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Chapter 1

Introduction

”...Where is the Life we have

lost in living?

Where is the wisdom we have

lost in knowledge?

Where is the knowledge we have

lost in information?...”

T. S. Eliot, The Rock (1934)

Communications and information technologies are ubiquitous in modern soci-

eties. Talking over mobile phones, exchanging photos and videos over the Internet

and researching online information, is currently a commonplace for most people.

To go even further, it is often said that communications and information tech-

nologies are also radically changing the idea or form of society itself[44]. It cannot

be doubted that a major part of this revolution came as a result of the dramatic

increase in transmitted information capacity brought by optical fibers[5].

The cornerstone for the development of fiber-optic transmission systems was

doubtless the advent of single-mode, low-loss, optical fibers[64],[65],[39],[83]. This ac-

complishment, accompanied by other critical advances in the domains of laser

technology, nonlinear optics, etc., has given birth to the emerging domain of

lightwave communications, roughly since the beginning of the 80’s. During the

following years, further technological innovations have increased even more the

dynamics of the field. A milestone in this direction has been the development
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of Erbium-Doped Fiber Amplifiers (EDFAs)[33]. EDFAs made possible the si-

multaneous amplification of several wavelengths, practically leading to an explo-

sion of the installed information capacity with the birth of Wavelength-Division

Multiplexing (WDM) systems. Moreover, the optical amplification itself has led

to the possibility of counteracting the fiber attenuation at the cost of added noise,

thus offering longer propagation distances without the need of signal regeneration.

In parallel, continuous technological advances in all sub-domains of lightwave

communications were continuously pushing up capacity from the order of some

Gb/s during the 80’s, up to tens of Tb/s in the past decade, following an almost

exponential growth[46]1. Apart from WDM, in this “quest for capacity growth”,

several other technological solutions contributed in a decisive manner, such as

the use of Forward-Error Correction (FEC) that can considerably increase the

system noise tolerance, Raman Amplification that can increase the Signal to

Noise Ratio (SNR) compared to EDFAs or Dispersion Management (DM) that

increases system tolerance against nonlinear effects. Nevertheless, it cannot be

doubted that a radical change in the field of optical communications came along

with the appearance of a modern coherent detection implementation, based on

fast electronics instead of an optical Phase Lock Loop (PLL)[107]. The main

advantage of coherent receivers, in general, is the possibility to use complex mod-

ulation schemes that can offer increased spectral efficiencies. Already some years

before the appearance of coherent detection, the principle of modulation and di-

rect demodulation of Quaternary Phase Shift Keying (QPSK) (which is maybe

the most typical example of a spectrally efficient modulation format) has been

demonstrated in optical communication systems by the authors of [55]. However,

yet another advantage of the electronics-based coherent detection was the poten-

tial use of a flexible, software-based and cost-effective signal equalization at the

received end, based on a programmable Digital Signal Processing (DSP) unit.

This has given the opportunity to easily take advantage of Polarization-Division

1Nevertheless, in the last few years, several investigations have been focusing on a forthcom-

ing “capacity crunch” (i.e. demand for installed capacity overcoming offer), as a consequence of

approaching to the fundamental capacity limits of single-mode fibers[34],[36]. One of the possi-

ble solutions to continue the increase of system capacity is the use of multi-mode or multi-core

fibers.
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Multiplexing (PDM) techniques, exploiting both orthogonal signal polarizations

of a single-mode fiber, since the separation of the two polarization was easily

achieved in the electronic domain. Furthermore, many linear impairments such

as chromatic dispersion or Polarization Mode Dispersion (PMD) were also shown

to be compensated in a cost-effective and flexible way, in the electronic domain.

In the context of this thesis which began in 2008, we have focused on the

problem of terrestrial long-haul or ultra-long haul communications, i.e. the prob-

lem of setting up a transmission link where the involved distances have an order

of magnitude of about 200 up to 900 km (long-haul) or 1000 up to 5000 km (ul-

tra long haul), where the propagated distance between two amplifiers is usually

about 100 km[40].

Furthermore, we have adopted an axis that was primarily based on two of the

aforementioned techniques, i.e. dispersion management and coherent detection,

investigating the nonlinear degradation of both signal quadratures (i.e. phase and

amplitude), instead of just amplitude, that was the case for most investigations

concerning On-Off Keying (OOK) modulation. While linear degradation caused

by chromatic dispersion can be easily compensated by a simple use of Dispersion

Compensating Fiberss (DCFs), the technique of dispersion management consists

of wisely distributing DCFs throughout the line, in order to reduce the degrada-

tion caused by nonlinear effects. However, the possibility of coherent receivers

to electronically compensate dispersion together with nonlinearity issues, encour-

aged tin some cases he abandoning of dispersion management schemes with in-line

dispersion compensation. Nevertheless, in many terrestrial networks, dispersion

management comes as a legacy of existing fiber infrastructure that we wish to

“upgrade”, by a simple adjustment of terminal devices. Alternatively, one may

consider dispersion management as a technique that may be used in addition or

in parallel to coherent receiver algorithms, as an extra force against nonlineari-

ties. As a result, throughout this manuscript we have adopted a vision where in

all cases we consider systems with a variable dispersion management that may

also benefit from a coherent receiver and a DSP unit.

More precisely, based on numerical simulations of principally single-channel

40 Gb/s QPSK transmission, we were motivated in addressing the following

6



questions: (1) understand the physics behind nonlinear propagation of QPSK-

modulated signals in the context of a variable dispersion management, compared

to OOK-modulated signals in the same context (2) understand the possible influ-

ence of adapted correction algorithms as a function of the different degradation

patterns resulting from different dispersion management schemes.

In chapter §2 we present general, introductory notions, of digital communi-

cations and classical fiber optics. As the extended use of digital communications

concepts into the domain of fiber-optics is relatively new (for example multi-level

modulation is relatively new to fiber optic communications, since the domain

was almost entirely dominated by OOK/direct detection schemes), we attempt

to clarify the theoretical basis of the two domains.

In chapter §3 we address the problem of using multi-level Pseudo-Random

Sequences (PRSs) in numerical simulations instead of adapted versions of Pseudo-

Random Binary Sequences (PRBSs), when dealing with multi-level modulation

formats. Since PRSs present a particular interest in various other areas of

telecommunications, their generation process and properties have been thor-

oughly studied since the 1950s. However, to the best of the author’s knowledge,

the information concerning the generation of multi-level PRSs as well as the exact

definition of their properties, is quite scattered within the existing bibliography.

For reasons of clarity, we first systematically review all the underlying theory be-

hind these special sequences, based on the theory of Finite Fields. Furthermore,

since non-PRSs are very commonly used for numerical simulations or laboratory

experiments, we also present simple numerical tools that can be used to char-

acterize these non-PRSs with respect to their “pseudo-random characteristics”.

Finally, we present numerical simulation results that support the necessity of

using Pseudo-Random Quaternary Sequences (PRQSs) in the context of QPSK

modulation, revealing in parallel, the special system configurations for which the

usage of PRQSs is most critical.

Finally, the section §4 is dedicated to the investigation of the nonlinear prop-

agation of QPSK-modulated signals, in the context of 40 Gb/s, single-channel

transmission, with a variable dispersion management. Our first goal was to ver-

ify the validity of laws, developed in the context of OOK modulated signals,

7



either for the optimization of the dispersion management[43], [67], or for the per-

formance assessment of systems with an optimized dispersion management[9]. In

all cases we have decoupled the transmission from the reception and our numeri-

cal results were mostly based on the complex signal statistics (of both amplitude

and phase), instead of a simple Bit Error Rate (BER). Furthermore, we have

thoroughly investigated the variation of these statistics for a variable dispersion

management, as well as the relative variation or correlation between the degra-

dation of the amplitude and phase quadratures, that results in constellations of

very different shapes. Finally, since the degradation of signals in a single-channel

transmission comes in part from Inter-Symbol Interference (ISI), we have em-

ployed a phenomenological analysis, focusing this time on the statistics of the

complex samples of isolated symbols, grouped with respect to the data carried

by their neighboring symbols. This approach elucidates the mechanism of ISI in

the context of QPSK-modulation with dispersion management and reveals the

possibilities of an adapted algorithm that can compensate for signal distortion.
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Chapter 2

Theoretical framework

Everything should be as simple

as it is, but not simpler.

Albert Einstein

In this chapter we review the fundamental theoretical background used through-

out this manuscript. For reasons of clarity, the chapter is divided in two sections.

In the first section, we review some fundamental mathematical concepts of digital

communications that apply to all communication systems, without any reference

to how these concepts are implemented in optics. Such concepts, such as complex

modulation formats, have been widely used in the past in a context of wireless

communications, but they have been only recently introduced in the fiber optics

domain. In the second section we review the physics and the special characteris-

tics of the optical fiber communication channel.

2.1 Concepts of Digital communications

The field of digital communications has been rapidly developing throughout the

last century, principally driven by the explosion of communication networks. At

the basis of all communication scenarios, lies the capacity of transmitting in-

formation between the different entities of a communication network, principally

using two modes of communication: transmitting information from one point (i.e.

node of a network, user, entity etc) to multiple other points, often referred to as

9



2.1 Concepts of Digital communications

broadcasting, or alternatively transmitting information from one point to another

(i.e. from one user to another or from one network node to another etc), often

referred to as point-to-point communication. In what follows we are exclusively

focusing on a point-to-point communication context.

2.1.1 Introduction

Point-to-point digital communication systems are often schematically represented

using the structured (or layered) view of figure 2.1, with arrows representing the

flow of information. The message to be transmitted, is initially converted into a

bit sequence by the input transducer. Next, this sequence is further transformed

into a new bit sequence by the source encoder that reduces the number of bits

compressing the data, while the channel encoder increases the number of bits,

adding a redundancy that allows for an error correction at the receiver side.

Finally, the modulator maps the bit stream into waveforms and the waveforms

are transmitted into the channel. At the receiver end, the inverse procedure is

followed, with waveforms being initially mapped back into bits, and bits passing

from the channel decoder, the source decoder and finally the output transducer,

eventually recovering the transmitted sequence, if the passage from the channel

was error free.

Input

transducer

Output

transducer

Source

encoder

Source

decoder

Channel

encoder

Channel

decoder

Digital

modulator

Digital

demodulator

Info! bits

bits

bits! less bits bits! more bits bits! waveforms
Tx

Rx

Channel

Figure 2.1: Coherent detection principle

With the structured representation we achieve the decomposition of the com-

munication problem into independent, or semi-independent sub-problems. In this
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2.1 Concepts of Digital communications

manuscript we only refer to problems associated with the last two layers, i.e. the

problem of digital modulation/demodulation and the problem of signal transmis-

sion in the channel, that is the fiber-optic channel in our case, supposing in all

cases that the bit sequence {Ibn} enters the digital modulator layer.

Depending on the choice of the modulation format, the bit sequence {Ibn}may

by alternatively represented as a symbol sequence {Isn}, by considering blocks

of k = log2M bits and substituting each block with its decimal equivalent, i.e.

decimal numbers in the range {0, 1, ...,M − 1}. Then, the symbol sequence {Isn}
is transformed into the waveform sequence {In} by mapping each symbol into one

of the M possible waveforms.

As it is the case in most communication channels, the single-mode fiber-optic

channel exhibits a limited bandwidth of about 0.4 µm (or 50 THz) around the

telecommunication wavelength 1.55 µm (or 193 THz)1. As a consequence, the

waveforms chosen to represent the data are in most cases band-limited, modulated

signals, i.e. signals with a limited frequency extent, centered around the carrier

frequency, with the carrier frequency residing inside the channel bandwidth.

2.1.2 Signal representation

Let g(t) denote a bandpass signal with a central frequency fc and a Fourier

transform

G(f) =

∫ +∞

−∞
g(t)e−j2πftdt (2.1)

or inversely

g(t) =

∫ +∞

−∞
G(f)ej2πftdf (2.2)

The signal g(t) is linked to its complex envelope, i.e. its low-pass equivalent

g̃(t), by the relation

g(t) = Re
[
g̃(t)ej2πfct

]
(2.3)

1This bandwidth is mainly fixed by the wavelength window where the absorption of step-

index silica fibers is minimal as it will be discussed in section §2.2.1.1.
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2.1 Concepts of Digital communications

, or equivalently in the Fourier domain

G(f) =
1

2

[
G̃(f − fc) + G̃∗ (−f − fc)

]
(2.4)

g̃(t) is generally a complex function described as

g̃(t) = x(t) + jy(t) = a(t) exp (jθ(t)) (2.5)

and a(t), θ(t), x(t), y(y) are real functions of t.

Since the modulated signal can be sufficiently described it terms of its complex

envelope and the modulation frequency, in the following, we may just refer to the

complex envelope g̃(t) of the signal.

2.1.3 Digital modulation

Suppose that we want to transmit the symbol sequence Isn =
{
Is1, Is2, ..., IsLseq

}
.

Mapping the symbols of Isn into digital waveforms, yields the information bearing

sequence In =
{
I1, I2, ..., ILseq

}
. The baseband equivalent of the overall waveform

entering the channel g̃(t) can be expressed as a sum of partial baseband wave-

forms g̃n(t), n = 1, 2..., Lseq, one for each of the Lseq transmitted symbols[89], often

referred to as pulses, or mathematically

g̃(t) =

Lseq∑

n=1

g̃n(t) (2.6)

where g̃n(t) is the pulse corresponding to the nth transmitted symbol. Going

further, g̃n(t) can be written as

g̃n(t) = Inp(t− nT ) (2.7)

, where R = 1/T is the symbol rate and p(t) is often referred to as the

shape-forming pulse, whose choice is generally a part of the system design and

optimization. Nevertheless, for reasons of simplicity, in what follows, we consider

that p(t) is the rectangular or gate function, i.e. p(t) = rect(t/T )1, defined as

1Even in practice, p(t) is not very different from rect(t). Since rect(t) is not practically

realizable we are looking for a pulse shape that is practically realizable and not very different

from the ‘ideal” for of rect(t).

12



2.1 Concepts of Digital communications

rect(t) =

{
1,−1

2
≤ t ≤ 1

2

0, elsewhere
(2.8)

Having chosen an appropriate pulse-shaping function, mapping from the se-

quence {Isn} to the sequence {In} is the problem of choosing a modulation

format. In the following we present the two families of modulation formats, used

throughout this manuscript, i.e. Amplitude Shift Keying (ASK) and Phase Shift

Keying (PSK). In both cases, the complex envelope of each transmitted symbol

can be written in the form

g̃n(t) = Am · p(t), m = 0, 1, ...,M − 1 (2.9)

, where Am is defined in the following paragraphs.

2.1.3.1 Amplitude Shift Keying modulation

In ASK modulation, we map each transmitted symbol into a discrete amplitude

level, i.e. in equation (2.9), each Am corresponds to a discrete real number. In

other words, the waveform of each symbol is a constant signal with an amplitude

level defined by Am. We also usually refer to the different Am as the ASK states .

The simplest way to chose Am is to set

Am = m · A, m = 0, 1, ...,M − 1 (2.10)

,where A is a fixed difference between amplitudes with a consecutive m. Set-

tingM = 2 to eq. (2.10), we get a set of two amplitude levels, {0, A}, resulting in

the simplest and most widely used modulation format in optical communications,

the 2-ASK or more simply On-Off Keying (OOK). In effect, with this modulation

format we transmit a signal for the symbol “1” or nothing for the symbol “0”, as

shown in figure 2.2a.

In a different scenario, amplitude levels can be chosen so that they are sym-

metric with respect to zero, i.e.

Am = (2m+ 1−M)
A

2
, m = 0, 1, ...,M − 1 (2.11)

13
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Figure 2.2: Comparison of different 2-ASK scenarios.

In this case, a signal with a non-zero amplitude is transmitted for all possible

symbols. Setting in eq. (2.11) M = 2 results in a “symmetric” 2-ASK, with a

constellation shown in figure 2.2b.

It is important to note that if the two symbols (”0” or “1”) have an equal

probability of appearance, the average signal power1 in the first scenario is A2

2
,

while in the second scenario it is A2

4
, while the distance between the two symbols

is kept constant and equal to A. “Normalizing” the second scenario to the average

power of the first, results in a signal with a distance of
√
2A between the two levels,

as shown in figure 2.2c. It is obvious that since the two symbols are separated

by a greater distance between the two levels, a greater tolerance is achieved

against degradation effects like noise. This tolerance is going to be quantified in

a following section for the simple degradation form of additive white Gaussian

noise.

We should also note that, in practice, the mapping from symbols to amplitude

levels is slightly different than the one of equations (2.10) and (2.11). In fact, the

mapping may chosen in such a way that neighboring symbols differ to only one

bit, so that mistaking a symbol for one of its neighboring ones will only yield a

single bit error. This mapping is called Gray encoding [89].

1As it is going to be discussed in following sections, the average signal power is an indicator

of the penalties due to nonlinear degradations: in general, higher average signal power yields

a higher penalty due to nonlinearities. Therefore, it is very common to compare modulation

formats in the common basis of an equal average power[45].
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Figure 2.3: Constellations of PSK modulation formats.

In conclusion, amplitude modulation consists of mapping the symbol sequence

Isn = {Is1, Is2, ...}, where Isn ∈ {0, 1, ...,M − 1}, into the waveform sequence

In = {I1, I2, ...}, where In = AIsnp(t).

2.1.3.2 Phase Shift Keying modulation

In PSK modulation, we map each symbol into a discrete phase level, i.e. in

equation (2.9), each Am gets a discrete imaginary value, with one discrete phase

level out of the M such possible levels, i.e.

Am = ej·(m
2π
M

+θ0), m = 0, 1, ...,M − 1 (2.12)

, where θ0 is a fixed phase offset. PSK modulation with phase levels (or M

discrete states) is also often referred to as M-ary Phase Shift Keying (MPSK).

Equivalently, the symbol sequence Is = {Is1, Is2, ...}, where Isn ∈ {0, 1, ...,M − 1}
is mapped to the waveform sequence I = {I1, I2, ...}, where In = Am · p(t).

Similar to ASK, Gray encoding is also used in PSK to ensure that adjacent

phase levels are mapped from symbols that differ to only 1 bit. A constellation

example for 4-PSK, (also widely known as QPSK), with Gray encoding is shown

in figure 2.3a. A constellation example for 2-PSK or BPSK, is shown in figure

2.3b. As it can be noticed, 2-ASK and 2-PSK practically result in the same
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format. In the context of this manuscript we will primarily focus on the QPSK

modulation format.

2.1.3.3 Differential encoding

For reasons that will become clear in section §2.1.4, in many cases, instead of

coding information on an absolute amplitude or phase level, information is coded

in the amplitude or phase difference between two adjacent symbols. In this case,

we refer to differential modulation or modulation with memory, since the sequence

symbols are correlated. In effect, the initial information sequence is transformed

into a new sequence, often referred to as (differentially) pre-coded sequence.

XOR

1!symbol!

delay

Input

Sequence {Ibn}

Pre-coded

Sequence {Pbn}

Figure 2.4: Generation of pre-coding sequence in DBPSK

In DBPSK for example, given the initial binary sequence {Ibn}, the genera-

tion of the pre-coded sequence {Pbn} is achieved by the circuit shown in figure

2.4. Alternatively, the pre-coding operation may be simply described by the

equation[102]

Pbn = Ibn ⊕ Pbn−1 (2.13)

, where the symbol ⊕ represents an addition modulo 2 (i.e. a port XOR). In

other words, if the new symbol to be transmitted is identical to the one transmit-

ted in the previous slot we transmit a “0”, whereas if the symbol is different we

transmit a “1”. In Differential Quaternary Phase Shift Keying (DQPSK), pre-

coding can be achieved in the exact same way, representing quaternary symbols as

couples of bits, i.e. {00, 01, 10, 11} and performing the modulo 2 addition bitwise.

On the other hand, supposing that the sequence arriving at the receiver side is

the sequence {Rbn}, in order to recover the initially transmitted sequence (if no
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errors occurred during transmission) the same XOR operator must be emulated

between adjacent symbols, i.e.

Dbn = Rbn ⊕Rbn−1 (2.14)

In optical communications however, the pre-coding operation for DQPSK is

slightly more complex1. The input binary sequence {Ibn} is first split in two

sequences {IPk} and Qk of half the length of {Ibn}. For example, we may assign

to {IPk} the odd bits of {Ibn}, i.e. {IPk} = {Ib2k−1}, and to Qk the even bits

of {Ibn}, i.e.{Qk} = {Ib2k} , where k = 1, 2, .... Each couple (IPk, Qk) represents

a quaternary symbol of the new quaternary sequence {Isk}. Pre-coding consists

of converting the sequence Isk = (IPk, Qk) into a new sequence Psk = (Uk, Vk),

where[55]

Uk = (IPk ⊕Qk) · (IPk ⊕ Uk−1) + (IPk ⊕Qk) · (Qk ⊕ Vk−1)

Vk = (IPk ⊕Qk) · (IPk ⊕ Vk−1) + (IPk ⊕Qk) · (Qk ⊕ Uk−1)
(2.15)

We need to underline that since pre-coding maps the initial sequence {Ibn}
into a new sequence {Pbn}, it also, in general, modifies the statistics of the in-

formation sequence {Ibn}. Furthermore, as the initial sequence is modified, the

detection (demodulation) of differentially encoded signals in optical communica-

tions, involves special circuits that ensure the recovering of the initial information

sequence, as it is going to be detailed in section §2.2.3.3.

2.1.3.4 Spectral characteristics of modulated signals

Since the modulated signal is transmitted in a band-pass channel, it is funda-

mental to study its spectral characteristics. As we can note from equation (2.7),

the waveform sequence I is based on the random input symbol sequence Is and

therefore the resulting modulated signal is a stochastic process.

Consider now that g(t) in equation (2.3) is a sample function of the overall

stochastic process. With the additional assumptions that g(t) is a wide-sense sta-

1We describe the pre-coding operation that was introduced in optical communications by

the authors of [55]. The demodulation, also performed in optics, in shown in the same paper.
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tionary processes with a zero mean1, it can be shown[89] that the autocorrelation

functions of the modulated and band-pass signal are linked with the relation

φgg(τ) = Re
[
φg̃g̃(τ)e

j2πfcτ
]

(2.16)

, or equivalently, their Power Spectrum Density (PSD) with the relation

Φgg(f) =
1

2
[Φg̃g̃(f − fc) + Φg̃g̃(−f − fc)] (2.17)

As it is evident from the above, the PSD of the modulated signal can be

uniquely determined by the PSD Φg̃g̃(f) of the low-pass signal g̃(t). As g̃(t) is a

function of the information sequence In, in order to go further we need to make

an assumption over the statistics of the information sequence Isn and therefore,

over the waveform sequence I. More precisely we suppose that the information

sequence In is a wide-sense stationary process2, with a mean value

µi = E [In] (2.18)

and an autocorrelation function

φii (m) =
1

2
E [I∗nIm+n] (2.19)

The autocorrelation function of g̃(t) is defined as

φg̃g̃(t+ τ, t) =
1

2
E [g̃∗(t)g̃(t+ τ)] (2.20)

and using equations (2.19), (2.6) and (2.7) it can be shown that g̃(t) is a

cyclostationary process with power spectral density

Φ̄g̃g̃ (f) =
1

T
Φii (f) |P (f)|2 (2.21)

, where the PSD Φii of the information sequence {In} is defined as

1A wide-sense stationary stochastic process X(t) has a fixed mean value (independent of t)

and an autocorrelation function E [X(t1), X(t2)] = ϕ (t1, t2) = ϕ (t1 − t2) = ϕ (τ).
2i.e. the mean value is time-independent and for the autocorrelation function holds

ϕ(t1, t2) = ϕ(t1 − t2) = ϕ(τ)[56]. A detailed discussion and a demonstration in the context

of pseudo-random is going to be shown in chapter §3.
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Figure 2.5: Characteristics of AWGN.

Φii (f) =
+∞∑

k=−∞
ϕii (k) · e−2πfkT (2.22)

and P (f) is the Fourier transform of the pulse-shaping function p(t).

As it can be easily seen from equation(2.21) that Φ̄g̃g̃ (f) depends on both the

pulse-shaping function p(t) and the correlation characteristics of the information

sequence, expressed via the term Φii.

2.1.4 Systems impacted by Additive White Gaussian Noise

The term “noise” is used to designate spontaneous fluctuations of the quantity

used to transfer the information in our transmission system. As it is going to be

discussed in §2.2, the two major sources of signal distortion in optical communi-

cation systems are noise and fiber nonlinearities. The combined result of these

distortions is often referred to in the literature as “non-linear phase noise”1.

Focusing on noise, however, it may be shown that the dominant source of

noise is spontaneous emission noise, added by amplifiers (discussed with more

details in §2.2.4), a noise source that can be adequately described by the notion

of AWGN as shown in [50].

1Linear effects like chromatic dispersion also introduce a signal distortion, but when they

act alone they are easily compensated. By nonlinearities we refer to the interplay between

linear and nonlinear effects.
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In the following sections, we describe the properties of AWGN and we focus

on the degradation purely coming from an AWGN. Being primarily interested in

the two modulation formats reviewed in section §2.1.3 (i.e. ASK and PSK), in

the following sections we derive the statistics of the signal cylindrical quadratures

(i.e. amplitude and phase) in the presence of AWGN. More precisely, we derive

their corresponding Probability Density Functions (PDFs), we calculate their

first moments and we, finally, derive the bit error probabilities for ASK or PSK

modulation.

2.1.4.1 Additive White Gaussian Noise and Signal-to-Noise ratio

Denoting by n(t) the stochastic AWGN process with a zero mean, n(t) is defined

via its autocorrelation function (figure 2.5a)

ϕnn (τ) =
N0

2
δ (τ) (2.23)

, or equivalently by it power spectral density (figure 2.5b)

Φnn (f) =
N0

2
(2.24)

, where N0 is given in W/Hz. We note that AWGN has a flat spectrum

density for all frequencies and an autocorrelation function corresponding to a

Dirac function. These characteristics are linked to completely random processes.

In chapter §3 we will see that pseudo-random sequences have properties that are

very similar to the properties of AWGN, even though they are sequences created

in a deterministic way.

Considering that an AWGN is applied to an ideal low pass filter of bandwidth

W , the resulting stochastic process N(t) will be characterized by a new couple of

PSD and autocorrelation, given by

ΦNN (f) =

{
N0

2
,−W < f < W

0, otherwise
(2.25)

ϕNN (τ) = N0W sin c (2Wτ) (2.26)
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The variance σ2
N of the noise samples, being equal to the expected value of

the noise power (since the process mean is zero) is given by the relation

σ2
N = E

[
N2

]
= ϕNN (0) = N0W (2.27)

When a (low-pass) signal g̃(t) is impacted by an AWGN n(t), the resulting

signal r̃(t) may be written as

r(t) = g̃(t) + n(t) (2.28)

, where n(t) = x(t) + j · y(t) is the complex sample function of the AWGN

process with its two components x(t) and y(t), i.e. the in-phase and the quadra-

ture noise component correspondingly, are jointly Gaussian real random variables

AWGN processes with the characteristics of each being described by the equations

(2.23), (2.24).

In such a case, denoting with P = A2 the signal average power, the Signal to

Noise Ratio (SNR), (denoted as ρ in what follows), is defined as

ρ =
A2

2σ2
=

P

2σ2
=

P

WN0

(2.29)

Let X and Y be the identically distributed random variables of the sample

functions x(t) and y(t). More precisely,

pX(x) =
1√
2πσ

e−
x2

2σ2 (2.30)

Setting A = X2 the PDF of A reads:

pA(a) =
1√
2πaσ

e−
a

2σ2 (2.31)

The characteristic function of A is given by:

ψA(iu) = E
[
eiuA

]
= f {pA(a)} =

1√
1− i2uσ2

(2.32)

Defining a new random variable that describes the optical power of the signal

S with S = R2 = X2 + Y 2 and as X and Y are identically distributed, we get

ψS(iu) =
1

1− i2uσ2
(2.33)
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and

pS (s) =
e−

s

2σ2

2σ2
(2.34)

The distribution of the equation (2.34) is also known as chi-square distribution

with two degrees of freedom. This distribution is very useful in optical communi-

cations, since the photocurrent is directly proportional to the optical power (see

section §2.2.3.1). Therefore, the received photo-current after a cascade of additive

white Gaussian noise sources, is going to follow a chi-square distribution.

Finally, defining the complex modulus R =
√
S and using (2.34) we get the

pdf of R:

pR(r) = r · e
− r2

2σ2

σ2
(2.35)

On the other hand, by defining Θ = tan−1
(
Y
X

)
and noting that X and Y are

identically distributed, we get that Θ is uniformly distributed in [0, 2π], or

pΘ(θ) =
1

2π
(2.36)

An alternative way of calculating the PDFs of R and Θ is to consider the

joint distribution of X and Y , i.e. pX,Y (x, y) = 1
2πσ

e−
x2+y2

2σ2 , if we perform a

variable change with R =
√
X2 + Y 2 and Θ = tan−1

(
Y
X

)
we finally get that

pR,Θ(r, θ) =
r

2πσ2 e
− r2

2σ2 and consequently we get the equations (2.35) and (2.36).

2.1.4.2 Signal statistics and Bit Error Probability in On-Off Keying

In OOK modulation, as presented in §2.1.3.1, the possible symbols are mapped

into two distinct amplitude levels, named x0 and x1. The bit error probability in

this case is given by

BEP = p(0) · P (1/0) + p(1) · P (0/1) (2.37)

, where p(0), p(1) are the probabilities of initially transmitting a “0” or a “1”

and P (1/0), P (0/1) are the probabilities of falsely detecting a “1” and falsely

detecting a “0” correspondingly. If “0”s and “1”s are transmitted with the same

probability, equation (2.37) becomes
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BEP =
1

2
(P (1/0) + P (0/1)) (2.38)

signal
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Figure 2.6: Q factor

Assuming an AWGN, the PDF of level “1” can be described by the relation

p1(x) =
1√
2πσ1

e
− (x−x1)

2

2σ21 (2.39)

, while the PDF of level “0” is described by the relation

p0(x) =
1√
2πσ0

e
− (x−x0)

2

2σ20 (2.40)

, where σ0 and σ1 are the standard deviations of level “0” and level “1”

correspondingly.

Supposing that the decision threshold is set to xD as shown in figure 2.6 and

using equations (2.39) and (2.40), the error probabilities P (1/0) and P (0/1) are

calculated as
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P (1/0) =

+∞∫

xD

p0(x)dx =
1

2
erfc

(
xD − x0√

2σ0

)
(2.41)

and

P (0/1) =

xD∫

−∞

p1(x)dx =
1

2
erfc

(
x1 − xD√

2σ1

)
(2.42)

Finally, combining the equations (2.38), (2.41) and (2.42), the bit error prob-

ability reads

BEP (xD) =
1

4

(
erfc

(
x1 − xD√

2σ1

)
+ erfc

(
xD − x0√

2σ0

))
(2.43)

As it is evident from the equation (2.43), the Bit Error Probability (BEP)

depends on the threshold xD and it is minimized when BEP ′(xD) = 0. Solving

the equation BEP ′(xD) = 0 for the optimal threshold xD and supposing that

ln σ1
σ0

≈ 0 we get

xD =
σ0x1 + σ1x0
σ0 + σ1

(2.44)

Defining the Q factor as

(xD − x0)

σ0
=

(x1 − xD)

σ1

∆
= Q (2.45)

and substituting (2.44) into (2.45) we finally get

Q =
x1 − x0
σ0 + σ1

(2.46)

Q is directly proportional to the separation of the levels averages x1 − x0,

while it is inversely proportional to the sum of their noise standard deviations σ0

and σ1. At the same time, we intuitively expect that the bit error rate will be

high when the levels are close to each other, or/and when the noise variance in

each level increases.
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In effect, by setting the threshold to its optimal value of eq. (2.44), or equiv-

alently replacing (2.45) into (2.43), we get an expression linking bijectively the Q

factor to the bit error probability1

BEP =
1

2
erfc

(
Q√
2

)
(2.47)

In conclusion, with the above procedure, we can analytically link the BEP

of an OOK transmission system corrupted by AWGN to the Q factor. We have

to underline that the above analysis is accurate only in the context of OOK

modulation and when the system is impacted only by AWGN. In optical com-

munications, as it will be briefly discussed in §2.2.3.1, photo-current noise may be

assumed to have Gaussian statistics and therefore, this analysis is quite accurate

for back-to-back measurements, employing OOK modulation. However, when a

transmission line is present, the amplified spontaneous emission noise generated

by the amplifiers overwhelms the shot or thermal noise and, as noted before, the

optical power and therefore the photocurrent, follow a chi-square distribution.

Nevertheless, since the Q factor is linked to the BEP bijectively, for com-

parison reasons, in many cases we convert measured bit error probabilities for

arbitrary modulation formats, into a “fake” Q factor by taking the inverse func-

tion of (2.47), i.e.

Q =
√
2 · erfc−1 (2 · BEP ) (2.48)

In the rest of this manuscript, when we refer to a Q factor we implicitly mean

the “fake” Q factor defined by the equation (2.48).

2.1.4.3 Signal statistics and bit error probability in Phase Shift Key-

ing

Without loss of generality we may consider that the equivalent low pass signal

corresponding to one state of a PSK signal, in a system impacted by AWGN is

1A distinction has to be made between the Q function, commonly used in the digital com-

munications literature, and the Q factor. The Q function, is defined as Q(x) = 1
2erfc(

x
√

2
) and

it may be used to simplify the expressions of bit error rates. It may also be used to link the

BEP to the Q factor but this is not done here for reasons of clarity. As a consequence, in this

manuscript we are always using the letter “Q” to refer to the Q factor.
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described by the relation1

S = A+N (2.49)

Figure 2.7: CW + noise

, where A is a real fixed number and N represents the AWGN along the two

signal quadratures with N = N1+j ·N2, N1 and N2 being identically distributed,

Gaussian Random variables with zero mean and standard deviation σ (figure 2.7).

The received signal vector may then be represented by a new complex random

variable: S = A + N1 + jN2 = X + jY , with PDFs of the real and imaginary

part given by

pX(x) =
1√
2πσ

e−
(x−A)2

2σ2 (2.50)

pY (y) =
1√
2πσ

e−
y2

2σ2 (2.51)

, and a joint PDF of X and Y given by:

pX,Y (x, y) =
1

2πσ2
e−

(x−A)2+y2

2σ2 (2.52)

1In the following we follow the procedure and present results appearing in [19] and [58]
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Passing to polar coordinates by defining

R =
√
X2 + Y 2 (2.53)

and

Θ = tan−1 Y

X
(2.54)

the joint pdf is now given by

pR,Θ(r, θ) =
r

2πσ2
e−

r2+A2
−2Ar cos θ

2σ2 (2.55)

Integrating (2.55) we can get the PDFs of R and Θ, i.e.

pR(r) =
r

σ2
e−

r2+A2

2σ2 Io

(
Ar

σ2

)
, r ≥ 0 (2.56)

, where I0 is the modified Bessel function of the first kind, and

pΘ(θ) =
e−ρ

2π
+

√
ρ · e−ρ·sin2θ√

4π
cos (θ) erfc(−√

ρ · cos θ) (2.57)

, where the term ρ appearing in (2.57) is the SNR, defined in (2.29) with

P = A2. For high SNRs, equation (2.57) reads

pΘ(θ) ≈
√
ρ

π
e−ρ·sin

2θ cos (θ) (2.58)

Moreover, it can be easily noted from eq. (2.57) that pΘ(θ) is a function of

cos(θ) it is periodic and as a periodic function it can be expanded in a Taylor

series. Following this expansion eq. (2.57) can be re-written as[18]

pΘ(θ) =
1

2π
+
e−

ρ
2

2

√
ρ√
π

∞∑

m=1

(−1)m

m2

[
Im−1

2

(ρ
2

)
+ Im+1

2

(ρ
2

)]
cos (mθ) (2.59)

The last expression is very useful for the calculation of the error rates, as it

will be discussed later in the chapter.

Finally, as mentioned before, since the photocurrent is directly proportional

to the optical power of the signal, it is interesting to investigate the statistics of
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the optical power. Setting S = R2 with S being the random variable describing

the optical power, the pdf of S reads

pS(s) =
e−

s+A2

2σ2 I0(
A
√
s

σ2 )

2σ2
(2.60)

with a characteristic function

ψS(ju) = E[ejuS] =
e

juA2

1−j2uσ2

1− j2uσ2
(2.61)

As shown from equation (2.57), pΘ(θ) can be effectively expressed as a function

of only θ and ρ. In figure 2.8 we plot pΘ(θ) for various values of ρ.

Figure 2.8: pΘ(θ) for various values of ρ.

2.1.4.3.1 Calculation of the first moments

Having the exact expression for the PDF pX(x) of the random variable X, one

may calculate the m-order moments of X using the formula

E[Xm] =

+∞∫

−∞

xmpX(x)dx (2.62)

and the m-order central moments of X using the formula
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E[(X − µX)
m] =

+∞∫

−∞

(x− µX)
mpX(x)dx (2.63)

, where µX is the average value of the random variable X with µX= E[X].

The 2nd order central moment, or variance, noted as σ2
X , is of particular inter-

est as it provides a rough measure of the random variable “spread”. However, we

are usually based on the variance square root, or standard deviation. Developing

(2.63) for m = 2, we get

σX =
√
E [X2]− µ2

X (2.64)

Having the exact expressions for the PDFs of R and Θ we can use the equa-

tions (2.62) and (2.64) in order to calculate the standard deviations σR and σΘ.

Beginning with the variable R, we get its average

E[R] = µR = σ

√
π

2
e−

ρ
2

[
(1 + ρ) · I0

(ρ
2

)
+ ρ · I1

(ρ
2

)]
(2.65)

, the 2nd order moment

E[R2] = A2 + 2σ2 = 2σ2 (1 + ρ) (2.66)

and the standard deviation

σR = σ

√
2 (1 + ρ)− π

2
e−ρ

[
(1 + ρ) · I0

(ρ
2

)
+ ρ · I1

(ρ
2

)]2
(2.67)

In order ot get more intuition on equation (2.67), in figure 2.9a we plot the

quantity σR
σ

against ρ (in linear scale). We note that the function σR/σ has a

lower bound σR
σ

∣∣
ρ=0

=
√
2− π

2
≈ 0.6551, while σR

σ
< 1 with lim

ρ→∞
σR
σ

= 1. In

a realistic optical-communication systems, SNRs typically1 take values around

ρ = 10, for which σR is slightly lower but very close to σ.

1In optical communications, instead of SNR, it is common to use the Optical Signal to

Noise Ratio (OSNR) in a reference bandwidth of 12.5 GHz or 0.1 nm around 1.55 µm (OSNR

will be properly defined in section §2.2.4). For reasons of comparison we just note that for a

noise bandwidth of 50 GHz (for example, almost entirely containing a 20 Gbaud signal) ρ = 10

corresponds to OSNR0.1 nm = 13 dB.
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Figure 2.9: σΘ and σR/σ as a function of ρ.

On the other hand, for the variable Θ we get its average value

E[Θ] = 0 (2.68)

, its variance (using eq. (2.59))

E[Θ2] =
π2

3
+ 2e−

ρ
2
√
πρ

+∞∑

m=1

(−1)m

m2

[
Im−1

2

(ρ
2

)
+ Im+1

2

(ρ
2

)]
(2.69)

and its standard deviation[19]

σΘ =

√√√√π2

3
+ 2e−

ρ
2
√
πρ

+∞∑

m=1

(−1)m

m2

[
Im−1

2

(ρ
2

)
+ Im+1

2

(ρ
2

)]
(2.70)

Moreover, a simplified relation can be obtained for high SNR (ρ ≥ 10) by

using the PDF of the equation (2.58), or

σΘ ≈
√

1

2ρ
(2.71)

In figure 2.9b, we plot σΘ as a function of ρ. Considering the limits of σΘ we

can easily see that σθ(0) =
√

π2

3
≈ 1.8138 and lim

ρ→∞
σΘ = 0.

Fusing on the approximate expression (2.71), we see that σΘ is bijectively

linked to ρ As standard deviations provide an estimation for the spread of a

random variable, it serves as a simple indicator of the signal degradation, in cases
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where we are not interested in performing a strict calculation of the symbol error

probability or run a brute-force Monte-Carlo Bit Error Rate (BER) estimation. In

coherently detected PSK modulation, as the decision is based on the phase of the

signal, σΘ provides the appropriate quantity that captures the phase degradation

and therefore, the phase standard deviation may provide a rough estimation of

the PSK signal degradation. However, it should be underlined that the detection

method plays an important role and it may drastically change the statistics of

the detected signal quadratures1.

A careful observation of the equations (2.70) and (2.67) reveals that σΘ is a

function of just ρ, while σR is a function of both the noise standard deviation σ

and ρ. Suppose now that un unknown noise source corrupts our signal. Since we

have no precise information about this source, it is very useful, at a preliminary

stage, to measure its resemblance to AWGN, by means of simple measurements

of the complex mean Aest, the standard deviations σΘ, σR and an estimation

of the “noise” standard deviation σest. For this, we introduce at this point the

parameter

Bn
∆
=

σΘ,estσest

σR,esth
(

|Aest|2
2σ2
est

) (2.72)

, where the function h(ρ) is analytically calculated using the equations (2.70)

and (2.67), defined as

h(ρ) =

√
π2

3
+ 2e−

ρ
2
√
πρ

+∞∑
m=1

(−1)m

m2

[
Im−1

2

(
ρ
2

)
+ Im+1

2

(
ρ
2

)]

√
2 (1 + ρ)− π

2
e−ρ

[
(1 + ρ) · I0

(
ρ
2

)
+ ρ · I1

(
ρ
2

)]2 (2.73)

From the above definition, it is obvious that when the signal deformation is

caused by AWGN, the distortion is symmetric, yielding Bn = 1. On the other

hand, when Bn > 1, the phase quadrature has a larger variance compared to

the variance of the amplitude quadrature, while when Bn < 1, the amplitude

quadrature has a larger variance compared to the phase quadrature variance.

1For example, in contrast to coherently detected systems, differentially systems do not yield

the same statistics, as it will be discussed later.
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The parameter Bn is going to be used in chapter §4 in order to be characterize

the shape of the constellations resulting from the interaction between chromatic

dispersion and fiber nonlinearities. In those cases we will see that the constellation

shape is generally not symmetric over the two Cartesian quadratures.

In practice, in order to calculate the quantity Bn for a given signal, we first

extract the signal samples corresponding to one particular symbol (for example,

for QPSK signals, we initially extract one of the four possible QPSK states), we

calculate Bn over the samples of this state and finally, we take the average of Bn

over all states. For the calculation of Bn over each state, the quantities σΘ,est and

σR,est are found in a straight-forward manner over the complex samples of the

state, while Aest may also be directly found as the state complex average. Finally,

σest may be calculated as the average of the standard deviations of the Cartesian

coordinates σRe and σIm, i.e. σest =
σRe+σIm

2
. However, we should underline that

there exist different ways to calculate Aest and σest. For example, Aest may be

alternatively calculated as the complex argument that maximizes the resulting

PDF, while σest may be estimated by the standard deviations following the axes

of a rotated coordinate system, for example, with one of its axes passing from the

state complex average. It is obvious that when the signal is degraded by AWGN,

all the above variants converge into the same result. Nevertheless, we need to note

that different choices of Aest and σest will generally result into slightly different

estimations of the quantity Bn.

2.1.4.3.2 Calculation of the bit error probability for coherently de-

tected PSK

The probability of the M-ary symbol being detected correctly (noted as SCDPM)

is equal to the probability of the detected phase lying inside the phase interval[
− π
M
, π
M

]
. Noting by

pm = P

(
2m− 1

M
π < Θ <

2m+ 1

M
π

)
=

2m+1
M∫

2m−1
M

π

pΘ(θ)dθ (2.74)

the symbol error probability is simply given by:
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SCDPM = p0 (2.75)

Equivalently, the probability of theM -ary symbol being mistaken for another

one, or the symbol error probability (noted as SEPM), is given by

SEPM = 1− SCDPM = 1− p0 (2.76)

Combining (2.57) and (2.76) we get

SEPM = 1− e−ρ

M
−

π
M∫

0

(√
ρ · e−ρ·sin2θ√

π
cos (θ) erfc(−√

ρ · cos θ)
)
dθ (2.77)

The last integral of the equation (2.77) cannot be expressed in terms of existing

functions for all arbitrary values of M and it generally has to be calculated

numerically. However, for M = 2 an analytical solution exists and in that case

the equation (2.77) reads

SEP2 =
1

2
erfc(

√
ρ) (2.78)

It is important to note that the equation (2.78) has the same form as the

equation (2.47) and we may therefore conclude that the bit error probability is

exactly the same for binary ASK and BPSK. This conclusion may also be reached

with the simple observation made in section §2.1.3.2 that these two modulation

formats have the exact same representation in the complex plane.

An analytical expression may also be provided for M = 4 by noting that

the QPSK modulation is made-up from two independent BPSK signals in phase

quadrature. Since there is no interference between the two quadrature phase

carriers and the noise on these carriers is statistically independent, the probability

of a quaternary symbol being detected correctly is equal to the probability of both

BPSK symbols being correctly detected independently, or

SEP4 = erfc(

√
ρ

2
) ·

[
1− 1

4
ercf

(√
ρ

2

)]
(2.79)

33



2.1 Concepts of Digital communications

1 3 5 7 9 11 13 15 17 1920

−6

−4

−2

0

ρ=SNR (dB)

lo
g

1
0
(S

E
P

)

BPSK

QPSK

8PSK

16PSK

32PSK

Figure 2.10: Symbol Error Probability as a function of SNR.

For the symbol error probabilities when M > 4 we use the formula (2.77),

calculating the integral numerically.

Furthermore, in some cases, it is very useful to express symbol error proba-

bilities as a function of the standard deviations of the polar coordinates, as, for

example, in PSK modulation, the information is coded in the phase of the optical

signal. More specifically, as it will be discussed in more detail in chapter §4, we
often use the standard deviation of the phase coordinate σΘ as a rough estimation

of the signal degradation and in this case, it is very useful to express the symbol

error rates introduces above for PSK modulation, as a function of σΘ. While

this is quite complicated in the general case, when ρ ≥ 10 we may combine the

equations (2.71) and (2.78), to get an approximation of the symbol error rates in

the case of BPSK

SEP2 =
1

2
erfc(

1

σΘ
√
2
) (2.80)

and QPSK

SEP4 = erfc(
1

2σΘ
) ·

[
1− 1

4
ercf

(
1

2σΘ

)]
(2.81)

, while these relations can be generalized to higher-level modulation formats.
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Coming back to equations (2.78)-(2.77), in figure 2.10 we plot the resulting

symbol error probability as a function of ρ for different values ofM . As expected,

higher level modulation requires higher levels of SNR to achieve the same symbol

error rate. However, this figure does not provide enough information on the

“efficiency” of each modulation format. In other words, it doesn’t answer the

ultimate question: “Which is the best modulation format for a transmission

system limited by AWGN?”.

In order to answer this question we need to define what we mean by “efficient”.

The useful and measurable qualities for a system are the bit error probability

BEP, the bit rate B, the bandwidth utilization W , the complexity, the cost, the

throughput etc. Here we are going to neglect economical and implementation

complexities and we are going to focus principally on the first three efficiency

criteria.

At first, we need to convert the symbol error rate, for the curves of figure

2.10, to an equivalent bit error rate for all modulation formats. For this, we

need the information of how the different bits are mapped into symbols, since a

wrong decision over a symbol may not necessarily imply a wrong decision over all

log2M bits of the symbol. In practice, it is more probable that, due to noise, a

symbol error will most possibly signify mistaking the symbol for one of its closest

neighbors on the complex plane. This information can be exploited by designing

the mapping in such a way that symbols with an adjacent phase (in the case of

PSK signals) represent tuples that differ to only 1 bit. It can be shown that this is

the optimum mapping, also known as Gray encoding [89]. An accurate evaluation

of the BEP in the case of Gray coded MPSK was presented in [70]. However,

a fairly accurate simple approximation may be considered by noting that in the

case of Gray encoding, a symbol error will yield in most times a single bit error.

In this case, the bit error probability is given as a function of the symbol error

probability by the formula

BEPM =
SEPM
log2M

(2.82)

Secondly, we need to note that different modulation formats (and therefore

the different curves of figure 2.10) naturally provide a different bit rate B for the
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same amount of bandwidth W , as each symbol carries a tuple of log2M bits. The

symbol rate R is linked to the bit rate BM (the index M signifies the symbol rate

for M -ary PSK) by the formula

B = RM · log2M (2.83)

Furthermore, for the purposes of this analysis we admit that this bandwidth

occupied by the signal is equal to the symbol rate R1, i.e.

WM=RM=
B

log2M
=

W2

log2M
(2.84)

and modulation of order M > 2 occupies log2M less bandwidth than modu-

lation with M = 2.

From the above it is obvious that a simple criterion like the “SNR required

to deliver a certain bit error probability” is not sufficient to describe the quality

of a signal. For this we need to introduce a new quantity that takes the SNR

requirement down to the level of one bit. The SNR/bit is defined by replacing

W in the equation (2.29) by the bitrate B as defined in the equation (2.83)

ρb =
P

N0B
(2.85)

or combining the equations (2.85) and (2.84)

ρb =
ρ

log2M
(2.86)

In figure 2.11 we plot the BEP versus ρb. An interesting remark concerning

this figure is that BPSK and QPSK have the exact same performance in terms of

BEP as a function of ρb. However, the notable difference between the solutions

BPSK and QPSK is that QPSK naturally uses half the bandwidth than BPSK.

1There exist several definitions for the notion of bandwidth (see [102]). In optical commu-

nications, the definition mostly used is the null-to-null bandwidth, i.e. if the symbol shaping

pulse used has the form of rect
(

t
T

)
with T = R−1 being the symbol period, then its Fourier

transform is T · sinc (T · t) a function with its central lobe-and most of the spectrum contained

into 2
T
= 2R. In practice, when tight optical filtering is applied at the reception or for channel

extraction, its bandwidth is about 2R, or a little less. The difference with the assumption of

this analysis is just a factor of 2.
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Figure 2.11: BEP Vs SNR/bit.

Therefore QPSK and BPSK have the same performance in terms of BEP, but

somewhat, QPSK uses more efficiently the given spectrum. In order to distinguish

BPSK and QPSK with respect to this last “quality”, we usually refer to the

quantity “spectral efficiency”1 defined as

η
∆
=

B

W
(2.87)

In order to take η into account in the comparison of different modulation

formats, we need to normalize the amount of bandwidth used by each modulation

format, or equivalently, compare the different solutions by fixing the amount of

bandwidth used. To simplify the analysis, without loss of generality, we may

consider that for all values of M the signal power is fixed and the noise spectral

density is also fixed. Consequently, SNR depends only on the bandwidth WM

occupied by an MPSK signal.

1In the context of dense Wavelength-Division Multiplexing (WDM) optical communication

systems (which is the case for this work) spectral efficiency of a given modulation format is of

extreme importance.
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Figure 2.12: BEP Vs SNR/bit2.

Normalizing the formats to the same bandwidth utilization (or the same spec-

tral efficiency), we define the quantity SNR/bit2 as

ρb2 =
ρ

(log2M)2
(2.88)

In figure 2.12 we plot the BEP as a function of ρb2. It is evident that QPSK

provides the best solution with respect to this combined criterion of required

SNR/bit and spectral efficiency, whereas 8-PSK, BPSK and 16-PSK follow.

Optical telecommunications were dominated for a long time by classical OOK

modulated signals. As we have seen in section §2.1.4.2, the BEP of OOK-

modulated signals impacted by AWGN can be expressed in terms of a quantity

that called the Q factor by a “1-1” relation (eq. (2.47)). Nevertheless, in opti-

cal communications, even when it comes to non-OOK modulation, the measured

BERs is very often converted into a “fake Q factor” by inverting eq. (2.47). Apart

from reasons of comparison and “backward compatibility”, this conversion also

offers the advantage that when it comes to binary modulated signals impacted

by AWGN, Q2 is a linear function of the SNR and the signal quality for any SNR
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may be simply predicted by BER measurement for just a few values of SNR.

In effect, for BPSK modulation, combining the equations (2.48) and (2.78),

we can verify in a straight-forward manner that this property holds, i.e.

Q2 = 2ρ (2.89)

However, for QPSK modulation, combining the equations (2.48) and (2.79),

we get

Q2 = 2

(
erfc−1

(
2 · erfc(

√
ρ

2
)

(
1− 1

4
erfc(

√
ρ

2
)

)))2

(2.90)

Figure 2.13: Q2(dB) Vs SNR/bit

In figure 2.13 we plot the Q2 factor against the SNR/bit for M = 2 up to 16.

We see that the fake conversion to Q factor should be used with caution, since

Q2 does not remain a linear function of the SNR/bit for an MPSK modulation

with M > 2.

2.1.4.3.2.1 Performance comparison with respect to spectral effi-

ciency - Shannon’s formula An alternative way of comparing modulation
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formats with respect to their spectral efficiency is to compare them to the ulti-

mate spectral efficiency limit, derived by Shannon in [100]. In Shannon’s work,

by means of information-theoretic calculations, a limit is derived providing the

highest achievable information rate allowing for reliable communication, in an

AWGN channel of bandwidth W , given by

B = W log2

(
1 +

Pav
N0W

)
(2.91)

, where B is the bit-rate in bits/sec, W is the bandwidth in Hz, Pav is the

average power in Watts and N0 is the PSD of the AWGN. Equation (2.91) may

be also re-written in terms of the spectral efficiency η and ρb as
[89]

η = log2 (1 + η · ρb) (2.92)
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Figure 2.14: Spectral efficiency η(bits/sec/Hz) as a function of ρb for various

modulation formats at various bit error probabilities.

In figure 2.14, the solid blue line represents the theoretical spectral efficiency

limit of the equation (2.92), for several PSK modulation formats (and thus differ-

ent levels of spectral efficiency), for a range of different fixed BEPs. If we focus,
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for example, in a BEP of 10−3 (which is usually the BER requested in practical op-

tical communication system before the use of Forward-Error Correction (FEC)),

we may note that, for a given SNR/bit, QPSK modulation offers the lowest dif-

ference in terms of spectral efficiency among M-ary PSK formats, with respect to

the ultimate spectral efficiency limit given by Shannon. In this way, it may be

alternatively verified that QPSK modulation presents the best choice of a system

designer when it comes to transmission systems, limited by AWGN1. However, in

chapter §4, we thoroughly analyze an optical transmission channel and we show

that the equivalent “noise” added by the optical channel onto the signal is not

necessarily an AWGN and it strongly depends on the chosen system parameters.

2.1.4.3.3 Calculation of the bit error probability for differentially en-

coded, coherently detected PSK

Let the waveform g̃k corresponding to the kth transmitted symbol be expressed

in the form

g̃k = Ake
j(ωt+φk+ψk+θ) (2.93)

, where ω is the carrier frequency, φk is the phase level corresponding to the

kth transmitted symbol, ψk is the term of phase noise or distortion and θ is the

carrier phase at the receiver side. In the previous paragraph we have silently

supposed that the coherent detection is ideal in the sense that the receiver has

a perfect knowledge of the carrier phase. That means that the receiver has a

perfect knowledge of the parameter θ appearing in eq. (2.93).

While θ is supposed to be a deterministic quantity, its a priori knowledge

supposes a perfect control (and knowledge) of the channel and a perfect knowledge

of all the system parameters and possible variables. In practice, however, several

reasons result in the fact that the parameter θ is unknown (or extremely hard

to calculate) including imperfections of the fiber construction, random twists,

temperature variations, imperfect control of the laser central frequency, imperfect

synchronization of the laser frequency at the receiver side etc. The result is,

therefore, a random, time-variable parameter that is most commonly modeled by

1Extensive work on this matter may be also found in [6].
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a uniformly distributed random variable in the range [0, 2π] and it usually has to

be estimated a posteriori.

In order to see the effect of the parameter θ, consider, for example, the ini-

tially transmitted QPSK symbols {0, 2, 3, 1} that acquire, accordingly, one of the

four phase levels
{
π
4
, 3π

4
, 5π

4
, 7π

4

}
. In the absence of noise or any other source of

degradation (i.e. ψk = 0, ∀k in eq. (2.93)), the phase levels detected by the

receiver, would be shifted by θ, i.e.
{
θ + π

4
, θ + 3π

4
, θ + 5π

4
, θ + 7π

4

}
.

!
02

3 1
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Figure 2.15: (a) Initial QPSK constellation (b) Constellation including a random

carrier phase θ (c) Constellation with a de-rotation of θ− π
2
resulting in an error

to all transmitted symbols

At first glance, this problem does not seem complicated, since the receiver

needs to perform a simple de-rotation of the received constellation by −θ in or-

der to recuperate the initial phase levels
{
π
4
, 3π

4
, 5π

4
, 7π

4

}
. However, this cannot

be achieved by a simple observation of the received constellation, since, if the

symbols have almost the same probability of occurrence, a seemingly identical

constellation is produced for any de-rotation phase shift θ + mπ
2
,m ∈ Z, intro-

ducing an error to all detected symbols, unless this de-rotation is (by pure luck)

successful (see figure 2.15). This problem is generally referred to as the prob-

lem of phase ambiguity and mπ
2
, (or m2π

M
for the general M-PSK case) is usually

referred to as phase ambiguity factor. The same sort of phase ambiguity is intro-

duced when one tries to extract the parameter θ from the signal by means of the

Viterbi & Viterbi process[110]. Neglecting the noise term, in this process we first
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raise g̃k to the power of M(i.e. M = 2 for BPSK, M = 4 for QPSK etc.) thus

obtaining

g̃Mk = AMk e
j(Mωt+Mφk+Mθ) (2.94)

, while we afterwards apply a lowpass filter. The filter will remove the rapidly

varying Mωt frequency component, while the term M · φk will also disappear

since φk takes one of the values
{
0, 2π

M
, ..., 2π

M
(M− 1)

}
and M · φk will be always

equal to 2 ·m · π,m ∈ Z. However, taking the M th root of g̃Mk in order to recover

the phase θ, we get

g̃k,est = Ake
j(θ+ 2mπ

M
),m ∈ Z (2.95)

, where 2mπ
M

is the phase ambiguity factor.

One solution to the problem of the phase ambiguity is the use of a preamble or

training sequence. In this case, a fixed symbol sequence, known to the receiver,

is sent at the beginning of the transmission or whenever we estimate that our

system needs to be re-synchronized[15]. This small bandwidth sacrifice allows the

receiver to always know exactly the de-rotation phase shift −θ that needs to be

applied, given that it may be calculated as the phase shift that minimizes the bit

error rate over the training sequence. However, in practice, θ is time-variable1

and the training sequence has to be relaunched quite frequently.

The technique that is mainly used to overcome phase ambiguity in modern

optical coherent transmission systems consists of coding the information on phase

differences, rather than absolute phase levels. In this case, the first step of the

detection process incorporates a coherent detection and a simple decision for the

symbols g̃k−1 and g̃k, neglecting the possible impact of phase ambiguity. For

example, in figure 2.15b, all symbols “0” would be falsely detected as “2”, all

symbols “1” would be falsely detected as “0” etc. Nevertheless, the second step,

incorporates a simple phase comparator between the symbols g̃k−1 and g̃k, fi-

nally yielding the phase difference between these two successive symbols that is

kept constant, disregarding the phase ambiguity. This scheme is often referred

1In optical communications θ generally depends on random stress applied on fibers, tem-

perature, aging of the fiber etc.
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to as differentially encoded, coherently detected PSK, while for simplicity, in this

manuscript we refer to it as differentially-coherent PSK. A more elaborate for-

malism regarding differential encoding and decoding may be found in appendix

§A.
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Figure 2.16: Phase ambiguity

In figure 2.16 we show a simple example of a transmitted symbol sequence,

with each quaternary symbol being coded by a phase level. The signal is trans-

mitted thought a noiseless channel that introduces a phase shift and the receiver

fails to restore the phase of the initially transmitted symbols, resulting in a phase

ambiguity of pi/4. However, one may easily notice that the phase difference be-

tween two consecutive symbols φk−φk−1 is the same for the transmitted and the

received phase sequence, despite the phase ambiguity.

In order to calculate the BEP in the case of this particular detection scheme1,

we first note by Φk−1, Φk the random variables describing the received phases of

two consecutive symbols. Exploiting the symmetry of PSK constellations we may

suppose without loss of generality that the two consecutive symbols were initially

carrying the same information and therefore had the same phase level. A correct

decision is made when the phases of both symbols Φk−1, Φk lie in the same 2π
M

range, happening when one of the following mutually exclusive events occurs

cm ,

{
2m− 1

M
π 6 Φk−1 6

2m+ 1

M
π,

2m− 1

M
π 6 Φk 6

2m+ 1

M
π

}
(2.96)

, where m = 0, 1, ...,M − 1. For m = 0, a correct detection is made when the

noise (or distortion) component of both symbols is not so strong as to lead the

1We have followed the procedure detailed in [15]
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2.1 Concepts of Digital communications

phase of one of the two symbols into an “erroneous” detection, were it not for

the phase ambiguity θ. However, there also appear the less probable events (m =

1, ...,M−1) of both symbols phases being drifted into the same direction, leading

into the same “erroneous” detection. Such a case will not lead into an error since

two “errors” occurred, both in the same sense so as to be mutually annulled. The

overall error probability DESCDPM is then a sum of the probabilities of the

mutually exclusive events cm for all m, or

DESCDPM =
M−1∑

m=0

P (cm) (2.97)

In the context of AWGN, taking into consideration that Φk and Φk−1 are

independent and identically distributed, we may not note that

P
(
2m−1
M

π < Φk <
2m+1
M

, 2m−1
M

π < Φk−1 <
2m+1
M

)
=

P
(
2m−1
M

π < Φk <
2m+1
M

)
P

(
2m−1
M

π < Φk−1 <
2m+1
M

)
=

P
(
2m−1
M

π < Φk <
2m+1
M

)2
= p2m

(2.98)

In this case, the probability of a symbol error in the case of a differentially

encoded, coherently detected PSK system reads

SEPM = 1−DESCDPM = 1−
M−1∑

m=0

p2m (2.99)

, where the values pm are given by the equation (2.74).

Using the equation (2.99), in figure 2.17 we plot the symbol error probability

for differentially-encoded coherent PSK as a function of the signal-to-noise ratio ρ

(equation (2.99)). We also plot for reasons of comparison the equivalent symbol

error probabilities for normal PSK (equation (2.76)). It should be noted that

for almost all values of ρ and M , the difference between the two symbol error

probabilities is a factor of 2. This can be roughly interpreted by the fact that,

putting aside the global phase shift (i.e. the receiver has a perfect knowledge of

this phase shift), if the kth detected absolute phase φk is detected erroneously, this

influences two phase differences: φk − φk−1 and φk+1 − φk. Thus, one erroneous

absolute phase will yield two symbol errors.
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Figure 2.17: Comparison between coherent PSK and differentially encoded, co-

herently detected PSK

2.1.4.3.4 Bit error probability for differential phase shift keying

So fat we have admitted that the demodulation is performed with the use of a local

oscillator at the receiver, leading to a coherent detection of the modulated signal.

Very often, however, a coherent detection is not available, most commonly because

of complexity/cost issues. Another technique commonly used is to consider as

a reference for the demodulation of a symbol, the previous in time symbol. In

this case, information is usually coded, as well, in the phase difference between

two successive symbols. This modulation is commonly referred to as Differential

Phase Shift Keying (DPSK).

In order to calculate the bit error probability for a DPSK system in the pres-

ence of additive white Gaussian noise, we note that at the receiver side, after

some form of perfect down-conversion of the signal, at the kth signaling interval,

the demodulator output is given by

rk = Aej(ϕk−θ) + nk (2.100)
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2.1 Concepts of Digital communications

where φk is the information bearing phase level, θ is the unknown carrier phase

and nk is a realization of the two-dimensional AWGN corrupting the channel.

Similarly, for the (k − 1)th signaling interval, the output is

rk−1 = Aej(ϕk−1−θ) + nk−1 (2.101)

As in the case of coherently detected differentially encoded PSK, the decision

variable is, in the absence of noise, the absolute phase difference between two

consecutive symbols. Closely observing the equations (2.100) and (2.101), we

notice that this phase difference may be formed by the projection of rk over rk−1

and the decision can be based on the quantity

∆β = arg(rkr
∗
k−1) (2.102)

, where rkr
∗
k−1 may be developed into the relation

rkr
∗
k−1 = A2ej(ϕk−ϕk−1) + nkAe

−j(ϕk−1−θ) + An∗
k−1e

j(ϕk−θ) + nkn
∗
k−1 (2.103)

From the equation (2.103) we note that, in the absence of noise, the first

term captures the absolute phase difference between two consecutive symbols,

remaining uninfluenced by the global phase shift θ. The last equation may be

simplified more by assuming without loss of generality that ϕk −ϕk−1 = 0, while

the terms e−j(ϕk−1−θ) and ej(ϕk−θ) can be absorbed into the noise terms nk and

n∗
k−1. Nevertheless, the analytical derivation of the BEP in the case of DPSK is

quite complicated, mostly because of the presence of the term nkn
∗
k−1.

In order to see the relative impact of this last term, in figure 2.18 we plot the

approximate PDF of the quantity

∣∣∣∣
nkn

∗

k−1

A(nk+n∗

k−1)

∣∣∣∣ for four different values of SNR

and 1000000 noise samples for each received signal sample. As it is obvious from

figure 2.18, the term nkn
∗
k−1 is around 0.1 for SNR levels around 10 and it further

decreases for higher SNRs.

Using all the previous assumptions and neglecting the term nkn
∗
k−1, (2.103)

can be simplified into
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Figure 2.18: Approximate PDF of the quantity

∣∣∣∣
nkn

∗

k−1

A(nk+n∗

k−1)

∣∣∣∣ for 106 noise samples.

rkr
∗
k−1 = A2 + A

(
nk + n∗

k−1

)
= A


A+ nk + n∗

k−1︸ ︷︷ ︸
nD


 (2.104)

The above formula is fairly accurate for M ≥ 4, but it is pessimistic for

M = 2[89],[15]. From the equation (2.104) we may note that neglecting the mul-

tiplicative term A, the problem of estimating the bit error probability under a

channel corrupted by additive white Gaussian noise for DPSK can be approxi-

mately converted into the problem of a coherently detected PSK, as it was de-

scribed by the equation (2.49), with twice as much noise since in the DPSK case

nD = nk + n∗
k−1.

As a result, all the relations of the previous sections are approximately correct

for DPSK by replacing σ by 2σ, or equivalently, ρ by ρ
2
. In other words, in the

case of DPSK we need twice as much SNR (or equivalently 3 dB) as in the case

of coherent PSK in order to achieve the same bit error probability.

2.2 Lightwave communication systems

The possibility of transmitting information using light was based on a series of

inventions that assured the fundamental functions needed in a point-to-point
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communication system, i.e. a transmitter, a channel and a receiver. It cannot be

doubted that the major motivation behind fiber-optic communications lied with

the possibility of exploiting the vast channel bandwidth (and relatively low cost)

provided by optical fiber waveguides. In parallel, the development of semicon-

ductor lasers that could operate in room temperatures assured the transmitter

function, while the receiver could be assured by photo-diodes, converting the

optical power into electrical current. In the latter we may add several other im-

portant milestones such as the advent of large bandwidth amplifiers allowing a

propagation of several kilometers before signal regeneration, or quite recently, the

re-birth of coherent detection, allowing the use of advanced modulation formats

and a more efficient utilization of available bandwidth[4].

In what follows we review the most important aspects of modern light-wave

systems, starting with the physics of optical fibers, discussing how modulation

formats, mathematically presented in section §2.1.3, are realized in optics, optical

amplifiers and noise issues, while we also review the fundamental concepts around

the modern practical implementation of coherent detection.

2.2.1 Optical fibers

The simplest kind of optical fiber is the step-index fiber, a cylindrical silica tube

with two distinct concentric regions (see figure 2.19). The inner region, called

core, is extended at a radius a, with a refractive index n1, while the outer region,

called cladding, is comprised between a radius a and b with a refractive index n2

respectively. Propagation of the optical wave is achieved as a consequence of the

total reflection, provoked by a slight difference between the refractive indexes n1

and n2.

Step-index fibers are characterized by two important quantities, the relative

refractive index difference between core and cladding

∆ =
n2 − n1

n1

(2.105)

and the V parameter

V =
2π

λ
a
√
n2
1 − n2

2 (2.106)
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Figure 2.19: Representation of step index fiber.

, where a is the core radius and λ is the wavelength of light. The value of V ,

which has been seen to be directly proportional to the core radius, determines the

number of modes that will propagate in the fiber[3]. More precisely, the number

of modes increases with an increasing V , while with V < 2.405 we can limit

the transmission to just one mode. In most cases, single-mode propagation is

preferable, since multi-mode propagation and a higher core radius are usually

linked with high bending losses and enhanced degradation due to Differential

Mode Group Delay (DMGD). On the other hand, the core radius is inversely

proportional to the strength of nonlinear Kerr effects, that have a particularly

negative impact on signal quality, as it will become clear in section §2.2.1.4.
Thus, there exists an important trade-off between the number of modes and the

strength of nonlinear Kerr effects. In the context of this manuscript we focus on

single-mode step-index fibers. In the following, we discuss the most important

characteristics of optical fibers, i.e. the attenuation of the optical field, the effect

of chromatic dispersion and the fiber nonlinearities.

2.2.1.1 Attenuation

Light that propagates in optical fibers is inevitably attenuated as its energy is

absorbed or scattered by the material itself, lost in bendings or scattered at the

core-cladding interface. While fiber attenuation was initially quite important,
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the revolution of fiber optics was mainly a consequence of the ability to construct

fibers with a relatively low loss1, became possible after a series of important

contributions in fiber fabrication[64],[65],[39],[83]. As shown in figure 2.20, the lowest

attenuation is usually achieved for a wavelength around 1.55µm, being finally

stabilized to about 0.2dB/km. In addition, recent advances have pushed even

lower the loss of optical fibers[28] (about 0.148 dB/km) by approaching even

more the fundamental intrinsic loss limit caused by Rayleigh scattering and silica

absorption[3] (shown by the dashed line in figure 2.20). Nevertheless, attenuation

remains the primary limiting effect in fiber-optics transmission as fiber losses

determines the distance at which a pulse can travel before it has to be amplified

or regenerated.

Figure 2.20: Fiber attenuation coefficient for different wavelengths.

If P0 is the launch power at the fiber input, after a propagation length z the

optical power is given by

P (z) = P0 exp(αz) (2.107)

, where α (in km−1) is the attenuation coefficient, or equivalently, αdB =

10log10(e) · α, where αdB is given the attenuation coefficient given in dB · km−1.

1i.e. passing from 1000dB/km to 20dB/km until the end of 70s
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2.2.1.2 Chromatic dispersion

Light propagating in a medium is being slowed down by a factor of n, where n is

the medium refractive index. In a fundamental level, chromatic dispersion is a re-

sult of the light interaction with the material bound electrons. As bound electrons

can oscillate at different resonance frequencies, this interaction is frequency- (or

wavelength-) dependent and therefore, n = n(ω) = n(λ). The frequency depen-

dence of the medium refractive index is exactly what is referred to as chromatic

dispersion[78].

The fiber refractive index as a function of the wavelength λ can be adequately

described, for bulk-fused silica far from the medium resonances by the Sellmeier

equation[78],[76],[3],[29]

n(λ) =

√
1 +

0.6961663λ2

λ2 − 0.06840432
+

0.4079426λ2

λ2 − 0.11624142
+

0.8974794λ2

λ2 − 9.8961612
(2.108)

As a direct consequence of the refractive index frequency dependence, since

the phase velocity is a function of the refractive index (υ = c
n
), for dispersive

media we will also have υ = υ(ω)[117]. A modulated field may be described as

an infinite sum of different frequency components (i.e. a Fourier transform). For

such a field, the effect of a dispersive medium will result in different frequency

components traveling at different velocities.

Suppose now that such a modulated pulse is described by the electric field

E (t) = E (z = 0, t) at the entrance of a material. With the help of the Fourier

transform, E (t) can be written as

E (t) =

+∞∫

−∞

Ẽ(ω)ejωt
dω

2π
(2.109)

, where Ẽ(ω) = Ẽ(z = 0, ω) is the Fourier transform of E (t), spread around

a central frequency ω0. Neglecting all other effects (like loss, nonlinearities etc),

propagating a distance z can be described by a multiplication of E (t) by the term

e−jβ(ω)z. With the help of equation (2.109) the evolution of the field as a function

of t and z may be given by
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E (z, t) = E (t) · e−jβ(ω)z =
+∞∫

−∞

Ẽ(ω)ej[ωt−β(ω)z]
dω

2π
(2.110)

, where the propagation constant β is a function of ω, as mentioned before,

given by the relation

β(ω) = n(ω)
ω

c
(2.111)

Furthermore, expanding β(ω) around the central frequency ω0 we get:

β(ω) = β0 + β1 (ω − ω0) +
1

2
β2(ω − ω0)

2 +
1

6
β3(ω − ω0)

3 + · · · (2.112)

, where

βk =
dkβ

dωk

∣∣∣∣
ω=ω0

k = 0, 1, 2, ... (2.113)

The parameters βk may be calculated using the equations (2.111), (2.112) and

(2.113). Calculating the coefficients for and order up to 3 we get

β1 =
dβ

dω
=

1

c

(
dn

dω
ω + n

)
=

1

c

(
−dn
dλ
λ+ n

)
(2.114)

β2 =
d2β

dω2
=

1

c

(
2
dn

dω
+ ω

d2n

dω2

)
=

λ3

2πc2
d2n

dλ2
(2.115)

β3 =
d3β

dω3
=

1

c

(
3
d2n

dω2
+ ω

d3n

dω3

)
= −

(
λ5

4π2c3
d3n

dλ3
+

3λ4

4π2c3
d2n

dλ2

)
(2.116)

Starting from β1, one may notice by the definition of the equation (2.114) that

β1 = 1
vg
, where vg is the group velocity of the pulse, i.e. the velocity at which

the pulse travels. In effect, if we neglect the terms superior to order 1 and we

substitute (2.112) into (2.110), we get

E (z, t) = e−j(β0−β1ω0)zE

(
t− z

vg

)
(2.117)
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It becomes then obvious that, in this case, apart from a global phase factor,

the optical field remains undistorted while it travels with a velocity vg. The

analysis can be further simplified by neglecting the global phase factor e−jβ0·z,

by considering a baseband transmission (ω0 = 0 rad) and by placing ourselves in

a frame of reference moving at the velocity vg observing the pulse as it travels

(or equivalently setting T = t − z
vg
) and focusing on E(T ). With the previous

simplifications it is evident that only the dispersion terms of an order greater

than 2 are meaningful for an analysis of the signal distortion.

The term β2 (given in ps2/km) is referred to as Group Velocity Dispersion

(GVD) parameter and it is responsible for temporal pulse broadening and Inter-

Symbol Interference (ISI). However, in most cases we use the dispersion param-

eter D (in ps/(nm · km)) defined as

D =
dβ1
dλ

= −λ
c

d2n

dλ2
= −2πc

λ2
β2 (2.118)

Combining the equations (2.108), (2.115) and (2.118) we plot in figure 2.21

the parameters β2 and D as a function of the wavelength λ.
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Figure 2.21: Dispersion parameters D and β2 versus wavelength λ.

From figure 2.21 we see that D is not very far from being linear with respect

to λ. This means that in most cases it is sufficient to consider in equation (2.112)
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terms of order up to 2. From figure 2.21 we can also see that β2 and D vanish

for λ = λD ≈ 1.27nm. In the case where λ approaches λD we need to take into

account β3 as well. Given that in our numerical simulations we have considered

just single channel transmission with a central wavelength of 1.55 µm, in this

manuscript we always consider terms up to β2. Finally, from figure 2.21 we may

also notice that there are two regions for λ < λD and λ > λD. When λ < λD,

i.e. β2 is positive and D is negative the fiber is said to exhibit normal dispersion

and when λ > λD the fiber is said to exhibit anomalous dispersion.

As mentioned above, using (2.112) and (2.110) including just the term relative

to β2 we get

E (z, t) = E (t) · e−jβ(ω)z =
+∞∫

−∞

Ẽ(ω)e−j
1
2
β2ω2zejωt

dω

2π
(2.119)

, where we may replace

Ẽ(z, ω) = Ẽ(ω)e−j
1
2
β2ω2z =

+∞∫

−∞

E (z, t) e−jωtdt (2.120)

, where

Hf (ω) = e−j
1
2
β2ω2z (2.121)

can be seen as the fiber transfer function when just dispersion is present.

From equation (2.120) we see that chromatic dispersion adds a parabolic phase

on the signal spectrum, while the spectrum modulus remains intact. This results

in a flattening of the pulse modulus with respect to time.

As an example we consider at the input of a dispersive fiber a Gaussian pulse

with a flat phase

E (t) = e
− t2

2T2
0 (2.122)

Applying (2.121) on (2.122) we get

E (z, t) =
T0√

T2
0 + jβ2z

exp

(
− t2

2 (T2
0 + jβ2z)

)
(2.123)
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Figure 2.22: Dispersion effect on Gaussian pulse. The time is normalized to T0

and the dispersion is given as a function of parameter ζ = {1, 2, 3, 4}. Solid lines

represent the signal modulus, while dashed lines represent signal phase.

or written in a modulus/phase style

exp
[
− t2

2T 2
0 (1+ζ

2)

]

(1 + ζ2)
1
4

exp

[
j

(
t2ζ

2T 2
0 (1 + ζ2)

− tan−1 (ζ)

2

)]
(2.124)

, where the normalized distance ζ is defined as

ζ =
z

LD
(2.125)

with the dispersion length LD defined[79] as

LD =
T 2
0

β2
(2.126)

We note that for anomalous dispersion fibers, LD is negative, whereas for

normal dispersion fibers LD is positive. We will see later that the absolute value

of the dispersion length, expresses the relative effect of chromatic dispersion.

In figure 2.22 we show the example of an isolated Gaussian pulse (equation

(2.122) with T0 = 100 ps) affected by chromatic dispersion using the parameter
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ζ. Commenting on figure 2.22 we see that chromatic dispersion in time domain

has an effect on both modulus and phase of the initial pulse. The modulus stays

Gaussian but it is significantly flattened, while the phase of the pulse follows a

quadratic-like time evolution. From the previous we can also conclude that the

pulse edges acquire a higher phase shift in comparison to the center of the pulse

(t/T0 = 0). Furthermore we may notice that for t/T0 = 0, higher values of ζ

result in lower peak modulus and also a slightly lower phase level. This phase

level may be easily calculated by setting t = 0 in equation (2.123) and taking the

phase of the signal

ϕ0 = −tan−1 (ζ)

2
(2.127)

, where we may also easily notice that ϕ0 → −π
4
as ζ → +∞.

In the context of optical transmission systems, several pulses are transmitted

with a possibly variable phase from one pulse to the other. In this case chromatic

dispersion introduces memory [98] in the system and neighboring pulses are set

to interfere. For classical OOK systems, ISI can be often understood by the

fact that the pulse energy penetrates its neighboring slots. If the neighboring

symbols are “1”s intensity addition can result in amplitude fluctuations, while if

the neighboring symbol was a “0” energy could fill with energy a slot that was

initially empty.

If PSK modulation is used, information is coded in the phase of the optical

signal and in this case we are mostly interested in the degradation of phase levels

by chromatic dispersion. We should keep in mind though that as the absolute

phase level of the signal cannot be easily recovered at the receiver, the demod-

ulation scheme may be based on the phase difference between adjacent pulses.

Furthermore, in other demodulation schemes, (for example a differential scheme),

as each pulse interferes with its previous-in-time neighbor, signal modulus may

also be important. Finally, we should also keep in mind that a receiver will finally

sample the signal, ideally around the center of the pulse and, as a consequence,

our interest usually focuses on the central portion of the pulses with respect to

time.

In order to get an idea of what may be the effect of chromatic dispersion on

PSK modulation systems, in figures 2.23a, 2.23b, 2.23c and 2.23d we investigate
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Figure 2.23: Effect of chromatic dispersion on three pulses with different phase

levels. Dashed lines correspond to the initial pulses and solid lines correspond

to pulses after a cumulative chromatic dispersion Dcum = 30000 ps/nm. Time

slots are equal to 6T0 and thus, symbols are centered to −6T0, 0 and 6T0, while

T0 = 100 ps.

a simplified case of three adjacent Gaussian pulses with different phase levels,

interfering under the effect of chromatic dispersion. We use the phase levels of

QPSK, i.e. {−π/2, 0, π/2, π}, thus approximately emulating three pulses in the

context of Return to Zero (RZ)-QPSK transmission.

More precisely, in figure 2.23a the three Gaussian pulses initially have the same

phase level (0), in figure 2.23b {π, 0, π} (symmetric antipodal neighbors around

the central symbol), {−π/2, 0, π}, in figure 2.23d and {−π/2, 0, −π/2 rad} in

figure 2.23c. In all cases, chromatic dispersion results in oscillations of the signal

modulus that differ slightly as interferences between symbols may be construc-

tive or destructive. Phase, on the other hand, oscillates as well, with relatively

different interference patterns being formed in each case. More precisely, focus-

ing on the phase differences at the center of each pulse and comparing adjacent
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Figure 2.24: Effect of cumulative chromatic dispersion over an NRZ-QPSK signal

pulses, we should note that in the case of 2.23a and 2.23b this difference is mini-

mal, whereas in figure 2.23d it becomes maximal. Of course, a different level of

cumulative dispersion could yield completely different results.

Finally, we show some examples of signal constellations under the effect of

chromatic dispersion on a NRZ-QPSK signal. In figure 2.24a we observe the initial

constellation, while in figures 2.24b and 2.24c, the constellations resulting from

the effect of a cumulative dispersion of Dcum = 15 ps/nm and Dcum = 40 ps/nm.

Commenting on figure 2.24b for such a low value of Dcum, the constellation has a

characteristic “spiral” shape. More precisely, the samples located near the origin

(Re, Im) = (0, 0) i.e. the state transitions, as they normally correspond to high

frequencies, they acquire a high positive phase shift. On the other hand, samples

located at the center of the pulse, as they correspond to low frequencies, they

acquire a very low negative phase shift given by eq. (2.127). In figure 2.24c

on the other hand, in addition to the frequency-dependent phase shift due to

the isolated-pulse chromatic dispersion effect, we also visualize the effect of ISI.

Indeed, since Dcum is relatively higher, the overall field is the coherent sum of the

fields of all interfering symbols and therefore, the constellation shape is no more

a pure spiral.

2.2.1.3 Polarization Mode Dispersion

Chromatic dispersion is not the only effect that results in different components

experiencing a different refractive index and therefore a different velocity. In the
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context of single mode fibers, the two degenerate polarization components may

experience a slightly different refractive index, as well. Although silica fibers are

generally isotropic and cylindrically symmetric, small random variations in their

shape, changes in temperature, random stresses applied after its installation etc.,

may result in a minor refractive index difference (also known as birefringence

magnitude) Bm between the two polarization components[62], where

Bm = |nx − ny| (2.128)

The result will be that one polarization component will propagate faster than

the other and it will also induce a periodic coupling between the two components

with a period

LB =
λ

Bm
(2.129)

, where Bm was defined in (2.128) and λ is the signal wavelength. Suppos-

ing that an input OOK pulse excites both polarization components of a fiber,

the difference in their propagation speed will result in the two pulses being de-

tected at a slightly different time. Since photo-diodes (described later in section

§2.2.3.1) are indifferent to polarization changes, the photo-current will contain a

“superposition” of the two pulses giving the impression of a pulse broadening,

changing randomly since in practice Bm changes randomly. This phenomenon is

known as Polarization Mode Dispersion (PMD). The extent of pulse broaden-

ing may be estimated from the delay between the two polarization components

during a propagation of a distance L in the fiber, known as Differential Group

Delay (DGD) and defined as

∆T = L

∣∣∣∣
1

vg,x
− 1

vg,y

∣∣∣∣ = L |β1,x − β1,y| (2.130)

, where β1,x, β1,y refer to the term β1 of the eq. (2.112) expansion, of the po-

larization x or y correspondingly. PMD is actually characterized by the variance

of the ∆T quantity, defined in eq. (2.130). In the context of this manuscript

we consider propagation in only one polarization and thus, we neglect all effects

relative to PMD.
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2.2.1.4 Fiber Non-linearities

The electric displacement vector in a dielectric medium is given by

−→
D = ε0

−→
E +

−→
P (2.131)

, where ǫ0 is the vacuum permittivity and
−→
P is the material polarization den-

sity vector. Far from material resonances, polarization can be generally described

by the phenomenological relation[101]

−→
P = ε0

(
χ(1) · −→E + χ(2) :

−→
E
−→
E + χ(3)...

−→
E + · · ·

)
=

−→
PL +

−−→
PNL (2.132)

, where χj is the jth order susceptibility tensor,
−→
PL corresponds to just the

inclusion of 1rst order term (linear term) ε0χ
(1) ·−→E and all the higher order terms

(nonlinear terms) are included in
−−→
PNL. It is obvious that higher order nonlinear

terms are significant only for relatively high optical power levels. Moreover, for

a silica fiber the 2nd order term vanishes as silica molecules present an inversion

symmetry[3]. Therefore, the lower order nonlinear effects appearing in fibers,

stems from the third order susceptibility tensor χ(3).

Nonlinear effects in fibers can be classified to two categories: nonlinear refrac-

tion (also referred to as Kerr effect) and inelastic scattering involving Stimulated

Raman Scattering and Stimulated Brillouin Scattering. In the context of this

thesis, all numerical simulations take into consideration the most significant non-

linear effect, i.e. the Kerr effect.

Kerr nonlinearity manifests itself as an almost instantaneous1 modification of

the medium refractive index linearly with the optical field intensity, i.e.

ñ
(
ω, |E|2

)
= n (ω) + n2 |E|2 = nL + nNL (2.133)

, where the medium refractive index contains two contributions, a linear one

(nL = n (ω)) and a nonlinear one (nNL = n2 |E|2), where n2 is the nonlinear-

index coefficient and |E|2 is the optical field intensity. In other words, high

1In order for the Kerr effect to be considered instantaneous, the transmitted pulses should

not be shorter than approximately 1 ps.[3]

61



2.2 Lightwave communication systems

optical intensity results in a higher refractive index and a higher refractive index

results in a slower propagation in the medium. The optical intensity of modulated

pulses presents variations with respect to time and therefore, each “part” of the

pulse is experiencing a different refractive index and is accumulating a different

phase. Since E is measured in V/m, the units for n2 should normally be m2/V 2.

However, it is more convenient[2] to write nNL = nI2I and use the coefficient nI2I,

where the intensity of the optical field I is linked to the electric field by the

relation

I =
1

2
ε0cn |E|2 (2.134)

,where ε0 is the vacuum permittivity (ε0 = 8.85421 · 1012 F/m), c is the

velocity of light (c = 2.998 · 108 m/s) and n is the linear part of the refractive

index n ≈ 1.45. In this case the parameter nI2I has units m2/W and is related to

n2 by the relation

nI2 =
2n2

ε0cn
(2.135)

Introducing a time frame moving with the complex envelope of A of the field,

absorbing fiber attenuation and normalizing A by introducing the quantity U ,

defined via the relation A =
√
P0 exp

(
−αz

2

)
U , it can be shown[3] that if Kerr

nonlinearities act alone, the evolution of U(z, T ) may be given by

U (z, T ) = U (0, T ) exp (−jφNL(T )) (2.136)

, where T = t − β1 · z and we also introduce the quantities effective length

Leff

Leff =
1− exp (−αz)

α
(2.137)

, nonlinear length LNL

LNL =
1

γP0

(2.138)

, max nonlinear phase ϕmax
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ϕmax =
Leff
LNL

(2.139)

and finally the nonlinear phase ϕNL(t)

ϕNL(t) = |U (0, t)|2Leff
LNL

(2.140)

We should also note that often the definition of ϕmax is extended to include

multi-span systems with flat gain repeaters, i.e.

ϕmax = Ns ·
Leff
LNL

(2.141)

, where Ns is the number of spans.

From equations (2.136) and (2.139) it is obvious that when Kerr nonlinearities

act alone (i.e. when dispersion is neglected), only the phase of the complex enve-

lope is modified, whereas the modulus remains intact. Moreover, the added phase

ϕNL(t) depends on two critical parameters: ϕmax which quantifies the strength of

nonlinear effects and the initial pulse shape U (0, t). Since the phase of the field

is modified following its own intensity shape, this phenomenon is called self-phase

modulation, or Self Phase Modulation (SPM).

In OOK communications information is coded on signal modulus and the

detection is performed by photo-detectors that are sensible to optical power.

Therefore, if SPM is acting alone distorting the signal phase (i.e. chromatic

dispersion is neglected), since the phase is discarded, there is no impact on the

signal quality. In PSKmodulation, on the other hand, nonlinear effects change the

absolute phase level of the signal and, at first glance, this may seem detrimental

for the signal quality. However, considering that all PSK states have initially the

same power profile, based on equation (2.140) we can see that even with absolute

phase changing, phase differences between states are maintained. Thus, focusing

for example on the central part of each pulse (where information is usually coded)

and considering a differentially coherent detection (or an ideal phase-lock loop),

we equivalently deduce that nonlinearities have no impact on measured bit error

rate.

As an example we consider the initial signal constellation of figure 2.24a being

subject to Kerr nonlinearities only. In figures 2.25a, 2.25b and 2.25c we show the
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Figure 2.25: Effect of Kerr nonlinearities if they act alone. Examples of QPSK

constellations are shown, where in all cases ϕmax is given as well as an approximate

equivalent number of spans for a propagation over a fiber withD = 0 ps/(nm·km)

and all the rest of the characteristics (i.e. n2, Aeff and attenuation) the same

as in SMF, for a central wavelength of 1.55µm and an injection power per span

Pin = 3 dBm.

resulting constellations for characteristic levels of ϕmax equal to π/4, π and 3π/4.

For example, in figure 2.25a where we consider ϕmax = π/4 rad, we see that all

four QPSK states are de-phased by exactly −π/4, while it is evident that this

is the part that corresponds exactly to the symbols center. On the other hand,

transitions are de-phased in a different way, since higher power parts acquire a

higher phase shift, lower power parts acquire a lower phase shift, while parts that

are close to the edges of the symbol slot are not de-phased at all. Finally, we can

see that sampling the signal at the center of each symbol slot and removing the

global phase shift results in a perfect recovery of the initial signal.

2.2.1.5 Nonlinear Schrödinger equation

In a simplified scenario

In a simplified scenario (explained in detail below) the propagation of the

slowly varying complex envelope of the optical field A(t) is governed by the Non-

Linear Schrödinger Equation (NLSE)[3]:
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∂A

∂z
= j

β2
2

∂2A

∂T 2
− jγ |A|2A− α(z)

2
A (2.142)

, where z is the propagation distance, T = t−z/vg = t−β1 ·z is a transformed

time adjusted to the propagating pulse, α is the attenuation coefficient, β2 the

group velocity dispersion parameter, γ = 2π
λ

n2

Aeff
the nonlinear parameter, λ the

signal wavelength, n2 the nonlinear-index coefficient and Aeff the effective mode

area of the fiber.

Furthermore, we use the normalized distance defined in eq. (2.125), the nor-

malized time τ defined as

τ =
t− z/vg
T0

=
T

T0
(2.143)

, where T0 is the pulse duration and, finally, the normalized pulse U(ζ, τ)

defined by the relation

A =
√
P0e

−αz
2 U (2.144)

, where P0 = |A|2 is the pulse power.

Combining the equations (2.125),(2.143),(2.144) it can be shown that eq.

(2.142) can be written as

∂U

∂ζ
= j

1

2

∂2U

∂τ 2
− jN2e−αz |U |2 U (2.145)

, where the parameter N is defined as

N2 =
LD
LNL

=
γP0T

2
0

β2
(2.146)

, with the characteristic length LD and LNL defined by the equations (2.126)

and (2.138).

Equation (2.142) is derived after having silently made three important as-

sumptions: 1) the term
−−→
PNL in equation (2.132) is negligible in front of the term

−→
PL, (2) the optical field is assumed to maintain its polarization along propagation

and (3) the optical field is quasi-monochromatic, where the slowly varying com-

plex envelope approximation is applicable. The first assumption is generally true
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since nonlinear changes in the refractive index are < 10−6. The second assump-

tion holds for polarization maintaining fibers only but it also works quite well in

practice. For the purposes of this manuscript we will consider that this assump-

tion is also fulfilled. The third assumption is equivalent to considering that the

spectral width ∆f of our field is very small compared to the central frequency f0,

or ∆f
f0
<< 1. In our case, f0 ≈ 200THz and this condition is still approximately

fulfilled for modulated signal with its main lobe occupying a spectral width of

about ∆f ≈ 20THz (or a pulse width of about 0.1ps[3]). For the purposes of this

manuscript we consider that this assumption is fulfilled, as well.

2.2.2 Transmitters, signal modulation and modulation for-

mats

Fiber-optic systems were dominated for many years by transmission/reception

schemes based on simple OOK modulation formats, i.e. optical power in the

form of NRZ or RZ pulses representing “1”s and no power representing “0”s

(see §2.1.3.1). The reasons behind this choice were technological, economical and

historical. Indeed, a flexible choice of modulation format supposes a coherent

receiver, as previously achieved in the domain of wireless communications. In

optics, despite the early efforts in this direction[84] and the relative advantages of

coherent detection against direct detection (see section §2.2.5), research on coher-

ent receivers was stalled as optical Phase Lock Loops (PLLs) remained complex

and the advent of Erbium-Doped Fiber Amplifiers (EDFAs) has completely re-

oriented research to rapidly take advantage of the possibilities of an immediate

increase of system capacity.

Nevertheless, in 2002, generation and differential, non-coherent de-multiplexing

of QPSK was demonstrated in optics[55], re-vitalizing the research in modulation

formats. Moreover, with the re-birth of coherent detection in mid 2000s, research

on different modulation formats has been revitalized with the objective to reveal

their advantages/disadvantages in different contexts.

In the following we describe the generation process of three modulation for-

mats, used in this manuscript, i.e. OOK, (D)BPSK and (D)QPSK, with NRZ-
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or RZ-shaped pulses. For each of these formats we also describe a non-coherent

demodulation method, principally used before the advent of coherent detection.

2.2.2.1 General characteristics

In most cases where external modulation is used, the light from a laser that is set

to a Continuous Wave (CW) mode, is modulated by a Mach-Zehnder Modulator

(MZM)[31] (see figure 2.26).
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Figure 2.26: Mach-Zehnder Modulator

The MZM[31] is made up by a 3− dB coupler that splits the incoming signal

Ein(t) in two parts, E1(t) and γ · E2(t), two electro-optic cells that according to

the applied tensions V1(t), V2(t) induce on the signal a phase shift ϕ1(t) or ϕ2(t)

correspondingly, and finally another 3− dB coupler to sum up the contributions

over the two arms. Optionally, we may also include a component in the second

arm that provokes a fixed phase shift ψ, referred to as the modulator bias[115].

The parameter γ is defined as

γ =

√
δ − 1√
δ + 1

(2.147)

with δ being the dc extinction ratio of the modulator. In the context of our

numerical simulations we have always considered an ideal MZM, i.e. δ → +∞ or

γ → 1.

The output field Eout(t) is then given by
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Eout(t) =
Ein(t)

2

(
ejϕ1(t) + ejϕ2(t)

)
=
Ein(t)

2

(
ej

πV1(t)
Vπ + ej

πV2(t)
Vπ

)
(2.148)

, where Vπ is the modulator extinction voltage, a fixed value that characterizes

the electro-optic material. Following equation (2.148), the output electric field

can be written as

Eout(t) = Ein(t)e
j[ π

2Vπ
(V1(t)+V2(t))+

ψ
2 ] cos

[
π

2Vπ
(V1(t)− V2(t))−

ψ

2

]
(2.149)

As it appears, at the output of the modulator, the electric field Eout is equal to

the input field Ein multiplied by two terms: one representing a phase modulation

and one representing an amplitude modulation. The phase modulation (chirp) is

often unwanted and it can be eliminated by choosing V1(t) + V2(t) = Vb = cst,

where Vb is a constant tension, referred to as bias tension. This condition is

noted as balanced driving or push-pull operation of the MZM. In the case of

balanced driving when we also set ψ = 0, the optical field transfer function of the

Mach-Zehnder is given by

TE(V1(t)) = ej(
π

2Vπ
Vb) cos

[
π

2Vπ
(2V1(t)− Vb)

]
(2.150)

Mach-Zehnder modulators appear in the generation process of all types of

modulation formats, as it will be shown in the following sections.

2.2.2.2 Generation of Amplitude Shift Keying modulation

In amplitude modulation, information is coded in two logical modulus (or inten-

sity) levels, while phase is disregarded1. These levels are normally represented in

the electric field by a high tension (logical “1”) or a zero tension (logical “0”).
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Figure 2.27: MZM function: generating OOK-NRZ modulation.

2.2.2.2.1 Generation of Amplitude Modulation

In order to “transfer” this signal into the optical domain we would ideally need

an element with a transfer function being a straight line with a slope equal to 1,

for varying values of V1 between 0 and 1. In the case of the MZM we can emulate

this function by setting πVb
2Vπ

= π
2
⇒ Vb = Vπ in equation (2.150). By neglecting

the global phase term, in this case we get the optical transfer function of the NRZ

modulator:

TE [Ve(t)] = sin

[
πV1(t)

Vπ

]
(2.151)

We can easily verify that when the electric signal V1(t) varies in the range{
0, Vπ

2

}
, the modulator function is monotonically increasing in the range {0, 1}

with the NRZ electric signal being “transfered” to the optical domain. We can

also note that since the Mach-Zehnder transfer function is not a linear function of

V1(t), the created optical signal will be slightly “filtered” by the sin(·) function.
1In certain OOK modulation formats like duobinary or Phase Shaped Binary Transmission

(PSBT)[86], certain phase conditions we used between adjacent pulses, in order to increase the

pulse tolerance against chromatic dispersion. Nevertheless, even in this case, the pulse phase

was eventually discarded by photodiodes.
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2.2.2.3 Generation of Binary Phase Shift Keying modulation

A (normalized) BPSK signal is characterized by an almost fixed modulus and a

phase of 0 or π radians or equivalently, a modulus varying in the range {−1, 1}.
In order to generate an optical BPSK signal, we need to use a portion of the

modulator transfer function that similarly varies in the range {−1, 1} with a

slope as close as possible to +1. In this case we may set Vb = Vπ in equation

(2.150), but noting that this time, V1(t) varies in the range
{
−Vπ

2
, Vπ

2

}
(figure

2.28).
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Figure 2.28: Generation of BPSK modulation.

2.2.2.4 Generation of Quaternary Phase Shift Keying modulation

As demonstrated in [55], QPSK modulation can be achieved by using a Cartesian

modulator, based on nested Mach-Zehnder configuration. The idea is to modulate

the two independent complex signal quadratures independently and then sum up

the two contributions. The configuration is shown in figure 2.29.

The laser source is split up with the use of a 3-dB coupler into two arms, where

a MZM set in push-pull operation is found. The driving signals of the MZM are

two independent BPSK signals, namely U and V, that after modulation result in

two BPSK optical signals (shown with constellations in figure 2.29), as described

in section §2.2.2.3.
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Figure 2.29: Generation of QPSK modulation.

By the above process it is evident that U will give birth to an optical BPSK

field with the same characteristics of U. On the other hand, the optical field

created after the signal V is additionally de-phased by π
2
. Finally, the two fields

are summed up by another 3-dB coupler. In the resulting field, each quaternary

symbol will be the result of the (coherent) sum of the two contributions (i.e.

either {0, π} or {−π/2, π/2}), resulting in an overall QPSK signal.

Finally, in order to generate a RZ-QPSK waveform with a Gaussian-like shape

(instead of NRZ-QPSK where intensity is almost constant) a pulse carver needs

to be added after the last MZM. A pulse carver is actually another modulator

(MZM for instance), driven by a sinusoidal waveform with a frequency equal to

the data rate (for 50%-RZ)[115].

2.2.3 Signal Reception

The key element found in signal reception of any modulation format is the photo-

diode. As it will be detailed below, the output of a photodiode is a current that is

proportional to the incident optical power. Using a photodiode, the detection of

OOK modulated signals is straight-forward since a high current intensity corre-

sponds to a high optical power intensity and therefore a possibly transmitted “1”,

whereas a low current intensity corresponds to a low optical power and a possi-

bly transmitted “0”. Nevertheless, even PSK modulated signals are demodulated

using photo-diodes. In all cases, detection is achieved by, either an interference

of each symbol with the previous symbol, or by a local oscillator reference signal,

while at the end, a photo-current is usually detected. In the following we review
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the most important aspects of photodiodes and very briefly describe the detection

of ASK signals, eventually focusing on the detection of PSK signals, that are our

main interest in this manuscript.

2.2.3.1 Photodiodes

Photodetectors (photoreceivers or photodiodes) ideally convert incident optical

power into an electric current, often called photocurrent. The conversion is gen-

erally linear, i.e.

I = RdPin (2.152)

where Rd is the responsivity of the diode with

Rd =
ηq

hν
(2.153)

with η being the quantum efficiency of the photodiode, q being the electron

charge and h · ν being the photon energy.

However, unfortunately, the resulting photocurrent, apart from the contribu-

tion that is proportional to the signal power, it also contains noise added by the

photodetector. This noise comes from two independent sources, (1) the fact that

the photocurrent is a stream of electrons generated at random times1, referred to

as shot noise, and (2) to the thermal motion of electrons inside a resistor2 that,

even in the absence of external voltage, results in a current fluctuation, referred to

as thermal noise. Furthermore, it can be shown[5] that these two processes have

approximately Gaussian statistics with zero average and standard deviations σs

and σt correspondingly. Thus, the overall process can be equivalently described

by a Gaussian random variable with zero average and standard deviation σst,

given by the equation

σ2
st = σ2

s + σ2
t = Nst∆f =

(
2q

(
Ī + Id

)
+

4kBT

RL

Fn

)
∆f (2.154)

1Shot noise is related to vacuum fluctuations and it is the inevitable consequence of the

quantum nature of light, rather than a receiver imperfection.
2The load resistor at the front end of a photodetector can cause such fluctuations.

72



2.2 Lightwave communication systems

where Fn is the amplifier noise figure, kB · T is the energy associated with

electrons at a finite temperature, RL is the load resistance, q is the electron

charge, Ī is the average current, Id is the dark current and finally δf is the

effective noise bandwidth. We should underline that the contribution of the shot-

noise (σs) depends on the average current, while the thermal noise contribution

does not.

In optical transmission systems where the predominant noise contribution is

the amplified spontaneous emission noise of in-line amplifiers, all other types of

noise, as thermal noise or shot noise are neglected.

2.2.3.2 Demodulation of Amplitude Shift Keying

As mentioned before, the demodulation of ASK with the use of photodiodes

is quite straightforward. Since each amplitude level is mapped into a discrete

power level, after detection it eventually leads to a discrete photocurrent level.

Superposing all symbols at the same time frame results in what is often referred

to as an eye diagram. In figure 2.30 we show a typical eye digram for OOK

modulation where signal degradation is not so important.

I1

ID

Iph

tt0

I0

Figure 2.30: Eye digram for OOK modulation.

Setting the threshold current level ID, or choosing the time instant t0 (clock)

are often subject to an optimization process, as a function of the system charac-

teristics. A current integration at the instant t0 and a decision circuit based on

ID are finally used, in order to count the number symbols that are transmitted

erroneously and build up the system BER.

73



2.2 Lightwave communication systems

2.2.3.3 Demodulation of Differential Phase Shift Keying

The demodulation principle of DBPSK is shown in figure 2.31a. The incoming

signal is set to interfere with its delayed version by one symbol period and the

resulting signal is passing in the photodiode. We then map a zero photocurrent

into the symbol “0” and a non-zero photocurrent into the symbol “1”.

Incoming!

signal

1!bit!

delay

In

In-1

In+In-1

(a) Experimental set-up achieving DBPSK

demodulation.

{Ibn} 0 0 1 1 0 1 0 0 1 0 1

{Pbn} 0 0 1 0 0 1 1 1 0 0 1

{In} !1 !1 1 !1 !1 1 1 1 !1 !1 1

{Ipn} 1 1 0 0 1 0 1 1 0 1 0

{Idn} 0 0 1 1 0 1 0 0 1 0 1

(b) Example of a sequence pre-coding and

decoding.

Figure 2.31: Principle of demodulation in DBPSK.

When the two interfering symbols are different (i.e. one with a phase 0 rad

and one with a phase π rad), the interference is destructive and the overall field

vanishes, eventually yielding a null photocurrent. On the contrary, when the

two symbols are identical, the interference is constructive and the photocurrent

is non zero. In table 2.31b we show an example of a sequence pre-coding and

decoding. The initial bit sequence {Ibn} is pre-coded resulting into the sequence

{Pbn} and the sequence {Pbn} is transmitted mapping “0” to the phase level π

and “1” to the phase level 0. The detected (decoded) sequence {Idn} is then the

inverse of the sequence resulting from the photo-current {Ipn} and if no errors

have occurred during transmission {Idn} = {Ibn} = {Ipn}. We need to note that

in practice, for the demodulation of DBPSK a balanced photodiode is used, with

a better performance than the simple photodiode, as discussed in [45].

The demodulation of DQPSK is performed in a similar way as in the DBPSK

case, although it is slightly more complicated. The demodulator principle is

shown in figure 2.31. The incoming signal, based on the precoded binary se-

quences Uk and Vk as described in section §2.1.3.3, after propagation is split up

in two branches. At each branch, a phase shifted and a symbol-period delayed
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version of the signal interfere in a destructive and in a constructive way, finally

ending up in two balanced photo-detectors with photocurrents IIP and IQ.

Incoming

signal

1!bit!

delay

4je !

1!bit!

delay

" #:IP kI I

" #:Q kI Q

cIPI

dIPI

cQI

dQI

cIPE

dIPE

cQE

dQE4je !$

Figure 2.32: Principle of demodulation in Differential Binary Shift Keying.

In effect, supposing that the current symbol has a phase φ and its previous

one has a phase φT , it can be shown that the photocurrents are described by the

equations

IIP = IIPc − IIPd ∼ 4 cos
(
ϕ− ϕT + π

4

)

IQ = IQc − IQd ∼ 4 cos
(
ϕ− ϕT − π

4

) (2.155)

A positive photo-current is interpreted as “1” and a negative photo-current is

interpreted as “0”. If no error occurs during transmission, the sequences
{
IPk

}

and
{
Qk

}
are successfully detected.

2.2.4 Amplifiers and noise

As we have seen in section §2.2.1, despite the constant technological progress, the
primary limiting physical effect in fibers still remains the attenuation of the optical

field, especially in cases where one is interested in transmitting information over

high distances. In order to overcome this obstacle, optical amplifiers are used,

especially when it comes to long-haul systems where light travels over several

hundreds of kilometers before finally reaching the receiver. Nevertheless, the

amplification comes at the cost of adding noise to the transmitted signal.

There are two possible amplification schemes: distributed amplification or

lumped amplification. In the case of distributed amplification, the signal is am-

plified during its propagation throughout the transmission fiber that becomes the
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amplification medium in this case. When talking about distributed amplification,

the most common case crossing one’s mind is the Raman amplification[57]. On the

other hand, in lumped amplification, in order to compensate for fiber losses, an

amplifier is placed at the end of every fiber section. A typical case of lumped am-

plifiers are the EDFAs. In this manuscript we only consider lumped amplification,

at the end of every span.

Im

Re

Initial!signal!amplified

Spontaneous

emission!noise

vector

Total

Signal!with!noise

( )GS t
!

( )n t
!

( ) ( )GS t n t!

!

!

Figure 2.33: Spontaneous emission

In a medium with gain, optical amplification is achieved through stimulated

photon emission from the excited states of the medium ions (for example, erbium

ions when it comes to EDFAs[13]). More precisely, if Pin is the power of a CW at

the input of an amplifier and Pout is the power at the output, then

G =
Pout
Pin

(2.156)

, where G is the amplifier gain.

However, from time to time, a photon is spontaneously emitted from the ex-

cited state with a random phase and polarization, occasionally perturbing the
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signal, as shown in figure 2.33. This process is known as amplified spontaneous

emission. In a fundamental level, amplified spontaneous emission has its origins

at vacuum fluctuations and therefore at the quantum-mechanical nature of light.

Using either a semi-classical or a quantum mechanical treatment of the ampli-

fication process, it has been demonstrated in the literature that the Amplified

Spontaneous Emission (ASE) noise can be considered as an AWGN with and

autocorrelation function

ϕnn,ASE (τ) = nsphv (G− 1) δ(τ) (2.157)

, or alternatively a power spectral density

NASE = nsphν(G− 1) (2.158)

, where G is the amplifier gain, h is the constant of Planck, ν is the wave-

length of the signal and nsp is the inversion factor, linked to population of the

fundamental state N1 and the population of the excited state N2 by the relation

nsp =
N2

N2 −N1

(2.159)

Considering an ideal optical filter of bandwidth W just after the amplifier to

reduce the amount of added noise, the power of ASE noise becomes

PASE = 2NASEW (2.160)

, where the factor 2 is due to the fact that noise is added in both signal

polarizations. However, we need to note that only one noise quadrature has an

influence on the signal.

In optical communication system with lumped amplification, we very com-

monly use the OSNR, of a signal with an input power Ps,in, after a cascade of

NA amplifiers with a gain G and a power spectral density NASE as defined by

eq. (2.158), where amplifiers perfectly compensate for the span losses (ai = Gi

as shown in figure 2.34). In this case, OSNR is defined as

OSNR =
G · Ps,in

2NASENAWref

(2.161)
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GN-1a1 a2 aN-1
G2G1

Ps,in

GN

Pn,in

Ps,1

Pn,1

Ps,2

Pn,2

Ps,N-1

Pn,N-1

Ps,N

Pn,N

Figure 2.34: Cascade of amplifiers and fiber spans. We usually consider that

amplifiers perfectly compensate for the span losses.

, where once more, the factor 2 corresponds to the fact that we count the

contributions of both signal polarizations, while Wref is a reference bandwidth.

Wref is very commonly chosen to be 12.5 GHz and since 12.5 GHz corresponds

to approximately 0.1 nm around the wavelength 1.55µm, we refer to OSNR0.1

(an OSNR in 0.1 nm). Replacing eq. (2.158) in (2.161) and taking a reference

bandwidth of Wref = 12.5 GHz, eq. (2.161) may be written in dB scale as

OSNR0.1 (dB) = Pout,amp (dBm)−NF (dB)−NA (dB) + 58 (dBm) (2.162)

, where the noise factor NF is defined as

NF = 2nsp
G− 1

G
(2.163)

and the number 58 comes from the dB conversion of the product h · v · Bref

and the conversion of power from Watts into dBm. The previous formula is very

useful when it comes to determining the input power in an amplifier of a given

NF , in order to achieve a specific OSNR. In what follows we always refer to an

OSNR at the reference bandwidth of 0.1 nm.

2.2.5 Coherent detection in lightwave communications

In the first operational fiber optic systems, information was coded on the in-

tensity of the optical signal. In this case, at the transmitter side, the binary

information is “printed” on an electric bit stream (for example with non-zero

intensity for each “1” and zero intensity for each “0”) that most often linearly
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modulates the intensity of an optical carrier, while at the same time the receiver

is directly converting the optical power into a current with the use of a photo-

diode, thus detecting a “1” (non-zero intensity of the photo-current) or a “0”

(zero intensity of the photo-current). The main advantage of this scheme, usually

referred to as Intensity Modulation (IM)/Direct Detection (DD), is its undeni-

able simplicity. Nevertheless, it remains “primitive” in the sense that reception

uses just one signal quadrature (modulus), while the information contained in the

phase of the signal carrier is discarded during demodulation, essentially remaining

unexploited[84].

It has been known for a fact that in the context of wireless communications,

with advanced modulation formats and exploitation of both signal quadratures,

there comes the potential of a better utilization of the medium bandwidth and

thus an increase of spectral efficiency. Such schemes involve a receiver that is

sensible to both phase and modulus of the transmitted signal, known as coherent

receiver. Moreover, a bonus coming with optical coherent receivers is an increased

signal gain coming from the local oscillator, leading to an increased receiver sen-

sitivity that is being “pushed” towards the shot noise limit[4],[63] of photo-diodes.

For repeater-less systems, the benefit of increased receiver sensitivity could be

directly converted into achieving greater distances, as constraints over the fiber

span loss may be relaxed[96].

Motivated by the above benefits, research efforts quickly focused on coher-

ent receivers during the eighties. However, technological obstacles and problems

linked to the receiver complexity (such as, the complexity of optical PLLs), pre-

vented an immediate practical implementation of coherent systems. In parallel,

over the same period, the invention of EDFAs[33] made less significant the re-

ceiver sensitivity benefit promised by coherent receivers, since spontaneous emis-

sion noise is dominant over shot noise, while they offered at the same time the

possibility to dramatically increase capacity by a simultaneous transmission of a

wide range wavelengths. The overall result was that, in the forthcoming years,

research over coherent systems was temporarily stalled, while the vast majority

of installed systems were based on an OOK modulation coupled with a DD.

Similarly, the comeback of coherent detection around mid 2000s, is undoubt-

edly a combined result of technical, historical, and economical circumstances[96].
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At first, discussion over different modulation formats was re-opened by Griffin

and Carter, proposing in [55] a scheme for the modulation of both the in-phase

and quadrature of an optical signal, while they have also proposed a direct differ-

ential detection scheme for QPSK. A little later, Kahn and Ho, indicated in [61]

the need for more spectrally efficient modulation formats, while, finally, Taylor

suggested in [107] a method of coherent demodulation and a carrier phase estima-

tion based on high-speed electronics, thus bypassing the need for a phase-locked

loop. This method was experimentally tested by Tsukamoto et al in [109] and

various other teams, confirming the re-birth of coherent detection in the optical

communications field. At the same time, as coherent receiver was coming with

the potential of digital signal processing, the use of algorithms for the compensa-

tion of physical effects, such as chromatic or polarization mode dispersion, were

thoroughly investigated[108],[24],[12].

In this section we review the most important concepts around coherent de-

tection, including its modern, efficient implementation method.

2.2.5.1 Principle of the coherent detection

In optical communications, with the term coherent systems we refer to systems

that involve a local oscillator at the reception, (i.e. a laser) which is the key

element in this case. More specifically, the signal that is about to be detected,

before passing into a photo-diode it is added to (or mixed with) the local oscillator

signal. A simplified scheme of a coherent detection is shown in figure 2.35.

Optical signal

Local

oscillator

Beam combiner

!" # $"%
& '()*+

!,- # $,-%
& './()*./

Detector DSP

Detected

sequence

Figure 2.35: Coherent detection principle
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Supposing that both signals are identically polarized, the initial signal is given

by

Es = Ase
j(ωt+ϕs) (2.164)

, where As is the signal amplitude, ω is the carrier frequency and ϕs is the

signal phase (possibly including some kind of phase modulation) and the local

oscillator signal is given by

ELO = ALOe
j(ωLOt+ϕLO) (2.165)

, where ALO is the amplitude of the local oscillator signal, ωLO is the frequency

of the local oscillator (that differs from ω) and ϕLO is the local oscillator phase.

The detector is sensitive to the overall power of the optical field Ptot(t), gen-

erating (in the absence of noise) a photo-current Iph(t) = R · Ptot(t), i.e.

Iph(t) = R · Ptot(t) = R ·
(
Ps + PLO + 2

√
Ps

√
PLO cos (ωIF t+ ϕs − ϕLO)

)

(2.166)

, where Ps = A2
s, PLO = A2

LO and ωIF = ω − ωLO is known as intermedi-

ate frequency. We focus on the second term since it is the term containing the

modulation1.

When ωIF = 0 we refer to a homodyne detection, while if ωIF 6= 0 the detection

is called heterodyne [4]. Homodyne and heterodyne detection have advantages and

disadvantages. For example, homodyne systems have a superior receiver sensitiv-

ity of 3 dB with respect to heterodyne systems but there is a need of an optical

PLL, an implementation of which is very complex[4] and therefore, heterodyne

systems were preferred in comparison to homodyne systems. However, the author

of [107] has shown that using ultrafast electronics could provide a “software” al-

ternative for the optical PLL and therefore release the major complexity problem

of homodyne receivers.

1In reality this term is isolated by passing from a 3 dB coupler and a balanced photo-diode,

or alternatively, from a 90 deg optical hybrid in the case of a polarization diversity detector. In

general, the resulting current is the outcome of a subtraction of the two photo-currents[66].
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2.2.5.2 Phase diversity homodyne receiver

In practice, the coherent mixer is implemented using a number of free space

components as shown in figure 2.36, a Local Oscillator (LO), a Quaternary Wave

Plate (QWP), a Half Mirror (HM), two Polarization Beam Splitters (PBSs) and

collimators (Coll) at the input and output ports.

Signal

polarized

@ 45o

LO

P (45o)

QWP
HM

A

B

C

E

D

F

G

H

LColl.

x

y

x

y

!"#

!"$

!%#

!%$

!% & !%# ' !%$ !( & !(# ' !($

PBS

PBS

Figure 2.36: Coherent detection with phase diversity

Supposing that the incoming optical signal is polarized at 45 deg with respect

to the x and y axes and that the local oscillator signal immediately passes from

a 45 deg polarizer, the optical field vector at the points A, B and C are given

by
−−−→
EA(t) = 1√

2

[
1
1

]
ALOe

j(ωLOt+ϕLO),
−−−→
EB(t) = 1√

2

[
1
ej

π
2

]
ALOe

j(ωLOt+ϕLO) and

−−−→
EC(t) =

1√
2

[
1
1

]
Ase

j(ωt+ϕs).

Getting past HM the new field vectors become

−−−→
ED(t) =

1

2

([
1
ej

π
2

]
ALOe

j(ωLOt+ϕLO+π
2
) +

[
1
1

]
Ase

j(ωt+ϕs)

)
(2.167)

and
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−−−→
EE(t) =

1

2

([
1
ej

π
2

]
ALOe

j(ωLOt+ϕLO) +

[
1
1

]
Ase

j(ωt+ϕs+
π
2
)

)
(2.168)

The optical fields and consequently the incident optical power at the level of

each photo-diode are given by

−−−→
EF (t) = ŷ

1

2

(
ALOe

j(ωLOt+ϕLO+π
2
) + Ase

j(ωt+ϕs+
π
2
)
)

(2.169)

−−−→
EG(t) = x̂

1

2

(
ALOe

j(ωLOt+ϕLO) + jAse
j(ωt+ϕs)

)
(2.170)

−−−→
EH(t) = x̂

1

2

(
ALOe

j(ωLOt+ϕLO+π
2
) + Ase

j(ωt+ϕs)
)

(2.171)

−−−→
EL(t) = ŷ

1

2

(
−ALOej(ωLOt+ϕLO) + Ase

j(ωt+ϕs)
)

(2.172)

and finally,using the equations (2.169), (2.170), (2.171), (2.172), the photo-

currents are given by

II(t) = RAsALO cos ((ω − ωLO) t+ ϕs − ϕLO) (2.173)

IQ(t) = RAsALO sin ((ω − ωLO) t+ ϕs − ϕLO) (2.174)

or

Ic(t) = RAsALO exp [j ((ω − ωLO) t+ φs − φLO)] (2.175)

From equation (2.175) we see that we can recuperate both signal quadratures.

If our signal contains two orthogonal polarizations we use PBSs at the input of

both Es and ELO in order to isolate each polarization component. Then, each

polarization component is recovered separately by a configuration similar to the

one of figure 2.36, called polarization diversity coherent mixer.

In order to recover the actual information, sampling and digitizing the signal

of the equation (2.175) will result in the discrete signal Ic(k · T ), where T is the

symbol period (we finally keep one sample per symbol). Then, usually a maximal
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ratio combiner is used[66] in order to recover the transmitted information. For

the purposes of this manuscript, the recovery of the signal polarization compo-

nents and complex quadratures is supposed ideal and if not indicated otherwise,

simulations are done for single polarization systems.

In practical modern coherent detection systems, we focus on a homodyne de-

tection where the two signal quadratures are extracted with the help of electronics.

More precisely, the local oscillator frequency is considered to be sufficiently close

to the signal frequency (near to homodyne detection), without necessarily being

exactly the same1. Thus, in the equation (2.175), we consider that ωIF is very

small but not zero and fIF = ωIF
2π

is in any case lower than the symbol modulation

rate.

For MPSK, equation (2.175) may be written as

Ic(t) = RAsALO exp [j ((ω − ωLO) t+ φM + φs,n − φLO)] =
= RAsALO exp [j ((jω − ωLO) t+ φM + φn)] = RAsALO exp (jθ)

(2.176)

, where ϕM is the modulation term (for example, in MPSK φM ∈
{
0, 2π

M
, 22π

M
, ..., (M− 1) 2π

M

}
),

where φs,n is the noise term associated with the signal, ϕLO is the local oscillator

phase, ϕn is the total phase noise and finally, we note with θ the overall phase of

the detected signal.

From (2.176) we see that the phase of the detected signal, apart from the

modulation term φM , it also contains the terms ωIF · t and φn. The evaluation

of φM is most often done by following the algorithm described in [110]: We first

rise the complex samples IC(k · t) at the M th power and then we divide by M .

By this procedure we remove the modulation as it may be easily observed that

M ·φM = 2kπ, k ∈ Z. Furthermore, in order to overcome the redundant noise φn,

we emulate a low pass filter by taking the average over a block of 2n+1 symbols

with the block size being a function of the noise term[74],[47]. Equivalently, the

estimation is given by

θe(kT ) =

arg

(
n∑

l=−n
IC [(k + l)T ]M

)

M
(2.177)

1In any case the transmitter and local oscillator linewidths may vary up to about 10 MHz.

84



2.2 Lightwave communication systems

Thus, the estimated phase of the symbol k is given by

̂φM(kT ) = θ(kT )− θe(kT ) (2.178)

We note that the phase detection method used above, is a variant of a dif-

ferentially encoded, coherently detected PSK, as the one described in section

§2.1.4.3.3.
In practical transmission systems, coherent receivers incorporate polarization

and phase diversity. In this case, a “chain” of adapted algorithms[95] may be used

to electronically compensate for the residual chromatic dispersion, the PMD or

separate the two polarization components with the use of an adapted algorithm

(Constant Modulus Algorithm (CMA) for example). Since our main interest is

to study the transmission effects we are not going to get into the details of the

aforementioned algorithms.

2.2.6 Inter-channel nonlinear impairments

As we have seen above, EDFAs have provided the potential of signal amplification

over a wide range of frequencies (or wavelengths), allowing for a dense WDM.

This practically means that several signals modulated at different frequencies (or

wavelengths) can propagate in the fiber at the same time. In this case, the overall

propagating field A(z, T ) may be written as

A =

Lch∑

k=1

Ake
j2πFkt (2.179)

, where Fk = fk−f0, fk is the carrier frequency of the kth channel and f0 is the

reference carrier frequency that has been used to derived eq. (2.142). Supposing

that eq. (2.142) is still valid for the new field A made up of all channels and

replacing eq. (2.179) into (2.142) we get the expression

Lch∑
k=1

(
∂Ak
∂z

+ 2πFkβ2
∂Ak
∂T

− j β2
2
∂2Ak
∂T 2 + α(z)

2
Ak + j β2

2
2πF 2

kAk

)
=

= −jγ
Lch∑
k=1

Ak
Lch∑
l=1

A∗
l e

−j2πFlt
Lch∑
m=1

Ame
j2πFmt

(2.180)
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It is obvious that eq. (2.180) is equivalent to a set of Lch coupled equations,

with each equation describing the evolution of the complex envelope Ak of the

kth channel

∂Ak
∂z

+ (2πFk) β2
∂Ak
∂T

− j β2
2
∂2Ak
∂T 2 + α(z)

2
Ak + j β2

2
(2πFk)

2Ak =

= −jγAk
Lch∑
l=1

A∗
l e

−j2πFlt
Lch∑
m=1

Ame
j2πFmt

(2.181)

, while there are Lseq equations like (2.181), for k = 1, 2, ..., Lch.

We note that the left part of eq. (2.181) represents the linear operator of

NLSE, while the right part is the nonlinear operator, appearing in the form of a

double summation. Developing and re-arranging the nonlinear term, it may be

alternatively written in the form

−jγAk
Lch∑
l=1

A∗
l e

−j2πFlt
Lch∑
m=1

Ame
j2πFmt =

−jγ



Ak |Ak|2︸ ︷︷ ︸
SPM

+2Ak

Lch∑

l=1,
l 6=k

|Al|2

︸ ︷︷ ︸
XPM

+Ak

Lch∑

l=1,
l 6=k

e−j2πFltA∗
l

Lch∑

m=1,
m 6=l

ej2πFmtAm

︸ ︷︷ ︸
FWM




(2.182)

At the right part of eq. (2.182) we see three terms appearing, denoted as SPM,

Cross Phase Modulation (XPM) and Four Wave Mixing (FWM). The term SPM

is the same as the nonlinear term appearing in eq. (2.142). It represents the con-

tribution of pure SPM impacting the waveform of the kth channel, or otherwise,

the term that is responsible for intra-channel nonlinearities. In section §2.2.7 we

will get into more details, subdividing intra-channel nonlinearities into different

kinds. On the other hand, the terms XPM and FWM represent nonlinearities

that are induced to the kth channel by the other channels. These nonlinearities are

referred to as inter-channel nonlinearities. The XPM term quantifies the phase

modulation for which power from other channels is responsible, instead of the

power of the kth channel itself. Finally, the FWM term, is responsible for high-

peaked oscillations of the optical field, resulting from a mechanism of summing
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three frequency components to create a components at a frequency that is the

sum of the other three. It is evident that FWM can be particularly detrimental

for the channel waveform.

In the context of this manuscript, as all simulation results refer to single chan-

nel propagation, we are not going to discuss inter-channel nonlinearities. How-

ever, similar mechanisms as XPM and FWM exist in single channel propagation,

as it will be shown in the what follows.

2.2.7 Intra-channel nonlinear impairments

The optical fiber is a dispersive and nonlinear medium. Under the effect of

chromatic dispersion, the energy of each pulse “penetrates” neighboring symbol

slots and interferes with them. Since chromatic dispersion is a linear effect,

such an interference would be easily recoverable with dispersion compensating

fibers. However, the Kerr effect provokes a nonlinear interaction between symbols

turning inter-symbol interference nonlinear. The overall result is that, even if at

the receiver, chromatic dispersion is fully compensated, inevitably, each symbol

contains a “residual” degradation that each symbol has collected during nonlinear

interaction with its n neighboring symbols. In this case we often say that the

channel has a memory [98] of n symbols.

An intuitive way to understand inter-symbol interference under the effect of

fiber nonlinearities is to follow the same procedure as in section §2.2.6 describ-

ing inter-channel effects. More precisely, we decompose eq. (2.142) into a set

of (coupled) equations, where the field of each symbol (or pulse) is considered

separately[72],[5].

Rewriting eq. (2.6) here for convenience, the overall field A is given as a sum

of all partial fields Ak, where Ak is the field of the kth symbol, i.e.

A =

Lseq∑

k=1

Ak (2.183)

Replacing eq. (2.183) into (2.142), we get the expression
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(
∂

∂z
− j

β2
2

∂2

∂T 2
+
α(z)

2

)(
Lseq∑

k=1

Ak

)
= −jγ

N∑

k=1

Ak

N∑

l=1

A∗
l

N∑

m=1

Am (2.184)

We note that the left part of eq. (2.184) represents the linear operator of

NLSE, while the right part is the nonlinear operator, appearing in the form of a

triple sum. Developing and re-arranging the terms of the triple sum, it may be

alternatively written in the form

N∑
k=1

Ak
N∑
l=1

A∗
l

N∑
m=1

Am =

Lseq∑
k=1

|Ak|2Ak + 2
Lseq∑
k=1
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Lseq∑

l = 1,
l 6= k

|Al|2 +
Lseq∑
k=1

Ak
Lseq∑

l = 1,
l 6= k

A∗
l

Lseq∑

m = 1,
m 6= l

Am (2.185)

, or finally, re-writing eq. (2.185) as a set of Lseq coupled equations describing

the evolution of each partial field Ak for k = 1, 2, ..., Lseq

(
∂
∂z

− j β2
2

∂2

∂T 2 +
α(z)
2

)
Ak =

= −jγ




Ak |Ak|2︸ ︷︷ ︸
i−SPM

+2Ak

Lseq∑

l = 1,
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|Al|2
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l

Lseq∑
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︸ ︷︷ ︸
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


(2.186)

At the right part of eq. (2.186) we see three terms appearing: Intra-channel

Self Phase Modulation (i-SPM), Intra-channel Cross Phase Modulation (i-XPM)

and Intra-channel Four Wave Mixing (i-FWM). Similarly as in the case of inter-

channel nonlinearities, the term i-SPM (intra-channel self-phase modulation) de-

pends on the pulse power itself and it corresponds to the SPM that the isolated

pulse induces to itself. The term i-XPM (intra-channel cross-phase modulation)

includes the power “contributions” of all other pulses but the one of interest.
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It quantifies the portion of SPM that is provoked by neighboring pulses to the

pulse of interest and it is obvious that for such an interaction to take place, chro-

matic dispersion needs to have introduced a considerable pulse overlap. Finally,

the term i-FWM (intra-channel four-wave mixing), includes the contributions

of various symbols on the phase modulation of the pulse of interest. We need

to note that a mechanism including an exact phase-matching is needed for this

nonlinearity to be “efficient”.

Intra-channel nonlinearities have been widely studied in the past, with a focus

on OOK modulation systems. Typical examples of work towards this direction

may be found in [99], [35], [77], [80], [1] and [113]. The investigation of intra-

channel nonlinearities is also the main objective of this thesis1.

2.2.8 Fundamental limitations in fiber optic channels

As it becomes clear, there are two degradation sources that fundamentally limit

an optical transmission system performance2: (1) spontaneous emission noise

added by fiber amplifiers and (2) fiber non-linearities. In order to qualitatively

understand the impact of these sources we briefly review the fundamental limits

present in optical transmission.

In long- or ultra-long haul systems where signal amplification is needed, the

first fundamental limitation comes from ASE noise added by an amplifier. More-

over, since noise in this case is linked to the quantum-mechanical nature of light,

it cannot be avoided or reduced below a certain level (see section §2.2.4), yielding
a first fundamental limitation of fiber-optic systems. With a fixed noise quantity,

SNR is uniquely influenced by the level of signal power and since performance in

terms of BEP is bijectively linked to SNR, the system BEP is bijectively linked

to signal power.

1When this thesis began in 2008, detailed investigations of intra-channel nonlinearities for

PSK modulated systems we rare. However, as our work was in progress, such investigations

appeared, for example the work in [71], [116] or [81].
2When we talk about system performance we basically refer to the maximum bit-rate that

can support reliable communications for a given distance or equivalently, the system spectral

density if we also fix the system bandwidth.
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Figure 2.37: Qualitative curve of system quality (or equivalently system reach) in

optical telecommunication systems as a function of the injected power per span.

For a low signal power, fiber nonlinearities are negligible and the system is

practically linear. In this case the system is dominated by additive white Gaussian

noise and as discussed in section §2.1.4, another fundamental limitation comes

from the fact that reliable communications induce an upper limit on information

spectral density, given by Shannon’s formula (equation (2.92)). In this formula,

information spectral density η is a monotonically increasing, logarithmic function

of the signal-to-noise ratio per bit SNR/bit and since noise power has a funda-

mental lower limit, SNR/bit (and η) may be increased by increasing the signal

power.

At first glance, a power increase seems safe since a fiber optic channel is not

a fundamentally power-limited channel1. Therefore, it would seem reasonable to

infinitely increase information spectral density by increasing the signal injected

power. Nevertheless, increasing signal power, lets another fundamental limitation

of optical fibers comes into play and that is fiber nonlinearities. The authors of

[82] have built a model for which the nonlinear fiber-optic system is qualitatively

described by an equivalent linear system with multiplicative noise. Multiplicative

noise can be understood as the result of XPM, since it represents a form of

interference of neighboring channels that contain generally unknown information.

It is also argued that, even in single-channel transmission, multiplicative noise is

1Such as, for example a satellite channel where the increase of power in a wavelength would

directly imply an interference to another.
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Figure 2.38: Example of degraded signal degraded just by AWGN with an

OSNR0.1 = 11 dB and a Gaussian filter.

generated through the cubic nonlinear term of eq. (2.142), by the stochastic

(noise) part of the signal.

In figure 2.37 we plot a qualitative “bell-shaped” curve summarizing the above

fundamental limits. Signal quality, usually expressed in terms of Q2 factor con-

verted from BER, is plotted as a function of the injected power per span, for a

fixed distance. When the injection power is low, nonlinearities are negligible and

the system is linear, impacted by noise. Linear effects can be almost perfectly

compensated and in this case the system is usually referred to as noise-limited.

The left part of the curve should, therefore, be identical to one of the curves of

figure 2.13, for PSK modulation and an ideal coherent detection. A constellation

and PDF example of a configuration impacted just by additive white Gaussian

noise is shown in figures 2.38a, 2.38b. On the other hand, at the right end of

the graph, signal power (and SNR) is high. However, multiplicative noise coming

from nonlinearities is deteriorating the system performance and this regime is

usually referred to as nonlinearity-limited. Finally, the exact evolution of the sig-

nal quality, as a function of the injected power, depends on the system parameters

and/or the correction algorithms applied by the coherent receiver.
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2.2.9 Impairment mitigation

As discussed in section §2.2.1, propagation in optical fibers is subject to several

physical effects that eventually degrade the input signal and increase the system

performance in terms of bit error probability. However, for each degrading factor

there exist technological solutions or techniques aiming to compensate for the

degradation and restore the signal to its original shape.

The principal degradation factor in fiber propagation is the attenuation of the

optical field. Nevertheless, fiber attenuation was efficiently tackled, while ultra

long-haul transmissions were made easily possible after the invention of EDFAs

(see section §2.2.4), at the price of the added noise to the optical signal and the

deterioration of the signal-to-noise ratio.

Another historically important “problem” in optical communications is chro-

matic dispersion, that when acting alone provokes a pulse broadening, resulting

into an ISI. Even though chromatic dispersion is a linear effect when acting alone,

it may be very efficiently compensated with the use of dispersion compensating

fibers compensating for the cumulative chromatic dispersion at the end of every

span or adapted Finite Impulse Response (FIR) filters that compensate for the

total cumulative chromatic dispersion electronically, in systems equipped with a

coherent receiver.

Nevertheless, the specificity of the fiber-optic channel that eventually limits

the transmission distance is the degradation due to the interplay between lin-

ear effects and fiber nonlinearities. The technique mainly employed in the past

to mitigate the impact of nonlinearities was dispersion management. The basic

idea behind this technique is a system design employing a wise distribution of

the dispersion compensating fiber modules along the line, so that the impact of

nonlinearities is minimal. In addition, since the re-appearance of coherent de-

tection, several research efforts have been also focusing on correction algorithms,

suitable for the correction of nonlinear effects. In the following we present the

basic concepts behind dispersion management.

Dispersion managed systems involve an arrangement of fibers with alter-

nate GVD parameter signs, for example D1, D2, D3, ... where Dk > 0, when

k = even and Dk < 0, when k = odd. Furthermore, the cumulative dispersions
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Dcum,1, Dcum,2, ... are usually chosen in a wise manner (for example following a

specific law) so that the impact of nonlinear effects is minimized. The ensemble

of the values Dcum, k are usually referred to as dispersion map.

Fiber In!line

comp.
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Rx
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Figure 2.39: Dispersion managed transmission system

An example of such an N -span system is graphically represented in figure

2.39. As it is shown in figure 2.39, a dispersion compensating module is usually

placed before the line fiber, pre-distorting the signal entering the system, referred

to as pre-compensation. The signal is then amplified, enters the line fiber and

propagates for a span length of usually around 80− 100 km. Based on a typical

value for the fiber attenuation of about 0.2 dB/km, the signal power at this point

has fallen down to 1
100

th of its initial value and the signal needs to be re-amplified.

This amplification is usually done by two consecutive amplifiers with a dispersion

compensating module between them (i.e. a two stage amplification scheme),

achieving an in-line dispersion compensation. This step is repeated Ns− 1 times,

while at the end of the transmission another dispersion compensating fiber is used

to achieve a post-compensation.

In figure 2.40 we plot the evolution of the cumulative dispersion Dcum of

the system, as a function of the system distance z, for a system with Ns = 8

spans. In the following we note the cumulative pre-compensation as Dpre, the

fiber GVD parameter as D, the in-line cumulative dispersion as Dlin and the

residual cumulative dispersion as Dres. The dispersion map used in this example,

where the in-line cumulative dispersion has a fixed value is usually referred to as

simple period as opposed to other more advanced dispersion map schemes existing

in the literature[10]. In this thesis we are only focusing on single-period dispersion

maps.
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Figure 2.40: Cumulative dispersion as a function of the distance for a dispersion

managed system (single-period dispersion map).

2.2.10 Numerical simulations

2.2.10.1 Introduction

Given that our most important task concerns the evaluation of the system perfor-

mance, it is very common to refer to a number of different, generic techniques that

may help to accomplish this task: formula-based calculations (computer-aided or

not), numerical waveform-level simulations and laboratory measurements[60].

The first technique, consists of employing analytical rules or models, that

are usually simplifying a more complicated system, by usually isolating usually

a particular subset of the involved physical phenomena. These models are of

extreme importance as they may provide rapid ways of exploring a system design,

or they may also provide invaluable physical insights and deeper understanding.

However, most of these models cannot be easily applied in real-life systems, as

their exactness compared to physical reality is often very limited.

At the other extreme, there is no doubt that laboratory measurements are the

most reliable and closest to reality technique that one could use. Nevertheless, it

is also quite often the most expensive and time-consuming method of evaluating

a system performance. Furthermore, it is the least flexible technique, and this

lack of flexibility limits our understanding to the conducted experiment.
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Technique Accuracy w.r.t.!reality Speed/flexibility

Analytical!models Low High

Numerical!simulations Medium Medium

Laboratory!experiments High Low

Figure 2.41: Comparison of different techniques

Finally, numerical simulations stand somewhere in between the two previous

ones, both concerning time-consumption and distance from reality (see figure

2.41). In effect, numerical simulation results are a lot less intuitive than analytic

models. However, provided that our numerical model is close to the physical

reality, we can achieve relatively good accuracy and gain a lot more insight than

laboratory measurements, especially when it comes to comparing different con-

figuration possibilities or revealing the predominant physical effects. Moreover,

numerical simulations are usually more flexible and less time consuming than

laboratory measurements.

2.2.10.2 The Split Step Fourier Method

The propagation of the optical field in fibers, in the absence of polarization effects

is described by the NLSE (2.142). However, since it is a nonlinear partial differ-

ential equation, generic analytical solutions do not exist, except from very special

cases (such as solitons). Therefore, apart from laboratory measurements, perfor-

mance assessment can only be conducted numerically. In this thesis, performance

assessment was exclusively achieved through numerical simulations.

The method used in numerical simulations is the Split-Step Fourier Method

(SSFM)[38]. This method consists of re-writing eq. (2.142) as

∂A

∂z
=

(
D̂ + N̂

)
A (2.187)

, where linear effects (attenuation and chromatic dispersion) are grouped into

the operator D̂ and nonlinearities are grouped into the operator N̂ . For exam-

ple, neglecting higher order dispersion effects (i.e. involving terms β3, β4 etc)
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and higher order nonlinear effects (i.e. involving Stimulated Raman Scattering,

Stimulated Brillouin Scattering, self-steepening etc), the operators are given by

D̂ = j
β2
2

∂2

∂T 2
− α(z)

2
(2.188)

N̂ = −jγ |A|2 (2.189)

In reality, dispersion and nonlinearities are acting simultaneously along fiber

length. However, the main assumption of the SSFM is that for small propaga-

tion distances, dispersion and nonlinearities are assumed to act independently,

where at a first step the effect of dispersion alone is taken into account and at a

second step nonlinearities alone are taken into account. As we have seen above,

the nonlinearities step is straightforward in the time domain where it involves

the addition of a phase depending on the time-shape of the pulse power profile,

whereas the chromatic dispersion step is straightforward in the frequency domain,

where it is equivalent to the addition of a parabolic phase. For the passage from

one domain to the other, the Fast Fourier Transform (FFT) is used and thus

the overall complexity of the method is the complexity of FFT. In practice a

small variation is used called symmetrized SSFM, where the nonlinearity step is

applied in the middle of two dispersion steps of half the cumulative dispersion.

The symmetrized SSFM was the method used in our numerical simulations.

2.2.10.3 Resources used for our numerical simulations

In the context of this work, for our numerical simulations we have used a combi-

nation of different software and hardware resources.

For the emulation of the fiber nonlinear propagation based on the SSFM pro-

cess, we have used the proprietary software OCEANr, provided by the company

Alcatel-Lucent in the context of a national French government project for co-

herent detection in 40Gbp/s optical transmission systems. The inputs of the

simulator were the optical signal entering the system (i.e. the optical field af-

ter the modulator) and the different parameter values used by the simulator for

the optical field propagation (i.e. the number of spans, the injection power, the
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fiber GVD etc). The output optical field was then saved into a hard disk and a

separate routine was used for the signal reception.

For all the other tasks involving the generation of optical formats, the genera-

tion of the data sequences upon which the optical formats were based, the signal

reception involving a quality estimation by either the use of a Monte-Carlo error

counting or a calculation of the signal quadrature statistic, Matlabr program-

ming was employed. In addition, we have used a combination of Matlabr and

Linux programming to create an interface between the previous routines written

in Matlabr and the OCEANr simulator that is programmed in C.

Finally, since a vast number of time-consuming simulations with variable pa-

rameters had to be performed in the context of this work (for example an ex-

ploration of many possible dispersion management, different noise seeds etc.), a

special interface has been developed, allowing for a parallel processing of both the

transmission and the reception of the optical signals. The previous tool gave us

the opportunity to benefit from a great number of hardware resources, including

9 dual core computers used in a permanent basis, 104 shared dual core computers,

a shared octo-core server and a shared cluster of 16 quad-core nodes.
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Chapter 3

Investigation of M-ary sequences:

application on the performance

evaluation of QPSK transmission

systems

God may not play dice with the

universe, but something strange

is going on with the prime

numbers.

Paul Erdos

3.1 Introduction : pseudo-random sequences

The first step towards the design of a communications system is the performance

assessment of an existing link with given characteristics. This may be achieved

through various ways such as direct formula-based calculations, numerical sim-

ulations based on transmission models or laboratory measurements (see section

§2.2.10). Especially in the last two cases, since the link under design should even-

tually be installed to work in an actual communications network, performance
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assessment is necessarily subject to assumptions concerning the emulation of the

data traffic, carried by the link.

In the previous section we have seen the equation (2.21), indicating that the

modulated signal g̃(t), expressed via its power spectral density, depends on the

spectrum of the deterministic shape-forming pulse p(t) and on the power spec-

trum density Φii of the stochastic information sequence {In}. An unbiased (or

fair) assumption about the information sequence would imply that there is no

correlation between the different transmitted symbols. This is equivalent to con-

sidering that Φii is flat for all frequencies (for example, Φii = 1), or equivalently,

their autocorrelation function is a Dirac function, thus approaching to the auto-

correlation function of white noise (eq. (2.24)). In other words, the most unbiased

version of information sequence is a “white sequence”, where the data symbols

sent by users are completely random and there is no correlation between them.

Even if this hypothesis about the random data generation is sufficiently close

to reality of actual communication networks, in practice, the information sequence

does not necessarily have the aforementioned characteristics. For example, even if

the user-generated data is initially random with no correlation between symbols,

the use of FEC results in adding redundancy to the data sequence and therefore

introducing a correlation. Another example concerns headers added by upper

network layers, since the addition of fixed headers in a series of random symbols

may influence the overall balance of different patterns in the transmitted sequence.

Nevertheless, an information sequence having properties close to the properties

of white noise is (by definition), the most objective choice for a given sequence

length and, in all cases, it provides an unbiased reference.

Summing up the previous statements, the desired properties of the data se-

quence that should be used in performance assessment test should be as much

close to the following:

1. Infinite length if we consider that data is permanently circulating in the

link.

2. Randomness in the sense that data symbols generated by users should be

uncorrelated.
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3. Randomness in the sense that all possible symbol patterns should equally

appear in this sequence in a balanced way.

Even though the last two properties may appear to be similar, we should

underline that they are only expected to converge into the (one) property infi-

nite sequence lengths, while for finite sequence lengths they are distinct. How-

ever, completely random sequences with an infinite length cannot be generated

in practice and for this, we are obliged to settle for finite length sequences, that

nevertheless, possess nearly-ideal properties, close to the ones mentioned above.

A group of well-known and widely used sequences satisfying the above properties

are the so-called Pseudo-Random Sequences (PRSs).

PRSs are deterministically generated sequences of a finite length with prop-

erties that converge to the desired properties mentioned above, for an increasing

sequence length. More precisely, q-ary PRSs of a length Lseq = qn − 1, have a

periodic autocorrelation function with just two levels, whereas, within their se-

quence length we can find all possible patterns of n symbols, exactly once. When

it comes to numerical simulations, emulating system traffic with PRSs is very

time-efficient, since for a given sequence length (and therefore a limited duration

of this simulation), we assess the system performance with a sequence that “seems

to be” completely random, whereas at the same time we are sure to be exploring

all possible symbol patterns that could appear for a given sequence length exactly

once.

The need for a balanced exploration of all possible patterns within a sequence

length practically stems from the fact that the fiber-optic channel is dispersive

and nonlinear, a combination of effects that induces ISI or memory[98], [22]. As

it will be discussed in section §4, ISI generally leads to a degradation that is

pattern-dependent. This practically means that there are some specific symbol

combinations for which inter-symbol interference will be particularly degrading

and those patterns will eventually yield errors, while some other patterns will be

correctly transmitted through the channel1. It is obvious that using a sequence

where all possible patterns of a given length appear exactly once, implies an

1It will be shown in chapter §4, that the receiver implementation plays an important role

in determining the most degraded subsequences
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objective performance assessment, where the bit error probability of the system

is neither over- nor under-estimated with respect to the unbiased case.

Furthermore, increasing the sequence length guarantees that the BEP of the

system can onlymonotonically increase, since new, eventually degrading, patterns

can only be added into the sequence, while for very high sequence length BEP

should finally converge into a stable value. The lowest sequence length yield-

ing a sufficiently accurate BEP prediction may be safely used in performance

assessment, since it combines accurate and time efficiency.

Pseudo-Random Binary Sequences (PRBSs) were primarily used for the per-

formance assessment of optical transmission systems based on binary modulation

formats, such as OOK (see section §2.1.3.1). With the arrival, however, of multi-

level modulation and coherent detection, the problem of choosing the most suit-

able sequences for the performance assessment was re-opened[105]. At the same

time, alternative methods for the assessment of a system performance have also

been recently proposed[53], [54].

Focusing on multi-level sequences, the main objective was, therefore, to in-

vestigate their properties and the influence that they may have into the perfor-

mance assessment of systems based on multi-level modulation. Since, to the best

of the author’s knowledge, there exist no bibliographical references that describe

in a self-consistent way the properties and the generation process of multi-level

pseudo-random sequences (the information is rather scattered in various biblio-

graphical references), an effort has been made to systematically present the basic

theory behind multi-level PRSs, before proceeding to numerical simulation re-

sults.

The generation of PRSs is based on the theory of finite (or Galois) fields. In

section§3.2 we review the most important characteristics of finite fields, referred

to later on in this chapter1. In section§3.3 we review the most important prop-

erties of pseudo-random sequences, we present the generation method as well as

1Throughout this review process we present the basic notions and theorems, while we also

propose elementary examples that help the reader understand and reproduce, if needed, the

basics of finite fields. For reasons of completeness, in many cases we also remind elementary

notions, well-known in other fields of mathematics. The reader that is already familiar with

finite fields may omit this section.

101



3.2 Finite Fields : a short review

some practical numerical tools that allow for a direct comparison between se-

quences, not necessarily pseudo-random, with respect to their pseudo-random

characteristics. In section §3.4 we present the results of comparison between

non pseudo-random sequences and finally, in section §3.5 we present simulation

results in the context of dispersion-managed QPSK transmission systems, com-

menting on the performance yielded by different sequence types and their relative

differences.

3.2 Finite Fields : a short review

3.2.1 Introduction

A field is a group of elements, together with the notions of the binary operations

“addition”, “subtraction”, “multiplication” and “division”. For a field F and the

elements a, b, c ∈ F , the axioms satisfied are the following[73]:

1. Closure under addition and multiplication, or a+ b ∈ F and a · b ∈ F .

2. Associativity of addition and multiplication, or a+(b+ c) = (a+ b)+ c and

a · (b · c) = (a · b) · c.

3. Commutativity of addition and multiplication, or a+b = b+a and a·b = b·a.

4. Additive and multiplicative identity, or there exists an element of F denoted

as 0, such that a + 0 = a and respectively there exists an element of F

denoted as 1, such that for a 6= 0, a · 1 = a.

5. Additive and multiplicative inverses, or ∃ − a ∈ F : a + (−a) = 0 and

∃ a−1 ∈ F : a · a−1 = 1.

6. Distributivity of multiplication over addition, or a · (b+ c) = a · b+ a · c.

It can be verified that all the above axioms hold for the most typical example

of a field, i.e. the field of real numbers R. The field R, however, has infinitely

many elements, since the real numbers are infinite. Fields that have only a finite

number of elements are called finite Fields or Galois fields, in memory of the

French mathematician Evariste Galois who first studied their properties.
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For a number of elements of the field equal to q, the finite field is denoted

Fq or GF (q). We should note from this point that finite fields with q elements

are the key for the generation of q−ary sequences. For example, we may define

the simplest field GF (2) with only two elements {0, 1} and the operations of

addition and multiplication being defined similar to the logical operators “XOR”

and “AND” respectively. It may be easily verified that for this field, all the

axioms defined before hold.

However, we should underline that not every positive integer has the ability

to yield a finite field. Indeed, for certain integers r it is impossible to define

operators that the field-defining axioms hold and therefore it is impossible to

construct a finite field with r elements. Consequently, if GF (r) does not exist, it

is also impossible to create r-ary PRSs1.

3.2.2 Prime Finite Fields and polynomials

The most simple type of finite field rises when the number of elements is a prime

number. In this case we refer to this field as a prime finite field, denoted as

GF (p)2. It is usually convenient to map the elements of prime finite field into the

integers {0, 1, 2, ..., p−1} (we may also note GF (p) = {0, 1, 2, ..., p−1}) and all the

operations like addition, multiplication etc are performed the usual way, modulo

p. For example, GF (5) = {0, 1, 2, 3, 4}, 2 + 4 = 1 (as 6 (mod 5) = 1), 1 − 4 = 2

and 3 · 4 = 2. Once more, it can be easily verified that all the axioms of section

§3.2.1 are satisfied for GF (5). In section §3.2.3 we will see that finite fields may

be also created if the number of elements is equal to a positive power of a prime

number. In this case we refer to an extension of the prime finite field GF (p), or

to the composite finite field GF (pm), with m being a positive integer. We may

already note that, in order to generate pseudo-random sequences suitable for

QPSK modulation (quaternary sequences), we will need to refer to the composite

finite field GF (4) = GF (22).

1For example, we cannot construct a finite field with 6 elements[88] and therefore it is also

impossible to construct a 6-ary PRS
2In the following, if not specifically clarified, when we refer to the field GF (p) we implicitly

suppose that p is a prime number, whereas when we refer to the finite field GF (q) we suppose

that q may be a prime or a power of a prime.
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A polynomial h(x) of degree n, over a finite field GF (q) is a polynomial where

all the multiplicative coefficients of the powers of x are elements of GF (q), i.e.:

h(x) = hnx
n + hn−1x

n−1 + · · ·+ h1x+ h0, hi ∈ GF (q) (3.1)

, while we denote h(x) ∈ GF [q, x]. Furthermore, if in formula (3.1) hn = 1

the polynomial is called monic. For example, the polynomial h(x) = x4+x+1 is

a monic polynomial in GF [2, x]. Since the information of such a polynomial lies

in the coefficients that multiply each power of x, the polynomial representation

is equivalent to a tuple, vector or sequence representation with coefficients over a

finite field. For example, the polynomial h(x) = x4+x+1 can also be represented

by the tuple (or sequence) [1 0 0 1 1].

Operations over polynomials in GF (q) are held in the exact same way as

for usual polynomials, with operations over their coefficients held in the GF (q)

way. For example, if h1(x) = x + 1, h2(x) = x2 + x + 1 ∈ GF [2, x], we get

h(x) = h1(x)·h2(x) = (x+1)·(x2+x+1) = x3+ x2 + x2︸ ︷︷ ︸
(1+1)·x2=0·x2

+ x+ x︸ ︷︷ ︸
(1+1)·x=0·x

+1 = x3+1.

Similar to regular polynomials, we also say that x = −1 = 1 is a root of the

polynomial x3 + 1 and that x2 + x+ 1 divides x3 + 1.

Furthermore, slightly changing the above example and considering the division

of f1(x) = x3 by f2(x) = x2+x+1, we may also see that x3 = (x+1)·(x2+x+1)+1,

where the quotient is equal to q(x) = x+ 1 and the remainder, r(x) = 1.

For a polynomial f(x) over GF [q, x] of degree n and f(0) 6= 0, the least

possible integer e for which f(x) divides xe− 1, is called order of the polynomial.

A monic polynomial h(x) of degree n with h(0) 6= 0 and order e = qn−1 is called

primitive polynomial of degree n over GF (q). It can also be proved that for a

given degree n we can always find a primitive polynomial over GF (q) and that

primitive polynomials are automatically irreducible. This last property means

that a primitive polynomial cannot be factorized into multiple terms with none

of them being a constant.

As an example, we may try to calculate the order or the polynomial h(x) =

x2 + x + 1 ∈ GF [2, x]. From the above example we see that x3 − 1 divides

h(x) since x3 − 1 = x3 + 1 = (x + 1)(x2 + x + 1) and therefore e = 3. We can

also note that the degree of h(x) is 2, that h(x) is monic, h(0) = 1 6= 0 and
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e = 3 = 22 − 1. Therefore, the conditions mentioned before and met and h(x) is

a primitive polynomial of degree 2 over GF (2).

Primitive polynomials play a central role in the theory of finite fields and they

have been studied extensively in the literature. As it will be shown in section

§3.3.1, primitive polynomials overGF (q), are the key ingredient for the generation

of q-ary PRSs, whereas primitive polynomials over GF (p), with p being a prime

number, are the “gateway” to composite finite fields, discussed in section §3.2.3.
There exist several copious algorithmic methods that allow the determination

of all possible primitive polynomials of a certain degree over a finite field GF (q).

A recent survey over such methods may be found in [30] and tables of primitive

polynomials for small orders and fields can be found in [75], [7], [73], [106], [52]1.

In the following, we consider that primitive polynomials of any order are available

from tables or programs, for, at least, all prime finite fields.

3.2.3 Composite Finite Fields

Since 2 is a prime number, the notion of prime finite fields is sufficient to de-

scribe the properties and the construction of pseudo-random binary sequences.

However, in order to generate PRSs with a number of levels being a power of

2, like quaternary sequences for instance, we need to introduce another type of

finite field with pm elements, where m is a positive integer. This kind of field is

called an extension of GF (p) and GF (p) in this context is called the base field.

Moreover, it can be shown[73] that any given finite field must necessarily have pm

elements, where p is prime andm ∈ N. This last theorem implies that there exists

no finite field with a number of elements not being either a prime or a power of

a prime.

An extension field over GF (pm) can be seen as a vector space of dimension m

over the prime field GF (p). In other words, if {α1, ..., αm} is a basis of GF (pm)

over GF (p), then each element α ∈ GF (pm) can be uniquely represented in the

form α = c1 · α1 + · · · + cm · αm, cj ∈ GF (p), 1 ≤ j ≤ m. Having in mind the

equivalence between polynomials over finite fields and vectors, it is obvious that an

1All primitive polynomials of degreem overGF (2) can also be easily obtained in Matlabrby

the command primpoly(m,’all’)
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element over the composite field GF (pm) may be also represented by a polynomial

of order (m − 1) over GF (p), where in this case {α1, ..., αm} = {1, x, ..., xm−1}.
For example, any element of the extended finite field GF (23) = GF (8) over

GF(2), can be represented by a 3-component vector, with each component being

an element of GF (2). The 8 elements of GF (8) can be then represented by the

binary vectors [0 0 0], [0 0 1], [0 1 0]..., [1 1 1], their decimal form {0, 1, ..., 7} or

finally the polynomials (0), (1), (x), ..., (x2 + x+ 1).

The “passage” from a prime finite field GF (p) to the extension GF (pm) is

achieved through a primitive polynomial h(x) of degree m. As explained above,

since h(x) is also irreducible, it admits no roots in GF (p). However, in the exten-

sion fieldGF (pm), h(x) has exactlym distinct roots, namely {ω, ωp, ωp2 , ..., ωpm−1},
or

h(ω) = h(ωp) = h(ωp
2

) = · · · = h(ωp
m−1

) = 0 (3.2)

, where ω is referred to as a primitive element of GF (pm)1.

In the fieldGF (pm) each element can be expressed in two ways: the traditional

one where the element is expressed as a polynomial of ω with coefficients from

GF (p) and a degree less or equal to m − 1, or as a polynomial with a single

power of ω, possibly greater than m − 1. As it is going to be explained with

examples later, the two representation forms are mathematically equal modulo

h(x). However, in practice, the two forms of representation may also be easily

obtained by a procedure involving a type of a shift register 2. The general form

of such a shift register is given in figure 3.1.

A shift register is, in the general case, a cascade ofmmemory units, where each

unit is capable of storing an element of GF (p), as for example, standard flip-flops

can store elements of GF (2). As a consequence, the whole register can store an

element of GF (pm) or alternatively the coefficients of the polynomial representing

1An analogy can be made between the extended finite fields and complex numbers. In the

field of real numbers, the equation h(x) = x2+1 = 0 does not have a solution but it has exactly

two solutions in the field of complex numbers. The element j = sqrt(−1) may be considered as

a primitive element of the complex numbers field, since h(j) = 0.
2We will discuss in section §3.3.1 a slightly different type of shift register, upon which we

will base the construction of pseudo-random sequences.
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h h h

a a a

hm-1 h1 h0

am am-1 a1

Figure 3.1: Shift register giving elements of GF (pm), when the passage from

GF (p) into GF (pm) is done via the primitive polynomial h(x) = xm+hm−1x
m−1+

· · ·+ h1x+ h0.

the element of GF (pm). Shift registers are equipped with a clock that triggers

the change of the register state, and a feedback loop from the last unit towards

each one of the other units, “weighted” by the coefficients hm, hm−1, ..., h0 of the

primitive polynomial h(x) ∈ GF [p, x]. We note that since the polynomial h(x)

is primitive, it is also monic (hm = 1) and thus, the feedback line corresponding

to hm is always represented by a simple line.

If register is initialized to the state [am, am−1, ..., a1] (or, as discussed before,

to the GF (pm) element amω
m−1+ · · ·+a1ω+a0), in each “clock tick” k = 1, 2, ....

(supposing that k = 0 corresponds to the initial state), the new register state

[a
(k+1)
1 , a

(k+1)
2 , ..., a

(k+1)
m ] is given as a function of the older state [a

(k)
1 , a

(k)
2 , ..., a

(k)
m ]

by the relations

a
(k)
1 = a

(k−1)
m · h0

a
(k)
i = a

(k−1)
m · hi−1 + a

(k−1)
i−1 , 2 ≤ i ≤ m

(3.3)

, where all the operations are held in the basis field GF (p).

If the register is initialized to the state [0, 0, ..., 1] = ω0, the 1rst clock tick

will change the contents of the register to [0, ..., 1, 0] that is also equal to ω1 = ω

etc. At the clock tick k, the register state contains the polynomial representation

of the element in GF (pm), whereas the power representation state is ωk. The

fact that the polynomial h(x) is primitive, guarantees that the initial state of the

register is going be re-appearing periodically after pm− 1 clock ticks. The choice

of the initial state may be random with the only forbidden choice being the state

[0, 0, ..., 0︸ ︷︷ ︸
m times

], since in that case, the state of the register will never change. The
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polynomials produced by the pm − 1 different register states together with the

zero element [0, 0, ..., 0︸ ︷︷ ︸
m times

], form the composite finite field GF (pm).

In order to define the operations of addition and multiplication over two ele-

ments a and b over the composite field GF (pm), we first represent these elements

as polynomials of a maximum degree m− 1 over GF (p). Then the sum a + b is

obtained by the polynomial sum of a and b, as defined in section §3.2.2, and the

product a · b is equal to the polynomial product of a and b, modulo h(x).

More precisely, since the addition is done element-wise, the resulting polyno-

mial will always be of a maximum degree m − 1. However, the multiplication

may result in a polynomial of a degree greater than m− 1 (i.e. not an element of

GF (pm)). In this case we consider the equivalent form of the polynomial, modulo

h(x). A direct consequence of the above is that the choice of the primitive poly-

nomial is critical for the definition of the composite finite field and the results of

addition and multiplication may vary as a function of this polynomial.

a3 a2 a1

h(x)=1!x3 +     1!x2 +     0!x    +     1

State a3 a2 a1 Polynomial Power

1 0 0 1 1 !0

2 0 1 0 ! !1

3 1 0 0 !2 !2

4 1 0 1 !2 + 1 !3

5 1 1 1 !2 + ! + 1 !4

6 0 1 1 !+1 !5

7 1 1 0 !2 + ! !6

1 0 0 1 1 !7

2 0 1 0 ! !8

Figure 3.2: Shift register giving elements of GF (8) for the primitive polynomial

h(x) = x3 + x+ 1.

As an example, for the passage to GF (8) = GF (23), we need a primitive

108



3.2 Finite Fields : a short review

polynomial of degree 3 over GF (2). From tables we find that there are two

primitive polynomials of degree 3 over GF (2), h1(x) = x3 + x + 1 and h2(x) =

x3 + x2 + 1. We randomly chose the polynomial h(x) = h1(x) = x3 + x + 1 and

based on that we construct the shift register of figure 3.2, yielding the elements

of GF (8) with their polynomial and power representation. First, we verify that

eq. (3.2) holds for the three roots of h(x). Secondly, the laws of addition and

multiplication defined above, hold in all possible ways. Considering, for example,

the elements of GF (8), a = ω5 = ω2 + ω + 1 and b = ω3 = ω + 1, the sum of a

and b yields a+ b = (ω2 + ω + 1)+(ω + 1) = ω2 and the product a · b = ω3+1 =

(ω3+ω+1)+ω = ω. It should be noted that an alternative, easier way to obtain

the product of a and b is to consider the power representation of a and b yielding,

a · b = ω5 · ω3 = ω8 = ω7+1 = ω. Therefore, the polynomial representation is

more suitable when it comes to additions and the power representation is more

suitable when it comes to multiplications.

The notion of polynomials (including the notion of primitive polynomials)

exists in the same way for composite finite fields as it exists for prime finite fields:

the only difference is that their coefficients are elements over GF (pm) instead of

GF (p). For example, the polynomial h(x) = x2+x+ω2, is a primitive polynomial

over GF (4). Consequently, h(x) can be alternatively represented in the form of a

tuple (or sequence) in the form [1 1 ω2], or furthermore, as soon as the elements

of GF (4) may be expressed as vectors over GF (2) the polynomial may also be

written as a row of column vectors (also called a vector sequence), where each

column vector represents an element of GF (4):

[
0
1

0
1

1
1

]

As mentioned before, primitive polynomials over GF (q) are particularly im-

portant since they are the key ingredient for the generation of q-ary pseudo-

random sequences, with q = pm. However, we need to underline that tables of

primitive polynomials can be easily found in the literature either only for small

values of m, or just for prime finite fields. On the other hand, producing all the

possible primitive polynomials for any degree over all possible extension fields

is an extremely complicated and time consuming task. In section §3.3.1 we are

going to review a method for the generation of PRSs over composite finite fields
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GF (pm), without the need of primitive polynomials over the extended finite field,

but based on a PRS over the corresponding prime field GF (p).

After establishing the basic properties of prime and composite finite fields,

we may now proceed to the generation process and definition of the properties of

PRSs.

3.3 Pseudo-random sequences: generation meth-

ods and properties

Pseudo-random sequences, also known as Pseudo-Noise, Maximum Length Regis-

ter Shift or m-Sequences, are deterministically constructed sequences of elements

over a prime or extended finite field GF (q), of a length qn − 1, where n ∈ N.

In what follows we are first going to present a practical method of generating

pseudo-random sequences over any type of prime or composite finite field, for

any degree n. Then we are going to present the properties of pseudo-random

sequences (directly resulting from their generation method), as well as tools that

allow the quantification of these properties.

3.3.1 Generation of pseudo-random sequences: a method

based on shift-registers

The generation of pseudo-random sequences over GF (q), where q = pm with p

prime and m ∈ N, is based once more on a shift-register type, similar to the one

used in section §3.2.3 for the generation of a composite finite field. The general

form of such a register is shown in figure 3.3.

Initializing the feedback branches following the coefficients hk, k = 0, 1, ...,m

of a degree m primitive polynomial h(x) = xm + hn−1x
m−1 + · · · + h1x + h0 ∈

GF [q, x] and initializing the register to any state except from [0, 0, ..., 0︸ ︷︷ ︸
ntimes

], at each

clock tick k, the element stored in the unit a1 exits the system generating the kth

element of the pseudo-random sequence, Seqout(k). The fact that the polynomial

h(x) is primitive guarantees that the register will periodically return to the same
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-hm 1 -h1 -h0

am am-1 a1

hm-1 h1 h0

O t tOutput

Figure 3.3: Shift register generating a sequence with elements from GF (q) using

a primitive polynomial h(x) = xm + hn−1x
m−1 + · · ·+ h1x+ h0 ∈ GF [q, x].

state with a period of k = qn − 1 ticks, thus leading to the creation of a pseudo-

random sequence with length Lseq = qn − 1.

Addition

+ 0 1 ! !2

0 0 1 ! !2

1 1 0 !2 !

! ! !2 0 1

!2 !2 ! 1 0

(a) Addition rules over GF (4).

Multiplication

! 0 1 ! !2

0 0 0 0 0

1 0 1 ! !2

! 0 ! !2 1

!2 0 !2 1 !

(b) Multiplication rules over

GF (4).

Figure 3.4: Mathematical operations in GF (4), based on the primitive polynomial

h1(x) = x2 + x+ 1,∈ GF [2, x].

As an example, we consider the generation of a pseudo-random sequence over

GF (4), of a length 42 − 1 = 15. First, we need to generate the finite field

GF (4) and for this we need a primitive polynomial of degree 2 over GF (2). From

tables we find that the only primitive polynomial of degree 2 over GF (2) is the

polynomial h1(x) = x2 + x + 1. Based on h1(x), and following the shift-register

procedure described in section §3.2.3, we can generate the composite finite field

GF (4) = {0, ω0, ω1, ω2} = {0, 1, ω, ω + 1}. Furthermore, for convenience we also

construct the addition and multiplication tables shown in figures 3.4a and 3.4b

respectively.
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Next, for the generation of the pseudo-random sequence of length 42− 1 = 15

we need a primitive polynomial of degree 2 over GF (4). From tables, we find such

a primitive polynomial h2(x) = x2 + x + ω2 and we construct the corresponding

shift-register, shown in figure 3.5a. The generated sequence Seqout is shown in

table of figure 3.5b.

a
2

a
1

-!2

(a) Shift register for the generation of

a 15-long sequence over GF (4).

State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a2 0 !2 !2 1 !2 0 ! ! !2 ! 0 1 1 ! 1 0 !2

a1 1 0 !2 !2
1 !2 0 ! ! !2 ! 0 1 1 ! 1 0

Seqout " 1 0 !2 !2 1 !2 0 ! ! !2 ! 0 1 1 ! 1

(b) Successive states of the shift register.

Figure 3.5: Generation of a quaternary sequence of a length Lseq = 15.

The method described above provides a way of generating a q−ary PRS of

a length qn − 1 given a primitive polynomial over GF (q) of degree n, where in

the general case q = pm with p a prime number and m ∈ N. However, such

a primitive polynomial is not be always available from tables, especially when

m and n are high1. In the following we review the method proposed in [68] for

the generation of pseudo-random sequences of a length qn − 1 over a composite

field GF (q = pm) for any positive value of m or n, provided that we already

have a primitive polynomial of degree n over only the prime field GF (p). This is

particularly useful in our case since we usually need to generate pseudo-random

1For example, the generation method used in http://theory.cs.uvic.ca/gen/poly.html re-

groups several tables of the literature but it only provides primitive polynomials for a composite

field of up to GF (8) (m ≤ 3), while n ≤ 64.
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sequences with 2m levels, for modulation formats like QPSK, 8-PSK, 16-QAM, 64-

QAM etc and primitive polynomials over GF (2), as GF (2) has been extensively

studied in the past, they are generally available even for up to very high orders.

In the proposed method, in order to generate a PRS of a length qn − 1 over

the composite finite field GF (q) = GF (pm), we first generate a pseudo-random

sequence of a length pm·n − 1 over the prime finite field GF (p), using a primitive

polynomial of degree (m · n) over GF (p) and the method described in section

§3.3.1. Then, the pseudo-random sequence d over GF (pm) can be represented as

a vector sequence by interleaving m shifted versions of the initial sequence over

GF (p).

More precisely, given a primitive polynomial h(x) of degree (m·n) over GF (p),
and its associated pseudo-random sequence c of a length pm·n − 1 over GF (p), it

can be show that the pseudo-random sequence d of a length pm·n−1 over GF (pm)

can be expressed in the polynomial form:

d =
m−1∑

j=0

γjT z·kjc (3.4)

where γ is a primitive element of GF (pm), T ic indicates a left shift of c by i

elements, z is a decimal number defined as

z =
pm·n − 1

pm − 1
(3.5)

and ki, 1 ≤ i ≤ m − 1 are multiplicative shift factors, calculated from the

following two equations:

γkm−i = bm

[
i∑

j=1

hm−i+jγ
j

]
, i= 1, 2,...,m− 1 (3.6)

bm =

{
γ

(q−2)(qm−1)
q−1 , q and m odd or q even

γ
(q−3)(qm−1)

2(q−1) , q odd and m even
. (3.7)

As an example, we calculate the shift factors needed for the generation of an

8-ary sequence with a length 82−1 = 23·2−1 = 63, thus p = 2, m = 3 and n = 2.

First, we need to generate the field GF (8) by using a primitive polynomial of

degree 3 over GF (2). Finding from tables the primitive h1(x) = x3 + x2 + 1 we
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generate the extension field GF (8) that is the same as the one shown in figure

3.2. Secondly, we need to generate a binary pseudo-random sequence of length

22·3 − 1 = 26 − 1 = 63. For this we chose a primitive polynomial of degree 6, say

h2(x) = x6 + x + 1 and following the procedure described in section §3.3.1 we

generate the sequence

c = [100000100001100010100111101000111001001011011101100110101011111]

Next we calculate z from equation (3.5), z = 26−1
23−1

= 63
7
= 9 and, finally, we

calculate the shift factors ki for i = 1, 2. Using equation (3.7) we get b3 = γ0 = 1

and substituting b3 in equation (3.6) we get γk2 = h3γ = γ ⇒ k2 = 1, γk2 =

h2γ + h3γ
2 = γ + γ2 = γ6 ⇒ k1 = 6. Consequently, from equation (3.4) we get

d = c+ γT 54c+ γ2T 9c, or equivalently

d =




100000100001100010100111101000111001001011011101100110101011111
101011111100000100001100010100111101000111001001011011101100110
001100010100111101000111001001011011101100110101011111100000100




or furthermore, by replacing the binary columns with their decimal equivalent

we get the 8-ary PRS

d = [603122632304511341402755425201677217105366156507433573706244764]

Summing up, we have presented a global method for the generation of pseudo-

random sequences over any finite field, as well as a method for the generation

of PRSs over composite finite fields, with the prerequisite generation of a PRS

over the prime finite field. In the next section we are going to review the most

important properties that manifest the importance of pseudo-random sequences..

3.3.2 Properties of pseudo-random sequences

As mentioned in the introduction, PRSs have been extensively studied primarily

because of their two interesting properties: the two-level, almost ideal1, autocor-

1As discussed in section §2.1.4.1, AWGN is defined to have an autocorrelation function pro-

portional to δ(t), revealing the fact that successive noise samples are, by default, not correlated

to each other. A similar property would be desirable for data sequences as we have no particular

reason to suppose there exists a correlation between time-shifted version of the sequence.
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relation function (referred to as the autocorrelation property) and the fact that

all possible sub-sequences (or tuples) of m elements (except from one) can be

“seen” within their length (referred to as the window property). PRSs have var-

ious other properties listed in [118], [75], [49] but based on the main conjecture

of [48], the two properties of autocorrelation and window are the necessary and

sufficient conditions that a sequence should satisfy to be pseudo-random.

3.3.2.1 The autocorrelation function property

The autocorrelation function R of all pseudo-random sequences should satisfy in

all cases the general condition noted by [75]:

R(τ) =

{
1 , τ = 0 (mod Lseq)

− 1
Lseq

, otherwise
(3.8)

where τ ∈ N is the discrete time variable and Lseq is the sequence length.

We can easily notice that lim
Lseq→∞

(
− 1
Lseq

)
= 0 ⇒ R(τ) → δ(τ). This last

property means that as the sequence length increases the autocorrelation function

of the sequence ideally approaches the autocorrelation function of white noise.

So far we have been talking about elements over finite fields and sequences

of such elements, usually mapping elements into decimal numbers. However, we

should underline the fact that this mapping was just a mathematical convenience

and the properties of PRSs should remain invariant, even if we chose to represent

finite field elements with colors, letters etc.

Whereas the definition of an autocorrelation function for complex signal is

trivial, the autocorrelation function of an abstract sequence of “objects” is a

quite complicated task. In general, the autocorrelation function captures the

similarity between a signal (or sequence) and a cyclically time-shifted version

of itself. When the similarity is perfect, when for instance, the shift between

the two versions of the signal is zero, the autocorrelation function is equal to 1.

Otherwise, the more the two versions are different the closer the autocorrelation

to zero. If we wanted to define the autocorrelation for an abstract sequence of

non-numeric elements c = c1c2...cn, it would look like:
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3.3 Pseudo-random sequences: generation methods and properties

R(τ) =
1

n

n∑

k=1

fR(ck, c1+(k+τ−1) mod n) (3.9)

where fR is a function quantifying the similarity between two elements of c

and the division by n is done for normalization purposes. We should note that

the definition of the function fR should normally depend on the mapping used

for the elements of the finite field.

There exist numerous definitions in the literature for the function fR over the

sequence c together with mappings of the elements over a finite field towards real

or complex values or vectors. In all cases, for the equation (3.8) to hold, fR is

required to be equal to 1 when the two elements are the same and a negative

value when the elements are different. Given a finite field GF (q = pm) with

elements e1e2...eq, some very common examples of mappings M of the elements

ei, 1 ≤ i ≤ q are:

• Mapping to integers.

MI(ek) = k − 1, 1 ≤ k ≤ q (3.10)

The result is the mapping of elements e1e2...eq over GF (q) into the integers

{0, 1, ...q − 1}. This is the mapping used so far.

• Mapping to m-vectors over GF (p).

MV (ek) =




ek1
...

ekm


 , 1 ≤ k ≤ q (3.11)

where eki, 1 ≤ i ≤ m, with 0 ≤ eki ≤ p are the coefficients from the

polynomial representation of ek over GF (p). We note that if q is a prime

number the vectors degenerate to scalars and this mapping is equivalent to

the mapping to integers.

• Mapping to complex roots of unity.

MC(ek) = exp

[
j
2π

q
(k − 1)

]
, 1 ≤ k ≤ q (3.12)
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Thus, the elements e1e2...eq are mapped towards the qth complex roots of

unity {exp(j 2π
q
· 0), exp(j 2π

q
· 1), ... exp(j 2π

q
· (q − 1))}.

The simplest and most intuitive choice is the mapping MI together with a

definition of fR as a simple multiplication, i.e:

fR,I(ei, ej) =MI(ei) ·MI(ej) (3.13)

In order to test those definitions on a sample sequence, we consider the ternary

sequence with elements over GF (3), c1 = [01220211]. Combining the equations

(3.9), (3.10) and (3.13), after a normalization for τ = 0, we get the autocorrelation

function of figure 3.6a. As we can easily notice, with the mapping MI , equation

(3.8) is not satisfied as, the autocorrelation presents a peak and moreover, the

low level is not equal to −1/8, but it is rather situated about 0.6.

On the other hand, the mapping MC appears a very promising choice as the

distance of each element from 0 is the same. Furthermore, it appears as a very

natural choice in the context of q-ary PSK modulated signals. In this case we

can define the function fR as:

fR,C(ei, ej) =MC(ei) ·MC(ej)
∗ (3.14)

where ∗ denotes the complex conjugate. We can already notice that this

definition fR succeeds in returning 1 when the elements are the same, without

any normalization, as exp(j 2π
q
k) · exp(−j 2π

q
k) = 1. Combining eqs. (3.9), (3.12)

and (3.14), we plot the resulting autocorrelation function for the sequence c1 in

figure 3.6b and, apparently, equation (3.8) is satisfied.

In order to further test the mapping (3.14), we consider the quaternary se-

quence c2 = [1033130223201121]. Applying (3.9), (3.12) and (3.14) for the se-

quence c2, we get an autocorrelation function with a real part following (3.8) (fig-

ure 3.6c), but also with an additional imaginary part that presents two discrete

peaks (figure 3.6d). Therefore, it seems that the last combination of mapping

and definition of autocorrelation function yields the desired result for the ternary

sequence but not for the quaternary sequence.

It can be shown[75], [97] that a mapping to the complex roots of unity satisfies

the condition (3.8) only for sequences over prime finite fields. On the other hand,

117



3.3 Pseudo-random sequences: generation methods and properties

this mapping fails to satisfy (3.8) for sequences over composite finite fields as it

is q = 22, as also discussed in [11] and [23]. Therefore, we conclude thatMC fails,

as well, to preserve (3.8) for all kinds of PRSs.

(a) R(τ) for c1 using the mapping MI . (b) R(τ) for c1 using the mapping MC .

(c) |R(τ)| for c2 using the mapping MC . (d) Im{R(τ)} for c2 using the mapping

MC .

Figure 3.6: Autocorrelation function for different mappings.

A mapping found to preserve the property (3.8) for all types of finite fields

(composite or prime) was proposed in [85]. This mapping uses the m-vector

mapping following (3.11) to generalize the complex root mapping following (3.12).

More precisely, it is defined for the elements over the composite (or prime) finite

field GF (q) = GF (pm) that have already been mapped following eq. (3.11) as

follows:

MCV (ek) =
(

exp
[
j 2π
p
(ek1 − 1)

]
· · · exp

[
j 2π
p
(ekm − 1)

] )
(3.15)

We can note that when q is a prime, this mapping is identical to the complex-

root mapping of eq. (3.12), whereas for composite finite fields GF (pm), the q
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elements are first mapped into complex vectors with m components, then each

component is re-mapped into a pth complex root of unity following (3.12).

For this mapping, the function fR is defined as:

fCV (ei, ej) =
1

m
MCV (ei) · {MCV (ej)

∗}T (3.16)

where ∗ denotes a complex conjugate and T denotes a matrix transposition.

It can be verified that for this definition of the autocorrelation function, equa-

tion (3.8) is satisfied for both prime and composite finite fields. In the following,

when we refer to the calculation of the autocorrelation function we will implicitly

refer to the mapping and fR definitions of equations (3.15) and (3.16).

3.3.2.2 The window property and de Bruijn sequences

Considering a pseudo-random sequence over GF (q) of qn−1 elements, the window

property (also called the “span n” property) refers to the fact that, regarding the

sequence as cyclical, within its length there can be observed all the possible tuples

(or sub-sequences) of n elements (i.e. all n-tuples) exactly once, except from one,

which is usually the tuple 00...0︸ ︷︷ ︸
n times

. In figure 3.7 we show an example of a binary

sequence of 15 symbols, where the above property can be easily confirmed.

A sequence of length qn over which all the possible n-tuples may be observed

once (including the tuple 00...0︸ ︷︷ ︸
n times

) is called a de Bruijn sequence. Given a PRS

c, we may generate its De Bruijn associate deBr(c), where the operator deBr is

defined following the prescription: “Find the longest subsequence of zeros in c and

add another zero in it”. It is obvious that the operator deBr may be also defined

for any sequence over the same finite field, not a necessarily pseudo-random one.

The inclusion of all possible m-tuples is fundamental for the accurate assess-

ment of system performance. In order to quantify this property for non pseudo-

random sequences that, as we are going to see in section §3.4, are commonly used

in system performance assessment, we define the parameter κ for an arbitrary

sequence c as follows:

κ =
|number of m− tuples seen in a deBr(c)|

|number of m− tuples in a de Bruijnsequencewith same lengthasc| (3.17)

119



3.3 Pseudo-random sequences: generation methods and properties

l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15tuple 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1

2 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1

3 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

14 0 0 0 1 1 1 1 0 1 0 1 1 0 0 114 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1

15 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1

Figure 3.7: Window property over a binary pseudo-random sequence of 24−1 = 15

elements.

.

From the above definition and the fact that PRSs have, by default, the window

property, for PRSs we have:

κ = 1 (3.18)

The problem of constructing a de Bruijn sequence is mathematically equiva-

lent to following an Euler path1 through the nodes of de Bruijn graph. It can be

shown that for an alphabet of q elements we may have NdBS possible distinct de

Bruijn sequences, with NdBS given by the relation

NdBS =
(q!)q

n−1

qn
(3.19)

In figure 3.8 we show an example of generation of a binary 16-element de

Bruijn sequence. In order to visit all the edges, one possible path is to start

from the node 000 and follow the path: [000] → [000] → [001] → [011] →
[111] → [111] → [110] → [101] → [011] → [110] → [100] → [001] → [010] →
[101] → [010] → [100] → [000]. Passing from all the edges guarantees that all

the possible 4-tuples are going to appear exactly once The De Bruijn sequence is

then formed by the label of each edge, up until reaching the initial node 000, i.e.:

cdb = [0111101100101000].

As a pseudo-random sequence contains by default all the possiblem-tuples ex-

cept from the tuple 00...0︸ ︷︷ ︸
m times

, a 0 can be manually added in the longest subsequence

1A path that visits all edges exactly once.
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3.3 Pseudo-random sequences: generation methods and properties

of 0s in order to transform the pseudo-random sequence into its De Bruijn asso-

ciate. Such a transformation is particularly common in the context of numerical

simulations using SSFM not only because we include the missing pattern 00...0︸ ︷︷ ︸
m times

in the sequence (thus creating a signal that contains all the possible degradation

patterns with respect to the physical effects of the fiber), but also because a De

Bruijn sequence has 2k elements and an FFT can be applied to speed up the pro-

cess. However, we should stress that the De Bruijn associate of a pseudo-random

sequence is no more pseudo-random, as the autocorrelation function does not

generally satisfy the equation (3.8).

0000 1

0

100 001

010

0 0

1

010

0 0 11

1 1
101

110 011

111

0

10

1

Figure 3.8: De Bruijn graph generating

a de Bruijn sequence

The inverse process is also possible.

Given a de Bruijn sequence, we can re-

move a 0 from the longest subsequence

of 0s, so that the resulting sequence

will have the same length as a pseudo-

random sequence (the pseudo-random

associate of a de Bruijn sequence).In a

similar way, however, we should under-

line that, the resulting sequence is not

necessarily a pseudo-random sequence,

i.e. the autocorrelation property is

not always satisfied. More precisely,

the de Bruijn associates of PRSs, gen-

erally form a small subgroup within

the group of all possible de Bruijn se-

quences for a given length.

In figure 3.9 we show examples of

autocorrelation functions for a PRBS sequence of length 15 (figure 3.9a), its de

Bruijn associate (figure 3.9b) and the pseudo-random associate of the de Bruijn

sequence (figure 3.9c) generated in figure 3.8. Applying eq. (3.19) for q = 2

and n = 4, we find that there exist 16 possible de Bruijn sequences. At the

same time, for a PRBS of a length 24 − 1 there exist only two distinct primitive

polynomials, which means that there are only two de Bruijn sequences out of 16,
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for which, their pseudo-random associates also have the autocorrelation property.

cdb = [0111101100101000] is one of those sequences, since the autocorrelation

function of its pseudo-random associate does not satisfy the condition (3.8).

For reasons of completeness, we note that there exist sequences having the

property (3.8) but not the property (3.18). One example of such a case comes

up when constructing the sequence of transitions of a PRS. The sequence of

transitions ctr of a sequence c over GF (q) with Lseq elements is a new sequence

over GF (q2) of Lseq elements as well, with elements being the 2-tuples of each

couples of consecutive elements of the sequence c.

Consider for example the de Bruijn associate of a PRS cb = 0011110101100100.

There are 4 possible types of transitions in this sequence as the sequence is binary

and there are 4 distinct tuples of two symbols, i.e. [00], [01], [10], [11] or 0, 1, 2, 3

in decimal format. Taking the bits of the sequence in consecutive couples (also

considering the cyclic couple between the last and first bit) we construct the

sequence of the transitions cb,tr = 0133321213201200. It is easy to notice that

this sequence is not a de Bruijn sequence as half of all possible tuples of two

symbols are missing, whereas other tuples appear twice. However, the pseudo-

random associate of this sequence, rather surprisingly, has an ideal, two level

autocorrelation function, satisfying (3.8), like the autocorrelation of figure 3.9a.

(a) A PRBS sequence of

length 24 − 1 = 15.

(b) The de Bruijn associate

of the PRBS sequence.

(c) The pseudo-random as-

sociate of the de Bruijn se-

quence cdb.

Figure 3.9: Autocorrelation function for different sequences.

Summarizing this section, the two properties of autocorrelation function and

window are necessary for a sequence to be characterized as pseudo-random. As

we will see in section §3.4, for commonly used non pseudo-random sequences, κ

takes values lower than 1 as such sequences generally contain a smaller number of
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different patterns than the maximum possible. Furthermore, non pseudo-random

sequences are going to be generally studied with respect to their “quality” of

being close to a pseudo-random sequence, i.e. with respect to the “flatness” of

their autocorrelation function as well.

3.4 Non pseudo-random sequences

While PRBSs were commonly used for OOK modulation formats, it was not

until recently that the appearance of multi-level modulation has re-opened the

discussion over the used data sequences.

Especially during the first steps of the passage from OOK to multi-level mod-

ulation, multi-level sequences were constructed by interleaving binary sequences

with a random delay between them. As we have already seen in the past sections,

the resulting sequence is not necessarily pseudo-random if the shift between the

two PRBSs is not carefully chosen, i.e. the resulting sequence will not have the

properties of equations (3.8) and (3.18).

Seq. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

c
1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0

c
2 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

c
3

0 0 3 2 2 3 1 2 1 2 3 2 2 3 0

(a) Interleaving c1 and c2 to get c3.

(b) Autocorrelation function.

! 0.75

Prob{0} 0.25

Prob{1} 0.25

Prob{2} 0.25

Prob{3} 0.25

(c) κ and symbol prob-

abilities.

Figure 3.10: Characteristics of quaternary sequence c3, resulting from the multi-

plexing of two pseudo-random binary sequences c1 and c2.
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The authors of [105] studied the performance of a given link for variable

sequence lengths using, either a quaternary sequence generated by interleaving

two independent PRBSs, either an actual Pseudo-Random Quaternary Sequence

(PRQS) sequence. Numerical evidence is used in the paper to support the state-

ment that non pseudo-random sequences yield “abnormalities” in the BEP assess-

ment. One of these abnormalities is that increasing the sequence length does not

monotonically increase BEP, with BEP consequently not converging for increas-

ing sequence lengths. Equivalently, we could say that, whereas with PRSs we can

approach the “truly correct” assessment by increasing the sequence length, if our

sequence is not pseudo-random, increasing the sequence length does not necessar-

ily lead to more accurate estimations of the BEP. The reason is that increasing

the sequence length of a non pseudo-random sequence does not necessarily add

more degrading patterns in a balanced way. It is also stated in the paper that

the difference between the two estimations is reported to rise up to 10 orders of

magnitude in terms of BER.

Seq. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

c
1 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1

c
2 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0

c
3

0 2 2 3 2 3 0 1 3 3 0 3 1 0 2

(a) Interleaving c1 and c2 to get c3.

(b) Autocorrelation function.

! 0.75

Prob{0} 0.3125

Prob{1} 0.1250

Prob{2} 0.2500

Prob{3} 0.3125

(c) κ and symbol prob-

abilities.

Figure 3.11: Characteristics of quaternary sequence c3, resulting from the multi-

plexing of two pseudo-random binary sequences c1 and c2.

To illustrate the above, in figure 3.10a we show an example of two PRBSss

(c1 and c2) being multiplexed (with a random shift between them) to generate a
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quaternary sequence (c3). Even though the autocorrelation function of c3 satisfies

(3.8) and also, in the de Bruijn associate of the function all symbols have the same

probability of occurrence (marked by Prob(k), k = 0, 1, 2, 3), as shown in figures

3.10b and 3.10c, one can easily verify that not all possible tuples of two symbols

are present in the sequence, leading to κ = 0.75.

An alternative option to construct a quaternary sequence of a length qn − 1

would be to interleave the two sequences resulting from the even and odd bits of

a PRBS of a length qn+1 − 1 = 2qn − 1 1. In figure 3.11 we show the properties

of this sequence. It may be easily confirmed that c3 is not pseudo-random, some-

thing that is indicated by both the non-ideal autocorrelation function and the

κ parameter. Additionally, in this case, the probabilities of occurrence for each

symbol are not identical, which means that some symbols are more likely to be

found in the sequence than others.

Sequence Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
PRQS 0 1 1 2 1 0 3 3 1 3 0 2 2 3 0

CPRQSPrec 0 2 3 2 3 3 0 3 1 2 2 0 1 2 0

C
2PRBS 0 0 3 2 2 3 1 2 1 2 3 1 1 3 0

C2PRBSPrec 0 0 3 2 0 3 1 3 1 3 0 2 3 0 0

C
PRBS2X 0 2 2 3 2 3 0 1 3 3 0 3 1 0 2

CPRBS2XPrec 0 1 3 0 1 2 2 3 0 3 3 0 2 2 0

Figure 3.12: Quaternary sequence table with a pseudo-random quaternary se-

quence (CPRQS), a quaternary sequence from two interleaved pseudo-random bi-

nary sequences (C2PRBS), a quaternary sequence from one pseudo-random binary

sequence interleaving odd and even bits (CPRBS2X) and their corresponding pre-

coded versions CPRQSPrec, CQS2PRBSPrec and CQSPRBS2XPrec.

Finally, it is also common, especially for modulation formats incorporating

either directly a differential detection or a differentially detected coherent detec-

tion, to use precoded sequences (see section §2.1.3.3) in order to assess the system

performance. It can be easily verified that a precoding over a PRS following the

1To be precise, in order to make a quaternary sequence of qn − 1 symbols we just need the

2qn − 2 bits of the pseudo-random sequence, so we drop off a “0” from the biggest subsequence

of zeros.
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equation (2.13) (or the procedure of figure 2.4) results into a shifted version of the

same PRS and therefore, it does not degrade the pseudo-random characteristics

of the sequence. However, especially for DQPSK modulation in optical communi-

cations, a different type of precoding is commonly used (also presented in section

§2.1.3.3) that degrades the pseudo-random characteristics of the PRS.

In figure 3.12 we show some precoded versions for all the sequence types

presented so far, including a PRQS (CPRQS), a sequence made up of interleaved

PRBS (C2PRBS) and a sequence made up of interleaved odd and even bits of a

PRBS sequence (CPRBS2X). The autocorrelation, the values of the κ parameter

and the symbol probabilities are shown in 3.13, where we can see neither of the

equations (3.8) or (3.18) are satisfied. However, the autocorrelation function

seems to be closer to (3.8) in the case of CPRQSPrec while CPRBS2XPrec seems

to have the most “degraded” autocorrelation. Concerning the κ parameters, the

worse case is presented for C2PRBSPrec where almost half the patterns are missing

from the sequence, while for the same sequence even the symbol probabilities are

severely unbalanced with the symbol “0” appearing with a probability of about

43%.

! 0.75

Prob{0} 0.3125

Prob{1} 0.1250

Prob{2} 0.3125

Prob{3} 0.2500

! 0.5625

Prob{0} 0.4375

Prob{1} 0.1250

Prob{2} 0.1250

Prob{3} 0.3125

! 0.6875

Prob{0} 0.3750

Prob{1} 0.1250

Prob{2} 0.2500

Prob{3} 0.2500

(a) (b) (c)

PRQSPrecC
2PRBSPrecC 2PRBS XPrecC

Figure 3.13: Autocorrelation, κ and occurrence probability of: (a) Precoded

PRQS (CPRQSPrec) (b) precoded C2PRBS (C2PRBSPrec) (c) precoded CPRBS2X

(CPRBS2XPrec).

Summarizing this section, we have tried to quantify the pseudo-random prop-

erties of commonly used quaternary sequences and we have shown that in all
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cases, these sequences are not pseudo-random, i.e. the properties (3.8) and (3.18)

are not simultaneously satisfied (one of them can be satisfied though). We have

also shown that the operation of pre-coding systematically degrades the pseudo-

random properties of these sequences, in terms of both autocorrelation function

and resemblance to a De Bruijn sequence. Finally, in most cases the probabilities

of symbols are not equal, i.e. some symbols appear a lot more often than others.

However, up to this point, it is not clear how these “degraded” pseudo-random

properties influence the accuracy on the system performance estimation. In sec-

tion §3.5 we present numerical simulation results quantifying the difference be-

tween performance assessed via pseudo-random or non pseudo-random sequences.

3.5 Performance assessment of dispersion-managed

links by different sequence types

The system used in our numerical simulations is shown in figure 2.39. The trans-

mitted QPSK single-channel signal is modulated at R = 21.51 Gsymbols/s (or

RB = 43 Gbits/s), entering a system with variable Dispersion Management (DM),

variable injection power per span Pin and a variable number of spans Ns (the

complete variation of parameters are indicated in figure 3.14). For reasons of

simplicity, in-line ASE noise was neglected and the BER was calculated at the

receiver with OSNR = 13 dB using the noise loading technique1.

Apart from the variation of the aforementioned parameters, the propagation

was simulated for five different sequence lengths Lseq, 256, 1024, 4096 and 16384

symbols as well as four different sequence types including, the de Bruijn associate

of a pseudo-random quaternary sequence (noted as cPRQSDebr), the precoded ver-

sion of cPRQSDebr (noted as cPRQSDebrPrec), the de Bruijn associate of a quaternary

sequence created by interleaving two distinct pseudo-random binary sequences

1Dispersion-managed systems at this symbol rate and chromatic dispersion are known to

be impacted by nonlinear signal-noise interaction[21]. Nevertheless, in this investigation we

are only interested in the performance difference of fixed configurations, estimated by different

sequence types. In this context, we believe that the reached conclusions qualitatively hold in

the case of a realistic system with in-line ASE noise.
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(noted as c2PRBSDebr) and finally, the precoded version of c2PRBSDebr (noted as

c2PRBSDebrPrec).

Parameter Range

R 21.51 Gbaud

D 17 ps·nm-1·km-1

n2 2.7·10-20 m2·W-1

A 80 !m2Aeff 80 !m2

! 0.2 dB/km

Pin [-3, -1, 1, 3, 5, 7, 9] dBm

Nspans [5, 10, 15, 20]spans [ , , , ]

Dres 0 ps·nm-1

RDPS [0, 100, 1700] ps·nm-1

Dpre -(D/") - RDPS · (Nspans -1)/2

Figure 3.14: Parameter value ranges for

the simulated system

Following the analysis of section

§3.4, we already noted that the per-

formance assessment of the system

will be different following the differ-

ent sequence types and the most bal-

anced estimation will be yielded by the

PRQS. In order to quantify this differ-

ence between the performance yielded

by the pseudo-random sequence and

the other non pseudo-random sequence

types, we examine in the following this

Q2 difference as a function of φNL, for

varying sequence lengths. If we de-

note Q2
PRQSDebr the quality in terms

of Q2 yielded by cPRQSDebr, Q
2
PRQSDebrPrec the quality yielded by cPRQSDebrPrec,

Q2
2PRBSDebr the quality yielded by c2PRBSDebr and Q2

2PRBSDebrPrec the qual-

ity yielded by c2PRBSDebrPrec, we represent only the differences δQ2
PRQSPrec =

Q2
PRQSDebrPrec−Q2

PRQSDebr, δQ
2
2PRBS = Q2

2PRBSDebr−Q2
PRQSDebr and finally,

δQ2
2PRBSPrec = Q2

2PRBSDebrPrec −Q2
PRQSDebr.

In figure 3.15 we represent these differences for the configuration of Dlin =

0 ps · nm−1 · km−1 and varying sequence length. We first note that for almost all

sequence lengths and low levels of φNL, the differences between pseudo-random

and non pseudo-random sequences are not important. Indeed, for relatively low

levels of φNL, the signal is not particularly deformed and thus, as there are very

few errors, all sequences yield, more or less, the same performance. On the other

hand, for high levels of φNL important differences are observed. These differences

may reach up to 2 dBs for low sequence lengths1. However, even for high sequence

1The memory of the system is not very important for a system with full dispersion com-

pensation after every span as shown in [114], [98]. However, we should note that a sequence

length of 256 symbols may be insufficient for a correct assessment of the system performance,

even in this case
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Figure 3.15: Configuration with Dlin = 0 ps · nm−1 · km−1 (a) Lseq = 256, (b)

Lseq = 1024, (c) Lseq = 4096, (d) Lseq = 16384

lengths1, we still note differences that may approach almost 1 dB.

The observed difference is probably due to the fact that intra-channel effects,

significantly exaggerated for Dlin = 0 ps · nm−1 · km−1 (full in-line dispersion

compensation), are very sensitive to data patterns. This practically means that

increasing the sequence length has no impact on the insertion of important pat-

terns that determine the system quality. Finally, we also note that there are

oscillations of these differences between different kinds of sequences, meaning, for

instance, that one sequence type is not systematically more “optimistic” or more

“pessimistic” with respect to the other sequence types. The “period” of these

oscillations seems to be lower for low sequence lengths.

In figures 3.16 and 3.17 we plot the same differences for two other common

DM configurations of RDPS = 100 ps · nm−1 · km−1 (partial in-line dispersion

compensation) and RDPS = 1700 ps · nm−1 · km−1 (no in-line dispersions com-

pensation). Commenting on figure 3.16 we note that the differences are even more

important than the previous case of full dispersion compensation, especially for

low sequence lengths, remaining important even for the highest sequence length.

On the other hand, for the configuration of no in-line dispersion compensation

1A sequence length of 16384 symbols is definitely sufficient in this case
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Figure 3.16: Configuration with Dlin = 100 ps · nm−1 · km−1 (a) Lseq = 256, (b)

Lseq = 1024, (c) Lseq = 4096, (d) Lseq = 16384

(figure 3.16), we observe that for the highest sequence length, all sequences seem

to converge, yielding more or less the same estimation. This may be explained

from the fact that in a system like this where the energy of each symbol is scat-

tered over all the other sequence symbols, the notion of data-pattern becomes a

lot less important and using a true PRS is not crucial for the performance assess-

ment. All the observations made above are synthetically summarized in figure

3.18

Commenting on figure 3.18, we note once again that in all our simulation

results, a visual threshold of φNL at about 1 rad in observed. Below this threshold,

for all configurations, sequence types and sequence lengths, the performance has

a maximum variation of about 0.5 dB, in terms of Q2. This may be intuitively

understood from the fact that for low φNL, inter-symbol interference is not highly

nonlinear and signal degradation due to intra-channel effects is certainly not

excessive. In this case, all symbols are equally well preserved and since nonlinear

interaction between them is minimal, the symbol pattern is not so significant for

the performance assessment. At the extent where we can tolerate this maximum

“error” of about 0.5 dB, we could claim that, in this regime, PRSs are not

indispensable.

130



3.5 Performance assessment of dispersion-managed links by different

sequence types

!Q2 !Q2

0

2

0

2

Q2
PRQSDebrPrec - Q2

PRQSDebr

-2

0

0 1 2 3 4 5

-2

0

0 1 2 3 4 5

(a) (b)"NL(rad) "NL(rad)

!Q2 !Q2

Q2
2PRBSDebr - Q2

PRQSDebr

0 1 2 3 4 5 0 1 2 3 4 5

2 2

Q2
2PRBSDebrPrec - Q2

PRQSDebr
2

0

2

0

(d)(c) "NL(rad)"NL(rad)

-2

0 1 2 3 4 5

-2

0 1 2 3 4 5

Figure 3.17: Configuration with Dlin = 1700 ps · nm−1 · km−1 (a) Lseq = 256, (b)

Lseq = 1024, (c) Lseq = 4096, (d) Lseq = 16384
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Figure 3.18: General conclusions for the use of pseudo-random sequences.
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sequence types

At the other extreme, when the cumulative dispersion per span is high, the

notion of data-pattern is lost since there is a nonlinear interaction of each symbol

with a great number of other symbols and almost all sequence types yield more

or less the same performance. We should underline however that, in this latter

case, only simulations with high sequence lengths may be considered relevant.

Finally, there exists a region, that of high φNL levels and almost full disper-

sion compensation, where intra-channel nonlinearities are strong and different

sequence types yield different evaluations of the system performance, even for

very high sequence lengths. This may be equally understood by the fact that,

in this regime, few symbols strongly interact in a nonlinear way and therefore,

the pattern in this case is critical. This intuition is confirmed by the important

differences of 1− 2 dBs in terms of Q2 observed for the performance assessed by

non pseudo-random sequences in comparison to the PRQS case.

In conclusion, we see that, out of the four regimes examined, in three of them,

performance differences due to the pattern are not so important and may be

eventually tolerated. Nevertheless, there is one regime where different sequences

yield a radically different performance, even for high sequence lengths. Therefore,

it is generally preferable to use PRSs for any kind of configuration since, in any

case, they are proved to be the most balanced choice in terms of the included

patterns.
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Chapter 4

Propagation influence on the

statistics of QPSK modulated

signals in single-channel

dispersion managed systems

People take the longest possible

paths, digress to numerous dead

ends, and make all kinds of

mistakes. Then historians come

along and write summaries of

this messy, nonlinear process

and make it appear like a

simple, straight line.

Dean Kamen

4.1 Introduction

In the previous chapter we have discussed in detail the generation method and

the most important properties of multi-level pseudo-random sequences. Further-

more, we have provided theoretical insights and numerical evidence supporting

the necessity of using pseudo-random sequences for an unbiased assessment of
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the signal distortion. In this chapter, based on quaternary pseudo-random se-

quences, we numerically investigate transmission degradations in the context of

QPSK-modulated signals. Since all our simulations were held in a single-channel

configuration, we explicitly focus on intra-channel nonlinearities, considering sys-

tems with variable dispersion management. In all cases it is our objective to

de-couple as much as possible the “transmission problem” from the “reception

problem”, therefore adopting the structured view of figure 2.11. However one may

ask: “why only intra-channel nonlinearities” and “why dispersion management”?

4.2 Motivations

Understanding intra-channel nonlinearity in systems with dispersion manage-

ment, is the first step in the process of understanding transmission issues in more

complicated systems with phase modulation. In practice, one of the most pop-

ular configurations used in record experiments is QPSK modulation, with wave-

length and polarization division multiplexing[94]. In such a system, apart from

intra-channel nonlinearities (SPM), other sources of nonlinearities also fundamen-

tally limit the system performance such as XPM, FWM and Cross Polarization

Modulation (XPolM). Nevertheless, as discussed in [82], not all nonlinearities act

in the same way.

In a WDM scenario, based on the fact that we do not have access to the

data of neighboring channels, XPM may be modeled as a multiplicative noise

and FWM may be modeled as an additive noise, therefore fundamentally lim-

iting system performance. To fight against inter-channel nonlinearities, several

techniques have been proposed, such as reducing or removing in-line dispersion

1When On-Off Keying and direct detection dominated optical communications, the receiver

was rather fixed and performance improvement could uniquely come from either pure techno-

logical advances or from changes in the link design. However, with the appearance of coherent

detection and the potential of signal-processing, could also come from algorithms applied at

the received side. Therefore, separately understanding the two possible “sources of benefit” is

necessary. Furthermore, the coherent receiver itself was, for a period, a source of continuous

development as well, involving, for example, an optimization of the choice of the number of

taps needed in the Carrier Phase Estimation (CPE) unit, that could also vary as a function of

the system parameters.
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4.2 Motivations

compensation[103],[8] or temporally de-correlating channels after every span[104],

while interleaving RZ-QPSK pulses and increasing PMD has been shown to in-

crease tolerance against XPolM[16], [17]. In all above cases, performance improve-

ment is achieved by limiting the “interference” from foreign signal sources and

thus, returning in a scenario where the major source of degradation is intra-

channel nonlinearity. On the other hand, SPM degradation is not considered

as an irreversible effect since we may (at least theoretically) achieve a channel

inversion, for example by using a reverse split-step algorithm[59].

The beginning of this work roughly coincided with the re-birth of coherent de-

tection, the exploration of multi-level modulation and the potential of a Digital

Signal Processing (DSP) at the receiver, mitigating signal distortions. While

intra-channel nonlinearities in OOK systems with variable dispersion manage-

ment has been extensively studied in the past (see section §2.2.7), similar inves-

tigations in the context of PSK modulation and coherent detection were rather

rare.

Furthermore, the barrier between phase “noise” resulting from determinis-

tic degradations and phase noise coming from stochastic sources was not fully

clarified. More precisely, in system equipped with a coherent receiver, phase

fluctuations may be due to a frequency mismatch with the local oscillator, pure

AWGN noise coming from the last amplifier, phase fluctuations coming from

the interaction between AWGN and fiber nonlinearities[51],[20], pure deterministic

degradation due to fiber nonlinearities coming from neighboring channels (noted

as inter-channel nonlinearities and discussed in section §2.2.6), or finally, deter-
ministic fluctuations coming from the interaction of linear effects such as chro-

matic dispersion and Kerr nonlinearities, known as intra-channel nonlinearities

as discussed in section §2.2.7.
In this chapter, we focus on the last case, i.e. intra-channel nonlinearities.

More specifically, we present numerical simulation results, motivated by an at-

tempt to elucidate the following issues:

1. What is the “form” of the deterministic distortion, caused by intra-channel

nonlinearities? In other words, what is the form and the constellation shape
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resulting from single-channel transmission, for variable dispersion manage-

ment parameters?

2. In OOK modulation there existed criteria such as the cumulative nonlinear

phase[9], for the performance assessment of OOK systems with optimal dis-

persion management. Is this criterion valid for phase-modulated systems?

What does optimizing the dispersion management involve?

3. In OOK modulation, since information was coded only on signal amplitude,

the statistics of the signal phase were neglected. In coherent communica-

tions however, both amplitude and phase are recovered. Are there any

qualitative differences on the statistics of the two signal quadratures when

varying the dispersion management?

4. In OOK modulation there existed analytical laws[43],[67] providing “rules of

thumb” for the optimization of the dispersion map in 10 or 40 Gb/s. Are

these rules accurate for PSK modulation, and more particularly, can they

also accurately describe the behavior of the phase (instead of the amplitude)

of a signal?

5. What is the influence of parameters such as the clock recovery on system

performance? How should the clock recovery be done to maximize the

probability of a correct symbol detection?

6. What is the influence of dispersion management on the potential of specific

correction algorithms? In other words, knowing that a specific algorithm is

going to be used at the receiver, what it is the optimal dispersion manage-

ment scheme?

4.3 Simulations setup and examples

For all numerical simulation we are based on the generic system of figure 2.39,

reproduced here for convenience. In all cases we investigate the statistical prop-

erties of a QPSK signal after transmission of a single channel (λ = 1.55 µm),
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modulated at a symbol rate of R = 21.51 Gbaud, for a variable dispersion man-

agement. The numerical signal was based on the De Bruijn associate of a PRQS

with a length of either 46 = 4096 or 47 = 16384 symbols (see section §3.3.2.2 for

the generation process)1, always considering 64 samples per symbol.

Fiber In line

comp.

Pre!

comp.

x!N 1!spans

Tx

Post!

comp.

Rx

Dpre Dlin

D

Pin Dres

Figure 4.1: Dispersion managed transmission system

Concerning the dispersion management, we are based on a single-period dis-

persion map (explained in figure 2.40), varying the pre-compensation Dpre, the

residual in-line cumulative dispersion Dlin (the span length is fixed at zs =

100 km), the residual dispersion Dres, the fiber GVD parameter D, the injec-

tion power at the beginning of every span Pin and the number of spans Ns. The

variation range of these parameters is shown in figure 4.2 corresponding to about

10000 numerical simulations.

Parameter Range of values

D [4 : 4 : 24] ps·nm-1·km-1 (6 values)

Pin [-5 : 2 : 9] dBm (8 values)

Dpre [-900 : 300] ps·nm-1 (13 values)

Dlin [0 : 125] % of compensation (15 values)

N
s

[2 : 2 : 22] (11 values)

Dres [-120: 120] ps·nm-1 (13 values)

Figure 4.2: Parameter ranges for numerical simulations.

1In one case we have also used a non-Pseudo-Random (PR) sequence as it will be explicitly

indicated.
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Furthermore, in order to focus on the interplay between chromatic dispersion

and nonlinearities, we consider a scalar propagation (and thus we neglect all po-

larization effects including PMD and XPolM), amplifiers are considered flat-gain

repeaters (except from one special case), while we also consider no nonlinearities

or losses in the Dispersion Compensating Fiberss (DCFs).

Finally, in order to decouple the transmission from the reception problem,

for all numerical simulations results presented here, the reception is emulated by

an artificial extraction of the numerical samples. More precisely, suppose that

each symbol is numerically represented by the discrete complex signal s[n], with

n = 1, ...,M , withM being the number of complex samples per symbol (see figure

4.3). To emulate an idealized detection of this symbol we simply keep the complex

average of its l middle samples. For example, for l = 4 the “detected sample”

sd is given by: sd = s[M/2−1]+s[M/2]+s[M/2+1]+s[M/2+2]
4

1. Performing the reception

in such a way we also implicitly consider a sampling at the center of the symbol

slot2. In other words, having in mind the coherent detection described in section

§2.2.5.2, we consider that the received signal is described by the equation (2.175)

with ωLO = ωLO and φLO = 0, without the need to pass from a Viterbi-Viterbi

algorithm.

Furthermore, in general, transmission results in an additional phase shift of all

signal states, thus rotating the initial signal constellation. This phase shift con-

tains the stochastic component θ discussed in section §2.1.4.3.3 which is present

in systems impacted only by AWGN, corresponding to the fact that the trans-

mitter phase reference is generally unknown to the receiver due to random (or

very hard to control) medium fluctuations (stemming from PMD, for example,

changing with temperature or tension). To this last we should also add any ad-

ditional phase shift coming from the local oscillator phase φLO, an initial signal

1With such a numerical reception, we are implicitly emulating a filter with a bandwidth

Bsamp =
Nsps

l
R, where Nsps is the number of samples per symbols and R is the symbol rate. For

the example of our numerical simulations, using Nsps = 64, R = 21.51 Gbaud and l = 4 yields

Bsamp = 344.16 GHz. Although this receiver bandwidth is totally unrealistic even for modern

electronics, it allows for an unbiased view of transmission effects, eliminating any possible signal

distortions due to receiver filtering.
2Small variations, sampling at times different than the center of the pulses, will also be

considered, later in this chapter.
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phase φ0 (that may be known or controlled at the transmitter side) or the addi-

tional phase shift coming from the signal propagation of a distance L, that can be

calculated to be equal to β1 · L. Finally, as it will be discussed in more detail in

this chapter, there also appears another average phase shift component, resulting

from the interplay between chromatic dispersion and nonlinear effects, referred to

in the following as θrot. In other words, θrot is the average additional global phase

shift of a signal, for which we have numerically simulated a nonlinear propagation

using SSFM and received with a coherent detection as described above. In the

rest of this chapter, when we refer to a global phase shift we refer only to θrot,

neglecting all the other aforementioned sources of phase shift.
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Figure 4.3: Idealized coherent detection, taking the average of the real and imag-

inary part of the complex signal s[n] of each symbol.

Having knowledge of the phase shift is equivalent to considering that the re-

ceiver has a perfect knowledge of the carrier phase, or that the receiver manages

to perform a flawless CPE, similar to the detection process of section §2.1.4.3.
Although this process is quite complicated and in practice it is often linked to

a sacrifice of bandwidth (for example with the use of a PLL and a training se-

quence), for the purposes of this manuscript we simplify the analysis by calcu-

lating the parameter θrot a posteriori over all symbols of our simulated signal,

using the knowledge of the initially transmitted data sequence. In other words,

the decision may be then performed after a rotation of the coordinate system by

−θrot. In the following we will refer to this scheme as ideal coherent receiver and

to the reception as ideal coherent reception.
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Figure 4.4: Example of degraded signal after a transmission withD = 16 ps/(nm·
km), Pin = 9 dBm, Ns = 6, Dpre = 0 ps/nm, Dline = 0 ps/nm, Dres = 0 ps/nm.

However, since a knowledge of the absolute phase is in most practical cases

very hard to achieve, differential schemes are used, coding information in the

phase difference between successive symbols instead of phase levels as described

in section §2.1.4.3.4. In order to emulate this alternative receiver scheme, based

on the initially recovered numerical signal described before, we use the relation

(2.102) to construct a new signal. We note that the statistics of the new complex

signal are most possibly going to be influenced by this detection process, involv-

ing both amplitude and phase of the initial signal. We refer to this scheme as

ideal differentially-coherent receiver and to the reception as an ideal differentially-

coherent reception. In what follows, when no special reference is made we implic-

itly suppose that reception was emulated by an ideal coherent receiver. Never-

theless, we show some few typical examples for an ideal differentially-coherent

receiver, in order to illustrate the possible differences between these schemes.

In figure 4.4b we plot the received constellation and an estimation of the cor-

responding signal PDF in figure 4.4b, for a configuration with system parameters

D = 16 ps/(nm · km), Pin = 9 dBm, Ns = 6, Dpre = 0 ps/nm, Dlin = 0 ps/nm,

Dres = 0 ps/nm. The initial constellation before the transmission, is shown in

figure 2.24a, while the PDF is obtained by dividing the complex plane in small
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Figure 4.5: Example of degraded signal after a transmission with D = 4 ps ·
nm−1 · km−1, Pin = 5 dBm, Ns = 6, Dpre = −100 ps · nm−1, Dlin = 8 ps · nm−1,

Dres = −40 ps · nm−1.

boxes and counting the number of samples that fall in each box (the colorbar at

the right of the figure indicates the number of samples that fall in each box). Fur-

thermore, having knowledge of the initially transmitted data, in the constellation

of figure 4.4b, we paint with a different marker and color samples corresponding

to a different initial QPSK state, or a different initially transmitted quaternary

symbol. For example, in the De Bruijn associate of a PRQS with a length of

4096 symbols, we find 1024 symbols of each kind, i.e. 0,1,2 or 3, being eventually

mapped into 1024 complex samples for each state.

Carefully inspecting figure 4.4b, we note that the four QPSK states have

acquired a (global) phase shift θ ≃ −π
2
. We also note that the constellation

has a rather special, “bean-like” shape, extended more in terms of phase, than

in amplitude. In the literature, this constellation shape is very often attributed

to the interplay of fiber nonlinearities and amplifier noise[51]. However, it is

obvious that here, such a shape may also directly stem from the interplay between

chromatic dispersion and nonlinearities.

In figures 4.5a and 4.5b we show another constellation and PDF example for

a configuration with parameters D = 4 ps/(nm · km), Pin = 5 dBm, Ns = 6,
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Figure 4.6: Example of degraded signal after a transmission with D = 16 ps ·
nm−1 · km−1, Pin = 9 dBm, Ns = 6, Dpre = 0 ps · nm−1, Dlin = 1600 ps · nm−1,

Dres = 0 ps · nm−1.

Dpre = −100 ps/nm, Dlin = 8 ps/nm, Dres = −40 ps/nm. The constellation

shape is quite similar to the one of figure 4.4b, except that, in this case, the

amplitude quadrature is more spread that the phase quadrature.

Finally, one last configuration example is given in figures 4.6a and 4.6b for a

configuration with parameters D = 16 ps · nm−1 · km−1, Pin = 9 dBm, Ns = 6,

Dpre = 0 ps · nm−1, Dlin = 1600 ps · nm−1, Dres = 0 ps · nm−1. This corresponds

to a configuration where all in-line DCFs were removed. Commenting on figure

4.6a, in this case the constellation is similar to the Gaussian constellation of figure

2.38a, appearing like a white Gaussian noise.

Summarizing the above observations, it is evident that dispersion management

severely influences the constellation shape and PDF. Furthermore the two signal

quadratures do not appear to have the same statistics as dispersion management

varies. Even if in PSK modulation, information is coded in phase, amplitude may

also be of an importance, for example in a differential scheme where information

is recovered through an interference of two adjacent symbols.
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4.4 Statistical measures

We have seen that different dispersion maps generally result in different constel-

lation shapes. While even a simple visual observation of a constellation may be

quite informative, in order to generalize and quantify our observations for a wide

range of parameters, we perform a statistical analysis by calculation of a series

of standard deviations over quantities that may be of interest1.
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Figure 4.7: Zoom in the PDF of one state.

In figure 4.7 we zoom in just one state of the PDF previously shown in figure

4.4b. As the signal is phase-modulated, the standard deviation of the phase cal-

culated on the state samples, σΘ, provides a rough estimation of the transmission

performance. At the same time, the standard deviation of the signal amplitude,

σR provides a measurement of the degradation of the in-phase component of the

signal. In figure 4.7 we also indicate the position of the state complex average,

θrot which is the phase shift of the complex average with respect to its initial

1As the complex signal is a two dimensional quantity (real-imaginary part, amplitude-phase

etc), “degradation” may be captured by several different parameters.
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4.5 Criterion of cumulative nonlinear phase

position (π
4
) and the PDF maximum. We note here that the complex average

and the PDF maximum are close but generally not superposed.

Furthermore, using the complex average vector we plot two new axes, the

in-phase (IP) and the quadrature axis (Q), over which we decompose the com-

plex signal and calculate the corresponding standard deviations σIP and σQ. As

discussed in section §2.1.4.3.1, in the case of an AWGN (or AWGN-like) signal

degradation with a standard deviation σ = σIP = σQ, the quantities σΘ and σR

can be analytically linked to σ. For example, we have seen in the AWGN case

that σR is always smaller than σ approaching σ for high SNR levels, while σΘ is

inversely proportional to the square root of σ. However, when the degradation

is not AWGN-like, for example when σQ > σIP , σR is usually greater than σIP ,

while in cases where σQ < sigmaIP , as in the AWGN case, σR remains smaller

than (but very close, though, to) σIP
1.

Finally, noting by Nss the number of the complex samples sk of the state, we

estimate the spread of the state by the complex standard deviation σC , given by

the formula

σC =

√√√√√
Nss∑
k=1

|sk − µa|2

Nss

(4.1)

In the following we are based on the system of 2.39, varying the system pa-

rameters as defined in the table of figure 4.2. At the end of the transmission,

an ideal coherent detection is performed, as mentioned in section §4.1, and the

quality is quantified by a calculation of the five statistical quantities described

before: σR, σΘ, σIP , σQ and σC .

4.5 Criterion of cumulative nonlinear phase

Since the main particularity of the optical channel is nonlinearity, many research

efforts have been traditionally focused on assessing the system performance in

the nonlinear regime, or the right part of figure 2.37. The usual representation in

this case involves, plotting the system performance (for example, in terms of Q

1Such useful conclusions may be drawn by studying bivariate Gaussian degradation where
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factor) as a function of the injection power per span Pin, while all other system

parameters are fixed. Furthermore, it can be easily shown in this context that,

for a different number of spans Ns, we generally result in a different, distinct

curve of the system quality as a function of the injection power per span.

Nevertheless, the authors of [9] have shown in the context of OOK modulation,

that the system quality can be drawn as a function of a combined parameter

including Pin and Ns, called “cumulative nonlinear phase” or ΦNL, under the

condition of an “optimal dispersion management”. Since the system quality can

be represented as a function of ΦNL (i.e. a bijective curve of quality VS ΦNL),

this parameter may be used as a criterion to assess a system performance. ΦNL is

defined in [9] in the same way as in the equation (2.139), with the only difference

that the average power Pav is used in the place of the peak power P0, with

the quantity ΦNL being, therefore, proportional to the product Pav · Ns. The

motivation for this section is to verify the validity of this observation in the

context of single channel QPSK systems. Since systems with no in-line dispersion

compensation are becoming increasingly interesting lately, we are also separately

investigating the system performance for that particular case.

In figure 4.8a we plot the parameter σΘ as a function of ΦNL after an opti-

mization of the dispersion management parameters, i.e. Dpre, Dlin and Dres. The

system degradation (expressed in terms of σΘ in our case) is initially zero while

it increases monotonically as a function of ΦNL, as similarly verified for OOK

systems. Furthermore, quality is generally better for low dispersion fibers since

the combined effect of chromatic dispersion and nonlinearities increases for an

increasing fiber GVD parameter. In effect, the best performance (lowest σΘ) is

achieved by the fiber with D = 4 ps · nm−1 · km−1 and the worst performance is

achieved for the fiber with D = 24 ps · nm−1 · km−1, noting, however, that the

difference in performance is slowly saturating for high dispersion fibers.

In figure 4.8b on the other hand, we plot σΘ as a function of ΦNL as before,

with the only difference that only systems with no in-line dispersion compensa-

tion were considered, or equivalently, Dlin = D · Ls, where D is the dispersion

parameter of the fiber and Ls is the span length. The difference between the

two figures is that the above tendency is completely reversed, i.e. low dispersion

parameter fibers tend to yield the worst performance, while high dispersion fibers
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Figure 4.8: Curves of σΘ as a function of the system cumulative ΦNL for an

optimal dispersion management without optical filtering. The system parameters

were varied following the table of figure 4.2. After fixing a value for the chromatic

dispersion D, the optimization was separately achieved for each couple of values

(Pin, Nspans), choosing the lowest σΘ for the variable parameters Dlin (for figure

(a)), Dpre and Dres.

tend to yield the best performance. Nevertheless, we should note that the system

of figure 4.8a generally yields a higher performance compared to the case with no

in-line dispersion compensation.

In figure 4.9a, the same curves are plotted with the only difference that this

time, a 2nd order Gaussian filter with 0.31nm bandwidth is used before the ideal

coherent reception. We note that in this filtered case, similarly to OOK systems,

the degradation is non zero for ΦNL ≈ 0 rad (i.e. back-to-back), in contradic-

tion to the filter-less case. This is a result of the fact that optical filtering, in

back-to-back configuration, slightly degrades the system performance. Then, as

ΦNL increases σΘ slightly decreases, before increasing again for high values of

ΦNL. Similar conclusions as before may be also reached in the case of no in-line

dispersion compensation shown in figure 4.9b. The only remarkable difference

between figures 4.9b and 4.8b is a slightly worse performance in the filtered case

for high values of ΦNL.

The data of the curves 4.8a and 4.9a, can also be plotted in a slightly different
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Figure 4.9: Curves of σΘ as a function of the system cumulative ΦNL for an

optimal dispersion management and a 2nd order Gaussian filter with 0.31nm

bandwidth at the receiver end. The system parameters were varied following

the table of figure 4.2. After fixing a value for the chromatic dispersion D, the

optimization was separately achieved for each couple of values (Pin, Ns), choosing

the lowest σΘ for the variable parameters Dlin (figure (a)), Dpre and Dres.
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Figure 4.10: Curves of σΘ as a function of ps, fixing the nonlinear phase at

ΦNL = 2 rad, with/without optical filtering. In the second case we have used

a 2nd order Gaussian filter with 0.31 nm bandwidth. In all cases, the system

parameters vary following the table of figure 4.2.
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way, by fixing a value of ΦNL and presenting σΘ as a function of a parameter that

approximately quantifies the pulse spread, also used in [69], [27], [37] and [21]:

ps = −β2 ·R2 · Leff (4.2)

In order to compare our results with the existing literature results, in figure

4.10a and 4.10b we plot σΘ as a function of ps, with and without an optical filter.

However, in the context of our numerical investigation where the symbol rate was

fixed at 21.51 Gbaud and the GVD parameters where roughly following the GVD

values of commercial fibers, the range of ps was insufficient to cover ps the levels

presented in [37]. Nevertheless, for the explored values of ps we observe a similar

behavior.

Another parameter that could possibly have an influence on system perfor-

mance is the sampling instant. In order to explore this parameter we repeat

all previous simulations but, instead of recovering the central samples, we also

recover the samples centered at a distance of [−20, 10, 10, 20]%(symbol period)

with respect to the center of the symbol center.

In figure 4.11, we re-plot some of the curves of figure 4.8a using the same mark-

ers, for four different values of chromatic dispersion, i.e. [4, 8, 16, 24]ps/(nm ·km).

We limit our view only to relatively low values of ΦNL. Solid curves correspond

to a sampling instant at the center of the symbol period (thus reproducing the

results of figure 4.8a), while dashed curves correspond to the quality subject to

an optimization of the sampling instant as well. We can note a minor difference

between the two sets of curves and we can generally admit that, for the range

of ΦNL values presented, the differences seem higher for relatively high values

of ΦNL and low values of D. For example, we see that for D = 8ps/(nm · km)

a mediocre gain of about 0.02 rad may be claimed by optimizing the sampling

instant, for a ΦNL value around 1.5 rad1. This gain seems even less significant

as we increase the fiber dispersion, as for high dispersion values the two sets of

curves are practically superposed.

1We may get an approximate order of magnitude the impact that a σΘ = 0.2 rad may have

on a system performance by using the equations (2.81) and (2.82). Doing so, we see that while

initially σΘ = 0 and BEP = 0 (Q2(dB) = ∞), for σΘ = 0.2 rad we calculate BEP = 4 · 10−4
(Q2(dB) = 10.496).
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Figure 4.11: Influence of the sampling instant on system performance. System

parameters were varied following the table of figure 4.2, while the sampling instant

vary in the time interval [−20, 10, 10, 20]%(symbol period) with respect to the

center of each symbol.

Summing up this section, we conclude that there are no obvious qualitative

differences between OOK and QPSK systems with respect to the law concerning

ΦNL for optimized dispersion managed systems. Furthermore, optimizing the

sampling instant does not seem to provide a considerable benefit, even for strongly

dispersion managed systems with a non zero optimal residual dispersion, as it was

the case for OOK modulation1. Similar results, supporting the verification that

the law concerning ΦNL is valid for QPSK modulation, has also been reported in

[54].

However, as it is also mentioned in [54], this law is not expected to provide a

meaningful criterion for the performance assessment of highly dispersive systems

(i.e. for example, when no in-line dispersion compensation is used) and in this

case, other criterions have to be applied. In such cases, the performance may be

easily estimated, even analytically by the use of simple models[87],[26].

1Nevertheless, a different reception scheme (for example differential or coherent with a

correction algorithm) could lead to different conclusions.
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4.6 Dispersion Management Optimization and

constellation shape

4.6.1 Optimization of dispersion management for phase

and amplitude

A number studies have dealt with the problem of the dispersion management

optimization, or equivalently, the problem of finding the set of parameters Dpre,

Dlin and Dres that optimize the system performance. Papers like [67], [43] dealt

with this problem in the context of OOK modulation, providing analytic rules

for the direct calculation of the optimal pre-compensation as a function of the

residual in-line cumulative dispersion. More precisely, the law of [67] proposed

the use of a pre-compensation equal to

Dpre,1 = −D
α

· ln( 2

1 + e−α·L
)− Ns

2
Dlin (4.3)

z’

0

Pin

Distance

P
o

w
e

r

Dpre

0

P
D

cum

Figure 4.12: Signal power/cumulative dispersion as a function of the distance,

for a propagation of one span.

The idea behind this law (see figure 4.12) was the empirical observation that

after the propagation of one span in a fiber with chromatic dispersion parameter

D, the degradation cause by intra-channel nonlinearities, i.e. i-XPM and i-FWM

was minimized when the pre-compensation was set at Dpre = −D · z′, where z′ is
the power barycenter, satisfying the equation
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z′∫

0

Pine
−α·zdz =

Ls∫

z′

Pine
−α·zdz (4.4)

, with Pin being the span injection power, α the fiber attenuation and Ls is

the span length.

On the other hand, the law of [41] proposed the use of a pre-compensation

equal to

Dpre,2 = −D
α

− Ns − 1

2
Dlin (4.5)

In this latter case, the idea behind the law was the minimization of the power

fluctuations, induced by the conversion of phase to intensity. More specifically,

the small-signal conversion matrix of [112] was used, concentrating on the term

corresponding to the phase-to-intensity conversion. Then, using the integration

method of [14], the intensity fluctuations were linearly “summed up” up until the

end of the transmission.
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Figure 4.13: σΘ as a function of Dlin and Dpre. System parameters: D = 16 ps ·
nm−1 · km−1, Pin = 9 dBm, Ns = 6, Dres = 0 ps · nm−1, Dpre varying from −900

to 300 ps · nm−1 and Dlin varying from −400 up to 1600 ps · nm−1. With a solid

line the true minimum σΘ, with round markers the law of [43] and with square

markers the law of [67]. No optical filtering was performed.

Passing from OOK to PSK, as the information is coded in the phase of the

optical signal, it is interesting to investigate the validity of the former rules. In
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this section we initially investigate the validity of the above rules, against an

optimization of the measured σΘ. In figure 4.13 we illustrate an example of σΘ

evolution as a function of Dlin and Dpre for system parameters: D = 16 ps·nm−1 ·
km−1, Pin = 9 dBm, Ns = 6 and Dpre = −100 ps · nm−1, Dline = 8 ps · nm−1,

Dres = 0 ps · nm−1. As we can see, similarly to OOK, the optimum (minimum)

σΘ appear for a Dpre that can be well approximated as a function of Dlin by the

laws of [67] (noted as Dpre,1 in the figure) and [43] (noted as Dpre,2 in the figure).

To be more precise we should note while for OOK transmission eq. (4.5) seemed

to be better adapted, in our case (i.e. PSK transmission) it is eq. (4.3) that

seems to be better adapted.
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Figure 4.14: σR as a function of Dlin and Dpre. System parameters: D = 16 ps ·
nm−1 · km−1, Pin = 9 dBm, Ns = 6, Dres = 0 ps · nm−1, Dpre varying from −900

to 300 ps · nm−1 and Dlin varying from −400 up to 1600 ps · nm−1. With a solid

line the true minimum σR, with round markers the law of [43] and with square

markers the law of [67]. No optical filtering was performed.

The deformation of the amplitude is not supposed to be playing an immediate

role in the detection process when it comes for an ideal coherent detection of a

PSK signal. Nevertheless, for reasons of comparison we also show the evolution of

σR as a function of Dlin and Dpre in figure 4.14. We note that, similarly as before,

σR appears to be minimized for a value of Dpre that can be given as a function of

Dlin approximately following the laws of [67] and [43], while, once more, the law

of [67] seems to be slightly closer to the actual minimum. Furthermore, there do
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Figure 4.15: σΘ and σR plotted as a function ofDlin andDpre. System parameters:

D = 16 ps ·nm−1 · km−1, Pin = 9 dBm, Ns = 6, Dres = 0 ps ·nm−1, Dpre varying

from −900 to 300 ps · nm−1 and Dlin varying from −400 up to 1600 ps · nm−1.

With a solid line the true minimum σR, with round markers the law of [43] and

with square markers the law of [67]. Optical 2nd order Gaussian filtering was

performed before the receiver.

not appear to be any important qualitative differences between the evolution of

σΘ or σR as a function of Dlin and Dpre.

Including an optical filtering before the receiver does not qualitatively change

the conclusions reached above. Indeed, in figures 4.15a and 4.15b we plot σΘ and

σR exactly as before but, considering this time the presence of a realistic optical

filter before the receiver. It can be easily noted that one more, the optimum

values of σΘ and σR are reached for regions of Dpre and Dlin that are sufficiently

close to the values indicated by the laws of [43] and [67], while the law of [67]

always seems to be slightly closer to the actual minimum. Finally, in both cases

of σΘ or σR, qualitatively similar conclusions can be reached for other dispersion

values, combinations of Ns and Pin and Dres.

Nevertheless, it would be also interesting to see if there is an influence of the

receiver type on the optimization of the dispersion management. In the following,

we slightly modify the reception scheme from an ideal coherent detection to an

ideal differential detection, as described above.

In figure 4.16 we plot σΘ for the same configuration parameters as before,

when the reception type used is an ideal differential detection. Comparing figure
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Figure 4.16: σΘ for an ideal differentially coherent detection as a function of Dlin

and Dpre. System parameters: D = 16 ps · nm−1 · km−1, Pin = 9 dBm, Ns = 6,

Dres = 0 ps · nm−1, Dpre varying from −900 to 300 ps · nm−1 and Dlin varying

from −400 up to 1600 ps · nm−1. With a solid line the true minimum σΘ, with

round markers the law of [43] and with square markers the law of [67]. No optical

filtering was performed.

4.16 against figure 4.13 we can distinguish two basic differences that may be

interpreted in the basis of eq. (2.102). First, as expected, the global quality

is higher in the case of an ideal coherent detection compared to the case of an

ideal differential detection. This may be intuitively understood by the fact that,

in the second case, the phase reference upon which we are based to detect the

new symbol, already contains some form of “deterministic noise” because of the

interplay GVD/nonlinearities and the new “symbol” calculated from eq. (2.102)

will be based on the contributions of two noisy samples instead of one. Secondly,

although the global form of the two figures is very similar, we can distinguish a

small difference for parameter regions with Dpre close to 0 ps/nm and Dlin close

to 0 ps/nm. More precisely, for the aforementioned parameter region we observe

a slightly higher tolerance to Dlin in the differentially-coherent case compared

to the coherent case, near the region of Dlin that minimizes σΘ. In order to

illustrate this effect, in figure 4.17 we isolate just a projection of figures 4.16 and

4.13 for Dpre = −150 ps/nm. We can indeed note that in the region around
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Dlin = 0 ps/nm, the difference in terms of σΘ between the two detection types

becomes slightly higher than for other values of Dlin.
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Figure 4.17: σΘ for an ideal coherent detection (round and blue markers) and

an ideal differentially-coherent detection (square and red markers) as a function

of Dlin for Dpre = −150 ps/nm. System parameters: D = 16 ps · nm−1 · km−1,

Pin = 9 dBm, Ns = 6, Dres = 0 ps · nm−1 and Dlin varying from −400 up to

400 ps · nm−1.

An intuitive explanation of the above result, is based on the fact that for a

low value of Dlin the signal memory is low. In this case, the deterministic noise

of successive symbols may be correlated in some way and this may lead to a

reduced phase difference between two successive symbols. Similar hints about

the fact that differential detection schemes appear to outperform in some cases

the classic coherent schemes can be found in [32] and [79].

For reasons of completeness, in figure 4.18 we plot σR as a function of Dpre

and Dlin for the same configuration as before, after an ideal differential detection.

Although the absolute scale of σR values in figures 4.18 and 4.14 cannot be directly

compared to each other, we may conclude that, once more, the two cases do not

present qualitatively important changes.

The relative differences between the (independent) optimization of the sig-

nal amplitude and phase for a variable dispersion management motivates us to

investigate more on this subject. More precisely, it is interesting to verify if
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Figure 4.18: σR for an ideal differentially coherent detection as a function of Dlin

and Dpre. System parameters: D = 16 ps · nm−1 · km−1, Pin = 9 dBm, Ns = 6,

Dres = 0 ps · nm−1, Dpre varying from −900 to 300 ps · nm−1 and Dlin varying

from −400 up to 1600 ps · nm−1. With a solid line the true minimum σR, with

round markers the law of [43] and with square markers the law of [67]. No optical

filtering was performed.

the amplitude and phase vary in the exact same way as a function of the DM

parameters.

Coming back to an ideal coherent detection scheme, in order to get a better

vision on this matter, in figures 4.19a and 4.19b we plot σΘ and σR against ΦNL,

focusing on a configuration with chromatic dispersion D = 16 ps/(nm · km). In

both cases, for each value of ΦNL we retain the dispersion management parameters

that optimize either σΘ or σR. More precisely, in figure 4.19a we plot σΘ versus

ΦNL optimizing σΘ (denoted σΘ(opt σΘ)), or optimizing σR (denoted σΘ(opt σR)),

while in figure 4.19b, we plot σR versus ΦNL optimizing σR (denoted σR(opt σR)),

or optimizing σΘ (denoted σR(opt σΘ)). Comparing σΘ(opt σΘ) to σR(opt σΘ), we

see that the dispersion management schemes that optimize σΘ do not necessarily

optimize σR, something that is clearly illustrated by the peaks of σR(opt σΘ)

in figure 4.19b. Similar intuitions can be reached comparing σR(opt σR) and

σΘ(opt σR), certifying that the optimization of the dispersion management is not

exactly equivalent for both amplitude and phase.

We have already seen specific examples where constellations could have a com-
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Figure 4.19: σΘ and σR Vs ΦNL for D = 16 ps/(nm · km) and an optimized

dispersion management in terms of Dpre, Dlin and Dres.

pletely different form, following different configurations of dispersion management

or fiber type (see figures 4.4b and 4.5a). To get an better insight on the shape of

the constellation states we use the quantity Bn, defined in equation (2.72). Bn

quantifies the relative spread of the phase quadrature with respect to the spread

of the amplitude quadrature and we remind that Bn = 1 corresponds exactly

to a deformation coming from AWGN that is, therefore, symmetric for the two

Cartesian coordinates. However, when Bn > 1 the angular spread is higher than

the amplitude spread, whereas when Bn < 1 the amplitude spread is higher than

the angular spread. The parameter Aest appearing in eq. (2.72) is calculated as

the complex average over the samples of each state, while σest is calculated as

σest =
σIP+σQ

2
, where the calculation of σIP and σQ is explained in figure 4.7.

In figure 4.20a we plot Bn as a function of Dlin and Dpre. We note that

there appear clearly two regions, one on the left where Bn takes low values and

one on the right where Bn takes high values. In figure 4.20b we consider a

projection of the previous graph for Dpre = 0 ps/nm and we plot Bn for different

values of Dres as a function of Dlin. This characteristic evolution of Bn as a

function of Dlin As it is roughly the case for all tested values of Dres, Bn takes

a value close to 2.5 for very low values of Dlin, then its value is reduced, before

increasing again, passing from Bn = 2.5 for a value of Dlin,p ≃ 0ps/nm and
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Figure 4.20: Bn parameter. System parameters: D = 16 ps · nm−1 · km−1,

Pin = 9 dBm, Ns = 6, Dres = 0 ps·nm−1, Dpre varying from−900 to 300 ps·nm−1

and Dlin varying from −400 up to 1600 ps · nm−1.

following a symmetric behavior for positive values of Dlin. It can be verified

that changing Dpre, results in a similar evolution of Bn as a function of Dlin,

with the only difference that Dlin,p is moved towards higher different values, once

again, approximately following the laws of [43] and [67]. Qualitatively similar

conclusions may be reached for all other dispersion values. In section §4.7 we try

to analyze in more depth the reasons behind such peculiar constellation shapes.

4.6.2 Global phase shift

From the above sections, a question normally rising is: what does cumulative

nonlinear phase (ΦNL) really represent in dispersion managed transmission based

on PSK modulation? In other words, does this cumulative phase really exist?

Can we extract it from the received signal somehow? As shown in section §4.5,
based on the fact that ΦNL can provide a simple quantity used to assess the

system performance, can we extract other useful information by measuring this

quantity?

A preliminary answer to these questions may be given by noting that, as shown

in figure 2.25c, when nonlinear effects act alone, the central samples of each state

are being rotated by a quantity that is exactly equal to phase shift −ΦNL, given

by the equation (2.141) and using the peak power P0 for the calculation of ΦNL.
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On the other hand, we have also seen that the effect of chromatic dispersion

results in a very small negative phase shift for the center of the state as well,

calculated by the equation (2.127). However, what is the phase shift when GVD

and nonlinearities act together in a dispersion-managed system?

In this section we present numerical simulation results that attempt to answer

to this question. More specifically, we observe that received signal constellations

exhibit an average optical phase shift θrot, generally exceeding the nonlinear cumu-

lative phase. Furthermore, we the actual variation of θrot yields useful indications

for the optimization of dispersion-managed system design.

The simulations held in this section were once more based on the generic

system configuration of figure 2.39. At the transmitter, a single-channel (λ =

1.55µm) of a symbol rate R = 21.5 GBaud is generated with QPSK modu-

lation. The emitted complex signal A(t) is based on a 1024-long De Bruijn

associate of a quaternary sequence, created from the even and odd bits of a

2047-long PRBS (like the sequence CPRBS2XPrec discussed in section §3.4), con-
sidering 64 samples per symbol. The initially emitted QPSK symbols are repre-

sented by four ideal complex values s0, s2, s3, s1 with corresponding phase levels

{π/4, 3π/4,−3π/4,−π/4}. The link consists of Ns identical spans of a length

Ls = 100 km, a GVD parameter D = 16 ps.nm−1 · km−1 (no GVD slope is

assumed), an attenuation coefficient α = 0.2 dB/km, an effective area Aeff =

80 µm2, a nonlinear index n2 = 2.7 ·10−20 m2/W and a span input average power

Pin. The variable parameters are shown in figure 2.39 and their variation range

is shown in the table of figure 4.21.

Parameter ranges

Dpre : {-900 to 300} ps/nm (13 values)

Dline: {-25% to 25%} of cumulative dispersion in line fiber (11 values)

Dres: {-120 to 120} ps/nm by step of 20 ps/nm

Pin={-3 to 9} dBm (7 values)

Nsp=[5,10,15]

Figure 4.21: Variable parameter values.

Amplifiers are assumed to be noiseless flat-gain repeaters not taking into

in first place so as to focus on GVD/nonlinearity interactions, while amplifiers

159



4.6 Dispersion Management Optimization and constellation shape

adding ASE noise are considered in a second time. As discussed in , exploiting

the fact that in numerical simulations we have access to the complex field, we

extract only the central sample of each time slot, before the receiver. We then di-

vide the received extracted samples in four groups according to their initial state

(s0, s1, s2, s3) and take the average complex value of each group (µ0, µ1, µ2, µ3).

We define the average phase shift

θrot = 〈arg(µi − si)〉 , i = 0, 1, 2, 3 (4.6)

We note that as a result of the inherent SSFM process used in our simulations,

θrot includes only the phase shift caused by the interplay of GVD and Kerr effect.

In other words, with respect to the expansion of β(ω) (eq. (2.112)), θrot does not

include any possible influence of the term β0 (which is neglected) or β1 (which

is absorbed in eq. (2.142)). Finally, in order to perform a usual transmission

quality estimation, the receiver incorporates a differential detection scheme as

described in section §2.2.3.3, considering an optical filter of 2nd order Gaussian

shape with 3−dB bandwidth of 0.3 nm and balanced photo-diodes, assuming an

electrical Bessel 5th order electrical filter with a bandwidth of 0.7R GHz. The

system BER is first evaluated using a Monte-Carlo method assuming a 13 dB

constant OSNR (in 0.1 nm) in front of the receiver and is then converted to an

equivalent Q2(dB).
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Figure 4.22: θrot as a function of the product (input power)X(number of spans)

or (Pin ·Ns).

In fig. 4.22, θrot is plotted for each product Pin ·Ns, while varying the disper-

sion management parameters according to fig. 4.21 (about 1900 different config-
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urations). We can first observe that for the same value of the product N · Pin,
1900 different values of θrot are spread vertically depending on the different DM

configurations used. Furthermore, we add a straight line that corresponds to the

cumulative average nonlinear phase ΦNL due to SPM (given by eq. (2.141)) for

each value of N · Pin.
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Figure 4.23: Comparison between the variations of θrot (top) andQ
2 (bottom) as a

function of the dispersion management for a line fiber withD = 16 ps·nm−1·km−1

and three cases of input span power and distance yielding a ΦNL of about 1 rad.

As discussed in section §4.5, the best achievable transmission quality while

optimizing DM is following a unique curve as a function of ΦNL (for given fiber

GVD, modulation rate and modulation format). We note from fig. 4.22 that θrot

appears to strongly depend on dispersion management. In order to distinguish

between configurations having the same ΦNL, in fig.4.23 on the top we plot θrot

as a function of Dpre and Dlin, while at the bottom we show the corresponding

Q2 obtained after differential detection. Results are presented for three different

configurations of cumulative ΦNL values of about 1 rad and couples of launch

power, distance (Pin(dbm), Ns · Ls(km)) : (9, 500), (5, 1000) and (3, 1500). We

note that while the dependency of Q2 on the DM parameters is well-known[22],[43],

a similar dependency is observed for θrot as well. Consequently, we may con-

clude that an optimization of the dispersion management in terms of Q2 can also

roughly induce a minimization of the difference θrot − ΦNL.
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Figure 4.24: Complementary investigations around θrot for (Pin(dbm), Ns ·
Ls(km)) = (3, 1500).

However, a series of questions rise. Is a variation of θrot observed in the same

way for configurations with in-line noise? Is a variation of θrot as a function of

the DM parameters observed also observed for the propagation of a CW? And

finally, is θrot physically linked to the phase shift linked to a peak power or to an

average power, as the notion of ΦNL discussed in section §4.5? In order to address

these questions and complete our analysis we perform three additional sets of

simulation runs: one considering the same configuration as before but with the

EDFAs adding in-line noise this time, a second where we assume the propagation

of a continuous wave (CW) and a third where we assume a propagation of an

RZ-QPSK signal under noiseless conditions with the same average power as the

NRZ-QPSK tested before (but obviously with a higher peak power).

Concerning the simulation set with in-line noise, in figures 4.24a and 4.24b we

reproduce the set of figure 4.23 with P = 3 dBm and Ns · Ls = 1500 km, while

assuming noisy in-line amplifiers with realistic noise figures (NF) of 6 dB. This

new scheme yields an OSNR of 23 dB at the end of the link that we complete

with additional noise at the last amplifier in order to measure a BER in the same

conditions of total OSNR = 13 dB, as in the previous scheme without in-line

noise. Commenting on figures 4.24a and 4.24b, we can see that θrot is globally

shifted towards higher values and Q2 towards lower values for all DM cases in

comparison to the noiseless case, nevertheless preserving the relative differences

in terms of both θrot and Q2 between different DM configurations. Thus the

162



4.6 Dispersion Management Optimization and constellation shape

previous observation is still valid in the context of a transmission taking into

consideration a realistic addition of noise by the in-line amplifiers.

Concerning the second set, we have propagated only CW signals (without in-

line ASE noise) for a transmission of 500 km of fiber with 9 dBm input power.

Fig. 4.24c shows the results in terms of θrot as a function of DM parameters

as similarly presented in fig. 4.23. We note that θrot does not depend on the

dispersion management parameters for a CW and its unique value for this set

of simulations corresponds, as expected, to ΦNL = 1.168 rad. This observation

confirms that the difference between θrot and ΦNL is actually introduced by the

interplay of GVD and nonlinearities on modulated signals.
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Figure 4.25: Global phase shift θrot as a function of the dispersion management for

a line fiber with D = 16 ps ·nm−1 ·km−1 and (Pin(dbm), Ns ·Ls(km)) = (3, 1500).

Finally, for our third test, in figure 4.25, we plot θrot as a function of the

DM parameters, for the same set of parameters as before but using an RZ-QPSK

modulation this time. First, we observe that the same type of dependence of

θrot as a function of the DM parameters can be confirmed (as in 4.23 for NRZ-

QPSK). Furthermore, by observing that the absolute values of the angle θrot are

considerably higher than in the NRZ-QPSK case, we can note that, indeed, θrot

appears to be linked to the peak power and not the average power of the signal.

Coming back to NRZ-QPSK signals without the addition of in-line noise, fig.

4.26a presents the transmission quality in terms of Q2 as a function of θrot for

the 1900 DM configurations of figure 4.21, previously used for fig. 4.22, but only

for a 1500 km-long link and an input span power of 3 dBm. From fig. 4.26a we
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Figure 4.26: Relation between Q2 and ΦNL.

note that while the transmission quality decreases from Q2 = 8 dB to 3 dB, θrot

correspondingly increases from about 1 to 1.6 rad, depending on the DM used. As

a result, we may roughly assume that the higher the θrot of the link, the poorer

the transmission quality is. On the contrary, the cumulative nonlinear phase

for all these DM configurations is constant (noted ΦNL,0) and equal to about

0.9 rad as indicated by the round grey markers in fig. 4.26a. Thus, only the

knowledge of the value of ΦNL does not give any information on the optimization

of the dispersion management, whereas the relative difference between θrot and

ΦNL may do. In effect, if dispersion management is approximately optimized,

θrot − ΦNL,0 is minimized. As an intuitive insight, we suggest that θrot − ΦNL,0

may physically originate from a conversion by dispersion of intensity fluctuations

that may be minimized following a similar procedure as in [43].

Finally, fig. 4.26b gathers the results of transmission quality as a function of

θrot − ΦNL,0 for all the DM configurations, all input span powers (−3 dBm to

9 dBm), distances (500 to 1500 km) and optimal residual dispersions. It appears

that for all simulated systems in our investigation, Q2 globally decreases while

θrot − ΦNL,0 increases. In conclusion, whereas, the transmission quality in terms

of Q2 is not a bi-univocal function of θrot, we may still note that best qualities

are reached when the difference θrot − ΦNL,0 is minimized.

Nevertheless, we should underline that θrot is obtained in the context of Split-

Step Fourier simulations and its experimental estimation is still an open problem.

In effect, even using a coherent detection scheme as described in [66], the receiver

only estimates the phase difference between successive symbols and thus the ab-
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solute value of the signal phase is not retrieved. However, even if θrot cannot be

claimed to assess the absolute quality of a transmission like the BER, it remains a

physical quantity that may be given by a single straight forward calculation com-

pared to the more time consuming Monte-Carlo BER estimation. Consequently,

calculating θrot and comparing it against ΦNL (that can be found analytically),

one may easily conclude on the efficiency of a specific dispersion management

scheme.

4.7 The constellation shape based on the data

sequences carried by the signal

4.7.1 Pattern-dependent nonlinear degradation

In the previous sections we have shown that different dispersion management

schemes yield different constellation and PDF shapes, while it is clear that these

different shapes step from the different form of interplay between chromatic dis-

persion and fiber nonlinearities, as dispersion management creates different con-

ditions of interaction between different pulses. In this section we move one step

forward, splitting the incoming data sequence into small-length subsequences and

presenting the transmission results as a function of these subsequences. But be-

fore presenting the results we need to introduce the notion of equivalent subse-

quences.

In figure 4.27a we show an initially transmitted QPSK constellation with the

correspondence of symbols to phase levels, i.e. the symbol “0” is represented by

the phase level π
4
, the symbol “2” is represented by the phase level 3π

4
etc. In

figure 4.27b we classify the received samples, with respect to the data initially

carried by its m preceding and m following neighboring symbols. In this way,

for each state we form 42m neighbor-pattern groups Gi, each corresponding to

a distinct subsequence of 2m + 1 symbols. As our numerical simulations were

based on a PRQS data stream, the four states are equivalent with respect to the

transmission impairments[90]. This implies an equivalence between the groups Gi

of each state. For example, the subsequence [031] is assumed to be equivalent to

the subsequence [302] (G15 on the table of 4.27b).
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Figure 4.27: Notion of equivalent subsequences demonstrated on an initial QPSK

constellation.

Furthermore, we define the parameter ssf (for “subsequence spread factor”)

in order to quantify the pattern-dependency of transmission impairments.

ssf =

√
1

NG

NG∑
i=1

|µi − µ|2

1
NG

NG∑
i=1

σi

(4.7)

with µi and σi, i = 1, ..42m being the complex averages and standard deviations

of the Nsp complex samples belonging to the group Gi, NG being the number of

groups and µ the complex average calculated over µi. For example, for a 4096-

long sequence and m = 1, there are NG = 16 groups of equivalent subsequences

and 64 samples per group for each state.

In figure 4.28b we show a constellation example obtained for a transmission

of 6 spans over a fiber with D = 16 ps · nm−1 · km−1, Pin = 9 dBm and DM

parameters Dpre = −300 ps · nm−1, Dres = 0 ps · nm−1 and Dlin = 32 ps · nm−1

(close to full dispersion compensation), while in figure 4.28c we zoom in one of

the four equivalent QPSK states. In all cases, having an exact knowledge of the

initially transmitted sequence, we use a different marker to signify the different

subsequence groups Gi (see 4.28a). Commenting on figure 4.28c we observe that
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Figure 4.28: Transmission parameters: D = 16 ps · nm−1 · km−1, Pin = 9 dBm,

Dpre = −300 ps · nm−1, Dres = 0 ps · nm−1, Dlin = 32 ps · nm−1 · km−1. For each

group of equivalent subsequences we use the markers and colors of figure 4.28a.

samples belonging to different neighbor-pattern groups form “packets” that can

be visually distinguished from one another on the complex plane. For instance,

all samples belonging to the group G6 (101) are situated at the low left corner of

the constellation and they are practically not interfering with any other group of

samples.

On the other hand, in figure 4.29a we show the constellation for a transmis-

sion with parameters, similar as before, with the exception of the in-line residual

dispersion that this time was fixed at Dlin = 1600 ps · nm−1 (no dispersion com-

pensation). Zooming in one state (figure 4.29b), we notice that this constella-

tion is more “Gaussian-like” and samples from different neighbor-pattern groups

severely overlap. Results confirming that a “Gaussian-like” overall constellation

results in the case of uncompensated links have also been reported in [26].

From the above observations, it becomes clear that pattern-dependent degra-

dation strongly relies of the considered dispersion map.

To generalize the above observations we use the parameter ssf , given by

equation (4.7). In figure 4.30a we show the full variation of ssf as a function
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Figure 4.29: Transmission with parameters: D = 16 ps · nm−1 · km−1, Pin =

9 dBm, Dpre = −300 ps ·nm−1, Dres = 0 ps ·nm−1, Dlin = 1600 ps ·nm−1 ·km−1.

of different values of Dpre and Dlin for a system with D = 16 ps · nm−1 · km−1,

Pin = 9 dBm and Ns = 6, while we also plot in the same figure the laws of [67]

and [43]. Commenting on figure 4.30a we first note that ssf is maximal for a range

of DM parameters close to full in-line dispersion compensation. This is due to the

fact that when the in-line residual dispersion is small, the memory[98] of the system

is generally low and each symbol interferes with just a few of its neighbors, thus

revealing a particular degradation depending on the data carried by the neighbors.

On the contrary, when Dlin increases, each symbol interferes with a great number

of neighboring symbols which results in an averaging of the degradation caused

by each neighbor. The dashed line with squares corresponds to the empirical

law of [67], given by the equation (4.3), that roughly fits the numerical results.

Moreover, for values of Dpre and Dlin that follow the straight line law of [67] ssf

maximized, confirming the above-mentioned suggestion. Qualitatively similar

results are obtained for other power levels or number of spans.

In figure 4.30b we plot ssf in dB scale versus the residual dispersion per

span for a system with Pin = 9 dBm and Ns = 6 for three different fiber

chromatic dispersion parameter values (4, 8 and 16 ps ·nm−1 ·km−1) and adapted

values of pre-compensation (indicated on figure 4.30b). We note that the previous
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observation stating that ssf exhibits high values for configurations withDlin close

to 0 ps · nm−1 (full dispersion compensation) can be generalized for all values of

fiber dispersion and furthermore, ssf is higher as fiber dispersion decreases.

In configurations with a high ssf , we estimate that the benefit from algo-

rithms mitigating pattern-dependent impairments, as the one shown in [25] will

be maximal. On the contrary, this kind of algorithms may not provide an effi-

cient gain for lines with DM configurations where dispersion is not compensated

after each span. However, we should note that the above conclusions that corre-

spond to low Dlin values may be altered in WDM configurations by the nonlinear

inter-channel interactions that depend on the data of the channels. The exact

quantification of this added deterioration in comparison to the benefit from an

adapted algorithm remains to discover.

4.7.2 Most degraded subsequences

In the previous section, we have discussed the dependence of signal nonlinear

degradation upon the data patterns carried by the optical signal. More precisely

we have shown that the received signal constellations greatly vary as a function of

the different dispersion management configurations and we have concluded that

this interaction leaves a “distinct signature” in cases where the memory of the

system is low and each symbol interacts with a limited number of neighboring,
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in time, symbols. Based on the previous, a question is normally rising: which

particular subsequences are mostly degraded by the transmission in the context of

dispersion-managed QPSK systems? In other words, which are the subsequence

patterns that mainly determine the bit error probability1?

In systems based on OOK modulation, in an effort to determine the physical

mechanisms producing the errors, intra-channel nonlinear effects were classified[35]

(i.e. i-XPM or i-FWM), and notions like the “ghost pulse” were introduced[1]

in order to provide a visual representation of the reason behind the bit error

probability degradation. For example, in the last case, it was very often found

that the eye closure was caused by the energy increase of the “0” pulses and

thus, subsequences with a zero between several “1”s was most likely to yield an

error. In the context of QPSK modulation though, instead of energy pulses, the

information is coded by phase levels and errors are produced when the phase of

pulses is distorted in such a way that it is finally mistaken for the phase level of

a different state.

In this section we are interested in identifying the subsequences leading to

an increased symbol phase variance and consequently degrading the transmission

quality in the context of QPSK transmission systems. Our numerical results

indicate that these sequences severely depend on the applied DM scheme. Based

on the observations we also propose a preliminary, data-sensitive phase-correction

procedure that tends to reduce this phase variance overhead.

In figure 4.31a we plot the received constellation of one state after a trans-

mission with parameters D = 16 ps · nm−1 · km−1, Pin = 9 dBm, Dlin =

80 ps ·nm−1 · km−1, Dres = 0 ps ·nm−1, and Dpre = −500 ps ·nm−1. Once more,

the different markers represent the fact that each complex sample belongs to a

different group according to its time-neighbors, according to figure 4.28a. The

complex average of all the state samples (therefore with all groups included) is

noted by µ, whereas the complex average for each group Gi is denoted by µi.

Furthermore, we also use the phase difference

∆ϕi = arg(µi)− arg(µ) (4.8)

1In the context of OOK modulation, these subsequences were often “accused of” closing

the eye diagram.
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Figure 4.31: Constellations for a transmission with parameters: D = 16 ps·nm−1·
km−1, Pin = 9 dBm, Ns = 6, Dlin = 80 ps · nm−1 · km−1, Dres = 0 ps · nm−1

and variable Dpre. For each group i indicated by a different marker and color

(see figure 4.28a), we illustrate the complex average µi and the angular standard

deviation σi(rad).

as an indicator of the fact that samples associated with a group Gi are more

prone to yielding an error since the more a sample is far away from the state

average, the highest the probability of it being detected erroneously. Finally, we

use the phase standard deviation σΘ defined in section §4.1 over the samples of

the group Gi, denoted σi.

Noting that the nonlinear phase due to Kerr effect (ΦNL) increases in a clock-

wise manner (see figure 4.27a) we point out that in figure 4.31a the group G6 has

accumulated in average the highest ΦNL, while the group G11 has accumulated

one of the lowest ΦNL. Equivalently, we may state that ∆φ6 < 0 and ∆φ11 > 0.

In other words, if the initially transmitted symbol “0” is surrounded by two

“1”s or two “2”s (in what follows we refer to “2” and “1” as the “quadrature”

neighbors of “0”), it appears to accumulate the highest or the lowest nonlinear

phase respectively. On the other hand, in figure 4.31b we show an example of

received constellation with the same DM parameters as before, except from the

pre-compensation value which is changed to Dpre = −200 ps · nm−1. It appears
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Figure 4.32: ∆ϕi and σi as a function of Dpre for some characteristic values of

Dlin. The markers and colors used for each group of equivalent subsequences is

shown in figure 4.28a.

that this change not only influences on the overall constellation shape but it has

also reversed the relative position of the groups G11 and G6 (i.e. ∆φ6 > 0 and

∆φ11 < 0 in this case) and changed their standard deviations σ11 and σ6.

Generalizing the above observations, in figure 4.32 we plot ∆ϕi and σi as a

function of Dpre for some typical values of Dlin including full, partial or no in-line

dispersion compensation. While the samples from all 16 groups are included in

the graphs, solid lines are drawn only for the groups of symmetric neighbors, i.e.

the groups G1 (00), G6 (11), G11 (22) and G16 (33).

Commenting on figure 4.32a and focusing, for example, on ∆ϕ6, we verify

that while increasing Dpre, ∆ϕ6 is initially negative, then it vanishes and finally

it becomes positive, with ∆ϕ11 roughly following the inverse evolution. Further-

more, ∆ϕ16 initially decreases, passes from a minimum value and then increases

again, while finally ∆ϕ1 (corresponding to the group of the subsequence (000),

that is the subsequence closest to a continuous wave) experiences less variation

with respect to Dpre. In 4.32b we can also note that for a specific value of Dpre,

referred to as Dpre,X , almost all the group averages meet. Now, if we change
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Dlin from 0 to 80 ps · nm−1 (figure 4.32b), the ∆ϕi curves globally exhibit a

similar behavior, except from a change in the value of Dpre,X from about −150 to

−300 ps/nm. The evolution of Dpre,X as a function of Dlin may be approximated

by the law of [67], a law based on the reduction of intra-channel nonlinearity for

OOK systems. If we continue to increase the Dlin until 1600 ps/nm (no in-line

DCFs), we note in figure 4.32c that all ∆ϕi oscillate around 0 rad as samples

belonging to different groups are superposed, an observation also mentioned in

[92]. Finally, we emphasize on the fact that the groups G1 (00), G6 (11), G11 (22)

and G16 (33), i.e. the groups where the neighbors around the central symbol are

the same, always yield the highest and lowest values of ∆ϕi. From our full set of

results it can be confirmed that the above observation remains valid for a range

of Dpre and Dlin, about ±200 ps/nm around the values indicated by the law of

[67].

Regarding the variation of standard deviations σi for Dlin = 0 ps · nm−1

(see figure 4.32d) we note that they all follow roughly the same evolution as a

function of Dpre, exhibiting a minimum value for Dpre = Dpre,X , nevertheless

noting that when Dpre < Dpre,X , σ11 > σ6 and σ11 < σ6 for Dpre > Dpre,X . A

similar evolution can be observed for Dlin = 80 ps · nm−1 (figure 4.32e while for

Dlin = 1600 ps · nm−1 (figure 4.32f σi are globally higher than in the case with

in-line DCFs, passing however, from a minimum value Dpre ≃ −4500 ps/nm, also

following the law of [67].

The increase of σi far from Dpre,X stems from the influence of neighbors of a

higher order (or an increase in the memory of the channel[98]). In order to visualize

this influence, in figure 4.33 we consider the configuration of figure 4.31a but this

time we focus just on the groups G6 (11) and G11 (22). Zooming in each of these

groups, we use the markers of figure 4.28a to distinguish samples within the group

Gi, with different pairs of second-order neighbors this time, belonging to groups

denoted as Gi,j. For the example of figure 4.33, within the groups G6 = G6,j

and G11 = G11,j j indicates the pair of second-order neighbors and the markers

initially used for the group G6 are also used for the sub-groups G11,6 and G6,6. As

it can be shown in figure 4.33, inside the group G11 the groups G11,1 and G11,11

appear to be the least de-phased while the groups G11,6 and G11,16 appear to

be the most de-phased. Consequently, qualitatively similar conclusions reached
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Figure 4.33: Effect of second neighbors. The markers for groups Gi,j are the same

at the markers for the groups Gi shown in figure 4.28a.

for the ∆ϕi of a state, remain valid for the ∆ϕi,j of the sub-group Gi,j. The

above results lead to the generalized conclusion that symmetric neighbors of any

order lead to increased absolute values of ∆ϕi. We suggest that this may be the

result of constructive or destructive interferences of the optical waves when the

neighboring symbols have the same phase.

4.8 Conclusion

The purpose of this chapter was to numerically investigate the physical mecha-

nisms behind signal degradation in the context of single-channel/single polariza-

tion optical QPSK transmission with variable dispersion management and coher-

ent detection. In all cases, the received signal constellations are analyzed through

the standard deviations of their phase and amplitude components, after a simpli-

fied (or idealized) coherent detection, with or without the presence of a realistic

optical filter.

First, examples of degraded constellations are presented, pointing out three

characteristic forms: constellations where the amplitude component is more de-
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graded than the phase component, constellations where the phase component

is more degraded than the amplitude component and symmetric constellations,

similar to ones produced for systems impacted exclusively by white noise.

Using the statistical tools described above, we further investigated the valid-

ity of laws (or rules of thumb), developed and successfully used in the context

of OOK modulation. The first such criterion used was the criterion of cumula-

tive nonlinear phase that was found to be qualitatively valid in the context of

phase modulation as well. Furthermore, some criteria for the optimization of the

dispersion management were also investigated, with the analysis revealing that

there are not qualitative differences between OOK and QPSK either. Further-

more, following this analysis, we have also pointed out the usefulness of global

phase rotation parameter that may be used for the a posteriori optimization of

the dispersion management.

Last, zooming in degraded QPSK constellations, we have attempted to reveal

the nature of the pattern-dependent signal degradation for various dispersion

management configurations and fiber types, i.e. the degradation with respect

to the carried data. We have begun by identifying the dispersion management

schemes that yield qualitatively different regimes of pattern-dependent signal

degradation and we have introduced a useful parameter that can be exploited

in cases where a symbol-by-symbol (or Maximum A Posteriori (MAP)) detection

is performed. Furthermore, we have investigated and pointed out the data se-

quences that are mostly degraded in the context of dispersion-managed QPSK

transmission, similarly to notions formerly introduced for OOK modulation.
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Chapter 5

Conclusion

The beginning of this work coincided with radical changes in the field of optical

communications, such as the revival of coherent detection, coming with the pos-

sibility to use complex modulation and/or an adapted digital signal processing at

the receiver in an effort to mitigate signal distortions. The main objective of this

work was to study the physical effects in a nonlinear transmission, for Quaternary

Phase Shift Keying (QPSK) modulated signals, in the context of dispersion man-

aged optical links. Similar investigations have been performed in the past for

On-Off Keying (OOK) modulated, non-coherent systems and therefore, revisit-

ing this domain gives the opportunity to elucidate the differences and clarify the

motivations of using QPSK modulation.

Since high-level M -ary formats are gradually becoming omnipresent in opti-

cal communication systems, our first concern was the investigation of the data

patterns that need to be used in numerical simulations, in order to achieve an un-

biased description of the optical field degradation. Driven by the need to generate

Pseudo-Random Quaternary Sequences (PRQSs) that could be used in numeri-

cal simulations of QPSK modulated signals, in chapter §3 we have reviewed the

generation process of Pseudo-Random Sequences (PRSs) with M = pm and p a

prime number. Even though we have finally used this process to generate PRQSs,

the procedure described in chapter §3 may be used to generate multi-level PRSs

or any order that can be used in simulations involving complex modulation, with

(or without) polarization division multiplexing, such as 16-Quadrature Amplitude

Modulation (QAM), 64-QAM, Polarization-Division Multiplexing (PDM)-QPSK

176



etc. Furthermore, we have analytically described the most important properties

of PRSs and we have provided simple tools that can be used to discriminate non-

PRSs, with respect to their “pseudo-random properties”. The generation method

and properties of PRSs is based on the theory of prime and extended Galois fields.

Since this process is not described in a self-consistent way in the existing liter-

ature, our aim was to review the aforementioned generation methods and the

properties of multi-level PRSs in a systematic way. Finally, we have presented

numerical simulation results concerning the performance of QPSK systems, us-

ing either PRSs or commonly used non-PRSs, for typical choices of Dispersion

Management (DM) schemes. Based on our simulation results we have concluded

that the use of PRQSs is critical and highly recommended for a balanced esti-

mation of the system performance, especially in cases where intra-channel non-

linearities are strong.

Having established the importance of the used data sequence, in chapter §4
we have proceeded in a numerical investigation of the intra-channel nonlineari-

ties, in the context of optical links with QPSK-modulated signals and a variable

DM. Our main motivation was to understand the underlying physics responsible

for the distortion of QPSK signals, compared to the distortion of classical OOK-

modulated signals. For this we have adopted a structured view, decoupling the

problems of transmission and reception. Furthermore, aligned with this struc-

tured view, in the greatest part of our simulation results, the description of the

signal distortion is shown by a variation on the statistics of the signal quadratures,

rather than a Bit Error Rate (BER).

Concerning the choice of our research axes, our first concern was to verify that

laws, such as the laws for the optimization of the dispersion management or the

law of the cumulative nonlinear phase, previously developed for OOK-modulated

signals, hold in the case of QPSK-modulated signals as well. The basic conclusion

of this investigation was that there are no qualitative differences between QPSK

and OOK modulation with respect to the aforementioned laws. Nevertheless,

we observe that the degradation of the amplitude quadrature is generally not

similar to the degradation of the phase quadrature, while the variation of both

phase and amplitude statistics, strongly depend on the applied DM scheme. The

special constellation shape resulting from this “asymmetric degradation” of the
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signal quadratures has also been extensively investigated, having as a reference

a signal with a symmetric degradation, i.e. an Additive White Gaussian Noise

(AWGN). Finally, we have analyzed the variations on the statistics of the signal

quadratures for different DM schemes, based on the observation that the nonlinear

degradation of isolated symbols depends on the data being carried by its neighbors

(i.e. Inter-Symbol Interference (ISI)). Grouping the received samples with respect

to their neighbors and analyzing their statistics, we have also proposed a quantity

representing the relative spread of these groups of samples on the complex plane,

while we suggest that this quantity may be used as a rough indicator of the

possible benefit that a system may have from an adapted Maximum A Posteriori

(MAP) correction algorithm, as it has been recently presented by other research

teams.

Nevertheless, we need to underline that in practical systems with Wavelength-

Division Multiplexing (WDM) and/or PDM, the picture may be qualitatively dif-

ferent due to inter-channel or inter-polarization nonlinearities, as it was recently

shown by the work of many research teams. Nevertheless, it would be interesting

to analyze the relative contribution of these nonlinearities on the modification of

the statistics of the signal quadratures. Finally, an exact quantification of the pos-

sible benefit from a MAP algorithm as a function of the dispersion management

scheme, remains as well, an inspiring challenge for the future.
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Appendix A

Differential encoding and

decoding

In this appendix we review a way to formulate the differential encoding and

decoding by using a procedure involving z transform notation, as described in

[15].

At first, we describe the semi-infinite sequence (xn)∞n=0 through the power

series

X (z)
∆
=

∞∑

n=0

xnz
−n (A.1)

Following this notation, the transmitted phase sequence may be written as

Φ (z) = ϕ0 + ϕ1z
−1 + ϕ2z

−2 + · · · (A.2)

, while neglecting AWGN or any other source of signal distortion, the receiver

phase sequence is given by

Φ (z) + Θ (z) = ϕ0 + θ + (ϕ1 + θ) z−1 + (ϕ2 + θ) z−2 + · · · =
= ϕ0 + ϕ1z

−1 + ϕ2z
−2 + · · ·+ θ · (1 + z−1 + z−2 + · · ·) =

= Φ (z) + θ
1−z−1

(A.3)
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It is clear that the term θ
1−z−1 corresponds to the phase ambiguity term.

In order to eliminate this term we need to multiply the received sequence by

(1− z−1), which is achieved by the circuit shown in figure A.1a, called differential

decoder. As explained above, in practice, the differential receiver subtracts from

the phase of the current received symbol, the phase of the previously received

symbol, thus removing the phase ambiguity, except from the instant k = 0, with

the received sequence being now equal to (1− z−1) Φ (z) + θ, which shows that

the phase ambiguity is removed except from the instant k = 0 that corresponds

to the term θ. However, since the information sequence Φ (z) is multiplied by

(1− z−1), in order to recover exactly Φ (z) at the receiver, we need to multiply

the initial sequence before the transmission by 1
1−z−1 , something achieved by the

circuit of figure A.1b, called differential encoder.

X(z)
+

+

-
z-1

Y(z)=

=(1-z-1)X(z)

(a) Differential decoder: Y (z) =

X (z) − z−1X (z) =
(
1− z−1

)
·

X (z)

X(z) +

+ z-1

Y(z)
+

(b) Differential encoder: X (z) +

z−1Y (z) = Y (z) ⇔ Y (z) =

X(z)
1−z−1

Figure A.1: Differential decoded and differential encoder circuits.
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