et une solution multi-échelles de temps ([S1],[P1]).

• une étude bibliographique sur contrôleurs digitaux de type “backstepping” et l’évaluation des

performances sur des exemples académiques, Chapitre 4 et aussi dans [S1]
4 Le concept de degré relatif correspond à la notion d’excés des pôles sur les zeros de la fonction de tranfert

xxix
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deuxième partie . simnlsys - un logiciel pour la conception échantillonnée

Dans cette partie est décrit le logiciel SimNLSys qui a été développé en Matlab. Le but de ce logiciel

est d’aider la conception par ordinateur de contrôleurs échantillonnés pour des systèmes non linéaires.

Ces conceptions sont réalisées pour un certain nombre de stratégies non linéaires telles que: le contrôle

LgV et le “backstepping”, le contrôle optimal non linéaire, le contrôle basé sur la passivité. Le logiciel

calcule les expressions symboliques des contrôleurs échantillonnés par retour d’état.

Ce logiciel offre une boîte à outils de simulation dédiée à l’analyse des performances de con-

trôleurs échantillonnés en fonction de la valeur de la période d’échantillonnage et de l’ordre de

l’approximation de la commande5. Ces tests de simulation permettent une visualisation compara-

tive des effets de la conception digitale par rapport à la solution en temps continu (le cas de référence)

et la solution émulée 6 au d’autres strategies.

Une discussion sur les algorithmes symboliques utilisés et testés est faite. Les limites et les avantages

de nos techniques sont analysés.

De nombreux aspects abordés dans cette partie sont également présentés dans les documents [C01],

[C03] (dans la liste des publications de l’auteur).

troisième partie . études des cas

Dans cette partie, 5 études de cas sont faites, chacune illustrant un avantage distinct des méthodolo-

gies associées aux solutions proposées. La diversité des applications montre le vaste domaine d’applica-

bilité de notre approche.

La première étude de cas (Chapitre 8) propose une conception “backstepping” digitale, avec une

seule échelle de temps, sur une maquette de pendule électromagnétique. Les résultats obtenus inclu-

ent la mise en œuvre sur une installation expérimentale disponible au Département d’Automatique

de Supélec (Responsable M P. Boucher). Les résultats montrent les bonnes performances de cette

stratégie par rapport à la solution émulée. Les résultats sont en [C04] (de la liste de contribution).

La deuxième étude de cas (Chapitre 9) concerne une implémentation digitale d’une commande

basée sur la passivité pour le contrôle de niveau d’un système de réservoirs d’eau. Les résultats

expérimentaux sont obtenus a l’Université Politehnica de Bucarest. Les résultats de ce travail sont en

[C05] (de la liste de contribution).

5 Le terme ordre d’approximation d’un contrôleur sera introduit au Chapitre 3 où un contrôleur numérique exact est calculé comme

une série infinie parametrisée par la période d’échantillonnage. Pour les applications pratiques, une approximation polynomiale

à un ordre fini de la série est judicieuce.

6 Dans cette thèse le terme “Émulé” désigne l’implantation d’une loi de commande conçue en temps continu par bloqueur

d’ordre zéro - BOZ
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La troisième étude de cas (Chapitre 10) concerne la conception de contrôleurs digitaux stabilisant

en présence de retards, lorsque le système a un équivalent échantillonné calculable exactement. Cette

étude est menée sur l’exemple d’un robot mobile à deux roues. L’étude est incluse dans [C11] et

certaines parties théoriques sont disponibles dans [C10].

La quatrième étude de cas (Chapitre 11) présente la gestion échantillonnée énergétique d’un sys-

tème de pile à combustible avec des super-condensateurs. Ce dispositif est développé pour des

voitures électriques. Cette étude propose deux contrôleurs échantillonnés à partir de ceux définis

dans le domaine continu sur la base des deux stratégies différentes non linéaires. Cette étude fait

partie d’un projet soutenu par le CNRS-INSIS dans le cadre du PEPS "Automatique" - GESE - Gestion

Échantillonnée des Systèmes Energétiques, 2010/2011. Les résultats présentés dans cette thèse sont

en [C06], [C08]

La dernière étude de cas (Chapitre 12) se consacre aux effets de l’erreur de quantification pour des

systèmes échantillonnés avec des contrôleurs “backstepping” proposés au Chapitre 4. L’analyse est

effectuée sur le même exemple académique développé au Chapitre 4 afin de vérifier la dégradation

possible des propriétés de stabilisation. Une partie du travail est incluse dans [S2].

autres contributions

D’autres travaux non inclus ont été effectué pendant la période de doctorat.

Il s’agit des travaux menés en ([C07],[S3]) qui constituent une première tentative pour formuler de

nouvelles conditions pour la régulation de sortie pour de systèmes MIMO, qui ne sont pas nécessaire-

ment carrés (en nombre d’entrés et de sorties). Les travaux futurs incluent la régulation de sortie dans

le cas de systèmes échantillonnés.

Le travail ([C09]) est également une première tentative pour la conception d’un contrôleur digital

optimal et stabilisant pour des systèmes échantillonnés non linéaires. Ce travail exploite le fait que

l’optimalité peut être liée à la passivité et les résultats obtenus précédemment par les auteurs sur la

passivité.
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0.1 introduction générale

0.1.1 Commande échantillonnée non linéaire

Le développement croissant, au cours des dernières décades, des moyens de calcul très puissants

a conduit, parmi d’autres bénéfices, à un développement significatif en terms de performance des

systèmes de commande. Par conséquent, l’implémentation rigoureuse des systèmes de commande

peut contribut à la croissance économique et la qualité de vie.

Cette thèse s’intéresse à la conception de commandes échantillonnées pour les systèmes non linéaires.

Les systèmes échantillonnés sont des éléments inhérents des systèmes contrôlés par ordinateur, des

systèmes hybrides ou des systèmes embarqués. La conception et le calcul des contrôleurs numérques

appropriés représente une tâche difficile car ils contiennent des éléments à la fois continu (décrit par

des fonctions non linéaires) et temps discret.

Les solutions proposées dans cette thèse s’appuient travaux de professeurs Dorothée Normand-

Cyrot et Salvatore Monaco [Monaco & Normand-Cyrot 1984c], [Fromion et al. 1996],

[Monaco & Normand-Cyrot 2001], [Monaco et al. 2007], [Monaco & Normand-Cyrot 2009],

[Monaco et al. 2011]. L’idée de base est d’identifier certaines propriétés du système non linéaire con-

ntinu et de proposer des méthodes numériques pour les préserver à chaque instant d’échantillonnage.

Cette méthode permet de transférer des techniques validées en théorie sur des systèmes en practique.

La synthèse de contrôleurs stabilisants pour des systèmes non linéaires échantillonnés pose deux

problèmes difficiles: l’un est lié à la structure non linéaire, l’autre concerne la prise en compte des

aspects numériques inévitables dans les applications temps réel.

L’intérêt pour le contrôle non linéaire est croissant, car plus réalise en pratique que le linéaire plutôt

que linéaire [Isidori 1995], [Khalil 1996], [Rasvan & Stefan 2007], [Boucher & Dumur 2006]. En fait, de

nombreuses solutions practiques reposent sur la linéarisation ou l’approximation du modèle réel et

par conséquent des dynamiques fondamentales sont négligées.

Un système échantillonné est un système qui fonctionne en temps continu avec certains de ses

signaux d’entrée et de sortie(capteurs, actionneurs) sont échantillonnés à des instants différents. Ce

type de comportement appelé aussi “hybride”, car ils apparitient au contexte des systèmes embarqués.

[Hanselmann 1987], [Chen & Francis 1995], [Astrom & Wittenmark 2011].

Le contrôleur numérique doit offrir une reconstruction du signal continu compatible avec l’entrée

du processus. Pleusieurs questions importantes concernant l’échantillonnage, la quantification et la re-

construction du signal doivent être abordées[Liberzon 2001, Liberzon 2006], [De Persis 2005]. L’objectif
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etant de concevoir un contrôleur numérique qui satisfasse aux exigences souhaitées et accomplies

par un schema idéal continu. Dans la littérature, différentes approches existent et sont résumées ci-

dessous.

a. Conception en temps continu - Le contrôleur est conçu en temps continu et il est implanté

en temps discret. Généralement la mise en œuvre en temps discret d’un système en temps

continu est réalisée au moyen des dispositifs d’échantillonnage et de blocage, tels que le mod-

ule Bloqueur d’Ordre Zéro (BOZ). Le BOZ- échantillonne le signal en temps continu avec une

période d’échantillonnage fixe et produit une sortie constante pendant ce temps. Dans ce cas,

nous parlons de l’émulation d’un contrôleur en temps continu, ce qui représente la stratégie la

plus courante lors d’applications d’un contrôleur continu sous échantillonnage. L’inconvénient

majeur est que les performances du contrôleur conçu en temps continu ne sont pas maintenues

[Halanay & Răsvan 1977], [Monaco et al. 1986], [Monaco & Normand-Cyrot 1986]. D’autres typs

de bloquer d’ordre supérieur à échelles de temps multiples sont introduits pour permettrer de

meilleurs performances [Di Giamberardino et al. 1996a], [Djemai et al. 1999], [Hu & Michel 1999].

b. Conception en temps discret - La conception de la commande est réalisée sur le modèle équiv-

alent en temps discret du processus en temps continu. Dans ce cas, la conception néglige le

comportement entre les instants d’échantillonnage qui peut être critique. Si dans un contexte

linéaire cette méthode reste valide, dans le cas non linéaire le calcul exact de modèles équiva-

lent en temps discret deviennent insoluble. Un autre inconvénient est que, suite à la procédure

d’échantillonnage, les propriétés verifiées en temps continu sont généralement perdues. Si l’on

suppose qu’il existe un équivalent échantillonné du système en temps continu, des progrès no-

tables ont été fait pour la conception de contrôleurs discrets pour les systèmes non-linéaires

[Monaco & Normand-Cyrot 2007]. Si un modèle exact n’est pas disponible un modèle échantil-

lonné approché peut être utilisé pour la conception de contrôleurs. Le plus couramment utilisé

est le modèle d’Euler, approximation au premier ordre.

c. Conception échantillonnée - Dans ce cas, la commande numérique est conçue à partir du mod-

èle échantillonné équivalent du processus en temps continu, décrit par une fonctionnelle dépen-

dant de la période d’échantillonnage. De cette façon, on peut tenir compte du comportement en-

tre les instants d’échantillonnage. Le modèle échantillonné vérifie des propriétés spécifiques qui

sont des propriétés du système continu. Les côntroleurs sont aussi décrits par leur développe-

ment asymptotique en fonction de la période d’échantillonnage.

L’avantage majeur de cette approche, par rapport aux conceptions en temps continu ou en temps

discret, est de permettre l’objectif de reproduction des propriétés en temps continu aux instants
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d’échantillonnage [Monaco & Normand-Cyrot 2009]. Deux scénarios sont possibles pour la con-

ception. Le premier scénario, que l’on appelle conception indirecte utilise une solution en temps

continu conçue “a priori” avec certaines performances. Le deuxièm scénario, appelé conception

directe ne suppose pas l’existence d’une solution continue. Un contrôleur numérique est conçu,

à partir du modèle échantillonné, en imposant des objectifs de performance discrets.

Une question peut être posée aujourd’hui: dans le mesure où l’acquisition et les dispositifs d’échantil-

lonnage fonctionnent à des périodes d’échantillonnage très petites, pourquoi developper des méth-

odes échantillonnée spécifiques ? Trois contre-arguments peuvent être observés. Tout d’abord si un

échantillonnage rapide permet une récupération plus précise des mesures, les erreurs de quantifica-

tion et de bruits induisent des effets néfastes. Deuxièmement, comme il a été souligné précédemment,

il existe des situations où des solutions en temps continu n’existent pas, et la seule solution est de

proposer une conception échantillonnée. Troisièmement, ces techniques fonctionnent mieux même à

période d’échantillonnage assez petite.

Le but de ce travail est de développer des outils de calcul dédiés à la conception et au calcul des

contrôleurs numériques ainsi qu’un logiciel.

0.1.2 Outils de CAO dans le contrôle non linéaire

L’utilisation massive de calcul symbolique dans les deux dernières décennies a suscité le développe-

ment d’outils logiciels pour la conception et l’analyse des systèmes de contrôle. En intégrant algo-

rithmes numériques et caractéristiques de l’interface graphique, dex nombreuses boîtes à outils pour

la Conception Assistées par Ordinateur de la Commande (CAOC) ont été développées

[Ahmad et al. 1992], [Samaan et al. 1989], [Gasparyan 2006]. Ces logiciels se révèlent utiles dans les

activités d’enseignement, de recherche ou mêmê industrielles afin d’éviter des manipulations al-

gébriques complexes/numériques et faciliter le transfert technologiques.

Dans le domaine du contrôle, ces logiciels CAOC sont spécifiques des dynamique du système et du

type de stratégie de commande. Ces “boîtes à outils” sont largement développées pour le cas linéaire

et la plupart utilise des algorithmes numériques. Ces logiciels couvrent une variété de stratégies telles

que: optimale, robuste, adaptative, commande prédictive, etc. En ce qui concerne les aspects informa-

tiques, le principal avantage de la dynamique linéaire est liée à l’utilisation du calcul matriciel. Dans

le contexte non linéaire, la situation est très différente, car la non linéarité implique la composition de

fonctions et d’opérateurs au lieu d’opérations matricielles comme opération élémentaire.
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Pour l’analyse et la conception de commande des systèmes non linéaires, la géométrie différentielle

fournit un cadre mathématique utile. Les objets différentiels géométriques (dérivée et crochet de Lie)

peuvent être traités avec des outils symboliques. De cette façon, les solutions aux problèmes de con-

trôle non linéaire peuvent être calculées exactement sans accumulation de l’erreur de quantification

comme c’est souvent le cas avec les algorithmes de conception numérique.

Le logiciel développé dans cette thèse fait référence à la stratégie de commande de reproduction

d’entrée-sortie proposée dans [Monaco & Normand-Cyrot 2007] et développée dans [Monaco et al. 2011],

[Monaco & Normand-Cyrot 2009]. L’efficacité de ces techniques, validée grâce à la simulation d’exemples

académiques réalistes ou sur des exemples réels, justifie la nécessité de développer un logiciel ad hoc.

L’idée de base est la suivante:

L’hypothèse suppose que sont donnés : un système à temps continu décrit par des équations dif-

férentielles ordinaires et éventuellement un contrôleur en temps continu conçu pour satisfaire certains

objectifs de contrôle. En supposant que la commande est maintenue constante sur des intervalles

de temps de longueur constante, le problème est de trouver une loi numérique, de telle sorte que

les performances du système soient identique aux performances dites idéal (stratégie en temps con-

tinu). Cette coïncidence est demandée à chaque instant d’échantillonnage. On parle ici de reproduc-

tion entrée-sortie sous contrôle constant par morceaux. Les solutions proposées font référence aux

développements en séries de Lie et au calcul combinatoire. Le caractère combinatoire et itératif des

solutions suggère le développement d’un logiciel ad hoc qui fait appel à des outils de calcul formel.

Dans cette thèse, l’attention ne se limite pas aux systèmes Single Input Single Output (SISO), mais

également aux systèmes MIMO. L’existence des solutions repose sur la notion de degré relatif (exten-

sion au cas non linéaire de l’excès de pôles sur les zéros dans le cadre linéaire). La liaison entrée/sortie

peut être comprise comme le lien cible privilégié devant être contrôlé. En fait si l’on considère la con-

ception de type Lyapunov, le lien privilégié à contrôler est le lien entrée/Lyapunov. Dans le contexte

d’optimalité, un tel lien privilégié correspond au lien entrée/critère associé à une fonction d’énergie

ou à une autre critère.

Le logiciel complet comprendra différents modules fournissant des versions échantillonnées du

“backstepping”, de l’optimalité ou des techniques basées sur les propriétés de passivité convenable-

ment définies pour des liens entrée/sortie.

En ce qui concerne les applications du CAOC pour les systèmes échantillonnés, il existe des outils

développés pour les dynamiques linéaires. À la connaissance de l’auteur, il n’existe pas d’outil de

Conception Assistées par Ordinateur (CAO) pour des systèmes non linéaires échantillonnés compara-

ble à SimNLSys.

[ November 28, 2012 at 8:46 – classicthesis final version ]



[ November 28, 2012 at 8:46 – classicthesis final version ]



P R E M I È R E PA RT I E . L E S D É V E L O P P E M E N T S T H É O R I Q U E S

0.2 commande digitale de type “backstepping” via la reproduction entrée/lia-

pounov

0.2.1 L’objectif

La méthode du “backstepping” est aujourd’hui une stratégie de conception de commande stabilisante

très utilisée dans le cas des systèmes non linéaires qui vérifient une structure particulière de type strict-

feedback (voir les équations (0.1)-(0.2)). La difficulté réside dans l’existence d’un dégré relatif supérieur

à 1, qui représente un obstacle pour la conception de commandes reposant sur la passivité Passivity

Based Controller (PBC). La méthode “backstepping” permet de remédier cet obstacle.

La procédure “backstepping”, dans sa formulation globale, donne les ingrédients pour calculer

des contrôleurs qui stabilisent l’origine globalement. Bien que cette méthode puisse se comparer à la

linéarisation dynamique, sa particularité est de prend en compte la non linéarité qui est utile pour

la stabilité. Le principal inconvénient de cette procédure est le nombre de connexions en cascade

de la structure strict-feedback et le fait que les expressions du contrôleur devenant plus complexes.

Pour faire face à cela, certaines procédures sont proposées, qui permettent d’atteindre des résultats

semi-globaux comme la conception grand gain ou “backstepping” semi-global [Sepulchre et al. 1997].

Comme cette procédure a un impact majeur dans nombreuses applications en temps réel, le prob-

lème de la conception de contrôleurs constants par morceaux qui permettent de préserver les pro-

priétés du contrôleur en temps continu doit être résolu. Tel est l’objectif de ce chapitre.

Dans cette thèse, deux stratégies sont proposées en utilisant les critères visant à reproduire le

lien entrée/Lyapunov. Ce critère, utile pour obtenir de meilleures performances de stabilisation par

rapport à l’émulation classique des contrôleurs en temps continu, semble être approprié, dans le

context de “backstepping”.

Une première approche consiste à concevoir une loi de commande échantillonnée uk de sorte que

l’évolution de la fonction de Lyapunov V définie pour une connexion en cascade en temps continu

soit reproduite à chaque instant d’échantillonnage. Il s’ensuit que, les performances de stabilisation

du contrôleur en temps continu sont préservées aux instants d’échantillonnage.

xxxvii
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La Figure 0.1 décrit le problème.
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Figure 0.1: Le critère de la reproduction du lien entrée/fonction Lyapunov.

En haut de la figure, le système avec un contrôleur en temps continu est représenté. L’évolution

de la fonction de Lyapunov V , exprimée en termes de variables d’états du système, représente la

caractéristique de stabilisation du système en boucle fermée avec un contrôleur “backstepping” en

temps continu. Dans le bas de la figure, un contrôleur échantillonné est appliqué sur le même système

avec l’aide des dispositifs d’échantillonnage. Ici δ représente la période d’échantillonnage et δ̄ est le

temps d’application (tenue) du contrôleur qui peut être égal à une fraction de δ, δ̄ = δ/m.

Une seconde tentative, qui fait référence à une conception multi-échelles de temps, impose des

objectifs supplémentaires, afin d’améliorer les propriétés de stabilisation (dynamique des zeros, inter

échantillonnage).

0.2.2 Backstepping en temps continu- rappels

On considère des systèmes dans la forme strict-feedback suivante (avec une seule cascade):

ż(t) = f(z(t)) + g(z(t))ξ(t) (0.1)

ξ̇(t) = a(z(t), ξ(t)) + b(z(t), ξ(t))uc(t) (0.2)
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où les états z et ξ évoluent respectivement dans IRn et IR, l’entrée commandée uc ∈ IR, et les champs

de vecteurs f,g et a(·),b(·) dans IRn et respectivement dans IR sont complets et analytiques.

Le résultat suivant décrit une loi de commande en temps continu qui stabilise asymptotiquement

l’origine du système (0.1)-(0.2).

Theorem 1. [Krstic et al. 1992],[Khalil 1996] - Backstepping en temps continu - Soit le système (0.1)-(0.2), on

suppose l’existence d’une fonction φ(z) avec φ(0) = 0 et d’une fonction de Lyapunov W(z), radialement non

bornée, telles que

∂W

∂z
(f(z) + g(z)φ(z)) < 0, ∀z ∈ IRn/ {0} . (0.3)

Si l’existence de b−1(z, ξ) est garantie pour tout (z, ξ), la commande par retour d’état

uc = b(z, ξ)−1
(
φ̇−

∂W

∂z
g(z) − a(z, ξ) −Ky(ξ−φ)

)
(0.4)

avec φ̇ = ∂φ
∂z (f(z) + g(z)ξ) et Ky > 0 stabilise globalement et asymptotiquement l’origine de (0.1)-(0.2), avec

V(z, ξ) =W(z) +
1

2
(ξ−φ(z))2 (0.5)

comme fonction de Lyapunov.

Certains commentaires sont utiles: le contrôleur uc réalise deux objectifs: il rend le lien v → y :=

ξ−φ(z) passif et il améliore l’amortissement grâce au retour de sortie avec un gain négatif −Ky. De

plus, en substituant ξ = φ par ξ = φ+ v0, la condition (0.3) garantit la passivité du lien v0 → y0, avec

yT0 :=
∂W

∂z
g(z)

et la fonction de stockage W.

En posant uc(t) = uk (constante sur un intervalle), la négativité de V̇ , entre les instants d’échantillon-

nage, n’est plus assurée comme il est expliqué dans [Tiefensee et al. 2009]. Par conséquent, l’échantillon-

nage peut détruire les propriétés de stabilisation fixées en temps continu. Plusieurs stratégies échan-

tillonnées peuvent alors être proposées.

0.2.2.1 Une solution constructive pour plusieurs connexions en cascade

Le résultat précédent de la Theorem 1 est géneralisé au système strict-feedback avec plus d’une con-

nexion en cascade.

ż(t) = f(z(t)) + g(z(t))ξ1(t)

ξ̇1(t) = a1(z(t), ξ1(t)) + b1(z(t), ξ1(t))ξ2(t)

... (0.6)

ξ̇m−1(t) = am−1(z(t), ξ1(t), . . . , ξm−1(t)) + bm−1(z(t), ξ1(t), . . . , ξm−1(t))ξm(t)

ξ̇m(t) = am(z(t), ξ1(t), . . . , ξm(t)) + bm(z(t), ξ1(t), . . . , ξm(t))u(t)
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avec les états z ∈ IRn et ξi ∈ IR, toutes les fonctions sont considérées au moins de classe C1 et tous

les bi(·) sont supposés inversibles ∀ (z, ξ1, . . . , ξm).

Dans un premier temps, nous prendrons la sortie virtuelle comme y1 = ξ1 − α1(z), alors le sys-

tème a une degré relatif m + 1 liée à cette sortie. D’une manière récursive, en suivant la procé-

dure “backstepping”, pour chaque étape une nouvelle sortie virtuelle yi est définie comme yi =

ξi −αi(z, ξ1, . . . , ξi−1) avec un contrôleur fictif αi tel que chaque fonction de Lyapunov

Vi =W +
1

2

i−1∑
j=1

y2j

 (0.7)

assure les propriétés de stabilité des premières i connexions. Chaque αi peut être construit comme:

αi =
1

bi−1(·)

(
α̇i−1(·) − ai−1(·) −

∂Vi−1
∂yi−1

bi−2(·) −Kiyi
)

, ∀i > 2, Ki > 0

avec α1 = −K1y1 et α2 donné en (0.4). Dans la dernière étape, le contrôleur uc = αm+1(·) est conçu

avec la sortie passive pour le système complet comme ym = ξm −αm(·). Lié à cette sortie le système,

avec le αm+1(·) comme entrée, a un degré relatif egal à 1.

0.2.3 La conception Backstepping échantillonné - avec une échelle de temps

Soit xT = [zT yT ]T l’état du système continu obtenu a partir de la bouclage par uc du système

(0.1)-(0.2) et transformé, réécrit comme

ẋ(t) = fc(x(t)) + gc(x(t))uc(t) (0.8)

avec

fc =

 f(z) + g(z)(φ(z) + y)

a(z,y+φ(z)) − ∂φ
∂z ż

 , gc =

 0

b(z,y+φ(z))

 .

Si on suppose uc(t) = uk pendant chaque période d’échantillonnage δ, alors l’équivalent échantil-

lonné du système (0.8) est décrit par la dynamique:

xk+1 = Fδd(xk,uk) = eδ(fc+ukgc)xk (0.9)

avec les notations introduites au Chapitre 1. Etant donné uc comme en (0.4) et la fonction de Lyapunov

V(z, ξ) avec dérivée négative, on calcule par integration:

V(xc|t=(k+1)δ) − V(xc|t=kδ) =

∫ (k+1)δ
kδ

V̇(xc(τ))dτ, (0.10)

où l’on note xc l’état du système continu bouclé par uc comme en (0.4).
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Ensuite, nous appliquons le critère de la reproduction du lien entrée/Lyapunov. Autrement dit,

la synthèse échantillonnée consiste à calculer une loi de commande constante par morceaux uk qui

reproduit, à chaque instant d’échantillonnage t = kδ, la différence cible (0.10); uk doit satisfaire

l’égalité:

V(xk+1) − V(xk) =

∫ (k+1)δ
kδ

V̇(xc(τ))dτ. (0.11)

avec xk = xc(t = kδ) et xk+1 est calculé selon (0.9). Donc la commande digitale uk reproduit, aux

instants d’échantillonnage, l’évolution de la fonction Lyapunov du système bouclé en temps con-

tinu et permet d’obtenir la même stabilisation asymptotique du système échantillonné aux instants

d’échantillonnage.

Theorem 2. [Tiefensee 2010] Etant donné un système sous la forme “strict-feedback” (0.1)-(0.2), en supposant

l’existence d’un contrôleur uc en temps continu calculé à partir de la méthode “backstepping”, tel qu’il existe

une fonction de Lyapunov V , qui garantit la stabilité du système initial; alors il existe T∗ > 0 tel que, pour

chaque δ en (0, T∗] il existe une loi de commande échantillonnée uk = uδd qui assure la même évolution de

Lyapunov aux instants d’échantillonnage et garantit la stabilisation asymptotique de l’origine du système.

Remark 3. Le théorème précédent peut être formulé globalement ou localement selon les hypothèses prises pour

la conception du contrôleur en temps continu.

0.2.3.1 Calculs du contrôleur

La solution proposée dans le Theorem 2 est définie comme une série infinie en δ. Pour des raisons

pratiques, des solutions approchées sont proposées. La loi de commande approchée au deuxième

ordre est définie comme :

uδ2d = ud0 +
δ

2!
ud1 +

δ2

3!
ud2 (0.12)

Les premiers termes de ce contrôleur sont calculés comme suit:

ud0(zk,yk) = uc(z,y)|t=kδ (0.13)

ud1(zk,yk) = u̇c(z,y)|t=kδ

=
∂uc(z,y)
∂z

(f(z) + g(z)(φ(z) + y)) |t=kδ

+
∂uc(z,y)
∂y

(
a(z,y+φ(z)) − φ̇(z)

)
|t=kδ (0.14)

ud2(zk,yk) = üc(z,y)|t=kδ +
ud1(zk,yk)

2b(z,y+φ(z))y
ad[fc,gc]V |t=kδ. (0.15)
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avec

ad[fc,gc]V |t=kδ =
∂b(z,y+φ(z))

∂z
y (f(z) + g(z)(φ(z) + y)) |t=kδ

+

(
b(z,y+φ(z)) + y

∂b(z,y+φ(z)))
∂y

)
(a(z,y+φ(z))(z)) |t=kδ

−

(
∂W

∂z
(f(z) + g(z)) +

∂a(z,y+φ(z))
∂y

(z)

)
b(z,y+φ(z))|t=kδ

(0.16)

Ces expressions sont bien définies puisque selon la procédure de “backstepping” b(z+φ(z))y 6= 0.

0.2.4 Backstepping échantillonné - la conception multi-échelle de temps

La technique d’échantillonnage multi-échelles a été proposée dans le contexte des systèmes non

linéaires pour la préservation sous échantillonnage de la stabilité interne (dynamique des zeros)

[Monaco & Normand-Cyrot 2001]. Une loi de commande échantillonnée à m échelles de temps sig-

nifie, dans le contexte actuel, que les variables de contrôle sont échantillonnées plus rapidement (m-

fois) que les variables mesurées. L’entrée u(t) est supposée constante sur des intervalles d’amplitude

δ̄ = δ/m permettant ainsi m valeurs différentes du contrôleur sur chaque intervalle d’amplitude δ.

L’idée principale est que de multiples changements des variables de contrôle, au cours de la période

d’échantillonnage, augmentent les degrés de liberté de la dynamique qui décrit le système échan-

tillonné. On montre, par exemple dans [Monaco & Normand-Cyrot 2007], que l’utilisation de cette

technique fournit les mêmes performances que l’utilisation d’un bloqueur d’ordre supérieur et de

l’échantillonnage généralisé[Djemai et al. 1999].

0.2.4.1 La motivation

La conception échantillonnée de type “backstepping” proposée dans la dernière section propose un

contrôleur numérique uδd qui reproduit à chaque instant d’échantillonnage l’évolution d’une fonction

de Lyapunov totale V(z,y). Pour des raisons pratiques des solutions approchées ont été considérées.

Dans les études effectuées, il est montré qu’un contrôleur approché d’ordre p assure la reproduction

de l’évolution de la fonction Lyapunov avec une erreur en δp+1 (O(δp+1)). Selon la procédure du

“backstepping” , V(z,y) =W(z)+ 1
2y
2 avec W une autre fonction Lyapunov qui assure la stabilisation

de la première dynamique (0.2) quand y tend vers 0 (stabilisation interne). Le contrôleur proposé

pour la reproduction de V offre des performances insuffisantes pour la reproduction de W. Plus

précisément, la reproduction de la fonction W(z) avec un contrôleur approché d’ordre p est assurée

avec une erreur en δ3.
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La conclusion est claire. La condition imposée pour reproduire l’évolution de V n’assure pas la

reproduction de W. Comme conséquence, sous échantillonnage, les performances de stabilisantion,

assurées par W, ne sont plus préservées et une déstabilisation peut survenir.

L’idée est d’assurer la reproduction de V et de W sous commande échantillonnée avec une solution

à double échelles de temps.

0.2.4.2 La solution à double échelles de temps

Revenant à la connexion avec une cascade de type (0.1)-(0.2), ce système a un degré relatif égal à 2,

par rapport à la sortie y = x1, il est naturel de proposer une procédure impliquant deux échelles de

temps Nous considérons donc deux contrôleurs échantillonnés constants par morceaux sur l’intervalle

d’échantillonnage δ̄ = δ
2 avec ces hypothèses:

a. u1k est actif et constant ∀t ∈ [kδ,kδ+ δ/2),

b. u2k est actif et constant ∀t ∈ [kδ+ δ/2, (k+ 1)δ).

Les dynamiques équivalentes du système (0.8) sous l’action des contrôleurs (u1k,u2k) sont données

par la composition fonctionnelle:

xk+1 = Fδd(xk,u1k,u2k) = e
BCH2

(
δ
2 (fc+u1kgc), δ2 (fc+u2kgc)

)
(0.17)

avec BCH2 - l’exposant généralisé d’ordre 2 de la formule de Baker-Campbell Hausdorf.

Cette représentation met en évidence la contribution des deux contrôleurs échantillonnés sur les

dynamiques d’états.

En appliquant les idées de la section précédente, le premier objectif qui doit être imposer est celui

du Theorem 2:

V(xk+1) − V(xk) =

∫ (k+1)δ
kδ

V̇(xc(τ))dτ. (0.18)

où xk+1 est calculé à partir de (0.17).

Le deuxième objectif est donné par la dynamique du premier sous-système de (0.1) pour lequel

il existe une fonction de Lyapunov W(z), qui garantit les propriétés de stabilité de cette dynamique.

Sous échantillonnage, il est naturel de considérer, aussi, la reproduction de W. Le deuxième objectif

est:

W(xk+1) −W(xk) =

∫ (k+1)δ
kδ

Ẇ(xc(τ))dτ. (0.19)

avec xk+1 calculé à partir de (0.17).

Toutes ces observations sont résumées dans le Théorème suivant :
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Theorem 4. Etant donné un système sous la forme “strict-feedback” (0.1)-(0.2), en supposant l’existence d’un

contrôleur uc en temps continu calculé à partir de la méthode “backstepping”, tel qu’il existe des fonctions

Lyapunov V et W, qui garantissent la stabilité du système initial; alors il existe T∗ > 0 tel que pour chaque δ

appartenant à (0, T∗] il existe une loi de commande échantillonnée à double échelles de temps uk = (u1k,u2k)

avec u1k = uδ̄1d, u2k = uδ̄2d qui assure les mêmes évolutions des fonctions Lyapunov sous échantillonnage et

qui garantit la stabilisation asymptotique de l’origine du système.

Dans ce cas, le contrôleur à double échelles de temps, approché d’ordre 2 est donné par les expres-

sions suivantes:

(ud10, ud20) = (uc|xk , uc|xk) (0.20)

(ud11, ud21) = (
2

3
u̇c

∣∣∣∣
xk

,
10

3
u̇c

∣∣∣∣
xk

) (0.21)

ud12 =
4

3
u̇c

(
4ucL

2
gcLfc + LgcL

2
fc

)
W · (LgcLfcW)−1 − 6u̇cucLgcV · (LgcV)−1|xk

ud22 = 8u̇c + 12u̇cucLgcV · (LgcV)−1 − ud21|xk . (0.22)

Ces expressions sont bien définies puisque par hypothèse LgcLfcW = ∂W
∂x1

g(x1)b(x1, x2) 6= 0, ∀xk 6= 0.

0.2.4.3 La solution à m échelles de temps

Dans ce paragraphe, nous formulons la solution pour le cas général - de m + 1 sous-systèmes en

cascade. Considérons le système général donné par les équations (0.6) avec m+ 1 fonctions de Lya-

punov comme définies par (0.7). Ensuite, considérons la même forme compacte (0.8), avec les fonctions

définies au paragraphe 0.6.

Dans ce cas, il est naturel de proposer une procédure impliquant m+ 1 échelles de temps avec la

période d’échantillonnage δ̄ = δ
m+1 . Dans ce contexte, nous considérons m+ 1 contrôleurs échantil-

lonnés constants par morceaux sur l’intervalle d’échantillonnage δ̄ sous les hypothèses:

1. uik est actif et constant ∀t ∈ [kδ+ (i− 1)δ̄, kδ+ iδ̄), où 1 6 i 6 m+ 1.

Les dynamiques équivalentes du système (0.8) sous l’action des m+ 1 contrôleurs sont données par

xk+1 = Fδ(xk,u1k,u2k, · · · ,um+1 k) = e
BCHm+1

(
δ̄(fc+u1kgc),δ̄(fc+u2kgc),··· ,δ̄(fc+um+1 kgc)

)
(0.23)

De façon similaire, nous devons trouver les expressions des contrôleurs telles que les propriétés de

stabilisation correspondent à celles du système en temps continu. Dans ce cas, m+ 1 objectifs peuvent

être imposés pour reproduire m+ 1 fonctions Lyapunov qui sont définies.

Le Théorème suivant donne la solution de contrôle multi-échelles pour le cas général.
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Theorem 5. Etant donné un système sous la forme “strict-feedback” (0.6), en supposant l’existence d’un

contrôleur uc en temps continu calculé à partir de la méthode “backstepping”, tel qu’il existe des fonctions

Lyapunov W, V1, . . . , Vm , qui garantissent la stabilité du système initial; alors il existe T∗ > 0 tel que

pour chaque δ dans l’intervalle (0, T∗] il existe une loi de commande échantillonnée à m+ 1 échelles de temps

uk = (u1k,u2k, . . . ,um+1k) avec uik = uδ̄id, i = 1,m+ 1 qui assure les mêmes évolutions des fonctions

Lyapunov aux instants d’échantillonnage et garantit la stabilisation asymptotique de l’origine du système.

0.2.4.4 La solution de la loi de commande échantillonnée approchée

Cette stratégie de conception impose à chaque contrôleur la reproduction des propriétés de stabilité

de chaque sous-système, à l’aide des m+ 1 fonctions Lyapunov. Pour un m grand, il est clair que cette

méthode devient difficile à mettre en œuvre en pratique.

Il est intéressant de remarquer que le contrôleur à multi-échelles de temps, approché à l’ordre 1

assure la reproduction de la fonction de Lyapunov Vm avec une erreur en O(δ3) et pour la fonction W

l’erreur est m fois plus petite O(δm+2). Le calcul exact des premiers termes d’un contrôleur approché

à m échelles de temps est une tâche difficile, sauf au premier ordre.

Les solutions du premier ordre du contrôleur à multi-échelles de temps pour le cas m = 2 et m = 3

sont les suivantes :

(u1d1, u2d1, u3d1) =

(
3

4
u̇c

∣∣∣∣
xk

, 3u̇c|xk ,
21

4
u̇c

∣∣∣∣
xk

)
(0.24)

(u1d1, u2d1, u3d1, u4d1) =

(
332

45
u̇c

∣∣∣∣
xk

,
68

15
u̇c

∣∣∣∣
xk

,
52

15
u̇c

∣∣∣∣
xk

,
28

45
u̇c

∣∣∣∣
xk

)
(0.25)

Ces expressions sont bien définies puisque par construction LgcL
i
fc
Vm−i 6= 0, ∀xk 6= 0.

Remark 6. La solution approchée d’ordre p à m + 1 échelles de temps uδ̄ pd stabilise asymptotiquement le

système avec m connections en cascade avec une erreur O(δp+1) sur la reproduction de Vm, respectivement

une erreur O(δp+m+1) pour W.

Cela signifie que le contrôleur à m multi-échelles de temps sera capable de maintenir toutes les

propriétés de stabilisation des dynamiques internes. La première dynamique z, ce qui dans de nom-

breuses situations pratiques a un intérêt majeur, est favorisée par cette conception. L’approche multi-

échelles peut être utilisée avec succès dans le cas de systèmes avec une chaîne d’intégrateurs, lorsque

les solutions émulées ne fonctionnent pas, mème pour des périodes d’échantillonnage plus faibles.

0.2.4.5 Quelques observations concernant d’autres stratégies similaires

Dans l’article de [Nešić & Teel 2006] une conception échantillonnée calculée sur l’approximation d’Euler

du modèle continu est proposée. Les résultats obtenus assurent une stabilisation semi-globale et pra-
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tique du modèle exact. La principale différence entre la solution proposée dans [Nešić & Teel 2006] et

la nôtre est que le contrôleur est construit sur un modèle en temps discret approché, alors que nous

considerons un modèle échantillonné exact et les approximations sont apportées seulement sur le

côntrolleur. En conséquence, notre solution est plus performante, en termes de propriétés de stabilité

comme il est souligné par les résultats des simulations. Un autre aspect est que notre approche est

developpé pour toutes les dynamiques non-linéaires décrites par des champs de vecteurs.

Dans l’article [Nešić & Grüne 2005], deux solutions échantillonnées ont été développées à partir de

contrôleurs conçus en temps continu, ayant comme base des fonctions Lyapunov. La première solution

impose une plus forte négativité de la fonction de Lyapunov que le contrôle émulé. La deuxième

solution réduit les erreurs entre les évolutions continues et échantillonnées de Lyapunov. La spécificité

de notre approche est de faire correspondre exactement les évolutions Lyapunov et pas seulement de

“minimiser” l’écart. Toutefois, les deux approches coincident au premier ordre d’approximation.

Un autre travail de [Burlion et al. 2006], s’appuie sur les travaux [Nešić & Teel 2001],

[Nešić & Grüne 2005] et affirme la reproduction exacte de la fonction de Lyapunov. La procédure de

conception est développée seulement sur la version la plus simple des systèmes “strict-feedback”.

Aucune généralisation et aucuns commentaires sur la manière dont la solution peut fournir une

stabilisation globale.

Toutes ces solutions devraient être plus performantes pour des périodes d’échantillonnage plus

importantes, par rapport au cas des contrôleurs émulés. Comme il est souligné par les simulations

obtenues, un ordre élevé du contrôleur approché conduit à des expressions plus complexes et, comme

conséquence à plus d’instabilité quand δ est élevé. C’est la raison pour laquelle, les solutions du pre-

mier ordre sont préférables, elles fonctionnent pour des périodes d’échantillonnage plus importantes

que les contrôleurs d’ordre supérieur.
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0.2.5 Les objectifs et la structure de la boîte a outils

Le logiciel proposé CAOC -SimNLSys- est réalisé comme une application graphique en Matlab7. Ce

logiciel combine les fonctions graphiques d’une application d’interface utilisateur avec les solutions

fournies par les outils numériques et symboliques. Ses principaux objectifs sont:

• aider à la conception des contrôleurs échantillonnés pour un certain nombre des stratégies

disponibles pour le contrôle non linéaire;

• fournir des outils dédiés pour la simulation et l’évaluation des performances des contrôleurs

échantillonnés, avec des tests comparatifs;

SimNLSys est conçu comme une boîte à outils dans Matlab pour la conception de contrôleurs

échantillonnés pour des systèmes non linéaires. Cette spécificité du logiciel permet de combler le

vide qui existe dans ce domaine. L’idée de base est de calculer automatiquement les expressions

symboliques des contrôleurs, à partir de la dynamique d’état continue du système et suivant une

méthodologie spécifique. La méthodologie développée par Salvatore Monaco et Dorothée Normand-

Cyrot [Monaco & Normand-Cyrot 2001, Monaco et al. 2007, Monaco & Normand-Cyrot 2007]

[Monaco & Normand-Cyrot 2009, Monaco et al. 2011] offre des résultats spécifiques qui permettent

de proposer des algorithmes symboliques. Par conséquent, les expressions peuvent être utilisées dans

une application en temps réel pour le contrôle d’une installation physique. De cette façon, cette boîte

à outils représente un lien nécessaire entre la théorie et les applications pratiques.

Comme il a déjà été souligné dans les objectifs, la deuxième caractéristique du logiciel SimNL-

Sys est représentée par les outils de simulation. Ces outils, qui mettent en œuvre des algorithmes

numériques, permettent de fournir des tests spécifiques pour les systèmes échantillonnés et d’évaluer,

en vertu des critères définis, les performances du contrôleur calculé par le logiciel SimNLSys.

La structure de SimNLSys est representée dans Figure 0.2

L’architecture du logiciel comprend plusieurs modules:

7 Un produit MathWorks http://www.mathworks.com/products/matlab
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Figure 0.2: La fenêtre principale de SimNLSys

• module de conception

– module - reproduction entrée-sortie/fonction Lyapunov - IOMatch

– module - backstepping - Bks

– module - contrôle non linéaire optimal -NLOptSD

• modules des simulations - Sim1,Sim2

0.2.5.1 Module de conception de la loi de commande

La conception des contrôleurs est basée sur les capacités de la boîte à outils symbolique de Matlab.

L’utilisation d’outils symboliques apporte un grand avantage pour les applications de CAO et pour

toutes les personnes engagées dans des activités de recherche ou industrielles qui doivent manipuler

et calculer les expressions. L’absence d’erreurs d’arrondi et de cumul, spécifiques au cas numérique,

la manipulation des expressions symboliques sont des avantage de cet outil pour la conception de

contrôleurs non linéaire.

Dans l’application SimNLSys, la boîte à outils Matlab symbolique (actuellement connectée à un mo-

teur MuPAD) est utilisée pour calculer les expressions des commandes numériques. Ces expressions,

obtenues sous une forme symbolique, sont adaptées pour être mises en œuvre sur des dispositifs de

commande.

Il a été nécessaire, dans un premier temps de définir quelques fonctions de base qui calculent la

dérivée de Lie, la jacobienne, le crochet de Lie ou l’inverse d’une fonction multidimensionnelle. Une

attention particulière a été accordée aux manipulations matricielles qui sont essentielles dans le cas

MIMO.
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La présentation est concentrée sur le développement symbolique des algorithmes pour le problème

de la reproduction entrée-sortie qui représente le cœur des algorithmes développés. À partir de cet

algorithme, d’autres algorithmes ont été conçus pour la reproduction entrée/Lyapunov et pour la

conception du “backstepping” échantillonnées qui reposent sur les mêmes concepts. Des résultats

sont également donnés dans le cas à multi-échelles de temps, où une difficulté majeure réside pour le

calcul des des exposants BCH.

0.2.5.2 Modules des simulations

La boîte à outils fournit deux modules de simulation, l’un pour le cas à une échelle de temps (Sim1)

et l’autre (Sim2) qui gère les scénarios les plus difficiles comme les contrôleurs multi-échelles, les

systèmes non linéaires avec contraintes ou les systèmes qui incluent d’autres non-linéarités statiques.

Le développement de cette boîte à outils est toujours en cours parallèlement à de nouvelles méthodolo-

gies. Chaque architecture de module peut être décrite par trois composantes:

• Le niveau utilisateur - l’interface du logiciel, où les données sont précisées et les résultats sont

affichés;

• Le niveau code -représenté par les algorithmes de conception et par l’exécution;

• Le niveau des données - représenté par les résultants.

 

Data 
Level

Code 
Level

User 
Level

Interface

Symbolic 
computations

File Report 

resultsGenerating 
algorithms code

Evaluating 
algoritms/ Results 

generating

Data structure files 
(Matlab)

Plotting interface

Plotting
Saved/Printed

Figures

SD Control 

Options 

Data 

Model 

Plotting 

Options 

Simulations 

Parameters 

Figure 0.3: L’architecture du logiciel

En Figure 0.3 le flux de travail de l’ensemble de l’application SimNLSys est représenté. Un utilisa-

teur interagit avec l’application via les interfaces où il peut spécifier les données d’entrée (modèle de

processus, paramètres de simulation), puis calcule les solutions qui en résultent (expressions du con-

trôleur, fichiers de données, fichiers image). À la dernière étape, il peut utiliser les outils fournis par
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ce logiciel pour visualiser, enregistrer ou imprimer les solutions. Les solutions obtenues peuvent être

utilisées pour d’autres manipulations dans Matlab. Tous les algorithmes implémentés dans le logiciel

sont assignés à un “ code de niveau”, inaccessible aux utilisateurs.

0.2.5.3 Fonctionnement du logiciel

L’interface de communication entre l’utilisateur et le logiciel est implantée à partir d’une fenêtre prin-

cipale, permettant l’entrée des données du modèle, de la simulation et de l’analyse. Il faut remarquer

que toutes les fonctions qui sont introduites doivent respecter les syntaxes imposées par Matlab, les

ètats sont exprimés par x1, . . . , xn, et le temps par t.
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0.3 contrôle d’une suspension électromagnétique

Cette étude de cas présente des résultats expérimentaux obtenus sur un banc d’essai d’une suspension

électromagnétique disponible au Département d’Automatique de Supelec (Figure 0.4). Ce système

est composé d’un électro-aimant fixe, alimenté par une source de courant variable, et un pendule

ferromagnétique.

 

z

z
0

Électro-aimant�

Pendule- Capteur de position
����)

Figure 0.4: Suspension électromagnétique

La solution échantillonnée proposée repose sur la stratégie “backstepping” developée proposé dans

cette thèse (la version avec une échelle de temps). La conception est réalisée sur une modèle d’état de

dimension 2, (0.26).

ẋ1(t) = x2(t)

ẋ2(t) =
c·K2v
m

v2

(x0−x1(t))2
− g

(0.26)

où x1 est la position du pendule, x2 la vitesse et v l’entrée (source de courant). Les essais expéri-

mentaux ont été centrés sur l’évaluation des performances de stabilisation des trois contrôleurs :

émulé, ordre 1 et 2 du contrôleur approché. Les résultats montrent que des performances supérieures

sont obtenues avec le contrôleur du deuxième ordre. Dans ce cas, on constate que la stabilisation

est obtenue pour un période d’échantillonnage et respectivement pour un gain plus large que celles

obtenues dans le cas d’un contrôleur émulé.

li
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0.4 contrôle du niveau de l’eau d’un système des réservoirs couplés

L’objet de cette étude de cas est de mettre en évidence, sur un système physique - réservoirs d’eau

couplés, les performances d’une conception échantillonnée d’un contrôleur conçu en temps continu

et basée sur la passivité. Le banc d’essais expérimental est disponible à l’Université Politehnica de

Bucarest.
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Figure 0.5: Schéma des réservoires couplés

La conception du contrôleur est réalisée à partir d’un modèle d’état de dimension 2, (0.27)-(0.28).

ḣ1 =
1

A
Qi(t) −

1

A
c1
√
|h1 − h2|sign(h1 − h2) (0.27)

ḣ2 =
1

A
c1
√
|h1 − h2|sign(h1 − h2) −

1

A
c2
√
h2 (0.28)

où les états h1 et h2 représentent les niveaux d’eau dans chaque réservoir, Qi est le débit d’entrée.

Comme dans l’étude du cas précédent, les résultats montrent une bonne performance de la com-

mande échantillonnée en augmentant la période d’échantillonnage ou le gain des contrôleurs. Pour ce

dispositif, de nouvelles implantations sont en cours, en considérant une stratégie uni et multi-échelles

de temps du type “backstepping”.

0.5 contrôle d’un robot mobile à deux roues

L’objet de cette étude de cas est d’illustrer comment la discrétisation rend plus facile la conception

d’un stabilisateur en présence de retards de communication. Le système considéré est un robot mobile

à deux roues Figure 0.6.

Les dynamiques non linéaires des mouvements du robot sont décrites par les équations (0.29). Avec

une transformation de coordonnées et un bouclage appropriée, le système initial peut être décrit par
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Figure 0.6: Robot a deux roues

des dynamiques sous forme “chainée” qui sont finement discrétisables. En présence de retards, cet

aspect peut être exploité pour développer un prédicteur d’état exact.

ẋ(t) = v(t) cos(θ(t)),

ẏ(t) = v(t) sin(θ(t)),

θ̇(t) = ω(t)

(0.29)

Le contrôleur a été développé dans le cas sans retard à partir d’une stratégie de synthèse discrète

directe - réponse pile. Une solution à deux-échelles de temps a également été proposée. Les perfor-

mances de ces contrôleurs sont préservées dans le cas avec retard sous la condition d’un retard connu.

0.6 gestion échantillonnée de l’énergie d’un système - pile à combustible-super

condensateurs

Dans cette étude de cas l’objectif est d’illustrer les performances d’une commande non linéaire échan-

tillonnée pour la gestion de l’énergie d’un système composé d’une pile à combustible associée à un

super condensateur - PàC-SC et une charge.System Architecture and control objectives

DC/DC

DC/DC

vb

isc

vsc

vfc

ifc
C

il

FC

SCs

For all range of acceptable LOAD variations, the controller must

Maintain the bus voltage constant equal to v∗
B ;

Ensure iFC ≤ imax
FC and iSC ≤ imax

SC (sources protection);

Slowly varying FC current iFC (i.g. 4A/s for a FC 0.5kW /12.5V and 10A/s -

20kW /48V ); the power transient must be ensured by SC.

tiefensee,cyrot@lss.supelec.fr (LSS) hilairet,bethoux@lgep.supelec.fr (LGEP) VPPC - Sep - 2010 4 / 15

Figure 0.7: L’architecture du système [Ghanes et al. 2011]
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L’objectif est de piloter la tension aux bornes de la charge en optimisant l’échange énergétique

entre les deux sources, ceci pour solliciter dans un premier temps le super condensateur et dans un

deuxième temps la pile qui a une reponse plus lente. Deux stratégies non linéaires ont été proposées

à partir d’un modèle réduit de dimension 3 (0.30).

ẋ1(t) = 1
C

(
vFC
x1(t)

u1(t) +
x2(t)
x1(t)

u2(t) − x3(t)
)

ẋ2(t) = −
u2(t)
Csc

ẋ3(t) =
−Rl x3(t)+x1(t)

Ll

(0.30)

où x1 et x2 sont respectivement les tensions de bus et de la pile, x3 le courant de charge, et u1 et u2

les entrées commandées.

Une première approche fait référence à la méthode de façonnement de l’énergie et utilise une

conception de type Lyapunov reposant sur la notion de passivité - Interconnexion and Damping

Assignment - Passivity Based Controller (IDA-PBC). Pour cette approche, des résultats en simulations

et expérimentaux ont été obtenus. Le banc d’essai expérimental est disponible au LGEP, CNRS-UMR

8507, Gif-sur-Yvette.

La deuxième approche exploite la structure à deux échelles de temps des deux sources de courant

(pile et super condensateur) et propose une stratégie aux perturbations singulières.

Les objectifs de contrôle (pour les deux stratégies) ont été imposés en temps continu et les per-

formances des versions échantillonnées proposées ont été comparées à un simple bloqueur d’ordre

zéro. La période d’échantillonnage utilisée sur le banc d’essai expérimental est de l’ordre de la milli

seconde pour laquelle la solution émulée par BOZ reste satisfaisante. Toutefois les performances de

la loi émulée par BOZ sont très sensibles au choix des paramètres de réglage choisis en temps con-

tinu. Les résultats de simulation montrent que si l’on choisit des paramètres associés á une réponse

rapide, les solutions émulées par BOZ se dégrade avec l’augmentation de la période d’échantillonnage.

Pour ces situations les solutions échantillonnées proposées d’ordre 1 sont nécessaires et apportent des

améliorations significatives.

0.7 les effets de l’erreur de quantification dans les systèmes échantillonnés

La dernière étude de cas représent une analyse préliminaire sur les effets de l’erreur de quantification

dans les systèmes échantillonnés avec des contrôleurs “backstepping” numériques proposés dans la

première partie de la thèse. L’analyse est effectuée sur le même exemple académique développé dans

le Chapitre 4 afin de vérifier la dégradation des propriétés de stabilisation.
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Le contrôle etant fortement non linéaire, étudier les effets des quantifications est fortement de-

mandé. Cette étude établit un bilan de solutions proposées vis à vis du gain, de la période d’échantillon-

nage, de degré de l’approximation des contrôleurs et la précision numérique.
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0.8 conclusions générales

La thèse apporte des contributions importantes pour le contrôle des systèmes échantillonnés non

linéaires. L’un des objectifs principaux de ce travail est de migrer des solutions “idéales” - la syn-

thèse d’un contrôleur en temps continu- adossée à une théorie rigoureuse- vers des réalisations

pratiques. Les avancées théoriques, faites dans cette thèse, ont contribué à une série d’applications

pratiques de ces stratégies. Les résultats obtenus pour ces applications, ont montré qu’une conception

échantillonnée convenable peut récupérer la performance de contrôles “idéaux” proposés en temps

continu, dégradée par l’échantillonnage. Dans ce travail, les stratégies non linéaires de type “back-

stepping”, conception de type Lyapunov, IDA-PBC, aux perturbations singulières ont été discutées et

adaptées aux systèmes échantillonnés. Dans le même temps, une attention particulière a été portée au

développement d’algorithmes symboliques afin d’aider au calcul explicite de ces contrôleurs.

Les conclusions plus précises peuvent être divisées en trois parties, de la même manière que la

structure de la thèse. Chaque partie correspond à une direction complémentaire sur laquelle cette

thèse apporte des contributions.

0.8.1 Les contributions théoriques

Dans cette thèse, les performances des stratégies de reproduction entrée/Lyapunov dans le cadre

de la méthode de stabilisation de type “backstepping”, et le contrôle basé sur la passivité ont été

discutées. Deux nouvelles stratégies de commande ont été conçues et développées: une approche

avec une échelle de temps et une approche multi échelles de temps. Il est montré que les résultats

sont meilleurs, en termes de propriétés de stabilisation, par rapport à l’émulation habituelle des con-

trôleurs “backstepping” en temps continu. La version multi échelles permet d’imposer une meilleure

performance concernant la stabilité interne. L’approche multi échelles a permis d’augmenter le nom-

bre d’objectifs de contrôle imposés. Les performances de ces contrôleurs ont été comparées à des

procédures similaires disponibles dans la littérature. La version multi échelle s’est révélée la meilleure

lvii
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méthode en termes de préservation de la stabilité, augmentation des gains (rapidité) et l’amplitude

de la période d’échantillonnage (réduction des effets de quantification).

0.8.2 Le logiciel SimNLSys

Une autre direction importante est représentée par l’application de tip CAO. Ce travail est toujours en

cours et il s’appuie en particulier sur les outils symboliques fournis par l’environnement Matlab. Les

avantages de l’utilisation des outils symboliques et aussi leurs limites en se référant à l’application

SimNLSys ont été expliqués. Un autre aspect mentionné est que le logiciel inclue des algorithmes

symboliques et numériques, et des éléments graphiques. Le temps du calcul de ces solutions n’est pas

critique puisque c’est un processus “hors ligne”. La complexité croissante avec l’ordre du système et

l’ordre d’approximation du contrôleur peut générer problèmes de mémoire physique disponible.

0.8.3 Applications

Une direction importante de la thèse est représentée par les exemples (académiques ou expérimen-

taux) qui illustrent les performances des stratégies proposées.

La version “backstepping” à une échelle de temps est évaluée sur un banc d’essai expérimental

d’une suspension électromagnétique (disponible au Département Automatique de Supélec, Gif-sur-

Yvette). Les résultats de simulation ont été confirmés par les tests expérimentaux. Cette étude de cas

représente un exemple réel où la conception échantillonnée permet effectivement de meilleures per-

formances par rapport aux versions émulées. Un fait important a également été observé en ce qui

concerne le temps de stabilisation du contrôleur qui est amélioré en utilisant l’approche échantillon-

née.

La deuxième étude de cas, utilise les mêmes critères de reproduction entrée/Lyapunov pour la con-

ception d’une version échantillonnée d’un contrôleur LgV . Le contexte de cette étude est caractérisé

par les propriétés de passivité et la façon dont celles-ci peuvent être conservées sous échantillonnage.

Le banc d’essai disponible à l’Université Polithenica de Bucarest consiste en deux réservoirs d’eau

couplés. Il s’agit aussi de résultats experimentaux.

La troisième étude de cas illustre deux aspects distincts sur l’exemple d’un robot mobile. Le premier

porte sur une conception numérique directe, quand il existe un modèle équivalent exact en temps

discret du système. L’autre, aborde les problèmes de retard dans la communication. Dans cette étude,
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un stabilisateur a été proposé couplé à un prédicteur d’état afin de gérer les retards de commande. Il

s’agit d’un exemple simulé.

La quatrième étude de cas porte sur la gestion électrique d’une pile à combustible et super con-

densateurs et charge, un système utilisé dans l’industrie automobile. Les solutions échantillonnées

proposées, à partir de deux stratégies non linéaires en temps continu, apportent des améliorations

spécifiques. Cette étude a été réalisée dans le cadre du projet PEPS "Automatique" - GESE - Gestion

Echantillonnée des Systèmes Energétique, soutenu par l’Institut CNRS-INSIS. Il s’agit ici de résultats

experimentaux et en simulation.

La dernière étude de cas est consacrée à l’étude des effets de quantification. Des simulations ont été

réalisées afin d’évaluer comment la performance de reproduction entrée/Lyapunov est affectée par la

quantification avec une erreur réduite, fonction de l’erreur de quantification.

Tous les calculs liés à la conception des contrôleurs, pour ces études de cas, ont été réalisés par

logiciel SimNLSys.

0.8.4 Conclusion globale

Une conclusion globale est la suivante: Le contrôleur échantillonné approché, conçu sur des critères de

reproduction entrée/Lyapunov, offre une stabilisation asymptotique globale aux instants d’échantillonnage, et

une stabilisation efficace quand il est mis en œuvre sur des systèmes réels. Cette conception permet d’augmenter

les gains des contrôleurs ainsi que l’amplitude de la période d’échantillonnage, par rapport aux limites d’un

contrôleur émulé. Avec l’augmentation de l’ordre d’approximation du contrôleur, les performances attendues

sont supérieurdx mais au prix d’une complexité croissante des expressions et donc des erreurs de quantification.

Bien que la plus petite valeur de δ donne des résultats satisfaisants pour le contrôle émulé, il y a des

situations pour lesquelles cette valeur pourrait ne pas être acceptable pour le dispositif informatique

d’acquisition et d’actionnement (comme ceci est illustré dans le cas de la suspension électromag-

nétique). Il y a donc l’avantage à rendre possible un élargissement de cette période. Bien que les

périodes d’échantillonnage admissible avec nos solutions soient toujours petits permettent les calculs

du contrôle et les interfaces avec le banc d’essai.
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0.9 travaux futurs

Les travaux futurs concernent la mise en œuvre et l’évaluation de nouvelles stratégies échantillonnées

sur des installations expérimentales.

La version multi-échelles de temps du contrôleur “backstepping” devrait être testée prochainement.

Comme les résultats de la simulation ont montré de performances, les mêmes attentes existent en

pratique.

Cependant, comme le “backstepping” s’appuie fortement sur les propriétés de passivité, un schéma

digital direct qui exploite cette propriété pourrait également être envisagé. Les travaux progressent

dans cette direction.

Trois directions principales peuvent être lancées pour les travaux futurs.

0.9.1 Les développements théoriques

L’idée principale est de poursuivre le développement de nouvelles stratégies de commande échantil-

lonnées provenant des stratégies non linéaires en temps continu, afin de migrer les résultats théoriques

disponibles vers une utilisation plus pratique. Dans le même temps, une analyse rigoureuse des effets

de l’échantillonnage et des paramètres de conception est obligatoire afin de fournir une caractérisation

claire des performances d’un contrôleur échantillonné.

des perspectives sur les solutions échantillonnées de backstepping Sur la base

des conceptions échantillonnées proposées pour les systèmes “strict-feedback” les perspectives sont:

• La recherche de critères spécifiques permettant une analyse quantitative des performances en re-

lation avec les périodes d’échantillonnage admissible, la rapidité de convergence, les incertitude

paramétriques ou ler erreurs de quantification.

• Une conception échantillonnée associée a une version semi-globale en temps continu de “back-

stepping”. Cette solution est moins restrictive et peut être utilise lorsque l’on considère le cas de

connexions en cascade multiples.

la passivité et l’optimalité Comme les stratégies de commande optimale directe et in-

verse s’appuient sur les propriétés de passivité, certaines extensions peuvent également être réal-

isées dans ce contexte. Une première tentative est discutée en [Monaco & Normand-Cyrot 2012] et

[Tanasa et al. 2012]. La solution échantillonnée discutée vise à préserver les propriétés optimales de
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stabilisation avec la même fonction Lyapunov V et avec un coût modifié. Une idée qui doit être

étudiée est comment modifier la fonction de Lyapunov V sous échantillonnage ou modifier le critère

afin d’obtenir un meilleur compromis stabilisation/optimalité.

la théorie de perturbations singulières Ce type de systèmes est caractérisé par de

multiples échelles de temps, et une stratégie de contrôleur multi-échelles semble être plus appropriée.

Une façon de d’aborder cette conception peut être l’adaption de la méthodologie de la reproduction

entrée/Lyapunov avec multiple échelles de temps au cas de systèmes singulièrment perturbés. Une

application pratique est le problème de la gestion énergétique échantillonnée d’un système de pile à

combustible [Hilairet et al. 2012].

la synthèse d’observateur et le retard Un autre aspect incontournable lors d’applications

représente la synthèse d’observateurs. Il s’agit aussi de lier les aspects retards de commande et pré-

dicteurs avec la mise en place d’observateurs. Une première tentative a été faite pour les systèmes

avec retard, où un prédicteur d’états a été calculé en considérant le cas particulier d’un système de

type “feed-forward”

[Monaco et al. 2012].

0.9.2 Développement du logiciel

Des nouveaux modules du logiciel SimNLSys seront mis en œuvre pour de nouvelles avancées

théoriques. Par exemple, en faisant référence aux concepts de passivité en moyenne - “average passiv-

ity” introduits en [Monaco et al. 2011, Tiefensee et al. 2009, Monaco et al. 2009]. Certaines procédures

de conception ont été proposées et discutées en [Tiefensee 2010].

Une autre préoccupation forte est l’amélioration des algorithmes symboliques en utilisant de nou-

velles techniques disponibles concernant simplification des expressions (par exemple pour les termes

radicaux). Également un mécanisme efficace pour le compromis entre la vitesse de simplification

de calcul d’expression devrait être etudié. Pour réduire le temps de calcul, une solution consiste à

paralléliser les algorithmes existants.

Sur la partie simulations, des modules spécifiques devront permettre d’évaluer ’a-priori’ les per-

formances des contrôleurs échantillonnés. Une meilleure gestion d’un compromis pour le temps de

calcul et la représentation minimale des ces expressions doit être proposée.
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Un autre objectif est d’adapter ce logiciel à une large utilisation. Dans ce cas, une amélioration de

la convivialité de l’interface est toujours nécessaire. Une autre idée, du point de vue de côut serait de

migrer le logiciel dans un autre outil de développement gratuit tel Scilab.

0.9.3 Applications

La stratégie de “backstepping” multi-échelles pourra être testée sur le pendule électromagnétique et

la plateforme réservoirs d’eau couplés, déjà étudiés dans cette thèse.

La gestion énergétique du système pile à combustible est ouvert à de nombreuses directions. Une

conception échantillonnée qui peut être mise en œuvre fait référence à la stratégie de commande

à multiple échelle de temps. La solution multi-échelles peut être utilise soit sur le modèle réduit

(dimension 3 du modèle de l’état), ou sur le modèle complet (dimension 5 du modèle d’état) en

prenant en considération les vitesses différents des dynamiques. D’autres difficultés tells que les

pertes électriques des convertisseurs et la présence de bruit dans les mesures devront être traitées.

Il y a un nombre important de problèmes réels de contrôle qui peuvent être abordés dans un

contexte échantillonné. Des sujets très répandu de la recherche actuelle portent sur des exemples des

problèmes sur les retards de communication, sur la gestion énergétique optimale où sur le contrôle

basé sur la passivité. Les thèmes proposés dans cette thèse représentent un bon point de départ pour

traiter de tels problèmes.
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1
G E N E R A L I N T R O D U C T I O N

A short survey on the usual approaches found in the literature dealing with the design

of digital controllers for nonlinear system is presented. Close to this presentation, another

survey is related to the computer aided toolboxes available in the nonlinear control litera-

ture (to the best of the author’s knowledge). Finally, some notations and theoretical recalls

which concern nonlinear and sampled-data systems are given.

1.1 nonlinear sampled-data control

The continuous development, in the last decades, of powerful computing systems has contributed to

the increase of the performance demanded to control systems and hence an increased number of con-

trol solutions that cope with more challenging problems. As control solutions should add efficiency

to the systems were these are applied, such as reduced costs or increased speed or precision, it is clear

that control theory is an essential tool which contributes to economical and technological growth.

The nonlinear sampled-data control copes with two challenging problems: one is related to the

nonlinear dynamics of the system and the other one takes into account the digital aspects unavoidable

in real time applications.

The interest in nonlinear control is increased, especially for the reason that, in practice, all the exist-

ing systems in our environment are mostly nonlinear rather than linear [Isidori 1995], [Khalil 1996],

[Rasvan & Stefan 2007], [Boucher & Dumur 2006]. In fact, many control solutions are based on lin-

earizations or approximations of the real model and because of, important dynamics is neglected.

Likewise the provided control has a linear behavior. For example, the trajectories of a vehicle mod-

eled with nonlinear dynamics are more appropriate to real trajectories, but are more difficult to be

achieved due to the complexity of designing such controllers. Another example is the pendulum mo-

tion. When linear equations are used, there is supposed that the angle, during the motion, is small. If

this angle becomes larger the considered model and also the designed controller are no longer valid.

3
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Another example is given by the thermal process. In the linear context, it is chosen a nominal point

in a region where the thermal characteristic is linear. The model is valid only if during the run-time

of the system the operating point is not rising above the nominal point for a specific threshold. Of

course this fact is not sufficient and robust controllers should be developed to ensure the behavior

of such a system in the preset conditions even in the presence of unmodeled dynamics or important

disturbances.

A sampled-data system is operating in continuous-time and some of its signals are sampled at dif-

ferent time instants (usually considered periodically). The data-control system is, in the same context,

a control law computed from the sampled data of the process measurements. This type of systems

are also called “hybrid” because they involve both continuous and discrete-time evolutions. Sampled-

data systems constitute the core of the embedded systems [Hanselmann 1987], [Chen & Francis 1995],

[Astrom & Wittenmark 2011].

The digital controller has to offer a rebuild continuous-signal that is compatible with the process

entry. There are important issues regarding sampling, quantification and signal reconstruction. The

objective hence is to design a digital controller which satisfies the desired requirements for the given

continuous-time plant. In the literature, different approaches do exist. A first approach is to design

a continuous-time controller and then to discretize it and many solutions exist for discretizing filters.

The performance of this solution is frequently not good enough. A second approach is to design a

controller based on the sampled model of the plant and thus providing possibilities to impose digital

control requirements (dead beat or minimum time response). A third approach takes into account for

the design, the fact that the model and the controller are sampled (Sampled Data design). In the next

paragraphs there are given more details about these three conceptual approaches.

a. Continuous-Time Design (CTD) - The controller is designed in continuous time and it is im-

plemented in discrete time. Usually the implementation in discrete time of a continuous-time

system is made by means of sampling and holding devices such as the ZOH block. The ZOH-

block samples the continuous-time signal with fixed rate and also produces a constant out-

put over that rate. In this case, we talk about the emulation of a continuous-time controller

and this represents the commonly used strategy when applying digitally a continuous-time

controller. The major drawback is that the designed performance of the continuous-time con-

troller could not be preserved under such a solution due to its sampling [Monaco et al. 1986],

[Monaco & Normand-Cyrot 1986].

In the case of state-feedback controllers some works have been studying, for the nonlinear sys-

tems, the conditions, under which, the sampled-data controllers recover certain properties of the
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continuous-time controller [Owen et al. 1990], [Zheng et al. 1990], [Clarke et al. 1997]. The results

indicate that the global or local stabilizing properties are maintained under fast sampling. It was

also highlighted that in presence of bounded disturbance the stabilization holds practically. An-

other problem derived is the estimation of the maximum sampling period for which such proper-

ties are maintained [Zheng et al. 1990],[Khalil 2004], [Nešić et al. 2009], [Postoyan 2009] or in the

presence of disturbances, related also with the notion of input-state stability [Teel et al. 1998].

In order to compensate for the sampling effects, some strategies have been proposed to redesign

the continuous-time controller such in [Keller & Anderson 1992].

For the linear systems case, the sampled-data design analysis is easier and makes reference

either to the controller discretization issues [Franklin et al. 1998] or to optimizing procedures for

designing digital controllers [Chen & Francis 1995].

b. Discrete-Time Design (DTD) - The control design is performed on the discrete-time equivalent

model of the continuous-time process. In this case, the design neglects the inter-sample behavior

of the system that may be critical in some situations. If in a linear context there is no problem

to apply such method, in the nonlinear case the exact computation of the discrete time models

becomes intractable.

Another drawback is that through the sampling procedure, continuous-time properties are gen-

erally lost. As an example, some particular structures of a system (e.g. the input-affine, strict-

feedback, feedforward or singularly perturbed form [Barbot et al. 1996] and others) are no longer

preserved under sampling and hence more general discrete-time control methodologies have to

be applied. As a consequence, basic structural properties are lost, under the sampling, such as

passivity [Tiefensee et al. 2010b], [Tiefensee 2010], stability or optimality

[Monaco & Normand-Cyrot 2012]. The difficulties are well known and documented in the lin-

ear context, for example the occurrence of critical zeros, the matter of influence of the sampling

rate’s amplitude and the mater of approximation calculus [Monaco & Normand-Cyrot 1983],

[Aström et al. 1984], [Goodwin et al. 2010].

Now let there be considered the case when there exists a valid sampled equivalent of the

continuous-time system. In this case, in the last three decades notable progresses have been done

in designing direct digital controllers for the nonlinear discrete-time systems and for a number

of issues related to observability, controllability, invariance, decoupling, regulation and so on

([Normand-Cyrot 1982, Monaco & Normand-Cyrot 1984a, Monaco & Normand-Cyrot 1984c],

[Monaco & Normand-Cyrot 1984b] and the references from [Monaco & Normand-Cyrot 2007]).

In this area a practical issue is based on the approximation of the sampled-data model on the
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basis of which a digital control is designed. The most commonly used is the Euler approxima-

tion for its simplicity. The stabilizing properties of the controller designed from these approx-

imations are at most semiglobal and guarantee a “practical” stabilization of the sampled-data

system [Nešić & Teel 2006]. In [Nešić et al. 1999] there are developed some examples that illus-

trate the fact that in some situations a controller that stabilizes an approximated Euler model

fails when it is applied on the sampled-data system.

Other solutions proposed handle with higher approximations of the model [Nešić et al. 1999],

[Nešić & Teel 2004a], [Comeau & Hori 1998] or other digital redesigns procedures

[Ieko et al. 1996]. In this context, it is interesting to note that the stability properties can be

guaranteed not only by choosing the sampling period, but also by choosing a small enough

integration step, that determines the accuracy of the discrete model.

In conclusion, the DTD methods can offer larger attraction domains and implicitly larger sam-

pling periods. A remaining problem is linked to the inter-sample behavior which is totally ig-

nored.

c. Sampled-Data Design (SDD) - In this case the digital controller is designed from the sampled

equivalent model of the continuous-time process, taking the advantage of its dependency in the

sampling period parameter. The controller is function of the continuous-time variables that are

sampled at each periodic instant. In this way, this approach can handle the problem of inter-

sampling behavior. The sampled-data model has specific properties and it is described by its

series expansion in terms of the sampling rate. An important statement is the following: the

sampled models are described by asymptotic series depending on the sampling rate, the digital

controller solution admits itself series expansion which is defined around the continuous-time

law. Other significant aspects are: how to maintain the continuous-time performance in discrete

time through sampling and what is the proper value of the sampling rate.

The SDD approach handles both continuous and discrete-time behaviors and its representation

in the control literature is rather scarce compared with the others approaches previously re-

called. For the linear case the best results are summarized in [Chen & Francis 1995]. The major

advantage of this approach compared with CTD or DTD is that it permits, at the theoretical and

fundamental level, to propose digital controllers that reproduce continuous-time properties un-

der samplings [Monaco & Normand-Cyrot 2006], [Monaco & Normand-Cyrot 2009]. In the SDD

there are possible two design scenarios. The first, that is called “indirect-design”, is based on an

a priori continuous-time solution that was designed with certain performance. The digital con-

troller is designed around the continuous-time law as an exponential series parametrized by the
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sampling period. In this way, it is possible to impose reproduction objectives of the continuous-

time behavior (said ideal case) such as: input-state [Monaco & Normand-Cyrot 2006], input-

output [Fromion et al. 1996], input- Lyapunov stability [Fromion et al. 1996],[Nešić & Grüne 2005],

[Monaco et al. 2009, Monaco et al. 2010]. The second scenario called “direct-design” is referred

to when a continuous-time law does not exist or is not computable. Then a digital controller is

designed, from the sampled-data model, by imposing digital performance objectives by means of

strategies such as: dead-beat, discrete Lyapunov stabilization, discrete passivity as in [Tiefensee 2010].

On this type of systems, some results were obtained with the SDD approach in [Gennaro 2002],

[Di Giamberardino et al. 2002], [Monaco & Normand-Cyrot 2001].

A possible question arises from the fact that nowadays the acquisition and sampling devices are

performing for very small sampling periods, why insist on such methods as SDD or DTD should be use-

less ? Three counter arguments can be observed. First, besides the fact that fast sampling allow more

precise and accurate recovery of the continuous-time controllers objectives, the quantization errors

and numerical or physical noises induce, in this case of fast sampling, more complex detrimental per-

formance effects. Second, as it was pointed out previously, there are situations when continuous-time

solutions do not exist, and the only solution is to propose a digital design. Third, these techniques are

performing better no matter if the sampling rate is fast enough.

In the last decade the interest for network control systems has increased exponentially (see for exam-

ple references from [Antsaklis & Baillieul 2004] or [Bemporad et al. 2010]) and has driven new appli-

cations for sampled-data systems. The particular case of interest is when the control loop components

are available in a network. The controller is connected to the actuators and sensors through commu-

nication channels with finite informational capacity. The problems addressed in this emerging area of

information theory, computer networks and control are often discussed in a linear context and fewer

works are addressing the nonlinear case. Among these, some works have been dedicated to issues such

as the variable communication delays [Niculescu & Gu 2004],[Karafyllis & Krstic 2011], limited chan-

nel capacity, quantized feedback [Kameneva & Nešić 2010] or disturbance inputs [Nešić & Teel 2004b].

This area has an increased potential for new results which are mandatory for this new age of the net-

work systems.

The present thesis concerns the SDD approach. It is based on sampled data control strategies and on

solutions developed in the references [Monaco & Normand-Cyrot 2001, Monaco & Normand-Cyrot 2007],

[Monaco & Normand-Cyrot 2009]. The goal of this present work is to develop computational tools in

a dedicated toolbox, for the design and computation of improved digital controllers: the core of this

thesis.
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1.2 cad tools in nonlinear control

The extensive use of symbolic calculus in the last two decades has generated a lot of software tools

for the design and analysis of control systems. By including numerical algorithms and the features

of the computer graphical interface, many computer-aided design control toolboxes Computer Aided

Design Control (CADC) were developed. These software applications prove to be useful in the educa-

tional, research or industrial activities in order to avoid complex algebraical/numerical manipulations

and to lead to new technological developments.

In the control area, these CADC software applications are specific to the type of system dynamics and

to the type of the control design strategy. These toolboxes are widely developed for linear continuous

and discrete-time system dynamics and most of them are designed by using numerical algorithms.

These packages cover the most well-known control strategies, ranging from simple SISO system design

tools to a variety of methodologies such as: optimal, robust, adaptive, model predictive control etc.

With reference to the computational aspects, the main advantage of linear dynamics is dealing with

matrix algebra for which numerous efficient toolboxes exist. In the nonlinear context, the situation

is very different because the nonlinearity involves the composition of functions instead of matrix

operations as an elementary example.

For the analysis and design of nonlinear control systems, differential geometry provides a useful

mathematical framework. The differential geometric objects (e.g. Lie derivatives and brackets, mani-

folds, etc) can be handled more intuitively with symbolic tools. In this way, the solutions for nonlinear

control problems can be computed exactly with no possibility of accumulation of quantization error

as is often the case in the numerical algorithms.

Ad hoc computational tools have been built for computing nonlinear control strategies. Several ex-

amples, which are developed with symbolic tools, can be mentioned: MACSYMA -developed by MIT

beginning in the ’60s [Eldeib & Tsai 1988]; CONDENS [Akhrif & Blankenship 1988], NonLinCon by

Bram de Jager [de Jager 1995], NelinSys by Martin Ondera 1 and many other tools that handle with ex-

act linearization, asymptotic output tracking and others. A similar application, QEPCAD, is dedicated

to similar problems but using quantifier elimination strategy [Jirstrand 1997]. Other symbolic nonlin-

ear systems CAD applications can be mentioned such as: NLFeedback [Rodrigues-Millan et al. 1997]

or CAD System for Nonlinear Control by T. Othani [Ohtani et al. 1994] are handling the design of

nonlinear observers. Each university, research institute or industrial entity prefers to develop their

own CADC software applications which remain locally available. Most of these applications are based

on powerful symbolic and numerical tools provided by technical programming and developing envi-

1 http://www.mathworks.com/matlabcentral/fileexchange/authors/18800
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ronments such as Matlab, Maple or Mathematica. The analytical expressions of these control solutions

generally involve Lie algebraic tools, for instance the Lie derivative operator which generalizes, for

the nonlinear context, the notion of matrix - a finite dimensional linear operator- and the notion of

the Lie series instead of an exponential of the matrix.

The software developed in this thesis makes reference to the input-output matching control strat-

egy proposed in [Monaco & Normand-Cyrot 2007] and further developed in [Monaco et al. 2011],

[Monaco & Normand-Cyrot 2009]. The efficiency of these techniques revealed through simulation of

academic up to realistic examples justifies the need to develop an ad hoc software. The basic idea is

as follows:

Given a continuous-time system described by ordinary differential equations and smooth vector

fields functions, given also a continuous-time controller designed to satisfy control objectives on a

certain output mapping, assume that the control is kept constant over time intervals of constant length

and find the digital controller, so that its performance on the system be the same as those of the ideal

continuous-time strategy. This coincidence is requested at the sampling instants. Such a problem is

referred to as the input-output matching under digital control. Solutions have been proposed thanks

to the Lie series expansions and combinatorial calculus. It is clear the combinatorial and iterative

character of these solutions which suggests the development of an ad hoc software makes use of

formal calculus tools.

In this thesis, the attention is not restricted to SISO systems but considers also the MIMO systems.

The existence of complete solutions relies on the relative degree index, which is the extension to the

nonlinear case of the excess of poles over the zeros in the linear context. The notion of input/output

link might be understood as the privileged target link to be controlled. In fact, when Lyapunov-based

design procedures are considered, such a privileged link corresponds to the input/Lyapunov link.

In the context of optimality, such a privileged link corresponds to the input/criteria link associated

with some energy or suitable criteria function. The complete software will include different modules

providing digital versions of the well-developed backstepping, optimal or energy-shaping techniques

based on passivity properties of suitably defined input/output links.

With reference to CADC applications for sampled-data systems, there are some tools developed for

linear dynamics. Here it can be mentioned the DirectSD [Polyakov et al. 2006] application based on

parametric transfer function methods, [Fujioka et al. 1999] by using object oriented programming or

[Oshima et al. 1991]. To my best knowledge, there is no CAD tool for nonlinear sampled-data systems

comparable with SimNLSys.
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1.3 notations and mathematical aspects

We note that these mathematical recalls are voluntarily in a simple way to prevent from extra difficulties and to

track on the manipulations which are essential to understand the thesis contributions. Some specific conditions,

which can be restrictive, have been formulated for general properties and definition (e.g. smoothness, forward-

complete, input-affine) that can be relaxed when considering examples or practical applications.

The next notations, definitions and properties are recalled from the actual literature, mainly from

[Isidori 1995], [Sepulchre et al. 1997], [Khalil 1996] or [Monaco & Normand-Cyrot 2007].

1.3.1 The class of systems

Through this work it is mainly considered the SISO input-affine continuous-time system:

ẋc(t) = f(xc(t)) + u(t, xc(t))g(xc(t)) (1.1)

yc(t) = h(xc(t)) (1.2)

where

x ∈ IRn- represents the systems state;

t ∈ IR,u ∈ IR - represents time and one-input respectively ;

f,g : IRn −→ IRn are vector fields and h : IRn −→ IR an analytic functions. 2 The vector fields are

assumed smooth (or of class C∞), except when it is differently specified. Another assumption is that

the continuous control system (1.2) is considered forward complete 3( it does not exhibit finite escape

time under bounded and measurable inputs).

When it is considered an external state-feedback controller uc given by (1.3), then the closed loop

system is described by (1.5):

uc(t) = α(xc(t)) + v(t)β(xc(t)) (1.3)

˙̃xc(t) = (f+αg)(x̃c(t)) + v(t)βg(x̃c(t)) (1.4)

ỹc(t) = h(x̃c(t)) (1.5)

with α(·), β(·) as smooth functions and v(t) as an external time-signal.

2 An analytic function is a function that is locally given by a convergent power series. Also, an analytic function is an infinitely

differentiable function such that the Taylor series at any point x0 in its domain converges to f(x) for x in a neighborhood of

x0.
3 By denoting Um the space of measurable and and locally bounded control input functions u, then a system (1.2) is forward

complete if for ∀ x0 ∈ IRn, u ∈Um the solution x(x(0), t) of (1.2) corresponding to input u exists ∀t > 0.
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1.3.2 Vector fields

Let there be f : U→ IRn a smooth map (class C∞), where U is an open set contained in IRn.

• The f map associates for each x point from U a vector in the IRn i.e. f(x) and it is called vector

field over set U.

• In other words, the map f associates each point x of U to a vector with the origin in x and the

top in x+ f(x).

x1

x2

x

x+ f(x)

f(x)

1.3.3 Lie derivative

The Lie derivative associated with a vector field is an operator that evaluates the direction in which

an function changes over this vector field. Let us define the formal operator Lie derivative associated

to a vector field f, as Lf :

Lf =

n∑
i

fi
∂

∂xi
(1.6)

The Lie derivative of a smooth function h with the respect to the vector field f, evaluated in a point x

is given by:

Lfh|x =

n∑
i

∂h

∂xi
|xfi(x) (1.7)

Another form to represent (1.5) is : Lfh|x = jacobian(h)|xf(x) = Jh(f)|x

If h(x)=Id (identity function), then LfId|x = f(x).

Some properties of the Lie derivative are given next.

1. The Lie derivative is a linear operator. If there are α1,α2 ∈ IR and h1,h2 : IRn → IR then

Lf(α1h1 +α2h2) = α1Lfh1 +α2Lfh2 (1.8)

2. The iterative composition of the two Lie operators.

Lg ◦ Lfh|x =
∂Lfh

∂x
|x · g(x) (1.9)
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3. The Lie bracket product is still a Lie operator :

[f,g] = adfg; (1.10)

Remark: [f,g]=-[g,f], with

L[f,g]h := Lf ◦ Lgh− Lg ◦ Lfh = Jh(fg) (1.11)

Iterative Lie bracket is defined as follows:

ad
p
fg = [f,adp−1fg ];ad0fg = g. (1.12)

4. Lie exponential operator

eLf = 1+
∑
p>1

1

p!
L
p
f (1.13)

with 1 the identity operator, respectively applied on a map h,

eLfh|x = h(x) +
∑
p>1

1

p!
L
p
f h|x = efh|x = h(ef(x)) (1.14)

Remarks:

• The composition “◦” is not commutative: Lg ◦ Lf 6= Lf ◦ Lg

• Lnf = Lf ◦ Ln−1f = Ln−1f ◦ Lf

• L0f = 1(identity operator)

• By notation abuse, we use sometimes ef in place of eLf .

1.3.4 Comparison functions

The use of comparison functions are useful when showing results on the Lyapunov stability. The next

definitions are recalled from [Khalil 1996].

Definition 7. A continuous function α : [0,a)→ [0,∞) is said to belong to class K if it is strictly increasing

and α(0) = 0. It is said to belong to class K∞ if a = ∞ and α(r)→∞ as s→∞.

Definition 8. A continuous function β : [0,a)× [0,∞) → [0,∞) is said to belong to class KL if, for each

s fixed, the mapping β(r, s) belongs to class K with respect to r and, for each r fixed, the mappings β(r, s) is

decreasing with respect to s and β(r, s)→ 0 as r→∞.
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Some examples:

• α(r) = tan−1(r) ∈ K but not in K∞;

• α(r) = rc ∈ K∞, with any positive real scalar c;

• β(r, s) = r
ksr+1 ∈ KL, for any positive real k;

• β(r, s) = rce−s ∈ KL, for any positive real c.

Proposition 9. O(δp) property

A function R(x, δ), with δ < 1 is of p order in δ, e.g. O(δp), if whenever R is defined then it can be written as

R(x, δ) = δpR̃(x, δ) and there is a function ψ ∈ K∞ such that for each ∆ > 0 there is δ∗ > 0 such that |x| 6 ∆

and δ < δ∗ implies |R̃(x, δ)| 6 ψ(|x|).

1.3.5 Relative degree

The relative degree is a concept that illustrates how the output depends on the input values along

time. For the linear case, this corresponds to the notion of the poles excess over zeros of the transfer

function.

Definition 10. [Isidori 1995] The system (1.2) has relative degree r ∈ {1, ..., l} at x0 ∈ IRn if, and only if, there

exists an open neighborhood U of x0, such that,

(i) ∀x ∈ U ∀k ∈ {0, 1, ..., r− 2} : LgLkfh(x) = 0

(ii) LgL
r−1
f h(x0) 6= 0 .

The previous definition represents a local version formulation. In a global definition, the degree

relative is called uniform, if the above conditions hold for any x0 ∈ IRn.

1.3.6 BCH exponent

The m order Baker-Campbell Hausdorf exponent noted as BCHm(·) represents the exponent series

of the non-commutative composition of m exponential series. For m = 2 then BCH2(X, Y) can be

computed as

eX ◦ eY = eBCH
2(X,Y) = eX+Y+

1
2 [X,Y]+ 1

12 ([X,[X,Y]]+[Y,[Y,X]]) + . . . (1.15)

Further details can be found also in [Monaco et al. 2007].
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1.3.7 Sampled-data systems

A sampled-data control system represents a control scheme where the continuous-time plant is driven

by a digital controller. Under sampling, the sampled-data system is continuous-time varying and it

can be modeled by its discrete-time model obtained through discretization. This discrete-time model

does not take into account the inter-sample behavior of the real system, which may be critical for

many applications.
 

Digital
Control

rk +

-

εk uk DAC
+

ZOH

uc
Actuator Process Sensor

yc

Plant

Clock

ADC
yk

Figure 1.1: Sampled data control scheme

In Figure 1.1 a schematic representation of a sampled-data system is depicted. It consists of a

physical process connected to a control structure through sensors and actuators by means of digital to

analog and analog to digital converters. The discrete signals (measures and controls) are processed by

a computer device according to the reference/objectives imposed. The digital controller can be build

as a state-feedback control law or as an output-reference control law.

To compute the closed-loop system solutions (e.g. state, output evolutions) two approaches are

usually used: a numerical or a functional approach. Both approaches give, after explicit calculus,

approximations of the “true” solutions. The functional way is more suitable for theoretical studies

and development because the expressions have a mathematical meaning and some properties can be

understood. The numerical approach is suitable for computer calculus because it gives faster compu-

tations.

1.3.7.1 Functional expansions

The functional expansions of the sampled data systems are based, in this work, on the Lie tools

previously introduced. Let us consider the system Σc given by (1.2) and assume that the control is
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constant over time intervals of amplitude δ (which is also referred to as the sampling period in this

work):

u(t, xc(t)) = u(k) = u(kδ, xc(kδ)), for each t ∈ [kδ, (k+ 1)δ),k > 0 (1.16)

For this system, the discrete-time state-space equivalent representation is:

xd(k+ 1) = Fδ(xd(k),u(k)) (1.17)

yd(k) = h(xd(k)) (1.18)

where Fδ : IRm → IRn is characterized by the following exponential expansion:

Fδ(•,u(k)) = eδLf̃Id|(•) (1.19)

with f̃(x) = f(x) + u(k)g(x) and Id identity operator.

Remark 11. For the same initial conditions, the system Σd is the exact sampled equivalent of the system Σc.

In other words these systems have the same input-state at the sampling instants t = kδ:

xc(kδ) = xd(k)

The expansion of (1.18) could be performed either in power of δ or u. If it is considered with respect

to δ, then let us introduce the notion of the approximated sampling at the p-order.

eLf̃Id|xd(k) = e
δLf̃(xd(k)) = (1+ δLf̃ +

δ2

2!
L2
f̃
+ · · ·+ δp

p!
L
p

f̃
)(xd(k)) +O(δ

p+1) (1.20)

where O(δp+1) contains the remaining terms of order greater than p in δ. The first order approxima-

tion, of this series, is also referred to as the Euler approximation:

xd(k+ 1) = xd(k) + δf̃(k) (1.21)

When the sampled data equivalent dynamics is described by a finite number of terms i.e. there

exists P > 1 such that

eLf̃Id|xd(k) = (1+ δLf̃ +
δ2

2!
L2
f̃
+ · · ·+ δP

P!
LP
f̃
)(xd(k))

we speak about finite discretizability of dynamics (1.18).

In this thesis, the solutions that are proposed are analyzed formally and no convergence studies are

conducted.

An easy example is given in section 1.3.8 for computing the exponential expansion of the discrete

solution.
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1.3.7.2 Numerical integrations

In this subsection, there are recalled some basic elements useful for integrating numerically the so-

lutions of the sampled-data systems. Numerical approach is suitable when using computer systems

especially for simulations of the control structures. The Runge-Kutta (RK) [Dormand & P.J.Prince 1980]

methods are widely used for computing the solutions of ordinary differential equations.

runge kutta Let us consider an initial value problem as follows:

ẏ = f(t,y),y(t0) = y0

The usual method to solve this differential equation is the RK4 (Runge-Kutta of order 4). The solution

is given by the following equations:

yn+1 = yn +
1

6
d (k1 + 2k2 + 2k3 + k4)

tn+1 = tn + d

where

k1 = f(tn,yn)

k2 = f(tn +
1

2
d,yn +

1

2
dk1)

k3 = f(tn +
1

2
d,yn +

1

2
dk2)

k4 = f(tn + d,yn + dk3)

with d as the integration step. For an accurate solution one should chose a small enough value of

d.

A more general representation of the RK4 method is given by the family of the explicit Runge-Kutta,

that is given below:

yn+1 = yn + d

s∑
i=1

biki,

where

k1 = f(tn,yn),

k2 = f(tn + c2h,yn + a21hk1),

k3 = f(tn + c3h,yn + a31hk1 + a32hk2),

...

ks = f(tn + csh,yn + as1hk1 + as2hk2 + · · ·+ as,s−1hks−1).

For a compact view, the Butcher tableau representation is preferred as depicted in Table 1.1 with

the consistency condition:
∑i−1
j=1 aij = ci for i = 2, . . . , s.
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0

c2 a21

c3 a31 a32

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

Table 1.1: Butcher Tableau

0

1/5 1/5

3/10 3/40 9/40

4/5 44/45 −56/15 32/9

19372/6561 −25360/2187 64448/6561 −212/729

1 9017/3168 −355/33 46732/5247 49/176 −5103/18656

1 35/384 0 500/1113 125/192 −2187/6784 11/84

5179/57600 0 7571/16695 393/640 −92097/339200 187/2100 1/40

35/384 0 500/1113 125/192 −2187/6784 11/84 0

Table 1.2: Butcher Tableau DP5

adaptive runge kutta . Another class of RK methods is represented by the adaptive methods.

These methods compute a local estimation error for each step. To do this, it is necessary to compute

two solutions: one of p-order denoted by (yn+1) and the other of p− 1 order denoted by (y∗n+1) order,

and the error estimation is the difference between these.

en+1 = yn+1 − y
∗
n+1 = d

s∑
i=1

(bi − b
∗
i )ki, (1.22)

In Matlab (Simulink) the default algorithm used for the integration is Dormand-Prince of 5th order

with variable integration step. The Butcher Tableau is given in Table 1.2.

There are two rows of d coefficients, the first row is for the fourth order solution and the second for

the fifth order. These rows can give the error estimation to make possible the adaptation of the size of

the d parameter. By considering large amount of data, if a small value for d is chosen, the simulation

time is larger and the accuracy could be significantly the same with the one obtained with a bigger

d. This is the reason this method is more efficient since it handles with two objectives: reduced time
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18 general introduction

and accuracy solving. The proposed solution adapts the size of the d parameter, at each step, and

consequently the best results in terms of speed and precision of the solution are obtained.

1.3.8 Example 1.

In this section there are given some Lie computation examples when dealing with sampled-data sys-

tems. The objective is to compute the discrete-time equivalent for a SISO nonlinear system in different

particular situations.

Let there be considered the following continuous-time system:

ẋ1(t) = 5x21(t) + x2(t)

ẋ2(t) = 3x22(t) + cos(x1(t)) + u(t) (1.23)

y(t) = x1(t) + 2x2(t)

The problem is to find the mathematical expressions of the discrete-time equivalent and of the sam-

pled output of the system (1.23) in closed loop, when:

1. u(t) = −cos(x1(t)) − 3x
2
2(t) − 3(x1(t) + x2(t));

2. u(t) = −tsin(t);

3. u(t) = −cos(x1(t)) − 3x
2
2(t) − 3(x1(t) + x2(t)), is kept constant over t ∈ [kδ, (k+ 1)δ) ?

Solution

Let us consider the notations given in the previous sections. The system (1.23) is affine-input with:

f =


5 x1

2 + x2

3 x2 + cos(x1)

 ; g =

 0

1

 ; h(x) = x1 + 2x2

By using the expansion (1.20) one gets:

i) when u is in continuous-time evolution (the above cases 1 and 2):

xk+1 = xk + δLf+ug(xk) +
δ2

2!
L2f+ug(xk) +

∞∑
i>3

δi

i!
Lif+ug(xk)

= xk + δ(Lf + uLg)(xk) +
δ2

2!
(L2f + u

2L2g + u(LfLg + LgLf) + u̇Lg)(xk)

+ O(δ3) (1.24)
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ii) when u is kept constant over the sampling interval (the above cases 3)4:

xsk+1 = xsk + δ (Lf(x
s
k) + uk(x

s
k)Lg(x

s
k))

+
δ2

2!

(
L2f (x

s
k) + uk(x

s
k)
2L2g + uk(x

s
k)(LfLg + LgLf)(x

s
k)
)
+O(δ3) (1.25)

The main difference between i) and ii) is that the higher order derivatives of u are equal to 0.

Let us now compute the Lie terms involved in the previous equations:

Lf(xk) = f(xk) = [ 5x21k + x2k, 3 x2k + cos(x1k)]T ; Lg(xk) = g(xk) = [0, 1]T ;

L2f (xk) =

 10x1k(x
2
1k + x2k) + 3x2k + cos(x1k)

−(5x21k + x2k)sin(x1k) + 6(3x
3
2k + x2kcos(x1k))

 ; L2g(xk) = 0;

LgLf(xk) = [1 6x2k]
T ; LfLg = [0 0]T .

The states evolution of the continuous-time plant, evaluated at each integration step with an error in

O(δ2), is given by the expression (1.24) for the continuous-time controller, and the expression (1.25)

for digital controller respectively, with the operators defined above. The inputs are also evaluated at

each sampling instants, e.g.

1.

u = u(xk) = −cos(x1k) − 3x
2
2k − 3(x1k + x2k); (1.26)

u̇ = u̇(x(t))|t=kδ = (3x1k + 3x2k) (6x2k + 3) +
(
5x1k

2 + x2k

)
(sin(x1k) − 3) (1.27)

2.

u = u(kδ) = −kδ sin(kδ); (1.28)

u̇ = u̇(t)|t=kδ = − sin(kδ) − t cos(kδ) (1.29)

3.

uk = u(xsk) = −cos(xs1k) − 3x
s
2k
2 − 3(xs1k + x

s
2k) (1.30)

In a similar way the sampled-output can be evaluated for the above cases.

i) when control u is in continuous-time evolution:

y((k+ 1)δ) = h(xk+1) = h(xk) + δ(Lf + uLg)h(xk)

+
δ2

2!

(
L2f + u

2L2g + u(LfLg + LgLf) + u̇Lg

)
h(xk) +O(δ

3) (1.31)

4 The “s” subscript stand for the sampled evolution in the case of digital controllers
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ii) when control u is kept constant:

ys((k+ 1)δ) = h(xsk+1) = h(x
s
k) + δ(Lf + ukLg)h(x

s
k)

+
δ2

2!

(
L2f + u

2
kL
2
g + uk(LfLg + LgLf)

)
h(xsk) +O(δ

3) (1.32)

The Lie derivatives involved in the previous equation are computed as follows:

Lfh(xk) = 5x21k + 7x2k + cos(x1k); Lgh(xk) = 2;

L2fh(xk) = (10x1k − sin(x1k))(5x21k + x2k) + 21x2k + 7 cos(x1k); L2gh(xk) = 0;

LgLf(xk) = 7; LfLg = 0.

The sampled-data output computation is completely defined by the equation (1.31) with the above Lie

derivatives expression and with the control expressed as in (1.27)-(1.29) in the case of continuous-time

controller.

In a similar way, for the sampled-data case, the output is completely defined by the equation (1.32),

by neglecting the higher derivatives of the input and where the control input is defined by the equa-

tion (1.30).

1.3.8.1 Comparative simulations

The aim of this paragraph is to provide comparative simulations between these two approaches re-

called in the previous sections on the above example. A series of simulations have been performed

when considering the followings integration scenarios:

• RK45 - numerical method with adaptive integration step;

• Ord1 - functional method, when the series expansion are truncated at first order in δ, commonly

known as Euler approximation;

• Ord2 - functional method with a second order series approximation;

• Ord3 - functional method with a third order series approximation;

These scenarios have been considered for the system (1.23) when the controller is either in continuous

time evolution (the case 1) or it is kept constant along the sampling interval (case 3). The results are

given in Figure 1.2a and Figure 1.2b respectively .

The values of the simulation parameters are specified in Table 1.3.

To quantify the error levels between the solutions computed by the RK45 and the functional meth-

ods, two error criteria were used, which are defined in the Section 5.2.4. The results show that the

higher orders of the functional methods offers solutions that are closer to the RK45 method.
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0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

0.3
Ord1: er1= 0.050 er2= 0.345.

Ord2: er1= 0.008 er2= 0.058.

Ord3: er1= 0.001 er2= 0.007.

time (s)

y s

yc, δ = 0.2

 

 

RK45
Ord1
Ord2
Ord3

(a) Sampled-output evolution when the control is continuous

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

0.3
Ord1: er1= 0.042 er2= 0.400.

Ord2: er1= 0.005 er2= 0.024.

Ord3: er1= 0.001 er2= 0.002.

time (s)

y s

ys, δ = 0.2

 

 

RK45
Ord1
Ord2
Ord3

(b) Sampled-output evolution when the control is kept constant

Figure 1.2: Comparative integration algorithms when computing the sampled-output evolution
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sampling period initial condition simulation time length

δ = 0.2 s x0 = [0.1 0.1] tf = 10 s

Table 1.3: Numerical values of the simulation parameters - Example 1

A wider discussion about which of the solution can be employed can be addressed and is not the

aim of this section. The practice shows that the widely used procedure is represented by the RK45

method; the functional methods can be used when exact computations can be obtained. In some

situations, the functional method can give a reduced number of operations, and consequently an

increased speed can be obtained.
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2
LYA P U N O V S TA B I L I T Y O F N O N L I N E A R S Y S T E M S

This chapter deals with Lyapunov stability for sampled-data nonlinear systems. In the

first section, the concepts of Lyapunov stability of continuous-time nonlinear systems

are recalled especially from [Khalil 1996]. The same concepts are then addressed in Sec-

tion 2.3 for discrete-time systems. They are used to analyze the stabilization properties of

a sampled-data nonlinear system by means of the Lyapunov functions. At the end of this

chapter an academic example is given to specify the stability performance of an emulated

controller.

2.1 lyapunov stability in continuous-time

Let the nonlinear autonomous system :

ẋ(t) = f(x(t)) (2.1)

where f : D → IRn is a locally Lipschitz map1 with a domain D ⊂ IRn. Let us assume that f(0) = 0

and xe = 0 is the equilibrium point. Also x(0) denotes the initial condition.

Definition 12 (Stability in the sense of Lyapunov). The equilibrium point xe = 0 of system (2.1) is

• stable if, for each ε > 0, there is µ = µ(ε) > 0 such that2

‖x(0)‖ < µ⇒ ‖x(t)‖ 6 ε, ∀t > 0 (2.2)

• asymptotically stable if it is stable and µ can be chosen such that

‖x(0)‖ < µ⇒ lim
t→∞ x(t) = 0 (2.3)

1 A map f is locally Lipschitz if it satisfies

||f(t,z)− f(t,x)|| 6 L||z−x||

for all (t,x) and t,z ∈D, and L > 0
2 In the subsequent sections ||x|| or |x| means the Euclidean norm of a vector x.

25
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26 lyapunov stability of nonlinear systems

• exponentially stable if, for each c and σ - two positive constants, there is µ = µ(c,σ) > 0 such that

‖x(0)‖ < µ⇒ ‖x(t)‖ 6 c exp {−σt}, ∀t > 0 (2.4)

• unstable if it is not stable.

Asymptotic stability is said to hold globally if the convergence of the state trajectories is satisfied for

any initial condition that lies in the entire definition domain (e.g. D = IRn).

Asymptotic stability is said to hold in a semiglobal sense if the initial conditions are in an arbitrarily

large compact set.

Exponential stability implies asymptotic stability, asymptotic stability implies stability in the sense

of Lyapunov, but the reverse is not true.

Theorem 13. [Khalil 1996]The second (or direct) method of Lyapunov

Let xe = 0 be an equilibrium point for (2.1), and x ∈ D. Let V : D→ IR be a continuously differentiable and

positive definite function

V(0) = 0, V(x(t)) > 0 in D− {0} (2.5)

such that

V̇(x(t)) 6 0, in D (2.6)

Then, x = 0 is stable. Moreover, if

V̇(x(t)) < 0, in D− {0} (2.7)

then x = 0 is asymptotically stable.

A V function that satisfies the properties of the Theorem 13 is called a Lyapunov function. The

Lyapunov surface (or level) is represented by the x which satisfies V(x) = c, for some positive c.

Condition (2.7), V̇ < 0 implies that any trajectory that enters in a set Ωc = {x ∈ IRn|V(x) 6 c}

can never go out again. Also, negative definitiveness of V̇ assures that trajectories move from one

Lyapunov surface to an inner Lyapunov surface with smaller c. As c decreases, the surface V(x) = c

reduces and forces the trajectories to approach to the origin as time progresses.

Theorem 13 gives the condition for local stability. For global stabilization of the equilibrium, when

D = IRn, the extra condition that V(x) is radially unbounded is required.

If we only know that V̇(x) 6 0, then it is not guaranteed that the trajectories are converging to the

equilibrium point, but we can state that the origin is stable since the trajectories can be contained in a

ball Bε by requiring the initial state x(0) to lie inside a Lyapunov surface that is included in Bε.
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Theorem 13 offers sufficient conditions only. If a Lyapunov function candidate fails to satisfy the

previous properties this does not mean that the equilibrium is not stable but it means that the stability

cannot be established with this Lyapunov function candidate. In this case further investigations are

necessary. To verify if the equilibrium is unstable some instability theorems can be used, as the next

one.

Theorem 14. [Sastry 1999]General Instability Theorem

Let there be considered the same V function as in Theorem 13 with V(x) positive definite. Assume that in any

subset of D, containing the origin, there is x such that V(x) > 0. If, moreover V̇(x) > 0, ∀x 6= 0 in D then the

system is unstable at the origin.

In order to refine the results of the Theorem 13 by means of comparison functions the next propo-

sition holds.

Proposition 15. [Khalil 1996] Let assume the same condition as in Theorem 13. Let suppose that V : D→ IR

is a continuous positive definite function defined on a domain D ⊂ IRn that contains the origin. Let Br ⊂ D

for some r > 0. Then, there exist class K functions ρ1, ρ2, ρ3 defined on Br such that

ρ1(‖x‖) 6 V(x(t)) 6 ρ2(‖x‖) (2.8)

V̇(x(t)) 6 −ρ3(‖x‖) (2.9)

for all x(t) ∈ Br. If D ⊂ IRn, the functions ρ1, ρ2, ρ3 will be defined on [0,∞) and the foregoing inequality

will hold for all x(t) ∈ IRn. Moreover if V(x(t)) is radially unbounded, then ρi can be chosen to belong to class

K∞.

If the conditions of Proposition 15 hold then in is shown [Khalil 1996] that there exists a KL function

β so that the solution of the system (2.1) satisfies

|x(t, x0)| 6 β(|x0| , t) ∀x0 ∈ Br, t > 0. (2.10)

2.1.1 The linear case

Let us consider the linear time-invariant system, with an equilibrium point in the origin.

ẋ(t) = Ax(t) (2.11)

One way to test the stability properties of the equilibrium is given by the next Theorem, by using the

Lyapunov method.
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Theorem 16. [Khalil 1996] A matrix A is Hurwitz, that is Reλi < 0 for all eigenvalues of A, if and only if for

any given positive definite symmetric matrix Q there exists a positive definite symmetric matrix P that satisfies

the Lyapunov equation

PA+ATP = −Q. (2.12)

Moreover, if A is Hurwitz, then P is the unique solution of (2.12).

This Theorem is used as alternative to the computations of the eigenvalues of the matrix A. But the

advantage of equation (2.12) is that it offers a way to find a Lyapunov function for any linear system

with A Hurwitz.

In this case, the matrix solution P is :

P =

∫∞
t=0

e(A
T )tQeAtdt (2.13)

2.1.1.1 Practical stability

This concept introduced in [LaSalle & Lefschetz 1961] for a system which is not necessarily stable

in the Lyapunov sense but its performances are acceptable from some practical point of view, e.g.

overshots requirements, settling time, etc.

The definition, taken from [LaSalle & Lefschetz 1961], is particularized here to autonomous system

and no perturbations are considered:

Definition 17. Given a compact set D containing the origin and D0 a subset of D, and considering that

x0 = x(x0, t) is the solution of the autonomous system (2.1) then if for each x0 in D0, x(x0, t) is in D for all

t > 0 then the origin is said to be practically stable.

This means that the solutions that start in D0 remain thereafter in D. The D in fact specifies the set

of acceptable states (with good performances). According to [LaSalle & Lefschetz 1961] some remarks

can be drawn about practical stability:

• practical stability is neither a stronger or a weaker concept of stability. For example there are

solutions that are Lyapunov stable but are not practically stable. Also the converse is true, some

unstable points can be considered practically stable (e.g. when the solution is oscillating near

the origin).

• practical stability reveals a uniform boundedness of the solution relative to the set of initial

conditions D0.

In the case of practical stability, the conditions do not necessary require the origin to be an equilibrium

point. Extensions of this concept to other cases can be found in [Celentano 2012].
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2.2 lyapunov stability of controlled systems

Let us consider again the input-affine system

ẋ(t) = f(x(t)) + u(t)g(x(t))

y(t) = h(x(t)) (2.14)

with the notations given in Section 1.3.1.

There are certain systematic methods available for designing stabilizing controllers by means of Lya-

punov functions. For example: backstepping, forwarding, methods based on control Lyapunov func-

tions, LgV controllers, optimal and passive controllers. Some of these methods also offer a systematic

way to construct a Lyapunov function V when this was not previously known. A well documented lit-

erature is dedicated to construct Lyapunov functions [Malisoff & Mazenc 2009], [Sepulchre et al. 1997].

It is important to find the conditions when a feedback controller u(t) = u(x(t)) drives the closed

loop system f̃(x) = (f+ ug)(x) to a stable origin. If such a controller exists then the system (2.14) is

stabilizable at origin and u(x(t)) is called a stabilizer. In the next section the asymptotic stabilization of

the closed loop is concerned.

The previous stability analysis can be applied also on the closed loop systems by making reference

to the notion of Control Lyapunov Function (CLF) [Artstein 1983],[Sontag 1983].

Definition 18. A smooth positive definite, and radially unbounded function V(x) is called a CLF for the system

(2.14) if for all x 6= 0,

LgV(x) = 0⇒ LfV(x) < 0. (2.15)

To be sure about the continuity of the stabilizer the small control property is needed.

Definition 19. A CLF V is said to satisfy the small control property if for each ε > 0, we can find δ(ε) > 0

such that , for all 0 < ||x|| < δ, there exists u with ||u|| < ε which satisfies

LfV(x) + LgV(x)u < 0

These properties lead us to characterize the Lyapunov function for a controlled systems and to

derive some constructive solutions like those of Sontag [Sontag 1983] or those in [Praly et al. 1991].

Let us, for example, consider the case of LgV controllers as employed in the Chapter 8. The LgV

controllers are used to provide asymptotic stability to Lyapunov stable systems or to increase the

damping of an asymptotically stable system [Bazanella et al. 1999]. Firstly let us recall the ZSD prop-

erty.
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Definition 20. [Sepulchre et al. 1997][Zero State Detectable (ZSD)] The system (2.14) is locally zero state

detectable if no solution of the uncontrolled dynamics ẋ(t) = f(x(t)) can stay in the set Z = {x ∈ IRn, s.t.

h(x) = 0} other than solutions x(t) converging asymptotically to the zero equilibrium.

The main benefit of the ZSD property is that it gives the condition to connect the stability with the

passivity property. The next theorem gives the main results involving LgV controllers.

Theorem 21. [Sepulchre et al. 1997] Let us consider the system (2.14) and let D ⊂ IR be the set containing the

origin. If there exists a Lyapunov function V : D→ IR such that V(0) = 0, V(x) > 0 on D− {0}, LfV(x) 6 0

and (2.14) is ZSD then the control law u = −KLgV renders the origin locally asymptotically stable.

This theorem can be also stated globally. If the negativity of LfV is strictly negative, then the

requirement of ZSD property is no more necessary.

2.3 lyapunov stability in discrete time

Let the non-linear autonomous discrete-time dynamics described by the difference equation

xk+1 = F(xk) (2.16)

where f : D → Rn is a locally Lipschitz map with a domain D ⊂ Rn. Let us assume without lose

of generalization, that F(xe) = 0 and xe = 0 is the equilibrium point. Also x(0) denotes the initial

condition of the difference equation (2.16).

Definition 22. [Chen 2004][Stability in the sense of Lyapunov] The equilibrium point xe = 0 of the dynamics

(2.16) is

• stable if, for each ε > 0, there is µ = µ(ε) > 0 such that

‖x(0)‖ < µ⇒ ‖xk‖ 6 ε, ∀k ∈ N (2.17)

• asymptotically stable if it is stable and µ can be chosen such that

‖x(0)‖ < µ⇒ lim
k→∞ xk = 0 (2.18)

• exponentially stable if, for each c and σ - two positive constants, there is µ = µ(c,σ) > 0 such that

‖x(0)‖ < µ⇒ ‖xk‖ 6 c exp (−σk), ∀k ∈ N (2.19)

• unstable if it is not stable.

Now let us give the stability formulation with Lyapunov functions.
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Theorem 23. [Chen 2004]The second (or direct) method of Lyapunov

Let xe = 0 be an equilibrium point for F(xk), and x ∈ D. Let V : D → R be a continuously differentiable

positive definite function

V(0) = 0, V(xk) > 0 ∀ xk ∈ D− {0} (2.20)

such that

∆V(xk+1) := V(xk+1) − V(xk) 6 0, ∀xk ∈ D (2.21)

then, xe = 0 is stable. Moreover, if

∆V(xk+1) < 0, in D− {0} (2.22)

then xe = 0 is asymptotically stable.

For the global stabilization it is required in addition the radially unbounded condition, e.g.

V(xk)→∞ as ||xk||→∞. (2.23)

2.3.1 The linear case

Let us consider the linear autonomous discrete-time dynamics, with an equilibrium point at the origin.

xk+1 = Axk (2.24)

One way to test the stability properties of the equilibrium is given by the Theorem below, by means

of the Lyapunov method.

Theorem 24. A matrix A is Schur stable, that is all eigenvalues of A are |λi| < 1, if and only if for any given

positive definite symmetric matrix Q there exists a unique positive definite symmetric matrix P that satisfies the

discrete-time Lyapunov equation

ATPA− P = −Q. (2.25)

This Theorem is used as an alternative to the computations of the eigenvalues of the matrix A. The

advantage of equation (2.25) is that it offers a way to find a Lyapunov function for any linear dynamics

with A stable.

In this case, the matrix solution P is :

P =

∞∑
k=0

(AT )kQAk. (2.26)

For further details, related to stability in discrete-time systems, we redirect the reader to

[Halanay & Rasvan 2000].
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2.4 lyapunov stability for sampled-data systems

Let us now consider the dynamics,

ẋ(t) = f(x(t)) + ukg(x(t)) (2.27)

under control input uk piecewise constant on intervals [kδ, (k+ 1)δ), with δ the sampling period and

its discrete time equivalent:

xk+1 = Fδ(xk,uk) (2.28)

The stability of sampled-data systems is establish by the next theorem.

Theorem 25. [Nešić et al. 1999] The sampled-data system (2.27) is said globally asymptotically stable, i.e. there

exists β̄ ∈ KL such that

|x(t)| 6 β̄(|x0|, t), ∀x0, t > 0. (2.29)

if and only if

i) the discrete-time equivalent system (2.28) is globally asymptotically stable, i.e. there exists β ∈ KL such

that

|xk| 6 β(|x0|,k), ∀x0, k > 0. (2.30)

ii) the solutions of (2.27) are globally bounded, i.e. there exists γ ∈ K∞ such that

|x(t)| 6 γ(|x0|), ∀x0, t ∈ [0, δ]. (2.31)

This theorem states that to prove the stability of a sampled-data dynamics, one must show that the

inter-sample behavior is bounded (condition 2.31) and the discrete-time dynamics (considered as the

sampled-data model behavior at sampling instants) is globally stable (condition 2.30). A local version

can be stated.

In the following sections, it is assumed that the inter-sample behavior remains bounded under

the assumption of a forward complete system3, and we focus the presentation on the stability of the

discrete-time dynamics.

New definitions of stability can be employed, which takes into account the sampling parameter δ.

The next definitions are taken from [Nešić et al. 1999]

3 A system is called forward complete if for every initial condition x0 and every input signal u, the corresponding solution is

defined for all t > 0.
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Definition 26. Let β ∈ KL and let N ⊂ IRn be an open set containing the origin.

• The family (uk, Fδ) is (β,N) stable, if there exists ∆ > 0 such that for each δ ∈ (0,∆) the solutions of

(2.28) satisfy

|x(k, x(0))| 6 β(|x(0)|,kδ),∀x(0) ∈ N,k > 0. (2.32)

• The family (uk, Fδ) is (β,N) practically stable, if for each R > 0 there exists ∆ > 0 such that for each

δ ∈ (0,∆) the solutions of (2.28) satisfy

|x(k, x(0))| 6 β(|x(0)|,kδ) + R,∀x(0) ∈ N,k > 0. (2.33)

An equivalent Lyapunov formulation is also available from [Nešić et al. 1999].

Theorem 27. The following statements are equivalent:

• There exists β ∈ KL such that the family (uk, Fδ) is (β, IRn) stable.

• There exist ∆ > 0, ρ1, ρ2 ∈ K∞ and for each δ ∈ (0,∆), Vδ : IRn → IR+, such that ∀x ∈ IRn,∀δ ∈

(0,∆) we have:

ρ1(||xk||) 6 V
δ(xk) 6 ρ2(||xk||) (2.34)

Vδ(xk+1) − V
δ(xk) 6 −δρ3(||xk||). (2.35)

The proof of this theorem is given in [Nešić et al. 1999]. It is interesting to note, that the Lyapunov

function that can be used to prove the stability properties is also depending on the sampling rate.

As it was mentioned before, the construction of global stabilizing digital controllers for sampled-

data systems is rarely addressed, even impossible for nonlinear dynamics. In this context two ap-

proaches are usualy proposed.

The first one, proposed in [Nešić et al. 1999] and developed in various context by many authors,

starts with a computable approximation of (2.28) (usually Euler approximation), for which a digital

global stabilizing controller can be designed. Under specific conditions of “consistency” between the

approximated model and the exact sampled model, the controller is designed to stabilize globally and

asymptotically the origin of the approximated model, then it stabilizes the sampled-data system but

in a semiglobal practical sense.

The second approach, that is adopted in the thesis, proposes a digital controller that recovers the

continuous-time stabilizing properties of a given continuous controller, at least at the sampling in-

stants. As we will see next, this approach leads us to semiglobal results also and the origin is stable

or asymptotically stable but does not refer to practical stability.
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2.4.1 The case of the emulation of continuous-time state-feedback controllers

In this section we restrict the attention to the controller emulation, the mainly used method when a

continuous-time controller issued from a nonlinear design is being digitally implemented.

Let us consider again the sampled-data system given by (2.27). Let us suppose that a continuous-

time state-feedback controller uc(x(t)) exists and brings the system to an asymptotically stable point.

Then there exists a CLF V that satisfies properties 18 and 19. Then by using the converse Lyapunov

theorem, one gets:

Proposition 28. If there exists a state-feedback controller uc(x(t)) such that the solution of the closed loop

dynamics ẋ(t) = f̃(x(t)) = f(x(t)) + uc(x(t))g(x(t)) is globally asymptotically stable, then there exist a CLF

V : IRn → IR, ρ1, ρ2, ρ3 ∈ K∞ such that the following conditions hold:

ρ1(‖x‖) 6 V(x(t)) 6 ρ2(‖x‖) (2.36)

V̇(x) < −ρ3(‖x‖) (2.37)

for every x ∈ IRn.

The continuous-time evolution is used next as a reference for the digital design. In the literature,

fewer works have addressed the problem of sampled-data stabilization by state-feedback controllers.

A well documented study is offered in [Khalil 2004]. All the results state that if the continuous-

time controller is stabilizing globally then the emulated controller stabilizes practically and glob-

ally in x. Only under the exponential stability condition of the equilibrium point, then one recovers

limt→∞ x(t)→ 0 for the sampled-data systems.

Theorem 29. [Khalil 2004] Consider the system ẋ = f(x,u), where f(0, 0) = 0 and f is locally Lipschitz in

its arguments in some domain that contains the origin. Let u = γ(x) be a static state feedback control law with

a locally Lipschitz function γ such that γ(0) and the origin of the closed-loop system is asymptotically stable

with the region of attraction N. Let N0 be any compact set in the interior of N and xc(t) be a solution of the

closed-loop system that starts inN0. Let x(t) be the solution, with xc(0) = x(0), of the closed-loop sampled-data

system that results from applying u(t) = γ(x(kδ)), for kδ 6 t 6 (k+ 1)T , and xk+1 = F(xk) be the exact

discrete-time model at the sampling points. Then, the following hold.

• There exists ∆1 > 0 such that, for every 0 < δ 6 ∆1, x(t) is bounded for all t > 0, uniformly in δ.

• Given any µ > 0, there exist ∆2 > 0 and Ta > 0, both dependent on µ and N0, such that, for every

0 < δ 6 ∆2, x(t) satisfies ||x(t)|| 6 µ, ∀t > Ta.

• Given any µ > 0, there exists ∆3 > 0 dependent on µ and N0, such that, for every 0 < δ 6 ∆3, x(t)

satisfies ||x(t) − xc(t)|| 6 µ, ∀t > 0.
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• If the origin of ẋ = f(x, (γ{x})) is exponentially stable and f and γ are twice continuously differentiable

in some neighborhood of the origin, then there exists ∆4 > 0 such that, for every 0 < δ 6 ∆4, the origin

of xk+1 = F(xk) is exponentially stable and x(t) decays to 0, exponentially fast, as t→ 0.

The first two bullets recall the practical stability of the solution. The size of the sampling periods are

depending on the size of the set of initial conditions N0. It is shown for instance in [Clarke et al. 1997]

that fast sampling is required in order to have a closer evolution to the equilibrium point (with small

displacements) and also for large initial conditions when explosion times can occur. Hence, the choice

of the sampling period has to take into account the accuracy desired for controlling the system to 0

and also the size of the initial condition set.

The condition stated in the third bullet states that the trajectory of the sampled evolution can be

chosen close to the continuous ones with a bound that depends also on the sampling period. The last

property gives the condition when x(t) goes to zero.

stability analysis In the next lines, the objective is to track the mismatches between the

Lyapunov evolution of the continuous-time system and the sampled-data one. The Lyapunov charac-

terization of an emulated state-feedback controller via energy like functions is also derived.

Let us consider the closed loop dynamics, issued from a global stabilizing state-feedback controller

uc(x(t)):

ẋc(t) = f̃(xc(t)) (2.38)

which globally asymptotically stabilizes the origin. Its discrete-time equivalent can be described by

the difference equation:

xck+1 = eδLf̃xck (2.39)

under the condition that 0 < δ < ∆, where ∆ > 0 is the maximum sampling period that assures

the convergence of the right hand term in (2.39). The discrete-time equivalent preserves the same

Lyapunov stability properties as the continuous-time system at the sampling instants4.

with Lyapunov evolution computed as follows:

V(xck+1) = V(x
c
k) + δLf̃V(x

c
k) +

δ2

2!
L2
f̃
V(xck) +O1(δ

3) (2.40)

Now, let us consider the discrete-time equivalent of the sampled-data system, when the control is

kept constant over sampling periods so that uk = uc(x(kδ)), for all t ∈ [kδ, (k+ 1)δ):

xk+1 = eδ(Lf+ukLg)xk (2.41)

4 In the following lines we make the following notation: xck stands for the discrete-time evolution at the sampling instants of the

state issued from a continuous-time dynamics xc(t) at time t = kδ and xk stands for the sampled-data dynamics.
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In this case the Lyapunov evolution can be computed from the state evolution as follows:

V(xk+1) = V(xk) + δLf+ukgV(xk) +
δ2

2!
L2f+ukgV(xk) +O1(δ

3) (2.42)

The Lyapunov dynamics (2.40) and (2.42) are different even when starting from the same initial con-

ditions, and to evaluate this we define the Lyapunov Matching Error (LME) EV (xk) as the mismatch

one step ahead between the desired value of V(x(t)) at instant |(k+1)δ (2.40) and the attained value of

V under constant control (2.42), one gets:

EV (xk) = V(xk+1) − V(x
c
k+1) (2.43)

under the assumption of the same initial condition xck = xk. By computing further on, the difference

(2.43), by employing series expansions, one gets for the first terms

EV (xk) = δ(ukLgV(xk) − uc(xk)LgV(xk)) +
δ2

2!
((Lf + ukLg)

2V(xk)

− (Lf + ucLg)
2V(xk) + u̇cLgV(xk)) +O(δ

3)

= −
δ2

2!
u̇cLgV(xk) +O(δ

3). (2.44)

Now the Lyapunov difference of the sampled evolution can be written as

V(xk+1) − V(xk) = V(xck+1) − V(x
c
k) + EV (xk) (2.45)

Now let us formulate next the Lyapunov function characterization in the case of a P approximated

controller.

Proposition 30. Given the dynamics (2.14), suppose there exists uc with CLF V ensuring GAS of

the equilibrium. Then there exist ∆ > 0 and ρ1, ρ2, ρ4 K∞ functions, such that for any δ ∈ (0,∆)

then the Lyapunov evolution of the dynamics (2.14) with emulated controller ud0 = uc(x(t))|t=kδ

satisfies

ρ1(||xk||) +O(δ
1) 6 V(xk) 6 ρ2(||xk||) +O(δ

1) (2.46)

V(xk+1) − V(xk) 6 −δρ4(||xk||) +O(δ
2). (2.47)

Proof. The existence of a CLF - V function for the continuous-time system, the converse Lyapunov

theorem allows to describe the Lyapunov evolutions as follows:

ρ1(‖x(t)‖) 6 V(x(t)) 6 ρ2(‖x(t)‖) (2.48)

V̇(x(t)) 6 −ρ3(‖x(t)‖) (2.49)
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with ρ1,ρ2 and ρ3 as K∞ functions. The discrete-time equivalent of system (2.14) is (2.28), computed

as

xc((k+ 1)δ) = e
δLf̃xc(kδ)

with Lie operators. It follows the next successions:

V(xck+1) − V(x
c
k) =

∫ (k+1)δ
kδ

V̇(xc(t))dt (2.50)

By the use of Mean Value Theorem, then there exists tm such that for kδ < tm < (k+ 1)δ and taking

into account inequality (2.9) then∫ (k+1)δ
kδ

V̇c(x(t))dt 6 −δρ3(||xc(tm)||) (2.51)

Equality (2.40) can be rewritten as follows:

V(xck+1) − V(x
c
k) = −δ

(
−Lf̃V(xc(kδ)) −

δ1

2!
L2
f̃
V(xc(kδ)) −O1(δ

2)

)
= −δWa(xc(kδ)) (2.52)

As Wa(xc(t)) is a positive definite function the applying [Khalil 1996, Lemma 4.3] then there exists

ρ4, ρ5 K functions such that:

ρ4(||xc(kδ)||) 6Wa(xc(kδ)) 6 ρ5(||xc(kδ)||) (2.53)

Then applying this result with equality (2.52) one gets that the next identity

V(xc((k+ 1)δ),uc) − V(xc(kδ)) 6 −δρ4(||xc(kδ)||) (2.54)

Now making reference to the LME definition the sampled-data Lyapunov difference can be rewritten

as in (2.45). Taking into account the inequality (2.54) then

V(xk+1) − V(xk) 6 −δρ4(||xk||) + EV (xk) (2.55)

If we consider now the emulated state-feedback controller ud0 and the equality (2.44), rewritting the

terms one gets:

V(xk+1) − V(xk) 6 −δρ4(||xk||) +O(δ
2) (2.56)

In the above inequalities (2.46)-(2.47), it can not be guaranteed that the Lyapunov difference remains

negative for all δ < ∆ and all xk ∈ IRn. This means that the stabilization properties of the sampled-

data scheme can be ensured under the condition that O(δ2) term does not influence the negativity

of the right hand term of the inequality. It follows that restrictions on the sampling period and on
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the initial set are necessary to impose to guarantee specific stability performance. This is a difficult

task since these settings can not be precisely found due to the nonlinearities. For some δ and initial

conditions it is possible for the sampled Lyapunov difference to be equal to zero. In this case we can

speak about practical stabilization, because the trajectories are no more converging to the equilibrium

but remain bounded.

2.5 example 2 .

Let us consider the next second order dynamics:

ẋ1(t) = −x1(t)
3 + x1(t)u(t)

ẋ2(t) = u(t). (2.57)

For these dynamics a Lyapunov function candidate is V = x22(t)/2 and a LgV controller that stabilizes

asymptotically the origin xe = (0, 0)T of (2.57) is:

uc(t) = −KLgV = −Kx2,K > 0 (2.58)

This controller, according to Theorem 21, provides asymptotic stabilization of the equilibrium i.e.

V̇ = x2u = −Kx22 < 0, ∀x2 ∈ IR.

This example is interesting since the dynamics satisfy the passivity condition V̇ 6 uy if the output is

chosen as y(t) = LgV(x(t)). Also for K = 1
2 the controller is said to be optimal for the cost criteria

J =
∫∞
0 x

2
2(t) + u(t)

2dt.

Let us set for the continuous and sampled-data dynamics, the same initial condition xk = xc(kδ).

Then, the closed-loop continuous-time Lyapunov evolution computed at instant (k+ 1)δ is

V(xck+1) =
1

2
(xc2k)

2e−2Kδ =
1

2
(xc2k)

2(1− 2Kδ+ 2K2δ2 +O(δ3)) (2.59)

and the sampled-data evolution (when uk is constant along intervals of length δ) is exactly computed

as:

V(xk+1) =
1

2
(x22k + 2δx2kuk + δ

2u2k) =
1

2
(x2k + δuk)

2 > 0 (2.60)

The sampled-data Lyapunov evolution is computed exactly, and this fact is useful in the next devel-

opments.

From the above definitions V(xck+1) > 0 and V(xck+1) − V(x
c
k) = 1

2 (x
c
2k)

2(e−2Kδ − 1) < 0 for any

Kδ > 0.

[ November 28, 2012 at 8:46 – classicthesis final version ]
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By considering the emulated controller uk = −Kx2k, then the Lyapunov difference satisfies:

V(xk+1) − V(xk) =
1

2
Kδx22k(−2+Kδ) < 0, for δ <

2

K
. (2.61)

It is thus verified that the use of an emulated controller reduces significantly the admissible pair

(K, δ) to an upper bound of 2 on the product Kδ. For an optimal controller: e.g.K = 1/2, this means a

maximum sampling rate equal to 4.

This simple calculus shows that the stability properties of the emulated controller are no more

assured globally. Also the choice of an admissible sampling period also depends on the gain of the

controller. For larger K the values of δ are smaller. For smaller K, larger sampling periods are possi-

ble but the drawback is the speed of convergence that is notably reduced. Let us denote by δe the

maximum sampling period of the emulated control for a fixed K, such that δe = 2/K. Then, for any

δ ∈ (0, δe) the emulated controller stabilizes asymptotically the sampled-data system for any x(0)

from the initial set. In this case, global results with respect with x can be addressed.
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3
N O N L I N E A R I N P U T- LYA P U N O V M AT C H I N G U N D E R D I G I TA L F E E D B A C K

This chapter deals with the concept of input-Lyapunov matching for sampled-data non-

linear systems. This approach is developed for an input-affine system [Tiefensee 2010],

[Monaco & Normand-Cyrot 2001], [Monaco & Normand-Cyrot 2009] and represents the

basic methodological tool used in this work. The stabilizing performances of the sampled-

data controllers designed in this framework, are analyzed. A motivating example is also

given to highlight the properties. Some extensions are given for systems with higher rela-

tive degrees with respect to Lyapunov function and to MIMO systems.

3.1 the concept of input-lyapunov matching

The concept of input-Lyapunov matching under digital feedback is derived from a more general one

- the input/output matching. The basic idea is as follows:

Given a continuous-time dynamics described by ordinary differential equations and smooth vector

fields functions, given also a continuous-time controller designed to satisfy control objectives on a

certain output mapping, one assumes that the control is kept constant over time intervals of constant

length and look for a digital controller, such that its performance on the system output be the same

as those of the ideal continuous-time strategy. This coincidence is requested at the sampling instants

only (t = kδ). Such a problem is referred to as the input-output matching under digital control. In the

current work, the same definition is applied to the input/Lyapunov function link.

In the previous sections there were pointed out the limits of the emulated controllers. For improving

the performances of our controllers we are interested in extending the stabilizing performances of the

emulated controllers. The key point is represented by the inequality (2.47) with the aim to reduce

the influence of the terms included in O(δ2). The strategy proposed here input/Lyapunov matching-

supposes the design of a particular expansion of the digital controller uk so that it cancels the terms

in O(δ2). This strategy it was introduced in the context of feedback linearization [Monaco et al. 1986]

41
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42 nonlinear input-lyapunov matching under digital feedback

and further developed in [Tiefensee et al. 2009] to the stabilization of a SMIB (single-machine infinity

bus system) and in [Tiefensee et al. 2010b] to the IDA-PBC (Interconnection and Damping Assignment

- Passivity Based Controller) context.

input/lyapunov matching - definition Let us assume uc(t) = uk over each interval of

length δ, then the sampled-data equivalent of equation (2.14) is described by

xk+1 = Fδd(xk,uk) = eδ(fc+ukgc)xk (3.1)

Given a control law uc with a Lyapunov function V(x) which satisfies the conditions from Proposition

15, one computes through integration:

V(xc(t = (k+ 1)δ)) − V(xc(t = kδ)) =

∫ (k+1)δ
kδ

V̇(xc(τ))dτ, (3.2)

where xc indicates the closed loop continuous-time x-dynamics under uc.

The equality (3.2) indicates the continuous-time target difference.

Definition 31. Input/Lyapunov matching property is satisfied if there exists a piecewise constant control law

uk such that the Lyapunov evolution of the sampled-data dynamics match (3.2) at the sampling instants t = kδ.

That is, uk must satisfy the equality:

V(xk+1) − V(xk) =

∫ (k+1)δ
kδ

V̇(xc(τ))dτ. (3.3)

where xk = xc(t = kδ) and xk+1 is computed from (3.1).

Hence the digital control uk reproduces, at sampling instants, the Lyapunov performance of the

continuous-time closed loop system and achieves asymptotic stabilization of the sampled system for

small enough sampling periods1.

The next existence Theorem is also given in [Tiefensee 2010] and represents the main result from

which many new designs were developed.

Theorem 32. Let us consider the system of the form (2.14), and suppose the existence of a continuous-time

feedback control law uc, such that a Lyapunov function V exists, which guarantees the stability of the initial

system. Then there exists T∗ > 0 such that for any δ in (0, T∗] there exists a digital feedback uk = uδd

which ensures the same Lyapunov evolution under sampling2 and guarantees the asymptotic stability of the

sampled-data equivalent system.

1 The sampling period is chosen small enough to guarantee the convergence of the exponential form (3.1)
2 The same Lyapunov evolutions under sampling can be understood also as the reproduction under digital control of the stability

performances of the continuous-time dynamics at least at each sampling instant
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3.1 the concept of input-lyapunov matching 43

Proof. The proof is worked out by showing that there exists a solution in the form of an asymptotic

expansion in powers of δ

uk = uδd = ud0 +
∑
i>1

δi

(i+ 1)!
udi. (3.4)

for the equation (3.3).

By considering the Lie series commutation Theorem, one can rewrite [Grobner & Knapp 1967]

V(eδ(f+ukg)x
∣∣∣
xk

) = eδ(f+ukg)V(x)
∣∣∣
xk

,

for a fixed couple (xk,uk). It follows that (3.3) can be rewritten as the formal series equality :

δQ(xk, δ,uk) = eδ(f(·)+ukg(·))V |xk − e
δ(f(·)+uc(·)g(·))V |xk = 0. (3.5)

with a suitable defined series Q(x, δ,u). By expanding the last equality up to a 3-th order one gets

Q(xk, δ,uk) = (Lf + ukLg)V |xk +
δ

2!
(L2f + uk(LgLf + LfLg) + u

2
kL
2
g)V |xk +

δ2

3!
(Lf + ukLg)

3V |xk +O1(δ
3)

− (Lf + ucLg)V |xk +
δ

2!
(L2f + uc(LgLf + LfLg) + u

2
cL
2
g + u̇cLg)V |xk

−
δ2

3!

(
(Lf + ucLg)

3 + 2u̇c(Lf + ucLg)Lg + u̇cLg(Lf + ucLg) + ücLg

)
V |xk −O2(δ

3) (3.6)

with O1(δ3) the remaining terms of the sampled data Lyapunov expansion and O2(δ3) the remaining

terms of the continuous Lyapunov expansion.

Given xk and δ, the problem is to find uk such that (3.5) holds. To do so, one first verifies that for

δ = 0 :

Q(xk, 0,ud0) = (Lf + ud0Lg)V |xk − (Lf + uc(·)Lg)V |xk = 0

for ud0(k) = uc(x)|xk . Since LgV |xk 6= 0 for all xk, one verifies the non singularity condition

∂Q(xk, δ,uk)
∂uk

∣∣∣∣
δ=0, uk=ud0

= LgV |xk
6= 0.

By the implicit function Theorem [Lee 2006, Th.7.9] it follows that a solution uk = uδd = γ(xk, δ) to (3.5)

exists in a neighborhood of ud0, for a δ small enough. It satisfies the condition

Q (xk, δ,γ(xk, δ)) = 0

with

ud0 = uk = γ(xk, 0).

The Lyapunov stability of the sampled-data system is proven by showing that, since (Lf+ucLg)V(x) <

0 and uδd satisfies (3.3), one verifies at the sampling instants

V(xk+1) − V(xk) =

∫ (k+1)δ
kδ

(Lf(.) + uc(.)Lg(.))V(x(τ))dτ < 0 (3.7)
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Remark 33. Theorem 32 holds globally (in x) or locally depending on the assumptions taken for the design of

the continuous-time controller.

Important Remark. The theorem states that a digital controller which ensures the Lya-

punov reproduction under sampling exists, and the proof is constructive through succes-

sive higher order approximations.

The terms of uδd are computed from (3.5) with the unknown variable uk. The equality is solved,

after replacing uk with (3.4), and then by comparing and equating the terms in δ. The first computed

terms of uδd, also given in [Tiefensee 2010], are:

ud0(xk) = uc|xk (3.8)

ud1(xk) = u̇c|xk (3.9)

ud2(xk) = üc +
ud1
2
ad[fc,gc]V(LgV)

−1|xk . (3.10)

ud3(xk) =
...
uc +

üc

LgV
ad[f,g]V |xk

+
u̇c

LgV
(−ad2fg+ ucadfgLg + 2L

2
fLg − 3LfLgLf)V |xk

−
u̇c

LgV

(
(LfLg + LgLf + 2ucL

2
g)Vadfg

)
V |xk . (3.11)

These expressions are well defined since by definition of strict-feedback systems LgV(x) 6= 0, for

all x 6= 0. Recursive algorithms and other details can be found in [Monaco & Normand-Cyrot 2007,

Monaco & Normand-Cyrot 2009].

3.2 controller approximation

The digital controller uδd provided by Theorem 32 reproduces the continuous-time Lyapunov closed-

loop evolution under sampling, hence the sampled-data solution is also asymptotically stable, for a

small enough δ. However, through practical implementations, the exact controller is not computable

and approximate solutions are used from the series expansion of uδd.

Definition 34. The approximate digital controller of order P means uδPd = ud0 +
δ
2ud1 + ... + δP

(P+1)!udP

which ensures the equality (3.3) up to δP (error in δP+1)

Based on the discussions made in Section 2.4.1 the following property holds.
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Proposition 35. Given the same conditions as in Proposition 30, then the Lyapunov difference of the sampled-

data system with a P order approximated digital controller satisfies :

ρ1(||xk||) +O(δ
P+1) 6 V(xk) 6 ρ2(||xk||) +O(δ

P+1) (3.12)

V(xk+1) − V(xk) 6 −δρ4(||xk||) +O(δ
P+2). (3.13)

with O(δP+1) the higher order terms in δ which depends on the state variables.

Proof. The proof is immediate by following the proof of Proposition 30. The main difference is that

the LME has the first P terms zero, e.g.:

EV (xk) =
δP+1

(P+ 1)!

(
LP+1
f̃

V(xk) − L
P+1
f̃

V(xc|t=kδ)
)
+O(δP+2)|t=kδ (3.14)

This property means that the approximated P order controller guarantees the stability of the closed-

loop sampled equivalent system for a small enough sampling period, which depends on the P order

and on the nonlinearities of the dynamics. Compared to the emulated solution, this inequality is not

depending on the lower powers of δ terms and therefore larger sampling periods are possible.

It must be stressed out that when one considers a specific digital controller approximation this

does not mean that the stability performances cannot be guaranteed to holds in a practical way. For

each approximate controller, the Lyapunov stability is ensured with a proper choice of the initial set

conditions and of the sampling period. In this situation asymptotic stabilization is achieved (not in the

practical sense) for any sampling period sufficiently small. For larger sampling periods, the terms in

O(δP) can influence the negativity of the Lyapunov difference so the conditions from Theorem 27 are

no longer satisfied. In such situations instability or, when the Lyapunov difference is zero, practical

stabilization can be met. But these situations are excluded in this work by restricting δ to be so small

such that the terms in O(δP) do not influence the negativity of the term δρ3(||xk||).

Increasing the order of the controller approximation we can expect at larger sampling periods and

hence at larger sets of initial conditions.

Concluding Remark. Considering a P-order controller uδPd the Lyapunov difference can

be expressed as (3.13) , i.e.

V(xk+1) − V(xk) 6 −δρ4(||xk||) +O(δ
P+2)

Compared to the emulated version (2.47), this solution adds specific terms to the emulated

control and the domain of attraction of the equilibrium point is consequently enlarged; as a
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consequence larger sampling periods can be considered and a more accurate convergence

is observed. Global results (in terms of state variables) can be obtained if the controller

uδd can be computed exactly through the resolution of algebraic equalities of finite order

rather that series inversion.

3.3 example 2- corrective terms

Let us continue the analysis of the example givben in section 2.5. We noted that when using an

emulated controller for any δ ∈ (0, δe) with δe = 2/K the sampled-data system was stable. Let

us now consider the same analysis when a digital controller with one or more additional terms is

implemented; so reducing the Lyapunov matching error for larger δe as characterized in Section 2.5.

3.3.1 First order controller

If we denote by uδ1d = ud0 +
δ
2ud1 the first order controller, then by using relations (3.8)-(3.9) one

gets

uδ1d = −Kx2k(1−
δ

2
K) (3.15)

The sampled-data Lyapunov evolution is described by the next expression

V(xk+1) =
1

2
x22k + δx2k(ud0 +

δ

2
ud1) +

δ2

2!
(ud0 +

δ

2
ud1)

2

=
x22k
8

(
1+ (δK− 1)2

)2
> 0, ∀K, x2k (3.16)

The Lyapunov difference is

V(xk+1) − V(xk) = x22kKδ

(
−1+ δK−

δ2K2

2
+
δ3K3

8

)
(3.17)

This difference is negative definite only for x2k 6= 0 and δ 6 2
K , which represents the same condition

obtained as for the emulated controller.

Let us now compare the Lyapunov mismatches between the continuous-time and sampled data

evolution,

EV (xk) = V(xk+1) − V(x
c
k+1) = x

2
2k(−

δ3K3

6
+O(δ4)) (3.18)

From the last identity one gets that

V(xk+1) − V(xk) = V(xck+1) − V(x
c
k) + EV (xk)

6 −δρ3(||x2k||) +O(δ
3) (3.19)
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Compared to the emulated controller, the inequality (3.19) shows that a better matching is achieved and thus

better stability performance is expected. Although the error in δ is smaller, this does not always mean that a

larger sampling period can be allowed. In this case the maximum sampling period remains the same as in the

emulated case (δe < 2
K ).

3.3.2 Second order controller

Let us now use a second order controller uδ2d = ud0 +
δ
2ud1 +

δ2

6 ud2 computed by using relations

(3.8)-(3.10) one gets

uδ2da2 = −Kx2k(1−
δ

2
K+

δ2

3!
K2) (3.20)

The sampled-data Lyapunov evolution is described by the next expression

V(xk+1) =
x22k
72

(
−5+Kδ+ (Kδ− 1)3

)2
> 0, ∀K, x2k (3.21)

The Lyapunov difference is

V(xk+1) − V(xk) = x22kKδ

(
−1+Kδ−

2K2δ2

3
+
7δ3K3

24
−
δ4K4

12
+
δ5K5

72

)
(3.22)

This difference is negative definite only for x2k 6= 0 and δ 6 2.5
K . This new bound for δ is larger than

the one obtained from the previous cases.

Let us now compare the Lyapunov mismatches between the continuous-time and sampled data

evolutions,

EV (xk) = V(xk+1) − V(x
c
k+1) = x

2
2k(−

δ4K4

24
+O(δ5)) (3.23)

From the last identity one gets that

V(xk+1) − V(xk) = V(xck+1) − V(x
c
k) + EV (xk)

6 −δρ4(||x2k||) +O(δ
4) (3.24)

Compared to the emulated controller, the inequality (3.24) shows that a better matching is achieved and hence

better stability properties are expected. In this case, the second order controller also extends the use of the

sampling period beyond the bound found for the emulated and first order controller ones.

The design of higher order controllers can be continued and better stability results can be obtained.

It has to be note that the complexity of the controller expression increases with the order of approxi-

mation and this fact can give numerical errors due to truncation and integrations that appear during

the simulation time.
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Figure 3.1: Systems evolutions for different controller approximations
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sampling period initial condition gain simulation time length figure label

δ = 1 s x0 = [2 2] K = 1 tf = 12 s Figure 3.1a)

δ = 2 s x0 = [2 2] K = 1 tf = 12 s Figure 3.1b)

Table 3.1: Numerical values of the simulation parameters- Example 2

In the Figure 1.2 is depicted the controller and the output (considered here the same with x2 state)

evolutions for sampling periods equal to 1, respectively 2 seconds. The simulations parameters used

for the plotted results are given in Table 3.1. The controller tested are the continuous-time controller

(red color), the emulated controller (blue), the first and second order controller (green and yellow

respectively). The matching error plots evaluates in fact the EV evolution, and the error criteria is

defined in Section 5.2.4. As the computations have shown, for δ = 2 the emulated and the first

order controller are at the limit of stability. The emulated controller is oscillating, and the first order

controller brings the system to a stable evolution but far from the origin. For a lower sampling period

we can observe that the matching error is decreasing as the order of the controller increases.

It has to be pointed out, that in this particular example, other solutions are possible. A computation

of an exact digital controller that satisfies the negativity of (2.61) can be performed. Accordingly, one

gets

V(xk+1) − V(xk) =
1

2
(x2k + δuk)

2 −
1

2
x22k < 0. (3.25)

The solution to the last identity offers many variants to provide an exact controller that has to satisfy

−2x2k 6 δu < 0. One of this solution could be δu = − x2k
K+1/2 .

Concluding Remark. For the considered exampled, the first corrective term improves the

stabilizing properties but has no effect to increase the size of the initial conditions set. On

the other hand, the second corrective term improves both the stability performance and

the size of the admissible sampling period.
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3.4 relative degree higher than 1

In this section we make the following abuse of language. The relative degree definition is given in

Section 1.3.5. This notion is here applied in the context of the input/Lyapunov evolutionby replacing

the output function by a Lyapunov function. In this sense we use the term of relative degree with

respect to V .

In Section 3.2 the digital proposed controller solution is well defined if the continuous-time system

has a degree relative 1 (with respect to V ), which means that LgV 6= 0. We now consider the case

for which this condition is no more satisfied. In order to simplify the presentation, let us consider the

case of relative degree 2 with respect to V , that is LgV = 0 and LgLfV 6= 0.

By applying the same procedure as in the case of relative degree 1, the series equality (3.6), which

solves the problem of the input/Lyapunov matching, can be particularized into this context, by setting

that all the terms that are derived from LgV which all are equal to 0, one gets: follows:

δ2Q ′(xk, δ,uk) =
1

2!
(L2f + ukLgLf)V |xk +

δ

3!

(
L3f + u

2
kL
2
gLf + uk(LfLgLf + LgL

2
f )
)
V |xk +O1(δ

2)

−
1

2!
(L2f + ucLgLf)V |xk −

δ1

3!

(
L3f + u

2
cL
2
gLf + uc(LgL

2
f + LfLgLf) + u̇cLgLf

)
V |xk

− O2(δ
2) (3.26)

One verifies for δ = 0 :

Q ′(xk, 0,ud0) =
(
L2f + ud0LgLf

)
V |xk −

(
L2f + uc(·)LgLf

)
V |xk = 0

so setting ud0(k) = uc(x)|xk . By replacing the controller expansion (3.4) into equality (3.26), and

equating the δ cofficients to 0, the first controller terms are obtained as follows:

ud0 = uc(xk);

ud1 = 2
3 u̇c(xk); (3.27)

ud2 = (12 üc −
1
4ud1(LfLgLf+ LgL

2
f − ud0L

2
gLf)V/LgLfV)|xk ;

Compared to the case of the relative degree 1, this solution gives more complex expressions and is

depending on higher derivatives of the system dynamics. The next property holds:

Proposition 36. By assuming the same conditions as in Proposition 35 with relative degree 2 with respect to

V , the approximated controller of order P, uδPdr2, asymptotically stabilizes the nonlinear system with relative

degree 2 with an error on V matching O(δP+2).

Proof. By assuming the same conditions , after some computations, the approximated controller of P

order gives the following

V(xk+1) − V(xk) = −δ(ρV (||xk||) +OV (δ
P+2) (3.28)
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where ρV is a K function defined for the continuous-time controller case.

Concluding Remark. For any relative degree r of a system with respect to V , a digital

controller can be computed. It can be easily shown, by induction, that when considering a

P-order controller uδPdr2 the Lyapunov difference can be bounded as follows

V(xk+1) − V(xk) 6 −δρ4(||xk||) +O(δ
P+r) (3.29)

In the case of higher relative degrees, the problem of designing stabilizing continuous-time

controllers is solved by making reference to a backstepping procedure.

3.5 mimo systems

In this section, the previous solutions are extended to the case of MIMO systems. In the context of

the input/Lyapunov matching we are interested in providing more general results for a system that

has m inputs and for which there are defined l Lyapunov functions. There are situations that are

included into this category: systems in strict-feedback or feedforward forms [Sepulchre et al. 1997]

where multiple Lyapunov functions are involved in the stabilizing design strategy.

Compared with the SISO model (1.2), m vector fields gi describe the forced evolution of the system.

Let us make the following notations: ū = [u1,u2, ...,um]T , ḡ = [g1,g2, ...,gm], V̄ = [V1,V2, ...,Vl]T . By

using the definition and computations given in the Appendix 13 then the formal series equality (3.5)

is extended as a matrix of l equalities:

δQi(xk, δ, ūk) = eδ(f(·)+ūkḡ(·))Vi|xk − e
δ(f(·)+ūc(·)ḡ(·))Vi|xk = 0. (3.30)

with i = 1, l and ūk = [u1k,u2k, ...,umk]T . Each uik defined as follows:

ūk = ūδPd = ūd0 +

i=P∑
i=1

δi

(i+ 1)!
ūdi. (3.31)

where each ūdi is a vector with l elements [udij]. Hence, the system (3.30) has a number of l× P

equations and m× P controllers terms to be found. This system is linear in the unknown variables.
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More complex calculus, give the following solutions for the controller terms in the most general case

of MIMO systems3:

LḡV̄(xk) · ūd0 = LḡV̄(xk) · ūc(xk);

LḡV̄(xk) · ūd1 = LḡV̄(xk) · ˙̄uc(xk);

LḡV̄(xk) · ūd2 = (LḡV̄(xk) · ¨̄uc + 1
2 (L[f,ḡ]V̄(xk) · ūd1))|xk ;

LḡV̄(xk) · ūd3 = (LḡV̄(xk) ·
...
ūc + (LfL[f,ḡ]V̄(xk) − L

2
ḡLfV̄(xk) + (LfL

2
ḡV̄(xk) − L

2
ḡLfV̄(xk))� ūd0)ūd1−

−2(LfLḡV̄(xk) + LḡLfV̄(xk) + 4L
2
ḡV̄(xk)� ūd0)ūd2+

+(3LfLḡV̄(xk) + LḡLfV̄(xk) + 4L
2
ḡV̄(xk)� ūd0) ¨̄uc)|xk

(3.32)

In this case a unique solution can not be ensured. For specific details we give next a discussion in

function of the values of l and m.

3.5.0.1 Square MIMO systems

For the MIMO case, we consider the square systems where m = l (the number of control inputs is

equal to the number of the Lyapunov functions). A practical example for l = m = 2 can be met in

[Mattei & Monaco 2012].

By using the expressions (3.32) for this case, we can compute a unique solution for the controller

terms only if the square matrix LḡV̄ is invertible (which corresponds to assume that the relative degree

1 with respect to V of the MIMO system).



ūd0 = ūc(xk);

ūd1 = ˙̄uc(xk);

ūd2 = ( ¨̄uc + 1
2LḡV̄

−1(L[f,ḡ]V̄ · ūd1))|xk ;

ūd3 = (
...
ūc + LḡV̄

−1((LfL[f,ḡ]V̄ − L2ḡLfV̄ + (LfL
2
ḡV̄ − L2ḡLfV̄)� ūd0)ūd1−

−2(LfLḡV̄ + LḡLfV̄ + 4L2ḡV̄ � ūd0)ūd2+

+(3LfLḡV̄ + LḡLfV̄ + 4L2ḡV̄ � ūd0) ¨̄uc))|xk

(3.33)

In the quare MIMO case the computations are similar to those performed in the SISO case thanks to the

extended notations.

3 The odot operator is defined in the Appendix 13
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mimo relative degree Now we have to extend the definition of relative degree from the SISO

to the MIMO system case. In this case we have to define a vector relative degree[Isidori 1995]. First we

define the relative degree matrix LḡL
γ̄
f V̄ as

LḡL
γ̄
f V̄ =



Lg1L
γ1−1
f V1 Lg2L

γ1−1
f V1 · · · LgmL

γ1−1
f V1

Lg1L
γ2−1
f V2 Lg2L

γ2−1
f V2 · · · LgmL

γ2−1
f V2

...
...

. . .
...

Lg1L
γp−1
f Vp Lg2L

γp−1
f Vp · · · LgmL

γp−1
f Vp


∈ Rl×m (3.34)

Definition 37. The square MIMO system has vector relative degree γ̄ = [γ1 γ2 . . . γp] at x0 if

LgjL
k
fVi(x) = 0, 0 6 k 6 γi − 2, j 6= i (3.35)

for i = 1, ..., l and the matrix LḡL
γ̄
f V̄(x0) is nonsingular.

If the system has a well defined vector relative degree, then it can be written as:



V
(γ1)
1

V
(γ2)
2

...

V
(γp)
p


=



L
γ1
f V1

L
γ2
f V2

...

L
γp
f Vp


+ LḡL

γ̄
f V̄(x)



u1

u2

...

up


(3.36)

For this case it is said that the system is decoupled under a linearizing state-feedback. For this reason

a large number of results from the SISO case can be easily extended to this class of MIMO nonlinear

systems. The problems that can arise are when the system does not have a well defined vector relative

degree (the matrix (3.34) is singular).The results given in (3.33) are valid for a vector relative degree

with all degrees equal to 1. For any other value of the elements of the vector relative degree then the

equalities (3.30) have to be evaluated for each i = 1, l and new controller terms have to be identified.

3.5.0.2 The case m > l

In this case the number of Lyapunov functions l is smaller than the number of control inputs m.

This is for example the case of a marine vessel control problem studied in [Tiefensee 2010]. We notice

that the control solution is not unique, so it occur a problem of choosing one of the many solutions

available. A solution is to build the matrix (3.34) by choosing the l inputs that ensure the invertibility

of the matrix. With the remaining inputs we can impose additional performance (in some sense the

control has extra liberty degrees for design).
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An appropriate solution is to compute the pseudoinverse of LḡV̄ . Let us define the matrix LḡV̄+ ∈

Rm×l such that LḡV̄+LḡV̄ = 1m×m. The sampled-data control is defined now by,

ūd0 = ūc(xk);

ūd1 = ˙̄uc(xk);

ūd2 = ( ¨̄uc + 1
2LḡV̄

+(L[f,ḡ]V̄ · ūd1))|xk ;

ūd3 = (
...
ūc + LḡV̄

+((LfL[f,ḡ]V̄ − L2ḡLfV̄ + (LfL
2
ḡV̄ − L2ḡLfV̄)� ūd0)ūd1−

−2(LfLḡV̄ + LḡLfV̄ + 4L2ḡV̄ � ūd0)ūd2+

+(3LfLḡV̄ + LḡLfV̄ + 4L2ḡV̄ � ūd0) ¨̄uc))|xk

(3.37)

There are many solutions to compute the pseudoinverse. We choose the Moore-Penrose pseudoinverse

matrix definition. For this case

LḡV̄
+ = (LḡV̄

TLḡV̄)
−1LḡV̄

T , only if(LḡV̄TLḡV̄) invertible (3.38)

3.5.0.3 The case m < l

In this case the number of control inputs is smaller than the number of Lyapunov functions defined.

This is often the case of backstepping control, detailed in the following chapter. The backstepping de-

sign provides a recursive design for computing succesive Lyapunov functions, for a system with only

one input. The number of Lyapunov functions defined in a such strategy depends on the dimension

of the dynamics.In the present context of digital control design two strategies can be adopted.

The first solution is to set the problem of input/Lyapunov matching on m Lyapunov functions only,

so that the relative degree matrix (3.34) to be square and invertible. Typically when m = 1, when a

backstepping procedure is used, then for the digital design it requires to match the last Lyapunov

function resulted in the design.

A second solution is to count for the contribution of all l Lyapunov functions. In this case two

solutions can be derived.

• a solution that use a pseudoinverse as in the case of m > l;

• another solution is to add extra freedom degrees in the control variables -multi rate control -

to get a full rank relative degree matrix of order l; this idea is typically used in the multi-rate

design.

[ November 28, 2012 at 8:46 – classicthesis final version ]



4
D I G I TA L B A C K S T E P P I N G C O N T R O L V I A I N P U T / LYA P U N O V M AT C H I N G

This chapter describes two approaches for designing digital controllers for systems ad-

mitting backstepping stabilizing feedback laws. These two designs procedures recover in a

sampled-data context the stabilizing properties of the ideal continuous-time backstepping

controllers. These approaches are based on the concept of input-Lyapunov matching. In the

first section the continuous-time backstepping procedure is recalled for a system with one

or multiple cascade connections. These two digital designs procedures, the single-rate and

multi-rate designs respectively, are developed for one or multiple cascade connections re-

spectively. An example is worked out through this chapter to illustrate the concepts and the

successive steps. Part of the results reported here are included in the paper [C02],[S1],[P2]

from the author’s contribution list (page ix).

4.1 the objective

The backstepping strategy is nowadays frequently used in the control design of nonlinear systems

admitting strict feedback form1. These specific state space forms are used to model electro-mechanical

systems. In particular, a typical difficulty of these structures is to exhibit a relative degree larger

than one. This constitutes an obstacle in designing passivity based controllers and the backstepping

procedure is a suitable tool to remove this obstacle.

The backstepping procedure, in its general formulation, gives the ingredients to compute controllers

that stabilize the origin globally. Although this method can be compared with other state-feedback

designs like dynamical linearization, its particularity is that the backstepping procedure takes into

consideration the nonlinearity which can be useful for stabilization. It does a priori not cancel the

nonlinearity since which can be included then into the controller.

1 See the general definition in Section 4.2.2
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56 digital backstepping control via input/lyapunov matching

The main drawback of this procedure, highlighted when the number of cascade connections is large

is that the controller expressions become quite complex. To cope with this, some relaxing procedures

are proposed, which achieve semiglobal results such as high-gain designs or semiglobal backstepping

[Sepulchre et al. 1997].

As this procedure has a major impact in many applications, it is clear that in real-time systems,

the problem of designing digital controllers that preserve the performances of the continuous-time

controller is demanded. This is the objective of this chapter.

In this chapter two strategies for designing digital backstepping controllers are proposed by us-

ing the input/Lyapunov matching criteria (see Chapter 3). Thus, we can improve the stabilization

performances compared with the classical emulation of the continuous-time controllers.

A first attempt consists in computing a single-rate digital controller uk so that to reproduce the

Lyapunov function V evolution set in the ideal continuous-time case at the sampling instants. It

follows that the continuous-time controller performances, including the stabilizing one, are preserved

through digital design. This strategy is depicted in Figure 4.1.

On the top of the figure, the continuous-time plant is represented. The Lyapunov function V evo-

lution, expressed in terms of the system states variables, represents the stabilizing characteristic of

the plant under the continuous-time backstepping controller. On the bottom of the figure, a discrete

controller is applied on the same plant. The states are sampled at a sampling period equal to δ, and

the controller computes a new value at each δ̄ seconds.

A second strategy makes reference to a multi-rate design where δ = mδ̄. It imposes additional

objectives when designing the digital controller, in order to improve the stabilizing properties.

The results presented through this chapter are then generalized to systems with multiple cascade

connections.

4.2 continuous-time backstepping- one cascade connection case

Let us consider first, a 2 sub-systems connection as follows

ż(t) = f(z(t)) + g(z(t))ξ(t) (4.1)

ξ̇(t) = a(z(t), ξ(t)) + b(z(t), ξ(t))uc(t) (4.2)

where the states z and ξ are in IRn and IR respectively and the control vector uc ∈ IR, f,g and a(·),g(·)

in IRn and in IR respectively.

The following result describes the stabilizing controller through the backstepping approach. The

constructive aspects are recalled when they are instrumental for the digital implementation.
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Figure 4.1: The input/Lyapunov matching criteria
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58 digital backstepping control via input/lyapunov matching

Proposition 38. [Khalil 1996] - Continuous-time backstepping - Consider the system (4.1)-(4.2), and suppose

the existence of φ(z) with φ(0) = 0 and a Lyapunov function W(z), radially unbounded, such that

∂W

∂z
(f(z) + g(z)φ(z)) < 0, ∀z ∈ IRn/ {0} . (4.3)

Then, if b−1(z, ξ) exists for all (z, ξ), the state feedback control law

uc = b(z, ξ)−1
(
φ̇−

∂W

∂z
g(z) − a(z, ξ) −Ky(ξ−φ)

)
(4.4)

with φ̇ = ∂φ
∂z (f(z) + g(z)ξ) globally asymptotically stabilizes the origin of (4.1)-(4.2), with

V(z, ξ) =W(z) +
1

2
(ξ−φ(z))2 (4.5)

as a Lyapunov function.

Proof. By considering φ(z) as a fictitious control for the first z-dynamics, it follows from (4.3) that the

fictitious state feedback ξ = φ(z) asymptotically stabilizes the dynamics (4.1) at the origin. Setting

y = ξ−φ(z), (4.1)-(4.2) can be rewritten as

ż(t) = f(z) + g(z)(φ(z) + y) (4.6)

ẏ(t) = a(z, ξ) −
∂φ

∂z
ż+ b(z, ξ)uc, (4.7)

thus describing the second part as an y-error dynamics. By setting V as in (4.5) and

uc = b
−1(z, ξ)

(
−a(z, ξ) − y0 +

∂φ

∂z
(f(z) + g(z)ξ) + v

)
(4.8)

one achieves v → y passivity with storage function V . Then, by setting v = −Kyy with Ky > 0, one

gets (4.4) so that

V̇ =
∂W

∂z
(f(z) + g(z)φ) +

∂W

∂z
g(z)y+ yT (v− y0) =

∂W

∂z
(f(z) + g(z)φ) −Kyy

Ty < 0 (4.9)

because of (4.3). The global asymptotic stabilization at the origin follows, since W(z) is radially un-

bounded.

Remark 39. The statement of Proposition 38 can be formulated also locally and the origin becomes locally

asymptotically stable. The condition of radially unbounded of the Lyapunov function W is not required in this

case.

Some comments are helpful for the digital design: The controller uc achieves different goals, it

improves damping through the negative gain output feedback and it renders the link v→ y passive.

Moreover, by substituting at the first step ξ = φ with ξ = φ+ v0, the condition (4.3) guarantees

passivity of the link v0 → y0 with

yT0 :=
∂W

∂z
g(z).
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and storage function W.

According to [Sepulchre et al. 1997] the output error y of the closed-loop system (4.1)-(4.2) under

(4.8) is ZSD from the input v into the output y if and only if (4.1) on ξ = φ is ZSD for the input v0 to

y0. If the ZSD property holds then the condition (4.3) can be relaxed to negative semi-definiteness.

These interpretations through passivation of the backstepping procedure make clear that the loss

of passivity under sampling should destroy the stabilizing performance of the digital implementation

of uc through emulation. In fact, setting uc(t) = uk (constant over an interval), the negativity of

V̇ , over the inter-sampling, is no longer guaranteed as explained in [Tiefensee et al. 2009]. Several

digital strategies can be proposed. Starting from (4.1)-(4.2) and recalling that backstepping has been

introduced to remove the relative degree as an obstacle to passivation, one notes that, under sampling

the dynamics of z has relative degree one compared to the continuous-time case, when it is equal to 2.

It results that passivation through piecewise constant control of the discrete-time equivalent should

be possible. However, this sets another difficulty linked to the fact that passivity in discrete-time relies

on systems with direct input-output link only.

4.2.1 Example 3 (continuous-time design)

Let us ilustrate the design on a simple example and consider first the strict-feedback system of order

2:

ẋ1(t) = x21(t) + x2(t) (4.10)

ẋ2(t) = u(t) (4.11)

On a first step, there are chosen the Lyapunov function W(x1) and the function φ1(z) with φ1(0) =

0, such that the condition (4.3) is satisfied. A convenient choice is :

W(x1) =
1

2
x21, (4.12)

φ1(x1) = −x1 − x
2
1, (4.13)

In this case, the stability of x1 dynamics with the fictitious control x2 = φ1(x1) is ensured since,

Ẇ = x1(−x1) = −x21 < 0, ∀x1 ∈ IR/0 (4.14)

On the second step a change of coordinates is necessary y1 = x2 −φ1(x1). The system is rewritten

as,

ẋ1 = −x1 + y1 (4.15)

ẏ1 = −(1+ 2x1)(x1 − y1) + u (4.16)
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The new Lyapunov function is given by

V1 =W +
1

2
y21 =

1

2
(x21 + y

2
1). (4.17)

The stabilizing controller is,

uc = (1+ 2x1)(x1 − y1) − x1 −K1y1. (4.18)

By setting K1 = 1 and translating into initial coordinates, then

uc = −2(x1 + x2 + x1x2 + x
2
1 + x

3
1). (4.19)

stability analysis Now let us consider that x2 = φ(x1)+ v0 and y0 = ∂W
∂z = x1, then the first

dynamics (4.10) becomes

ẋ1 = −x1 + v0 (4.20)

and Ẇ = −x21 + x1v0 6 v0y0 which is the condition of the passivity link v0/y0.

If one considers that v = uc − (1+ 2x1)(x1 − y1) − x1 and y = ∂V1
∂[x1,y1] = y1 then the initial system

becomes in the x1,y1 coordinates:

ẋ1 = −x1 + y1 (4.21)

ẏ1 = −x1 + v (4.22)

The passivity condition of the link v/y is satisfied since:

V̇1 = −x21 + vy 6 vy,∀x1 ∈ Rn. (4.23)

Under sampling, when one considers that uk is kept constant over the interval [kδ, (k+ 1)δ] (emulated

control) then the inequality (4.23) becomes through integrations:∫ (k+1)δ
t=kδ

V̇1(t)dt 6
∫ (k+1)δ
t=kδ

v(t)y(t)dt (4.24)

As uk constant also v = vk over the sampling interval, then

V1((k+ 1)δ) − V1(kδ) 6 vk

∫δ
τ=0

y(kδ+ τ)dτ (4.25)

Some computations give

V1((k+ 1)δ) − V1(kδ) = δ(−x
2
1 + vky1) +

δ2

2
(1− 2x21 − 2x1y1 − x1vk + v

2
k) +O1(δ

3) (4.26)

respective ∫δ
τ=0

y(kδ+ τ)dτ = δy1 +
δ2

2
(vk − x1) +O2(δ

3) (4.27)

[ November 28, 2012 at 8:46 – classicthesis final version ]



4.2 continuous-time backstepping- one cascade connection case 61

Now we can see that the inequality (4.25) holds with an error in O(δ2):

−δx21 6 −
δ2

2
(1− 2x21 − 2x1y1) +O2(δ

3) −O1(δ
3) (4.28)

It is clear that the emulation can not assure the passivity - and consequently the stabilization - for

any δ. The same conclusion can be drawn for the first link v0/y0 where the inequality holds with a

smaller error - O(δ3).

4.2.2 A constructive solution for the multiple cascade connections

The continuous-time backstepping procedure can be applied, in a constructive way, to compute the

stabilizing controller for a strict-feedback system with more than one cascade connexion. Let us con-

sider the following triangular configuration:

ż(t) = f(z(t)) + g(z(t))ξ1(t)

ξ̇1(t) = a1(z(t), ξ1(t)) + b1(z(t), ξ1(t))ξ2(t)

... (4.29)

ξ̇m−1(t) = am−1(z(t), ξ1(t), . . . , ξm−1(t)) + bm−1(z(t), ξ1(t), . . . , ξm−1(t))ξm(t)

ξ̇m(t) = am(z(t), ξ1(t), . . . , ξm(t)) + bm(z(t), ξ1(t), . . . , ξm(t))u(t)

with states z ∈ IRn and ξi ∈ IR, all functions are considered at least of class C1 and all bi(·) are

invertible for all (z, ξ1, . . . , ξm).

On a first step, let us take the virtual output as y1 = ξ1−α1(z), then the system has relative degree

m+ 1 related to this output. In a recursive manner, by following the backstepping procedure, for each

step a new virtual output yi is defined as yi = ξi − αi(z, ξ1, . . . , ξi−1) with a fictitious controller αi

such that each Lyapunov function

Vi =W +
1

2

i−1∑
j=1

y2j

 (4.30)

ensures the stability properties of the first i connections. Each αi can be constructed as:

αi =
1

bi−1(·)

(
α̇i−1(·) − ai−1(·) −

∂Vi−1
∂yi−1

bi−2(·) −Kiyi
)

, ∀i > 2, Ki > 0

with α1 = −K1y1 and α2 as given in (4.8). On the final step the controller uc = αm+1(·) is obtained,

with the passivating output for the whole system, taken as ym = ξm − αm(·). Related to this output

the system with the αm+1(·) as control input, has now relative degree 1.
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4.2.3 Example 4 (continuous-time design)

Let us add to the system, given in the previous example, an integrator in the controls input path:

ẋ1(t) = x21(t) + x2(t) (4.31)

ẋ2(t) = x3(t) (4.32)

ẋ3(t) = u(t). (4.33)

In this case three steps are considered in order to construct the stabilizing controller. The first two

steps are already detailed in the previous example. For the dynamics (4.31) are defined W as in (4.12)

and φ1(x1) as in (4.13), respectively. For the second dynamic (4.32), the V1 is defined in (4.17) with

y1 = x2 −φ1(x1), and φ2(x1,y1) stands for the previous uc :

φ2(x1,y1) = (1+ 2x1)(x1 − y1) − x1 −K1y1. (4.34)

For the final step, a new change of coordinates is required : y2 = x3 − φ2(x1,y1). Then the initial

system becomes:

ẋ1 = −x1 + y1 (4.35)

ẏ1 = −x1 −K1y1 + y2 (4.36)

ẏ2 = u− φ̇2(x1,y1) (4.37)

where

φ̇2(x1,y1) =
∂φ2(x1,y1)

∂x1
ẋ1 +

∂φ2(x1,y1)
∂y1

ẏ1.

The controller is now given by,

uc = φ̇2(x1,y1) − y1 −K2y2 (4.38)

The stabilization is also ensured with a Lyapunov function V2 = 1
2 (x

2
1 + y

2
1 + y

2
2) and its derivative

satisfies:

V̇2 = −x21 −K1y
2
1 −K2y

2
2 6 0, ∀x1,y2,y3 ∈ IR.

By taking K1 = K2 = 1, the controller expressed into the initial coordinates is:

uc(x1, x2, x3) = −6x41 − 6x
3
1 + (−8x2 − 5)x

2
1 + (−6x2 − 2x3 − 3)x1 − 2x

2
2 − 5x2 − 3x3 (4.39)

4.3 sampled-data backstepping under single-rate design

Let xT = [zT yT ]T be the state of the transformed system (4.6)-(4.7) rewritten as

ẋ(t) = fc(x(t)) + gc(x(t))uc(t) (4.40)
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with

fc =

 f(z) + g(z)(φ(z) + y)

a(z,y+φ(z)) − ∂φ
∂z ż

 , gc =

 0

b(z,y+φ(z))

 .

Let us assume uc(t) = uk over each interval of length δ, then the sampled-data equivalent of

equation (4.40) is described by

xk+1 = Fδd(xk,uk) = eδ(fc+ukgc)xk (4.41)

where Fδd is given in (1.19). Given uc as in (4.4), the Lyapunov function V(z, ξ) with negative time-

derivative set as in (4.9), one computes through integration:

V(xc(t = (k+ 1)δ)) − V(xc(t = kδ)) =

∫ (k+1)δ
kδ

V̇(xc(τ))dτ, (4.42)

where xc indicates the closed loop continuous-time x-dynamics under uc as in (4.4). The equality

(4.42) indicates the continuous-time target difference.

Next we are interested in applying the input/Lyapunov matching criteria to the context of back-

stepping controller. This means that the sampled-data redesign consists in computing a piecewise

constant control law uk to match, at each sampling instant, (4.42). That is, uk must verify :

V(xk+1) − V(xk) =

∫ (k+1)δ
kδ

V̇(xc(τ))dτ. (4.43)

where xk = xc(t = kδ) and xk+1 is computed from (4.41). Hence the digital control uk reproduces,

at the sampling instants, the Lyapunov performance of the continuous-time closed loop system and

achieves asymptotic stabilization of the sampled system for small enough sampling periods.

Theorem 40. [Tiefensee 2010] Consider a strict-feedback system of the form (4.1)-(4.2), and suppose the ex-

istence of a continuous-time controller uc, computed from a backstepping procedure, such that a Lyapunov

function V exists, which guarantees the stability of the initial system. Then there exists T∗ > 0 such that for

any δ in (0, T∗] there exists a digital feedback uk = uδd which ensures the same Lyapunov evolution under

sampling and guarantees the asymptotic stability of the sampled-data equivalent system.

Proof. Since the theorem is a direct application of Theorem 32 the proofs are identical. The particularity

in this case is the condition of the solution existence that is now given by LgcV |xk = b(z,y+φ)y 6= 0

for all y 6= 0 with ga invertible.

Remark 41. The previous theorem can be formulated globally or locally depending on the assumptions taken

for the design of the continuous-time controller.
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4.3.1 Controller computations

The terms of uδd are given by the expressions (3.8)-(3.11). In this context the controllers can be com-

puted more accurately as follows:

ud0(zk,yk) = uc(z,y)|t=kδ (4.44)

ud1(zk,yk) = u̇c(z,y)|t=kδ

=
∂uc(z,y)
∂z

(f(z) + g(z)(φ(z) + y)) |t=kδ

+
∂uc(z,y)
∂y

(
a(z,y+φ(z)) − φ̇(z)

)
|t=kδ (4.45)

ud2(zk,yk) = üc(z,y)|t=kδ +
ud1(zk,yk)

2b(z,y+φ(z))y
ad[fc,gc]V |t=kδ. (4.46)

with

ad[fc,gc]V |t=kδ =
∂b(z,y+φ(z))

∂z
y (f(z) + g(z)(φ(z) + y)) |t=kδ

+

(
b(z,y+φ(z)) + y

∂b(z,y+φ(z)))
∂y

)
(a(z,y+φ(z))(z)) |t=kδ

−

(
∂W

∂z
(f(z) + g(z)) +

∂a(z,y+φ(z))
∂y

(z)

)
b(z,y+φ(z))|t=kδ

(4.47)

These expressions are well defined since according to the backstepping procedure b(z+φ(z))y 6= 0.

To express this solution into initial condition a coordinate change with y := ξ−φ(z) is necessary.

We redirect the reader to section 3.2, for details regarding the stabilizing properties of this controller.

4.3.2 Example 3 - the sampled-data design

Let us apply the digital procedure on the example provided in the section 4.2.1. By replacing variable

x1 with z1 and y2 with z2, the system (4.15)-(4.16) is rewritten in the general form (4.40) as:

fc =

 −z1 + z2

−(1+ 2z1)(z1 − z2)

 , gc =

 0

1


and the continuous-time control,

uc = (1+ 2z1)(z1 − z2) − z1 − z2.

By using the design formulas for the sampled-data controller (4.44)-(4.46), then uδ2d = ud0+ δ/2ud1+

δ2/6ud2, with

ud0 = uc|t=kδ = (1+ 2z1k)(z1k − z2k) − z1k − z2k (4.48)
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ud1 = u̇c|t=kδ = 2(z1k + z2k − z
2
2k − z

2
1k + 4z1kz2k) (4.49)

respectively ud2 which is computed from

ud2 = üc|t=kδ +
ud1
2

LfcLgcV2 − LgcLfcV2
LgcV2

|t=kδ = üc|t=kδ −
ud1
2

z1k − 3z2k − 6z1kz2k + 4z
2
1k

z2k

with

üc(zk) = −4(z1k + 2z1kz2k − 2z
2
2k).

This controller assures the reproduction of V2(z1, z2) in the sense that the equality (4.43) holds with

an error in O(δ3).

4.3.3 Sampled-data solution for the multiple cascade connexions

The same controller construction can be applied for the case of multiple sub-systems. Denoting now

by xT = [zT y1 y2 . . . ym], the compact system (4.40) is defined by:

fc =



f(z) + g(z)(y1 +α1(z))

a1(z,y1 +α1(z)) − α̇1(z) + b1(z,y1 +α1(z))(y2 +α1(z,y1 +α1(z)))

...

am(z,y1 +α1(z), . . . ,ym +αm(z, ·)) − α̇m(z, ·)


gc = [0 0 . . . bn(z,y1 +α1(z), . . . ,ym +αm(z, ·))]

where the time-derivatives of αi(z, ·) are evaluated as explicit functions of the state variables that it

depends on, e.g. α̇1(z) =
∂α1
∂z

(
f(·) + g(·)(y1 +α1(z))

)
. The Lyapunov function V is expressed as,

V =W +
1

2

m∑
j=2

x2j (4.50)

The sampled controller is computed in the same manner as in the previous case with the new given

functions.

4.3.4 Example 4 - the sampled-data design

By using the same notation z for the state vector [x1, y1, y2] the system (4.31)-(4.33) is rewritten in

the general form (4.40) as:

fc =


−z1 + z2

−z1 − z2 + z3

−2(4z1z2 − z
2
1 − z

2
2 − z1z3 − z3 + z1 + z2)

 , gc =


0

0

1
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and the continuous-time control is,

uc = 2(4z1z2 − z
2
1 − z

2
2 − z1z3 + z1) − 3z3 + z2.

By using the design formulas for the sampled-data controller (4.44)-(4.46), then uδ2d = ud0+ δ/2ud1+

δ2/6ud2, with

ud0 = uc|t=kδ (4.51)

ud1 = u̇c|t=kδ (4.52)

= 4z2k − 3z1k + 4z3k − 14z1kz2k + 12z1kz3k − 6z2kz3k − 4z
2
1k + 12z

2
2k

respectively ud2 which is computed from

ud2 = üc|t=kδ +
ud1
2

LfcLgcV3 − LgcLfcV3
LgcV3

|t=kδ

with V3 = (z21k + z
2
2k + z

2
3k)/2 is given by

ud2 = 2z1k − 17z2k − 12z1kz2k − z3k(48z1k − 54z2k − 6z1kz2k + 12z
2
1k + 4) − 12z1kz

2
2k (4.53)

+ 14z21kz2k + 29z
2
1k + 4z

3
1k − 41z

2
2k − 6z

2
3k +

z2k
2z3k

(4z21k + 14z1kz2k + 3z1k − 12z
2
2k − 4z2k)

This controller assures the reproduction of V3(z1, z2, z3) in the sense that the equality (4.43) holds

with an error in O(δ3).

In order to translate the controller expressions into initial variables next change of coordinates is

required:

z1k = x1k, z2k = x2k + x
2
1k + x1k, z3k = x3k + 2

(
x1k + x2k + x1k(x

2
1k + x2k) + x

2
1k

)

4.4 sampled-data multirate control for strict-feedback systems

The multirate sampling technique has been proposed in the nonlinear context for preserving under

sampling suitable structural stability properties of continuous-time dynamics

[Monaco & Normand-Cyrot 2001]. A m order multirate sampling means, in the present context, that

the control variables are sampled faster (e.g. m-times) than the data variables are measured. The

control input u(t) is thus assumed constant over intervals of amplitude δ̄ = δ/m thus allowing m

different control values on each sampling interval of length δ.

The main idea is that multiple changes of the control variables during the sampling period increase

the degrees of freedom of the map which describes the sampled system. It is shown, for instance in

[Monaco & Normand-Cyrot 2007], that the use of this technique provides the same performance as

the use of high-order holders devices and generalized sampling.
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4.4.1 Motivation

In order to motivate the need of this new approach let us analyze, in the following lines, the stabilizing

properties of the strict-feedback systems when using single-rate sampled-data controllers.

According to the backstepping procedure, at a first step a virtual control ξ = φ(z) is designed such

that it brings the z dynamics to a stable equilibrium. Then, a Lyapunov function W(z) describes the

stabilizing property of this first dynamics when the error dynamics y approaches to 0. For the second

sub-system a controller is designed with a specific Lyapunov function V(z,y) = W(z) + 1
2y
2. The

question we posed is what happens with the evolution of W when sampling is considered ? Is the

reproduction of V a sufficient condition for ensuring the stability properties on the first dynamics ?

In Section 3.2 it was shown that the single-rate controller offers a reproduction of the continuous-

time Lyapunov evolution of V under sampling with an error fixed by the approximation order of the

controller. However regarding the W evolution, one gets

W(zk+1) −W(zk) 6 −δρW(||zk||) +O(δ
3) (4.54)

whatever is the order P of the approximated controller with ρW a K function. This means that even

by reducing error on the V reproduction, the stability can be affected by the resulting behaviour of

W. If we look precisely to the terms of the V function then the same analysis can be performed as in

Section 2.4.1.

Let us suppose that there exist K functions ρW , ρy so that the next inequalities holds, for a

continuous-time controller uc when considering an exact equivalent discrete-time system and the

same initial conditions:

W(zck+1) −W(zck) 6 −δρW(||zck||) (4.55)

1

2
((yck+1)

2 − (yck)
2) 6 −δρy(||y

c
k||) (4.56)

By taking into account equation (4.5), the sampled-evolution of V , in the case of a single-rate controller

of order P, can be bounded for each dynamic in the following manner

V(xk+1) − V(xk) = V(zk+1,yk+1) − V(zk,yk) 6 −δ(ρW(||zk||) + ρy(||yk||)) +OW(δ3) +Oy(δ
3)

(4.57)

It is clear that the single-rate design imposes no performances for the internal dynamics of the system.

The single-rate version concerns only the V evolution of the system. The idea that follows is to impose

new matching conditions in order to reduce the contribution of remaining terms OW and Oy. To do

this the best solution is to consider a matching criteria on W together with requiring Lyapunov V

matching. In this way the matching on y2 is also ensured.
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For this case the means of a multi-rate approach represents a good option.

Important remark

V(zk+1,yk+1) − V(zk,yk) 6 −δ(ρW(|zk|) + ρy(|yk|)) +OW(δ3) +Oy(δ
3)

When imposing the input/Lyapunov matching on V this does not necessarily imply, also,

the matching properties on W. Hence, when the Lyapunov difference V(zk+1,yk+1) −

V(zk,yk) < 0 this does not guarantee that also W(zk+1) −W(zk) < 0 when y is small. As

a consequence, a better solution should be provided by requiring an additional matching

condition on W.

The idea performed below is to add more freedom degree on the control variable through multirate

sampling. In this way extra conditions can be easily addressed.

4.4.2 Multirate sampling of 2nd order

Let us now return to the one cascade connection defined by (4.1)-(4.2). In this section, we use the

same notations for xT , fc, gc defined in the beginning of section 4.3. As this system has a relative

degree 2, with respect to the output y = x1, it comes naturally to propose a procedure involving a

second order rate sampling with δ̄ = δ/2. In this context we consider two digital controllers that are

piecewise continuous along the sampling interval δ̄ with these assumptions:

a. u1k is active and constant for ∀t ∈ [kδ,kδ+ δ/2),

b. u2k is active and constant for ∀t ∈ [kδ+ δ/2, (k+ 1)δ).

The sampled-data dynamics equivalent of system (4.40) under the action of the control pair (u1k,u2k)

is given by

xk+1 = Fδd(xk,u1k,u2k) = e
BCH2

(
δ
2 (fc+u1kgc), δ2 (fc+u2kgc)

)
(4.58)

where BCH2 is the 2nd order Baker-Campbell Hausdorf exponent. This representation highlights the

contribution of the two digital controllers to the states dynamics evolution.

Now, we have to find the expressions of u1k and u2k such that the stabilizing properties match the

ones of the continuous-time plant. In this case, two objectives can be imposed by means of a multi-rate

design.
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By applying the ideas from the previous section, the first objective that should be imposed is already

stated in Theorem 40:

V(xk+1) − V(xk) =

∫ (k+1)δ
kδ

V̇(xc(τ))dτ. (4.59)

where xk+1 is computed from (4.58).

The second objective is given by the dynamic of the first sub-system (4.1) for which it is known, from

the continuous-time setting, that there exists a Lyapunov function W(z) which ensures the stability

properties for this dynamics. Under sampling it is natural to consider also the matching of W. In the

next lines we note W(x) which has components only in x1 = z. The second objective is written as:

W(xk+1) −W(xk) =

∫ (k+1)δ
kδ

Ẇ(xc(τ))dτ (4.60)

where xk+1 is computed from (4.58).

Now we can sum up these observations into the next theorem.

Theorem 42. Consider a strict-feedback system of the form (4.1)-(4.2), and suppose the existence of a continuous-

time controller uc, computed from a backstepping procedure, such that the Lyapunov functions W and V exist,

which guarantee the stability of the first sub-system and of the whole system, respectively. Then there exists a

2-rate feedback controller u1k = uδ̄1d, u2k = uδ̄2d which ensures the matching of Lyapunov evolutions un-

der sampling and guarantees the global asymptotic stability of the sampled-data equivalent system for a small

enough sampling period.

Proof. The proof of this theorem makes reference to Theorem 40. As already shown in the proof of

the previous theorem, the controller solution can be set as an asymptotic expansion in powers of δ. In

this case, where δ̄ = δ/2, the controllers have these expressions:

uik = uδid = udi0 +
∑
j>1

δj

2j(j+ 1)!
udij, i = 1, 2. (4.61)

We construct a smooth map Q : U→ IR2, where U is an open set of IRn+m+1 × R2 as

Q(xk, δ,u1k,u2k) =


1
δ

(
eBCH

2
(
δ
2 (fc+u1kgc), δ2 (fc+u2kgc)

)
V(x) − eδ(fc(·)+uc(·)gc(·))V(x)

)
1
δ2

(
eBCH

2
(
δ
2 (fc+u1kgc), δ2 (fc+u2kgc)

)
W(x) − eδ(fc(·)+uc(·)gc(·))W(x)

)
(4.62)

Let us consider now (a,b) a point of the set U with a = (xk, 0) ∈ Rn+m+1 and b = (ud10,ud20) ∈ R2.

By computing the Jacobian of Q one gets,

[
∂Qi(·)
∂ujk

|{a,b}

]
=

 LgcV(xk) LgcV(xk)

3LgcLfcW(xk) LgcLfcW(xk)

 (4.63)
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which is nonsingular since by some computations it results that

LgcV(xk) · LgcLfcW(xk) = x2 b(x1, x2)2
∂W

∂x1
g(x1) 6= 0,

for all xk. The last expression is non zero since the definition of strict feedback systems gives that

b(x1, x2), g(x1) are invertible for any x1, x2 6= 0. If we translate into initial condition it means that

the conditions holds if z 6= and ξ 6= φ(z). The condition of the input-Lyapunov matching holds if

Q(xk, δ,u1k,u2k) = [0, 0]T . One verifies that for δ = 0 :

Q(xk, 0,u1d0,u2d0) =

 (Lfc +
u1d0+u2d0

2 Lgc)V − (Lfc + uc(·)Lgc)V

(3u1d0 + u2d0)LgcLfcW − 4uc(·)LgcLfcW


The matching condition for δ = 0 is accomplished by setting u1d0 = u2d0 = uc(xk). Now we have

all the ingredients to call the implicit function Theorem [Lee 2006, Th.7.9]. According to this, given the

point (a,b) in the open set U, such that Q(a,b) = 0 where Q is a smooth application and its Jacobian

is nonsingular, then there exists a map γ defined on the neighborhood Ua of a and Ub of b such that

for all x ∈ Ua and y ∈ Ub, y = γ(x).

In this case, this means that for a small enough δ, there exists a pair of controllers (u1k,u2k) in the

neighborhood of b = (ud10,ud20) which are given by a map γ(xk, δ) i.e

(uδ1d,uδ2d) := γ(xk, δ) (4.64)

such that

Q (xk, δ,γ(xk, δ)) = [0, 0]T ,

with

(ud10, ud20) = γ(xk, 0).

As the Lyapunov matching conditions hold on V and W, the sampled-data system preserves the same

stability properties at the sampling instants.

The first 2-rate terms of the controller are computed as:

(ud10, ud20) = (uc|xk , uc|xk) (4.65)

(ud11, ud21) = (
2

3
u̇c

∣∣∣∣
xk

,
10

3
u̇c

∣∣∣∣
xk

) (4.66)

ud12 =
4

3
u̇c

(
4ucL

2
gcLfc + LgcL

2
fc

)
W · (LgcLfcW)−1 − 6u̇cucLgcV · (LgcV)−1|xk

ud22 = 8u̇c + 12u̇cucLgcV · (LgcV)−1 − ud12|xk . (4.67)

Remark 43. It is interesting to note that the condition of computing the digital multi-rate controller (i.e.

LgcLfcW = ∂W
∂x1

g(x1)b(x1, x2) 6= 0, ∀xk 6= 0) is not a suplimentary condition. This above condition is

satisfied in the same time with the one imposed in the continuous-time backstepping design.
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More details about computing these terms are given in the Chapter 14.

This procedure improves the stability properties of the sampled-data system. This fact is enclosed

in the following proposition.

Proposition 44. Given the same conditions as in Proposition 35, the Lyapunov V difference of the

sampled-data system with an P-order 2-rate controller computed as in Section 4.4.2 satisfies:

V(zk+1,yk+1) − V(zk,yk) 6 −δ(ρW(|zk|) + ρy(|yk|) +OW(δP+2) +Oy(δ
P+1) (4.68)

and also

V(zk+1,yk+1) − V(zk,yk) 6 −δρV (|zk|) +OV (δ
P+1) (4.69)

Proof. The proof is immediate by computing the terms of DVsc(xk) of (2.44) in the case of V , W and y

evolutions. These computations give the Lyapunov functions dependencies in δ and then are replaced

in the stabilizing conditions of the continuous-time controller (4.56).

The proposed approach, related to the single-rate version, is based on the same objective of in-

put/Lyapunov matching and it requires in addition a 2-time faster controller. The single-rate approach

is interested in the preservation of the whole Lyapunov stability V of the system, neglecting the be-

havior of W. By augmenting, in some sense, the number of the controllers in the multi-rate approach,

we impose in addition the matching condition of W. In this case, better stability performance for the

dynamics of the system is obtained.

4.4.3 Multirate sampling of m-th order

In this subsection we formulate the control solution for a more general case - the m cascade connec-

tions. Let us consider the more general system given by the equations (4.29) with the m+ 1 Lyapunov

functions as defined by (4.30). Further we consider the same compact form (4.40), with the functions

defined in subsection 4.3.3. For this case, it becomes natural to choose a control solution involving the

m+ 1 rates. We will denote by δ̄ = δ
m+1 the controller period used. Then the m+ 1 controllers are

defined thus,

1. uik is active and constant for ∀t ∈ [kδ+ (i− 1)δ̄, kδ+ iδ̄), where 1 6 i 6 m+ 1.
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The sampled-data dynamics equivalent of the system (4.40) under the action of them+ 1 controllers

is given by

xk+1 = Fδ(xk,u1k,u2k, · · · ,um+1 k) = e
BCHm+1

(
δ̄(fc+u1kgc),δ̄(fc+u2kgc),··· ,δ̄(fc+um+1 kgc)

)
(4.70)

where BCHm+1 is the m+ 1 order Baker-Campbell Hausdorf exponent.

In a similar way, we have to find the expressions of the controllers in order to match the stabilizing

properties with the ones of the continuous-time plant. In this case we should impose the m + 1

objectives (we have defined the m+ 1 Lyapunov functions).

The next theorem gives the multi-rate control solution for the general case.

Theorem 45. Consider a strict-feedback form (4.29) with m + 1 sub-systems, and suppose the existence of

the continuous-time controller uc, computed from a backstepping procedure, such that the Lyapunov functions

W, V1, . . . , Vm exist, each guaranteeing the stability of the first connections. Then there exists an m+ 1-rate

feedback controller uik = uδ̄id which ensures the same Lyapunov evolutions under sampling and guarantees

the global asymptotic stability of the sampled-data equivalent system for a small enough sampling period.

Proof. The proof of this theorem is very similar with the one provided for Theorem 42. We will give

only some elements of the proof. The controllers solution for this case, where δ̄ = δ/(m+ 1) should

be chosen as:

uik = uδid = udi0 +
∑
j>1

δj

(m+ 1)j(j+ 1)!
udij, i = 1, 2, · · · ,m+ 1 (4.71)

with i = 1, 2, · · · ,m+ 1.

The map Q : U→ IRm+1, where U is an open set of IRn+m+1 × Rm+1 should be defined as:

Q(xk, δ,u1k,u2k, . . . ,um+1k) =

1
δ

(
eBCH

m+1
(
δ̄(fc+u1kgc),δ̄(fc+u2kgc),··· ,δ̄(fc+um+1 kgc)

)
Vm+1(x) − e

δ(fc(·)+uc(·)gc(·))Vm+1(x)

)
1
δ2

(
eBCH

m+1
(
δ̄(fc+u1kgc),δ̄(fc+u2kgc),··· ,δ̄(fc+um+1 kgc)

)
Vm(x) − eδ(fc(·)+uc(·)gc(·))Vm(x)

)
...

1
δm+1

(
eBCH

m+1
(
δ̄(fc+u1kgc),δ̄(fc+u2kgc),··· ,δ̄(fc+um+1 kgc)

)
W(x) − eδ(fc(·)+uc(·)gc(·))W(x)

)


By computing the Jacobian of Q for δ = 0 and uik = udi0, for i = 1,m + 1 then one gets the

following:

[
∂Qi(·)
∂ujk

|δ=0;ujk=ujd0

]
=
[
Γij
]


LgcVm(xk) 0 · · · 0

0 LgcLfcVm−1(xk) · · · 0

...
...

. . . 0

0 0 · · · LgcL
m
fc
W(xk)


(4.72)
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where the elements of the matrix Γ are defined as

Γij = j
i − (j− 1)i (4.73)

The above matrix multiplication is nonsingular since det(Γ) = (m+ 1)! and the product is

m∏
i=0

LgcL
i
fc
W(xk) 6= 0,∀ xk 6= 0.

The condition of the input-Lyapunov matching holds if Q(xk, δ,u1k,u2k, . . . ,um+1k) = [0, . . . , 0]T︸ ︷︷ ︸
×m+1

.

One verifies that for δ = 0:

Q(xk, 0,u1d0,u2d0, . . . ,um+1d0) =


(
∑m
i=0 um+1−id0 − (m+ 1)uc(·))LgcVm

...

(
∑m
i=0

∑m+1
j=1 Γijum+1−id0 − (m+ 1)m+1uc(·))LgcLmfcW


It follows that the matching condition for δ = 0 is accomplished if uid0 = uc(xk) for all i = 1, ...,m+ 1.

Now we have all the ingredients to call the implicit function Theorem [Lee 2006, Th.7.9] and to prove

the existence of such controller.

4.4.3.1 Approximated controller

This design strategy imposes to each controller the preservation of the stability properties of each

sub-system. For larger m it is clear that this method becomes difficult to implement practically.

It is interesting to remark that, for example, the first order approximated multi-rate controller en-

sures the reproduction of the Lyapunov function Vm with an error in O(δ3) and for the W function

the error is m times smaller e.g. O(δm+2). The exact computation of the first terms of an approxi-

mated m-rate controller involves inverting a Vandermonde type matrix. In the next lines we will give

some ingredients to compute the first order controller approximation in the case of m-rates.

By solving equality

Q(xk, δ,u1k,u2k, . . . ,um+1k) = [0, . . . , 0︸ ︷︷ ︸
m+1

]T

for a first order approximated controller (P = 1), then this can be written in the form:

[
Γij
]

um+1d1

...

u1d1

 =


(m+1)2

2

...

(m+1)m+2

m+2

 2u̇c(xk) (4.74)

where the controller terms uid1 can be computed by solving the linear system. A general solution

can be computed if the inverse Γ−1 can be computed explicitly. It must be pointed out that when m

increases the conditioning number of the matrix Γ increases faster and the numerical computation

errors of its inverse become more significant.
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Let us exemplify the solution for m = 3 and m = 4.

(u1d1, u2d1, u3d1) =

(
3

4
u̇c

∣∣∣∣
xk

, 3u̇c|xk ,
21

4
u̇c

∣∣∣∣
xk

)
(4.75)

(u1d1, u2d1, u3d1, u4d1) =

(
332

45
u̇c

∣∣∣∣
xk

,
68

15
u̇c

∣∣∣∣
xk

,
52

15
u̇c

∣∣∣∣
xk

,
28

45
u̇c

∣∣∣∣
xk

)
(4.76)

These expressions are well defined since, by construction LgcL
i
fc
Vm−i 6= 0, ∀xk 6= 0.

Proposition 46. The approximated m-rate controller of P order uδ̄ Pd asymptotically stabilizes the system with

m cascade connections with an error on Vm matching O(δP+1) respective with an error on W matching of

O(δP+m+1)

Proof. After some computations, the multi-rate controller of P order gives the following

Vm(zk+1,y1k+1, . . . ,ymk+1) − Vm(zk,y1k, . . . ,ymk)

6 −δ(ρW(|zk|) + ρy1(|y1k|) + . . . ρym(|ymk|)) +OW(δP+m+1) +Oy1(δ
P+m) + . . .+Oym(δ

P+1)

respective

Vm(xk+1) − Vm(xk) 6 −δρVm(||xk||) +OVm(δ
P+1) (4.77)

where ρW , ρyi , ρVm are K functions defined for the continuous-time case.

This means that the multi-rate controller will maintain the stabilization properties of the internal

dynamics. The first dynamic z, which in many practical situations has the major interest, is favored

by this design. The multi-rate approach can be used with great success in the case of systems with a

chain of integrators in the control inputs path, when the emulated solutions fail to work even for for

lower sampling periods.

4.5 simulation results

In this section, there are provided simulation results for the same model used in Section 4.2.1 and

4.3.2. Let us recall the main results, expressed into the initial system coordinates. Given the system

with one integrator in the inputs path:

ẋ1(t) = x21(t) + x2(t) (4.78)

ẋ2(t) = u (4.79)

with an initial Lyapunov function W(x1) = x21/2. The continuous-time controller based on the back-

stepping design,

uc = −(Kφ +Ky)(x1
2 + x2) − 2x1

3 − (2x2 +KφKy + 1)x1; (4.80)
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with the gains parameters Kφ > 0 and Ky > 0 and a global Lyapunov function V , constructed as,

V(x1, x2) =
1

2
(x21 + (Kφx1 + x2 + x

2
1)
2). (4.81)

single-rate design The single-rate backstepping controller (BksSR) of the second order ap-

proximation is computed as :

uδ2d = ud0 +
δud1
2!

+
δ2

3!
ud2 (4.82)

with the following terms expression:

ud0 = uc|t=kδ (4.83)

ud1 = K2φx2 − x2 +K
2
yx2 + x

2
1(K

2
φ + 3KφKy +K2y − 4x2 + 1) (4.84)

+ x1(Kφ +Ky + 2Kφx2 + 2Kyx2 +KφK
2
y +K2φKy) − 2x

4
1 − 2x

2
2 + x

3
1(2Kφ + 2Ky) +KφKyx2

ud2 = (3x1)/2+ (5Kφx2)/2+ 2Kyx2 + 10x1x2 − x
3
1/(x

2
1 +Kφx1 + x2) − (7Kφx

2
1)/2− 2K

2
φx1 (4.85)

+ 5Kφx
4
1 + 7Kφx

2
2 − 2Kyx

2
1 − (3K2yx1)/2− (3K3φx2)/2+ 4Kyx

4
1 + 6Kyx

2
2 −K

3
yx2 + 2x1x

2
2

+ 4x31x2 + 8x
3
1 + 2x

5
1 − 4K

2
φx
3
1 − (3K3φx

2
1)/2− 3K

2
yx
3
1 −K

3
yx
2
1 + (2K2φx

3
1)/(x

2
1 +Kφx1 + x2)

+ (K3φx
2
1)/(2(x

2
1 +Kφx1 + x2)) − (9KφK

2
yx
2
1)/2− (11K2φKyx

2
1)/2− (3K2φK

2
yx1)/2 (4.86)

− KφKyx1 − (Kφx
2
1)/(x

2
1 +Kφx1 + x2) − (Kyx

2
1)/(2(x

2
1 +Kφx1 + x2)) −KφK

3
yx1

− (3K3φKyx1)/2− (3KφK
2
yx2)/2− (3K2φKyx2)/2+ 12Kφx

2
1x2 − 4K

2
φx1x2 + 10Kyx

2
1x2

− 3K2yx1x2 + 2KφKyx1x2

two-rate design The second approach, involving 2-rate sampling (BksMR), consists of two

digital controller of the second order approximations defined as follows:

uδ̄ 2di = udi0 +
δ

4
udi1 +

δ2

24
udi2, i = 1, 2 (4.87)
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under the assumption that uδ2d1 is constant and active on the intervals [kδ, (k+ 1
2 )δ), respective uδ2d2 is

constant and active on the intervals [(k+ 1
2 )δ, (k+ 1)δ). The controllers terms are given below:

(ud10, ud20) = (uc|t=kδ , uc|t=kδ) (4.88)

ud11 = 2(K2φKyx1 +K
2
φx
2
1 +K

2
φx2 +KφK

2
yx1 + 3KφKyx

2
1 +KφKyx2 + 2Kφx

3
1 + 2Kφx1x2

+ Kφx1 +K
2
yx
2
1 +K

2
yx2 + 2Kyx

3
1 + 2Kyx1x2 +Kyx1 − 2x

4
1 − 4x

2
1x2 + x

2
1 (4.89)

− 2x22 − x2)/3

ud12 = 10(K2φKyx1 +K
2
φx
2
1 +K

2
φx2 +KφK

2
yx1 + 3KφKyx

2
1 +KφKyx2 + 2Kφx

3
1 + 2Kφx1x2

+ Kφx1 +K
2
yx
2
1 +K

2
yx2 + 2Kyx

3
1 + 2Kyx1x2 +Kyx1 − 2x

4
1 − 4x

2
1x2 + x

2
1 (4.90)

− 2x22 − x2)/3

ud21 = 0 (4.91)

ud22 = (−8)(K3φKyx1 +K
3
φx
2
1 +K

3
φx2 +K

2
φK
2
yx1 + 3K

2
φKyx

2
1 +K

2
φKyx2 + 2K

2
φx
3
1 + 2K

2
φx1x2

+ K2φx1 +KφK
3
yx1 + 3KφK

2
yx
2
1 +KφK

2
yx2 − 4KφKyx

3
1 − 4KφKyx1x2 (4.92)

− 6Kφx
4
1 − 12Kφx

2
1x2 − 6Kφx

2
2 − 2Kφx2 +K

3
yx
2
1 +K

3
yx2 + 2K

2
yx
3
1 + 2K

2
yx1x2 +K

2
yx1

− 6Kyx
4
1 − 12Kyx

2
1x2 − 6Kyx

2
2 − 2Kyx2 − 8x

3
1 − 8x1x2 − x1).

simulations The parameters for the following simulations are given in Table 4.1.

sampling initial gain simulation Figure

period conditions time length labels

δ = 0.4 s x0 = [0.5 0.5] Kφ = 1, Ky = 1 tf = 10 s Figures 4.2, 4.3, 4.4

δ ∈ [0.01, . . . , 1] s x0 = [0.5 0.5] Kφ = 1, Ky = 1 tf = 10 s Figure 4.5

δ ∈ [0.01, . . . , 0.3] s x0 = [0.5 0.5] Kφ = Ky = tf = 10 s Figure 4.6

K ∈ [0.1, . . . , 10]

Table 4.1: Numerical values of the simulation parameters- Example 3 -single and two-rates controllers

The controllers tested are: the continuous-time version (continuous line,“cont”), the emulated con-

trol(circle, “emul”), the single rate version of order 1 (triangle, “BksSR1”) and of the 2nd order respec-

tively (plus, “BksSR2”), the 2-rate version of order 1 (star, “BksMR1”) and of the 2nd order respectively

(square, “BksMR2”). In the Figures 4.2-4.4 are given the time evolutions of different variables: state,

control, Lyapunov functions, trajectories. An easy comparison can be made with the continuous-time
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evolution which is the “ethalon”. It is clear that the multi-rate version of digital controllers are per-

forming best.

In order to evaluate these new approaches in a larger context, to see in which conditions depend-

ing on the sampling period and of the controller gains, each controller is performing best. The error

criterion, which is defined in Section 5.2.4, is here used to evaluate the performance of the each ap-

proach with respect to the objective of input/Lyapunov matching. This criterion was applied both on

the evolution of W and V Lyapunov function. In Figure 4.5 are plotted the Lyapunov error difference

when Kφ = Ky = 1 and the sampling period is in the range [0.01, 1] seconds. The conclusions are the

same with the ones obtained for the previous simulations, that the multi-rate version is performing

better and also the second-order controller is superior to the first-order controller.

In Figure 4.6 it was considered also a variations of the gains such that K = Kφ = Ky with

K = [0.1, 10]. The sampling period has been restricted to the range [0.01, 0.3]. The errors level have

been restricted to a maximum value equals to 1, for which it is considered that the stabilizing perfor-

mance is acceptable. The red colored regions indicate the areas where the controlled system becomes

unstable. These results confirm a known fact, when increasing the gain of a controller this lead to

a decrease of the maximum sampling period. Consequently slowest controllers permit larger values

for the sampling period. The strategy proposed, compared to the results obtained for the emulated

control, extends both the use of admissible sampling periods and gains. These simulations represent a

suitable tool to obtain estimations about the maximum sampling period that can be used in sampled-

data schemes. The best results are obtained for the second order two-rate controller. The single-rate

first order controller does not offer improvements related to the expansions of the use of the gains or

δ but offers lower level errors for certain regions.
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Figure 4.2: States evolutions for proposed algorithms, δ = 0.4s
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Figure 4.3: Lyapunov evolutions for proposed algorithms, δ = 0.4s
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Figure 4.4: Simulation results for the proposed algorithms, δ = 0.4s
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Figure 4.5: Lyapunov error matching results for the proposed algorithms
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Figure 4.6: Lyapunov difference
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Concluding remark

The results show, compared to the emulated version, that the proposed approaches main-

tain the continuous-time performance under sampling. The error criteria, in terms of Lya-

punov matching, indicate that the best versions are the two-rate of the first and the second

order controller approximations. The single-rate version of the second order is more sen-

sitive to numerical errors due to the fact this solution is more complex. The simulations

confirms also that the multi-rate version ameliorates the stability of the first dynamics,

and consequently of the entire system. In view of these observations, the 2-rate controller

should be chosen, because its simplicity and higher stability performance.

4.5.1 Some comments with respect to other similar strategies

It is useful to compare this new approach with those methodologies that claim appropriate results.

We are referring here to that results obtained in the same context of digital redesign of the continuous-

time controller.

In the article of [Nešić & Teel 2006] a digital design based on the Euler approximate discrete-time

model of the plant is proposed. The results obtained assure semiglobal-practical stability of the exact

model. The main difference of the design proposed in [Nešić & Teel 2006] and ours is that the con-

troller is build from an approximate discrete-time model and not from an exact sampled-model as

we have done here. Consequently our solutions performs better, in terms of stability properties as it

is pointed out by the simulations results from the next section. Another aspect is that our approach

applies to any nonlinear dynamics of the vector fields.

In the paper of [Nešić & Grüne 2005], two solutions for sampled-data implementations based on

the redesign of the Lyapunov-based continuous-time controller are given. The first solution provides

more negativity to the Lyapunov difference than the emulated control. The second solution tries to

minimize the mismatches between the continuous and the sampled-data Lyapunov evolutions for a

given order of the difference approximations. The specificity of our approach is that we try to match

exactly these Lyapunov evolutions and not only “minimizing”. However, the first order term of the

approximated controller is computed in the same manner in both approaches.

Another work of [Burlion et al. 2006], which relies on the works of Nešić and others

[Nešić & Teel 2001],[Nešić & Grüne 2005], claims the same exact matching of the Lyapunov difference.
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The design procedure presented there, is complicated and it is developed considering only the sim-

plest version of the strict feedback systems. No generalization and comments about how the solution

can achieve global stabilization are given. The methodology used in designing the controller expres-

sions is confusing and does not match with our solutions (see the simulated example).

All these solutions are expected to perform better for larger sampling periods, compared with

the emulated case. As it is highlighted by the next simulations, the increased order of a controller

contains more complex expressions and as consequence more instability is expected for larger δ. This

is a reason why, the first order approximated solutions are working better for larger sampling periods

rather than the higher order approximated controllers.

In conclusion we mention that the proposed methodologies perform best with respect to other sim-

ilar methodologies, in the context of the exact matching of the Lyapunov evolution under sampling.

4.5.1.1 Comparative simulations

To highlight the performance of the novel approaches related to other similar designs, we use the

model from Example 3, (4.78)-(4.79) which is the same with the one used in [Nešić & Teel 2006],

[Burlion et al. 2006] or [Nešić & Teel 2001].

The simulation parameters are given in Table 4.2. In the next figures there are plotted the evolu-

tions of the Lyapunov functions, of the controllers and of the state variables x1,x2. The controller

expressions used in these simulations are indicated in the mentioned papers.

sampling initial simulation Figure

period conditions time length labels

δ = 0.4 s x0 = [0.5 0.5] tf = 10 s Figures 4.7, 4.8, 4.9

δ ∈ [0.01, . . . , 1] s x0 = [0.5 0.5] tf = 10 s Figure 4.10

δ = 0.9 s x0 = [0.5 0.5] tf = 10 s Figures 4.11, 4.12

Table 4.2: Numerical values of the simulation parameters- Example 3 -comparative study

In Figure 4.9, there are plotted the results for the following controllers: the continuous-time ver-

sion (continuous line,“cont”), the single-rate of the second order (circle, “BksSR2”), the first order

controller provided in [Nešić & Teel 2006] (triangle, “BksNe1”), the second order controller provided

in [Nešić & Grüne 2005] (plus, “BksNe2”), the first order controller provided in [Burlion et al. 2006]

(star, “BksBu1”) and the second order controller from [Burlion et al. 2006] (upper triangle, “BksBu2”).
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As mentioned before, the first order controller proposed in [Nešić & Grüne 2005] coincides with the

proposed approach “BksSR1”.

In Figure 4.10 there are also given the results of the Lyapunov matching error for different sampling

periods. These results are compared with the our strategies as are illustrated in Figure 4.5.

One can conclude that, based on the objective of the Lyapunov matching, the proposed strategies

are superior to the ones provided in the literature. In terms of the V and W Lyapunov functions,

the multi-rate controllers perform best. These approaches extend the use of higher sampling periods

compared with the emulated case. The second order solutions, in this example, are more sensitive

when increasing the sampling period. The simulations from Figures 4.11-4.12 are provided for δ =

0.9 seconds, where the controllers which still manage to stabilize the system are of first order. The

controller proposed in [Nešić & Teel 2006], has in this case the worst evolution.
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Figure 4.7: States evolutions for the compared algorithms, δ = 0.4s

[ November 28, 2012 at 8:46 – classicthesis final version ]



4.5 simulation results 87

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
BksMR2: Verr= 0.291
BksNe1: Verr= 1.923
BksNe2: Verr= 1.631
BksBu1: Verr= 1.139
BksBu2: Verr= 0.746

time (s)

V

V , δ =0.4

 

 

Cont
BksMR2
BksNe1
BksNe2
BksBu1
BksBu2

(a) Lyapunov V evolution

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

BksMR2: Werr= 0.291
BksNe1: Werr= 1.923
BksNe2: Werr= 1.631
BksBu1: Werr= 1.139
BksBu2: Werr= 0.746

time (s)

W

W , δ =0.4

 

 

Cont
BksMR2
BksNe1
BksNe2
BksBu1
BksBu2

(b) Lyapunov W evolution

Figure 4.8: Lyapunov evolutions for compared algorithms, δ = 0.4s
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Figure 4.9: Simulation results for the compared algorithms, δ = 0.4ms
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Figure 4.10: Lyapunov error matching results for the compared algorithms (For comparative purposes see Figure

4.5)
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Figure 4.11: States evolutions for compared algorithms, δ = 0.9s

[ November 28, 2012 at 8:46 – classicthesis final version ]



4.5 simulation results 91

−2.5 −2 −1.5 −1 −0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x1

x
2

Phase portrait, δ =0.9

 

 

Cont
BksMR1
BksNe1
BksBu1

(a) Trajectories

0 2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4

time (s)

u

u, δ =0.9

 

 

Cont
BksMR1
BksNe1
BksBu1

(b) Control

Figure 4.12: Simulation results for the compared algorithms of first order, δ = 0.9ms
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4.5.2 The strict feedback system with double integrator

Let us, next, illustrate the benefit of a 3-rate controller on the 3 order system already worked out in

sections 4.2.3 and 4.3.4. Let us recall the main results computed previously, expressed in the initial

system coordinates.

ẋ1 = x21 + x2 (4.93)

ẋ2 = x3 (4.94)

ẋ3 = u (4.95)

with an initial Lyapunov function W(x1) = x21/2. The continuous-time controller based on the back-

stepping design,

uc(x1, x2, x3) = −6x41 − 6x
3
1 + (−8x2 − 5)x

2
1 + (−6x2 − 2x3 − 3)x1 − 2x

2
2 − 5x2 − 3x3 (4.96)

respectively

u̇c(x1, x2, x3) = 9x1 + 12x2 + 4x3 + 18x1x2 + 6x1x3 − 6x2x3 − 12x1x
2
2 + 12x

2
1x2 − 24x

3
1x2

− 6x21x3 + 18x
2
1 + 18x

3
1 + 12x

4
1 − 12x

5
1; (4.97)

and the total Lyapunov function

V := V3(x1, x2, x3) =
1

2

(
(x21 + x1 + x2)

2 + (2x1 + 2x2 + x3 + 2x1(x
2
1 + x2) + 2x

2
1)
2 + x21

)
.

single-rate version The single-rate backstepping of the second order approximated con-

troller (BksSR) is computed with formulas given in Section 4.3.3. In this case:

uδ2d = ud0 +
δ

2
ud1 +

δ2

6
ud2

with

ud0 = uc|xk (4.98)

ud1 = u̇c|xk (4.99)

ud2 = 14x21(x
2
1 + x1 + x2) − 17x2 − 12x1(x

2
1 + x1 + x2)

2 − 15x1 − 41(x
2
1 + x1 + x2)

2

− 6(2x1 + 2x2 + x3 + 2x1(x
2
1 + x2) + 2x

2
1)
2 + 12x21 + 4x

3
1 + (6x1 + 54x2

+ 42x21 + 6x1(x
2
1 + x1 + x2) − 4)(2x1 + 2x2 + x3 + 2x1(x

2
1 + x2) + 2x

2
1)

− 12x1(x
2
1 + x1 + x2) − ((x21 + x1 + x2)(x1 + 4x2 + 12(x

2
1 + x1 + x2)

2

− 14x1(x
2
1 + x1 + x2)))/(4x1 + 4x2 + 2x3 + 4x1(x

2
1 + x2) + 4x

2
1). (4.100)
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3-rate version The second approach, involving 3-rates sampling (BksMR) gives,

uδ̄ 3d i = udi0 +
δ

6
udi1 +

δ2

54
udi2, i = 1, 3

with

(ud10, ud20, ud30) =
(
uc|xk , uc|xk , uc|xk

)
(4.101)

(ud11, ud21, ud31) =

(
3

4
u̇c

∣∣∣∣
xk

, 3u̇c|xk ,
21

4
u̇c

∣∣∣∣
xk

)
(4.102)

ud21 = (306x1)/5+ (621x2)/10+ 36x3 + (36x21)/(2x1 + 2x2 + x3 + 2x1(x
2
1 + x1 + x2))

− (153x1x3)/5+ (216x1(x
2
1 + x1 + x2)

2)/5− (1089x21(x
2
1 + x1 + x2))/10

+ 27x31(x
2
1 + x1 + x2) + 36(x

2
1 + x1 + x2)

2 + (81x21x3)/5− (81x21(x
2
1

+ x1 + x2)
2)/5+ (36(x21 + x1 + x2)

2)/(2x1 + 2x2 + x3 + 2x1(x
2
1 + x1 + x2))

+ (45x21)/4+ 63x
3
1 − (54x41)/5− (27x23)/5− (27x1(x

2
1 + x1 + x2))/5

+ (108x3(x
2
1 + x1 + x2))/5− (189x1x3(x

2
1 + x1 + x2))/10

ud22 = (1188x1(x
2
1 + x1 + x2)

2)/5− (6129x2)/20− 126x3 − (126x21)/(2x1 + 2x2 + x3

+ 2x1(x
2
1 + x1 + x2)) − (774x1x3)/5− (1557x1)/5− (2691x21(x

2
1 + x1 + x2))/5

+ 270x31(x
2
1 + x1 + x2) + 198(x

2
1 + x1 + x2)

2 + (648x21x3)/5− (648x21(x
2
1

+ x1 + x2)
2)/5− (126(x21 + x1 + x2)

2)/(2x1 + 2x2 + x3 + 2x1(x
2
1 + x1 + x2))

+ (207x21)/4+ 306x
3
1 − (702x41)/5− (297x23)/10− (3186x1(x

2
1 + x1 + x2))/5

+ (594x3(x
2
1 + x1 + x2))/5− (621x1x3(x

2
1 + x1 + x2))/5

ud23 = (711x1)/5+ (3267x2)/20+ 198x3 + (198x21)/(2x1 + 2x2 + x3 + 2x1(x
2
1 + x1 + x2))

− (3393x1x3)/5+ (5076x1(x
2
1 + x1 + x2)

2)/5− (23769x21(x
2
1 + x1 + x2))/10

+ 999x31(x
2
1 + x1 + x2) + 846(x

2
1 + x1 + x2)

2 + (2511x21x3)/5− (2511x21(x
2
1

+ x1 + x2)
2)/5+ (198(x21 + x1 + x2)

2)/(2x1 + 2x2 + x3 + 2x1(x
2
1 + x1 + x2))

+ 234x21 + 1359x
3
1 − (2484x41)/5− (1269x23)/10− (6507x1(x

2
1 + x1 + x2))/5

+ (2538x3(x
2
1 + x1 + x2))/5− (5049x1x3(x

2
1 + x1 + x2))/10.

(4.103)
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simulations The simulation parameters are given in Table 4.3. In the Figures 4.13, 4.14 there

are plotted the evolutions of the Lyapunov functions, of the controllers and of the state variables

x1, x2, x3. The second-order approximated controllers offer the best results for both approaches

single and 3-rates.

sampling initial simulation Figure

period conditions time length labels

δ = 0.4 s x0 = [0.5 0.5 0.5] tf = 10 s Figures 4.13, 4.14

δ ∈ [0.01, . . . , 1] s x0 = [0.5 0.5 0.5] tf = 10 s Figures 4.15

Table 4.3: Numerical values of the simulation parameters- Example 4 -single and multi-rate controllers

In Figure 4.15 there is plotted the Lyapunov matching error criteria when evaluating the V and W

matching on each sampling instants. It is clear that the 3-rates versions offer better results for large

intervals of δ. For lower sampling periods, single-rate version can offer lower errors level than the

3-rates version.

If we compare these results with the ones obtained for the system (4.78)-(4.79) one can conclude

the following. This example is interesting, because highlights a known fact from the continuous-time

context: adding an integrator in the controls path slows the response of the first dynamic to the input

changes. For this reason, the backstepping design for the third-order system could be improved by

increasing the design gains. Any increase of the control gains reduces the maximum admissible sam-

pling period for the emulated solutions. In this example, we choose to use the same gains for both

situations, in the idea to not impose additional constraints on the sampling period. The supplemen-

tary integrator had reduced the maximum admissible sampling interval of the emulated solution from

[0..9] to 0..5 seconds. This degradation is also reflected in the case when employing the digital con-

troller, here proposed, with one exception: the multi-rate version of the second order approximation.

This solution has almost the same performances in the case of 1 or 2 integrators in the control inputs.

This fact confirms the theoretical assumptions, and represents a suitable solution for the systems with

chains of integrators.
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Figure 4.13: Lyapunov evolutions for proposed algorithms - double integrator, δ = 0.4s
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Figure 4.14: Simulation results for the proposed algorithms -double integrator, δ = 0.4s
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Figure 4.15: Lyapunov error matching results for the proposed algorithms - double integrator
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Part II

S I M N L S Y S - S A M P L E D - D ATA C O N T R O L L E R D E S I G N T O O L B O X

The case studies given in this part covers all the theoretical aspects detailed in the previous

part.
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5
S I M N L S Y S S O F T WA R E T O O L B O X

This chapter describes the SimNLSys software toolbox, developed to assist the design of

sampled-data controllers. The software proposes a number of modules which cope with

different design strategies such as: multi-rate control, input-output/Lyapunov matching,

backstepping controller or optimal control. The digital design is worked out for nonlinear

input-affine systems and the resulting controllers are expressed as symbolic expressions

that can be used for simulation tests.

The toolbox offers also a dedicated module for simulations of sampled-data systems and

allows a number of predefined analysis concerning the evaluation of performance indica-

tors in terms of sampling period and static gains of the controller. Part of the presentation

of the software and its algorithms are included in the paper [C01],[C03] from the author’s

contribution list (page ix).

5.1 the toolbox objectives and structure

The proposed CADC software -SimNLSys- is built as a Graphical User Interface (GUI) application in

Matlab1. This software combines graphical features of a GUI application with solutions provided by

the numerical and symbolic tools. Its main goals are twofold:

• to support the design of sampled-data controllers for a number of available nonlinear control

designs;

• to provide specific simulations and performance evaluations tools for the proposed sampled-

data controllers, in a comparative test spirit;

SimNLSys is designed as a Matlab design toolbox for sampled-data feedback nonlinear controllers.

This specificity makes the proposed software application fill the gap that exists in the context of

1 A MathWorks product http://www.mathworks.com/products/matlab

101
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102 simnlsys software toolbox

nonlinear sampled data control systems. This is discussed in the literature survey performed in the

first chapter, where other similar toolboxes have not been reported up to this date. The basic idea

is to compute automatically symbolic expressions of the controllers, starting from the continuous

state dynamics of the system and following a specific methodology. The framework developed by Sal-

vatore Monaco and Dorothée Normand-Cyrot [Monaco & Normand-Cyrot 2001, Monaco et al. 2007,

Monaco & Normand-Cyrot 2007],

[Monaco & Normand-Cyrot 2009, Monaco et al. 2011] offers specific results that make it possible the

design of symbolic algorithms. Consequently, the resulting expressions can be used in a real-time ap-

plication for controlling a physical plant. In this way, this toolbox represents in my opinion a necessary

link between theory and practical applications.

As pointed out by the objectives, the second feature of the SimNLSys application is represented

by the simulation tools. These tools, which implement numerical algorithms, provide specific tests

for sampled-data systems and evaluate, under some defined criteria, the controller’s performance

computed by the SimNLSys designer.

The structure of the SimNLSys is given in the Figure 5.1

Figure 5.1: Main window of SimNLSys

The software architecture drives several modules:

• design toolboxes

– input-output/ Lyapunov matching - IOMatch

– backstepping design - Bks

– optimal nonlinear control -NLOptSD
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• simulation toolboxes - Sim1,Sim2

Other modules such as: Forwarding, PBC are in course of implementation.

5.1.0.1 Control design modules

The controller designs are based on the capabilities of the symbolic toolbox of Matlab. The use of

symbolic tools brings a great benefit for the CAD applications and for any person engaged in research

or industrial activities who can handle complex expressions and calculus. The absence of rounding

and cumulative errors, specific to the numerical case, and the symbolic expression manipulations give

the advantage of this tool in the design of nonlinear control using differential geometry.

In the SimNLSys application, the Matlab symbolic toolbox (currently connected to a MuPAD engine)

is used to compute the expressions of the digital controls. These expressions, obtained in a symbolic

form, are needed further on for being implemented on control devices.

It was necessary, at first to define some basic functions that compute the Lie derivative, the Jacobian,

the Lie bracket or the inverse of a multidimensional function. Close attention was paid to the matrix

manipulations that are critical in the MIMO case.

In the following sections, the presentation is focused on the symbolic algorithms development

for the problem of input-output matching which represents the core of the subsequent algorithms.

The algorithms that have been derived from this are the input-Lyapunov matching method and the

backstepping design which rely on the same concepts of the Lyapunov matching. Interesting results

are also given in the computation of multi-rate controllers where the most complex computations are

due to exapansion of the BCH exponents.

5.1.0.2 Simulations modules

The toolbox provides two simulation modules, one for the case of single-rate controller versions

(Sim1) and the other one which handles more difficult scenarios as multi-rate controllers, or non-

linear systems with constraints or include other static nonlinearities that do not fit with the definition

of input-affine dynamics.

The development of this toolbox is in a continuous progress at the same time with new theoretical

achievements. Each module architecture can be described by its three components:

• User level - the software interface, where the data are specified and the results are displayed.

• Code level - represented by the designed algorithms and by the run-time behavior.

• Data level - represented by the resulting data.
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Figure 5.2: Software diagram

In Figure 5.2 the work-flow of the entire SimNLSys application is depicted. A user interacts with

the application through the interfaces where he can specify the input data (process model, simulation

parameters), and then computes the resulting data (controller expressions, data files, image files). At

the last step, he can use the tools provided by this software in order to visualize, save or print the

resulting data. The resulting data can be used for other manipulations in Matlab. All the algorithms

used in this application are assigned to the “code-level”, inaccessible to the users.

5.2 the simulation toolbox

5.2.1 Simulation of sampled-data systems

The simulation modules of SimNLSys are developed in order to test the performance of the com-

puted control solutions. The simulation of closed-loop sampled-data systems considers the following

aspects:

• the system’s behavior in continuous-time;

• the controller computation performed at discrete-time instants;

• the reconstruction of the input continuous-time signal from the digital signal - which comes

from the controller’s output, which is accomplished by means of ZOH devices.

A real continuous-time simulation cannot be performed on computer systems since its operate

at specific discrete-time instants. Nowadays, computer systems permit very fast computations and

the availability of viable numerical algorithms makes it possible the “emulation” of continuous-time

[ November 28, 2012 at 8:46 – classicthesis final version ]



5.2 the simulation toolbox 105

systems on digital systems. The usual assumpation is that the simulation of the emulated systems is

considered to give the same results as the real continuous-time one, if the integration of the solutions

are performed with reduced integration step and respectively with negligible errors.

The best solution to compute the solution at specific discrete-time instants, when dealing with

nonlinear continuous-time dynamics, is to employ numerical algorithms such as the Runge Kutta class

(Section 1.3.7.2). Another solution is to exploit the exact discrete-time equivalent of the continuous-

time system. This solution would give exact results but only in those cases where such discrete-time

equivalents do exist.

In Table 5.1 there is given the pseudo-code of the algorithm which simulates a sampled-data control

structure. The first step is the initialization when the initial conditions are specified for the simulation

initialization (x(0), ud(tk,xk))

for k = 0 : δ : tf

hold ud(tk,xk)

xk+1 = ODE45(Sys(ud), x(k),kδ,(k+ 1)δ,d)

sampling (x((k+ 1)δ))

end for

Table 5.1: Sampled-data algorithm

and the analytical expressions of the controllers are computed. In the outer loop the hold and sam-

pling operations are simulated. The current value of ud(k) is assigned depending on the previous

measures of the state (or depending on the initial conditions) and thus is applied to the process. For

the inner loop, the control input is kept constant over δ and the system behavior is integrated for each

step δ. The integration is performed by means of the ODE45 function available in Matlab. This func-

tion is parametrized by the systems describing equations, the initial value, the initial and final time of

the integration and information about the integration step - d. In these simulations d has a reduced

value, lower than δ, and it is adapted accordingly during the evaluation time. At time instants (k+ 1)δ

the algorithm leaves the ode solver and the state measures are updated. The simulation runs up to

final time value tf that is specified by the user.

When one considers to evaluate the performance of the sampled-data controllers issued from the

input/output or input/Lyapunov matching design, one must report this performance to continuous-

time controllers one. Because most of the digital designs proposed in SimNLSys aim to recover, under

sampling, the performance of continuous-time controllers then the simulation tools also include this

feature. In this case, the closed loop system is entirely continuous and it can be described by ODEs.
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Remark 47. In extenso, the integration algorithm works also for MIMO systems and for control inputs u that

have time as independent variable.

5.2.2 Sim1 toolbox

The module is designed for nonlinear MIMO systems with affine inputs. The functions accepted are

those specified in the introductory chapter: f, g, h, V and respectively the controller u. Regarding the

syntax specifications - please refer to Section 6.1.4. There are no software limitations for the number

of state variables. The limitations are due to computing and simulations time constraints. The module

performs some test in order to verify the dimensional consistency of the functions. The control may

have some constraints, it can be expressed depending on the state variables and also on the time

variable. The initial state point must be given for simulation and integration purposes.

Figure 5.3: Main window of Sim1
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5.2.3 Simulation scenarios

The software provides simulations for two classes of nonlinear dynamical behaviors: continuous-time

and sampled-data. For these simulations, the integration step d, the sampling period δ and the time

length of the simulation are specified. The value of δ is not considered for a continuous-time simu-

lation and the integration step must be very small. For sampled-data simulations, a recommended

condition is δ >> d. This toolbox offers multiple simulation scenarios.

• a single simulation, for a given δ and a given control; this simulation can be performed consider-

ing either a continuous-time or a digital controller, by setting accordingly the ’continuous-time’

check box.

• 5 simulations in 1 - for a fixed value of δ, 5 simulations are performed successively for the

same plant, for each type of control considered: continuous-time , emulated, first , second and

third order approximation controllers; the simulation module evaluates for each control the

performance indicator for comparative purposes;

• multi-simulations - for a range of δ, and for a range of the control parameter K there are per-

formed the same 5 simulations as the ones indicated previously; these simulations are time

consuming and offer results about the admissible sampling periods, or controller gains with

a specific performance; these results are usually plotted in a 3D view to highlight the regions

where a specific control performs better.

The toolbox offers a series of plotting tools in order to visualize and to compare the performance

of each controller. Some plots will deliver the control input, the state, the output or the Lyapunov

evolutions in different formats. Also the simulations results are saved in “.mat” type files that can be

used afterwards for other manipulations.

5.2.4 Performance indicators

For analyzing the controller performance, different criteria have been proposed. One type of criteria

are derived to evaluate the input/output or input/Lyapunov matching error. In this case is said that

the controller performance are reported with respect to the continuous-time ones. Another type of

criteria are used to quantify the digital controller performance like energy measures.
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5.2.4.1 Matching Criteria

All the criteria are derived around evaluating the absolute difference h(xc(t))|t=kδ − h(xk) at each

sampling instant, where h is the output function or the Lyapunov function.

• The most common criterion used in this toolbox is the cumulative squared relative error, defined

as follows:

err1 :=

√∑N
k=1 |h(xc(t))|t=kδ − h(xk)|

h(xc(0))
(5.1)

This criterion counts for all errors mismatches between these two evolutions, at each sampling

instant. This error also depends on the N, the number of samples counted.

• Another criterion used counts for the maximum mismatch:

err2 := max
k=1:N

|h(xc(t))|t=kδ − h(xk)| (5.2)

There are many situations when this indicator can provide bigger values compared to the pre-

vious error criterion. For example for systems with big overshots which decay rapidly to the

equilibrium point.

• Another criterion that counts most for the earlier terms of the mismatches:

err3 :=

N∑
k=1

|h(xc(t))|t=kδ − h(xk)| · exp {−k/c} (5.3)

This criterion does not count for terms when k is sufficiently large. This criterion could be

of great interest to better distinguish the controllers with close performance and which assure

stabilization of the controlled system. The emphasis is laid at the beginning of simulations when

the controller acts very active.

The first criterion was used in the controller performance evaluations in the examples provided in

1.3.8, Section 4.5 or in the case studies chapters.

5.2.4.2 Energy performance criteria

When the controller performances are not subjected with respect to some continous-time perfor-

mances, other criteria are useful for quantifying the performances.

• Tr - The time necessary to ultimately bound the evolution to four percent of the norm of x0

Tr = min
t>0

{t| ∀τ > 0 |x(t+ τ) − x0| 6 0.04|x0|} (5.4)

• The controller energy - Eu:

Eu =

∫Tr
0
u2(t) dt (5.5)
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• The norm of the state evolution

Ex =

∫Tr
0

||x(t)|| dt (5.6)

5.2.5 Sim2 toolbox

The second simulation toolbox, included in SimNLSys application, is developed for more complex

simulations. This requires, to the user, supplementary knowledges of the Simulink toolbox and of

the Matlab scripting. This module is designed by means of Simulink modules where more complex

nonlinear systems can be defined, e.g. systems with constraints, with nonstandard nonlinearities,

etc. Also, this module is adapted for multi-rate controller simulations. This particular case was not

implemented in Sim1 due to its complexity. The scripts are defined here for simulating the same

scenarios as indicated in the previous sections.
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C O N T R O L D E S I G N A L G O R I T H M S

In this section the algorithms used for computing the controller solution in the case of

the input-output/Lyapunov matching and respectively the backstepping methodology are

detailed. The precise limits on the class of systems for which the solutions are computed,

are given. Some discussions and perspectives about the practical development of the algo-

rithms are also presented.

6.1 input/output and input/lyapunov matching

Under these names “Input/Output matching” and “Input/Lyapunov matching” are referred two

sampled-data designs which are similar in terms of computability , but different in terms of stabiliz-

ing properties. The first strategy, the input-output matching, has as the objective to match an “output”-

mapping, usually denoted by the h function. The second method, the input-Lyapunov matching strat-

egy, replaces the h function with a Lyapunov function usually denoted by V . The first method can find

interesting applications in the passivity based control where the passivity of a specific input-output

link is a basic aspect. The second method which is widely discussed in Chapter 3, is convenient to

deal with the stabilizing properties of a controlled system.

Because the symbolic algorithm makes no difference between these two strategies1 (between the h

and V functions respectively) a single module was designed to deal with these approaches. The main

window of the IOMatch module is depicted in Figure 6.1.

It can be seen in Figure 6.1 that a check box item selects the desired method - if one counts for the h

matching or for the V matching. The algorithm is developed in 3 versions, depending on the number

1 The algorithm considers that the function to be matched is smooth with no other extra properties as it is the case for an output

map h. The same conditions are applied on the Lyapunov functions, in spite of the fact that this map has particular properties

such as: V is positive (semi) definite and its derivative is negative (semi) definite. This property may be exploited in other

future developments.
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Figure 6.1: IOMatch Module of SimNLSys

of the “rates” of the digital controller. In the following section, the symbolic algorithm in the case of

Lyapunov-matching, in the single-rate case is presented.

6.1.1 Single-rate algorithm

The solution proposed here is developed for the case of MIMO nonlinear affine-inputs systems. It is

considered that the system is driven bym inputs and that p outputs maps are available. Consequently,

in the case of Lyaunov matching, the condition is that the same number p of Lyapunov functions

should be defined.

A first idea is to develop a symbolic algorithm that computes the first terms of the controller

(3.4) in terms of Lie operators. This algorithm should provide the expressions of the controllers in

terms of V , f, g or u as in (3.9)-(3.11). At a second step, these operators are expressed through the

specific expressions of these functions and the controller expressions are computed in terms of the

state variables. This strategy was not applied in this toolbox because the Matlab symbolic toolbox is

not applicable in order to operate and define non-commutative operators. To solve this problem, a

symbolic algorithm should be derived from the available tools provided by the MuPad engine. Also

such an algorithm could provide more complex expressions and an increased time of computations.

A better solution, that was implemented, avoids the direct implementation of the operators expres-

sions as (3.9)-(3.11) and after that, their evaluation. The proposed solution solves the equality (3.7) and

[ November 28, 2012 at 8:46 – classicthesis final version ]



6.1 input/output and input/lyapunov matching 113

obtains the expression for the controller terms directly in the system state variables. The algorithm

starts with the initialization of the functions V , f, g and u. The algorithm is developed in terms of

these generic functions, while the computations are performed involving particular expressions of

such functions.

The code presented below is working with symbolic variables and it is implemented for the case

of MIMO systems. The series expansions are truncated at the 4th order and the controller components

are computed up to the 3rd order of approximations.

1. syms ud ud0 ud1 ud2 ud3

2. P(1)=V(x); D(1)=P(1);

3. for i=1:3

4. P(i+1)=jacobi(P(i))*(f+g*u);

5. D(i+1)=jacobi(D(i))*(f+g*ud);

6. end

7. Vc= P(1)+d/2*P(2)+d^2/3!*P(3)+d^3/6!*P(4);

8. Vd= D(1)+d/2*D(2)+d^2/3!*D(3)+d^3/6!*D(4);

9. Vs=subs(Vd,ud,ud0+d/2*ud1+d^2/6*ud2+d^3/6!*ud3)

10. [c t]=coeffs(Vs-Vc, d);

The higher time-derivatives of the Lyapunov function are computed in the case of continuous-

time evolution (the Pi term) respectivelly for the sampled-data evolutions (the Di term). The subs

function substitutes the symbolic ud variable with its series expansion at the 3rd order. The last

statement differentiates the terms from equality (3.7) for each power of δ. In fact it is the equivalent

representation of equation (3.5). This result can be rewritten as follows:

R(xk) ∗



ud1i

ud2i

...

udmi


=



E1 i(xk)

E2 i(xk,ud1i)

...

Epi(xk,ud1i, ...,udp−1 i)


i ∈ [0, 3] (6.1)

where R(xk) depends on the state variables xk,m and p as previously defined and Ei is a matrix of the

symbolic expression of dimension (p, 1) and i is the order of the controller. In this way, the solution

to the proposed problem is translated into a linear equality solving problem. It can be noticed that

the l-th element Eli (1 6 l 6 p) depends on xk and on udji , where j ∈ [1, .., l− 1]. To solve the linear

equality it is necessary to compute the solution starting from l = 1 and i = 0. Another way is to

rewrite the system by rearranging the udi,j coefficient terms in the left side as:
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A(xk) ∗



ud1i

ud2i

...

udmi


=



F1 i(xk)

F2 i(xk)

...

Fpi(xk)


i ∈ [0, 3] (6.2)

After renaming the new matrix by A(xk) (in the same way as [Isidori 1995]) - one finds the relative

degree matrix for the MIMO case (3.34). When the A matrix is defined, then 3 situations are possible,

also discussed in Section 3.5

• A(xk) is square and nonsingular (i.e. m = p, the number of Lyapunov functions is equal with

the number of inputs) then there exists a unique solution udi = A−1 Ei.

• A(xk) is a wide matrix (i.e. p < m) and AAT is nonsingular then a solution can be computed

by using the pseudo inverse of A such that udi = A+Ei

• A is a tall matrix (i.e. p > m) and AT A is nonsingular then a solution can be computed by using

the pseudo inverse of A such that udi = A+Ei. Another solution, for this case, is to build a

multi-rate controller.

The proposed toolbox offers solutions to the first two cases. For the third case, in some particular

cases, 2 or 3 rates controller solutions are detailed at the end of this section.

The software is thus capable to offer a solution when the system has higher relative degree (Sec-

tion 3.4). The resulting A matrix (the relative degree matrix) is invertible and it is computed from line

10 of the above code, after the simplifications have occurred in the computations of the Lyapunov

differences.

6.1.2 Algorithms limitations

The symbolic algorithm, presented here gives a general solution for the MIMO nonlinear systems.

Difficulties arise when the model expressions and the A matrix are more complex. Even though the

symbolic algorithm reduces the problem to solving a linear set of systems, this could be a rough case

when the complexity of the involved expressions increases. For many textbook or practical examples,

SimNLSys has been satisfactory worked out, and many applicative studies have been performed (see

Part iii or the examples from [Tiefensee 2010]).

For quite complex simulated examples, control solutions at 2nd order of approximation can be

computed in a reduced amount of time, on a PC with good performance. When using optimizers (e.g.
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command simple in the Matlab symbolic toolbox) in order to reduce the expressions complexity, this

time increases significantly. Unfortunately there are situations when the simple command does not

find the best solutions. An important improvement could be a good management between reducing

the expression complexity and reducing the computational time.

Another issue that give difficulties is related to the non singularity of the matrix A. The symbolic

algorithm will find an inverse for A, expressed in terms of state variables. But this inverse could not

be defined for some points of the state trajectories. This problem will arise only in the “on-line mode”

(in real-time control or in simulations) when the control solution has to be evaluated.

Some of the difficulties raised from the papers of [de Jager 1995] or [Besançon & Bornard 1997] such

as the computational time or memory saturation are today reduced (but remain important) thanks to

the performance advances of the computing systems in terms of speed and memory availability.

SimNLSys is developed as a toolbox, not as a real-time application, and for this reason the comput-

ing time of these expressions is not critical. What is critical is the complexity of the control expressions.

These expressions are used in real-time applications, where the evaluation time and the cumulative

errors could be significant. Taking this into account, more attention should be paid on the symbolic

algorithm design. When considering the effects of quantization that can be critical in such controllers

a case study is dedicated to this problem in Chapter 11.

Remark 48. The design of the control law uδd according to (3.4) up to some specific approximation order P

is performed “off-line”, because this step is decoupled from the simulation or experimental process. Only the

evaluation of the control input at the sampling instants is performed on-line from the data. This significantly

reduces the on-line computing time.

6.1.3 Two and Three-rates algorithms

This is the case when considering that the control input is evaluated l-time faster than the sampling

operation. The IOMatch module also incorporates two algorithms that deal with the case when l = 2

or 3. These algorithms were developed on SISO systems. In such situations, the multi-rate control offers

extra freedom degree. For the problem in hand, many solutions were possible, but the criteria used

to design such controllers are the following:

The Lyapunov matching condition is imposed at intermediate steps between the sampling instants

such that:

V(xc(t))|t=(k+i/l)δ = V(xk+i/l), i = 1, . . . , l (6.3)

The next piece of code details the algorithm used for the case of the 3-rate controller.
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1. syms ud1 ud2 ud3

2. P(1)=V(x); Vd=P(1);

3. for i=1:3

4. P(i+1)=jacobi(P(i))*(f+g*u);

5. end

6. Vc= P(1)+d/(2*l)*P(2)+d^2/(3!*l^2)*P(3)+d^3/(6!*l^3)*P(4);

7. for j=1:l

8. D(1)=Vd;

9. for i=1:3

10. D(i+1)=jacobi(D(i))*(f+g*udj);

11. end

12. Vd= D(1)+d/(2*l)*D(2)+d^2/(3!*l^2)*D(3)+d^3/(6!*l^3)*D(4);

13. Vs=subs(Vd,udj=udj0+d/(2*l)*udj1+d/(6*l^2)*udj2);

14. [cj tj]=coeffs(Vs-Vc,d);

15. udji=solveLS(cj);

16. Vc=subs(Vc,{delta},{j*delta});

17. end

For generalization purpose the l variable is used, which in this case is equal to 3. The complexity

increases in the computation of the sampled evolution of V at each rate step. The resulting 2nd order

approximated controller has the form indicated by the relations (4.71). It follows that the problem is

translated into solving l× r linear systems of the form (6.2) over the sampling interval [kδ, (k+ 1)δ),

with l the number of rates and r the controller order approximation.

6.1.4 The designer interface

The main window of the IOMatch toolbox is depicted in Figure 6.1. The input data specifications are

the following:

• the state variables are expressed as “x1”,“x2”, etc;

• the time variable is expressed by “t” and an unknown gain is expressed by “K”;

• the mathematical operators and computation orders are the same as the ones required for the

Matlab environment.
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• the sign “;” delimits the raw components of a numerical or functional matrix, and the sign “,”

the column elements;

• all the boxes from “Model Data” have to be filled accordingly, and the function dimensions

should have appropriate dimensions;

If the check box “Lyapunov matching” is selected then the algorithms consider the V function instead

of h. The pop-up menu allows the user to select the “rate” of the controller. The resulting expressions

are given for a maximum third order controller approximation in the corresponding edit-boxes.

6.1.5 Perspectives

Further developments are possible. The multi-rate versions can be also extended to the case of MIMO

systems. A particular and interesting case should be the non-square MIMO systems with lower number

of inputs where the multi-rate solution has to be developed from the single-rate solution. In the multi-

rate case, other objectives than the matching of the Lyapunov evolution at inter-sampling instants

could be imposed.

Another emphasis can be paid in finding expression “simplifier” methods. These simplifiers require

big amounts of computations and time. A solution that can be explored is the parallelization of such

algorithms.

6.2 backsteppping design

The design of digital backstepping controllers is derived from the algorithms developed in the pre-

vious case for the input/Lyapunov matching strategy. This strategy is adopted for a particular class

of systems called “strict-feedback” (see Section 4.2.2). The continuous-time backstepping design is

fundamental since the digital design relies on it. This is the reason why the control designer tool-

box Bks includes a frame for the continuous-time design and another one for the digital design. The

toolbox considers only the case of systems with one cascade connexion as indicated by the equations

(4.1)-(4.2).
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Figure 6.2: BKS Module of SimNLSys

6.2.1 Continuous-time design

Starting from the system definitions with given f, g, a, b and an initial Lyapunov function W, the aim

of this designer is to aid the design of a continuous-time controller uc and a Lyapunov function V

which ensures the stabilizing properties of the entire system. In the next lines, the steps for computing

these solutions are detailed following the already design explained in Section 4.2. The proposed

solution works out for those cases where z ∈ IRn and ξ ∈ IR or ξ ∈ Rn, with n > 1. When ξ ∈ Rn this

case is referred to as a square MIMO system.

Remark 49. In the toolbox designer, the z variable is replaced by the variables x1, x2, . . . , xn and ξ by xn+ 1,

xn+ 2, . . .. In the following lines, to be coherent with the definitions of Chapter 4, the use of z and ξ will be

preferred in place of the xi notations, as are used in the designer toolbox.

The “fictitious” control φ(z) can be chosen according to different ways in order to satisfy the condi-

tions of Proposition 38. In the toolbox, it is generated as follows:

• if g is invertible

φ(z) = −g−1f−Kφ

(
∂W

∂z
g

)T
(6.4)
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• if g is not invertible

φ(z) = −

(
∂W

∂z
f

)
/

(
∂W

∂z
g

)
−Kφ

(
∂W

∂z
g

)T
(6.5)

The user is allowed to operate changes on the resulting expression of φ according to how the nonlin-

earities will be handled by this “fictitious” input.

The variable y is introduced (with its components y1, y2, etc.) as:

y := ξ−φ(z) (6.6)

and the Lyapunov function V is computed as:

V :=W + yTy/2 (6.7)

At the last step, the new continuous-time controller is computed as:

uc := b
−1

(
−a−

(
∂W

∂z
g

)T
−Kyy+

∂φ(z)

∂z
(f+ g (y+φ(z)))

)
(6.8)

The designer express the solutions computed for V and uc either in terms of xi (into the initial

coordinates) or in terms of the new coordinates xi and yi.

6.2.2 Single-rate algorithm

The single-rate algorithm is the same as the one presented in Section 6.1.1. The digital backstepping

design procedure is easily converted into the input-Lyapunov matching problem. The initial one cas-

cade connexion system is converted into the y-error representation (see the beginning of Section 4.3)

and then into an affine input representation as indicated in Section 4.3. The Lyapunov function V is

now expressed in the same terms as the new state variables of system (4.40). As the idea of the digital

design is to find a digital controller ud such that the continuous-time and respectively the sampled

data evolutions of V are matched at least at each sampling instant, then the algorithm proposed in

Section 6.1.1 can be applied.

As mentioned earlier, this algorithm also offers solutions for MIMO system:

• the square case: when the number of control inputs equals the dimension of the state z;

• the multi-input case, when the dimension of z is one and the number of control inputs > 1.

6.2.3 Multi-rate algorithm

This algorithm follows the method exposed in Section 4.4.3. The same input-matching criteria is

applied to the V function but also to the W and to the intermediate Vi functions at the sampling
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instants. This solution is quite different from the solution proposed in Section 6.1.3 because it handles

multiple different Lyapunov functions. In the next lines, the main code for computing the solution of

a 3-rate controller is given. This version is preferred, because it gives a good picture of how the 2-rate

or a general multi-rate design looks like. This code is proposed for systems in strict-feedback form

with the dimension of the entire states variables equal to the order of the multi-rate solution:

dim(x) = l, x = [z, ξ1, . . . , ξm−1] (6.9)

1. syms ud1 ud2 ud3

2. P1(1)=V2; P2(1)=V1; P3(1)=W;

3. for i=1:3

4. P1(i+1)=jacobi(P1(i))*(f+g*u);

5. P2(i+1)=jacobi(P2(i))*(f+g*u);

6. P3(i+1)=jacobi(P3(i))*(f+g*u);

7. end

8. V1c= P1(1)+d*P1(2)+d^2/(2!)*P1(3)+d^3/(6!)*P1(4);

9. V2c= P2(1)+d*P2(2)+d^2/(2!)*P2(3)+d^3/(6!)*P2(4);

10. Wc= P3(1)+d*P3(2)+d^2/(2!)*P3(3)+d^3/(6!)*P3(4);

11. Vd2=V2;

12. for j=l:1

13. D(1)=Vd2;

14. for i=1:3

15. D(i+1)=jacobi(D(i))*(f+g*udj);

16. end

17. Vd2= D(1)+D(2)+D(3)/2+D(4)/6+D(5)/120;

18. end

19. Vd1=V1;

20. for j=l:1

21. D(1)=Vd1;

22. for i=1:3

23. D(i+1)=jacobi(D(i))*(f+g*udj);

24. end

25. Vd1= D(1)+D(2)+D(3)/2+D(4)/6+D(5)/120;

26. end

27. Wd=W;
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28. for j=l:1

29. D(1)=Wd;

30. for i=1:3

31. D(i+1)=jacobi(D(i))*(f+g*udj);

32. end

33. Wd= D(1)+D(2)+D(3)/2+D(4)/6+D(5)/120;

34. end

35. Vs2=subs(Vd2,udj=udj0+d/(2*l)*udj1+d/(6*l^2)*udj2);

36. Vs1=subs(Vd1,udj=udj0+d/(2*l)*udj1+d/(6*l^2)*udj2);

37. Ws=subs(Wd,udj=udj0+d/(2*l)*udj1+d/(6*l^2)*udj2);

38. [c1 t1]=coeffs((Vs2-V2c)/d,d);

39. [c2 t2]=coeffs((Vs1-V1c)/d^2,d);

40. [c3 t3]=coeffs((Ws-Wc)/d^3,d);

41. udji=solveLS(cj);

The three-rate controller of the 2nd order approximation has the form given by equations (4.71). The

object of this code is to translate the initial problem into a linear system solving problem with the con-

trollers terms as unknown terms to be computed. Taking into account the lines 39, 40 and 41 - where

each coefficient cj has to be null, then the computation of this solution can be rewritten as l× r linear

systems of the form (6.2), with r as the controller order approximation. For each Lyapunov function

V1, V2 and W the continuous-time evolution at instant kδ is computed in lines 9-11, respectively the

sampled-data evolutions in the lines 12-35. In lines 36-38 the controller udj is replaced by a 2nd order

approximation with the unknown terms udji.

In the Bks toolbox it is implemented only the 2-rate version. The higher versions can be employed

in the same time with the implementation of the continuous-time controller and Lyapunov functions

in the designer. The same issues discussed in Section 6.1.2 or Section 6.1.4 are also valid in this case.

6.2.4 Perspectives

The perspectives that are opened for the problem at hand can be briefly enumerated as follows:

• implementation of the algorithms for digital design when the multi-rate order is higher than 2;

• extensions to the MIMO case of the proposed multi-rate design;
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• a new design module (for the multi-rate controller) which uses the algorithm defined in Sec-

tion 6.1.3;

• a new design module for systems with multiple cascade connections; it should include a design

for a continuous-time controller and the multi-rate solution for the digital design.

• new methods that handle symbolic simplifiers and also parallelizing methods.
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Part III

C A S E S T U D I E S

The case studies given in this part covers all the theoretical aspects detailed in the previous

part.
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7
M A G N E T I C S U S P E N S I O N C O N T R O L

This case study presents experimental results obtained in a magnetic suspension plant

by the use of a single input digital version of backstepping control. The results show that

the use of a second order digital controller extends the stabilizing performance of the

emulated control in terms of admissible sampling period and of controller’s gains. Part of

the results reported here are included in the paper [C04] from the author’s contribution

list (page ix).

7.1 experimental plant description

The schematic of the magnetic suspension plant is represented in Figure 7.1 and it is composed with

fixed electromagnet powered by a variable current source and a ferromagnetic pendule.

The plant has a perfect symmetry due to the geometry of the constituent elements; this fact is

necessary to assure the radial stability. To stabilize the pendulum a variable magnet field is produced.

To do this, an electromagnet is used, whose supply current has to be controlled. The axial force Fm

produced by the electromagnet is proportional to the square of the current and inverse to the square

distance between the pendulum and electromagnet. The equilibrium point position x0, where the

magnetic force Fm is equal to the weight mg, is obtained for a specific value of the current i0. The

actuators are the two coils and two current sources with voltage driving. The first coil and current

source are used to set the lag of the pendulum (in this case the current is assumed to be constant),

and the second coil and current source are used to control the displacement of the pendulum. The

control voltage is within the range of [-10V,10V]. The position transducer has a linear characteristic, a

good resolution and a proper rejection of the electrical perturbations. The maximal displacement is of

5 mm and it is converted by the transducer into a voltage variation of 20V such that: U = βh, where

β = 4000V/m and h is the displacement.

125
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Figure 7.1: Magnetic suspension plant

To elaborate the control law, it is required to measure the position, speed of the pendulum and

current. The experimental plant offers only the measurement of the position, thereby numerical esti-

mators are necessary.

7.2 mathematical model

The actuator dynamic is described by a first order differential equation, where it is supposed that the

inductance L is constant:

v(t) = L
di(t)

dt
+ Ri(t) (7.1)

Kv = 1/R, τ = L/R are experimentally determined. The force applied to the magnet is described by

relation:

Fm(t) = c
i2(t)

x2(t)
(7.2)

where x is the distance between the electromagnet and the pendulum and it is equal to : x = x0 − x1,

with x0 a constant given by the initial off-set and by the length of the pendulum. The variable x1 is

the pendulum position. The variable c can be determined by using equation (7.2) at the equilibrium

point. The dynamics of the pendulum satisfies, according to the Newton second law, the relation:
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mẍ1(t) = Fm(t) −mg. (7.3)

Denoting by x2 = ẋ1 the speed and by x3 = i the current, the previous equations are rearranged to

get the state representation of the experimental plant and the system’s output


ẋ1(t) = x2(t)

ẋ2(t) = c
m

x23(t)

(x0−x1(t))2
− g

ẋ3(t) =
Kvv−x3(t)

τ

(7.4)

y(t) = βx1(t). (7.5)

The numerical values of the plant parameters are given in the next Table:

m 0.084 Kg c 5.2 · 10−4 Nm2
A2

Kv 0.1 τ 0.001 s

β 4000 Vm x0 0.011 m

Table 7.1: Numerical values of the plant parameters

The initial values for the state variables are xi =
(
0, 0,

√
mg
c x0

)
.

7.3 control law design

For the control design, the results detailed in Chapter 4 are used here for the magnetic suspension

plant. At first a continuous-time control is developed and its digital version is derived and computed.

The plant dynamics is nonlinear with relative degree 2. In this case an approach by using the

backstepping design is a natural choice and also gives the tools for analyzing the stability properties.

The digital version design provides a better implementation under the sampling of the continuous-

time control, in terms of preserving the stability properties to larger sampling periods with the same

performances.

To design the control law we used a simplified model of the plant with 2 state variables. By using

the state representation from (7.4) and considering that the current is constant so that x3 = Kvv.
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7.3.1 Continuous-time backstepping design

The dynamics used to design the backstepping control is 7.6.

ẋ1(t) = x2(t)

ẋ2(t) =
c·K2v
m

v2

(x0−x1(t))2
− g

(7.6)

The control objective is to stabilize the pendulum position x1 to a specific point xref given by an

external reference. The values of xref are within the range of [−10/β, 10/β]. In order to set the problem

as in chapter 4, a change of coordinates is required. By setting z = x1 − xref (tracking error), then the

system (7.6) rewrites:

ż(t) = ξ(t) (7.7)

ξ̇(t) =
c ·K2v
m

u

(x0 − xref − z(t))2
− g (7.8)

where the control u takes place for v2. In this way, the backstepping design can be easily applied

for computing u, with the convention that for the plant the control v =
√
|u|sign(u) is applied. The

condition of the existence of uc(t) is that

ga(z, ξ) =
c ·K2v

m(x0 − xref − z)2

be invertible. This condition is verified since the denominator (x0−xref− z) has a strict positive range

[0.0085− z, 0.0135− z], where z ∈ [0, 0.005].

The Lyapunov function of the dynamic (7.7) that is positive and satisfies the condition

∂W

∂z
(f(z) + g(z)φ(z)) < 0 (7.9)

is given by:

W(z) =
1

2
z2. (7.10)

By settintg the fictitious control,

φ(z) = −Kφ z (7.11)

with Kφ positive real. Then, the complete Lyapunov function for the system (7.7)-(7.8)

V(z, ξ) =
1

2
z2 +

1

2

(
ξ+Kφ z

)2 (7.12)

The continuous-time control law that asymptotically stabilizes the origin of the system (7.7)-(7.8) is

uc(z, ξ) =
m

K2vc
(x0 − xref − z)

2
(
g− (Kφ +Ky)ξ− (KφKy + 1)z

)
(7.13)
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with Ky > 0.In the original x1, x2 coordinates one gets

uc(x1, x2) =
m

K2vc
(x0 − x1)

2

(
g− (Kφ +Ky)x2 +

(KφKy + 1)

β
ε

)
(7.14)

For the plant experiment Kφ = 40 and Ky = 300 are chosen according to the performance imposed

on the speed and overshoot of the output. ε represents the output tracking error and it is equal to

ref − βx1. The external reference xref is kept constant. Due to the amplitudes of Kφ,Ky, for the

simplicity of the next computations, the approximation (KφKy + 1) ∼= KφKy is used.

7.3.2 Sampled-data backstepping design

The second order approximate control has the form

uk = ud0 +
δ

2
ud1 +

δ2

6
ud2

and the first control terms are given according to relations (4.44)-(4.46) by

ud0 = uc|t=kδ

ud1 = −
m

cK2v
(x0 − x1)

(
2x2(g+ ẋ2) +

(x0 − x1)
(
KφKyx2 + (Kφ +Ky)ẋ2

))
|t=kδ

ud2 =
(
−

ud1
x0 − x1

x2 −
m

cK2v
(x0 − x1)

(
2ẋ2(g+ ẋ2) + 2x2ẍ2 −

−x2
(
KφKyx2 + (Kφ +Ky)ẋ2

)
+ (x0 − x1)

(
KφKyẋ2 +

+(Kφ +Ky)ẍ2
))

+ (Kφ +
ε

Kφε−βx2
−

−
2ξ

(x0 − x1)
)
ud1
2

)
|t=kδ (7.15)

where

ẋ2 = −(Kφ +Ky)x2 +
KφKy

β
(ε)

ẍ2 = −(Kφ +Ky)ẋ2 −KφKyx2

7.3.3 Symbolic controllers

The polynomial expressions of the digital controller provided by SimNLSys-BKS are given next. The

plant parameters have been replaced with the values specified in Table 7.1. In the case of symbolic
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expressions, the numbers are represented exactly, as fractions, and no truncation are performed. How-

ever, for presentation purposes only, the next expressions are truncated.

ud0(x1, x2) =

16100 (0.011− x1k)
2 (0.00025Kφ Ky · εk − (Kφ +Ky

)
x2k + 9.8

) (7.16)

ud1(x1, x2) =

−32300 (0.0110− x1k)
(
0.00025Kφ Kyεk −

(
Kφ +Ky

)
x2k + 9.8

)
x2k+

16100 (0.011− x1k)
2 (Kφ −Ky

)
(−10−31 + 0.00025Kφ Kyεk−(

Kφ +Ky
)
x2k).

(7.17)

ud2(x1, x2) =

(32300
(
0.00025Kφ Ky εk −

(
Kφ +Ky

)
ξ1k + 9.8

)
x2k − 32300 (0.011− x1k)(

−Kφ −Ky
) (

−10−31 + 0.00025Kφ Ky εk −
(
Kφ +Ky

)
x2k
)
)x2k+

(32300 (0.01− x1k)
(
Kφ +Ky

)
x2k − 32300 (0.01− x1k) (0.00025KφKyεk−(

Kφ +Ky
)
x2k + 9.8) + 16100 (0.011− x1k)

2 (−Kφ −Ky
) (

−Kφ −Ky
)
)(

−10−31 + 0.00025Kφ Ky εk −
(
Kφ +Ky

)
x2k
)
+ 8060 (0.011− x1k)

2

(

(
0.00248

(0.0110−x1k)
2 + 0.000124

x2k+40x1k
(0.011−x1k)

3

)
x2k −

0.000608
(0.011−x1k)

2−

0.000062 80x2k+1600x1k−9.8
(0.011−x1k)

2 )(−32300 (0.011− x1k) (0.00025Kφ Ky εk−(
Kφ +Ky

)
x2k + 9.8)x2k + 16100 (0.011− x1k)

2 (−Kφ −Ky
)
(−10−31+

0.00025Kφ Ky εk −
(
Kφ +Ky

)
x2k)) (x2k + 40 x1k)

−1

(7.18)

It must be recalled that these expressions are evaluated at each sampling instant.

7.4 simulation results

In the attempt to fix the suitable order the controller’s approximation and the admissible sampling

period, some simulations are preliminary. The next results, obtained by means of the SimNLSys soft-

ware package, show the performances of the sampled-data control in comparison with the "ideal"

continuous-time control. The sampled-data control is designed to preserve as much as possible the

continuous time properties, in the present case the behavior of V at sampling instants. To evaluate

the performance of the controls the error indicator (5.1) was used. For the next simulations, the initial

state values are x10 = 0.0025 x20 = 0 and the gains Kφ = 40 Ky = 300, same as the values used
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for the experimtental plant. In Figure 7.2 the control, the Lyapunov function and the matching error

are illustrated for δ = 3ms. One verifies that the digital controller which is closest to the continuous
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Figure 7.2: Control and V function evolutions for δ = 3 ms (simulation)

performances, is the second order controller. For this controller the matching error has the smallest

value. At the opposite, the emulated control reveals the biggest error. Another remark is related to the

initial command amplitude. For the emulated controller, the initial amplitude of the control is equal to

the one obtained for a continuous-time controller, and for the higher order approximated controllers

it is smaller. For practical reasons, this fact represents a benefit of higher order controllers in order to

avoid the input saturation from the start.

In any way the errors given by δ = 3ms are sufficiently small, and all these controls can be used with

success in practice.

In Figure 7.3 the case when δ = 5ms is represented. The emulated control begins to oscillate, but

the worst results with respect to the Lyapunov matching are given by the first order command. The

errors are bigger compared to the previous case.

In Figure 7.4 the results are obtained for a sampling period δ = 7ms, above which the controllers

fail to find the equilibrium point. For this situation, the second order controller is the only one that

can stabilize the system, but it also has an oscillating form.

As a conclusion, for a given set of Kφ,Ky and for different values of δ:
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Figure 7.3: Control and V function evolutions for δ = 5 ms (simulation)

• the second order controller performs better for all cases;

• the increasing of δ will increase the error magnitude.

In order to extend the results, in the next step it was considered the change of the controller gains.

In Figure 7.5 there are shown the matching errors on the Lyapunov evolution for all three digital

controls: emulated, first and second order sampled-data controllers. The error is represented in terms

of gain K and sampling period δ. The parameter K was chosen such that Kφ = K and Ky = K+ 260

and the effect is to accelerate the system response when it increases. For representation purposes only,

the error criteria has been adapted as err = E0+ ln(E), where E0 is an offset additive term. The white

zone represents the area where the error is higher than a threshold value, here set equal to 17.

Some comments are necessary. As we can observe, for some values of δ and K, the emulated control

works well, and higher order sampled-data controls are not needed. For higher values of K and δ the

first and the second order control are performing better than the emulated solution. In this case, if the

sampling period is set to 7 ms, one notes higher errors (even instability) with the emulated and first
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Figure 7.4: Control and V function evolutions for δ = 7 ms (simulation)

order solution, while the control with two corrective terms notably extends the admissible length δ.

Another set of conclusion that can be added

• increasing the gain K, makes the system to respond faster and the maximal admissible value for

δ is reducing;

• for a fixed value of the gain, the matching error is reduced when using higher order digital

controllers.

It is difficult to quantify the maximal admissible values of δ for a given sampled-data control,

but the solution to this problem is the use of simulations tests (proposed by SimNLSys) to depict

admissible ranges.

7.5 experimental results

The Simulink control module is presented in Figure 7.6. There are some aspects that need to be ex-

plained. In order to implement the control laws specified by the equations (7.16)-(7.18) it is necessary
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Figure 7.5: Lyapunov matching error under sampled-data control (simulation)

to estimate the state values. In the control scheme, a numerical observer is added. The state x1 repre-

sents the pendulum position, and it is obtained from the system output y = βx1. The state x2 is the

speed of the pendulum and it is obtained by using a numerical derivative of the system output. The

x3 state is the induced current and it is obtained from the control expression. The x3 variable is not

used in the control law computation but it is used in our estimations.

Another element used in the scheme in a parallel structure with the backstepping control module

is a discrete-time integrator to compensate for the output steady state error.

The data is transferred to the experimental plant through the National Instruments acquisition card

(PCI 6024E). The reference is given externally by a signal source as digital waveform with 0.5 Hz

frequency. The hardware implementation works well beginning with a sampling period higher than

1 ms.

The control laws used are the ones specified in the previous sections recalling the applied control

is v =
√

|u|sign(u). Also a saturation block is considered in order to restrict the control input in

compliance with the physical limits.

The value of the usual sampling rate is 3 ms. For the next results we used different values of

the sampling period up to 7 ms. In Figures 7.7-7.9 the control, output and Lyapunov evolutions are

depicted for three different sampling periods.

Comments 1. From figure 7.7 when δ = 3 ms, it results that the emulated control performs best.

The output evolution is stable and the overshoot is the smallest for the emulated case. But the emu-
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Figure 7.6: Simulink control module

lated control causes bigger overshoots in the system’s output. We can, also, observe the evolution of

the Lyapunov function where the first order control offers bigger amplitudes, which means that the

derivative of V will have, in this case, an increased negativity.

2. Increasing δ and as expected the performances are reduced. In Figure 7.8 there are shown the

results obtained for δ = 6ms. The first order controller is not working, and the emulated controller

begins to oscillate. In this case the best control, from the Lyapunov matching viewpoint, is the second

order one.

3. The maximum value used for δ was 7 ms, and the results obtained are depicted in figure 7.9.

For this case the only control that works is the second order one. The emulated and the first order

controls are not able to stabilize the plant.

4. The experimental values confirm the results obtained in the simulation section. For example

the maximum admissible values for the sampling rate are recovered with a slight difference. This

is because of the model uncertainties and of the use of an approximate mathematical model in the

simulation mode.

δ Emulated Control 1st order control 2nd order control

(ms) (s) (s) (s)

3 0.336 0.180 0.150

6 3.876 - 0.990

7 - - 5.670

Table 7.2: Stabilizing Time
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Figure 7.7: Control, output and Lyapunov for the experimental plant, δ = 3ms
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Figure 7.8: Control, output and Lyapunov for the experimental plant, δ = 6ms
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Figure 7.9: Control, output and Lyapunov for the experimental plant, δ = 7ms
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Figure 7.10: Trajectories evolutions for the experimental plant, δ = 3ms
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Figure 7.11: Trajectories evolutions for the experimental plant, δ = 6ms
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Figure 7.12: Trajectories evolutions for the experimental plant, δ = 7ms
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Another interesting result that was obtained, is the time length necessary for the control to stabilize

the system. This is the time which is necessary to bring the system from the initial point to a point

on the stabilizing trajectory. We see an example in Figure 7.13. In this example we observe that the

second order control starts to stabilize after 5 seconds from the beginning of the experiment. In

order to highlight the phenomena, 3D state trajectories where computed for each sampling period

used (Figures 7.10-7.12). At the top, the trajectories for a fixed time-period (when the controllers

where active) are shown. At the bottom, the same trajectories are plotted but for the full time of the

experiment.
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Figure 7.13: Example for 2nd order control with δ = 0.007s

For example for δ = 3ms, all the three controllers stabilize, and the second order offers the shortest

path between the equilibrium points. If we look at the full time experiment, we can observe that the

emulated control needs a longer path to find the stabilizing trajectories. The time periods the controls

need to start to be active are summarized in Table 7.2. For this case, the emulated controller needs

0,336 seconds. By using a controller of higher orders this time is significantly reduced.

When δ = 6ms, the emulated and the second order controls are both stabilizing, but the emulated

control needs a longer time. In the same time, the control with one order approximation fails to find

the stabilizing trajectory, and it is constrained to a limit cycle.

For δ = 7ms, the second order controller finds the stabilizing trajectory, but the emulated control

fails.

In Table 7.2 we summarize the time periods for stabilizing the plant. It is interesting to discuss the

improvement of the sampled-data design with respect to the transient time periods which represent

the time delay for the control to be active.
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The object of this case study is to highlight, on a physical coupled tanks system, the per-

formance of a digital implementation of a continuous-time passivity based controller. The

design considers the sampled-data model of the plant and provides better results com-

pared with the emulations of a given continuous-time controller. A two-state continuous-

time nonlinear model is known and used to develop both the continuous-time and digital

controllers. The results show good performance of the digital controller when increasing

the sampling period or the controllers’ gain. The results reported here are included in the

paper [C05] from the author’s contribution list (page ix).

8.1 the level control problem

Levels regulation is a basic problem with vast and different applications in process industries. Many

applications can be met in the case of steam generators, petrochemical plants, storage tanks in gas/oil

production industry, paper making and water industries and many others. In these applications, the

liquid is pumped, stored in tanks and then pumped into another tank. The control of the fluid level

is always mandatory and could be critical (e.g. the main reason for plant shut-downs in nuclear or

conventional power plants [Eborn et al. 1999]). Furthermore, depending on the particular applications,

the inlet or outlet flows should be also controlled. This fact can be important in the case of cascade

of tanks since the first tank outlet flow overshoots can be amplified as it flows down the cascade

[Sbarbaro & Ortega 2005].

Various experimental plants were used for testing and designing control strategies such as: coupled

tank systems, cascade tanks, three-tank systems [Iplikci 2010], conical tanks [Bhuvaneswari et al. 2009],

quadruple-tank process [Johansson 2000], state-coupled tanks [Pan et al. 2005] and so on. Related to

the control strategies used, the majority deals with the design of linear controllers. Among these,

the PID control is proved to be the most used with satisfactory performance. As the system is in

143
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fact non-linear many linear strategies have been adapted to handle this situation. In this way many

algorithms are still based on PID control were the controller parameters have to be continuously

adjusted(e.g. [Iplikci 2010]) by using different strategies. Other strategies involve predictive, optimal

and adaptive control [Bhuvaneswari et al. 2009]. Intelligent control involving fuzzy control, neural net-

work control and genetic algorithms have been also developed for level tanks systems (see references

in [Almutairi & Zribi 2006]).

In the context of the exact knowledge of the nonlinear model, only fewer nonlinear control strate-

gies have been implemented, as from our knowledge : sliding mode control [Almutairi & Zribi 2006],

[Perruquetti & Barbot 2002], backstepping control [Pan et al. 2005], passivity based control

[Sbarbaro & Ortega 2005], [Kottenstette et al. 2010].

In this case study a passivity based control strategy is used. The passivity concept (firstly intro-

duced by Popov [Popov 1973]) has generated many useful tools in designing a robust controller in a

nonlinear context. Today, this approach is very attractive due to its wide range of applicability in the

nonlinear control area.

The sampled-data solution that is here developed, was evaluated on a tank level system available

at University Politehnica of Bucharest. The solution proposed here is inspired from

[Monaco & Normand-Cyrot 2007] and [Monaco et al. 2011]. According to this approach, the controller

design is carried out in a continuous-time domain and then a digital controller is computed in order

to reproduce a specific continuous-time property of the closed loop, at each sampling instant. In this

case we are referring to reproducing the passivity property assured by the continuous-time controller.

It is a known fact that the passivity is destroyed under sampling [Monaco et al. 2011]. This controller

has proved to better preserve the passivity property with respect to the emulated solution and thus

the stabilizing or damping performance.

8.2 underlying theory

8.2.1 Passivity based control

Passive systems are a class of processes that dissipate certain types of physical or virtual energy,

described by Lyapunov-like functions [Ortega et al. 1998], [Bao & Lee 2007]. The concept is defined

as an input output property of a process and it is particularly useful in the analysis of stability.

Furthermore, the passivity concept allows us to construct robust control laws even for nonlinear
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process. It is shown for instance in [Sepulchre et al. 1997] if a feedback controller is designed to adds

to the system an “excess of passivity”, it can handle important uncertainties of the system parameters.

In the following lines, we recall from [Monaco et al. 2010], the main definitions and results that are

necessary to design the continuous-time controller in section 8.3.3. Let us consider the input-affine

system

ẋ(t) = f(x(t)) + uc(t)g(x(t))

y(t) = h(x(t))

(8.1)

P1 - Passivity An input-affine system (8.1) is passive if there exists a positive C1 function V on IRn

(the storage function) such that V(0) = 0 and for all u ∈ U, t > 0

V̇(x(t)) 6 yT (t)u(t) (8.2)

or its integral equivalent for all x0 ∈ Rn

V(x(t)) − V(x0) 6
∫t
0
yT (τ)u(τ)dτ (8.3)

where U is a set in IR of admissible inputs.

Equivalent definitions state that a system is passive if it is dissipative with bilinear supply ratew(u,y) =

yTu [Sepulchre et al. 1997]. The interpretation is that the rate of increase of energy is not bigger than

the input power.

P2 - zero-state detectability (ZSD) The system (8.1) is locally zero state detectable if no solution of the

uncontrolled dynamics ẋ = f(x) can stay in the set Z = {x ∈ IRn, s.t. h(x) = 0} other than solutions

x(t) converging asymptotically to the zero equilibrium.

The main benefit of the ZSD property is that it gives the condition to connect the stability with

passivity. There follows the next result.

P3- negative output feedback gain Under the assumption P1, with V > 0 and zero-state detectability,

then the storage function V qualifies as a Lyapunov function and the controller uc(t) = −Ky(t) with

K > 0 asymptotically stabilizes the initial system. Under these conditions, the closed loop dynamics

satisfies

V̇(t) 6 −Ky2(t). (8.4)

With the increase of the gain K, more negativity is added to V̇ compared to the free evolution and

thus improving the damping performance.

In conclusion, if we look to stabilize the system (8.1), it becomes a simple task if this system with

input u and output y is passive. The property P3 tell us that we can close the loop with u = −Ky,

and if the system is ZSD, the equilibrium point is GAS. As a consequence, the system has to be stable
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also when u = 0. If this condition is not satisfied, then it is necessary to make the following feedback

transformation

uc = α(x(t)) +β(x(t))v(t, x(t)), (8.5)

with β(·) invertible, such that the new system is passive. If this feedback can be found to render the

system passive, then the original system (8.1) is called feedback passive.

Theorem 50. [Sepulchre et al. 1997] Assume that ∂h∂x (0) has full rank. Then the system (8.1) is feedback passive

with a C2 positive definite storage function S(x) if and only if it has relative degree one at x = 0 and is weakly

minimum phase1.

The feedback transformation (8.5) render the closed loop system passive, and furthermore by taking

v = −Ky, then under the ZSD assumption the equilibrium point is asymptotically stable.

8.2.2 Digital design

In this section, we recall the steps for the digital design of a PBC controller in the context of preserving

under sampling, the stabilizing properties of the continuous-time plant.

Under sampling, the passivity condition (8.3) is rewritten as follows, by assuming u(t) = uk for

t ∈ [kδ, (k+ 1)δ), with δ the sampling period:

V(xk+1) − V(xk) 6 uk

∫ (k+1)δ
kδ

y(τ)dτ (8.6)

The left side represents the Lyapunov difference of the sampled-data plant for a time period equal to

δ.

The basic idea for designing a digital controller uk is that it has to satisfy the inequality (8.6) for

various δ. In this context, two direct digital strategies were proposed in [Monaco et al. 2010], one that

renders negative the right hand side (negative sampled-data predictive output feedback) and the other

one the left hand side (LGδ controller) negative of the inequality (8.6). These approaches do not rely

on the controller design that was carried out in continuous-time, and allow to specify the performance

of the sampled-data controller in discrete-time.

Another solution, that can be applied, relies on the the input-Lyapunov matching strategy, which aim

is to design a piecewise constant controller that ensures the matching of the sampled data Lyapunov

evolution with the continuous-time one at each sampling instant. This procedure is presented in

Chapter 3 where the algorithm for computing the controller expressions is given.

1 A system is weakly minimum phase if it is Lyapunov stable and there exists a C2 positive definite function W(z) such that

Lfzd
W 6 0 in a neighborhood of z = 0, with fzd the vector field of the zero dynamics system. More details can be found in

[Isidori 1995]

[ November 28, 2012 at 8:46 – classicthesis final version ]



8.3 the experimental plant model and controller design 147

8.3 the experimental plant model and controller design

In this section there is provided a short description of the experimental plant and of the controllers

design.

8.3.1 The plant description

The laboratory platform (ELWE Technick) used to test the proposed algorithms consists of 3 main

water tanks and a water reservoir. The flows of the water is assured by means of 6 electro valves and

2 pomps and each liquid level is measured by one of the 3 piezoresistive transducers (VEGABAR 14).

In Figure 8.1 there is presented the scheme of a coupled-tank system that is configured on the

laboratory platform. The water is pumped into tank T1 and from there through a connection pipe

(with a section area S1) into tank T2. The water flows into the reservoir through an electro valve (fully

open) with a section area S2. The values of the plant parameters are described next:

 

 

 

                 

                            

                  

                                     

 

     

               

Pump 

Inlet 

flow 

A A 

S2 
SL 

Conection pipe 

Outlet flow 

h1 
h2 

T1 T2 
S1 

Figure 8.1: Schematic of coupled-tanks

• A = 0.0154 m2 - section area of each tank;

• S1 = S2 = 5 · 10−5 m2 - the section area of each pipe corresponding to the electro valves;

• Q0 = 10−4 m3/s, h0 = 0.6 m - the maximal values of the inlet flow and tank level respectively.
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The connection of the plant with a PC is assured by 2 acquisition cards : "Humusoft MF624" for Pump

1 and level transducers and "National Instruments PCI-6503" which controls the electro valves. The

real-time interface is configured in Simulink.

8.3.2 The dynamics

The dynamics Σc of the coupled tanks can be written as

ḣ1 =
1

A
Qi(t) −

1

A
c1
√
|h1 − h2|sign(h1 − h2) (8.7)

ḣ2 =
1

A
c1
√
|h1 − h2|sign(h1 − h2) −

1

A
c2
√
h2 (8.8)

with c1 = 1.0121 · 10−4, c2 = 1.6854 · 10−4 experimentally determined. The input is the inlet volumet-

ric flow rate u(t) = Qi(t), the state variables represents the liquid levels in tank T1 and T2 and the

output is chosen equal to h1. In the case of coupled tanks, the inequality h1 > h2 holds, in every

operating point.

Le us consider the storage function S as

S(t) =
1

2
A(h21(t) + h

2
2(t)) (8.9)

which represents half of the total energy stored in both tanks. Next proposition holds.

Proposition 51. The system Σc defined by equations (8.7)-(8.8) with output y = h1 and input variable

u(t) = Qi(t) is passive.

Proof. One computes

Ṡ(t) = Ah1(t)ḣ1(t) +Ah2(t)ḣ2(t) =

= Qi(t)h1(t) − c1
√
h1(t) − h2(t)(h1(t) − h2(t)) − c2

√
h2(t)h2(t) (8.10)

with

y(t)u(t) = Qi(t)h1(t) (8.11)

Passivity condition holds (dS(t)dt 6 y(t)u(t)) i.e.

Qih1 − c1
√
h1 − h2(h1 − h2) − c2

√
h2h2 6 Qih1 (8.12)

since ∀h1 > h2 ∈ R+.

At the equilibrium point, a useful relation can be found,

h1e =
c21 + c

2
2

c21
h2e = h2e/de, (8.13)

with de ∼= 0.265.
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8.3.3 Continuous-time controller design

The control objective is to maintain the levels of the coupled-tanks, to the desired values h1d, h2d

given by an external reference.

The system (8.7)-(8.8) is passive and also satisfies the ZSD property (it can be easily shown that since

h1(t) = 0 and Qi(t) = 0 the dynamics x is converging to 0). According to P3 property, the negative

output controller u(t) = −Ky(t) asymptotically stabilizes the origin of the system. This controller

brings the system to the equilibrium h1 = 0 and h2 = 0.

To accomplish the level regulation to a nonzero value, a change of coordinates is required in order

to construct an error dynamics model and a new storage function V .

Let us consider the following change of coordinates:

z1 =
h1 − h1r
h0

, z2 =
h2 − h2r
h0

.

In this way, z1 ∈ [−d, 1− d] and z2 ∈ [−ded,de − ded] with d = h1/h0, d ∈ [0, 1] and de previously

defined. The controller transformation is considered as u(t) = Q0(us + v(t)) and the error plant

dynamics becomes:

ż1 =
1

Ah0

(
(us + v(t))Q0 − c1

√
h0(z1 − z2) + h1r − h2r

)
(8.14)

ż2 =
1

Ah0

(
c1
√
h0(z1 − z2) + h1r − h2r − c2

√
h0z2 + h2r

)
(8.15)

with external control v(t) and now the output is chosen as y = Q0z1. The us component of the

controller is designed such that the equilibrium point of the error dynamics be z1 = 0, z2 = 0. In this

point the dynamics are:

0 =
1

Ah0

(
usQ0 − c1

√
h1r − h2r

)
(8.16)

0 =
1

Ah0

(
c1
√
h1r − h2r − c2

√
h2r

)
(8.17)

and one gets

usQ0 = c1
√
h1r − h2r = c2

√
h2r.

Now let us give the following results.

Proposition 52. The system dynamics (8.14)-(8.15) is feedback passive, and the control law v(t) = −Ky(t)

asymptotically stabilize the system in the origin.

Proof. Let us consider the following storage function V :

V =
1

2
Ah0(z

2
1 + z

2
2). (8.18)
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The passivity condition (8.2) is translated to

z1Q0(us + v(t)) − c1
√
h0(z1 − z2) + h1r − h2r(z1 − z2)

−c2
√
h0z2 + h2r 6 Q0z1v(t) (8.19)

The upper condition is satisfied, since, after some computations

z1
√
d(1− de) −

√
z1 − z2 + d(1− de)(z1 − z2) − z2

√
1

de
− 1
√
z2 + ded 6 0

holds for every z1 ∈ [−d, 1− d], z2 ∈ [−ded,de − ded] and d ∈ [0, 1], with z1 − z2 + d(1− de) > 0.

When v = 0 and y = Q0z1 = 0 the solution of the system is converging to 0, so the system is

respecting the ZSD property. This can be also seen by the existence of 2 invariant manifolds z2 = 0

and z1 − z2 = 0.

For the first manifold z2 = 0 the dynamics become:

ż1 =
c1
Ah0

(
√
h1r − h2r −

√
h0z1 + h1r − h2r) (8.20)

and after some computations:

ż1 =
c1
A 6 h0

− 6 h0z1√
h1r − h2r +

√
h0z1 + h1r − h2r

(8.21)

which shows that z1 is also converging to 0.

For the second manifold z1 − z2 = 0 it results that

ż2 =
1

Ah0
(c1
√
h1r − h2r − c2

√
h0z2 + h2r) (8.22)

and after some computations:

ż2 =
c2
A 6 h0

− 6 h0z2√
h2r +

√
h0z2 + h2r

(8.23)

which shows that z2 and z1 are converging to 0.

We conclude now, that the controller v(t) = −Ky(t) asymptotically stabilizes the system to the

equilibrium point z1 = z2 = 0, with K > 0.

Going back to the initial coordinates, the practical controller u(t) is expressed as:

u(t) = c1
√
h1r − h2r −KQ0

h1(t) − h1r
h0

, K > 0.

The parameter K is chosen according to the admissible values of the overshoot and the speed of the

systems output.
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8.3.4 Sampled-data controller design

For the next developments let us consider the error dynamics written in a compact manner:

ż(t) = f(z(t)) + g(z(t))uc(t) (8.24)

with

f(z) =
1

Ah0

 usQ0 − c1
√
h0(z1 − z2) + h1r − h2r

c1
√
h0(z1 − z2) + h1r − h2r − c2

√
h0z2 + h2r



g(z) =
Q0
Ah0

 1

0

 , uc(t) = −Ky(t)

The second order digital controller, according to the design presented in section 8.2.2, has the next

structure:

u2da = ud0 +
δ

2
ud1 +

δ2

6
ud2 (8.25)

with controller terms according to (3.8)-(3.10):

ud0 = −Kz1|t=kδ

ud1 =
Kc1(

√
h1r − h2r + h0(z1 − z2) −

√
h1r − h2r) +K

2Q0z1

Ah0
|t=kδ

ud2 =
ud2e

A2h0
2z1
√
h1r − h2r + h0(z1 − z2)

|t=kδ

with

ud2e = (−K4 )(3c1
2h0z1

√
h1r − h2r + h0(z1 − z2) − 4KQ0c1h2rz1

+ c1
2h0z2

√
h1r − h2r + h0(z1 − z2) − 3KQ0c1h0z1z2

− c1
2h0z1

√
h1r − h2r − c1

2h0z2
√
h1r − h2r

+ 4K2Q0
2z1

2
√
h1r − h2r + h0(z1 − z2) + 4KQ0c1h1rz1

− 2c1c2h0z1
√
h2r + h0z2 + 5KQ0c1h0z1

2

− 4KQ0c1z1
√
h1r − h2r

√
h1r − h2r + h0(z1 − z2)).

A coordinates change is required to express this controller into the initial physical parameters. A

controller containing only the ud0 term is called “emulated” and represents the usual digital imple-

mentation of the continuous-time controller.
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8.4 results

The results provided in this section are focusing on the benefits of the sampled-data controller com-

pared to the emulations of the continuous-time controller.

8.4.1 Preliminary result

As the sampled-data design concerns the reproduction under sampling of the continuous-time Lya-

punov evolution of the closed loop dynamics, some simulations were performed to evaluate the match-

ing error between these evolutions under the action of an emulated or under a second order controller,

respectively. These simulations are also necessary to fix the admissible sampling period and the gain

of the controller.

The error indicator used here is the same defined in Section 5.2.4.

In Figure 8.2 there are plotted the error criteria values for gain K, of the controller, within the range

[1, 40] and for a sampling period between [0.5, 10] seconds. The results confirm that the use of a second

order controller reduces the amplitudes of the error and makes available the use of higher sampling

periods or of higher gains.

8.4.2 Experimental results

For the practical implementations we have considered a gain K = 20, the sampling period was given

within the range [1, 10] seconds and the tanks were empty at the start of each experiment.

In Figures 8.4-8.3 there are plotted the evolutions of the tank levels and the control input, for a

sampling period equal to 1 second. The reference is given as down staircase signal with values of

70%, 30% and 0% from the maximum height of the tank h0. For important changes in the reference

points, the control becomes saturated. We have imposed these reference values to show that the

controller regulates, with zero static error, any reference given. What we are also interestead in, is

how the system evolves when increasing the sampling period. In Figure 8.6 there are plotted the same

evolutions for a sampling period equal to 10 seconds.

Figure 8.5b) is an expanded image of 8.5a) which shows that the emulated control becomes unstable,

with increasing oscillations. The same observation can be made on the control evolution plot Figure

8.6d), where the second order controller acts smoother. For sampling periods smaller than 10 s, for

[ November 28, 2012 at 8:46 – classicthesis final version ]



8.4 results 153

5 10 15 20 25 30 35

1

2

3

4

5

6

7

8

9

10

K

δ

Error (K,δ) - 3D Representation - Control order =0

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Emulated control

5 10 15 20 25 30 35

1

2

3

4

5

6

7

8

9

10

K

δ

Error (K,δ) - 3D Representation - Control order =2

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) 2nd order control

Figure 8.2: The matching error under sampled-data control

the emulated case the closed loop dynamic is stable but the controller is much more stressed than it

is in the case with a second order approximated controller.
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Figure 8.3: Experimental results for h1, δ = 1s
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Figure 8.4: Experimental results for δ = 1s

[ November 28, 2012 at 8:46 – classicthesis final version ]



156 nonlinear coupled-tank - level control

0 100 200 300 400 500 600
0

20

40

60

80

100

time (s)

h1
 (

%
)

h1, δ =10s, K=20

 

 
Ref
Emul
2nd

(a)

100 150 200 250 300
65

70

75

time (s)

h1
 (

%
)

h1, δ =10s, K=20

 

 
Ref
Emul
2nd

(b)

Figure 8.5: Experimental results for h1, δ = 10s
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Figure 8.6: Experimental results for δ = 10s
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T W O W H E E L M O B I L E R O B O T

The object of this case study is to illustrate on an academic example, subject to communica-

tion delays, how discretization makes it possible the design of a prediction based stabilizer.

The case of nonlinear dynamics with delayed input admitting finite sampled equivalent

models is discussed. The stabilizing strategy with predictor is designed by means of the

multi-rate samplings proposed in [Monaco & Normand-Cyrot 1992],[Chelouah et al. 1993]

or [Di Giamberardino et al. 1996b]. Part of the results reported here are included in the

papers [P1],[C10] from the author’s contribution list (page ix).

9.1 introduction

9.1.1 The two-wheeled mobile robot dynamics

Let us consider the reduced-order model of the kinematics of a wheeled vehicle with two independent

rear motorized wheels, described by the following differential equations:

ẋ(t) = v(t) cos(θ(t)),

ẏ(t) = v(t) sin(θ(t)),

θ̇(t) = ω(t)

(9.1)

where v denotes the forward velocity andω the steering velocity. The kinematics of the mobile robot is

considered rolling without slipping on the horizontal plane, which corresponds to the non-holonomic

constraint described by [Kojima et al. 2010],

ẋ(t)sin(θ(t)) − ẏ(t)cos(θ(t)) = 0.

The velocities v and ω can be expressed in terms of the circular velocities v1(t), v2(t) and B the

distance between wheels as follows: v(t) = v1(t)+v2(t)
2 , ω(t) =

v2(t)−v1(t)
B .

159
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Figure 9.1: Two-wheeled mobile robot

If the presence of a communication delay τ = Nδ, with N positive integer, between the state mea-

surements and the control input, then the kinematics of the mobile robot becomes:

ẋ(t) = v(t− τ) cos(θ(t)),

ẏ(t) = v(t− τ) sin(θ(t)),

θ̇(t) = ω(t− τ)

(9.2)

9.1.2 The discretization issue

Let us consider the robot dynamics in the delay free case (9.1). If it is assumed that the control inputs

u and v are constant on intervals of length δ, then the sampled equivalent model is described by the

next difference equations:

xk+1 = xk + δvkcos(θk) −
δ2

2!
vkωksin(θk) + ...

yk+1 = yk + δvksin(θk) +
δ2

2!
vkωkcos(θk) − ... (9.3)

θk+1 = θk + δωk

which can be rewritten in this particular case as follows:

xk+1 = xk + vk
sin(θk+1) − sin(θk)

ωk

yk+1 = yk − vk
cos(θk+1) − cos(θk)

ωk
(9.4)

θk+1 = θk + δωk

By looking at the previous equations, it is clear that designing a digital controller is a difficult task

since wk appears in the trigonometric function argument. As it is shown next, a suitable change of
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coordinates allows us to transform this system into the non-holonomic integrator form, which admits

an exact sampled-model. Based on the exact sampled-model of finite order in δ, a digital controller

can be easily designed to satisfy suitable discrete-time objectives.

9.1.3 The non-holonomic integrator

By using the following change of coordinates,

x1 = x cos(θ) + y sin(θ),

x2 = x sin(θ) − y cos(θ), (9.5)

x3 = θ

and the input transformation,

u1 = v− x2ω, u2 = ω (9.6)

the initial system is translated to

ẋ1(t) = u1(t),

ẋ2(t) = u2(t)x1(t), (9.7)

ẋ3(t) = u2(t).

which admits the exact discrete-equivalent of order at most 2 in δ,

x1k+1 = x1k + δu1k,

x2k+1 = x2k + δu2kx1k +
δ2

2
u2ku1k, (9.8)

x3k+1 = x3k + δu2k.

9.2 the digital control design for delay free case

We propose a stabilizing 2-rate digital controller based on the dead-beat design. The controller is

designed to bring the system in 2 steps of length δ/2 to a desired point xd(k) ∈ R3. Let us now

propose the following multi-rate controller:

• u1k = u1(tk), for tk = [kδ, (k+ 1
2 )δ[

• u2k = u2(tk), for tk = [kδ, (k+ 1)δ[

• u3k = u1(tk), for tk = [(k+ 1
2 )δ, (k+ 1)δ[
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Then at time t = (k+ 1)δ the discrete-time dynamics are described by:

x1k+1 = x1k +
δ

2
(u1k + u3k),

x2k+1 = x2k + δu2kx1k +
δ2

8
u2k(3u1k + u3k), (9.9)

x3k+1 = x3k + δu2k.

Given a desired discrete-time point xdk = (x1dk, x2dk, x3dk), and assuming xk = xdk then the

digital control which brings xk to xdk+1 is given by

u1k =
4

δ

x2dk − x2k − x1k(x3dk − x3k)

x3dk − x3k
−
x1dk − x1k

δ
,

u2k =
x3dk − x3k

δ
, (9.10)

u3k = −
4

δ

x2dk − x2k − x1k(x3dk − x3k)

x3dk − x3k
+ 3

x1dk − x1k
δ

.

or under a simplified form uk = γδ(xk, xdk).

The controller is well defined for x3dk − x3k is not zero. The case when it is 0, physically corre-

sponds to the situation when the robot has the steering velocity equal to 0, and hence the robot is mov-

ing only in the direction defined by x and y, it is not able to move to a position that is parallel with this

trajectory (the parallel parking problem [Paromtchik & Laugier 1996],[Di Giamberardino et al. 1996a]).

To avoid this problem, we impose an asymptotic discrete-time evolution of x3 dynamics (to the angle

of rotation of the robot vehicle) e.g. x3dk = x30/k
2, with k as the sampling instant, and for the other

trajectories we can ask the exact tracking with x1dk = 0 and x2dk = 0. As consequence in only 2

steps (one sampling period) the vehicle arrives to the desired position and asymptotically it adapts

the desired orientation.

For comparative purposes we use another different dead-beat solution, proposed in

[Karafyllis & Krstic 2011] which achieves the stabilization in 3 steps.

9.2.1 Piecewise continuous-time controller

If we go back to the initial coordinates, one gets:

v(t) = u1k + x2(t)u2k, t ∈ [kδ, (k+
1

2
)δ)

v(t) = u3k + x2(t)u2k, t ∈ [(k+
1

2
)δ, (k+ 1)δ) (9.11)

ω(t) = u2k, t ∈ [k, (k+ 1)δ)
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As a consequence ω is still a discrete-time signal, while v is piecewise continuous because it de-

pends on x2(t). The state variable x2(t) can be computed exactly as follows:

x2(t) = x2k + tu2k
(
x1k +

t
2u1k

)
, t ∈ [kδ, (k+ 1

2 )δ)

x2(t) = x
2k+ 1

2
+ tu2k

(
x
1k+ 1

2
+ t
2u3k

)
, t ∈ [(k+ 1

2 )δ, (k+ 1)δ)

with

x1(k+
1

2
) = x1(k) +

δ

2
u1(k), (9.12)

x2(k+
1

2
) = x2(k) +

δ

2
u2(k)x1(k) +

δ2

8
u2(k)u1(k). (9.13)

9.2.2 Controllers implementation

If we take into account a practical implementation of the piecewise continuous-time controllers (let

us denote this controller by MRCont) defined by the equations (9.11) then the discrete-time versions

have to be also evaluated.

A first solution MRHold is to use an emulated version, where x2(t) is considered constant over

time intervals of length δ/2, then:

vk = u1k + x2ku2k, t ∈ [0, (k+
1

2
)δ) (9.14)

vk = u3k + x2k+ 1
2
u2k, t ∈ [(k+

1

2
)δ, (k+ 1)δ) (9.15)

It is a known fact that the use of emulated controllers reduces the stabilizing performances imposed

by the continuous-time design.

A second solution MRCorr that tries to cancel the effect of holding x2(t) proposes a correction on

computing the discrete value of x2k, such that

vk = u1k + x
c
2ku2k, t ∈ [kδ, (k+

1

2
)δ) (9.16)

vk = u3k + x
c
2k+ 1

2

u2k, t ∈ [(k+
1

2
)δ, (k+ 1)δ) (9.17)

Let us define next the error expressions:

ε1(t) = xc2k − x2(t), t ∈ [kδ, (k+
1

2
)δ) (9.18)

ε2(t) = xc
2k+ 1

2

− x2(t), t ∈ [(k+
1

2
)δ, (k+ 1)δ) (9.19)

The criterion used to find the proper xc2k is∫δ/2
0

εi(t)dt = 0, i = 1, 2. (9.20)

[ November 28, 2012 at 8:46 – classicthesis final version ]



164 two wheel mobile robot

Some computations show starting with (9.12) and (9.18):∫δ/2
0

xc2k − x2k − tu2kx1k −
t2

2
u2ku1kdt

=
δ

2
(xc2k − x2k) −

δ2

8
u2kx1k −

δ3

48
u2ku1k

In same manner for the second interval evolution of x2(t) one finally gets the solutions of the criteria:

xc2k = x2k +
δ

4
u2kx1k +

δ2

24
u2ku1k (9.21)

xc
2k+ 1

2

= xc2k +
δ

4
u2kx1k +

δ2

24
u2k(u1k + u3k) (9.22)

With these last computations we conclude that the MRCorr controller defined by equations (9.16)-

(9.17) and (9.21)-(9.22) represents the control solution when dealing with the implementation of the

continuous-time version, when using holding devices on control inputs u1, u2.

9.3 the digital control with delay predictor

In the presence of inputs delay the controller proposed in the delay free case uk = γδ(xk, xdk) has to

be use with a state predictor zk.

In the case of a delay τ = Nδ on the inputs v and ω the input transformation has the following

form

u1(t− τ) = v(t− τ) − x2(t)ω(t− τ), u2(t− τ) = ω(t− τ) (9.23)

which translates the initial system into (9.2). The problem is to build an N step predictor, by making

use of the finite discretization equivalent of the system (9.7). When a control is delayed with N steps,

this means that the controller computes a digital value uk at instant kδ which is applied to the system

at instant (k+N)δ. As consequence the controller action defined in the past is not suitable since the

states have evolved to other values. So at the instant kδ one must compute the state values at instant

(k+N)δ.

The N step predictor can be easily computed from (9.8) by successive iterations, so getting:

z1k+N = z1k + δ

N−1∑
i=0

u1k−i,

z2k+N = z2k + δz1k

N−1∑
i=0

u2k−i (9.24)

+
δ2

2

(N−1∑
i=0

u1k−iu2k−i + 2u2k−i

N∑
j=i+1

u1k−j

)
,

z3k+N = z3k + δ

N−1∑
i=0

u2k−i
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with zik = xik, i = 1, 2, 3.

It is clear from the above, the last N control inputs are required to compute the states at the instant

(k+N)δ. In the case of a 2-rate sampling scheme, the predictor is computed as follows:

z1k+N = z1k +
δ

2

N−1∑
i=0

(
u1k−i + u3k−i

)
,

z2k+N = z2k + δz1k

N−1∑
i=0

u2k−i

+
δ2

8

(N−1∑
i=0

(
u2k−i(3u1k−i + u3k−i) (9.25)

+ 4u2k−i

N−1∑
j=i+1

(u1k−j + u3k−j)
))

,

z3k+N = z3k + δ

N−1∑
i=0

u2k−i

The initial conditions of this predictor are represented by the state measurements zik = x(i k).

The predictor is used to set the controller udpk = γδ(zk+N) that stabilizes the system (9.7) for

a delay τ = Nδ, for any N > 0. Translating now into initial coordinates, the digital controller with

predictor becomes:

v(t) = u1dpk + x2(t)u2dpk, ω(k) = u2dpk, (9.26)

t ∈ [kδ, (k+ 1
2 )δ)

v(t) = u3dpk + x2(t)u2dpk, ω(k) = u2dpk, (9.27)

t ∈ [(k+ 1
2 )δ, (k+ 1)δ)

This solution assures the stabilization in 2 steps of time length δ/2 of the dynamics (9.7), in the

presence of inputs delays.

When considering ZOH blocks on v and w it is clear that the predictor given in (9.24) becomes

inexact due to the fact that x2(t) is hold constant. To correct the control solution the same corrections

on vk (9.21)-(9.21) have to be considered:

vk = u1dpk + z
c
2ku2dpk (9.28)

vk = u3dpk + z
c
2k+ 1

2

u2dpk (9.29)

with

zc2k = z2k +
δ

4
u2kz1k +

δ2

24
u2ku1k (9.30)

zc
2k+ 1

2

= zc2k +
δ

4
u2kz1k +

δ2

24
u2k(u1k + u3k) (9.31)
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By taking into account that v and ω are constant then another predictor can be designed from the

discrete-time equivalent (9.4). In a multi-rate context, previously defined, it takes the following form:

Xk+N = Xk +

N−1∑
i=0

vk+i

sin(Θ
k+i+ 1

2
) − sin(Θk+i)

ωk+i

+

N−1∑
i=0

v
k+i+ 1

2

sin(Θk+i+1) − sin(Θk+i+ 1
2
)

ω
k+i+ 1

2

(9.32)

Yk+N = Yk −

N−1∑
i=0

vk+i

cos(Θ
k+i+ 1

2
) − cos(Θk+i)

ωk+i

−

N−1∑
i=0

v
k+i+ 1

2

cos(Θk+i+1) − cos(Θk+i+ 1
2
)

ω
k+i+ 1

2

Θk+N = Θk + δ

N−1∑
i=0

ωk+i

The previous predictor proposed in [Karafyllis & Krstic 2011] offers the exact estimations of the state

variables when using a ZOH block on v.

9.3.1 Simulation results

The simulations are provided considering a sampled-data scheme with the continuous-time model

of the robots kinematics (9.1) with digital control inputs passed through a ZOH block. The state

measures are delayed with τ = 3δ (N=3) and measured with a sampling rate δ = 1 second. The

analysis of the simulation results plotted in figures Figure 9.2 and Figure 9.3 is given next.
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Figure 9.2: State evolutions, for δ = 1s, τ = 3
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Figure 9.3: State evolutions, for δ = 1s, τ = 3
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MRCont This solution uses the continuous-time controller v(t) (no ZOH block used are used on v). This

case, which is an ideal one, cannot be practically implemented. This controller is used in con-

nection with the predictor (9.25). The stabilization for x, y is achieved in 2 steps, in other words

in one sampling time. Simulation results are plotted in Figure 9.2a), b). Small peaks can be

observed this due to the integration errors of the continuous time dynamics.

MRHold This solution is obtained by holding the continuous-time controller v(t) constant on δ/2 intervals

in connection with the predictor (9.25). Simulation results are plotted in Figure 9.2c), d). This

solution presents some undesirable peaks at instants (N + 1 + i/2)δ with i = 1, 2, . . .. This is

due to the inexact nature of the predictor resulted by holding v(t) constant over the sampling

intervals.

MRCorr This solution, similar with MRHold, has included the corrections (9.28)- (9.29) on the controller

v . The peaks obtained, when using this control, are significantly reduced. The amplitude of

these peaks is due to the integration errors of the continuous-time dynamics. This depends

also on the amplitude of the delay. The results are reported in Figure 9.2e), f). For comparative

purposes in Figure 9.3e), f) the same controller is used with the predictor (9.32), proposed in

[Karafyllis & Krstic 2011]. The results are similar with bigger peaks.

SRKaraCont This solution uses a single-rate, dead beat controller proposed in [Karafyllis & Krstic 2011], in

conjunction with the exact predictor (9.24) (the single-rate version). Here is reported the “con-

tinuous” version which means that v(t) is not passed though a ZOH block. Simulation results

are plotted in Figure 9.3a),b). The solution is stabilizing in 3 sampling steps. The y steady-state

value has a bias error, which depends on the choice of the error size in the controller algorithm.

SRKara This solution is similar with SRKaraCont with the difference that v(t) is passed through a ZOH

block. In Figure 9.3c),d) the results are obtained in conjunction with the exact predictor (9.32)

(the single-rate version). In this case the controller solution take greater time to stabilize. The

y steady-state value has also a bias error, which depends on the choice of the error size in the

controller algorithm.

In conclusion, the control strategy and the exact delay predictor proposed performs better and

achieves the stabilization of the dynamics of the mobile robot, in a sampled-data context with delayed

communications. The construction of the delay predictor is possible due to the exact discrete-time

equivalent of the non-holonomic integrator. The delay predictor proposed here is a better version to

be used compared with the one proposed in [Karafyllis & Krstic 2011]. The delay predictor is also

computed for second-rate controllers.
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F U E L C E L L / S U P E R - C A PA C I T O R - E N E R G E T I C M A N A G E M E N T

The object of this case study is to design sampled-data versions of two different nonlinear

control strategies that concern the energy management of a fuel cell system: one strategy is

relying on passivity based control IDA -PBC and the second one relaying on the theory of

singular perturbations. The performances of the digital controllers are tested in simulations

and evaluated on an experimental setup available at the LGEP1. Part of the results reported

here are included in the papers [C06],[C08] from the author’s contribution list (page ix).

10.1 introduction

One of the most demanding action nowadays concerns the development of alternative energy sources,

taking into account pollution aspects and the limited available resources. In this battle, the automotive

industry showed, in the last decades, an increased interest in developing environmentally friendly -

electrical vehicles. More precisely, the interest is to develop a cheap and efficient energy source and

storage system, capable to respond to large power demands and to assure as much as possible a great

vehicle’s autonomy.

In this context, a solution, that concern many researches, is based on the development of fuel cell

systems having a proton exchange membrane as main source of energy. Besides it has important

advantages such as: reduced pollution and noise, modularity or high efficiency; the obstacles do exist

such as: cost, reliability and durability. In order to assure a good state of health of the fuel cell system

it is required that the current delivered by FC should not fluctuate more than 10 A during each second

for a system with 20kW/48V as the one available at the LGEP.

To comply with the problem of higher power demands in short time, the FC can be associated with

auxiliary sources such as batteries or super capacitors (SCs) [Ghanes et al. 2011].

1 Laboratoire de Génie Electrique de Paris, UMR 8507, 11 Rue Joliot Curie, Gif-sur-Yvette
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System Architecture and control objectives
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Figure 10.1: System architecture[Ghanes et al. 2011]

In this case study an FC system with SCs is studied in connexion with double converters in a

parallel structure, see Figure 10.1. Using a double converter allows better control capabilities but

increases energetic losses. As discussed in [Tiefensee et al. 2010a], the FC converter permits a one-way

power flow with two goals: to supply the load power demands first and then to charge the SC. On

the other hand the SC’s converter permits two-way power flow which allows to supply the load (the

SC recharge) which can be done either by the FC or by the vehicle regenerative braking system.

The energetic management of such system can be realized by a controller that has to ensure three

major objectives:

• to comply with the FC dynamics (the limitations of the currents and of the sudden variations);

• to control the charge of the storage devices (SCs);

• to control the power response (either positive or negative) required by the electrical load.

Several linear and nonlinear control strategies have been proposed to pilot each converter, to control

the DC bus voltage and the SC’s charge respectively. A more detailed survey about these strategies can

be found in [Azib et al. 2011]. This chapter concerns mainly two non-linear approaches that were de-

veloped in the continuous-time context. The first one IDA-PBC was first proposed by [Ortega et al. 2002]

and adapted to a fuel cell system with SCs in the papers of [Becherif et al. 2006], [Hilairet et al. 2010].

This novel method is very efficient to design stabilizing controllers for electro-mechanical systems

which can be energetically shaped. It relies on specific state space structures like Hamiltonian ones.

The second approach, of the Singular Perturbation Theory (SPT), [Kokotovic et al. 1986] is suit-

able for systems which admit multiple time-scales dynamics. The problem at hand can be divided

into 3 time-scales : the current loops which are the fastest ones, the SC’s current which is slower
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Figure 10.2: Control scheme

and the FC current that must have the slowest variation. Previous works have been performed in

[Ghanes et al. 2011] or [Ghanes et al. 2012].

By taking into account the practical implementations, the design is set in a sampled-data context.

The emulation procedure does not always give satisfactory results. The object of this study is to

analyze, from the point of the view of these two nonlinear strategies proposed, how the emulation is

affected and when it is unavoidable to propose specific digital versions of such controllers.

10.2 system architecture

The control structure scheme of the system FC/SCs is depicted in Figure 10.2. It consists in a cascade

hybrid control structure, which was proposed in [Cacciato et al. 2004, Thounthong et al. 2005]. Power

requirements, speed variations, various frictions, are reported on the electric charge. The proposed

architecture allows a decoupling frequency of the load demand. The bus capacitor C filters high

frequencies, the boost converter of the SCs medium frequencies, and the associated converter of the

FC, low frequencies.

The objective of the control scheme is to maintain the bus voltage to a constant reference value v∗B

and to ensure that the evolutions of the currents iFC and iSC are bounded in order to protect sources

and converters of load variations. The scheme provides two internal loops of current (proportional
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FC boost converter To use the FC in an electric
power system, a boost converter must increase the FC
voltage, because the FC voltage is often less than the DC
bus voltage. The boost converter represented in Fig. (4)
is controlled by binary input w1(t). Defining α1 as the
duty cycle of control variable w1(t), this subsystem can
be represented by its average model (here, the switches
are regarded as ideal) :

difc

dt = 1
Lfc

(− (1− α1) vb + vfc
)

dvb
dt = 1

C

(
(1− α1) ifc − il

) (6)

where vb is the DC link voltage, vfc is the FC voltage,
il is the DC current delivered to the load and ifc is the
FC current.

SCs boost converter SCs can be charged or dis-
charged; therefore the storage elements are connected to
the DC bus through a reversible power converter. The
SCs used here have a constant capacity (Csc) and negligi-
ble losses. They are associated with an inductance (Lsc)
and a boost converter as shown in Fig. (4). Two types
of operations are possible : a buck operating mode when
SCs receive energy from the DC bus, and a boost oper-
ating mode when SCs supply energy to the DC bus. We
define α2 as the duty cycle of control variable w2(t). The
second sub-system is represented by an average model
as follows :

disc
dt = 1

Lsc

(− (1− α2) vb + vsc
)

dvsc
dt = − isc

Csc

(7)

DC bus and load model Fig. (4) shows the model
of the DC bus and the load. In our work, the load is
modeled by a resistance circuit (Rl), whose value varies
according to the power required by the load. The average
model is:

dvb
dt = 1

C

(
(1 − α1) ifc + (1− α2) isc − il

)
dil
dt = 1

L

(−Rlil + vb
) (8)

where inductance L is not part of the load and represents
the imperfections of the system.

Complete model It follows that the complete “fuel
cell - supercapacitors” system is represented by the 5th

order non-linear state space model :

v̇b =
(1− α1) ifc + (1− α2) isc − il

C
(9)

v̇sc =− isc
Csc

(10)

i̇l =
−Rl il + vb

L
(11)

i̇fc =
−(1− α1) vb + vfc

Lfc
(12)

i̇sc =
−(1− α2) vb + vsc

Lsc
(13)

with state space x(t) = [vb; vsc; il; ifc; isc]
T , control in-

puts u(t) = [u1; u2]
T = [1 − α1; 1 − α2]

T , measures
y(t) = x and vfc.

3.3.2 Outer loop model (reduced model)

The system of 5 equations (9 to 13) is called a singu-
lar perturbed system, because of the difference of time
scale between the voltages and the currents (Kokotovi et
al., 1986). Therefore, the system (9 to 13) is forced into
current-command mode using high gain feedback. More
precisely, the following PI current controllers

u1 = Kifc

∫ t

0

(i∗fc − ifc)dt +Kpfc(i
∗
fc − ifc) (14)

u2 = Kisc

∫ t

0

(i∗sc − isc)dt +Kpsc(i
∗
sc − isc) (15)

are used to force ifc and isc to track their respective
references i∗fc and i∗sc and produce fast responses when
large feedback gains are used. The control u1 and u2 act
as high-gain feedback, for more details see for example
(Marino , 1985).

Consider equations (12) and (14) forKifc andKpfc suf-
ficiently large with respect to voltage and load dynamics.
After transient (convergence), one get ifc − i∗fc = 0 and∫ t

0 (i
∗
fc − ifc) =

vfc
vbKifc

. These imply that equation (14),

4
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Figure 10.3: Static characteristic of the FC

integral PI) ensuring a rapid convergence to the respective references i∗FC and i∗SC. The control design

objective is to provide these current references for the digital controller.

The model used hereafter, is the same as the one provided in the work of the principal collaborators,

e.g. [Hilairet et al. 2010, Tiefensee et al. 2010a].

10.2.1 The FC model

Static modeling was used to calculate the voltage vFC according to the fuel cell current iFC thus

resulting in a polynomial function of 5th order. This was determined by data-fitting of the measured

experimental data and it is represented in Figure 10.3.

10.2.2 FC boost converter

As the FC voltage vFC is always inferior to the bus voltage reference v∗B, the converter should increase

the FC voltage to maintain a constant bus voltage for any current iFC. The converter input is given by

a binary function and α1 is its duty cycle. If we consider ideal switches and the FC current, provided

by the fast loop PI, piecewise constant, then on each sampling interval, the average dynamics of the

converter can be described as follows :

diFC(t)
dt = 1

LFC
(−(1−α1)vB(t) + vFC)

dvB
dt = 1

C ((1−α1)iFC − iL)

(10.1)

with iL the load current.
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10.2.3 SCs boost converter

The super capacitors used have a constant capacity CSC and losses are negligible. It is associated with

an inductance LSC and an elementary switching cell which allows current to flow into both directions.

There are thus two types of operations: an operation load when the SC receives energy from the DC

bus operation and a discharge operation respectively, when the SC provides power to the bus. As

before, the control of the converter is given by a binary function with α2 as its duty cycle. If there

are considered ideal switches and the FC current, provided by the fast loop PI, is piecewise constant,

then for each sampling interval, one can describe the average dynamics of the converter as follows:

diSC(t)
dt = 1

LSC
(−(1−α2)vB(t) + vSC)

dvSC
dt = − iSC

CSC

(10.2)

10.2.4 DC bus and the load model

The load is modeled by a circuit series RL,Ll with RL depending on the power demanded by the load.

More accurately, the following dynamics describes the average model of the load and of the DC bus:

v̇B(t) = 1
C ((1−α1)iFC(t) + (1−α2)iSC(t) − il(t))

i̇l(t) =
−Rl il(t)+vB(t)

Ll

(10.3)

10.2.5 The complete model

Setting x = [x1, x2, x3, x4, x5] = [vB, vSC, iL, iFC, iSC], the complete model is given by:

ẋ1(t) = 1
C ((1−α1)x4 + (1−α2)x5 − x3(t))

ẋ2(t) = −
x6(t)
Csc

ẋ3(t) =
−Rl x3(t)+x1(t)

Ll

dx4(t)
dt = 1

LFC
(−(1−α1)x1(t) + vFC)

dx5(t)
dt = 1

LSC
(−(1−α1)x1(t) + x2)

(10.4)

The resulting model has a linear free dynamics and the nonlinearities of the forced terms have to

be noticed. Nonlinear techniques allow global asymptotic stabilization of the FC-SCs system. Another

important remark to be noticed when designing a controller is that this system has a 2 time-scale

behavior: fast for the current loops, and slow for the voltage dynamics.
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When one also considers the electrical losses of the converters, a current id can be added to the bus

voltage dynamics e.g.

ẋ1(t) =
1

C
((1−α1)x4 + (1−α2)x5 − x3(t) − id(t)) (10.5)

where id has 2 components, each one corresponding to the converter, such that:

id = id1 + id2 =
(V0 + R0x4)x4

x2
+

(V0 + T0x5)x5
vFC

(10.6)

The voltage and the internal resistance V0, R0 characterize the power switches [Ghanes et al. 2012].

10.2.6 Reduced order model

The control structure comprises 2 fast PI controllers which control the FET transistors to bring the

converter currents to desired values:

αu1 = KiFC

∫t
0
(i∗FC − iFC)dt+KpFC(i

∗
FC − iFC) (10.7)

αu2 = KiSC

∫t
0
(i∗SC − iSC)dt+KpSC(i

∗
SC − iSC) (10.8)

The controllers αu1,αu2 are acting as high-gain feedback controllers, and during experimental imple-

mentation they are equipped with anti-windup schemes.

For the outer loop control model (for the slow dynamics) the controller references are considered

as control variables. Setting u1 = i∗FC, u2 = i∗SC and the reduced model has the following form:

ẋ1(t) = 1
C

(
vFC
x1(t)

u1(t) +
x2(t)
x1(t)

u2(t) − x3(t)
)

ẋ2(t) = −
u2(t)
Csc

ẋ3(t) =
−Rl x3(t)+x1(t)

Ll

(10.9)

In the next developements, the reduced model (10.9) is used for designing the control laws. For having

good convergence properties and to ensure the stability, the dynamics of the outer loop must be slow

compared with the PI loops.

10.3 continuous-time controller design

In this section two continuous-time controller designs, one based on the method of IDA-PBC and the

other one on the theory of Singular Perturbation for a FC/SC system are recalled. The conception

in continuous-time of such controllers is not the object of this work, but these are of great impor-

tance since the digital designs, that are next proposed, rely on the performance of the control objec-
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tives imposed in continuous time. The digital designs are based on the idea of preservation of the

continuous-time properties under sampling.

10.3.1 IDA-PBC design

The method of Interconnection and Damping Assignment - Passivity Based Controller (IDA-PBC) de-

signed in continuous time in [Ortega et al. 2002] exploits the energy property of passivity

[Ortega & Spong 1989]. This method consists in shaping a desired internal structure for imposing the

dynamics to move to a desired equilibrium point and to inject the required damping. By denoting H

the system energy

H(xc) =
1
2x
T
cQxc; Q =


C 0 0

0 CSC 0

0 0 Ll


the dynamics of the reduced model (10.9) can be written in the followingPort Hamiltonian Control -

PCH form :

ẋ(t) = (J−R)∇H+ g1(x(t))u1(t) + g2(x(t))u2(t) (10.10)

where the interconnection and damping matrices are described by:

J =


0 0 − 1

Ll·C

0 0 0

1
Ll·C 0 0

 , R =


0 0 0

0 0 0

0 0 Rl
L2l


and the forced terms that are described by the vector fields:

g1 =


vFC
C·vB

0

0

 , g2 =


vSC
C·vB

− 1
CSC

0

 .

The continuous-time control laws specified to this case stuy are:

uc1(t) =
vB(t)

vFC
(
vB
Rl

+ (K1
vSC(t)

vB(t)
−K2)ṽB(t) −K1ṽSC(t)) (10.11)

uc2(t) = −K1ṽB(t) (10.12)

(10.13)

with ṽ(t) = v(t) − v as the regulation error. The positive gains K1 et K2 are chosen in such a way to

comply with the desired speed of the system’s response.
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In this case the PCH system, in closed loop, has the following form :

ẋ(t) = (Jd −Rd)∇Hd(x(t)) (10.14)

where the desired energy function Hd(x̃) = (x − x)TQ(xc − x) has a minimum in the equilibrium

point x. The new interconnection and damping matrices Jd respectively Rd are given by :

Jd =


0 − K1

CSC·C − 1
Ll·C

K1
CSC·C 0 0

1
Ll·C 0 0

 ,Rd =


K2
C2bus

0 0

0 0 0

0 0 Rl
L2l

 .

The proof of the asymptotic stability of the solution is given by analyzing the derivative of Hd:

Ḣd(x̃) = −(∇Hd(x̃))TR∇Hd(x̃) 6 0,∀x 6= x (10.15)

and also by applying the invariance LaSalle principle, with Hd(x) = Ḣd(x) = 0 (see further details in

[Hilairet et al. 2010]).

10.3.2 Singular Perturbation design

The Singular Perturbation theory [Khalil 1996], [Barbot et al. 1996], [Djemai et al. 1999] is suitable for

systems which exhibit multiple time-scales dynamics which means that parts of its dynamics are slow

and the other ones are fast. One has to take into account that the control objectives, for the FC/SCs

system, require that the fast energy demands should be quickly delivered by the SCs; after that the FC

will slowly satisfy the demands requirements. This means that fast dynamics should be designed to

cope with the SCs source, and a slower one to cope with the FC current source. In this case a solution

based on the singular perturbation approach seems to be promising.

The solution was firstly designed for the FC/SCs system, in continuous-time, for the case of lossless

converters in [Ghanes et al. 2011], and this work follows this result. Details about this approach can

be found in [Khalil 1996],[Kokotovic et al. 1986].

The objective of the continuous-time controller is to impose faster dynamics for the iSC current loop

and slower ones for the iFC current. In the same time, the constraints on the amplitude and speed

variation of the fuel cell current should be respected.

In this context, the controller u1 is designed as follows:

u1(t) =
vB(t)

vFC
Ilm −

CSC
Tlent

ṽsc(t) (10.16)

where Ilm is the load current filtered by a low-pas filter and ṽ = v− v represents the variation around

the reference point. The choice of the time value Tlent for which the current loop is sufficiently slow

is important.
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For designing the u2 controller, one imposes to these dynamics be faster than the ones of u1 but

slower than the dynamics of the PI controllers of the converters. The u2 controller’s expression is:

u2(t) =
vB(t)
vSC(t)

[
− C
Trapide

ṽB(t) −
vFC
vB(t)

(
vB(t)
vFC

Ilm − CSC
Tlent

ṽSC(t)
)
+ IL(t)

]
(10.17)

For analyzing the stability property of such controllers one has to define the Lyapunov functions.

In this case one sets the following Lyapunov function: V = V1 + V2 + V3, with V1 = ĩ2/2, V2 = ṽ2B/2,

and V3 = ṽ2SC/2 where ĩ = iL − iL with iL = v∗B/Rl(t). Its derivative is given by:

V̇(t) = ĩL(t)
−RlĩL(t)+ṽB(t)

Ll −
ṽ2B(t)
Trapide

(10.18)

−
ṽSC(t)
CSC

vB(t)
vSC(t)

[
C

Trapide
ṽB(t) −

vFC
vSC(t)

(
vB(t)
vFC

Ilm − CSC
Tlent

ṽSC(t)
)
+ iL(t)

]
(10.19)

By imposing Trapide << 1 then ṽB goes to 0 in an independent way of ĩL and ĩL exponentially

converges to 0 and:

V̇(t) = −
Rl
Ll
ĩ2L(t) −

vFC
TlentvSC(t)

ṽSC(t). (10.20)

The last equation shows that the system is locally exponentially stable for vSC > 0.

10.4 sampled-data designs

10.4.1 IDA-PBC design

In a sampled-data context, it is a fact mentioned in the literature that the passivity properties are lost.

In this context a direct design approach was proposed in [Tiefensee et al. 2010b, Monaco et al. 2011].

In this study, the digital controller is designed by starting from the continuous-time version of IDA-

PBC. The resulting controller, piecewise constant over time intervals of length δ, allows to reproduce

the energetic objectives, imposed in continuous-time, at each sampling instant. In this context the

continuous-time controller is also referred to as the ’ideal’ command.

Preliminary results are given in [Hilairet et al. 2010] (referring to continuous-time design) and

[Tiefensee et al. 2010a] (referring to the digital version).

The digital design should preserve the energetic transfers obtained in continuous-time set-up,

under sampling and the maintaining of the objectives at each sampling instant. One denotes by

uk = [u1k u2k] the digital controllers, and by δ the sampling period used. In order to compute

this controller, which reproduces the energetic behavior, the next algebraic equality has to be solved

for the initial conditions xk = xc(t = kδ) :

Hd(xk+1) −Hd(xk) =

∫ (k+1)δ
kδ

Ḣd(xc(τ))dτ (10.21)

[ November 28, 2012 at 8:46 – classicthesis final version ]



180 fuel cell/super-capacitor - energetic management

The left-hand side of the equation regards the sampled-data evolution and the right-hand side the

continuous-time one. The solution of this equation can be view also as the solution of an input/Energy

matching problem. The function Hd(xk+1) can be computed from Hd(xk) as follows:

Hd(xk+1) = e
δ((J−R)∇H(·)+g(·)uk)Hd(x)|t=kδ (10.22)

with the known notations.

The digital controller uk is computed from the equation (10.21) and the solution is described

by a series in terms of δ around the emulated controller ud0 = uc|t=kδ as follows uk = ud0 +∑
i>1

δ
(i+1)!udi. The exact solution corresponds to the asymptotic development. For practical reasons

approximated solutions of order 1 or 2 are used with satisfactory performance. The solution that is

proposed, is given for a 1st order approximation with an error O(δ2) :

uδk1 =
vB(t)

vFC
(
vB
Rl

+ (K1
vSC(t)

vB(t)
−K2)ṽB(t) −K1ṽSC(t))|t=kδ +

δ

2!
ud11(t)|t=kδ (10.23)

uδk2 = −K1ṽB(t)|t=kδ −
δ

2!
K1v̇B(t)|t=kδ (10.24)

with

ud11(t) = v̇B(t)

(
uc1(t)

vB(t)
−K1

vSC(t)vB
vFCvB(t)

−K2
vB(t)

vFC

)
−K21

vBṽB(t)

CSCvFC

where v̇B(t) = −(̃iL(t) +K2ṽB(t) +K1ṽSC(t))/C

The proposed solution, of first order approximation, assures the equality (10.21) with an error in

O(δ2). This means that the control solution reproduces the energetic behavior of the continuous-time

scheme with an error in O(δ2).

10.4.1.1 Simulation Results

Before experimental implementation, a close attention is given to the simulations and the analysis

of these results. In this study the object of these simulations is to evaluate how the sampling period

affects the systems performances and secondly how the new digital controller improves the perfor-

mances of the emulated controller (implemented with ZOH block). This simulation does not focus on

the continuous-time results which are discussed in the referred papers.

The parameters and the constraints of the model used in the Simulink scheme are identified from

the physical system available at the LGEP.

A problem that arises, when implementing the proposed controllers, is due to the fact that the Rl

(load resistor) is unknown. Previous studies [Ghanes et al. 2011],[Tiefensee et al. 2010a] showed that

when considering a constant value for the load resistance, when increasing the load, during the

experiment’s run-time, the SCs voltage is not regulated to its reference value. In such a situation, SCs
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provide more energy that is needed, during the power transition, and SCs leading is uncertain. But

on the other hand the regulation of the vb is achieved.

To solve this situation, two solutions have been proposed: the first one is based on the estimation

of the Rl and the second one adds an integrator to the command u1 = i∗fc.

the case of charge estimator In this paragraph a load estimator is described and repre-

sents a way to deal with this problem. The impedance (Yk = 1/Rlk) of the load is estimated as follows:

Yk = e−KRlδYk−1 + (1− e−KRlδ)
ilk
vbk

(10.25)

where the tuning parameter KRl imposes the speed of the convergence of the estimator. The sampling

period δ is used for the digital implementation. To guarantee that the fuel cell current has a slow vari-

ation one imposes constraints on the KRl parameter. In the following simulations, the value selected

for KRl gives a slow time response, so that the FC current reference react smoothly.

the case of the integral action When designing the control laws, some physical elements

have not been taken into account (for example the fuel cell voltage dependency on the temperature). In

practice, such elements, and other non-modeled dynamics can influence the controllers’ performance.

So a integral action needs to be added to the passivity controller in order to ensure zero SCs voltage

error at steady state. The extended controller is given next:

u̇i = γṽSC; γ > 0 (10.26)

uc1(t) =
vB(t)

vFC
(
vB
Rl

+ (K1
vSC(t)

vB(t)
−K2)ṽB(t) −K1ṽSC(t) +Cui) (10.27)

uc2(t) = −K1ṽB(t) (10.28)

The tunning parameter γ is chosen so that the evolution of the FC current be smooth.

The tunning parameters of the controller can be adequately chosen by means of simulations (try

and error loops) since theoretical analysis is too tedious to be carried out.

The next simulations are considered for the power load as given in Figure 10.4. The Rl value is

adjusted continuously by using the estimator recalled in paragraph 10.4.1.1.

In Figure 10.5 are depicted the evolution of the specific variables of the FC/SCs system. The con-

troller gains are chosen as follows: K1 = 4 et K2 = K1
vSC
vB

, according to the imposed objectives.

The regulation of the bus and SC’s tensions are achieved with zero steady state error.
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Figure 10.4: The load profile used

For small sampling periods (up to 1 ms) the approximated and the emulated controllers have similar

evolutions. The results are depicted for a bigger δ when the differences can be noticed.

In red color the continuous-time evolution is plotted , the emulated controller with blue and the

approximated controller with green. It can be noticed that the digital versions offer larger overshoots

than the ones obtained for the continuous-time evolution. This degraded performance is most visible

for the emulated controller when the overshoot of vB is 0.2V larger than the one in continuous-time

and respectively for iSC with 1.2A. For the FC current and for SC tension the solutions are similar

with the continuous ones. The approximated controller offers a good improvement especially for

the SCs current (a diminution of the currents amplitude with 0.3A). The tensions evolutions are not

significantly improved, by this controller.

10.4.1.2 Experimental Results

The digital controllers have been experimentally validated on a hybrid test benchmark composed

of a 46A/1200W Nexa Ballard fuel cell. The transient auxiliary source consists of two Maxwell SC

modules associated in series: each module consists of six individual elements interconnected in series

[2.7V, 1500F]. This SCs device is interconnected to the DC bus by means of a built in chopper, with

standard MOS modules and a switching frequency of the PWM set to 20kHz.

The hybrid power source is connected to a programmable electronic load (Hcherl and Hackl, model

ZS1806), which has a rated power of 1800W (Imax=150A/Vmax=60V). This load emulates vehicle

power consumption, and is directly monitored by the dSPACE DS1103 real-time board. The inner
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Figure 10.5: Simulation results for IDA-PBC, δ = 5ms
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currents , which are generated in function of the duty cycle value, are adapted by means of two digital

PI controllers updated at 20kHz. In the appendix, Chapter 15, in Table 15.1 there are summarized the

electric characteristics of the FC/SCs system.

In the following figures, 3 controllers are plotted:

• with red there is depicted the emulated controller with δ = 500µs; It is referred to as ’continuous’

controller in the referred papers;

• with blue there is depicted the emulated controller with δ = 1 or 3 ms.

• with green there is depicted the approximated controller with δ = 1 or 3 ms.

The reference DC bus voltage is set equal to 50V, and the load current varies between 0 and 15A. Note

that the DC bus and SC voltages are well regulated in spite of the very fast dynamics of power demand.

Each time the power load varies, the SC current is positive (respectively negative) during an increase

(respectively decrease) of the power load. In such situation, the SC voltage continuously fluctuates

around its constant reference value V∗SC set to 21V. Compared to the results obtained in simulation,

here we can note that the SC voltage is not equal to its reference at steady state. This is due to the FC

converter losses. The gain of the controllers are taken as follows: K1 = 10 and K2 = K1
vSC
vB

.

In Figure 10.6 the results are obtained when using an estimator for Rl with KRl = 0.5 for a sampling

rate equal to 1ms. In Figure 10.8 the results depicted are obtained under the same conditions, but for

a sampling period equal to 3ms. In Figures 10.7 respectively 10.9 there are plotted the same variables,

but when adding an integrator to the controller (in the place of the estimator).

In each figure, there are given the evolutions of the load current (a), the tension of the SCs (b),

the load impedance (c), the tension of the bus (d), the fuel cell tension (e) and the currents of fuel

cell and of the SCs (f). The same conclusions drawn in the simulation case can also be stated for the

experimental results: the emulated controller offers a degradation of the continuous-time controller,

in terms of bigger amplitudes of the principal variables: bus voltage and SCs current. Secondly, the

first order approximated controller offers small contraction of these amplitudes especially for the

SCs current. For the bus voltage, this controller does not give improvements. These aspects can be

observed for both cases, either by using an estimation for Rl or either by using an integral action. For

δ = 3ms it can be observed that the bus tension is degraded when using the first order controller. This

can be explained by the fact that, in this case, the controller amplifies the noise that is captured from

the measures (due to the fact that this controller has a derivative component).

Also it must be taken into account the fact that the performances of the sampled-data controllers

depends on the gains of the continuous-time controller (as shown in the first part of the thesis). In this

setting, the gains which are chosen are not too large, in order to induce a slow variation for iFC, and
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Figure 10.6: Experimental results for IDA-PBC, δ = 1ms, with integral action
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Figure 10.7: Experimental results for IDA-PBC, δ = 1ms, with estimator
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Figure 10.8: Experimental results for IDA-PBC, δ = 3ms, with estimator

[ November 28, 2012 at 8:46 – classicthesis final version ]



188 fuel cell/super-capacitor - energetic management

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

time (s)

Il
(A

)

Il δ=0.003s; IDA-PBC

 

 
Ilc
Ild0
Ild1

(a) Il

0 50 100
20.5

21

21.5

22

time (s)

V
sc

(V
)

Vsc δ=0.003s; IDA-PBC

 

 
V scc
V scd0
V scd1

(b) VSC

0 50 100
0

0.05

0.1

0.15

0.2

0.25

0.3

time (s)

1/
R

L
(Ω
−1

)

Load impedance , δ=0.003s; IDA-PBC

 

 
Ref
Zc
Zd0
Zd1

(c) Load Impedance

0 50 100
46

47

48

49

50

51

52

53

54

time (s)

V
bu

s
(V

)

Vbus f δ=0.003s; IDA-PBC

 

 
V busc
V busd0
V busd1

(d) Vbus

0 50 100
25

30

35

40

45

time (s)

V
fc

(V
)

Vfc δ=0.003s; IDA-PBC

 

 
V fcc
V fcd0
V fcd1

(e) Vfc

0 20 40 60 80 100 120
0

10

20

30

i f
c

(A
)

u1 ; δ=0.003s; IDA-PBC

 

 
u1c
u1d0
u1d1

0 20 40 60 80 100 120

−20

0

20
u2 ; δ=0.003s; IDA-PBC

temps (s)

i s
c

(A
)

 

 
u2c
u2d0
u2d1

(f) Ifc ; Isc

Figure 10.9: Experimental results for IDA-PBC, δ = 3ms, with estimator
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this permits having a certain maximum sampling period of the order of milliseconds. If the gain of

this controller is larger, then the maximum sampling period for implementing the digital controllers

is reducing (below 1 millisecond).

10.4.2 Singular Perturbation design

In this context the design of the digital controller is accomplished by making reference to the con-

cept already detailed in the previous chapters - the input/Lyapunov matching. This means that the

designed controller will preserve the stabilization properties established by the continuous-time con-

troller.

By preserving the same notations as in Section 10.4.1, the aim of the digital controller is to reproduce

the evolution of the continuous-time Lyapunov function, at each sampling instant, i.e. the digital

controller uk must satisfy:

V(xk+1) − V(xk) =

∫ (k+1)δ
kδ

V̇(xc(τ))dτ. (10.29)

In the same manner, the term V(xk+1) can be computed from V(xk) as:

V(xk+1) = e
δ(f(.)+g(.)uk)V(x)|t=kδ (10.30)

where f :=
[
−x3C , 0,−Rlx3+x1Ll

]T
is the vector field of the autonomous evolution of the system and

g :=

 vFC
x1C

x2
x1C

0 − 1
CSC

 the one corresponding to the forced evolution.

The digital controller uk is computed from equation (10.29) and the solution is described by a series

in terms of δ around the emulated controller ud0 = uc|t=kδ as follows uk = ud0 +
∑
i>1

δ
(i+1)!udi.

The exact solution corresponds to the asymptotic development. For practical reasons approximated

solutions of order 1 or 2 are used with satisfactory performance. The solution that is proposed, is

given for a 1st order approximation with an error O(δ2) :

uδk1 =

(
vB(t)

vFC
Ilm −

CSC
Tlent

ṽsc(t)

)
|t=kδ +

δ

2
ud11 (10.31)

uδk2 =
vB(t)

vSC(t)

[
−
CṽB(t)

Trapide
−
vFC
vB(t)

(vB(t)
vFC

Ilm −
CSC
Tlent

ṽSC(t)
)
+ IL(t)

]
|t=kδ +

δ

2
ud21 (10.32)

with

ud11 =

(
u2
Tlent

−
Ilm
vFC

ṽB(t)

Trapide

)
|t=kδ

ud21 = u2(
u2

vSC(t)CSC
−

ṽB
vB(t)Trapide

)|t=kδ +

+
vB(t)

vSC(t)

(
−

ṽB(t)

Trapide

(vFC(t)u1(t)
v2B(t)

−
C

Trapide

)
−
vFCud11
vB(t)

)
|t=kδ
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The proposed solution assures the equality (10.29) with an error in O(δ2). This means that the

control solution reproduces the stabilizing properties of the continuous-time scheme with an error in

O(δ2).

10.4.2.1 Simulation Results

The same setup used for the simulations of the IDA-PBC controllers (as in section 10.4.1.1) is used in

the case of SP controllers. The load demanded is pictured in Figure 10.4, and the time parameters of

the controllers are Trapide = 0.05 and Tlent = 2, chosen in such a way that the dynamics of FC/SCs

system be close to the one obtained when applying the IDA-PBC strategy.

The evolutions of the principal variables are plotted in Figure 10.10.

The results show that the sampling reduces the performance of the continuous-time controller. The

first order controller, designed to correct this situation, brings in this case an important improvement

especially for the bus voltage regulation. The improvements for the SCs current are not significant. It

is interesting to note that this approach is complementary in some sense with to IDA-PBC. The first

order controller does not contribute to reducing the peaks of the iSC (as the IDA-PBC), but notably

reduces the peaks of the vB.

10.5 conclusions

In this chapter the problem of energy management of a FC/SCs system was tackled in the con-

text of sampled-data controllers. The sampled-data design, proposed here, is based on the objective

of preserving the continuous-time properties under sampling. Hence, the sampled-data controllers

are designed starting from the continuous-time solutions previously proposed in the literature. The

performances of the sampled-data controllers are compared with the emulation solution (which is

implemented with ZOH devices). For the IDA-PBC version, experimental results were obtained and

analyzed in this chapter. For the SP version the experimental evaluation is planned.

The conclusions can be summarized as follows:

• when increasing δ or the gain of the controller, the performance of the emulated controller is

reducing;

• the first order controller approximation has proven to offer important amelioration compared

to the emulated controller, in terms of reducing the peaks of the principal variables : vB (in the

case of SP) and iSC in the case of IDA-PBC;
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Figure 10.10: Simulation results for IDA-PBC, δ = 5ms
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• the experimental results are consistent with the ones obtained in simulations; close attention

should be paid to the noise measurement;

• the experimental setup permits, by means of the acquisition card, lower sampling periods, for

which the emulated solutions are satisfactory;

• the a first order controller sensitivity to the noise measurements was noticed, especially when

the sampling period increases;

• the sampled-data controller performances also depends on the settings made in continuous-

time; a fast controller designed in continuous-time, will reduce the performance of the digital

controllers;

The work is still in progress, in the direction of finding new digital design for such systems. The idea

is to improve the performance of the proposed controllers by taking into account the following facts:

• the multiple time-scale characteristic of the FC/SCs system;

• the presence of the noise in the measures;

• the fact that the converters are not ideal and the energetic loss is affecting the VSC regulation;
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Q U A N T I Z AT I O N S E F F E C T S O N D I G I TA L B A C K S T E P P I N G C O N T R O L

This chapter deals with the problem of evaluating the effects of quantization on a nonlinear

sampled-data control system. The control strategy relies on the digital backstepping design

proposed in Chapter 4. The control solution comprises heavily nonlinear expressions and

to study the effects of quantizations is mandatory. This analysis captures the contributions

of the controllers gain, of the sampling period, of the degree of the controllers approxima-

tions and of the numerical precision in the performance of the sampled-data controller. It

represents a first attempt and opens a series of discussions for further analysis.

The chapter is organized as follows: section 11.1 introduces the problem of quantization in

digital control systems; an analysis of quantization errors based on the literature survey for

linear and nonlinear systems is given in Section 11.2; in Section 11.3 an academic example

is discussed; simulations results are given in Section 11.3.1. Part of the results reported

here are included in the paper [S2] from the author’s contribution list (page ix).

11.1 numerical issues in digital control

When implementing a digital controller on a physical device, the finite number representation is a

source of errors that may be critical. The finite representation determines that for each real number a

rational number (with a finite number of bits) to be assigned. The number of bits that a device offers

for the numerical representation is called precision and the operation of assigning the approximated

values is called quantization. In digital control structures, micro-controllers or microprocessors with 8,

16, 32 or 64 bits precision are usually met. In a software program there can be defined the floating

numbers with a single or double precision (8 or 16 bits). On other platforms, especially scientific, the

single and double precisions are implemented on 16 respectively 32 bits.

The sources of the quantization errors are mainly the consequence of three factors:

193
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• the analog-to-digital (A/D) converter - where the continuous-time values of the process mea-

sures are quantized. The quantization error is lower than 2−C, with C the precision of the

converter;

• the controller device - where the coefficients of the control law expressions have also to be

quantized;

• when performing the arithmetic operations on quantized signals and coefficients.

Related to the arithmetic used for implementing these digital control laws, the most used are the

binary fixed-point and floating-point arithmetic. Other representations are possible such as logarithmic

or residue representations [Hanselmann 1987]. The fixed-point representations, widely adopted in the

case of FPGA devices and in some cases of micro-controllers, allow a fixed range of numbers but have

the advantage that the quantization errors are introduced only in multiplications and not in addition

[Santina & Stubberud 2005].

For floating-point arithmetic, larger range of numbers are possible, with the same number of bits.

In this case the quantization errors can be generated both in addition and in multiplication.

Another important aspect is given by the way the numbers are quantized. There are two ways

to obtain the quantized number. The first option is to truncate the real number, ignoring the last

less significants bits - truncation error or round the number to the nearest numeric value that can be

represented on n bits -roundoff error. The maximum amplitude of the truncation error is double than

the amplitude of the roundoff error, and for this reason, the second solution is widely implemented

in the digital control. In our analysis the roundoff error will be considered further on.

The representation error can be defined as an absolute error : εa = |x− xq|, where x is the real

number and xq is the quantized number. For the case of the roundoff error one gets εa 6 q/2, where

q is the quantum or the resolution. Also the relative error can be defined as εr = εa/|x|.

11.2 analysis of quantization errors in digital control

A significant number of papers deal with the problem of evaluating the contributions of the quantiza-

tion errors in digital linear systems and fewer dedicate this problem to the nonlinear case. In the next

lines some conclusions about quantizations on linear controllers are drawn, based on the literature

survey.
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11.2.1 The linear system case

Earlier studies on quantizations of linear sampled-data systems are given in [Bertram 1958], [Tou 1959],

[Monroe 1962], [Widrow 1960] or [Slaughter 1964]. Based on these works, in [Franklin et al. 1998] there

are summarized 3 models that can be used to analyze the effects of the roundoff error. The first one,

which is due to Bertram [Bertram 1958] is known as the worst-case error bound. In this analysis, the

most pessimistic case is considered when the roundoff errors occur in a way to cause maximum harm.

The Bertram’s worst-case bound can be used to state that the output error will not grow beyond this

bound. Another conclusion that is depicted, is that if the linear system is stable then also the system

with quantization is also stable.

Another model used is the steady-state worst case proposed in [Slaughter 1964]. In this approach

the analysis is carried out when the system is in steady state. This approach evaluates how large the

errors of the steady-states are as a result of the roundoff. An interesting observation in this case is

that the output error bound is depending on q/2 multiplied by the static gain of the linear system.

However, the previous models give simpler forms but are often excessively pessimistic. A third

solution is to employ a stochastic analysis. The basic idea is that the quantization error is a signal that

can be modeled as a white random signal with a probability function uniformly distributed over the

range of quantization. Then by applying the stochastic procedure, some estimates of the errors on a

linear system can be expressed.

Another aspect studied, is the contribution of the quantization of the controller parameters in the

digital devices. The usual approach that can be used here for analyzing the effects of coefficient quan-

tization is referred to as the coefficient sensitivity analysis. The main idea is to compare the response

differences (called variations) of the ideal system with the one with quantized coefficients. The evalu-

ations of these responses becomes difficult for higher order linear controllers and the only solution is

the use of simulation tools.

In the last decade the interest for sampled-data systems with quantizers has been renewed due

to the success of networked control systems (see [Antsaklis & Baillieul 2004]). But all these works

still consider the linear time characterization of the plants. In this context, new solutions have been

proposed by employing quantizers with variable precision which are adapted accordingly to the

quantized measurements. In this way better stabilization properties can be achieved.

In the end of this paragraph there are summarized some results about quantization effects on linear

digital controllers.
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• The amount of the error introduced by quantization may depend on the choice of the sampling

rate (especially when discretizing continuous-time controllers) [Santina & Stubberud 2005],

[Franklin et al. 1998], on the type of the system, and on the complexity of the controller consid-

ered [Whidborne et al. 2006];

• Due to finite word length in the controller may appear limit cycles (sustained oscillations) even

in the absence of any applied input [Santina & Stubberud 2005]; These limit cycles exist in fixed-

point digital controllers but can be ignored in floating-point architectures1. To alleviate this effect

a solution is to add to the input a low amplitude oscillation known as dither[Franklin et al. 1998].

11.2.2 The nonlinear case

When considering a nonlinear input-affine system with a nonlinear state-feedback controller it is clear

that most of the methods recalled for the linear case are not suitable to be used since the superposition

principle does not apply.

A qualitative work concerning the stability of nonlinear sampled-data systems with fixed quanti-

zations is conducted in [Hou et al. 1997] and for the multi-rate digital control in [Hu & Michel 1999].

Instead of the fact that the nonlinear model is a simpler version of the standard input-affine case and

also the fact that a linear controller is considered, this represents a first attempt concerning the sta-

bilization properties of such systems. The results obtained there state that if the linear version of the

sampled-data system, without quantization, is asymptotically stable then the nonlinear sampled-data

system with quantization is uniformly ultimately bounded. The bound of the solutions can be made

as small as desired by making the quantization size sufficiently small.

An idea to handle with the problem at hand is to consider that the quantizations act as a perturba-

tion on the measurements used in the controller computations. In this case we can refer to stochastic

analysis.

If one considers the case of a state-feedback controller, constant on time-intervals of length δ, then

the perturbed controller can be also expressed as a series expansion around the real state measure-

ments as:

u(xk + εk) = u(xk) + εkDu(x) +
1

2
εkHu(xk)ε

T
k + ... (11.1)

where Du(xk) =
[
∂u
∂x1
· · · ∂u∂xn

]
|t=kδ is the gradient of the u along the state directions, and Hu(x)

is the Hessian matrix of u. It is clear that when dealing with linear state feedback controllers the

1 It is shown in [Sandberg 1967] that under suitable conditions of the filter coefficients with floating point arithmetics the stability

can be ensured in the presence of round-off error, and thus rules out the occurance of limit-cycle response
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Du(xk) is a constant which amplifies the quantization error εk. In the case of nonlinear controllers

the series expression order (11.1) is equal to the highest power of the states and a discussion about the

quantization becomes an impossible task. As it is often the case in a nonlinear context, some analysis

can be done by means of Euler approximations, in this case the control absolute error in the presence of

quantization can be Euler type approximated as:

εu = |u(xk) − u(xk + εk)| = |εkDu(x)| (11.2)

It is clear that if one considers the quantization error as a perturbation, the difficult part is to es-

timate its bound since it depends on the state variables. In the case of perturbed nonlinear systems,

many results do exist for continuous or discrete-time systems which underlie on the level sets of suit-

able Lyapunov functions or in the case of sampling and hold devices, the robustness of the perturbed

controller is often analyzed with the help of the notion of input-to-state stability. When the perturba-

tion acts in the inputs measurements a general result is more tedious to be stated. A complete work

that handles this problem is [Ledyaeva & Sontag 1999]. Anyway these results have not been linked

with the quantizations errors due to the fact that in this case the perturbations bound also depends

on the state variable.

Other studies have been driven by the idea proposed by Liberzon in [Liberzon 2001] that to attained

the equilibrium point a reduction of the quantized error has to be employed. So he has proposed

adaptive quantizers and a control solution that comprises also an up-dating policy of the quantizer.

This quantizer can be applied only with discontinuous controllers, a continuous-time switching policy

is not attainable.

Related to the coefficient sensitivity a study has been performed for the backstepping type con-

trollers in [Pozo et al. 2008]. In this article the digital controller is designed by using a different method-

ology based on the adaptive approach. The important conclusion that is drawn there is that the design

parameter should be chosen according to the level of precision desired.

In the context of this work, the heavily nonlinear nature of the digital controller and the lack of

specific results in the literature make difficult any theoretical analysis of the effects of the quantiza-

tions. As the digital controllers are build to satisfy specific stability properties the aim is to estimate

the effects of the quantization on the stabilization. In the next sections this analysis is performed by

means of simulations tools. The following questions need to be clarified:

• in the presence of quantization errors, how the stabilitz is affected bz:

– the order of the approximation of the controller

– the gain of the controller
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– the sampling period

• is it possible that quantization drives the system to instability ?

11.3 academic example

Let us consider the 2-state system already considered in sections 4.2.1 and 4.5:

ẋ1 = x21 + x2 (11.3)

ẋ2 = u (11.4)

with the state feedback controller

u = −2(x1 + x2 + x1x2 + x
2
1 + x

3
1).

The expressions of the controllers for the single-rate and for multi-rate case are already defined in

section 4.5.

Let there be considered next, that the states measures x1, x2 are affected by a quantization error

ε1 respectively ε2, with the remark that these values may change at each sampling instants. By using

the estimates (11.2) then the error of the emulated controller uδ0k = ud0 under the assumptions that

K := Kφ = Ky and ε := ε1 = ε2, can be expressed as:

εuδ0k
= ε|(4K+ 2)x1 + 6x

2
1 + 2x2 + (K+ 1)2| (11.5)

Under the same conditions the first order controller uδ1k = ud0 +
δ
2ud1 has the error expression:

εuδ1k
= ε|(4K+ 2)x1 + 6x

2
1 + 2x2 + (K+ 1)2 +

δ

2
(4(K− 1)x2+ x21(12K− 4)

+ x1(10K
2 + 4K− 8x2 + 2) − 8x

3
1 + 2K

3 + 3K2 + 2K− 1)| (11.6)

It is clear that by increasing the order of the approximated controller the bound of the control error

depends on the powers of the controllers gains and also on the sampling periods. The question is how

the stabilization property is affected, i.e. relations (3.15) and (4.68) for the single-rate and multi-rate

case respectively, with p the order of the controller approximation, in presence of quantization. After

some computations the Lyapunov difference in the presence of quantization is given by

Vq(xk+1) − Vq(xk) 6 δα3(||xk||) + δ(u
q
k − uk)LgcV(xk) +Oq(δ

2) +O(δp) (11.7)

respectively for the multi-rate case:

V(zk+1,yk+1) − V(zk,yk) 6
1

2

(
− δ(ρW(|zk|) + ρy(|yk|) + ρV (|zk|, |yk|)) + δ(u

q
k − uk)LgcV(xk)

+ Oq(δ
2) +OW(δp+2) +Oy(δ

p+1) +OV (δ
p+1)

)
(11.8)
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It is thus clear that the stabilizing performance can be affected by the presence of the quantization

errors. The previous observations suggest that in presence of quantizations, the expected stabilizing

property will refer to practical stability (see Section 2.1.1.1 and definition 26). This means that the

states ultimately enter a ball with a specific radius that could not be estimated. By increasing the

precision this ball can be reduced to lower radius.

11.3.1 Simulation results

As it was mentioned before, the theoretical methods do not easily give precise estimations of the

quantization effects on a sampled-data system. From the previous expansions it is not clear if by

increasing the order of the approximated controller the errors will increase and as consequence will

destabilize the system. Also, as it was pointed out in the referred papers, by increasing the gains of

the controller there will be introduced more errors into the system. This was clear the case for linear

systems, but in the non-linear case the quantization error is multiplied not only by the gains but also

by the state variables, which should converge to 0. For these reasons the aspects that were evaluated

by means of simulation are:

• the effects of increasing the gain of the controller K := Kφ = Ky;

• the effects of the sampling rate;

• the effects of increasing the order of the controller approximation;

All these effects are evaluated from the Lyapunov matching point of view, by using the same error

criteria as in Chapter 5, which count for all the absolute mismatches between the sampled-data and

the continuous-time evolutions of the Lyapunov function at each sampling instant, for a fixed time

length simulation.

sampling initial gains simulation Figure

period conditions time length labels

δ ∈ [0.01, . . . , 0.3] s x0 = [0.5 0.5] K ∈ [0.1, . . . , 10] tf = 10 s Figure 11.1,11.2,11.3

Table 11.1: Numerical values of the simulation parameters- Example 2 with quantization

The simulation parameters are given in Table 11.1. The quantization error has been introduced in

the simulation by considering that the state measures are quantized by rounding to a fixed point

representations having the word length 8 bits and the fraction length equal to 5 bits. In the controller

[ November 28, 2012 at 8:46 – classicthesis final version ]



200 quantizations effects on digital backstepping control

1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

0.25

0.3  

V err - BksEmlQ

K

 

δ
(s
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Verr Emulated

1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

0.25

0.3  

V err - BksSR1Q

K

 

δ
(s
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Verr BksSR1

1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

0.25

0.3  

V err - BksMR1Q

K

 

δ
(s
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) Verr BksMR1

1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

0.25

0.3  

V err - BksSR2Q

K

 

δ
(s
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) Verr BksSR2

1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

0.25

0.3  

V err - BksMR2Q

K

 

δ
(s
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(e) Verr BksMR2

Figure 11.1: Lyapunov matching error with quantized controller
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Figure 11.2: Lyapunov matching error difference between the ideal and quantized controller
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Figure 11.3: Lyapunov matching error difference between the ideal and quantized controller
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Case Criteria BksEml BksSR1 BksSR2 BksMR1 BksMR2

1 ErrM 519.02 948.59 840.54 1125.1 1080.5

1 Serr 7744 6577 10608 8352 11911

1 Rerr1 0.067 0.144 0.079 0.135 0.091

2 ErrM 586.90 997.07 879.01 1198.7 1104.3

2 Serr 7665 6348 10424 8166 11682

2 Rerr1 0.076 0.157 0.084 0.147 0.095

Table 11.2: Errors criteria

device the computations are performed with double and floating point precision. In this way the

study is performed in order to quantify only the effects of the quantization that is due to the A/D

converter. A second case study is made, by considering that some parameters of the controllers are

also quantized with the same precision - labeled “Case 2” in Table 11.2.

The simulation results, by considering only the converter’s quantization are illustrated in Fig-

ure 11.1. In Figure 11.1 there is evaluated the error criterion (5.1) for the given ranges for K and δ

in the presence of quantizations. For each controller tested : the emulated version “BksEml”, the first

and second order approximated controller “BksSR1” and “BksSR2”, respectively for the multi-rate ver-

sions “BksMR1” and “BksMR2”- the reduced errors levels (blue) mean that the stabilization property

is close to the one of the continuous-time. Increased values mean that stabilization is degraded. These

results show that the digital design, especially, the second order controller improves significantly the

stability performance that was obtained by means of the emulated controller. When increasing the

gain of the controller, the system’s response is faster and the maximum admissible sampling period

is reducing. From these simulations it is clear that the effects of quantization are not negligeable. The

same simulations have been conducted in the case of free quantizations in Section 4.5, Figure 4.6. To

show better the differences between these cases, in Figure 11.2 there are depicted the Lyapunov error

differences between the ideal and quantized scheme. Another interesting result is given in Figure 11.2

which offers some responses to the following questions:

i) Are there situations when the ideal control system is stable and the quantization destroys this

property ?

ii) Are there situations when the ideal controller is unstable but the quantization renders it stable ?
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The situations that answer to the first question are depicted in the indicated subfigures by the red

colored regions, and for the second question the blue colored regions. The analysis of these plots

indicates that these situations occur especially in border regions, where the sampling period or the

gains are at their maximum admissible values.

In Table 11.2 there are quantified the errors due to quantization by using the following formulas:

• ErrM :=
∑

|∆VSQ| - is the cumulative sum error of the Lyapunov ideal vs the quantized -

difference depicted in figure 11.2;

• Serr counts for the area of the surface Kδ;

• Rerr = ErrM/Serr is the relative error;

By analyzing these values (see Table 11.2) it can be observed that the emulated control offers the

slowest level of quantization errors. By increasing the order of the controller, which leads to large

expressions, this does not necessarily increase the quantization error level, as intuition suggests. In

fact, the simulations show that, the first order controller is more sensitive to quantizations while the

second-order controller has a better robustness. The multi-rate versions offer larger stability areas and

consequently the quantization cumulative error is increasing.

By analyzing the second case from Table 11.2 where the quantization errors on the controller co-

efficients are also taken into account, the levels of errors are greater. The second source of errors,

the quantization of the controller coefficients, amplifies the contribution given by the A/D converter

quantizations.

11.4 conclusions

In this study the quantizations effects have been highlighted and discussed on the digital backstepping

design that was proposed in Chapter 4. A survey on the actual realizations on this topic has been

done here and the conclusion is that in the case of nonlinear controllers theoretical results cannot

be provided to state precisely how the quantization can affect the stabilization of the sampled-data

controlled systems. A suggestion is to consider the quantization as a perturbation input to the system,

but the problem that remains to be solved is how to handle such a perturbation when the bounds

cannot be computed explicitly and also the model of the perturbation is difficult to be derived.

Complex and multiple simulations have been conducted to evaluate practically the influence of the

quantization on the control strategy proposed. The conclusions that can be drawn are:

[ November 28, 2012 at 8:46 – classicthesis final version ]



11.4 conclusions 205

• The simulations show that for small δ, the controllers are more sensitive to quantization errors

(which is coherent with the results from the linear case). This aspects is in favor of the controller

proposed in Chapter 4 which are developed for admitting larger sampling periods.

• The second conclusion concerns the sensibility of the higher order controllers (single or multi-

rate) to quantization errors. As intuition suggests, the computations of more complex control

expressions make the control solution more sensitive. However, as reported in Table 11.2 we

notice that the relative error Rerr1 computed for the second order controller (single or multi-

rate) is still admissible and comparable with the error obtained for the emulated case. It results

that the proposed controller perfom better with respect to stabilization and keep admissible

robustness with respect to quantization error.

• Some situations have been highlighted where the quantization can improve the stabilization

property or on the contrary can destroy it. This happens especially on border regions, where the

ideal controller enters instability.

• The simulations also show, when increasing the gain K of the controller, it does not necessarily

imply that the quantizations errors increase as it is for linear controllers.

For such complex systems it is clear that the means of simulations tools are of great importance in

establishing the proper values for the design parameters of the control laws. Other analysis that was

not done in this paper is the analysis of quantization when the controllers are implemented in fixed-

point representation, as is the case of FPGA controllers. In this case more degradation of the controller

performance is expected but in the same lines as pointed here. The ending remark is that the proposed

digital design is “robust” in the presence of quantizations errors that occur in the measurements of

the state variables or when considering coefficients quantizations.
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12.1 conclusions

The thesis brings important contributions in the field of sampled-data nonlinear systems. One of the

main objective of this work is to migrate the ’ideal’ controller solutions - designed in continuous-time

and with rigorous theory in the back - to practical implementations. The theoretical advancements,

that have been done in this thesis, have contributed to a series of practical implementations of these

strategies. The results obtained in these applications, showed that a suitable sampled-data design can

recover the performance of the ideal control structures proposed in the continuous-time domain, and

which were degraded through sampling. A vital role in designing such controllers is to understand

what is happening in the continuous-time behavior of the system, and how the nonlinear control strat-

egy employed can be suitably adapted in a sampled-data context. In this work, nonlinear strategies

such as backstepping, Lyapunov design, IDA-PBC, Singular Perturbation have been discussed and

adapted for sampled-data systems. In the same time, a concern was to develop symbolic algorithms

in order to assist in the automatic computation of such controllers and to make easier the real-time

implementation.

More specific conclusions are split in three parts, in the same way as the structure of the thesis. Each

part corresponds to a complementary direction on which this thesis brings important advancements.

12.1.1 Theoretical developments
The thesis has mainly discussed the performance of the input/output and input/Lyapunov matching

strategies in the context of backstepping stabilization method and passivity based control. The thesis

has paid close attention to the systems in strict-feedback form and consequently to the method of

backstepping design. In this direction two novel control strategies were designed and developed in

two versions: a single rate and a multi-rate approach. It has been shown that the methodologies are

superior, in terms of stabilizing properties, to the usual emulation of the continuous-time backstep-

209
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ping controllers. The multi-rate version, is proved to impose better stability performance compared

with the single-rate design. The multi-rate approach allowed us to extend the number of controlled

objectives to be imposed. The performance of such digital controllers have been compared with sim-

ilar procedures that were found in the literature. The multi-rate version has been proved to be the

best method in terms of stability performances, when increasing the gains of the controller and/or

the sampling period.

12.1.2 The SimNLSys Toolbox
Another important direction is represented by the CADC software application. This work is still in

progress and it relies especially on the symbolic tools provided by the Matlab environment. There

have been explained the benefits of using symbolic tools and also their limits when referring to the

SimNLSys application. Another aspect mentioned here is that the software designer for the control

systems encompasses symbolic and numerical algorithms, graphical and text/code manipulations.

The time of the computation of such solutions is not critical since it is an “off-line” task. However the

increased complexity of the controller expressions give some problems related to the computations

memory which is available.

This application is developed as a self contained software package which is intended to be provided

to all those members of the control community interested in digital control of nonlinear systems.

12.1.3 Applications
An important direction of the thesis is represented by the examples (academic or experimental) that

were employed to illustrate the performances of the proposed strategies. Let us consider each case.

The single-rate backstepping version is evaluated on the experimental plant of an electro-magnetic

suspension (available at Control Department of Supelec, Gif-sur-Yvette campus) in Chapter 7. The

simulation results were confirmed by the experimental tests. This case study represents a real example

where the digital design actually provides higher performance compared with the emulated versions.

An important fact that was also revealed is the controller stabilizing time value, that appears to be

improved by using the proposed sampled-data controller.

The second case study, uses the same criteria of input/Lyapunov matching in the design of a digital

version of an LgV controller, in Chapter 8. The context of this study is characterized by the passivity

properties and how these can be preserved under sampling. The experimental plant is available at the

University Politehnica Bucharest.

The case study presented in Chapter 9 concerns two distinct problems. One is about a direct digital

design, when a finite discrete-time representation of the system exists. And the other one, concerns
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the problems involving communications delays. In this study a stabilizing controller was proposed,

and also a state predictor was developed in order to handle with the delays.

The fourth case study (Chapter 10) concerns the electric management of a fuel cell and supercapac-

itors system with direct applications in the automotive industry. The sampled-data designs proposed,

starting from two different nonlinear continuous-time strategies, bring specific improvements. This

study is performed in the frame of the project PEPS "Automatique" - GESE - Gestion Echantillonnée

des Systèmes Energétiques, project supported by the CNRS-INSIS institute.

The last case study is dedicated to the study of quantization effects in sampled-data systems. Com-

plex simulations were performed, for both the digital designs proposed in Chapter 4, to evaluate how

the stabilization is preserved. The stability is affected by quantizations with a reduced error level

which is depending on the size of the quantization error.

All the control expression computations, provided in these case studies, were possible by means of

the SimNLSys application.

general conclusion An important conclusion related to the sampled-data controller design

here proposed is the following: The approximated digital controller, designed under the criteria of input/Lya-

punov matching, offers theoretically an asymptotic stabilization of the nonlinear dynamics of the concerned

system, and a practical stabilization when it is implemented on real systems. This design allows to increase (un-

der some conditions) the gains of the controllers and also the amplitude of the sampling period, over the limits

obtained for an emulated controller. When increasing the order of the approximated controller better performance

can be expected, but the drawback is that the complexity of the controller expressions increases exponentially

making real implementation more difficult.

In spite of the fact that a smaller value for δ gives satisfactory results for the emulated control, there

are situations when this value could not be acceptable for the hardware equipment (as in the case of

the magnetic suspension). In our case, although the sampling periods are small, these are sufficiently

large to allow all the controls computation and the communications with the plant.
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12.2 future work

The future work concerns the implementation and evaluation of new digital strategies on certain

experimental plants.

The multi-rate version of the backstepping controller, is planned to be tested soon. As the simulation

results showed high performance, one has the same expectations for the practical evaluations.

However, as backstepping strongly relies on passivity properties and passivation under state feed-

back, a direct digital scheme that exploits these properties could also be considered. The work is

progressing in this direction.

Three main directions for the future work can be launched.

12.2.1 Theoretical developments

The main idea is to continue the development of new digital designs issued from nonlinear continuous-

time strategies, in order to migrate the theoretical available results to a more practical use. In the same

time, rigorous analysis of the effects of the sampling length and of the design parameters is mandatory

in order to provide a clear performance characterization of a sampled-data controller.

further sampled-data designs for strict-feedback systems Based on the digital de-

signs proposed for the strict-feedback systems there are some ideas that can offer new digital solutions.

Some ideas involve:

• developpements of specific criteria to allow a better qualitative performance analysis of the

sampled-data controllers in conjunction with the sampling period, convergence speed, quanti-

zation errors or perturbations.

• a new sampled-data design based on semiglobal continuous-time designs such as: semiglobal

backstepping or high gain control. These solutions are not so restrictive as the backstepping

solution and can be used when one considers the case of multiple cascade connections. These

procedures can lead to simpler expressions of the continuous-time controller and hence of the

digital controller’s terms.

• other sampled-data solution which can be based on modified Lyapunov function under digital

feedback instead of reproducing the continuous time Lyapunov evolution.
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passivity and optimality As direct and inverse optimal control strategies also rely on passiv-

ity properties, some extensions can also be done in this context. A first attempt is discussed in papers

[Monaco & Normand-Cyrot 2012] and [Tanasa et al. 2012]. The sampled-data solution discussed aims

to preserve the optimal stabilizing properties with the same V and with a modified cost. An idea that

has to be investigated is how to modify the Lyapunov function V under sampling in order to obtain

better stabilizing reproduction of the continuous-time case.

single perturbation theory The author also considers that interesting solutions can be

proposed for problems involving singularly perturbed systems. This type of systems is characterized

by multiple time-scales, and a multi-rate controller strategy seems to be the most suitable way for

this context. The solutions already obtained for the dynamics of a strict-feedback systems should be

adapted to the new context. A first practical application is the digital energy management of a fuel

cell system [Hilairet et al. 2012].

delay and observer design Another problem that is important for practical implementations

is the need of observer schemes. As the controller solutions are based on the state measurements, suit-

able observers should be designed. Further work should investigate how different observer designs

can ameliorate or not the stabilizing properties of the digital solutions considered. A first attempt has

been done for systems with delays, where states predictor have been computed when considering the

particular case of a feed-forward system [Monaco et al. 2012].

12.2.2 Software development

In the same time with the theoretical advancements, new modules of the SimNLSys CADC soft-

ware can be implemented. For example, making reference to the passivity concepts introduced in

[Monaco et al. 2011] certain strategies proposed in [Tiefensee et al. 2010a] can be added to the toolbox.

Another concern should be the improvement of the symbolic algorithms by using new available

techniques regarding the expressions simplifiers (for example for radical terms). Also an efficient

compromise mechanism between the speed of computation and expression simplification should be

proposed. To reduce the time of computation, a new solution may consist in parallelizing the existing

algorithms.

Related to simulation tools, specific modules have to be considered to for evaluating ’off-line’ the

performance if the sampled-data controller computed.
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Another objective is to adapt the software to a wider use. In this case, improving the conviviality of

the interface is required. Another concern from the point of view of the costs should be the migration

to a free software development tool such as Scilab.

12.2.3 Applications

The new digital designs that are expected to be proposed, and also the multi-rate backstepping version

(already proposed in this work) are expected to be also evaluated on practical setups. For example

the multi-rate backstepping strategy can easily be tested on systems such as the magnetic pendulum

or coupled-tanks, already studied in this thesis.

The energetic management of the fuel cell system is open for many opportunities. A new digital

design that can be implemented makes reference to the multiple scale-time problem. It is expected

that a multi-rate solution should be employed either on the reduced model (3 state model), or on the

complete model (5 state model). Maybe the solution proposed here will also solve the problem of the

singular perturbation theory under a sampled-data context. Other problems that can be taken into

account are the compensation of the electrical losses of the converters and the presence of the noise

in the measures.

There is an important number of actual control problems that can be addressed in a sampled-

data context. Actual popular topics are addressing problems dealing with communication delays,

energetic management, optimal and passivity based control and others. The topics proposed in this

thesis represent a good start to handle such problems.
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M I M O C O M P U TAT I O N S U S E D I N C H A P T E R 3

The first Lie derivatives terms, that appear in the computation of a second order approximated con-

troller, are computed as follows,

LfV̄ =


LfV1

...

LfVp

 ∈ R
p×1 LḡV̄ =



Lg1V1 Lg2V1 · · · LgmV1

Lg1V2 Lg2V2 · · · LgmV2

...
...

. . .
...

Lg1Vp Lg2Vp · · · LgmVp


∈ Rp×m

L2f V̄ =


L2fV1

...

L2fVp

 ∈ R
p×1

LḡLfV̄ =



Lg1LfV1 Lg2LfV1 · · · LgmLfV1

Lg1LfV2 Lg2LfV2 · · · LgmLfV2

...
...

. . .
...

Lg1LfVp Lg2LfVp · · · LgmLfVp


∈ Rp×m

LfLḡV̄ =



LfLg1V1 LfLg2V1 · · · LfLgmV1

LfLg1V2 LfLg2V2 · · · LfLgmV2

...
...

. . .
...

LfLg1Vp LfLg2Vp · · · LfLgmVp


∈ Rp×m
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218 mimo computations used in chapter 3

L2ḡV̄ =





L2g1V1 · · · Lg1LgmV1

L2g1V2 · · · Lg1LgmV2

...
. . .

...

L2g1Vp · · · Lg1LgmVp


· · ·



LgmLg1V1 · · · L2gmV1

LgmLg1V2 · · · L2gmV2

...
. . .

...

LgmLg1Vp · · · L2gmVp




∈ Rp×m2

or L2ḡV̄ =



Lg1LgiV1 · · · LgmLgiV1

Lg1LgiV2 · · · LgmLgiV2

...
. . .

...

Lg1LgiVp · · · LgmLgiVp


∈ Rl×m2

where LgjLgiVk = [LgjLg1Vk · · ·LgjLgmVk] is a structure with m vectors, for ∀j ∈ [1,m] and ∀k ∈ [1, l]

Now it is necessary to introduce the ’�’ product that will be useful in the computation of the

sampled-data control.

Definition 53. Given M ∈ R(l,m2) with following representation,

M =



Mi11 · · · Mi1m

Mi21 · · · Mi2m

...
. . .

...

Mip1 · · · Mipm


∈ Rl×m2 (13.1)

where Mijk = [Mjk1Mjk2 · · ·Mjkm] for ∀j ∈ [1,m] and ∀k ∈ [1, l] and vector v ∈ Rm, then the product

M� v is equal with:

M� v =



Mi11v · · · Mi1mv

Mi21v · · · Mi2mv

...
. . .

...

Mip1v · · · Mipmv


∈ Rl×m (13.2)
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S I N G L E A N D M U LT I - R AT E C O N T R O L L E R T E R M S C O M P U TAT I O N S

14.1 single-rate controller design

The controller is designed such that next equality holds for every δ

V(xk+1) − V(xk) =

∫ (k+1)δ
kδ

V̇(xc(τ))dτ. (14.1)

where

xk+1 = Fδ(xk,uk) = e(fc+ukgc)Id (14.2)

with Id as the identity function. Starting from this expansion one can compute the next Lyapunov

difference as follows

V(xk+1) − V(xk) = δ(Lfc + ukLgc)V(x) +
δ2

2!
δ(Lfc + ukLgc)

2V(x) +O(δ3)|t=kδ (14.3)

The same expansion is performed for the continuous-time evolution of V , one gets

V(xc(k+ 1δ)) =
(
1+ δ(Lfc + ucLgc) +

δ2

2!

(
(Lfc + ucLgc)

2 + u̇cLgc

)
+

δ3

3!

(
(Lfc + ucLgc)

3 + 2u̇c(Lfc + ucLgc)Lgc + u̇cLgc(Lfc + ucLgc) + ücLgc

)
+ · · ·

)
V |xc(kδ) (14.4)

By imposing the controller expression as

uk = ud0 +
δ

2
ud1 +

δ2

2!
ud2 + ... (14.5)
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220 single and multi-rate controller terms computations

To compute the terms of the controller (14.5), then by replacing uk in (14.3) with (14.5), and by

imposing the equality V(xc((k+ 1)δ)) = V(xk+1) one gets:

ud0(xk) = uc|xk (14.6)

ud1(xk) = u̇c|xk (14.7)

ud2(xk) = üc +
ud1
2
ad[fc,gc]V(LgV)

−1|xk . (14.8)

ud3(xk) =
...
uc +

üc

LgV
ad[f,g]V |xk

+
u̇c

LgV
(−ad2fg+ ucadfgLg + 2L

2
fLg − 3LfLgLf)V |xk

−
u̇c

LgV
((LfLg + LgLf + 2ucL

2
g)Vadfg)V |xk . (14.9)
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14.2 multi-rate of controller terms computations 221

14.2 multi-rate of controller terms computations

Next there are provided the computations for the 2-rate controller. Let us start with the first matching

condition imposed on V , previously given in (14.1), with the difference that

xk+1 = Fδ(xk,u1k,u2k) = e
BCH2

(
δ
2 (fc+u1kgc), δ2 (fc+u2kgc)

)
(14.10)

where BCH2 is the 2nd order Baker-Campbell Hausdorf exponent. Let us compute first the Lyapunov

V at instant (k+ 1)δ starting from the expansion (14.10).

V(xk+1) = e
δ
2 (fc+u1kgc) ◦ e δ2 (fc+u2kgc)V |xk (14.11)

V(xk+1) =

(
1+

δ

2
(Lfc + u1kLgc) +

δ2

8
(Lfc + u1kLgc)

2 + · · ·
)

◦
(
1+

δ

2
(Lfc + u2kLgc) +

δ2

8
(Lfc + u2kLgc)

2 + · · ·
)
V |xk

V(xk+1) =
(
1+

δ

2
(2Lfc + (u1k + u2k)Lgc) +

δ2

4 · 2!
(
4L2fc + (2u1ku2k + u

2
1k + u

2
2k)L

2
gc

+ (u1k + 3u2k)LfcLgc + (u2k + 3u1k)LgcLfc
))
V |xk +

δ3

23 · 3!

(
(Lfc + u1kLgc)

3

+ (Lfc + u2kLgc)
3 + 3

(
(Lfc + u1kLgc)(Lfc + u2kLgc)

2

+ (Lfc + u1kLgc)
2(Lfc + u2kLgc)

))
V |xk + · · ·

Now the series expansions of u1k and u2k, are given by:

u1k = ud10 +
δ

2 · 2!
ud11 +

δ2

4 · 3!
ud12 (14.12)

u2k = ud20 +
δ

2 · 2!
ud21 +

δ2

4 · 3!
ud22 (14.13)

By replacing in (14.11), then:

V(xk+1) =
(
1+

δ

2
(2Lfc + (ud10 + ud20)Lgc)

+
δ2

4 · 2!
(
4L2fc + (2ud10ud20 + u

2
d10 + u

2
d20)L

2
gc + (ud10 + 3ud20)LfcLgc

+ (ud20 + 3ud10)LgcLfc + (ud11 + ud21)Lgc
)
+

δ3

23 · 3!

[
(Lfc + ud10Lgc)

3

+ (Lfc + ud20Lgc)
3 + 3

(
(Lfc + ud10Lgc)(Lfc + ud20Lgc)

2

+ (Lfc + ud10Lgc)
2(Lfc + ud20Lgc)

)
+
3

2

(
(ud11 + 3ud21)LfcLgc + (ud21

+ 3ud11)LgcLfc
)
+ 3(ud10ud21 + ud11ud20)L

2
gc + (ud21 + ud22)Lgc

]
+ · · ·

)
V |xk(14.14)
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222 single and multi-rate controller terms computations

Now the expansion for the continuous-time evolution V(xc((k+ 1)δ)) is given in (14.4). The condition

for finding the controller components is now: V(xk+1) = V(xc((k+ 1)δ)), for all δ. Then it results,

ud10 + ud20 = 2uc

ud11 + ud21 = 4u̇c

ud12 + ud22 = 8üc +
[
u̇c(10LfcLgc + 2LgcLfc + 12ucL

2
gc) − 3ud21LfcLgc

− 3ud11LgcLfc

]
V/LgcV (14.15)

The same computations need to be done for the second objective:

W(xk+1) −W(xk) =

∫ (k+1)δ
kδ

Ẇ(xc(τ)dτ). (14.16)

By looking to equations (14.14),(14.4) and taking into account that LigcW = 0, for i > 1 and LgcLfcW 6=

0, then:

W(xk+1) =
(
1+

δ

2
[2Lfc ] +

δ2

4 · 2!

[
4L2fc + (ud20 + 3ud10)LgcLfc

]
+

δ3

23 · 3!

[
(· · · )︸ ︷︷ ︸

≡(Lfc+ucLgc)3

+
3

2
((ud21 + 3ud11)LgcLfc)

]
+

δ4

24 · 4!

[
(· · · )︸ ︷︷ ︸

≡(Lfc+ucLgc)4

+2
(
ud11(3LgcL

2
fc

+ 2LfcLgcLfc)

+ ud21(LgcL
2
fc

+ 2LfcLgcLfc) + (ud10ud21 + ud11ud20)L
2
gcLfc

+ (ud22 + 3ud12)LgcLfc

)]
· · ·
)
W|xk (14.17)

Now the expansion for W(xc((k+ 1)δ)) for the continuous-time case is given by,

W(xc((k+ 1)δ)) =
(
1+ δLfc +

δ2

2!

(
L2fc + ucLgcLfc

)
+
δ3

3!

(
(Lfc + ucLgc)

3 + u̇cLgcLfc

)
+

δ4

4!

[
(Lfc + ucLgc)

4 + u̇c(LfcLgcLfc + LgcL
2
fc

+ 2ucL
2
gcLfc) + ücLgcLfc

]
· · ·
)
W|t=kδ

(14.18)

Now, by imposing again the condition : W(xk+1) =W(xc((k+ 1)δ)), for all δ. Then it results,

ud20 + 3ud10 = 4uc

ud21 + 3ud11 =
16

3
u̇c

ud22 + 3ud12 = 8üc +
[
8u̇c(LfcLgcLfc + LgcL

2
fc

+ 2ucL
2
gcLfc) − ud11(2LfcLgcLfc + 3LgcL

2
fc
)

− ud21(2LfcLgcLfc + L
2
gcLfc) − (ud11 + ud21)ucL

2
gcLfc

]
W/LgcLfcW (14.19)

The unique solution can be found by solving the linear system (14.15)-(14.19).
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E L E C T R I C A L A N D P H Y S I C A L PA R A M E T E R S O F T H E F C / S C S S Y S T E M

Table 15.1: Electric characteristics of the hybrid system.

Fuel cell parameters Value

Open circuit voltage E 45 V

Rated voltage 26 V

Rated current 46 A

Supercapacitors parameters

Capacitance 26 F

Rated voltage 30 V

Rated current 200 A

Optimal voltage (v∗sc) 21 V

Electric load parameters

Rated power 1800 W

Rated voltage 60 V

Rated current 150 A

Inductance and capacitie parameters

Lfc inductance 200 µH

Lsc inductance 100 µH

Rated current Lfc 100 A

Rated current Lsc 150 A

Capacities C 9 mF

Optimal DC bus voltage (v∗b) 50 V
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data nonlinear systems via discrete-time approximations. Syst. Control Letters, vol. 38, pages 259–

270, 1999.
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