
Numéro d'ordre : 4672

THÈSE
PÉSENTÉE À

L’UNIVERSITÉ DE BORDEAUX 1

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET D’INFORMATIQUE

Par Youssouf OUALHADJ

POUR L’OBTENTION DU GRADE DE

DOCTEUR

SPÉCIALITÉ : INFORMATIQUE

Le problème de la valeur dans les jeux
stochastiques

Soutenue publiquement le : 11 décembre 2012

Après avis des rapporteurs :

MME Christel Baier Professeur, Technische Universität Dresden
M. Jean-François Raskin Professeur, Université Libre de Bruxelles

Devant la commission d'examen composée de :

MME Christel Baier Professeur, Technische Universität Dresden Rapporteur
MME Nathalie Bertrand CR INRIA, INRIA Rennes Bretagne Atlantique Examinateur
M. Hugo Gimbert CR CNRS, LaBRI, Université Bordeaux 1 Directeur de thèse
M. Jean Mairesse DR CNRS, LIAFA, Université Paris 7 Président du jury
MME Anca Muscholl Professeur, LaBRI, Université Bordeaux 1 Directrice de thèse
M. Jean-François Raskin Professeur, Université Libre de Bruxelles Rapporteur
M. Luigi Santocanale Professeur, LIF, Aix Marseille Université Examinateur
M. Marc Zeitoun Professeur, LaBRI, Université Bordeaux 1 Examinateur

à ma famille . . .

Remerciements

Je tiens à remercier mes directeurs Hugo Gimbert et Anca Muscholl pour leur soutient tout au
long de cette thèse et bien avant au moment où j’étais étudiant en master. Anca m’a transmis son
gout pour la synthèse de contrôleur alors qu’Hugo m’a transmis sa passion pour les probabilités. Ils
m’ont patiemment guidé à travers les sujets de recherches qui m’intéressaient en me faisant confiance.
Avec eux j’ai redécouvert la notion de preuve, le pouvoir d’un exemple bien choisi et la nécessité de
faire au plus simple. J’espère avoir acquis un peu de leur rigueur scientifique, ainsi que leurs enthousi-
asme pour la recherche. Bien sur je n’oublie pas de les remercier pour leur soutient logistique et matériels.

Je voudrais aussi remercier mes rapporteurs Christel Baier et Jean-François Raskin, ils ont accepté
de prendre sur leur temps – bien qu’étant très occupés – pour relire et commenter mes travaux. Je
voudrais aussi les remercier pour leurs ponctualité au moment de rendre les rapports.

Jean Mairesse a accepté de présider mon jury de thèse et cela me fait très plaisir. Je n’oublie pas
non plus les autre membres qui ont accepté d’examiner cette thèse; Nathalie Bertrand, Luigi Santocanale
et Marc Zeitoun que je remercie doublement car il m’a donné l’envie de faire de l’informatique théorique
au moment ou j’ai suivi le cours calculabilité.

Cette thèse a était réalisée au seins de l’équipe Méthodes Formelles au LaBRI dont j’ai eu le plaisir
de faire partie et je remercie les membre de cette équipe pour leur accueil amical et sientifiquement
enrichissant. Je remercie aussi ces thésards Srivathsan, Alexender, Marc avec qui les discussion n’étaient
pas toujours scientifiques mais n’en n’étaient pas moins intéressantes.

Au moment où j’ai soumis ce manuscrit j’étais déjà en postdoc à Marseille au seins de l’équipe MoVe
du LIF, cette équipe m’a chaleureusement accueilli. Grâce à Pierre-Alain Reynier et au projet ECSPER,
j’ai pu vivre ma première expérience "postdoctorale" bien qu’étant officiellement en vie "predoctorale".
Je remercie aussi Jean-Marc Talbot pour les discussions amusantes et sujets de recherche stimulants,
Arnaud Labourel ainsi que la petite équipe de thésards Florent et Mathieu.

Avant d’en finir avec le volé scientifique, je voudrais enfin remercié Krishnendu Chatterjee pour son
accueil de 3 semaines à l’IST période durant laquelle les résultats du Chapitre 4 ont été finalisés. Je
remercie Nathanaël Fijalkow pour les discussions et les directions de recherches, ainsi que Laurent Doyen
et Soumya Paul.

Je remercie chaleureusement l’équipe administrative du LaBRI et particulièrement, Lebna, Brigitte
et Philippe pour leur gentillesse, disponibilité et surtout leur réactivité. Sans leur aide je ne pense pas
que j’aurais réussi à me sortir des rouages de l’administration.

Bien sur, une thèse ne peut être réalisé sans le support et les encouragement des amis et des proches.
Je remercie Natalia pour ces conseils et son calme, Gaël pour les parties de tennis qui ont duré des
heures et des heures et qui m’ont permis d’évacuer la frustration des théorèmes non prouvés sans oublier
Florent, Petru, Sri pour les parties de pingpong. Enfin cela va sans dire que sans l’aide, la confiance, les
encouragements de mes parents, frères et belles sœurs, jamais je n’aurais même envisagé de faire une
thèse, je voudrais aussi les remercier pour avoir organisé le pot qui fut réussite.

Résumé

La théorie des jeux est un outils standard quand il s'agit de l'étude des systèmes réactifs. Ceci est
une conséquence de la variété des modèle de jeux tant au niveau de l'interaction des joueurs qu'au
niveau de l'information que chaque joueur possède.

Dans cette thèse, on étudie le problème de la valeur pour des jeux où les joueurs possèdent une
information parfaite, information partiel et aucune information.

Dans le cas où les joueurs possèdent une information parfaite sur l'état du jeu, on étudie le
problème de la valeur pour des jeux dont les objectifs sont des combinaisons booléennes d'objectifs
qualitatifs et quantitatifs.

Pour les jeux stochastiques à un joueur, on montre que les valeurs sont calculables en temps
polynomiale et on montre que les stratégies optimales peuvent être implementées avec une mémoire
finie.

On montre aussi que notre construction pour la conjonction de parité et de la moyenne positive
peut être étendue au cadre des jeux stochastiques à deux joueurs.

Dans le cas où les joueurs ont une information partielle, on étudie le problème de la valeur pour
la condition d'accessibilité.

On montre que le calcul de l'ensemble des états à valeur 1 est un problème indécidable, on
introduit une sous classe pour laquelle ce problème est décidable. Le problème de la valeur 1 pour
cette sous classe est PSPACE-complet dans le cas de joueur aveugle et dans EXPTIME dans le cas
de joueur avec observations partielles.

Mots clés: Théorie des jeux, jeux stochastiques, automates, synthèses de contrôleur, vérification
quantitative.

Abstract

Game theory proved to be very useful in the field of verification of open reactive systems. This is
due to the wide variety of games' model that differ in the way players interact and the amount of
information players have.

In this thesis, we study the value problem for games where players have full knowledge on their
current configuration of the game, partial knowledge, and no knowledge.

In the case where players have perfect information, we study the value problem for objectives
that consist in combination of qualitative and quantitative conditions.

In the case of one player stochastic games, we show that the values are computable in polynomial
time and show that the optimal strategies exist and can be implemented with finite memory.

We also showed that our construction for parity and positive-average Markov decision processes
extends to the case of two-player stochastic games.

In the case where the players have partial information, we study the value problem for reachability
objectives.

We show that computing the set of states with value 1 is an undecidable problem and introduce
a decidable subclass for the value 1 problem. This sub class is PSPACE-complete in the case of
blind controllers and EXPTIME is the setting of games with partial observations.

Key words: Games theory, stochastic games, automata theory, controller synthesis, quantitative
verification.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Context . 2
1.3 Outline and Contributions . 3

1.3.1 Outline . 3
1.3.2 Contributions . 4

I Prequel 9

2 Markov Chains 11
2.1 Basic Concepts . 11

2.1.1 Events . 11
2.1.2 Random Variables . 11
2.1.3 Probability . 12
2.1.4 Conditional probability . 12

2.2 Asymptotic Behavior . 13
2.3 Markov Chains . 14

2.3.1 Homogeneous Markov Chains . 14
2.3.2 Markov Chains with Reward . 17

3 Markov Decision Processes 21
3.1 Introduction . 21
3.2 Markov Decision Processes and Plays . 22
3.3 Strategies and Measures . 23
3.4 Objectives and Values . 23
3.5 Reachability Objectives . 25
3.6 Tail Objectives . 27
3.7 Parity Objectives . 29
3.8 Mean-payoff and Positive-average Objectives . 31

3.8.1 Mean-payoff Objectives . 31
3.8.2 Positive average objectives . 31

II Perfect Information Setting 35

4 Multi Objectives Markov Decision Processes 37
4.1 Introduction . 37
4.2 Computing the values . 38

4.2.1 Characterizing the Almost-sure Regions . 38
4.2.2 Algorithm . 41

4.3 Implementing optimal strategies with finite memory 43
4.3.1 Existence of Finite Memory Optimal Strategies 44

x Contents

4.3.2 Sufficiency of Exponential Size Memory . 46
4.3.3 Exponential Size Memory is Necessary . 49

4.4 Solving Parity and Positive-average Objectives with lim inf semantics 51
4.5 Towards Boolean Formulae of Objectives . 52

4.5.1 Solving conjunction of Avg>0 . 52
4.5.2 Solving conjunction of lim inf . 53
4.5.3 Comparison between objectives . 56
4.5.4 Mixing lim inf and lim sup . 57

4.6 Conclusion . 59

5 Two-player Par^Avg>0 Games 61
5.1 Introduction . 61
5.2 Two-player Stochastic Games with Perfect Information 62
5.3 A Polynomial Certificate . 65

5.3.1 The Almost-sure Region . 66
5.3.2 Polynomial Size Certificate . 69
5.3.3 Checking the Certificate in Polynomial Time 71

5.4 Computing the Values . 72
5.5 Conclusion . 73

III Partial Information Setting 75

6 Probabilistic Automata 77
6.1 Introduction . 77
6.2 Playing in the Dark . 79
6.3 Emptiness Problem for Probabilistic Automata . 81

6.3.1 New Proof of Undecidability . 81
6.3.2 Automata with Two Probabilistic Transitions 83

6.4 Value 1 Problem . 86
6.4.1 Undecidability of the Value 1 Problem . 87
6.4.2 Automata with one Probabilistic Transition 88

6.5]-acyclic Probabilistic Automata . 92
6.5.1 Subset construction for]-acyclic automata . 92
6.5.2 Decidability of]-acyclic automata . 94
6.5.3 Complexity result . 99

6.6 Discussion . 100
6.7 Conclusion . 101

7 Partially Observable Markov Decision Processes 103
7.1 Introduction . 103
7.2 Partially Observable Markov Decision Processes . 104
7.3]-acyclic Partially Observable Markov Decision Processes 107

7.3.1 Iteration of actions . 110
7.3.2]-acyclic POMDP . 112

7.4 Deciding the Value 1 . 113
7.4.1 The knowledge game . 113

Contents xi

7.4.2 Proof of Theorem 7.28 . 114
7.5 Conclusion . 118

IV Conclusion and References 119

8 Conclusion 121
8.1 Summary . 121
8.2 Discussion and Open Problems . 121

8.2.1 Markov Decision Process . 121
8.2.2 Stochastic Games . 122
8.2.3 Probabilistic Automata and Beyond . 122

Bibliography 123

Chapter 1

Introduction

Contents
1.1 Background . 1
1.2 Context . 2
1.3 Outline and Contributions . 3

1.3.1 Outline . 3
1.3.2 Contributions . 4

1.1 Background

Game Theory Is the formal tool to study decision making. Quoting the Nobel prize laureate
Roger Myerson, game theory is:

�the study of mathematical models of con�ict and cooperation between intelligent ra-
tional decision-makers� [Mye91].

Although the most notable motivation for game theory is economics [NM44, Nas50], games, from a
theoretical point of view, can model a wide variety of behaviors which makes them one of the most
versatile tool. Game theoretic models were successfully used in fields ranging from biology [Smi82]
to political science [Mor94]. In result of these various applications, numerous models or type of
games were introduced.

Games' Model One of the first model of games studied is the so called matrix games, these
are games played between two players with opposite objectives. Back in the 18th century, James
Waldegrave discussed in a letter [OW96] the notion of what is now known as minmax solution
to the two players version of the game Le Her1. In the beginning of the 20th century, the french
mathematician Émile Borel [Bor21] defined the normal form of a game: a matrix representation of a
game where each entry of the matrix specifies the amount of money the second player (called Min in
this work) has to give to the first player (called Max). Borel introduced the notion of mixed strategies
these are strategies that the players adopt where they use probabilities to make their decisions. He
also conjectured the existence of mixed strategies that ensure a reward for Max no matter what
strategy Min is using. Later on, John von Neumann proved the conjecture in his famous minmax
theorem using Brouwer's fixed-point theorem [NM44].

Meanwhile, in 1913 Ernst Zermelo [Zer13] formalized the game of chess using games played on
graphs2 where the players play in turn and each one of them wants to reach a specific set of states,
theses game are known as reachability games. Zermelo, formalized the notion of winning positions
and attractor sets.

1Card game
2Each state corresponds to configuration is the chess board.

2 Chapter 1. Introduction

Another fundamental model is the one of stochastic game with states introduced by Lloyd Shap-
ley [Sha53]. Shapley introduced a model where the rules are merging the previous models. In this
new model, the players face each other in a sequence of matrix games. The current matrix game
and the actions chosen by both players decide what is the next matrix game they will have to play.

Overview of the model In the present work, we study variations of the model introduced by
Shapley where plays are either infinite or finite as in Zermelo's setting. Our goal is to design
algorithms that compute the value of states for such games.

1.2 Context

Games and Algorithms Game theory in its early days was addressed by mathematicians and
economists. Both communities were interested in problems such as the existence of different equilib-
ria and strategies that achieve those equilibria. No work was fully dedicated to the algorithmic side
of the topic. For instance, when Nash proved that every finite game has an equilibrium in mixed
strategies, the result did not mention how hard is it to compute those strategies. The same can be
said about the minmax theorem of von Neumann. The first algorithmic result on game theory was
published by Lemke [LJ64] where an algorithm for computing Nash equilibria was designed. One of
the reason that helped the development of the algorithmic side of game theory is its tight link with
computer science, e.g. automata theory and veri�cation of open reactive systems.

Automata Theory One of the most notorious result linking automata theory to games is the
one of Rabin where he proves that the emptiness of automata over infinite tree is decidable using
game theoretic techniques. A corollary of this result is the decidability of the monadic second order
theory over infinite trees [Rab69]. Many other results use the fact that parity games are positionally
determined3 [EJ91, GH82, MS85, MS95, Zie98]. An other example is the one of Ehrenfeucht-Fraïssé
games that allow to establish strict hierarchies between fragments of logics.

In general we often reduce automata theoretic problems to the problem of deciding the winner
in a particular game. For instance solving the Mostowski hierarchy for parity automata over trees
amounts to proving finite memory determinacy4 for parity distance automata over trees [CL08].

In this thesis we inspire ourself from automata theoretic techniques and solve problem on games.
In particular, we use the idea of iteration that appeared in [Sim90] to solve the limitedness problem
for distance automata. These techniques are used in Chapter 6 and Chapter 7 to solve the Value 1
problem.

Verification and Control Synthesis In computer science we are often facing the problem of
verifying whether a system, which is interacting with its environment, has the desired behavior or
not. The following problem known as Church synthesis problem is the mathematical interpretation
of the previous problem: given an Input/Output relation, decide whether there exists a circuit
that implements the relation. In general, the system we want to verify or control is modeled by
a game played over a finite graph between two players. The first player called Max is the player
that represents the controller and the second player is called Min and represents the environment.
The behavior we want the system to ensure, usually called specification, is given by a Borel set
of plays. A strategy is a policy that tells player how to play. If Max has a strategy such that

3One of the players wins the game and both players can forget the past.
4One of the players wins the game and both can play using finite memory strategy.

1.3. Outline and Contributions 3

against every strategy for Min the play belongs to the winning set, we say that Max has a winning
strategy. A winning strategy models the policy our system should follow to ensure the specification.
Moreover, if the winning strategy remembers only a finite information about the past, this strategy
can be implemented by a finite automaton. Büchi Landweber theorem [BL69] provides a solution to
the Church synthesis problems under the condition that the specification is regular. Later on this
problem was proved to be decidable under different setting, always using game techniques.

Quantitative model checking The problem of model checking [Cla08, QS82] is the following:
given a model M and a speci�cation ϕ, answer whether M satisfy ϕ. This problem is decidable
for many models and specification logics, it gives a qualitative answer. But when it comes to real
life systems, we cannot always be in the ideal situation where a system is either fully correct or
fully wrong, hence an alternative approach was developed and is now known as the quantitative
model checking. The goal of this alternative approach is to quantify how good a system is with
respect to some specification. For instance, consider the case of system that consists of requests
and replies. A natural specification for such is system is: for each request the system should send a
reply. A Quantitative formulation of this specification could be: Maximize the probability that for
each request the system should send a reply. To study the quantitative model checking problem, we
usually use the setting of stochastic models. These models can be seen as games where Max plays
against a random player that generates his plays using a coin toss, or against both the random player
and Min. In this setting, the goal of Max is to maximize the probability that the specification is
achieved and the goal of Min is to minimize this same probability.

Qualitative against quantitative analysis When studying stochastic models one can distin-
guish between two approaches. The quantitative analysis refers to the computation of values of each
state. As opposed to the qualitative approach which consists in partitioning the set of states into
the set of states from where Max wins with probability 1 and the set of states from where Max wins
with strictly positive probability.

Perfect or partial information? Another advantage of stochastic models, is that they can model
situations where Max does not have a full knowledge of its environment which is even closer to a real
life situation. In this thesis we study both settings. For the perfect information setting, we study
specifications that consist of both regular and reward objectives. And for the partial information
setting, we restrict our research to the simple reachability objective.

1.3 Outline and Contributions

1.3.1 Outline

This manuscript is divided into three parts. Part I consist of two chapters. In these chapters we
review the basic concepts and results on probability theory, Markov chains, and Markov decision
processes. Chapter 2 is where we introduce notations and theorems related to Markov chains. In
Chapter 3 we enhance the model of Markov chains with a control power to obtain Markov decision
processes. In the same chapter we review also the main tools we will use in the subsequent analysis.

Part II is dedicated to the setting of perfect information models. We study two models. The
first one addressed in Chapter 4 is Markov decision processes where the controller has to ensure
different objectives with same strategy in order to win. The second model is stochastic games. This

4 Chapter 1. Introduction

model is essentially a Markov decision processes where the controller has to face a random player
and Min. In Chapter 5, we study the algorithmic complexity of stochastic games with objectives
that consist of conjunction of winning conditions. In Part III we return to the study of Markov

Chapter 2:
Markov Chains

Chapter 3:
Markov Decision Processes

Chapter 4:
Combining Objectives

Chapter 5:
Stochastic Games

Chapter 6:
Probabilistic Automata

Chapter 7:
POMDP

Part I

Part II

Part III

Adding

control

Elaborated objectivess
Elaborated objectives

against an adversary

Reachability objectives

no information on the current state

Reachability objectives

partial information on the current state

Figure 1.1: Map of the thesis

decision process but this time, the controller has restricted knowledge about his environment. In
Chapter 6 we study probabilistic automata. A probabilistic automaton is a Markov decision process
where the controller cannot differentiate between states, hence the controller has to choose her
moves in function of time elapsed. In Chapter 7 we study a slight variation that consists in enabling
the controller to differentiate between subsets of states. In this last part we focus on reachability
objectives. Figure 1.1 illustrates the evolution and relationships between chapters.

1.3.2 Contributions

In this thesis we study the value problem for stochastic models of both perfect information and
partial information. In particular we will focus on algorithms that design strategies that ensure
value 1. The reason we focus on this problem is because of in the setting of perfect information
games with tail objectives, in order to compute the value of states, it is enough to compute the set
of states with value 1.

1.3. Outline and Contributions 5

In the case of partial information games, not only we focus on the value 1 problem but we
consider even simpler objectives. We focus on reachability objectives, the reason we concentrate on
such basic objective is that we believe that partial information games are not fully understood from
an algorithmic point view and the undecidability barrier is easily reached.

Perfect information setting In Chapter 4 we study Markov decision processes where the goal of
the controller is to satisfy combination of objectives. The first results obtained concern parity and
positive average objectives. The positive-average objective asks the long term average payoff of a
run to be strictly positive. The positive-average objective can be defined using to semantics that we
shall call lim sup and lim inf semantics. We study combination of parity and positive-average with
both semantics. When combining the parity and the positive-average objectives, one asks Max to
maximize the probability that the two objectives are satisfied. The results obtained concerning this
objective are as follows:

– A characterization of the almost-sure regions for Markov decision processes equipped with
parity and positive-average objectives with lim sup(c.f. Lemmata 4.1 and 4.2).

– We give a polynomial time algorithm that computes this region, the correctness is established
in Theorem 4.3.

– We study the complexity of optimal strategies and show that an exponential size memory is
sufficient and necessary to implement optimal strategies with lim sup. (c.f. Theorem 4.5).

– The result on the size of the memory allows us to show that the objective parity and positive-
average with lim inf semantics can be solved using same algorithm and the memory require-
ments remain unchanged (c.f results of Section 4.4).

In order to solve boolean combinations of parity and positive-average objectives, we also studied
objectives that consists of combination of different positive-average winning conditions (c.f. Sec-
tion 4.5). Such a winning condition can be seen as a conjunction of positive-averages objectives.
The result obtained are the following:

– We show in Theorem 4.16 how to solve a conjunction when all the objectives have the lim sup
semantics.

– In Theorem 4.18 we solve the conjunction when all the objectives have the lim inf semantics.

– In Proposition 4.19 we solve the conjunction when the objectives are mixing lim inf and lim sup
semantics.

The results of Chapter 4 is a joint work with Soumya Paul and were obtained independently from
the work of Krishnendu Chatterjee et al [CD11, BBC+11]. In particular a different algorithm is
presented in order to obtain Theorem 4.3. The advantage of our algorithm is that it can be easily
extended to stochastic games, whereas the approach of [CD11] breaks in that setting.

This extension is presented in Chapter 5 where we study stochastic games with parity and
positive-average objectives. We obtain the following results:

– In Section 5.3 we show that the problem of deciding whether Max has an almost-sure winning
state is in NP (c.f. Theorem 5.26).

6 Chapter 1. Introduction

– We extend the algorithm presented in Chapter 4 to the case of stochastic games, the correctness
is established in Theorem 5.27.

The result of Chapter 5 were obtained in join work with Krishnendu Chatterjee and Laurent Doyen
and are prepared for submission.

Partial information setting In Chapter 6 we turn our attention to a yet another generalization
of Markov decision processes that consists in hiding the information about the current states, hence
the controller knows the description of the system and its initial configuration, but once the execution
starts, the only knowledge of the controller is the time elapsing. This model correspond to the one
introduced by Rabin in 1963 and called Probabilistic automata. The main motivation for studying
probabilistic automata is to identify families of partial information games with computable values.
The value of an automaton corresponds to the supremum probability that a word is accepted.
Actually it is undecidable to decide whether a probabilistic automaton accepts some words with
probability greater than 1

2 or not [Paz71, MHC03a]. In Section 6.3 we focus on the emptiness
problem for probabilistic automata and obtain the following results:

– we give an alternative version of the undecidability proof of the emptiness problem for prob-
abilistic automata. The key point of this proof is the reduction to the equality problem 6.8
using the construction presented in Proposition 6.11.

– We show that the emptiness problem remains undecidable for automata with two probabilistic
transitions (c.f. Proposition 6.15).

The other problem we tackle is the value problem. Although this problem is known to be undecid-
able [Ber74, BMT77] we focus on a special case, namely the value 1 problem where one is asked
to decide whether a given automaton accepts words with probability arbitrarily close to 1. This
problem remained open since the constructions presented by Bertoni in 1977 for the value problem
excluded the value 1. The results obtained concerning this problem are as follows:

– We solve the value 1 problem and show that it is undecidable (c.f. Proposition 6.24).

– We show that the value 1 problem is undecidable even for automata with 1 probabilistic
transition (c.f. Proposition 6.25).

– In Section 6.5, we identify a family of probabilistic automata (i.e]-acyclic automata) for
which this problem turns out to be decidable. In order to define this class, we first introduce
an operation called iteration that abstract the behavior of the automaton when repeating an
action an arbitrarily large number of time. Second, we define a graph called the support graph
that abstracts the behavior of the automaton. The decidability result follows from the fact
that the automaton has value 1 if and only a subset of the set of accepting states is reachable
in the support graph.

The result of Chapter 6 were published in [GO10], and extended in a join work with Nathanaël
Fijalkow [FGO12].

In Chapter 7, we use the knowledge we acquired about probabilistic automata and we tackle the
value 1 problem for partially observable Markov decision processes. In this model, the information
about the current state is still hidden but we assign to each state a color and the controller can
only see the color of a state. Hence, if two states are colored the same way, the controller cannot
differentiate between them. Our contribution consists in defining a family of partially observable

1.3. Outline and Contributions 7

Markov decision processes for which the value 1 is decidable. In order to define this family we
first generalize the operation of iteration introduced in Chapter 6 to the case of POMDP. We
also generalized the support graph and call this new abstraction the knowledge graph. To get
the decidability result, we construct for each POMDP a perfect information game played on the
knowledge graph called the knowledge game and we show that the first player wins the knowledge
game if and only if the POMDP has value 1.

The results of Chapter 7 were obtained recently and are now prepared for submission.

Part I

Prequel

Chapter 2

Markov Chains

Contents
2.1 Basic Concepts . 11

2.1.1 Events . 11
2.1.2 Random Variables . 11
2.1.3 Probability . 12
2.1.4 Conditional probability . 12

2.2 Asymptotic Behavior . 13
2.3 Markov Chains . 14

2.3.1 Homogeneous Markov Chains . 14
2.3.2 Markov Chains with Reward . 17

In this chapter we recall basic notions and results of probability theory and Markov chain that
we will use throughout this manuscript.

2.1 Basic Concepts

2.1.1 Events

Probability theory provides a mathematical framework for the study of random phenomena. When
such a phenomenon occurs, we are interested in its outcome denoted ω. The collection of all possible
outcomes is called the sample space Ω. For technical reasons, one considers only the collections
of subsets of Ω that are closed under complementation, countable union and contain Ω. Such a
collection is called a σ-field. Let F be a σ-field, the elements of F are called events, and the couple
(Ω,F) is called a measurable space.

For example, tossing a die is a random phenomenon, the possible outcomes are ω = 1, 2, � � � , 6,
the space sample is then Ω = f1, 2, � � � , 6g, and A = f1, 3, 5g is an event. Note that Ω and ; are also
events, the former called the certain event and the latter called the impossible event. A probability
measure assigns to each event a number called its probability.

2.1.2 Random Variables

Definition 2.1 (Random variables). A random variable is an application X : Ω! E such that:

� E is countable and in this case X is called discrete,

� E = R and 8r 2 R, fω j X(ω) � rg is an event.

In the previous example of die tossing the identity function X(ω) = ω defined from Ω to
f1, 2, � � � , 6g can be taken as random variable.

For a random variable X over a measurable space (Ω,F), we denote FX the smallest sub σ-field
of F where X is a random variable.

12 Chapter 2. Markov Chains

2.1.3 Probability

The probability P(A) of an event A 2 F measures the likelihood of its occurrence. Formally,

Definition 2.2 (Probability measure). A probability measure is a mapping P : F ! R such that
for every A 2 F

1. 0 � P(A) � 1

2. P(Ω) = 1

3. 8(Ai)i2N 2 FN, P (
⋃1
i=0Ai) = limn!1P(

⋃n
i=0Ai) (i.e. P is sigma additive).

Definition 2.3 (Independence of events). Two events A and B are independent if

P(A \B) = P(A)P(B) .

Definition 2.4 (Independence of random variables). Let X : Ω! A and Y : Ω! B be two random
variables.

� If A and B are countable, then X and Y are independent if

8(a, b) 2 A�B, P (fX = ag \ fY = bg) = P (fX = ag)P(fY = bg) .

� If A = B = R, then X and Y are independent if

8(a, b) 2 A�B, P (fX � ag \ fY � bg) = P (fX � ag)P(fY � bg) .

2.1.4 Conditional probability

Let A and B be two events, the probability that A occurs given that B has occurred is called the
conditional probability and denoted P(AjB). Formally, P(AjB) is the probability of A according
to a new probability measure on the sample space Ω such that all the outcomes not in B have
probability 0. Mathematically, P(AjB) is defined for P(B) 6= 0:

P(A j B) =
P(A \B)

P(B)
.

Expectation

The expected value of a real valued random variable is the weighted average of all possible values
that this random variable can take on. The weights used in computing this average correspond to
the probabilities in case of a discrete random variable

Definition 2.5 (Expectation). Let X be a random variable over a measurable space (Ω,F), the
expected value of X denoted E[X] is the following Lebesgue integral (when it exists):

E[X] =

∫
Ω
X(ω)P(dω) .

Proposition 2.6. Let X and Y be two independent random variables, then

E[XY] = E[X]E[Y] .

Lemma 2.7 (Fatou's lemma). Let (Xn)n2N be a sequence of random variables, then

E[lim inf
n

Xn] � lim inf
n

E [Xn] .

2.2. Asymptotic Behavior 13

Conditional Expectation

For a random variableX over a measurable space (Ω,F) and let E a sub σ-field of F . The expectation
of X conditioned by E represents the expected value of X when the information available is E .
Formally,

Definition 2.8 (Conditional expectation). Let X be a random variable over a measurable space
(Ω,F) and let E be a sub σ-�eld of F . The conditional expectation of X given E denoted E[XjE] is
the only FE -measurable function that satis�es:

8E 2 E , E [E[X j E]1E]] = E[X1E] .

Proposition 2.9. Let X be a random variable over a measurable space (Ω,F) and let E be a sub
σ-�eld of F , then

E[E[X j E]] = E[X] .

2.2 Asymptotic Behavior

We turn our attention now to the way events and random variables behave in the long term, more
precisely, we consider sequences of events or random variables and study their limit.

For a given sequence of events fAngn�1, one is interested in the probability that An occurs
infinitely often in the sense that An is realized for infinitely many indices n. Borel-cantelli lemma
answers the former question, but before stating the lemma let us formalize the sentence "occurs
in�nitely often".

Definition 2.10. Let (An)n�1 be a sequence of events,

An i.o. = Anoccurs in�nitely often =
⋂
n�1

⋃
k�n

Ak .

Lemma 2.11 (Borel-Cantelli). Let (An)n�1 be a sequence of events such that

1∑
n=1

P(An) <1 .

Then
P (An i.o.) = 0 .

The following theorem draws a relation between the expectation of a random variable and its
mean value.

Theorem 2.12 (Strong law of large numbers). Let (Xn)n�1 be an i.i.d1 sequence of random variables
such that

E[jX1j] <1 .

Then

P

(
lim
n!1

1

n

n∑
i=0

Xi = E[X1]

)
= 1 .

1Independent and identically distributed.

14 Chapter 2. Markov Chains

2.3 Markov Chains

Definition 2.13 (Distribution). Let S a �nite set. Denote ∆(S) the set of probability distributions
over S,

∆(S) =

δ 2 [0, 1]S

∣∣∣∣∣ ∑
q2S

δ(q) = 1

 .

Remark 2.14. From now on, for a set S we denote δS the uniform distribution over the states of
S.

Definition 2.15 (Support). Let δ 2 ∆(S) be a distribution the support of δ denoted Supp(δ) is the
set

Supp(δ) = fs 2 S j δ(s) > 0g .

2.3.1 Homogeneous Markov Chains

Definition 2.16 (Markov chain). A Markov chain is a tupleM = (S, p), where

� S is a �nite set of states,

� p 2 [0, 1]S�S is transition a matrix with the property that the elements of each line sum up to
1.

p(s, r) denotes the probability to reach state r from state s.
Intuitively, a Markov chain models the temporal evolution of a random variable. There exists

general model of Markov chains with continuous state space, continuous time, and such that tran-
sition probabilities depends on time. In this manuscript we consider homogeneous discrete time
Markov chains. Therefore when referring to a Markov chain M, it is implicit that M is homoge-
nous discrete time Markov chain. We usually represent Markov chains by their transition graph as
depicted in Fig 2.1.

q r
0.5

0.5

1

Figure 2.1: Markov chain

Example 2.17. Consider the Markov chain depicted in Fig 2.1.

� the set of state S = fs, rg,

� the transition matrix p =

(
0.5 0.5
0 1

)
.

Given a Markov chain M, denote by Sω any infinite sequence of states in S. A cone is any
sequence of the form s0s1 � � � snSω. Given an initial state s0 2 S, we associate withM the probability

2.3. Markov Chains 15

measure Ps0 over the measurable space (Sω,F) with F the smallest σ-field generated by cones. The
measure Ps0 satisfies all the axioms of probability measure plus the axiom of cones that is

Ps0(r0r1 � � � rnSω) =

{
0 if s0 6= r0,

p(r0, r1)p(r1, r2) � � � p(rn�1, rn) otherwise .

In the sequel, we denote Si the random variable with values in S that gives the state of a Markov
chain at time i, i.e. Si(s0s1s2 � � �) = si .

Definition 2.18 (Markov properties). LetM be a Markov chain and s0 an initial state, then

Ps0(Sn = sn j S0 = s0 ^ � � � ^ Sn�1 = sn�1) = Ps0(Sn = sn j Sn�1 = sn�1) .

Definition 2.19 (Stopping time). A stopping time T with respect to a sequence of random
variable (Sn)n�0 is a random variable with values in N such that the event T = m is
fS0, � � � , Smg�measurable.

In the sequel, for a state s we denote Ts the stopping time in state s defined by

Ts = min fn 2 N j Sn = sg .

Definition 2.20 (Strong Markov). Let M be a Markov chain, T be a stopping time, and s0 be an
initial state, then

Ps0(ST+n = sn j ST+n�1 = sn�1 ^ T <1) = Ps0(Sn = sn j Sn�1 = sn�1 ^ T <1) .

Definition 2.21 (Recurrent states). LetM be a Markov chain and let s 2 S be a state ofM, s is
recurrent if for every state t 2 S we have:

Ps(9n 2 N, Sn = t) > 0 =) Pt(9m 2 N, Sm = s) > 0 .

A state of a Markov chain is either transient or recurrent.

Definition 2.22 (Closed class). Let C � S be a subset of states. C is a closed class if C is a
strongly connected and contains only recurrent states.

A Markov chain is irreducible if it is strongly connected. An alternative way to define irreducibil-
ity is to say that all states of the Markov chain belongs to the same closed class.

Example 2.23. Back to the example of Fig 2.1, the only recurrent state is state r and q is the only
transient state.

The underlying idea beyond this decomposition of states of a Markov chainM is that, every run
ofM will eventually reach a closed class and never visit transient states. This decomposition raises
two natural questions:

1. what is the mean time before reaching a given closed class C?

2. What is the upper bound of the absorption mean time?

16 Chapter 2. Markov Chains

Absorption's mean time

The mean time absorption is the mean time for a Markov chain M to reach the different closed
classes ofM.

Definition 2.24 (Absorption's mean time). Let M be a Markov chain with initial state s0. The
absorption’s mean time is the random variable with values in N de�ned as follows:

Es0 [min fn 2 N j Sn is recurrentg] .

In order to compute this time, we give a canonical representation of p the transition matrix. For
any transition matrix p let P the matrix where states of M are reordered so the transient states
come first. Hence, if T is the set of transient states and R the set of recurrent states, p is rewritten
in the following shape:

P =

(
P 0 P 00

0 P 000

)
Where P 0 2 [0, 1]T�T , P 00 2 [0, 1]T�R, and P 000 2 [0, 1]R�R. Write N the matrix (I�P 0)�1 (N exists
since the kernel of (I � P 0) is equal to 0). One can prove that N = I + P 0 + P 02 � � � . It follows that
the time to absorption is Nc where c is the column vector whose all entries are 1.

Example 2.25. Consider the Markov chain whose transition matrix is given by

0 1 2 3 4

0 1 0 0 0 0
1 0.5 0 0.5 0 0
2 0 0.5 0 0.5 0
3 0 0 0.5 0 0.5
4 0 0 0 0 1

The canonical form is then

1 2 3 0 4

1 0 0.5 0 0.5 0
2 0.5 0 0.5 0 0
3 0 0.5 0 0 0.5
0 0 0 0 1 0
4 0 0 0 0 1

A simple computation shows that the matrix N is

1 2 3

1 1.5 1 0.5
2 1 2 1
3 0.5 1 1.5

It follows that the mean time of absorption is given by the following vector3

4
3

This means that from state 1, 2, and 3 the mean time to absorption is 3, 4, and 3.

2.3. Markov Chains 17

Proposition 2.26. LetM be a Markov chain and s0 be an initial state, then

Es0 [min fn 2 N j Sn is recurrentg] � 2Q(jMj) ,

where Q is a polynomial and jMj is the description of the Markov chainM.

Proof. Using previous argument we know that the time to absorption is given by (I � P 0)�1(s0).
Hence

Es0 [min fn 2 N j Sn is recurrentg] � max
s2S
f(I � P 0)�1(s)g .

The right hand side of this equation is a rational fraction in jMj, thus there exists a polynomial Q
with degree at most jSj and whose coefficient are polynomials expression with degree at most jSj in
the coefficient of p such that

Es0 [min fn 2 N j Sn is recurrentg] � 2Q(jMj) ,

where jMj is the description of the Markov chainM.

Steady distribution

Definition 2.27. (Steady distribution) Steady distribution is a distribution π 2 ∆(S) such that:

π = πp .

This distribution always exists for homogenous Markov chains.

2.3.2 Markov Chains with Reward

Lemma 2.28 (see e.g. Theorem 1.10.2 [Nor97]). Let M be a Markov chain and r : S ! R be a
reward function. The following equality holds for almost all runs.

lim inf
n!1

n�1∑
i=0

r(Si)

n
= lim sup

n!1

n�1∑
i=0

r(Si)

n
.

Lemma 2.29. LetM be an irreducible Markov chain with reward. Let s be a state ofM. Assume
that

Ps

(
lim inf
n!1

n∑
i=0

r(Si) =1

)
.

Then there exists an η > 0 such that:

Es

[
1

Ts

Ts�1∑
i=0

r(Si)

]
� η .

Moreover the bit complexity of η is polynomial in the size ofM.

Proof. LetM be a finite irreducible Markov chain with reward. Suppose

8s 2 S, Ps

(
lim inf
n!1

n∑
i=0

r(Si) =1

)
= 1

18 Chapter 2. Markov Chains

According to [BBE10a]

8s 2 S, Ps

(
lim inf
n!1

n∑
i=0

r(Si) =1

)
= 1 () Es

[
1

Ts

Ts�1∑
i=0

r(Si)

]
> 0 .

This proves the first part of the lemma.
We use a discounted approximation to prove the second part. Let 0 < λ < 1 and Vλ 2 RS the

vector defined by,

Vλ(s) = Es

∑
i�0

λir(Si)

 .

We first show that

lim
λ!1

(1� λ)Vλ(s) = Es

[
lim
n!1

1

n

n�1∑
i=0

r(Si)

]
. (2.1)

By [Put94] (Corollary 8.2.4) we have

(1� λ)�1Es

[
lim
n!1

1

n

n�1∑
i=0

r(Si)

]
= Vλ(s)� h(s)� fs(λ) , (2.2)

where fs(λ) is a function which converges to 0 as λ converges to 1 from below and h(s) is the vector
that gives the reward of the Markov chain at the steady distribution. Multiplying both sides of (2.2)
by (1� λ) and passing to the limit when λ converges to 1 leads (2.1).

Second, we have

Vλ(s) = Es

∑
i�0

λir(vi)

= r(s) +

∑
t2S

Ps(S1 = t)Es

∑
i�1

λir(Si)

∣∣∣∣∣ S1 = t

= r(s) + λ

∑
t2S

Ps(S1 = t)Vλ(t) ,

where R is the reward vector and P is the transition matrix ofM. Hence

Vλ = R+ λPVλ

= (I � λP)�1R , (2.3)

(I � λp)�1 exists because the kernel of (I � λp) is equal to 0 (consequence of the fact that 0 �
jjλpjj < 1). For every state s ofM, (2.3) can be written as

(1� λ)Vλ(s) = (1� λ)((I � λP)�1R)(s) . (2.4)

The right hand side of (2.4) is a rational fraction of λ, therefore there exists two polynomials P and
Q with degree at most jSj and whose coefficients are polynomial expression with degree at most jSj
in the coefficients of p. such that

(1� λ)Vλ(s) =
P (λ)

Q(λ)
. (2.5)

2.3. Markov Chains 19

By (2.1) we get that

Es

[
lim
n!1

1

n

n�1∑
i=0

r(Si)

]
=
P (1)

Q(1)
. (2.6)

The right hand side of (2.6) is a polynomial expression of degree at most jSj in the coefficients of p
Thus there exists a polynomial T such that

Es

[
lim
n!1

1

n

n�1∑
i=0

r(Si)

]
� 2�T (jMj) ,

where jMj of the description ofM.
Using the strong Markov property we have

Es

[
lim
n!1

1

n

n�1∑
i=0

r(Si)

]
= Es

[
1

Ts

Ts�1∑
i=0

r(Si)

]
.

Which terminates the proof of the lemma.

Chapter 3

Markov Decision Processes

Contents
3.1 Introduction . 21
3.2 Markov Decision Processes and Plays . 22
3.3 Strategies and Measures . 23
3.4 Objectives and Values . 23
3.5 Reachability Objectives . 25
3.6 Tail Objectives . 27
3.7 Parity Objectives . 29
3.8 Mean-payoff and Positive-average Objectives 31

3.8.1 Mean-payoff Objectives . 31
3.8.2 Positive average objectives . 31

3.1 Introduction

In systems where hardware failures and other random events occur, the behavior of the environment
is typically represented as a stochastic process [KNP07, TAHW09]. Markov decision processes have
proven to be a powerful [KEY07, BCG05] yet algorithmically tractable [CY90] tool. In Markov
decision processes, the environments moves are chosen randomly according to fixed transition prob-
abilities that depend on the current state of the system.

An optimal controller of the system maximizes the probability that the system behaves correctly
in its stochastic environment. Synthesizing such a controller amounts to computing an optimal
strategy σ for Max in the Markov decision process.

Outline of the chapter

– In Section 3.2 we discuss the model.

– In Section 3.3 we introduce strategies and the probability measure associated with a strategy.

– In Section 3.4 we introduce the notions objectives and values.

– In Section 3.5 we introduce the main tools for studying reachability objectives.

– In Section 3.6 we introduce the main tools for studying tail objectives.

– In Section 3.7 we introduce known result on parity games.

– In Section 3.8 we study tail games with quantitative pay-offs.

22 Chapter 3. Markov Decision Processes

3.2 Markov Decision Processes and Plays

A Markov decision process is a transition system such that at each step Max chooses an action a
to play from the current state s then the successor is chosen at random from the set of reachable
states from s by playing the action a. Formally,

Definition 3.1 (Markov decision process). A Markov decision process is a tupleM = (S,A, p) such
that

� S is a �nite set of states,

� A is a �nite set of actions,

� p is function de�ned by p : S �A! ∆(S).

Example 3.2. Fig 3.1, represents a Markov decision process where:

� the set of states is fq, rg,

� the set of actions is fa, bg,

� the function p is described in the transition graph.

Remark 3.3. Note that a Markov decision process where the set A is a singleton is nothing but a
Markov chain.

q r
a, 0.5

b

a, 0.5

a, b

Figure 3.1: A Markov decision process.

For a given Markov decision processM and a state s0 2 S, a play from s0 is an infinite sequence
s0a0s1a1 � � � 2 S(AS)ω such that for every i � 0 we have

p(si, ai)(si+1) > 0 .

A finite prefix of a play is called history. We denote by hs 2 S(AS)� a history of a play up to
state s. By Si we denote the random variable with values in S that gives the current state after i
steps i.e.

Si(s0a0s1a1 � � �) = si ,

and by Ai we denote the random variable with values in A that gives the action played after i steps
i.e.

Ai(s0a0s1a1 � � �) = ai .

A useful notion is the one of sub Markov decision process. Intuitively, a sub Markov decision
processM0 is a subgraph such that a play can always continue inM0. Formally,

Definition 3.4 (Sub Markov decision processes). Let M be a Markov decision process with state
space S and actions A. M[S0] is a sub Markov decision process induced by the subset S0 � S if

(8s 2 S0), (9a 2 A), p(s, a)(S0) = 1 .

3.3. Strategies and Measures 23

3.3 Strategies and Measures

While playing, Max chooses her moves according to a strategy. A strategy for Max associates to
each history hs 2 S(AS)� a distribution over A. Formally,

Definition 3.5 (Strategy). A strategy σ for Max is an application:

σ : S(AS)� ! ∆(A) .

A strategy σ is:

– pure, if for every history hs 2 S(AS)�, the set Supp(σ(hs)) is a singleton.

– stationary, if for every history hs 2 S(AS)� the outcome of σ(hs) depends only on the state s.

– positional, if it is a pure and stationary.

In the case where a strategy is not stationary, a natural question is: how much information
should the player remember in order to make the next move. This is formalized by the notion of
strategies with memory.

Definition 3.6 (Strategies with memory). A strategy with memory is a set M , a memory state
m0 2M called the initial memory state, and two functions σm, σu such that:

� σm : S �M ! ∆(S),

� σu : S �M !M .

The function σu is usually called the update function, it gives the next memory state. In the case of
stationary strategies, the set M is a singleton.

In a Markov decision process M, once we have fixed a strategy σ for Max and an initial state
s, this defines naturally a probability measure Pσs over s(AS)ω the set of all plays starting from s.
This probability measure is defined by induction as follows

8r 2 S, Pσs (r) =

{
1 if s = r ,

0 otherwise.

Let h 2 S(AS)� a finite history such that h starts in s 2 S and ends in t 2 S, then:

8r 2 S, Pσs (har(AS)ω) = Pσs (h) � σ(h)(a) � p(t, a)(r) .

Thanks to Tulcea's theorem [BS78], there is a unique extension of Pσs to s(AS)ω.

3.4 Objectives and Values

Definition 3.7 (Objective). A winning condition Φ is a subset of Sω. We say that a play is winning
for Max if it belongs to Φ.

24 Chapter 3. Markov Decision Processes

An objective Φ is a Borel objective if Φ is a Borel set.
While playing, Max is trying to maximize the probability that some objective is achieved.
Let Φ � Sω be an objective, the value of a state s 2 S with respect to strategy σ is denoted:

Valσ(s) = Pσs (Φ) ,

intuitively this is the probability that Max wins if the play starts in s and is consistent with the
strategy σ.

Definition 3.8 (Values and optimal strategies). The value of a state is de�ned as:

Val(s) = sup
σ

Valσ(s) .

Obviously, Max wants to apply the best possible strategy so she can ensure the best possible
value. The best possible strategies are called optimal. Formally,

Definition 3.9 (Optimal strategy). A strategy σ is optimal if:

Valσ(s) = Val(s) .

Optimal strategies do not always exist, hence a relaxed notion of optimality has been defined.
It is the so-called ε-optimal strategies.

Definition 3.10 (ε-Optimal strategy). Let ε > 0, a strategy σ is ε-optimal if:

Valσ(s) � Val(s)� ε .

One can also study Markov decision processes from a rather qualitative point of view. This
alternative approach was introduced by De Alfaro in [dAH00] and it informs wether Max has a
strategy that ensures him to satisfy the objective with probability 1. In which case we say that Max
wins almost-surely. Dually, we say that Max wins positively, if she has a strategy that ensures the
satisfaction of the objective with probability strictly positive.

Definition 3.11 (Almost-sure and positive winning strategies). We say that Max wins almost-surely
(resp. positively) from a state s if she has a strategy σ such that Pσs (Φ) = 1 (resp. Pσs (Φ) > 0).

Remark 3.12. In the sequel we use the following notations.

� A strategy which allows Max to win almost-surely (resp. positively) is called an almost-sure
(resp. positive) strategy.

� A state s is said to be almost-sure (resp. positive) for Max, if there exists an almost-sure (resp.
positive) strategy from s for Max.

� The set of almost-sure (resp. positive) winning states for Max is denoted W=1 (resp. W>0)
and called the almost-sure (resp. positive) winning region of Max.

3.5. Reachability Objectives 25

3.5 Reachability Objectives

The simplest class of objectives is the class of reachability objectives. In a reachability game, the
goal of the player is to reach a set of target states T � S, in other words the winning condition is
set of plays:

Φ = S�TSω .

In reachability games, the sets of positive and almost-sure winning states are easy to compute,
using elementary fixpoint algorithms.

The positive attractor for Max to a subset T of S, denoted
���!
RMax(T, S), is the set of states in S

from which Max can reach T with positive probability. Formally we define it as follows.

Definition 3.13 (Positive attractor). Let W � S be a subset and f : 2W ! 2W be the operator
such that for any U �W ,

f(U) = fs 2W j (s 2 T) _ (9a 2 A, (p(s, a)(U) > 0) ^ (p(s, a)(W) = 1))g .

Then
���!
RMax(T,W) is the least �xed point of f .

For a Markov decision processM with state space S and a target states T . The set Sn
���!
RMax(T, S)

induces a sub Markov decision process. Actually, it induces a specific sub Markov decision process
called trap. Formally, a trap is:

Definition 3.14 (Trap). LetM be a Markov decision process. M[S0] is a trap induced by a subset
S0 � S if

(8s 2 S0), (8a 2 A), p(s, a)(S0) = 1 .

Proposition 3.15. Let M be a Markov decision process and T � S a target set. The complement
of
���!
RMax(T, S) in S is a trap for Max.

Proof. We show that S n
���!
RMax(T, S) is a trap for Max. Assume toward a contradiction that S n

���!
RMax(T, S) is not a trap for Max, it would mean that there exists a state s 2 S n

���!
RMax(T, S) and

an action a 2 A such that
p(s, a)(

���!
RMax(T, S)) > 0 ,

which contradicts the fixpoint definition of
���!
RMax(T, S).

The almost-sure attractor for Max to a subset T of S, denoted
���!
RMax=1(T, S), is the set of states

from which Max can reach T with probability 1.

Definition 3.16 (Almost-sure attractor). The almost-sure attractor is the set
���!
RMax=1(T, S) = \iRi

where Ri is obtained by the following induction:

R0 =
���!
RMax(T, S) ,

Ri+1 =
���!
RMax(T,Ri) .

In Proposition 3.17 we show that there is a positional strategy for Max to attract the play from
any state in

���!
RMax(T, S) (resp.

���!
RMax=1(T, S)) to T with positive probability (resp. probability 1).

26 Chapter 3. Markov Decision Processes

Proposition 3.17. Let W � S a subset of states such that W induces a sub Markov decision process
M[W]. The positive (resp. almost-sure) attractor of Max to T

���!
RMax(T,W) (resp.

���!
RMax=1(T,W)) is

exactly the set of positive (resp. almost-sure) states of Max in the reachability objective to W �TWω

played on the Markov decision processM[W].

Proof. We show that Max has a positive strategy for the reachability objective. From any state
s 2
���!
RMax(T,W). By Definition 3.13 we know that for every state s 2

���!
RMax(T,W) there exists n > 0

such that s 2 fn(T), denote n(s) = min fn 2 N j s 2 fn(T)g. Hence a positive strategy for Max
from s consists in choosing an action a 2 A such that p(s, a)(fn(s)�1(T)) > 0. The existence of a
is established by Definition 3.13, since from each s 2

���!
RMax(T,W) there is a non zero probability to

eventually reach T we get that σ is positively winning. We show that the positive region is subsumed
by the positive attractor. According to Proposition 3.15 the set W n

���!
RMax(T,W) is a trap for Max

thus for any strategy σ and any state s 2W n
���!
RMax(T,W) we have:

Pσs (9n � 0, Sn 2 T) = 0 ,

which shows that the positive region is subsumed by
���!
RMax(T,W).

The second part of Proposition 3.17 is a consequence of the following facts: a) the almost-sure
attractor is subsumed by the positive attractor and b) for any state s 2

���!
RMax=1(T,W) either s 2 T

or there exists an action a such that p(s, a)(
���!
RMax=1(T,W)) = 1. Hence from fact a) Max has a

positive strategy to reach T and by fact b) we get that this happens almost-surely. We show that
the almost-sure region is subsumed by the almost-sure attractor. Let s 2 W n

���!
RMax=1(T,W) be a

state and σ be a strategy, then either

Pσs (9n � 0, Sn 2 T j 8n � 0, Sn 62
���!
RMax=1(T,W)) = 0 , (3.1)

or
Pσs (9n � 0, Sn 2 T j 8n � 0, Sn 62

���!
RMax=1(T,W)) > 0 . (3.2)

If Equation (3.1) holds then it is clear that s is not almost-sure for the reachability objective. If
Equation (3.2) holds, then if

Pσs (9n � 0, Sn 2 T j 8n � 0, Sn 62
���!
RMax=1(T,W)) = 1 ,

it implies that s 2
���!
RMax=1 which contradicts the assumption, hence

Pσs (9n � 0, Sn 2 T j 8n � 0, Sn 62
���!
RMax=1(T,W)) < 1 ,

which shows that s is not almost-sure.

We define also the safe set for Max with respect to a subset B � S as the largest sub Markov
decision process in which Max has a strategy to avoid reaching B for sure. Formally,

Definition 3.18 (Safe set). Let B � S a set of bad states, the safe set for Max with respect to B is
denoted Safe(B,S) and obtained as follows:

Safe(B,S) = S n
���!
RMax(B,S)

We conclude this section by given examples of computation of positive attractor, and almost-sure
attractor.

Example 3.19. Consider the Markov decision process of Fig 3.2, the positive attractor to the set
T = fr, tg is

���!
RMax(T, S) = fp, q, r, s, tg and the almost-sure attractor to the set T = fr, tg is

���!
RMax=1(T, S) = fp, q, r, tg

3.6. Tail Objectives 27

p

q

r

s

t

u

a

b

a, b, 0.5 a, b

a, b

a, b

a, b, 0.5

a, b, 0.5

a, b, 0.5

Figure 3.2: Reachability game with target set T = fr, tg.

3.6 Tail Objectives

An important class of objectives that is widely used in verification, is the class of tail objectives.

Definition 3.20 (Tail objective). Let Φ 2 Sω a winning condition. Φ is tail if 8u 2 S� and 8w 2 Sω
we have:

uw 2 Φ () w 2 Φ .

We say that a Markov decision process is tail if the objective associated to it is tail.
For Markov decision processes equipped with tail objective, the notions of values and qualitative

solutions are tightly linked.

Theorem 3.21 (Positive-almost property [Cha07, GH10]). In any Markov decision process equipped
with a tail objective, either there exists a state with value 1, or all states have value 0. Moreover the
states with value 1 are almost-sure.

W=1

W=0

��

Figure 3.3: Positive-almost property

In Fig 3.3 we get the intuition of how one can use Corollary 3.23. Indeed, since the set of
states with value 1 is exactly the set of almost-sure states, it follows that to increase her chances
to win, Max needs only to increase her chances to reach the set with almost-sure states. It follows
that computing the value of states for some tail condition, it suffices to compute the set of almost-
sure states then compute the value of a reachability objective. Hence one can focus only on the
computation of almost-sure regions when considering tail objectives on Markov decision processes.

28 Chapter 3. Markov Decision Processes

Moreover, if the computation of the almost-sure region takes polynomial time it follows that the
computation of the value of each state takes polynomial time as well. We give a formal proof in
Corollary 3.22.

Corollary 3.22. Let Φ be a tail winning condition. Assume that for every Markov decision process
M, W=1[Φ] can be computed in polynomial time, then there exists a polynomial time algorithm to
compute the value of each state ofM.

Proof. Denote ValW=1[Φ] the value of the reachability objective where the target set is W=1[Φ]. We
first show that

8s 2 S, ValW=1[Φ](s) = ValΦ(s) .

Theorem 3.21 shows that W=1[Φ] is exactly the set of states with value 1. Hence

8s 2 S, ValW=1[Φ](s) � ValΦ(s) . (3.3)

Let us show the converse inequality. Let s 2 S be a state and σ be a strategy, then

Pσs (Φ) = Pσs (Φ \ 9n 2 N, Sn 2W=1[Φ]) + Pσs (Φ \ 8n 2 N, Sn 62W=1[Φ]) .

We show that
8s 2 S, 8σ, Pσs (Φ j 8n 2 N, Sn 62W=1[Φ]) = 0 . (3.4)

Assume toward a contradiction that there exists a strategy σ and a state s such that

Pσs (Φ j 8n 2 N, Sn 62W=1[Φ]) > 0 .

Rewriting the above expression leads

Pσs (Φ \ 8n 2 N, Sn 62W=1[Φ]) > 0 ,

which shows that there exists a positively winning play in the largest trap M[S0] such that S0 �
S nW=1[Φ] which contradicts Theorem 3.21. Thus Equation (3.4) holds. It follows that:

ValΦ(s) = sup
σ
Pσs (Φ) = sup

σ
Pσs (Φ \ 9n 2 N, Sn 2W=1[Φ])

� sup
σ
Pσs (9n 2 N, Sn 2W=1[Φ]) = ValW=1[Φ](s) .

This shows Equation (3.3).
Second, since in Markov decision processes, the value of reachability games can be computed

using linear programming in polynomial time [Con92]. Assuming that W=1[Φ] can be computed in
polynomial time terminates the proof.

as consequence we get the following corollary

Corollary 3.23. In any Markov decision process equipped with a tail objective, if there exists an
almost-sure strategy with memory M , then there exists an optimal strategy with the same memory.

Proof. This is consequence of the fact that reachability objectives are positional.

Theorem 3.24 shows yet another nice property enjoyed by tail games. To our knowledge this
is the first time an algorithm is provided to solve disjunction of tail objectives on Markov decision
processes.

3.7. Parity Objectives 29

Theorem 3.24. Let Φ1, � � � ,Φn be n tail objectives andM a Markov decision process. The almost-
sure region for the game

⋃n
i=0 Φi is given by the set

���!
RMax=1

(
n⋃
i=0

W=1[Φi], S

)
.

Proof. DenoteW =
���!
RMax=1(

⋃n
i=0W=1[Φi], s) and let us prove that Max has an almost-sure strategy

from the set W . Max plays as follows. First she applies her attractor strategy until she reaches one
of theW=1[Φi] then she applies her almost-sure winning strategy σi associated with the objective Φi.
This strategy is clearly almost-sure winning since Max reaches one of the W=1[Φi] with probability
1.

To see that Max cannot win almost-surely outside W , consider the largest trap M[S0] such
that S0 � S n W . For every i, Max has no almost-sure state in (M[S0],Φi). According to the
positive-almost property (c.f. Theorem 3.21), we get

8s 2 S0, 8σ, 80 � i � n, Pσs (Φi j 8k � 0, Sk 2 S0) = 0 .

This implies

8s 2 S0, 8σ, Pσs

(
n⋃
i=0

Φi

∣∣∣∣∣ 8k � 0, Sk 2 S0
)

= 0 ,

which shows that every state in S0 has value 0. For any other state s not in W and not in S0, the
probability for a given strategy σ that the play reaches S0 is strictly less than 1 otherwise it would
imply that there exists a strategy σ such that

Pσs (9n 2 N, Sn 2W) = 1 .

which implies that s 2W , which terminates the proof.

���!
RMax=1(

⋃
1�i�nW=1[Φi])

Figure 3.4: Solving disjunction of tail objectives

Remark 3.25. Note that if Mi is the memory of the almost-sure strategy for the objective Φi then
the memory of an almost-sure strategy for the objective

⋃n
i=0 Φi is maxi fMig.

3.7 Parity Objectives

In this section we study a more specific objective, the so called parity objective. These objectives
are very important in verification of reactive system [GTW02], indeed parity objectives subsume all

30 Chapter 3. Markov Decision Processes

the ω-regular objectives. These games were also looked at by Rabin earlier [Rab63], Rabin used the
parity objective in the proof of complementation of tree automata. In parity objectives, we assign
to each state a priority. The objective is achieved according to the set of priorities visited infinitely
often during the play.

Definition 3.26 (Parity objective). Let C (N be a �nite subset, called the set of priorities and
χ : S ! C a priority function. The parity objective is:

Par = fs0s1 � � � 2 Sω j lim sup
n!1

χ(sn) is eveng .

For any priority d 2 C, we denote Sd the following set

Sd = fs 2 S j χ(v) = dg .

A special case of parity objectives are Büchi objectives. The Büchi condition is formally defined
as follows:

Definition 3.27 (Büchi games). Let B � S be a subset of states, called the set of Büchi states. The
Büchi objective is:

Büchi = (S�B)ω .

Theorem 3.28 ([CY95, CJH04]). In Markov decision processes, Max has a positional optimal
strategy. Moreover, the value of each state is computable in polynomial time.

We give an other version of the proof of the theorem above. The reason we give this new version
of the proof is to allow the reader to get a better insight and intuition regarding tools and notions
presented earlier.

Proof. LetM be a Markov decision process, To prove the polynomial upper bound, notice that the
parity condition can be written as a disjoint union of winning condition where in each one, Max wins
if she satisfies the parity condition played in a parity Markov decision process with three priorities.
Formally, for each priority c, we defineMc = (S,A, p, χc) as the following Markov decision process:

– the set of states is the same as inM,

– the set of action is the same as inM,

– the transition function is the same as inM,

– the coloring function is defined as follow:

χc(s) =

1 if χ(s) < c ,

2 if χ(s) = c ,

3 if χ(s) > c .

For each c we write Φc the parity objective associated with the coloring function χc, one can write:

Par =
⋃
c2C

Φc .

3.8. Mean-payo� and Positive-average Objectives 31

According to Theorem 3.24 the almost-sure region is given by:

���!
RMax=1

(⋃
c2C

W=1[Φc]

)
.

Let us show now that solving parity objectives on a Markov decision process with exactly 3
priorities can be done in polynomial time. This is consequence of the fact that solving such a parity
game amounts to solving a Büchi objective on the sub Markov decision process induced by the set
Safe(S3, S) and computing an almost-sure attractor (Details of the correctness are given in the proof
of Theorem 4.3). Since Büchi objectives on Markov decision processes can be solved in polynomial
time [dAH00, CJH03] it follows that that each W=1[Φc] can be computed in polynomial time. Using
result of Corollary 3.22 shows that the original objective can be solved in polynomial time.

Let us show that the strategy described is positional. This follows from the fact the strategy
used for Büchi objectives are positional [dAH00, CJH03], and thanks to Remark 3.25, it follows that
the almost-sure strategy for the objective

⋃
c2C Φc is positional as well.

3.8 Mean-payo� and Positive-average Objectives

We turn our attention to another type of objective, we study in this section objectives with rewards.

3.8.1 Mean-payo� Objectives

Definition 3.29 (Mean-payoff objective). A Markov decision process with mean-payo� objective is
a Markov decision process such that the set of states S is labelled with a reward mapping r : S ! R

that assigns to each state a rational number called the reward. The value of a state s 2 S inM is

Val(s) = sup
σ
Eσs

[
lim sup
n!1

1

n

n�1∑
i=0

r(Si)

]
.

The value of a state in mean-payoff objective is not a probability but it is the maximal expected
average reward Max can ensure.

To compute the value of a state in a Markov decision process equipped with a mean-payoff
objective one uses linear programming. It is also well known that positional strategies are sufficient
to play optimally [Put94].

Theorem 3.30. Mean-payo� games can be solved in polynomial time. Moreover optimal strategies
exist and can be chosen positional.

3.8.2 Positive average objectives

In positive average objectives, Max wants to maximize the probability that the average value of the
accumulated rewards is strictly positive.

Definition 3.31 (Positive-average objectives). Let M be a Markov decision process equipped with
a reward function r : S ! R. The positive average objective is:

Avg>0 =

{
s0a0s1a1 � � � 2 S(AS)ω j lim sup

n!1

1

n

n�1∑
i=0

r(si) > 0

}
.

32 Chapter 3. Markov Decision Processes

At a first glance, mean-payoff games and positive-average games seem to be similar, Fig 3.5
exhibit an arena where the optimal strategies are different for mean-payoff objective and positive-
average objective. Indeed an optimal strategy for the mean-payoff objective would go to the state
with reward 4 while an optimal strategy for the positive-average objective would stay in the state
with reward 1.

1 0

-1

4

a

a

a

b a, 0.5

a, 0.5

Figure 3.5: Markov decision process where the mean-payoff and positive-average objectives have
different optimal strategies

There is another natural definition of positive average objective, which is very similar except the
lim sup is replaced by lim inf. We denote this condition Avg

>0
.

We shall show later that the choice of either definition does not impact our results for Markov
decision processes.

Theorem 3.32 ([BBE+10b]). In a Markov decision process equipped with positive-average condition,
Max has a positional optimal strategy. Moreover, the value of each state is computable in polynomial
time.

We give our own proof of this theorem, to illustrate the use of closed components and recurrent
states.

Proof of Theorem 3.32. Since the set of almost-sure states is exactly the set of states with value 1
(c.f. Theorem 3.21), computing the values amounts to compute the almost-sure region.

We show that the almost-sure region for the objective Avg>0 is the largest sub Markov decision
processM[W] such that the value of each state in W is strictly greater than 0 for the mean-payoff
objective in M[W]. Such a sub Markov decision is not empty because otherwise, it would imply
that every nonempty sub Markov decision processM[S0] is such that for every s 2 S0 the value of
s is less or equal to 0 for the mean-payoff objective. In particular sinceM is a sub Markov decision
process ofM it follows that for every strategy σ we get

8s 2 S, Eσs

[
lim sup
n!1

1

n

n�1∑
i=0

r(Si)

]
� 0 .

Applying the strong law of large numbers (c.f. Theorem 2.12) we obtain

8s 2 S, Pσs

(
lim sup
n!1

1

n

n�1∑
i=0

r(Si) � 0

)
= 1 .

3.8. Mean-payo� and Positive-average Objectives 33

Which implies
8s 2 S, Pσs (Avg>0) = 0 .

Thus according to the positive-almost property, there is no almost-sure state for the objective Avg>0

inM.
We show that W is a subset of the almost-sure region. Let s be state s 2 W and let τ be an

optimal strategy for the mean-payoff game, by [LL69, Gil57] we know that this strategy can be chosen
positional, let also M[τ] the Markov chain induced by τ . Since M[W] is a sub Markov decision
process, we know that any play consistent with τ will almost-surely reach a closed component C in
M[τ] we also know that for every state c 2 C we have:

Eτc

[
lim sup
n!1

1

n

n�1∑
i=0

r(Si)

]
> 0 ,

since c is recurrent using the strong law of large numbers (c.f. Theorem 2.12) we get that:

Pτc

(
lim sup
n!1

1

n

n�1∑
i=0

r(Si) > 0

)
= 1 ,

which shows thatM[W] is almost-sure.
We show that any state s 62 W is not almost-sure. Let s be a state not in W and let σ be a

positional strategy. We show that
Pσs (Avg>0) < 1 (3.5)

Let C be the set of closed classes reachable from s in the Markov chainM[σ]. Let C 2 C be a closed
class and c 2 C be a state. Assume that

Eσc

[
lim sup
n!1

1

n

n�1∑
i=0

r(Si) > 0

]
> 0 ,

it follows that for every state c0 2 C we have

Eσc′

[
lim sup
n!1

1

n

n�1∑
i=0

r(Si) > 0

]
> 0 ,

which implies that C �W , thus there exists C 2 C and c 2 C such that

Eσc

[
lim sup
n!1

1

n

n�1∑
i=0

r(Si) > 0

]
] � 0 ,

hence
Pσc (Avg>0) = 0 ,

and because c is accessible from s we obtain

Pσs (Avg>0) < 1 ,

which terminates the proof.
The polynomial running time complexity is a consequence of the fact the value of state for

mean-payoff objectives can be computed in polynomial time [Put94].

34 Chapter 3. Markov Decision Processes

Corollary 3.33. In any Markov decision processM we have:

8s 2 S, ValAvg>0
(s) = ValAvg

>0
(s) .

The proof of this corollary is postponed to Chapter 4 where it is proved for a larger class of
objectives (c.f. Proposition 4.13).

Part II

Perfect Information Setting

Chapter 4

Multi Objectives Markov Decision
Processes

Contents
4.1 Introduction . 37
4.2 Computing the values . 38

4.2.1 Characterizing the Almost-sure Regions . 38
4.2.2 Algorithm . 41

4.3 Implementing optimal strategies with finite memory 43
4.3.1 Existence of Finite Memory Optimal Strategies 44
4.3.2 Sufficiency of Exponential Size Memory . 46
4.3.3 Exponential Size Memory is Necessary . 49

4.4 Solving Parity and Positive-average Objectives with lim inf semantics . . . 51
4.5 Towards Boolean Formulae of Objectives . 52

4.5.1 Solving conjunction of Avg>0 . 52
4.5.2 Solving conjunction of lim inf . 53
4.5.3 Comparison between objectives . 56
4.5.4 Mixing lim inf and lim sup . 57

4.6 Conclusion . 59

Abstract We study Markov decision processes equipped with parity and positive-average condi-
tions. In these setting, the goal of the controller is to maximize the probability that both the parity
and the positive-average conditions are fulfilled. We show that the values of these games are com-
putable in polynomial time. We also show that optimal strategies exist, require only finite memory
and can be effectively computed.

4.1 Introduction

To perform at the same time both qualitative and quantitative verification of reactive systems, it
is necessary to consider combinations of parity and mean-payoff conditions. This has been done in
several papers about non-stochastic games. In [CHJ05], mean-payoff parity games were considered
and solved.

Lately, there has been also several papers about energy games [CDHR10, CD10]. Max is declared
to be the winner in an energy game if her payoff never goes below 0. The relationship between this
winning condition and mean-payoff objective is straightforward in the case of non-stochastic games
but breaks in the case of stochastic games.

Yet another class of games called priority mean-payo� games, which generalize both mean-payoff
and parity games were introduced and solved in [GZ06, GZ07b, GZ07a].

38 Chapter 4. Multi Objectives Markov Decision Processes

Our initial motivation is to generalize the the result of [CHJ05] where the mean-payoff parity
objective was introduced. In [CHJ05], the value of a state s with respect to mean-payoff parity
condition is defined by supremum payoff that Max can ensure along a run which satisfies the parity
condition and equal to �1 if the parity objective cannot be achieved from s. The purpose of such
objective is the fact that mixing these two objectives is useful when one wants to perform at the
same time verification of qualitative properties such as fairness and quantitative properties such as
energy resources.

In order to extend this result to a stochastic setting, one needs to slightly modify the winning
condition and call it parity and positive-average. The value of a state s with respect to parity and
positive-average objective is the supremum probability that a run that starts in state s achieves the
parity objective and the long term average payoff along this run is strictly positive. We study the
value problem and the memory requirements for optimal strategies.

Contribution and results Our main result concerns the construction of almost-sure strategies for
parity and positive-average objectives. We show that the set of almost-sure states can be computed
in polynomial time and that an exponential size memory is sufficient and necessary to win almost-
surely. Our algorithm for the of computation of the almost-sure region is based on an inductive
characterization of the almost-sure region inspired from Zielonka's construction for parity games as
opposed to the one that appeared in [CD11] where the computation of the almost-sure region relies
on a fine end-component analysis. The advantage of our approach is that a very small modification
of the characterization allows us to extend our result to the case of stochastic games.

Outline of the chapter

– In Section 4.2 we explicit the construction of the almost-sure regions and give a polynomial
time algorithm to compute the value of each state.

– In Section 4.3 we show that exponential size memory is sufficient and necessary to implement
optimal strategies.

– In Section 4.5 we show how to solve objectives that consists of boolean combination of quan-
titative objectives.

4.2 Computing the values

In this section we consider Markov decision processes equipped with Par^Avg>0 winning condition.
We give a polynomial time algorithm that computes the value of each state.

4.2.1 Characterizing the Almost-sure Regions

We characterize the winning regions by induction on the priorities available in the arena. The two
following lemmata characterize the almost-sure regions when the highest priority is even (Lemma 4.1)
and when the highest priority is odd (Lemma 4.2). This construction is inspired from Zielonka's
construction [Zie04] for solving parity games.

Lemma 4.1. LetM be a Markov decision process, r : S ! R be a reward function, and χ : S ! C
be a priority function. Assume that the highest priority d is even, then the almost-sure region for
the objective Par^Avg>0 is the largest set W � S such that:

4.2. Computing the values 39

1. M[W] is a sub Markov decision process ofM,

2. Max wins almost surely the Avg>0 objective played inM[W],

3. Max wins almost surely the Par^Avg>0 objective played inM[W n
−−−!
RMax(Sd \W,W)].

S

W=1[Avg>0]

Sd

−−−!
RMax(Sd \X,X)

Sd

W=1[Par^Avg>0]
We want the largest sub Markov decision
processM[U] such that

W=1 [Avg>0] = U ,

and

W=1 [Par^Avg>0] = Un
−−−!
RMax(Sd\X,X) .

Figure 4.1: Construction of the almost-sure region when the highest priority is even.

Proof. To prove this lemma we show the following:

i) Any set X � S satisfying 1, 2 and 3 is almost-sure.

ii) The almost-sure region satisfies 1, 2 and 3.

Let τ be an almost-sure strategy for the Avg>0 objective played inM.
We start by proving i). Let X be a subset of S and assume that X satisfies 1, 2 and 3. We

exhibit an almost-sure strategy σ for Max from any state in X. Roughly speaking, an almost-
sure strategy is defined as follows: if the play is in

−−−!
RMax(Sd \ X,X), Max applies a strategies to

attempt a visit to a priority-d state(attractor strategy) for jXj steps, then switches to an almost-
sure strategy for the positive-average objective until her accumulated average reward goes above
some well chosen threshold. Then she either starts these two steps again or in case the play is in
M[X n−−−!RMax(Sd \X,X)], Max applies an almost-sure strategy in this sub Markov decision process.

The proof of i) is postponed to the next chapter where we show that the same strategy is
almost-sure for the same objective in the setting of two players stochastic games (c.f. Lemma 5.18).

Let us show (ii). Denote W the almost-sure region for Par^Avg>0 objective played inM. We
prove that W satisfies 1, 2 and 3. 1 holds because Par^Avg>0 is a tail objective. That W satisfies
2 follows from the fact that Max can win almost-surely Par^Avg>0 inM[W]. To see that 3 holds,
note that M[W n −−−!RMax(Sd \W,W)] is a trap for Max. So if she plays her almost-sure strategy σ
defined on W , she wins almost-surely the Par^Avg>0 objective which shows (ii) and concludes the
proof of the lemma.

Lemma 4.2. LetM be a Markov decision process, r : S ! R be a reward function, and χ : S ! C
be a priority function. Assume that the highest priority d is odd, then the almost-sure region for the
objective Par^Avg>0 is

−−−!
RMax=1(R,S) ,

where R is the almost-sure winning region for the Par^Avg>0 game played in the sub Markov
decision processM[Safe(S1, S)].

40 Chapter 4. Multi Objectives Markov Decision Processes

S
Sd

Safe(Sd, S)

R

−−−!
RMax=1(R,S)

S
First compute Safe(S1, S), second R, and
finally

−−−!
RMax=1(R,S).

Figure 4.2: Construction of the almost-sure region when the highest priority is odd.

Proof. LetM be a Markov decision process and let R be the almost-sure region for the Par^Avg>0

game played in the sub Markov decision process M[Safe(Sd, S)]. We show that from any state in
W =

−−−!
RMax=1(R,S) Max has an almost-sure strategy for the Par^Avg>0 objective. Max applies

the following strategy. As long as a play has not reached R, Max plays her attractor strategy π
induced by

−−−!
RMax=1(R,S). If the play is in R, she uses her almost-sure strategy, τ , in R. Formally,

σ : S −! S

σ(s) =

{
π(s) if s 62 S
τ(s) if s 2 S

This strategy is almost-sure since any play consistent with it eventually reaches the set R and stays
there forever.

We now prove that the almost-sure region is exactly the set W , i.e. we show that Max cannot
win almost-surely in S nW . Let σ0 be a strategy and s 2 S nW be a state, then either

Pσ
′
s (91n � 0, Sn 2 S n Safe(Sd, S)) > 0 , (4.1)

or

Pσ
′
s (9N � 0, 8n � N, Sn 2 Safe(Sd, S)) = 1 . (4.2)

If Equation (4.1) holds, using the Borel-Cantelli Lemma we get that a state of priority 1 is visited
infinitely many times, thus σ0 cannot be almost-sure.
If Equation (4.2) holds, it follows that ultimately the play stays in M[Safe(Sd, S)]. Denote M[S0]
the largest trap induced by S0 � Safe(Sd, S) n R, according to the almost-sure property (c.f. Theo-
rem 3.21), it follows that

Pσ
′
s (Par^Avg>0 j 8n � 0, Sn 2 S0) = 0 ,

and since s 62 −−−!RMax=1(R,S), according to Proposition 3.17 we have:

Pσ
′
s (9n � 0, Sn 2 R) < 1 ,

thus
Pσ
′
s (Par^Avg>0 j 8n � 0, Sn 2 Safe(Sd, S)) < 1 ,

which shows thatW is the largest set from where Max wins almost-surely the Par^Avg>0 objective,
which concludes the proof of the lemma.

4.2. Computing the values 41

4.2.2 Algorithm

We are now ready to state the main theorem of this section.

Theorem 4.3. Let M be a Markov decision process, the almost-sure region for the objective
Par^Avg>0 is computable in polynomial time.

To prove the theorem, we give an algorithm that computes the almost-sure region. Intuitively,
our algorithm, starts by reducing the objective Par^Avg>0 to a disjunction of other objectives
say Φ1, � � � ,Φn, and solve each one of them, then outputs the almost-sure region for the original
objective as the almost-sure region for the objective Φ1 _ � � � _ Φn.

Algorithm 1 Computes the almost-sure region for the objective Φd.
1: Q Safe(S3, S)
2: In the Markov decision processM[Q] compute R the almost-sure region for the objective Avg>0

3: repeat
4: In the Markov decision process M[R] compute R0 the almost-sure region for the objective

Büchi(S2).
5: R00 R nR0
6: R Safe(R00, R)
7: until R00 = ;
8: return

���!
RMax=1(R0, S)

Proof. To compute the values in polynomial time we use similar technics as in the proof of The-
orem 3.28. For each even priority d 2 C, we create a new coloring function and a new Markov
decision process (M,Φd, r, χ

0) where:

– M is the original Markov decision process,

– Φd is the new Par^Avg>0 objective obtained accordingly to χ0,

– r : S ! R is the original reward function,

– χ0 : S ! f1, 2, 3g is the new coloring function obtained the following way:

8s 2 S, χ(s) =

1 if χ(s) < d ,

2 if χ(s) = d ,

3 if χ(s) > d .

To solve each of these objectives we use the procedure described in Algorithm 1, in Fig 4.3 we depict
a rough idea of how Algorithm 1 proceeds. .

Let us show that Algorithm 1 is correct. First it considers the largest sub Markov decision process
which is almost-sure for the objectives Büchi(S2) and Avg>0 namelyM[R0], note thatM[R0] satisfies
the conditions of Lemma 4.1. Finally it uses Lemma 4.2 to compute the almost-sure region.

Using the fact that the original objective can be rewritten as the disjunction of all the Φd,
Theorem 3.24 shows that the almost-sure region is given by

���!
RMax=1(

⋃
d2DW=1[Φd]), where D is the

set of even priorities.

42 Chapter 4. Multi Objectives Markov Decision Processes

We now argue on the running time complexity. Each Φd can be solved in polynomial time since
Büchi objectives can be solved in polynomial time [dAH00, CJH03] as well as computing the set of
attractors and the almost-sure region for Avg>0(c.f. Theorem 3.31). It follows that our procedure
runs in O(jDj � L) where L is the time one needs to solve each Φd.

S3

S2S2

;

Safe(S3, S)

W=1[Büchi(S2)]

Computes the largest sub Markov deci-
sion processM[U] in Safe(S3, S) such
that inM[U] is almost-sure for Avg>0

and almost-sure for Büchi(S2) then re-
turns

−−−!
RMax=1(U, S).

Figure 4.3: Construction of the almost-sure region W=1[Φd].

From Theorem 4.3 and by Corollary 3.22, we get the following corollary.

Corollary 4.4. In any Markov decision process A where the winning condition is Par^Avg>0, the
values are computable in polynomial time.

i

1
n

∑
r(si)

Positive-average phase

Attraction phase

jSj �mins2Sfr(s)g

t

Figure 4.4: The average payoff along a play consistent with σ.

4.3. Implementing optimal strategies with finite memory 43

Memory for almost-sure winning We conclude this section by a discussion on the memory that
an almost-sure strategy may require. The graphic in Fig 4.4 depicts the average reward accumulated
along a play consistent with the strategy σ described in Lemma 4.1 We recall that σ applies in turn
the positive average strategy and the attractor strategy.

In order to know when to switch between these two strategies, σ has to keep track of average
payoff accumulated along the play. As shown in Fig 4.4, let t be the time that σ spends in the
positive average phase. Since the attraction phase requires a bounded memory, it follows that in
order to get a finite memory strategy one needs to bound t from above. But as shown in Fig 4.4,
the average payoff along a play can fluctuate considerably before reaching the value that allows the
switch, for instance the Markov decision process depicted in Fig 4.6 show that in order to switch
from the attraction strategy to the positive-average strategy, Max has to win n successive coin tosses.
Thus this time t cannot be bounded from above which makes the memory needs infinite.

4.3 Implementing optimal strategies with finite memory

In this section, we take a closer look at the memory needed by Max to win almost-surely. Our
goal is to slightly modify the strategy described in Section 4.2 in order to implement almost-sure
strategies with finite memory. The main idea, is to consider the expected average reward rather
than the actual average reward. The advantage of this approach is that one can estimate the value
of the expected average reward at time t along a play consistent with a given strategy. Fig 4.5 is
slight modification of Fig 4.4, where σ is the almost-sure strategy described in Section 4.2.

i

Eσs
[

1
n

∑
r(si)

]

Positive-average phase

Attraction phase

jSj �mins2Sfr(s)g

Figure 4.5: The expected average payoff along a play consistent with σ.

44 Chapter 4. Multi Objectives Markov Decision Processes

The difference in this figure is that instead of keeping track of the accumulated average reward,
Max keeps track of the expected accumulated average reward. The advantage of this approach over
the previous one is that focusing on the expected value one can bound the time Max applies her
positive-average strategy before switching and thus the memory obtained for such a strategy is finite.
This follows from the fact that since the positive-average strategy applied is positional, any play
consistent with it is similar to an execution of a finite state Markov chain. Thus the play will first
visit transient states, then eventually will reach a closed class. Now, the finiteness of the memory
follows from the following facts:

a) Since the play is consistent with an almost-sure strategy it is not possible for the expected
average reward in this closed class to be decreasing,

b) in each closed component, the expected average reward between two consecutive visits of the
same state can be bounded from bellow.

We state formally the main result of this chapter.

Theorem 4.5. Let M be a Markov decision process with state space S. A memory of size O(2jSj)
is su�cient and necessary to implement an almost-sure strategy for the objective Par^Avg>0.

The proof of Theorem 4.5 goes through 3 steps:

1. We show that if one has a bound on the time the expected average reward needs to go above
a certain value, then one can implement a finite memory almost-sure strategy.

2. We show that a memory of size exponential is sufficient.

3. We show that a memory of size exponential is necessary.

4.3.1 Existence of Finite Memory Optimal Strategies

To establish the existence of finite memory strategies, we define the notion of total-reward objective
and prove the following lemma.

Definition 4.6 (Total-reward objective). Let M be a Markov decision process with state space S
and reward function r : S ! R, the total-reward objective is de�ned by the following set of plays:

Rwd=1 =

{
s0a0s1a0 � � � 2 S(AS)ω j lim inf

n!1

n�1∑
i=0

r(Si) =1

}
.

The next lemma shows the relationship between the total-reward objective defined above and
the positive-average objective (see Definition 3.31).

Lemma 4.7. LetM be Markov decision process, then Max has a positional strategy σ such that

8s 2W=1[Avg>0], Pσs (Rwd=1) = 1 . (4.3)

Proof. The winning condition Avg>0 is submixing and tail, hence there exists a positional optimal
strategy [Gim07]. Therefore, there exists a positional almost-sure strategy. Thus by Corollary 3.33,
σ is almost-sure for Avg

>0
as well. Hence the following equation holds,

8s 2W=1[Avg>0], Pσs

(
lim inf

n

1

n+ 1

n∑
i=0

r(Si) > 0

)
= 1 .

The same strategy σ yields (4.3).

4.3. Implementing optimal strategies with finite memory 45

Now that the lemma is proved, we prove item 1. This is done thanks to Proposition 4.8.

Proposition 4.8. Let M be a Markov decision process, Max has a �nite memory almost-sure
strategy.

Proof. Let M be a Markov decision process with a reward function r : S ! R and a coloring
function χ : S ! C. We prove by induction on the number of priorities that Max has an almost-sure
strategy with finite memory. Suppose that jCj = 1 and let c be the only priority of C. If c is even
then Max plays a positive-average objective, according to Theorem 3.32, there exists a positional
optimal strategy for Max. If c is odd then Max has no winning strategy.

Suppose that Max can win almost-surely using finite memory in any Markov decision process
which contains less than d priority. LetM be a Markov decision process with d priorities.

If the highest priority d is odd. According to Lemma 4.2, to win Max applies her attractor strategy
until she reaches the almost-sure region for the game Par^Avg>0 played in the sub Markov decision
processM[Safe(Sd, S)]. Note that inM[Safe(Sd, S)] the number of priorities is strictly less than d
and thus she has a finite memory strategy. Since the attraction strategy is positional, Max has a
finite memory strategy to win almost-surely if the highest d priority is odd.

If the highest priority d is even. According to Lemma 4.1, either Max is playing in the almost-
sure region for Par^Avg>0 in the sub Markov decision processM[S n

���!
RMax(Sd, S)] or the play visits

���!
RMax(Sd, S). In the former case, by induction, Max has a finite memory strategy to win and the
proof is done. In the latter case she applies her attractor strategy π for a specified time, then she
switches to her positive-average strategy τ . In the remaining of this proof, we are going to show
that the time Max should apply τ can be bounded.

Let us describe how Max decides the time she applies τ .

– Apply τ until a recurrent state r in the Markov chainM[τ] is visited.

– Whenever r is reached increment a counter.

– When the counter reaches a well chosen value switch.

The almost-sure strategy σ, the memory and the update function are formalized as follows; Let R be
the set of all recurrent states in the Markov chainM[σ] and let T be the random variable with value
in N[1 that gives the time needed to reach a state r 2 R plus the time r should be visited before
switching. For each even priority d we need the following memory Md = S�f0, 1, 2g�f0, � � � , jSj�
1g � f0, � � � , Tg. Let Update : S �Md !Md be the update function defined as follows:

Update(s, (r, b, i, j)) =

(r, 0, i, j + 1) if (b = 0) ^ (j < jSj � 1) ^ (χ(s) 6= d) .

(r, 1, i, j) if (b = 0) ^ [(j = jSj � 1) _ (χ(s) = d)] .

(r, 1, i, j) if (b = 1) ^ (s 62 R) .

(s, 2, 0, j) if (b = 1) ^ (s 2 R) .

(r, 2, i+ 1, j) if (b = 2) ^ (s = r) ^ (i < T) .

(r, 2, i, j) if (b = 2) ^ (s 6= r) ^ (i < T) .

(r, 0, i, 0) if (i = Tn) .

The strategy σ : S �Md ! S consists in applying π the attractor strategy whenever b = 0 and
applying τ the Avg>0 strategy whenever b 6= 0.

46 Chapter 4. Multi Objectives Markov Decision Processes

We show that T <1 SinceM[τ] is a finite state Markov chain it follows that

Pτs(90 � n <1, Sn 2 R) = 1 , (4.4)

and according to Lemma 4.7 we know that

Pτs(Rwd=1) = 1 , (4.5)

thus Lemma 2.29 applies and we have for every recurrent state r, there exists η > 0 such that

Eτr

[
1

n+ 1

n∑
i=0

r(Si)

∣∣∣∣∣ Tr = n

]
� η , (4.6)

where
Tr = min fn � 1 j Sn = rg .

It follows that there exists 0 � m <1 such that

Eτs

[
1

m+ 1

m∑
i=0

r(Si)

∣∣∣∣∣ T = m

]
> η , (4.7)

which shows that Max can use a finite memory to decide when to switch.
We show that σ is almost-sure for the objective Par^Avg>0. First notice that a very similar

argument as the one used in the proof of Lemma 5.18 shows that the parity objective is achieved
almost-surely.

We show now that the Avg>0 objective is achieved almost-surely as well.
Since Equation 4.7 holds. Repeating this argument each time Max switches from strategy τ to

the attraction strategy, we build a sequence of random variable T (1), T (2), � � � with values in N and
a rational η > 0 such that:

8i � 1, Eτs

[
1

ni + 1

ni∑
k=0

r(Sk)

∣∣∣∣∣ T (i) = ni

]
� η ,

=) lim sup
n!1

Eτs

[
1

n

n�1∑
k=0

r(Sk)

]
� η , (4.8)

=) Eτs

[
lim sup
n!1

1

n

n�1∑
k=0

r(Sk)

]
� η . (4.9)

Where the transformation from (4.8) to (4.9) is by Fatou's lemma 2.7. Using the strong law of
large numbers (c.f Theorem 2.12) we get that the positive-average objective is ensured almost-
surely. This shows that Max has finite memory almost-sure strategy for the objective Par^Avg>0,
Proposition 4.9 gives an upper bound on the size of this memory.

4.3.2 Su�ciency of Exponential Size Memory

Next step toward the proof of Theorem 4.5 is to show that an exponential size memory is sufficient,
this would prove item 2.

Proposition 4.9. Let M be a Markov decision process, memory of size exponential in the size of
M is su�cient to implement an almost-sure strategy for the objective Par^Avg>0.

4.3. Implementing optimal strategies with finite memory 47

Proof. Let M be a Markov decision process, denote M[τ], M[π] the Markov chains induced by
τ the almost-sure strategy for the objective Avg>0 and π the attractor strategy respectively. We
define the following random variables,

– TR: with values in N, is the absorption time in recurrent state ofM[τ] (c.f. Section 2.3).

– Tn: with values in N, is the time needed to reach a state r 2 R plus the time r is visited n
times.

Tn = min fn � 0 j 9(i0, � � � , in), (Si0 2 R) ^ (Si0 = � � � = Sin)g .

Note that if all the rewards in M are strictly positive, Max plays only for the parity objective.
Hence no memory is required (c.f. Theorem 3.28).

Assume that there exist negative rewards in M. We want to compute an upper bound for Tn
such that the objective Avg>0 is achieved.

1

Tn

Tn�1∑
i=0

r(Si) =
1

Tn

jSj�1∑
i=0

r(Si) +

T0�1∑
i=jSj

r(Si) +
n�1∑
j=0

Tj+1�1∑
i=Tj

r(Si)

 .

Let

– A =
∑jSj�1

i=0 r(Si).

– B =
∑T0�1

i=jSj r(Si).

– Cj =
∑Tj+1�1

i=Tj
r(Si).

Hence for every s 2 S

Eσs

[
1

Tn

Tn�1∑
i=0

r(Si)

]
= Eσs

[
A

Tn
+
B

Tn
+

∑n�1
j=0 Cj

Tn

]
.

We first compute a lower bound for Eσs
[
A
Tn

]
.

1

Tn

jSj�1∑
i=0

r(Si) =
jSj
Tn

1

jSj

jSj�1∑
i=0

r(Si) �
jSj
n

min
s2S
fr(s)g .

Where the inequality holds because Tn � n and mins2Sfr(s)g is negative. Hence

Eσs

[
A

Tn

]
� jSj

n
min
s2S
fr(s)g . (4.10)

Next, we compute a lower bound for Eσs
[
B
Tn

]
Eσs

 1

Tn

T0�1∑
i=jSj

r(Si)

 = Eσs

T0 � jSj
Tn

1

T0 � jSj

T0�1∑
i=jSj

r(Si)

� Eσs

[
T0 � jSj
Tn

min
s2jSj
fr(s)g

]
� Eσs

[
T0 � jSj

n
min
v2jV j
fr(v)g

]
=
Eσs [T0 � jSj]

n
min
s2jSj
fr(s)g

48 Chapter 4. Multi Objectives Markov Decision Processes

Where the first inequality holds because Tn � n and mins2Sfr(s)g is negative. Hence

Eσs

[
B

Tn

]
� E

σ
s [T0 � jSj]

n
min
s2jSj
fr(s)g . (4.11)

Finally, we compute a lower bound for Eσs

[∑n−1
j=0 Cj
Tn

]
.

Eσs

 1

Tn

Tn�1∑
i=T0

r(Si)

 = Eσs

n�1∑
j=0

1

Tn

Tj+1�1∑
i=Tj

r(Si)

= Eσs

n�1∑
j=0

Tj+1 � Tj
Tn

1

Tj+1 � Tj

Tj+1�1∑
i=Tj

r(Si)

= Eσs

n�1∑
j=0

Tj+1 � Tj
Tn

Eσs

 1

Tj+1 � Tj

Tj+1�1∑
i=Tj

r(Si)

∣∣∣∣∣ FTj

= Eσs

Tn � T0

Tn
Eσs

 1

T1 � T0

T1�1∑
i=T0

r(Si)

∣∣∣∣∣ FT0
 (4.12)

� ηEσs
[
1� T0

Tn

]
(4.13)

� η
(

1� E
σ
s [T0]

n

)
(4.14)

� η
(

1� E
σ
s [T0 � jSj] + jSj

n

)
Where the transformation from (4.12) to (4.13) holds because according to Lemma 2.29:

9η > 0, Eσs

 1

T1 � T0

T1�1∑
i=T0

r(Si)

∣∣∣∣∣ FT0
 � η ,

and from (4.13) to (4.14) because Tn � n. Hence,

Eσs

[∑n�1
j=0 Cj

Tn

]
� η

(
1� E

σ
s [T0 � jSj] + jSj

n

)
. (4.15)

From (4.10), (4.11) and (4.15) we get

Eσs

[
1

Tn

Tn�1∑
i=0

r(si)

]
� jSj

n
m+

Eσs [TR]

n
m+ η

(
1� E

σ
s [TR] + jSj

n

)
.

Let us find a value for n such that

m

n
(jSj+ Eσs [TR]) +

η

n
(n� Eσs [TR] + jSj) > 0 .

4.3. Implementing optimal strategies with finite memory 49

We find

n > Eσs [TR] + jSj � m

η
(jV j+ Eσs [TR]) .

According to Lemma 2.29, we know that there exists a polynomial Q such that η � 2�Q(jM[τ]j) where
jM[τ]j is the description of the Markov chainM[τ], hence

n � Eσs [TR] + jSj �m2Q(jM[τ]j) (jSj+ Eσs [TR]) .

We compute an upper bound for Eσs [TR]. Using Lemma 2.26, we get that this quantity is at most
exponential in the description of the Markov decision process M. It follows that exponential size
memory is sufficient.

4.3.3 Exponential Size Memory is Necessary

Last step in the proof of Theorem 4.5 is to show item 3. This is done in Proposition 4.10

Proposition 4.10. Let M be a Markov decision process, a memory of size exponential in the size
ofM is necessary to implement an almost-sure strategy.

0 1 2 � � � n� 1 n

a, 0.5

a, 0.5 a, 0.5 a, 0.5

a, 0.5

a, 0.5

a, 0.5

a, 0.5

a

b

Figure 4.6: Max needs a memory of size exponential to achieve almost-surely the objective
Par^Avg>0.

Proof. Consider the Markov decision processM depicted in Fig 4.6 where:

– The set of states is S = f0, 1, � � � , ng,

– the set of action is A = fa, bg ,

– the transition function is defined in Fig 4.6,

– the reward function is defined as follow:

8i 2 f0, � � � , ng r(i) =

{
� 1 if i 6= n

1 if i = n

50 Chapter 4. Multi Objectives Markov Decision Processes

Assume that a play is winning if the state 0 is visited infinitely often and the positive-average
objective is achieved.

We show that memory of size exponential in the size ofM is necessary to achieve the objective
Par^Avg>0 almost-surely. Notice that in the Markov decision process of Fig 4.6 Max wins almost-
surely from any state s 2 S. Let σ be an almost-sure strategy with finite-memory of size k. Denote
TR the absorption time in state n in the Markov chain obtained by removing fromM the action b.
Eσs [TR] gives the expected time to reach n. Thus the expected average reward for Max on the path
from state 0 to state n is

Eσ0

[
1

l + 1

l∑
i=0

r(Si)

∣∣∣∣∣ Sk = n

]
= �Eσ0 [TR] .

We show by contradiction that k � Eσv [TR]. Since σ is almost-sure, any play consistent with σ
cannot stay forever in state n almost-surely, thus it leaves state n after at most k loops. Thus the
expected accumulated reward on a play from state 0 to 0 is

Eσ0

[
1

l + 1

l∑
i=0

r(Si)

∣∣∣∣∣ Sk = 0

]
� k � Eσs [TR] .

If this value is negative then according to the law of large numbers, the expected average reward
will almost-surely be negative as well, a contradiction, hence

k > Eσs [TR] .

Let us show that Eσ0 [TR] is exponential in jSj. We know that for every state 0 � i � n� 1

Eσi [TR] = 1 +
1

2
Eσ0 [TR] +

1

2
Eσi+1[TR] .

and for i = n

Eσn[TR] = 0 .

Thus we get

Eσ0 [TR] = 2n
n�1∑
i=0

1

2i
= 2n+1

(
1� 1

2n

)
.

Thus σ has a memory at least exponential in the size of the Markov decision process.

We now conclude this section by putting things together and proving Theorem 4.5.

Proof of Theorem 4.5. Proposition 4.8 describes the shape of the finite memory almost-sure strategy,
Proposition 4.9 shows that exponential memory in the size of the arena is sufficient and Proposi-
tion 4.10 shows that it is necessary.

To conclude this section we use Theorem 3.21 that leads the following corollary:

Corollary 4.11. Let M be a Markov decision process with state space S. Optimal strategies with
memory of size O(2jSj) for the objective Par^Avg>0 are su�cient and necessary.

4.4. Solving Parity and Positive-average Objectives with lim inf semantics 51

4.4 Solving Parity and Positive-average Objectives with lim inf se-
mantics

In the previous section we studied parity and positive-average objectives with lim sup semantics.
An alternative definition of these objectives is to replace lim sup by lim inf in the definition of the
Avg>0 winning condition. We show that all results of the previous section hold for this alternative
definition.

Definition 4.12. Let M be a Markov decision process equipped with a reward function r : S ! R.
The objective Avg

>0
is:

Avg
>0

=

{
s0s1s2 � � � 2 sω j lim inf

n!1

1

n

n�1∑
i=0

r(Si) > 0

}
.

To compute the value of state for a Markov decision process equipped with Par^Avg
>0

objective,
we use the previous result on optimality using finite memory and known results on Markov chains
theory. Actually we show that the value of a state s for the objective Par^Avg

>0
is equal to the

value of s for the objectives Par^Avg>0.

Proposition 4.13. In any Markov decision processM we have:

8s 2 S, ValPar^Avg>0
(s) = ValPar^Avg

>0
(s) .

Proof. We show that the following inequalities hold:

8s 2 S, ValPar^Avg
>0

(s) � ValPar^Avg>0
(s) . (4.16)

8s 2 S, ValPar^Avg>0
(s) � ValPar^Avg

>0
(s) . (4.17)

That (4.16) holds is trivial. It is a consequence of the fact that every winning strategy for Par^Avg
>0

is also winning for Par^Avg>0.
To prove (4.17), notice that according to Corollary 4.4 Max can play optimally using finite

memory in the Par^Avg>0 game, thus there exists a strategy σ] which is optimal and with finite
memory. Hence:

ValPar^Avg>0
(s) = Pσ

]

s (Par^Avg>0)

= Pσ
]

s (Par^Avg
>0

)

� sup
σ
Pσv (Par^Avg

>0
) = ValPar^Avg

>0
(s) ,

where the first equality is by definition of the value and the second is by Lemma 2.28. Therefore
(4.17) holds and Proposition 4.13 is proved.

Proposition 4.13 leads the following theorem.

Theorem 4.14. In any Markov decision process M equipped with the objective Par^Avg
>0

, the
values are computable in polynomial time. Moreover memory of size exponential in the size of the
arena is su�cient and necessary to implement optimal strategies.

52 Chapter 4. Multi Objectives Markov Decision Processes

4.5 Towards Boolean Formulae of Objectives

In this section we tackle the problem of solving Markov decision process equipped with objective
that consist of boolean combination of the objectives seen previously.

First of all notice that in the case of disjunctive formulae, the result follows from Theorem 3.24.
To study the case of conjunctive formulae we start by solving boolean combination of objectives

consisting of positive-average only. We first study objectives consisting of conjunction of Avg>0

conditions. Second we study objectives consisting of Avg
>0

conditions. Finally, we mix the two
previous conditions. Theorem 4.18 was obtained separately of the work published in [BBC+11], the
technics we use are inspired by [Vel11].

Definition 4.15 (Generalized positive average objectives). Let M be a Markov decision process
equipped with k reward function ri : S ! R for 1 � i � k. The generalized positive-average winning
condition is:

Avgk>0 =
k∧
i=1

Avg
(i)
>0 ,

where Avg
(i)
>0 is the positive-average reward associated with the reward function ri.

4.5.1 Solving conjunction of Avg>0

Theorem 4.16. The almost-sure region of Max for the objective Avgk>0 is given by the largest sub
Markov decision processM[W] where W �

⋂k
i=1W=1[Avgi>0].

Proof. let U � S such that M[U] is a sub Markov decision process where Max can almost-surely
win the positive average objective induced by every reward function ri for 1 � i � k. We show
that Max has an almost-sure strategy to win the objective Avgk>0 inM[U]. Let σi be the almost-
sure strategy for Avgi>0. Max applies the following strategy σ, play consistently with σ1 until the
accumulated average reward with respect to r1 goes above a threshold η1 > 0, then switches to σ2

until a threshold η2 is reached and so on, when the play is consistent with σk and the threshold ηk
is reached Max restart from scratch.

We show that the strategy σ is almost-sure. The fact that M[U] is a sub Markov decision
process ensures the fact that the play will never go outside of U and hence Max will always have
the possibility to switch from one strategy to an other. To see that σ is almost-sure, notice that

8s 2 U, 81 � i � k, Pσs

91n � 0,
1

n+ 1

n∑
j=0

ri(Sn) > 0

 = 1 ,

hence

8s 2 U, 81 � i � k, Pσs

lim sup
n

,
1

n+ 1

n∑
j=0

ri(Sn) > 0

 = 1 ,

thus
8s 2 U, Pσs

(
Avgk>0

)
= 1 .

We show that any state not in U is not almost-sure. Let s 62 U be a state and let σ0 be a strategy,
then either

Pσ
′
s (9n � 0, 9a 2 A, p(Sn, a)(U) > 0) > 0 , (4.18)

4.5. Towards Boolean Formulae of Objectives 53

or

Pσ
′
s (8n � 0, 8a 2 A, p(Sn, a)(U) = 0) = 1 . (4.19)

If Equation (4.18) holds, then assume that

Pσ
′
s (9n � 0, 9a 2 A, p(Sn, a)(U) = 1) = 1 ,

then M[Sn [U] is a sub Markov decision process in
⋂k
i=1W=1[Avgi>0] which contradicts the fact

thatM[U] is the largest sub Markov decision process in
⋂k
i=1W=1[Avgi>0], thus

Pσ
′
s (9n � 0, 9a 2 A, p(Sn, a)(U) = 1) < 1 .

If Equation (4.19) holds, then a play consistent with σ0 eventually reaches the largest trap contained
in S n U and since

8s 2 S n U, 8τ, 91 � i � k, Pτs(Avgi>0) < 1 ,

if follows that
8s 2 S n U, 8τ, Pτs(Avgk>0) < 1 ,

which terminates the proof.

4.5.2 Solving conjunction of lim inf

While solving conjunction of Avg>0 was straightforward, solving the conjunction of Avg
>0

requires
a little more work. Indeed, we define a set of equations and show that a strategy that ensures the
objective Avgk

>0
exists if and only if the set of equations has a solution. In order to define this

system of equations in a more convenient way, we assume without loss of generalities that a state s
is one of the following cases:

– there exists an action a 2 A such that 0 < p(s, a)(t) < 1 for every t 2 S and for every b 6= a
we have p(s, b)(s) = 1; we say that s 2 SR.

– for every action in a 2 A we have p(s, a)(t) 2 f0, 1g for every state t 2 S; we say that s 2 SM .

This assumption does not restrict the model since

Proposition 4.17. For every Markov decision process M, one can compute in polynomial time a
Markov decision processM0 such that the set of states ofM0 is partitioned into SR and SM and for
any tail objective Φ:

9s 2 S, 9σ, Pσs (Φ) = 1 () 9s 2 SM , 9σ0, Pσ
′
s (Φ) = 1 .

Proof. LetM0 = (SM , SR, p
0 : SR ! ∆(S)) be the Markov decision process constructed the following

way:

– SM = S,

– SR = fsa j 8t 2 S, p(s, a)(t) > 0g,

– 8sa 2 SR, p0(sa)(t) = p(s, a)(t).

54 Chapter 4. Multi Objectives Markov Decision Processes

SM is the set of original states, SR the set of fresh states, and E the set of edges obtained. Let us
show the direct implication. Let σ be a strategy and s 2 S be a state such that:

Pσs (Φ) = 1 ,

we define σ0 : S�SM ! S as follows, for every history hs 2 S�SM ,

σ0(hs) = sa if σ(s0 � � � sn)(a) = 1 ,

We show that Pσ′s (Φ) = 1. This is consequence of the fact that

8t 2 S, p(s, σ(hs))(t) = σ0(hs) � p0(sσ(hs))(t) .

We show the converse implication, let s 2 SM be a state and σ0 be a strategy forM0 such that

Pσ
′
s (Φ) = 1 ,

Let σ : S�S :! A be the strategy obtained as follows, for every history hs 2 (SA)�S we have

σ(hs) = a if σ0(h0s) = sa ,

where h0 is obtained as follows, if h = s0a0 � � � snan then h0 = s0sa0 . . . snsan . Similar argument as
in the first part of the proof yields the result.

In the sequel we assume that S = SM [SR and for a state s 2 SM [SR we denote sE the set of
states q such that the couple (s, q) is an edge and Es the set of states q such that the couple (q, s)
is an edge. The reward function is also transformed in such way that its labels the edges of the new
transition graph. Hence we obtain the new reward function r0 : E ! Rn such that r0(s, s0) = r(s).

For each edge we define a variable xe and we denote pe the transition probability of e. Consider
the following system of equations:

8s 2 SM ,
∑
e2sE

xe =
∑
e2Es

xe . (4.20)

8s 2 SR, 8e 2 sE, xe = pe
∑
e′2Es

xe′ . (4.21)

8i 2 f1, � � � , kg ,
∑
e2E

xeri(e) > 0 . (4.22)

8e 2 E, xe � 0 . (4.23)∑
e2E

xe � 1 . (4.24)

Theorem 4.18. The system (4.20), (4.21), (4.22), (4.23) and (4.24) has a solution if and only if
the positive region is nonempty.

Proof. We first show that if there exists a solution that satisfies (4.20), (4.21), (4.22), (4.23) and
(4.24) then there exists a positive strategy for Max and hence the positive strategy is not empty. Let
(n1, . . . , nk) where k = jEj a solution to the above system of equations. We define the stationary
strategy σ defined as follows,

8v 2 V , 8e 2 vE, Pσv (e) =
xe∑

e2Ev xe
.

4.5. Towards Boolean Formulae of Objectives 55

The strategy σ induces a Markov chain M0[σ]. According to (4.22) we know that there exists a
closed class C such that:

8c 2 C, 8i � k, Eσc

 n∑
j=0

ri(Sj)

∣∣∣∣∣ Tc = n

 > 0 ,

Using similar argument as in proof of Lemma 2.29 we obtain that

8c 2 C, 8i � k, Pσc

lim inf
n

n∑
j=0

ri(Sj) =1

 = 1 =) Pσc

(
Avgk

>0

)
= 1 ,

and since

8s 2 S, Pσs (9n � 0, Sn 2 C) > 0 ,

the implication follows.

We now show the converse implication. Assume that the system has no solution and let σ a
strategy for Max. For every e 2 E we define the quantities

F̄e = lim sup
n

Eσ
[∑n

i=0 1ei=e

n+ 1

]
,

and

x̄e =
F̄e∑
i2E F̄i

,

We show that

9i,
∑
e2E

x̄eri(e) � 0 , (4.25)

By definition x̄e satisfies (4.20), (4.21), (4.23) and (4.24) and since by supposition the system does
not have a solution, (4.25) follows.

56 Chapter 4. Multi Objectives Markov Decision Processes

We now show that σ is not almost-sure.∑
e2E

x̄eri(e) � 0 =)
∑
e2E

F̄eri(e) � 0

=)
∑
e2E

lim sup
n

Eσ

[∑n
j=0 1ej=e

n+ 1

]
ri(e) � 0

=) lim sup
n

∑
e2E

Eσ

[∑n
j=0 1ej=e

n+ 1

]
ri(e) � 0

=) lim sup
n

Eσ

[∑
e2E

∑n
j=0 1ej=e

n+ 1
ri(e)

]
� 0

=) lim sup
n

Eσ

 n∑
j=0

ri(ej)

n+ 1

 � 0

=) lim inf
n

Eσ

 n∑
j=0

ri(ej)

n+ 1

 � 0

=) Eσ

lim inf
n

n∑
j=0

ri(ej)

n+ 1

 � 0

=) Pσ

lim inf
n

n∑
j=0

ri(ej)

n+ 1
� 0

 > 0

=) Pσ

lim inf
n

n∑
j=0

ri(ej)

n+ 1
> 0

 < 1 ,

and hence if there is no solution then there is no almost-sure strategy thus no positive and hence
the result.

4.5.3 Comparison between objectives

In this part, we give an example where solving a conjunction of Avg>0 is possible but no strategy
can ensure the conjunction of Avg

>0
. Consider the Markov decision process depicted in Fig 4.7.

The reward vector in state p is (1,�1) and in state q is (�1, 1).

p q

a
b

b

a

Figure 4.7: Markov decision process where Max can ensure conjunction of Avg>0 but no conjunction
of Avg

>0

4.5. Towards Boolean Formulae of Objectives 57

A strategy that achieves the objective Avg>0 would visit state p once then state q twice then
again state p three times and so on, such strategy is winning with probability 1 since the accumulated
average on two dimensions behaves as it is shown in Fig 4.8. On the other hand, no strategy can
ensure Avg

>0
since one can easily verify that the equations given in the previous section cannot be

satisfied.

i

Eσs
[

1
n

∑
r1(si)

]

Eσs
[

1
n

∑
r2(si)

]

Figure 4.8: Behavior of the accumulated average when being consistent with σ.

4.5.4 Mixing lim inf and lim sup

In order to solve conjunctions of Avg>0 and Avg
>0

we prove that the value for the objective Avg
>0
^

Avg>0 are equal to the value of the objective Avg
>0
^ Avg

>0
played on the same Markov decision

process.

Proposition 4.19 ([BBE10a]). LetM be a Markov decision process with reward functions ri : S !
R for i 2 f1, 2g and let s be an almost-sure state for the objective Avg

>0
^Avg>0 if and only if s is

almost-sure for Avg
>0
^Avg

>0
.

Proof. Let s be a state and assume that s is almost-sure for the objective Avg
>0
^ Avg

>0
, then it

is straightforward that s is almost-sure for the objective Avg
>0
^Avg>0.

Let us proof the converse implication. Let τ be an almost-sure strategy for Avg
>0
^Avg>0 from

a state s. We turn the strategy τ into a finite memory strategy to ensure the same objective, then
one can easily conclude that the new strategy achieves the objective Avg

>0
^ Avg

>0
. Since τ is

almost-sure, there exists m > 0 and a measurable set of runs Am such that:

8k � 0, Am =

{
Sω

∣∣∣∣∣
k∑
i=0

r1(Sk) � �m

}
,

and

Pτs(Am) � 1

2
.

58 Chapter 4. Multi Objectives Markov Decision Processes

Again since τ is almost-surely winning there exists a measurable set of runs Bn, n > 0, and m0 > 0
such that:

Bn =

{
Sω

∣∣∣∣∣
(

n∑
i=0

r1(Sk) � 4m

)
^

(
1

n+ 1

n∑
k=0

r2(Sk) � m0
)}

,

and
Pτs(Bn j Am) � 1

2
.

Let Tu be the stoping time associated with the state u defined as follow:

Tu = min

{
0 � k � n

∣∣∣∣∣
(

4m �
k∑
i=0

r1(Si) � �m

)
^

(
1

k + 1

k∑
i=0

r2(Si) � m0
)}

.

We define a new strategy σ as follows: from any almost-sure state u, σ simulates τ for Tu steps then
restart simulating τ from the current state say v for Tv steps and so on. σ is clearly using only finite
memory (counters of bounded size), let us show that σ is also almost-sure.

We show that σ ensures the objective Avg
>0

. For each almost-surely winning state u, the
expected accumulated reward at the stopping time Tu is m � 3

4m > 0 hence in the long term, the
accumulated reward on the first dimension diverge to 1, thus the objective Avg

>0
is satisfied.

We show that σ satisfies the objective Avg>0. Let u be an almost-sure state, at the stopping
time Tu we have

Pσu

(
1

k + 1

k∑
i=0

r2(Si) � m0
∣∣∣∣∣ Tu = k

)
� 1

4
,

According to Borel-Cantelli, the accumulated average reward goes above 0 infinitely often with
probability 1, thus the objective Avg>0 is satisfied.

As a consequence we obtain the following proposition:

Proposition 4.20. The almost-sure region of Max for the objective Avgk
>0
^Avgk>0 is given by the

largest sub Markov decision processM[W] where W �W=1[Avgk
>0
^Avg

(i)
>0] for 0 � i � k.

Proof. LetM[U] be a sub Markov decision process such that U �W=1[Avgk
>0
^Avg

(i)
>0], and let σi

be an almost-sure strategy for the objective Avgk
>0
^Avg

(i)
>0 for 0 � i � k.

We show that M[U] is almost-sure for Max for the objective Avgk
>0
^ Avgk>0. Max alternates

between strategies σi for 0 � i � k in a similar fashion as in the proof of Theorem 4.16.
We show that W=1[Avgk

>0
^ Avgk>0] contains U . This follows from the fact that if a strategy is

almost-sure for Avgk
>0
^ Avgk>0 then it is almost-sure for any Avgk

>0
^ Avg

(i)
>0 played on the same

Markov decision process

Finally we obtain the following theorem:

Theorem 4.21. Let M be a Markov decision process and let Φ � Sω be a winning condition
that consists of boolean combination of positive-average conditions, the set W=1[Φ] is computable in
exponential time.

Proof. The result follows from the fact that Φ can be rewritten as a new formula Φ0 such that Φ0

is in disjunctive normal form, the result then follows from Theorem 3.24 and the fact that we can
solve any conjunctive formula of positive-average.

4.6. Conclusion 59

4.6 Conclusion

In this chapter our main result is that the values of states for parity and positive-average objective
for Markov decision processes are computable in polynomial times and that optimal strategies with
finite memory exists. This result makes the synthesis of controller effective.

The other result is an algorithm for the computation of the almost-sure region for boolean
combination of positive-averages combination.

The result obtained regarding the memory requirement and the computation time of the almost-
sure region are presented in Table 4.1.

Par^Avg>0 Par^Avg
>0

Avgk>0 Avgk
>0

Avgk
>0
^Avgk>0 B.C.

A.S. region Polynomial Polynomial Polynomial Polynomial Polynomial Exponential
A.S. strategy Pure Pure Pure Stationary Pure Pure

Memory Exponential Exponential Infinite Memoryless Infinite Infinite

Table 4.1: Memory requirement for the different objectives; A.S. refers to almost-sure region and
B.C. refers to boolean combination of positive-average objectives.

An interesting research direction is the boolean combination of parity and positive-average objec-
tives. We seem to solve this problem in the restricted case of parity and positive-average objectives
with lim sup semantics.

Another research direction is to solve parity and positive-average objectives in the setting of
stochastic games. In the next chapter we give give an NP algorithm that solves parity and positive-
average games with lim sup semantics.

Chapter 5

Two-player Par^Avg>0 Games

Contents
5.1 Introduction . 61

5.2 Two-player Stochastic Games with Perfect Information 62

5.3 A Polynomial Certificate . 65

5.3.1 The Almost-sure Region . 66

5.3.2 Polynomial Size Certificate . 69

5.3.3 Checking the Certificate in Polynomial Time 71

5.4 Computing the Values . 72

5.5 Conclusion . 73

Abstract In this chapter, we generalize the construction of the previous chapter to stochastic
games. We show that a slightly different construction for the almost-sure region allows us to com-
pute value of two-player games with perfect information equipped with the Par^Avg>0 objectives.
Moreover we show that even though the optimal strategies may require infinite memory, there exists
an NP algorithm that computes the almost-sure region.

5.1 Introduction

Stochastic games with perfect information generalize Markov decision processes in the sense that
the model is equipped with an second controller usually called Min whose objective is to minimize
the probability that max satisfies her objective. In this model the two-player play in turn and the
state space is partionned into Max's states and Min's states as opposed to concurrent games where
the players choose there actions simultaneously.

These games are very useful in modeling problems and providing solutions for verification of open
reactive systems even though they are less tractable than Markov decision processes. For instance
computing the value of a reachability games is a problem that lies in NP\CoNP [Con92] as opposed
to the polynomial time algorithm for Markov decision processes.

Our main goal in this chapter is to study stochastic games equipped with combination of parity
and positive-average objectives. This objective were first studied in the case of non-stochastic
games [CHJ05]. In the previous chapter we solved this problem for Markov decision processes, in
the present chapter we show how to extend our result to the case of stochastic games.

Contribution and result In this chapter we give characterization of the almost-sure region for
Max when the objective is Par^Avg>0, we also give an NP algorithm that computes this region
together with an almost-sure strategy even though our almost-sure strategy may require infinite
memory.

62 Chapter 5. Two-player Par^Avg>0 Games

Outline of the chapter

– In Section 5.2 we introduce stochastic games and basic tools to study this model.

– In Section 5.3 we show that deciding whether Max has an almost-sure state for the objective
Par^Avg>0 in a stochastic game is in NP.

– In Section 5.4 we give an algorithm that computes the value of each state for the objective
Par^Avg>0 in a stochastic game.

5.2 Two-player Stochastic Games with Perfect Information

Two-player Stochastic Games with Perfect Information are similar to Markov decision processes
except there are two kinds of states: states controlled by player Max whose goal is to maximize
the probability that some objective is achieved, and states controlled by player Min who has the
opposite goal and tries to minimize this probability.

Definition 5.1 (Stochastic game with perfect information). A stochastic game with perfect infor-
mation is a tuple A = (S, (S1, S2), A, p) where:

� S is a �nite set of states,

� (S1, S2) is a partition of S,

� A is a set of actions,

� p is a transition function.

In the sequel we refer to two-player stochastic game with perfect information by stochastic game
unless it is not clear by the context.

As opposed to Markov decision processes, the adversary can interfere in the play, and the notions
of strategy and value have to be defined accordingly. First, the notion of strategy:

Definition 5.2 (Strategies). A strategy for Max is a function σ : (SA)�S1 ! ∆(A) and a strategy
for Min is a function τ : (SA)�S2 ! ∆(A).

Once a couple of strategies chosen (σ, τ) and an initial state s fixed, we associate the probability
measure Pσ,τs over s(AS)ω as the only measure over Sω such that:

Pσ,τs (S0 = s) = 1 ,

Pσ,τs (Sn+1 = s j Sn = sn ^An+1 = an+1) = p(sn, an+1)(s) ,

Pσ,τs (An+1 = a j S0A1S1 � � �Sn = s0a1 � � � sn) =

{
σ(s0a1 � � � sn) if sn 2 S1

τ(s0a1 � � � sn) if sn 2 S2

Second, the notion of value of a state has to change as well. We define the value associated with
a couple of strategies as follows:

Definition 5.3. Let s be a state, (σ, τ) a couple of strategies, and Φ and objective. The value of s
with respect to (σ, τ) for Φ is:

Val(s)σ,τ = Pσ,τs (Φ) .

5.2. Two-player Stochastic Games with Perfect Information 63

Also, since player Max and Min play in turns, it make sense to differentiate between two definition
of the value of state. The first one is the so called superior value. Intuitively, this is the best possible
value for a state when Min chooses his strategy first and Max decides the best possible answer.
Formally,

Definition 5.4 (Superior value). Let s be a state and Φ be an objective, the superior value of s for
Φ is:

Val(s) = inf
τ

sup
σ
Pσ,τs (Φ) .

Dually, one defines also the so called inferior value of a state with the intuition that now Max
chooses her strategy first and let Min defines the best possible answer.

Definition 5.5 (Inferior value). Let s be a state and Φ be an objective, the superior value of s for
Φ is:

Val(s) = sup
σ

inf
τ
Pσ,τs (Φ) .

The following equation always holds.

8s 2 S, Val(s) � Val(s) . (5.1)

Equation (5.1) follows the natural intuition; it is easier to win if one knows the strategy of his
opponent. A legitimate question raises. When does these two quantities coincide? The answer
follows from Martin's second determinacy theorem [Mar98] extended to stochastic games by Maitra
and Sudderth [MS], which shows that for any Borel objective both values coincide.

Definition 5.6 (Determinacy). Let s be a state and Φ be a objective, then Φ is determined (for
�nite stochastic games with perfect information) if and only if for every stochastic game with perfect
information and �nitely many states and actions objective Φ:

Val(s) = Val(s) .

In this case we denote the value of a state Val(s).

Theorem 5.7 (Borel Determinacy [Mar75, MS]). Every Borel objective is determined for �nite
stochastic games with perfect information.

This determinacy result shows that for Borel objectives, there always exist ε-optimal strategies
for both players.

Definition 5.8 (ε-optimal strategies). Let ε > 0. A strategy σ] for player 1 is ε-optimal if

8s 2 S, 8τ, Pσ],τs (Φ) � Val(s) .

For player 2 the de�nition is symmetric. A 0-optimal strategy is simply called optimal.

While ε-strategies are guaranteed to exist in determined games, this is not the case for optimal
strategies. However, provided the objective is tail, this existence is guaranteed:

Theorem 5.9 (Existence of optimal strategies [GH10]). In every stochastic game with perfect in-
formation equipped with a tail Borel objective, both players have optimal strategies.

Note that optimal strategies can be characterized as follows:

64 Chapter 5. Two-player Par^Avg>0 Games

Definition 5.10 (Optimal strategies). Let (σ], τ]) be a couple of strategies and Φ be an objective,
(σ], τ]) is an pair of optimal strategies if for every pair of strategies (σ, τ)

8s 2 S, Pσ,τ]s (Φ) � Pσ],τ]s (Φ) � Pσ],τs (Φ) .

If this property holds in a game then the game is determined and:

8s 2 S, Val(s) = Pσ
],τ]

s (Φ) .

In a similar fashion as the one for Markov decision processes, the notion of value is not the only
interesting solution concept, we are also interested in qualitative solution concepts.

Definition 5.11 (Almost-sure and positive winning strategies). We say that Max wins almost-surely
(resp. positively) from a state s if she has a strategy σ such that for every strategy τ Pσ,τs (Φ) = 1
(resp. Pσ,τs (Φ) > 0).

We will use the following result about qualitative determinacy.

Theorem 5.12 (Qualitative determinacy [GH10]). In any stochastic game equipped with a tail
objective, each state is either almost-sure for Max or positive for Max and Min or almost-sure for
Min.

As a consequence,

Corollary 5.13. In any stochastic game equipped with a tail objective, the following assertions hold.

1. If there exists an almost-sure strategy with memory M , then there exists an optimal strategy
with same memory.

2. The states with value 1 are exactly the almost-sure states.

Remark 5.14. In the sequel, we say that a game A is almost-sure (resp positive), if every state in
the game is almost-sure (resp positive).

Finally, the notions of positive attractor and subgame will be basic tool notions to build our
proofs upon.

Definition 5.15 (Positive attractor). Let f : 2S ! 2S be the operator such that for any U � S,

f(U) = T [fs 2 S1 j 9a 2 A, p(s, a)(U) > 0g [fs 2 S2 j 8a 2 A, p(s, a)(U) > 0g .

Then
���!
RMax(T, S) is the least �xed point of f .

We define also
���!
RMin as the positive attractor for Min in a dual way.

Definition 5.16 (Subgame). Let A be a stochastic game with state space S. A[S0] is a subgame
induced by S0 � S if

(8s 2 S0), (9a 2 A), p(s, a)(S0) = 1 .

5.3. A Polynomial Certificate 65

5.3 A Polynomial Certificate

Parity and Positive-average Stochastic Games In this section we study stochastic games
where Max wants to maximize the probability to achieve the objective Par^Avg>0. Again we focus
on the computation of the almost-sure region. We show that deciding whether Max wins almost-
surely lies in NP and we give an algorithm to compute the value of each state. The challenging part
is to provide a polynomial certificate even though the almost-sure strategies may require infinite
memory, hence the usual trick of guessing a strategy for max and checking whether it is almost-sure
or no will not work since there are infinitely many possible strategies.

Our goal is to provide a polynomial certificate for the almost-sure winning. We want to solve
the following problem

Problem 5.17. For a given stochastic game A with perfect information and a state s, decide whether
s is almost-sure for Max for the Par^Avg>0 objective.

Our approach consists in providing a polynomial size certificate for a subgame A[U] of A that
contains s. This notion of certificate is defined by induction on the number of priorities in the arena,
and the recursive definition depends on the parity of the highest priority in the subgame A[U].

A precise definition of the certificates is given in Definitions 5.22 and 5.23 for a start we give a
first rough description a d-certificate (where d is the number of priorities) and why they are sufficient
to prove that the subgame A[U] is almost-sure:

(a) If the highest priority d in the subgame A[U] is even, then denote Sd the set of vertices with
priority d, a d-certificate is a decomposition of A[U] into

���!
RMax(Sd \U,U) and U n

���!
RMax(Sf \

U,U), a (d� 1)-certificate for the subgame A[U n
���!
RMax(Sd \ U,U)] and a positional strategy

for Max in the subgame A[U] for the objective Avg>0. This is sufficient to conclude that A[U]

is almost-sure because Max can play as follows. If the play is in
���!
RMax(Sd \U,U), Max applies

a strategies to attempt a visit a priority-d state, then switches to an almost-sure strategy for
the positive-average objective. Then she either starts these two steps again or in case the play
is in A[U n

���!
RMax(Sd \ U,U)] Max apply an almost-sure strategy in this subgame.

(b) If the highest priority d in the subgame A[U] is odd, then denote S1 the set of vertices with
priority 1, a d-certificate is given by a finite sequence (Ri)0�i�jU j�1 of disjoint subsets of
U n
���!
RMin(Sd \U,U) such that i) for every i we have Ri � S n

⋃
j

���!
RMax(Rj<i, U), ii) a (d� 1)-

certificate for every Ri, and iii) the collection of sets
���!
RMax(Ri, U) is a partition of U . The

intuition beyond this certificate is that Max can apply a positive strategy induced by ii) to
win the game Par^Avg>0 if the play starts from some

���!
RMaxRi , second we show using the

qualitative determinacy (c.f. Theorem 5.12) that iii) implies that this strategy is actually
almost-sure for the objective Par^Avg>0. set

In order to provide a polynomial certificate, we proceed in three steps. First we characterize
the set of almost-sure states (c.f. Propositions 5.19 and 5.21). Second we formally define what
is a polynomial certificate (c.f. Definitions 5.22 and 5.23) and show that its is size polynomial in
the number of states and priorities. Finally we show that the certificate can be checked in time
polynomial in the number of states and priorities (c.f. (Lemma 5.25).

66 Chapter 5. Two-player Par^Avg>0 Games

5.3.1 The Almost-sure Region

Lemma 5.18. Let A be a stochastic game and A[U] be a subgame. Suppose that the highest priority
d in A[U] is even and let Sd be the set of vertices with priority d. Then A[U] is almost-sure if and
only if

1. A[U] is almost-sure for the positive-average objective.

2. A[U n
−−−!
RMax(Sd \ U,U)] is almost-sure for Max

U

−−−!
RMax(Sd \ U,U)

W=1[Par^Avg>0]
The idea of the above lemma is that if
the subgame A[U] is almost-sure and
if the highest priority d in A[U] is even
then A[U] can be decomposed such that:

U = W=1 [Par^Avg>0][−−−!RMax(Sd\U,U) .

Figure 5.1: Decomposition of A[U] when the highest priority is even

Proof. Let A[U] be a subgame satisfying items 1. and 2. of Lemma 5.18. We show that A[U] is
almost-sure for Max for the objective Par^Avg>0. Let σSub, σAttr, and σAvg denote the almost-
sure strategy in the subgame A[U n −−−!RMax(Sd \ U,U)], the attraction strategy to priority-d states
in the subgame A[U], and the almost-sure strategy for the objective Avg>0 in the subgame A[U]
respectively. We define the application Mode : (S �A)� ! fSub,Attr, Avgg as follows:

Mode(s0a0 � � � snan) = Sub if

sn 2 U n

−−−!
RMax(S0 \ U,U)]^[

(Mode(s0a0 � � � sn−1an−1) = Sub)_(
1
n

∑n−1
i=0 � η ^Mode(s0a0 � � � sn−1an−1) = Avg

)]
,

Mode(s0a0 � � � snan) = Attr if

sn 2

−−−!
RMax(S0 \ U,U)]^[

(n−max fk jMode(s0a0 � � � skak) 6= Attrg < [jU j])_(
1
n

∑n−1
i=0 � η ^Mode(s0a0 � � � sn−1an−1) = Avg

)]
,

Mode(s0a0 � � � snan) = Avg otherwise.

We assume also that Mode(ε) = Avg where ε is the empty word.
The strategy σ that Max applies is as follows.

– For every w 2 (S � A)� if the Mode(w) = x, then apply the strategy σx for x 2
fSub,Attr, Avgg.

We show that σ is almost-sure. Let s 2 U , then if

8τ, Pσ,τs (9N � 0, 8n � N, Mode(S0A0 � � �SnAn) = Sub) = 1 .

Then Max plays consistent with strategy σSub, and by definition of σSub Max wins almost-surely.

5.3. A Polynomial Certificate 67

If we have:
8τ, Pσ,τs (91n � 0, Mode(S0A0 � � �SnAn) = Attr) = 1 .

First, we show that the parity objective is satisfied. Let An be the following sequence of events:

A0 =
{
Sω j

(
S0 2

���!
RMax(S0 \ U,U)

)
^ (80 � i � jU j, χ(Si) 6= 0)

}
,

An =

Sω j (9i0, � � � , in),

 n⋂
j=0

Aij

 ^ (8j � in, (Sj 62 ���!RMax(Sd \ U,U)
)
_ (χ(Sj) 6= 0)

) .

Intuitively, a play ofM belongs to An if it reaches the positive attractor to Sd n consecutive times
and misses a state with priority-d. We show that that can happen only for finite number of time.
Let m be the least transition probability of theM, we have

8τ, (8s 2 S), Pσ,τs (An) �
(

1�mjU j
)n+1

�
(

1�mjSj
)n+1

.

Since (
1�mjSj

)
< 1 ,

we get

8τ,
∑
n>0

Pσ,τs (An) <1 .

According to Borel-Cantelli Lemma we get:

8τ, 8s 2
���!
RMax(Sd \ U,U), Pσ,τs (i.o. Ak) = 0 .

Hence a state with priority d is eventually visited, and the parity objective is satisfied with probability
1 when the play stays in

���!
RMax(Sd \ U,U).

Second, we prove that the positive-average objective is satisfied. By definition of σAvg there
exists an integer η > 0 such that:

8τ, 8s 2W=1[Avg>0] ,P
σAvg ,τ
s

(
91n � 0,

1

n+ 1

n∑
i=0

r(Si) � η

)
= 1 .

To show that σ satisfies the objective Avg>0 with probability 1, we still need to show that Max can
make the average reward go above η, but this always possible since the play is happening in the
almost-sure region for the positive-average condition it follows that

8τ, 8s 2W=1[Avg>0], Pσ,τs

(
9n � 0,

1

n+ 1

n∑
i=0

r(Si) � η

)
= 1 .

Thus the Avg>0 objective is achieved almost-surely. The above facts show that σ is almost-sure.
This show that A[U] is almost-sure.

Let us show that any winning region satisfies items 1 and 2. Denote W the almost-sure region
for Par^Avg>0 objective played in A. We prove that W satisfies items 1 and 2. That W satisfies
item 1 follows from the fact that Max can win almost-surely Par^Avg>0 in A[W]. To see that
item 2 holds, note that A[W n

���!
RMax(S0 \W,W)] is a trap for Max. So if she plays her almost-sure

strategy σ defined on W , she wins almost-surely the Par^Avg>0 objective. This terminates the
proof.

68 Chapter 5. Two-player Par^Avg>0 Games

Proposition 5.19. Let A be a stochastic game with a tail winning condition. Then the almost-sure
region is given by the largest subset W � S that induces a trap for Min and such that A[W] is
almost-sure for Max.

Proof. We show that the collection of subsets inducing a subgame and satisfying Lemma 5.18 is
closed under union.

Let U1 and U2 be two subsets inducing subgames and satisfying Lemma 5.18, we show that
A[U1 [U2] is almost-sure for Max for the objective Par^Avg>0 i.e. we show that A[U1 [U2]
satisfies Lemma 5.18.

First we show that if A[U1] and A[U2] are almost-sure for Avg>0 then A[U1 [U2] is almost-sure
for the objective Avg>0 as well. Let σi be the almost-sure strategy for the objective Avg>0 played
in the subgame A[Ui] for i 2 f1, 2g, then in the subgame A[U1 [U2] Max plays as follows:

– If the play is in A[Ui], apply the strategy σi for i 2 f1, 2g.

This strategy is clearly almost-sure since each A[Ui] is a trap for Min.
Second, since the condition is tail the almost-sure winning region W is a trap for Min and

obviously A[W] is almost-sure.

Lemma 5.20. Let A be a stochastic game and A[U] a subgame. Suppose that the highest priority
d in A[U] is odd, then A[U] is almost-sure if and only if there exists a sequence of disjoint subsets
(Ri)0�i�jU j−1 such that

1. Every Ri is a trap for Min in A
[
U n

(−−−!
RMin(Sd \ U,U) [

⋃i
j=0

−−−!
RMax(Rj , U)

)]
,

2. every A[Ri] is almost-sure for the objective Par^Avg>0,

3. U =
⋃jU j−1
i=0

−−−!
RMax(Ri, U),

−−−!
RMin1(Sd \ U,U)

R0
−−−!
RMaxR0

R1

−−−!
RMaxR1

The idea of the above lemma is that
if the subgame A[U] is almost-sure
and if the highest priority in d A[U]
is odd then A[U] satisfies:

U =

jU j−1⋃
i=0

−−−!
RMax(Ri, U) .

Figure 5.2: Decomposition of A[U] when the highest priority is odd

Proof. Let A[U] be a subgame induced by a subset U � S and let (Ri)0�i�jU j−1 be a sequence of
disjoint subsets of S n −−−!RMin(Sd \ U,U) such that 1,2 and 3 hold. We show that A[U] is almost-
sure for the objective Par^Avg>0. Max applies the following strategy σ. For any state s 2⋃jU j−1
i=0

−−−!
RMax(Ri, U) we say that:

– s is locked if s 2
⋃jU j−1
i=0 Ri and denote ind(s) the least i such that s 2 Ri,

5.3. A Polynomial Certificate 69

– s is unlocked if s 2
⋃jU j�1
i=0

���!
RMax(Ri, U)

⋃jU j�1
i=0 Ri and denote ind(s) the least i such that

s 2
���!
RMax(Ri, U).

As long as the current state is unlocked, Max plays the attractor strategy to reach Rind(s) with
positive probability. When the current state is locked, Max Max switches to her almost-sure strategy
for the objective Par^Avg>0 in the subgame A[Rind(s)] which exists according to condition 2. We
show that using this strategy guarantees almost-surely that ultimately the current state Sn is locked
forever and that ind(Sn) remains ultimately constant. Precisely:

Pσs (90 � i � jU j � 1, 9N � 0,8n � N, Sn 2 Ri) = 1 . (5.2)

Since the arena is finite, there exists x > 0 such that for every i playing the attractor strategy
to Ri in

���!
RMax(Ri, S) ensures to reach Ri in at most jU j steps with probability at least x. As a

consequence, according to condition 1, for every 0 � m � jU j � 1(
91k, Sk 2

���!
RMax(Rm, S)

)
=) (91k, Sk 2 Rm�1 _ 9N � 0,8n � N, Sn 2 Rm) , (5.3)

Pσs almost-surely. Let M be the random variable with values in f0 . . . jU j � 1g defined as follows:

M = lim inf
n

ind(Sn) ,

then according to (5.3)
Pσs (9N � 0,8n � N, Sn 2 RM) = 1 , (5.4)

which shows (5.2) and terminates the proof of the direct implication.
Let us prove the converse implication, we proceed by induction on the size of jU j. First we show

that if A[U] is almost-sure then the subgame A[U n
���!
RMin(Sd\U,U)] contains a non-empty set R such

that A[R] is almost-sure for Max. Assume towards a contradiction the contrary, it follows that the
arena A[U n

���!
RMin(Sd\U,U)] is almost-sure for Min which in turn shows that A[U] is almost-sure for

Min since Min would have a strategy to either win in the subgame A[U n
���!
RMin(Rd \U,U)] or visit a

state with priority 1 infinitely often (using similar argument as in the proof of Lemma 5.18). Hence
there exists a non-empty set R0 in U n

���!
RMin(Sd\U,U) such that R0 is almost-sure for Max. If S1 = S

we are over. Otherwise we can now use the same argument to build a subset R1 � U n
���!
RMax(R0, U)

such that A[R1] is almost-sure for Max. Since at each step we obtain a subgame which contains at
least one state less the result follows.

Proposition 5.21. Let A be a stochastic game such that the highest priority d is odd, then the
almost-sure region is given by the largest trap satisfying Lemma 5.20.

Proof. This is a direct corollary of Proposition 5.19 and Lemma 5.20.

Now we are ready to give a formal definition of a certificate for the Problem 5.17.

5.3.2 Polynomial Size Certi�cate

Definition 5.22 (Even Certificate). Let A be a stochastic equipped with the objective Par^Avg>0

with d priorities such that the highest priority d is even, then a d-certi�cate for the almost-sure
winning for a subgame A[U] is given by:

� A positional strategy σ for Max in A[U],

70 Chapter 5. Two-player Par^Avg>0 Games

� a (d� 1)-certi�cate Cd�1 for the almost-sure winning for the subgame A[U n
���!
RMax(Sd \U,U)].

Definition 5.23 (Odd Witness). Let A be a stochastic equipped with the objective Par^Avg>0

with d-priorities and such that the highest priority d is odd, then a d-certi�cate for the almost-sure
winning for a subgame A[U] is given by:

� A sequence of disjoint subsets (Ri)0�i�jU j�1 � S n
���!
RMin(Sd\U,U) such that conditions 1 and 3

of Lemma 5.20 hold,

� a (d� 1)-certi�cate Cd�1 for the almost-sure winning for the subgame A[Ri] for every 0 � i �
jU j � 1.

Lemma 5.24. Let A a stochastic game and A[U] a subgame of A. There exists a certi�cate of
size O(nd) where n is the size of U and d the number of priorities in U which shows that A[U] is
almost-sure for Max.

U jU j = n

U0 U1 jU0 [U1j � n

U01 � � � U0k U10 � � � U1k j
⋃1
i=0

⋃k
j=0 U j � n

...
...

...
...

d

Figure 5.3: Inductive decomposition of the subgame A[U] according to Definitions 5.22 and 5.23.

Proof. Let A[U] be a subgame of a stochastic game A. denote C(n, d) the maximal size of a
certificate for a subgame U with n vertices and d priorities. In each inductive step of the recursive
definition of a certificate the size of U is reduced by at least one priority and one state. If the highest
priority d is even then j

���!
RMax(Sd, S)j � n thus,

C(n, d) � n+ C(n� 1, d� 1) .

If the highest priority d is odd, the subsets Ri are disjoints hence
∑jU j�1

i=0 jRij � n and

C(n, d) � n+ max
n1, . . . , njU j�1

n1 + � � �+ njU j�1 � n

∑
i

C(ni, d� 1) ,

Since C(n, 1) � O(n), it follows that

C(n, d) � O(nd) .

5.3. A Polynomial Certificate 71

5.3.3 Checking the Certi�cate in Polynomial Time

Lemma 5.25. Let A be a stochastic game equipped with the objective Par^Avg>0, let A[U] be a
subgame and let C be a certi�cate for A[U], then one can verify in time O(dn3) where d is the
number of priorities of A and n the number of states in A that C is a valid certi�cate.

Proof. Let C be a certificate for the almost-sure winning in the subgame A[U], first notice that if
there is only one priority available in A[U], then either it is odd and A[U] surely losing or it is
even and checking W amounts to checking if the strategy σ is almost-sure for the objective Avg>0.
For that consider the Markov decision process A[σ] induced by σ, in A[σ] then one can compute
the value of every state for the mean payoff objective in O(n3) [Put94] and check these values are
strictly positive. According to the proof of Theorem 3.32 this guarantees that σ is almost-sure for
the Avg>0 objective.

Assume by induction that the result holds for any subgame with less than d priorities and let
A[U] be a subgame with d priorities.

If the highest priority d in A[U] is even then to check that Cd is a valid certificate, we perform
the following steps:

– check that the positional strategy σ for Max is almost-sure for the objectives Avg>0 in the
subgame A[U].

– compute the set
���!
RMax(Sd \ U,U),

– check that Cd�1 is a valid (d� 1)-certificate for the subgame A[U n
���!
RMax(Sd \ U,U)].

Let us show that these three steps can be performed in polynomial time. In order to verify that
positional strategy σ is almost-sure in polynomial time consider the Markov decision process A[σ]
induced by σ, in A[σ] one can compute the value of every state for the mean payoff objective in
O(n3) [Put94], the computation of the set U n

���!
RMax(Sd \ U,U) can be done in time O(n2) and

verifying the certificate Cd�1 can be done in polynomial time by induction hypothesis. Let T (n, d)
be the time complexity of the verification parametrized by n the number of states of U and d the
number of priorities in U , thus:

T (n, d) � n3 + T (n� 1, d� 1) . (5.5)

If the highest priority d in A[U] is odd then we proceed as follows. For each 0 � i � jU j � 1,

– check that Ci is a valid (d� 1)-certificate in the subgame A[Ri],

– compute the attractor
���!
RMax(Ri, U),

– remove from U the set
���!
RMax(Ri, U),

– repeat with i i+ 1.

Computing the attractor set can be done in time O(n2).
Let T (n, d) be the complexity of the verification parametrized by n the number of states of U

and d the number of priorities in U , then:

T (n, d) � n3 + max
n1, . . . , njU j�1

n1 + � � �+ njU j�1 � n

n∑
i=1

T (ni, d� 1) . (5.6)

72 Chapter 5. Two-player Par^Avg>0 Games

From Equations (5.5) and (5.6) and the concavity of x! x3 we obtain

T (n, d) = O(dn3) .

Theorem 5.26. Given a stochastic game equipped with parity and positive-average objective, whether
Max has an almost-sure winning strategy from a state s can be decided in NP.

Proof. An NP algorithm that solves this problem starts first by guessing a subset U containing state
s. It first checks whether U induces a subgame, then according to Lemma 5.25 one can check in
polynomial time whether A[U] is almost-sure. Hence the result.

5.4 Computing the Values

In this section we give a deterministic version of the the NP algorithm presented in Section 5.3 and
show that computation of the almost-sure region can be done in time O(nmd+ nd).

Algorithm 2
Input: Stochastic game A with state space S.
Output: Outputs the almost-sure winning region for Max for the objective Max.
1 Let d be the highest priority of A.
2 S0 S
3 if d is even then
4 repeat
5 Let R be the almost-sure winning region for Max in the subgame A[S0] for the objective

Avg>0.
6 Compute

���!
RMax(Sd \R,R), the positive attractor of Max to priority-d states in R

7 Let R0 be the almost-sure winning region for Max in the subgame A[R n
���!
RMax(Sd \ R,R)]

for the objective Par^Avg>0

8 Compute
���!
RMin(R nR0, R), the positive attractor of Min to R nR0 in the subgame A[R]

9 S0 R n
���!
RMin(R nR0, R)

10 until R0 = R n
���!
RMax(Sd \R,R)

11 return S0

12 else if d is odd then
13 R0 ;
14 repeat
15 Compute

���!
RMin(S0d, S

0), the positive attractor of Min to priority-d states in A[S0]

16 Let R be the almost-sure region for Max in the subgame A0 n
���!
RMin(S0s, S

0) for the objective
Par^Avg

>0

17 Compute
���!
RMax(R,S0), the positive attractor of Max to R in A[S0]

18 R0 R0 [
���!
RMax(R,S0)

19 S0 S0 n
���!
RMax(R,S0)

20 until R = ;
21 return R0

5.5. Conclusion 73

The algorithm considers two cases: (a) when the highest priority d is even, and (b) when the
highest priority d is odd. The details of the two cases are as follows:

(a) If the highest priority d in the game is even, then we compute the almost-sure states of Max as
the fixed point of the procedure where in each iteration removes from A0 some states that are
positive for Min. The subgame R � A0 contains the almost-sure states for the objective Avg>0

(Line 5) which is a necessary condition to win according to Lemma 5.18. We decompose R into
���!
RMax(Sd\R,R) and Rn

���!
RMax(Sd\R,R). Rn

���!
RMax(Sf\R,R) has strictly less priorities than R.

The states in RnR0 are positive for Min in the original game since Rn
���!
RMax(Sd\R,R) is a trap

for Max, we remove
���!
RMinRnR′ . The correctness argument is similar to the proof of Lemma 5.18,

namely that when R0 = R n
���!
RMax(Sd \R,R), Max wins almost-surely by applying an almost-

sure strategy in Rn
���!
RMax(Sd\R,R), that exists by an inductive argument, and by alternating

between the attraction strategy and the positive-average strategy in
���!
RMax(Sd\R,R) as shown

in the proof of Lemma 5.18.

(b) The second part of the algorithm is when the highest priority d in the game is odd, the set
of almost-sure states is computed in rounds as the union of the almost-sure region for the
objective Par^Avg

>0
in the subgame A0 n

���!
RMin(Sd \R,R). The correctness argument follows

from two facts: First, according to Lemmas 5.20, Max wins almost-surely in the subgame
induced by the union of

���!
RMaxR′ . Second, since Max cannot win in A0 n

���!
RMin(Sd \ R,R) we

are ensured that the computed set is the largest set of almost-sure winning states.

Theorem 5.27 (Algorithmic Complexity). In stochastic games, one can compute the almost-sure
region for the objective Par^Avg

>0
in time O(nmd + nd), where m is the time one needs to solve

positive-average objectives.

Proof. This problem is solved by Alg 2, the correctness follows from the arguments above. Let O(m)
be the time complexity one needs to solve positive-average objectives. Denote T (d) the complexity of
Alg 2 parametrized by the number of priorities in the input game. The computation of the attractors
in lines 6,8,15,17 is subsumed by the computation of the almost-sure region for the objective positive-
average since solving theses games lie in NP\CoNP. In each recursive call the set of states reduces
by at least one state and one priority and since there are at most n recursive calls we get

T (d) � n(m+ T (d� 1)) ,

It follows that
T (d) � nmd+ nd ,

hence the result.

5.5 Conclusion

In this chapter we studied the problem of almost-sure winning for stochastic games equipped with
the objective Par^Avg>0 and the main result we obtain is: despite the fact that almost-sure
strategies may require infinite memory, there exists an NP algorithm that computes the almost-sure
region and an almost-sure strategy. Unfortunately this procedure does work only for the lim sup
semantics. Indeed the correctness proof for the almost-sure strategy described does not provide any
lower bound on the accumulated average reward and hence the main argument used breaks in the

74 Chapter 5. Two-player Par^Avg>0 Games

case of Par^Avg
>0

. However we believe that the almost-sure region for the objective Par^Avg>0

and Par^Avg
>0

are equivalent, we finish this chapter by the following conjecture:

Conjecture 5.28. Let A be a stochastic game and let s be a state, then:

s 2W=1[Par^Avg>0] () s 2W=1[Par^Avg
>0

] .

Part III

Partial Information Setting

Chapter 6

Probabilistic Automata

Contents
6.1 Introduction . 77
6.2 Playing in the Dark . 79
6.3 Emptiness Problem for Probabilistic Automata 81

6.3.1 New Proof of Undecidability . 81
6.3.2 Automata with Two Probabilistic Transitions 83

6.4 Value 1 Problem . 86
6.4.1 Undecidability of the Value 1 Problem . 87
6.4.2 Automata with one Probabilistic Transition . 88

6.5]-acyclic Probabilistic Automata . 92
6.5.1 Subset construction for]-acyclic automata . 92
6.5.2 Decidability of]-acyclic automata . 94
6.5.3 Complexity result . 99

6.6 Discussion . 100
6.7 Conclusion . 101

Abstract In this chapter, we study yet another generalization of Markov decision process, namely
probabilistic automata. Probabilistic automata were initially introduced by Rabin with the motiva-
tion to generalize the notion of deterministic automata. Probabilistic automata are also known in
game theory as one-player games in the dark. These are games where the player cannot differentiate
between states and thus cannot observe the current state of the play. We study two problems: the
emptiness problem and the value one problem. The emptiness problem is a classical problem in
automata theory: given a probabilistic automaton A, decide whether there is a word accepted by
A. The value 1 problem is more familiar in game theory: given a probabilistic automaton, decide
whether there exist words accepted with probability arbitrarily close to 1, in other words decide
whether the corresponding one-player game in the dark has value 1. For the former problem we
give a new proof of undecidability. For the latter problem, we show that it is undecidable then we
introduced a sub class called]-acyclic probabilistic automata and show that the value 1 problem is
PSPACE-complete for this class.

6.1 Introduction

Probabilistic automata. Rabin invented a very simple yet powerful model of probabilistic ma-
chine called probabilistic automaton, which, quoting Rabin, �are a generalization of �nite determin-
istic automata� [Rab63]. A probabilistic automaton has a finite set of states Q and reads input words
over a finite alphabet A. The computation starts from the initial state i and consists in reading the
input word sequentially; the state is updated according to transition probabilities determined by the

78 Chapter 6. Probabilistic Automata

current state and the input letter. The probability to accept a finite input word is the probability
to terminate the computation in one of the final states F � Q.

From a language-theoretic perspective, several algorithmic properties of probabilistic automata
are known: while language emptiness is undecidable [MHC03b, GO10, Paz71], language equivalence
is decidable [CMR07, Sch61, Tze92] as well as other properties [CL89, CMRR08].

Rather than formal language theory, our motivation for this work comes from control and game
theory: we aim at solving algorithmic questions about partially observable Markov decision processes
and stochastic games. For this reason, we consider probabilistic automata as Markov decision
processes where the controller cannot observe the current state (or games in the dark), we also refer
to the controller in such a system as a blind controller. The blind controller is in charge of choosing
the next input letter to be executed by the system. Here stands a major difference between the model
of our interest in the present chapter and the model considered in previously. Indeed, a strategy for
a blind controllers is nothing but sequence of letters and the unique way for to decide the following
action depends only on the number of letters already chosen. As opposed to fully observable Markov
decision process or a simple stochastic game where the next action is chosen also accordingly to
state visited through out the play. In other words, the strategy of a blind controller is an input word
of the automaton. Another difference to note is the fact that we will concentrate on reachability
objectives mainly, since this model have not been much investigated from an algorithmic point of
view and also because we believe that reachability objectives are fundamental objectives to study.

The value of a probabilistic automaton. With this game-theoretic interpretation in mind,
we define the value of a probabilistic automaton as the supremum acceptance probability over all
input words, and we would like to compute this value. Unfortunately, as a consequence of Paz
undecidability result, the value of an automaton is not computable in general. However, the value
1 problem was conjectured by Bertoni [Ber74] to be decidable1, we study the decidability of this
problem and obtain both positive and negative results:

Contribution and result The contribution of this chapter concerns two different algorithmic
problem. Concerning the emptiness of probabilistic automata:

– we give a new simple proof inspired from Bertoni's construction [Ber74, BMT77],

– we show that the emptiness problem is already undecidable for automata with two probabilistic
transitions.

Concerning the value 1 problem:

– we show that the value 1 problem is undecidable as opposed to what Bertoni conjectured,

– we show that the value 1 problem is already undecidable for automata with one probabilistic
transition,

– we introduce the class of]-acyclic automata and show that the value 1 problem is PSPACE
complete for this class.

1Bertoni formulated the value 1 problem in a different yet equivalent way: “Is the cut-point 1 isolated or not?”.

6.2. Playing in the Dark 79

Outline of the chapter

– In Section 6.2, we introduce the model of probabilistic automata.

– In Section 6.3, we study the emptiness of probabilistic automata we start by giving a new
simple proof of the emptiness problem then we show that even in the very restricted case where
probabilistic automata are restricted to two probabilistic transitions, deciding the emptiness
remains undecidable. The key point of the proof is the result of Proposition 6.15

– In Section 6.4, we turn our attention to the value 1 problem with a rather game theoretic
motivation. We solve an old standing open problem on the value 1 problem by answering
negatively to it. The undecidability result follows from Proposition 6.24.

– In Section 6.5 we identify a class of probabilistic automata for which the value 1 problem
is decidable, the so called]-acyclic automata. This last result is fairly technical and the
decidability of this class of automata follows from Lemma 6.38.

6.2 Playing in the Dark

Definition 6.1 (Probabilistic automata). A probabilistic automaton is tuple A = (Q,A, pa2A, q0, F)
where:

� Q is a �nite set of states,

� A is a �nite set of actions,

� 8a 2 A, pa 2 [0, 1]Q�Q is the transition matrix associated with the action a,

� q0 is an initial state,

� F is a set of accepting states.

1

2

3

a, 1
2

a, 1
2

b

a

b

a, b

Figure 6.1: A probabilistic automaton.

Example 6.2. Consider the automaton of Fig 6.1;

80 Chapter 6. Probabilistic Automata

� Q = f1, 2, 3g,

� A = fa, bg,

� pa =

1
2

1
2 0

0 1 0
0 0 1

, pb =

0 0 1
1 0 0
0 0 1

,

� q0 = 1,

� F = f3g.

Let Q be a finite set of states, for a state q 2 Q, we denote by δq the Dirac distribution over q
and for a subset S � Q we denote by δS the uniform distribution over S. For a given distribution
δ 2 ∆(Q) and an action a 2 A

δ � a = δ � pa ,

and for word w = w0 � � �wn 2 A�,
δ � w = δ � pw0 � � � pwn .

Definition 6.3 (Run of a probabilistic automaton). Let A be probabilistic automata and w 2 A�
be a �nite word. A run of A on the input w = w0 � � �wn is the sequence of probability distributions
δ0, . . . , δn over S de�ned by: {

δ0 = δs0

δi+1 = δi � wi
Moreover, for every subset S of Q we denote

PwA(S) =
∑
s2S

δn(s) .

Example 6.4. Consider the example of Fig 6.1, the input word aab generates the following sequence:

δ0 = (1, 0, 0)

δ1 =

(
1

2
,
1

2
, 0

)
δ2 =

(
1

4
,
3

4
, 0

)
δ3 =

(
1

4
, 0,

3

4

)
Definition 6.5 (Acceptance probability). Let A be a probabilistic automaton and w be a word in
A�, the acceptance probability of w by A written PA(w) is given by:

PA(w) = PwA(F) .

In his seminal paper on probabilistic automata [Rab63], Rabbin defined the language accepted
by a probabilistic automaton A as the set

L(A) = fw 2 A� j PA(w) � λg ,

where 0 � λ � 1 is called the cut-point. This definition raises a natural decision problem, the so
called Emptiness Problem.

6.3. Emptiness Problem for Probabilistic Automata 81

Problem 6.6 (Emptiness problem). Given a probabilistic automaton A and a rational 0 � λ � 1,
decide whether there exists a word w 2 A� such that PA(w) � λ.

In the case where λ is equal to 0 or 1 the Emptiness Problem turns out to be decidable. Actually
deciding this problem when λ = 0 is always yes. When λ = 1, the problem reduces to the Universality
Problem for non-deterministic automata over finite words which is PSPACE complete [Koz77]. We
define also a strict version of the Emptiness Problem and refer to it as the Strict Emptiness Problem
which is defined the same but PA(w) � λ is replaced by PA(w) > λ. Deciding the latter version
of the problem, when λ = 0 is nothing but deciding the Emptiness Problem for non-deterministic
automata over finite words which is decidable in non-deterministic logarithmic space. When λ = 1
the answer again is trivial; always no.

In the case 0 < λ < 1, the (Strict) Emptiness Problem is undecidable, the proof of this result
is due to [Paz71]. Paz reduces the Emptiness Problem to some problem on context free grammars.
Later, an alternative proof was given by Condon, Hanks and Madani [MHC03a]. They showed
that the Emptiness Problem for two counters machines reduces to the Emptiness Problem. Paz
was rather interested in expressiveness power of probabilistic automata, this could explain why
his undecidability proof was spread on many sections of [Paz71] what makes it difficult to follow.
Condon's et al. proof is more succinct but fairly technical. We propose an alternative proof, roughly
speaking, the techniques used in our proof are inspired from the one used by Bertoni [Ber74]. The
main idea of the reduction is that the emptiness problem is closely related to the equality problem
(which is the variant where we ask for the set of words that are exactly accepted with probability
λ) which reduces the PCP problem which is known to be undecidable.

6.3 Emptiness Problem for Probabilistic Automata

6.3.1 New Proof of Undecidability

In this section we show the undecidability of the (Strict) Emptiness Problem for the cut-point 1
2 and

for a restricted class of probabilistic automata, the so called Simple Probabilistic Automata.

Definition 6.7 (Simple Probabilistic Automata). A probabilistic automaton is called simple if every
transition probability is in

{
0, 1

2 , 1
}
.

Our proof is inspired from Bertoni's results on the so called Equality Problem [Ber74, BMT77].

Problem 6.8 (Equality Problem). Given a simple probabilistic automaton A, decide whether there
exists a word w 2 A� such that PA(w) = 1

2 .

Proposition 6.9 (Bertoni [Ber74]). The equality problem is undecidable.

The short and elegant proof of Bertoni is a reduction of the so called Post Correspondence
Problem (PCP) which is known to be undecidable [Pap93] to the Equality Problem.

Problem 6.10 (PCP). Let ϕ1 : A! f0, 1g� and ϕ2 : A! f0, 1g� two functions, naturally extended
to A�. Is there a word w 2 A+ such that ϕ1(w) = ϕ2(w)?

Proof of Proposition 6.9. Given any instance ϕ1, ϕ2 : A! f0, 1g� of the PCP problem, we build an
automaton A which accepts some word with probability 1

2 if and only if PCP has a solution. Let
ψ : f0, 1g� ! [0, 1] the injective mapping defined by:

ψ(a0 . . . an) =
an
2

+ � � �+ a0

2n
,

82 Chapter 6. Probabilistic Automata

0

1

2

3

4

a, 1
2

a, 1
2

a, ϕ1(a)
a, 1� ϕ1(a)

a, ϕ1(a) + 2�jϕ1(a)j

a, 1� ϕ1(a)� 2�jϕ1(a)j

a, ϕ2(a)
a, 1� ϕ2(a)

a, ϕ2(a) + 2�jϕ1(a)j

a, 1� ϕ2(a)� 2�jϕ1(a)j

Figure 6.2: This automaton accepts a word with probability 1 if and only if there exists a solution
to associated PCP instance.

and let θ1 = ψ � ϕ1 and θ2 = ψ � ϕ2. Let A1 = (Q,A,M, q1
0, q

1
F) the probabilistic automaton with

two states Q = fq1
0, q

1
F g and transitions:

8a 2 A,M(a) =

[
1� θ1(a) θ1(a)

1� θ1(a)� 2�jϕ1(a)j θ1(a) + 2�jϕ1(a)j

]
.

A simple computation shows that:

8w 2 A�, PA1(w) = θ1(w) . (6.1)

A very similar construction produces a two-states automaton A2 such that:

8w 2 A�, PA2(w) = 1� θ2(w) . (6.2)

Let A be the disjoint union of these two automata A1 and A2 plus a new initial state that leads
with equal probability 1

2 to one of the initial states q1
0 and q2

0 of A1 and A2. The automaton A is
depicted in Fig 6.2. Then for every word w 2 A� and every letter a 2 A,(

9w 2 A�, PA(aw) =
1

2

)
()

(
9w 2 A�, 1

2
PA1(w) +

1

2
PA2(w) =

1

2

)
() (9w 2 A�, θ1(w) = θ2(w))

() (9w 2 A�, ϕ1(w) = ϕ2(w))

() PCP has a solution,

where the first equivalence is by definition of A, the second is by (6.1) and (6.2), the third holds
because ψ is injective and the fourth is by definition of PCP. This completes the proof of Proposi-
tion 6.9.

While the reduction of PCP to the Equality problem is relatively well-known, it may be less
known that there exists a simple reduction of the Equality problem to the Emptiness and Strict
Emptiness problems. The following proposition establishes a reduction from the Equality Problem
to the Emptiness Problem and the Strict Emptiness Problem.

6.3. Emptiness Problem for Probabilistic Automata 83

Proposition 6.11. Given a simple probabilistic automaton A, one can compute probabilistic au-
tomata B and C whose transition probabilities are multiple of 1

4 and such that:(
9w 2 A+,PA(w) =

1

2

)
()

(
9w 2 A+,PB(w) � 1

4

)
(6.3)

()
(
9w 2 A+,PC(w) >

1

8

)
. (6.4)

Proof. The construction of B such that (6.3) holds is based on a very simple fact: a real number x
is equal to 1

2 if and only if x(1� x) � 1
4 . Consider the automaton B which is the cartesian product

of A with a copy of A whose accepting states are the non accepting states of A. Then for every
word w 2 A�, PA1(w) = PA(w)(1� PA(w)), thus (6.3) holds.

The construction of C such that (6.4) holds is based on the following idea. Since A is simple,
transition probabilities of B are multiples of 1

4 , thus for every word w of length jwj, PB(w) is a
multiple of 1

4|w|
. As a consequence, PB(w) � 1

4 if and only if PB(w) > 1
4 �

1
4|w|

. Adding three states
to B, one obtains easily a probabilistic automaton C such that for every non-empty word w 2 A�
and letter a 2 A, PC(aw) = 1

2 � PB(w) + 1
2 �

1
4|w|

, thus (6.4) holds. To build C, simply add a new
initial state that goes with equal probability 1

2 either to the initial state of B or to a new accepting
state qf . From qf , whatever letter is read, next state is qf with probability 1

4 and with probability
3
4 it is a new non-accepting absorbing sink state q�.

Propositions 6.9 and 6.11 lead the following theorem

Theorem 6.12 (Paz [Paz71]). The Emptiness and the Strict Emptiness Problems are undecidable
for probabilistic automata. These problems are undecidable even for simple probabilistic automata
and cut-point λ = 1

2 .

Proof. According to Proposition 6.9 and Proposition 6.11 the Emptiness and the Strict Emptiness
Problems are undecidable for cut-point 1

2 and automata whose transition probabilities are multiples
of 1

8 . The transformation of such automata into simple automata is easy.

Earlier in this subsection, we have discussed some relations between non deterministic automata
and probabilistic automata. The following corollary is another relation between these two automata-
theoretic models.

Corollary 6.13. The following problem is undecidable. Given a non-deterministic automaton on
�nite words, does there exists a word such that at least half of the computations on this word are
accepting?

6.3.2 Automata with Two Probabilistic Transitions

In this subsection we focus on a very special class of probabilistic automata, the one where the
structure of the automaton contains only two probabilistic transitions. This is a very restricted
class and the only interest of studying this class is to show that the emptiness problem remains
undecidable even with such a strong restriction.

First let us define what is a probabilistic transition.

Definition 6.14. A probabilistic transition is a couple (q, a) 2 Q�A such that there exists a state
t 2 S for which 0 < pa(q, t) < 1.

84 Chapter 6. Probabilistic Automata

We start first by studying the following problem.

Problem 6.15. Given a simple probabilistic automaton A over an alphabet A with one probabilistic
transition and given a rational language L � A�, decide whether there exists w 2 L such that
PA(w) � 1

2 .

Proposition 6.16. The Problem 6.15 is undecidable.

Proof. We prove that the Problem 6.15 is undecidable by reducing the emptiness problem for prob-
abilistic automata. We present a procedure that given a simple probabilistic automaton A over an
alphabet A outputs a simple probabilistic automaton with one probabilistic transition A0 over an
alphabet A0 together with a rational language L � A0� such that(

9w 2 A�, PA(w) � 1

2

)
()

(
9w0 2 L, PA′(w) � 1

2

)
. (6.5)

Since we know by Theorem 6.12 that deciding the existence of a word w accepted with probability
at least 1

2 is not possible, it follows that Problem 6.15 is undecidable as well.
Roughy speaking A0 simulates A; whenever a probabilistic transition is used in A, it is simulated

in A0 by the unique probabilistic transition of A0, denoted (g, s) 2 Q�A. Whenever the automaton
A reads the letter a, the automaton A0 faithfully simulates A by reading the following sequence
of actions: â = c(q0, a) � s � t(q0, a) � � � c(qn�1, a) � s � t(qn�1, a) �m. The regular language L is used
to check that A0 reads words of the form âb̂â, as otherwise the simulation of A can give arbitrary
answers.

We now show how to construct the automaton A0, the alphabet A0 and the language L. Let A
be a simple probabilistic automaton over an alphabet A and let Q be its set of states. The new
set of states Q0 consist of all states Q plus a marked copy Q̄ = fq̄ j q 2 Qg plus three gadget states
fg, s1, s2g

Q0 = Q [Q̄ [fg, s1, s2g .

The new alphabet A0 is obtained as follows,

A0 = fs,mg [
⋃

q2Q,a2A
fc(q, a), t(q, a)g ,

where s stands for split, m stands for merge, c(q, a) stands for check transition (a, q) and transition
t(a, q) stands for trigger transition (a, q). The semantics of this new action will become clearer after
the transformation will be explicit.

We are now ready to start the simulation, we transform the action a 2 A over a state q 2 Q in
the automaton A by the word

â = c(q0, a) � s � t(q0, a) � � � c(qn�1, a) � s � t(qn�1, a) �m , (6.6)

where n = jQj and � denotes the concatenation operator. The transitions of A0 are as follows:

– For every letter a 2 A and q 2 Q, the new letter c(q, a) from state q leads deterministically to
state g.

– The letter s from state g leads to state s1 with probability 1
2 , and to state s2 with probability

1
2 . Note that the latter action is the only probabilistic transition of A0.

– Any action a 6= s from q leads with probability 1 to state i.

6.3. Emptiness Problem for Probabilistic Automata 85

– The letter t(q, a), sends the computation to states r̄ and s̄ where pa(q, r) = 1
2 and pa(q, s) = 1

2 ,
otherwise if pa(q, r) = 1 then the computation is sent to r̄ from both s1 and s2.

– The letter m leads from state q̄ leads to state q.

It is very important to notice that letters s has no effect on any state q 6= g and that letters c(q, a)
and t(q, a) have no effects on any state q0 6= q. Finally we define the language

L = fŵ j w 2 A� > 0g ,

where ŵ is the natural extension of the transformation (6.6) over finite words. It is now straightfor-
ward that for any word w 2 A� we have

PA(w) = PA′(w̄) .

Hence deciding if there exists w such that PA(w) � 1
2 is exactly the same as deciding whether there

exists w0 2 L such that PA′(w0) � 1
2 and the result follows.

The gadget used in the previous construction is depicted in Fig 6.4.

r

s

t

a, 1
2

a, 1
2

Figure 6.3: Probabilistic transition

r g

s1

s2

s̄

t̄

s

t

c(r, a)

s, 1
2

s, 1
2

t(r, a)

t(r, a)

m

m

Figure 6.4: Gadget for a probabilistic transition

Theorem 6.17. The emptiness problem for automata with two probabilistic transitions is undecid-
able.

Proof. The undecidable problem described in Problem 6.15 reduces to the emptiness problem for
simple probabilistic automata with two probabilistic transitions: given A and L, add a new initial
state to A and from this new initial state, proceed with probability 1

2 either to the original initial
state of A or to the initial state of a deterministic automaton that checks whether the input word is
in L. This new automaton accepts a word with probability more than 3

4 if and only if the original
automaton accepts a word with probability more than 1

2 .

86 Chapter 6. Probabilistic Automata

Once this result established, one can ask what about automata with one probabilistic transition?
The intuition would suggest that it is easier to handle such model, but it turns out that the model is
rather rich even with one probabilistic transition and decidability of the emptiness is not an obvious
issue. For instance the value-one problem (Problem 6.22) is undecidable even for automata with one
probabilistic transition (c.f. Proposition 6.25).

6.4 Value 1 Problem

In his seminal paper about probabilistic automata [Rab63], Rabin introduced the notion of isolated
cut-points.

Definition 6.18. A real number 0 � λ � 1 is an isolated cut-point with respect to a probabilistic
automaton A if:

9ε > 0, 8w 2 A�, jPA(w)� λj � ε .

Rabin motivates the introduction of this notion by the following theorem:

Theorem 6.19 (Rabin [Rab63]). Let A a probabilistic automaton and 0 � λ � 1 a cut-point. If λ
is isolated then the language LA(λ) = fu 2 A� j PA(u) � λg is rational.

This result suggests the following decision problem.

Problem 6.20 (Isolation Problem). Given a probabilistic automaton A and a cut-point 0 � λ � 1,
decide whether λ is isolated with respect to A.

Bertoni [Ber74, BMT77] proved that the Isolation Problem is undecidable in general:

Theorem 6.21 (Bertoni [Ber74, BMT77]). The Isolation Problem is undecidable.

A closer look at the proof of Bertoni shows that the Isolation Problem is undecidable for a fixed
λ, provided that 0 < λ < 1.

However the same proof does not seem to be extendable to the case λ 2 f0, 1g. This was pointed
out by Bertoni in the conclusion of [BMT77]:

�Is the following problem solvable: 9δ > 0, 8x, (p(x) > δ)? For automata with
1-symbol alphabet, there is a decision algorithm bound with the concept of transient
state. We believe it might be extended but have no proof for it�.

The open question mentioned by Bertoni is the Isolation Problem for λ = 0. Note that the case
λ = 1 is essentially the same, since 0 is isolated in an automaton A if and only if 1 is isolated in
the automaton obtained from A by turning final states to non-final states and vice-versa. When
λ = 1, the Isolation Problem asks whether there exists some word accepted by the automaton with
probability arbitrarily close to 1. We use the game-theoretic terminology and call this problem the
Value 1 Problem.

Thus, the open question of Bertoni can be rephrased as the decidability of the following problem:

Problem 6.22 (Value 1 Problem). Given a probabilistic automaton A, decide whether A has value
1.

6.4. Value 1 Problem 87

6.4.1 Undecidability of the Value 1 Problem

The following theorem solves the open problem left by Bertoni.

Theorem 6.23. The Value 1 Problem is undecidable.

The proof of Theorem 6.23 is inspired from the techniques used by Baier et al. in [BBG08] to
prove that the emptiness problem for Büchi probabilistic automata is undecidable. The proof of
Theorem 6.23 relies on the following proposition.

Proposition 6.24. Let 0 < x < 1 and Ax be the probabilistic automaton depicted on Fig. 6.5. Then
Ax has value 1 if and only if x > 1

2 .

0 1

2

34

5

6

a

b, 1
2b, 1

2

a, 1� x
a, xb

a

b

a, b

a, x
a, 1� x b

a

b

a, b

Figure 6.5: This automaton has value 1 if and only if x > 1
2 .

Proof. We shall prove: (
x >

1

2

)
() (8ε > 0,9w 2 A�,PAx(w) � 1� ε) . (6.7)

In order to prove this equivalence we notice that: PanbAx (1! 3) = xn and PanbAx (4! 6) = (1�x)n.
Let (nk)k2N an increasing sequence of integers. By reading the word w = an0ban1b . . . anib, we get:

PwAx(1! 3) = 1�
∏
k�0

(
1� xnk

)
PwAx(4! 6) = (1� x)n1 + (1� (1� x)n1)(1� x)n2 + . . .

= 1�
∏
k�0

(1� (1� x)nk) �
∑
k�0

(1� x)nk

If x � 1
2 then PwAx(1 ! 3) � PwAx(4 ! 6), hence maximizing the quantity will also maximize the

quantity PwAx(4 ! 6). Therefore no word w can be accepted with arbitrarily high probability if
x � 1

2 which proves the converse implication of (6.7).
Assume that x > 1

2 , we exhibit an increasing sequence of integers (nk)k2N such that for every
ε > 0 we have:

∑
k�0

xnk =1

∑
k�0

(1� x)nk � ε
(6.8)

88 Chapter 6. Probabilistic Automata

Let C 2 R and nk = lnx(1
k) +C, notice that

∑
k�0(x)nk = xC .

∑
k�0

1
k =1. On the other hand we

have:

1� x = xlnx(1�x)

= x
ln(1−x)

ln x

There exists β > 1 such that: 1 � x = xβ , hence
∑

k�0(1 � x)nk =
∑

k�0 x
βnk . So:

∑
k�0 x

βnk =

xβC
∑

k�0 x
β lnx(1

k
) = xβC

∑
k�0

1
kβ
. Since this series converges, we satisfy (6.8) by choosing a

suitable constant. Now because if (6.8) holds, it follows that PwAx(4! 6) < ε and∑
k�0

xnk =1 =)
∏
k�0

(
1� xnk

)
= 0 .

It is easy to see that a sequence of finite words (an0ban1b . . . anib)i2N is accepted with probability
arbitrarily close to 1.

Now we are ready to prove Theorem 6.23

Proof of Theorem 6.23. Given a probabilistic automaton B with alphabet A such that a, b 62 B, we
combine B and the automaton Ax on Fig.6.5 to obtain an automaton C which has value 1 if and
only if there exists a word w such that PA(w) > 1

2 . The input alphabet of C is A [fbg plus a new
letter]. C is computed as follows. First, the transitions in Ax on letter a are deleted. Second, we
make two copies A4 and A1 of the automaton B, such that the initial state of A4 is 4 and the initial
state of A1 is 1. From states of A4 and A1 other than the initial states, reading letter b leads to the
sink state 6. Third, from a state s of A4 the transition on the new letter] is deterministic and leads
to 5 if s is a final state and to 4 if s is not a final state. Fourth, from a state s of A1 the transition
on the new letter] is deterministic and leads to 1 if s is a final state and to 2 if s is not a final state.
Fifth, the final states of C are 5 and 3. Sixth, states 0, 3, 6, 5 and 2 are absorbing for letters in A.

Then suppose there exists w such that PA(w) > 1
2 and let us show that C has value 1. Let

ε > 0 and let uε = bai0bai1bai2b � � � aik be a word accepted by B with probability 1 � ε. Then by
construction of C,

PC(b(w])
i0b(w])i1b(w])i2b � � � (w])ik) � PA(uε) � 1� ε,

thus C has value 1.
Now suppose that for every w 2 A�,PAw � 1

2 and let us show that C has not value 1. Let
w0 2 (A [fb,]g)�. Factorize w0 in w0 = u0v0]u1v1]ukvk � � � such that ui 2 b� and vi 2 A�.
Then by construction of C and by hypothesis, PC(w0) � PA 1

2

(u0au1au2a � � �uka) � ValA 1
2
. Thus

Val C � ValA 1
2
and according to Proposition 6.24, Val C < 1.

6.4.2 Automata with one Probabilistic Transition

The following proposition was obtained in joint work we did together with Nathanaël Fijalkow and
appeared in [FGO11], we give an improved construction of the one published in the technical report.

Proposition 6.25. Let A be a simple probabilistic automaton, then there exists a computable prob-
abilistic automaton B which contains one probabilistic transition and

ValA = 1 () ValB = 1 . (6.9)

6.4. Value 1 Problem 89

The idea used in the proof is very similar to the one used in Theorem 6.17. Recall in that
theorem, we constructed an automaton A0 with 1 probabilistic transition and a regular language L,
then we used a second probabilistic transition to run in parallel the computation in A0 and AL the
automaton that recognizes L. In the proof of Proposition 6.25, we will run the computation first in
an automaton which is a slight modification of A0 and then plug into AL. Roughly speaking, this
construction works because we are interested in the value of the automaton and not exact acceptance
probability.

Proof of Proposition 6.25. Let A a probabilistic automaton. We construct an automaton B that
simulates a computation of A using only probabilistic transition. The automaton B is obtained by
composing two automata; A0 and AL.

First we construct an automaton A0 as follows: the state space is Q0 and the set of actions A0

such that the new set of states Q0 consists of all states Q plus a marked copy Q̄ = fq̄ j q 2 Qg plus
three gadget states fg, s1, s2g and state i.

Q0 = Q [Q̄ [fg, s1, s2, ig .

The new alphabet A0 is obtained as follows,

A0 = fs,m, fg [
⋃

q2Q,a2A
fc(q, a), t(q, a)g ,

where, as in the proof of Proposition 6.15, s stands for split, m stands for merge, (c(a, q)) stands for
check transition (a, q), action f stands for finish, state i stands for idle, and transition t(a, q) stands
for trigger transition (a, q).

The automaton AL is the finite deterministic automaton with initial state qL and set of accepting
states FL. that recognizes the following language:

L = fŵ j w 2 A�g ,

where ŵ is the natural extension over finite words of the transformation

8a 2 A, â = c(q0, a) � s � t(q0, a) � � � c(qn�1, a) � s � t(qn�1, a) �m ,

where n = jQj and � denotes the concatenation operator. Note that from the definition of L we have
that qL 2 FL.

The automaton B consists of the composition of A0, AL, and a sink ? such that the initial state
of B is q0 and the accepting states of B are the one of AL. The transition of B are as follows:

– For every letter a 2 A and q 2 Q, the new letter (c(a, q)) from state q leads deterministically
to state g.

– The letter s from state g leads to state s1 with probability 1
3 , to state s2 with probability 1

3 ,
and with probability 1

3 to state i. Note that the latter action is the only probabilistic transition
of A0.

– Any action a 6= s from q leads with probability 1 to state i.

– The letter t(q, a), sends the computation to states r̄ and s̄ where pa(q, r) = 1
2 and pa(q, s) = 1

2 ,
otherwise if pa(q, r) = 1 then the computation is sent to r̄ from both s1 and s2.

90 Chapter 6. Probabilistic Automata

r g

s1

s2

s̄

t̄

s

t

iq0

c(r, a)

s, 1
3

s, 1
3

t(r, a)

t(r, a)

m

m

s, 1
3

f

a 6= f

Figure 6.6: New gadget for a probabilistic transition

– The action m leads from state q̄ leads to state q.

– From any state q 2 F , the action f leads with probability 1 to qL.

– From state i, the action f leads with probability 1 to q0.

– From any state in FL, the action f leads to qL.

– From any state q 62 fi, F, FLg, the action f leads to ?.

It is very important to notice that the action s has no effect on any state q 6= g and that actions
c(q, a) and t(q, a) have no effects on any state q0 6= q. Finally, whenever an action does not fall in
one of the previous cases, it has no effect on the computation. The gadget used to simulate the
computation is depicted in Fig 6.6.

Let us show the direct implication of (6.9). Let w 2 A� be a word such that jwj = k, we get that

PB(ŵ � f) =

(
2

3

)n+k

PA(w) ,

and

P
ŵ�f
B (q0 ! q0) = 1�

(
2

3

)n+k

.

Denote x =
(

2
3

)n+k we get

8m 2 N�, PB((ŵ � f)m) =
(

1� P(ŵ�f)m

B (q0 ! q0)
)
PA(w)

= (1� (1� x)m)PA(w) .

Hence we get that
sup
m2N

PB((ŵ � f)m) = PA(w) .

Consequently, the direct implication of (6.9) follows.
Let us show the converse implication of (6.9). Assume that ValB = 1. Let ε > 0 and w a word

such that
PB(w) � 1� ε . (6.10)

6.4. Value 1 Problem 91

By construction of B we can write

w = u0 � f � u1 � � � f � uk � f ,

where ui does not contain the letter f for 0 � i � k. Let (xi)0�i�k, (yi)0�i�k, and (zi)0�i�k be the
sequences that respectively give δq0(u0f � � �uif)(q0), δq0(u0f � � �uif)(?), and δq0(u0f � � �uif)(qL).
We also denote Ľ = fu 2 L j 9v 2 A�, v̂ = ug and if u 2 Ľ we denote ǔ 2 A� the word such that̂̌u = u. We show that:

90 � i � k, ui 2 Ľ and PA(ǔi) � 1� ε . (6.11)

Let
j = min

0�i<k

{
zi <

2

3
^ zi+1 �

2

3

}
. (6.12)

Let us show that j is always defined. Assume that j = 1 it follows that zk < 2
3 which contradicts

the fact that PB(w) > 1� ε.
By definition of B, we have that

zj+1 � zj +

(
2

3

)juj j
PA(ǔj)xj

� zj +
2

3
(1� zj) .

Using (6.12) we get
2

3
� zj+1 �

8

9
. (6.13)

Let
M = max

j�i�k
ui2L

PA(ǔi) .

Then we can write

8j � l � k, zl+1 � zl + xl

(
2

3

)julj
M . (6.14)

8j � l � k, yl+1 � yl + xl

(
2

3

)julj
(1�M) . (6.15)

Denote equation (6.14) Al and equation (6.15) Bl for every l � j. It follows that k∑
l=j

Al

 �
zk � zj +M

k∑
l=j

xl

(
2

3

)julj . (6.16)

 k∑
l=j

Bl

 �
yk � yj + (1�M)

k∑
l=j

xl

(
2

3

)julj . (6.17)

Using (6.10) and by definition of (zi)0�i�k and definition of (yi)0�i�k we get that

1� ε � zj +M
k∑
l=j

xl

(
2

3

)julj
.

ε � yj + (1�M)
k∑
l=j

xl

(
2

3

)julj
.

92 Chapter 6. Probabilistic Automata

Since yi � 0 for 0 � i � k we have

ε

1�M
�

k∑
l=j

xl

(
2

3

)julj
. (6.18)

Then (6.13) and (6.18) give

1� ε � 8

9
+M

ε

1�M
.

Or
M � 1� ε

1� 8
9

,

and (6.11) follows which terminates the proof of the proposition.

The following theorem is a straightforward corollary of Proposition 6.25

Theorem 6.26. The value 1 problem is undecidable for automata with one probabilistic transition.

6.5]-acyclic Probabilistic Automata

In this section, we introduce a new class of probabilistic automata, the so called]-acyclic probabilistic
automata, for which the value 1 problem is decidable.

At first glance, the Value 1 Problem may seem quite similar to decision problems about omega-
regular languages. For example, if the input alphabet has only one letter then the automaton is a
Markov chain and transient states will be ultimately left almost-surely, which can be encoded by
fairness constraints. However, Theorem 6.23 suggests that the Value 1 Problem cannot be solved
using known decision procedures about finite-state automata.

The value 1 problem for a simple probabilistic automata can be rephrased as a "quantitative"
decision problem about non-deterministic automaton on finite words: does there exists words such
that among all computation paths, the proportion of non-accepting computation paths is arbitrarily
small?

6.5.1 Subset construction for]-acyclic automata

To get a decision algorithm for the value 1 problem, our starting point is the usual subset construction
for non-deterministic automata, however the quantitative aspect of the above problem requires the
subset construction to be customized. Precisely, we use not only the usual action of a letter a on
a subset S � Q of states but consider also another action a] with intuition that this operation
simulates the effect of reading the action a an arbitrarily large number of time. Roughly speaking,
each action a induces a Markov chain, a] deletes states that are transient in the Markov chain
induced by a.

Definition 6.27 (Actions of letters and]-reachability). Let A a probabilistic automaton with alpha-
bet A and set of states Q. Given S � Q and a 2 A, we denote:

S � a = ft 2 Q j 9s 2 S,Ma(s, t) > 0g .

A state t 2 Q is a-reachable from s 2 Q if for some n 2 N, PA(an(s, t)) > 0. A state s 2 Q is
a-recurrent if for any state t 2 Q,

(t is a-reachable from s) =) (s is a-reachable from t) .

6.5.]-acyclic Probabilistic Automata 93

A set S � Q is a-stable if S = S � a. If S is a-stable, we denote:

S � a] = fs 2 S j s is a-recurrentg .

1 2

a, 1
2

a, 1
2

a

Figure 6.7: A probabilistic automaton with one action

Definition 6.28. The support graph GA of a probabilistic automaton A with alphabet A and set of
states Q is the directed graph whose vertices are the non-empty subsets of Q and whose edges are the
pairs (S, T) such that for some letter a 2 A, either (S � a = T) or (S � a = S and S � a] = T).

Example 6.29. In the automaton of Fig 6.7 (which is essentially a Markov chain), the action of a
on the support f1, 2g is stable:

f1, 2g � a = f1, 2g ,

but the iteration of the action a is:
f1, 2g � a] = f2g ,

since state 2 is the only recurrent state in the Markov chain induced by (f1, 2g , a). The full support
graph is depicted in Fig 6.8.

f1g f1, 2g

f2g

a

a

a

a]

Figure 6.8: The support graph of the automaton depicted in Fig 6.7

Reachability in the support graph of A is called]-reachability in A. Note that if T 0 � T and T 0

is]-reachable from S then so is T . The class of]-acyclic probabilistic automata is defined as follows.

Definition 6.30 (]-acyclic probabilistic automata). A probabilistic automaton is]-acyclic if the
only cycles in its support graph are self-loops.

Obviously, this acyclicity condition is quite strong. However, it does not forbid the existence of
cycles in the transition table, see for example the automaton depicted on Fig. 6.9. Note also that
the class of]-acyclic automata enjoys good properties, for example it is closed under cartesian and
parallel product.

94 Chapter 6. Probabilistic Automata

1 2

3 4

b

b

aa

b

b

a

a

a

a

Figure 6.9: This automaton is]-acyclic .

f1g f2g

f3g f4g

f1, 2g

f1, 3g

f3, 4g

f2, 4gf1, 2, 3, 4g

a

b

a

b

b]

a] a], b]

a

b

b

a

b

a

b]

a]

a

b

Figure 6.10: The support graph of the automaton depicted in Fig 6.9.

6.5.2 Decidability of]-acyclic automata

Theorem 6.31. Let A be a probabilistic automaton with initial state q0 and �nal states F . Suppose
that A is]-acyclic . Then A has value 1 if and only if F is]-reachable from fq0g in A.

The proof of Theorem 6.31 relies on the notion of limit-paths.

Definition 6.32 (Limit paths and limit-reachability). Let A be a probabilistic automaton with states
Q and alphabet A. Given two subsets S, T of Q, we say that T is limit-reachable from S in A if

6.5.]-acyclic Probabilistic Automata 95

there exists a sequence w0, w1, w2, . . . 2 A� of �nite words such that for every state s 2 S:

PA(wn(s, T)) ���!
n!1

1 .

The sequence w0, w1, w2, . . . is called a limit path from S to T , and T is said to be limit-reachable
from S in A.

Note that if T 0 � T , then whenever T 0 is limit-reachable from S, then so is T . In particular A
has value 1 if and only if F is limit reachable from fq0g.

Theorem 6.31 essentially states that for]-acyclic automata,]-reachability and limit-reachability
coincide. In the general case, may the probabilistic automaton be]-acyclic or not,]-reachability
implies limit-reachability.

Proposition 6.33. Let A be a probabilistic automaton with states Q and S, T � Q. If T is]-
reachable from S in A then T is limit-reachable from S in A.

Proof. Proposition 6.33 is a consequence of the two following facts.
First, if there is an edge from S to T in the support graph of A, then T is limit reachable from

S: let S, T � Q and a 2 A. If S � a = T , then the sequence constant equal to a is a limit path from
S to T . If S � a = S and S � a] = T then by definition of S � a], (an)n2N is a limit path from S to T .

Second, limit-reachability is a transitive relation: let S0, S1, S2 � Q such that S1 is limit-
reachable from S0 and S2 is limit-reachable from S1. Let (un)n2N a limit-path from S0 to S1

and (vn)n2N a limit-path from S1 to S2. Then (unvn)n2N is a limit-path from S0 to S2.

The converse implication of Theorem 6.31 is not true in general. For example, consider the
automaton depicted on Fig. 6.11. There is only one final state; state 3. The initial state is not
represented, it leads with equal probability to states 1, 2 and 3. The transitions from states 1, 2
and 3 are either deterministic or have probability 1

2 . It turns out that this automaton has value
1, because ((bna)n)n2N is a limit-path from f1, 2, 3g to f3g. However, f3g is not reachable from
f1, 2, 3g in the support graph, as can be seen on Fig. 6.12. Thus, limit-reachability does not imply
]-reachability in general. This automaton is not]-acyclic , because his support graph contains the
following cycle: f1, 2, 3g is b-stable and f1, 2, 3g � b] = f1, 3g while f1, 3g � a = f1, 2, 3g.

1 2 3

a
a

b a a

b

b

a

b

a

Figure 6.11: This automaton has value 1 and is not]-acyclic .

Now we shall prove that for]-acyclic automata, limit-reachability implies]-reachability. We use
the following notions.

Definition 6.34 (Stability and]-stability). Let A be a probabilistic automaton with state space Q.
Then A is stable if for every letter a 2 A, Q is a-stable and A is]-stable if it is stable and for every
letter a 2 A Q � a] = Q.

96 Chapter 6. Probabilistic Automata

f1gf2g

f3g

f1, 2gf1, 2, 3g

f2, 3g

f1, 3g

aa

b a

a

a, b

a#, b b#

b# b

b#

b#

b# a

b#

Figure 6.12: The support graph of the automaton depicted in Fig 6.11.

The main idea of the proof is to show that whenever there are two supports that are limit-
reachable, one can construct a path in the support graph between these two supports. We do this
by induction on the depth of the support graph. To handle the basic cases of the induction we use
the following lemmata.

Lemma 6.35 (Blowing lemma). Let A be a]-acyclic probabilistic automaton with state space Q and
S � Q. Suppose that A is]-acyclic and]-stable and that Q is limit-reachable from S in A. Then Q
is]-reachable from S in A.

Q

S

The largest circle depicts the state space of some]-acyclic
automaton denoted Q and the smallest one a subset of
state S. The left-hand side arrow represents a limit path
from S to Q, then according to the blowing lemma if the
automaton is]-stable, there exists a path from S to Q in
the support graph, which is represented by the dashed ar-
row.

Figure 6.13: Blowing lemma in image

Proof. If S = Q there is nothing to prove. If S 6= Q, we prove that there exists S1 � Q such that
S (S1 and S1 is]-reachable from S. Since S (Q and since there exists a limit-path from S to Q
there exists at least one letter a such that S � a 6� S. Since A is]-acyclic , there exists n 2 N such
that S � an+1 = S � an i.e. S � an is a-stable. Let S1 = (S � an) � a]. To prove that S (S1, we prove
that S1 contains both S and S � a. Let s 2 S. By definition, every state t of S � an is a-accessible
from s. Since A is]-stable, state s is a-recurrent and by definition of a-recurrence, s is a-accessible
from t. Since S � an is a-stable, s 2 S � an and since s is a-recurrent s 2 (S � an) � a] = S1. The proof
that S � a � S1 is similar.

6.5.]-acyclic Probabilistic Automata 97

If S1 = Q the proof is complete.
If S1 (Q we proceed by induction and build an increasing sequence S (S1 (S2 (. . . (Sn = Q

such that for every 1 � k < n, Sk+1 is limit-reachable from Sk. Since limit-rechability is transitive
(see proof of Proposition 6.33), this completes the proof of the blowing lemma.

The following lemma states a crucial property to establish the decidability of]-acyclic automata;
once a computation on a input word has reached the entire state space there is no possibility to
shrink it back.

Lemma 6.36 (Flooding lemma). Let A be a probabilistic automaton with states Q. Suppose that A
is]-acyclic and]-stable. Then Q is the only set of states limit-reachable from Q in A.

Q

S

We keep the same convention; The largest circle depicts
the state space of some]-acyclic automaton denoted Q and
the smallest one a subset of state S. Then according to the
claim of the flooding lemma if the automaton]-stable, the
full arrow that represents a limit-path from Q to S cannot
exists i.e. if the support of the initial distribution is Q,
then this support remains unchanged whatever sequence of
words is being read.

Figure 6.14: Flooding lemma in image

Even though the flooding property seems to be natural, it does not hold true in general. For
instance:

Example 6.37. In Fig 6.15 is depicted a probabilistic automaton, we don’t specify initial nor ac-
cepting states. Notice that the automaton is not]-acyclic since f1g � a = f3g and f3g � a = f1g. It
is clear that f1, 2, 3, 4g is]-stable Nevertheless, the sequence (ab)n is a limit-path from f1, 2, 3, 4g to
f1, 4g as (δQ � (ab)n)(f1, 4g) = 1− 1

2n .

1 2

3 4

a a

b

b

b

Figure 6.15: A probabilistic automaton for which the Flooding lemma does not hold.

Proof of Lemma 6.36. Assume toward a contradiction that (un)n2N is a limit path from Q to some
subset of states T (Q. We prove that T = Q.

Let AT = fa 2 A j T � a = Tg. First, we prove that for every letter a 2 AT , Q n T is a-stable.
Otherwise there would be a 2 AT and t 2 T which is a-reachable from some state s 2 Q n T , since
A is]-stable, s and t are both a-recurrent, and by definition of a-recurrence, since t is a-reachable

98 Chapter 6. Probabilistic Automata

from s, s would be a-reachable from t as well. But s 2 Q n T and t 2 T , which contradicts the
a-stability of T for every a 2 AT .

Second, we prove that un 2 A�T for only finitely many n 2 N. Since for every a 2 AT , Q nT is a-
stable, then during the computation δQ = δ0, δ1, . . . , δjunj on the word un,

∑
s2QnT δk(s) is constant.

Thus, for every n 2 N,

PunA (s! Q) =
∑
s2QnT

(δQ � un)(s)

=
∑
s2QnT

δQ(s)

=
jQj � jT j
jQj

> 0 ,

where the inequality follows from the fact that T � Q. Since (un)n2N is a limit-path from Q to
T , we know that PA(un(s,Q)) converges to 0 hence the inequality can hold only for finitely many
n 2 N.

Now we show that there exists T1 � Q such that:

(i) T1 6= T ,

(ii) T is]-reachable from T1 in A,

(iii) and T1 is limit-reachable from Q in A.

Since any infinite subsequence of a limit-path is a limit-path, and since we proved that un 2 A�T
for only finitely many n 2 N, we can assume w.l.o.g. that for every n 2 N, un 62 A�T . Thus for
every n 2 N, there exists vn 2 A�, an 2 A n AT and wn 2 A�T such that un = vnanwn. W.l.o.g.
again, since A is finite and δQ is compact, we can assume that (an)n2N is constant equal to a letter
a 2 A nAT and that (δQ � vn)n2N converges to a probability distribution δ 2 δQ.

The choice of T1 depends on Supp(δ) � a.
If Supp(δ) � a = T then we choose T1 = Supp(δ). Then (i) holds because a 62 AT , (ii) holds

because T = T1 � a and (iii) holds because (vn)n2N is a limit-path from Q to T1.
If Supp(δ) � a 6= T then we choose T1 = Supp(δ) � a. Then (i) clearly holds and (iii) holds

because (vna)n2N is a limit path from Q to T1 in A. To prove that (ii) holds, consider the restriction
A[T,AT] of automaton A to states T and alphabet AT . Then (wn)n2N is a limit-path from T1 to T
in A[T,AT]. Moreover, since A is]-acyclic and]-stable, A[T,AT] also is. Thus, we can apply the
blowing lemma to A[T,AT] and T1, which proves that T is]-reachable from T1 in A[T,AT], thus in
A as well.

If T1 = Q, the proof is complete. Otherwise, as long as Tn 6= Q, we use condition (iii) to build
inductively a sequence T = T0, T1, T2, � � �Tn such that for every 0 � k < n, Tk 6= Tk+1 (condition
(i))and Tk is]-reachable from Tk+1 in A (condition (ii)). Since A is]-acyclic , Tn = Q after at most
2Q inductive steps.

Since]-reachability is transitive, this proves that T is]-reachable from Q. Since A is]-stable, the
only set]-reachable from Q is Q thus T = Q, which completes the proof of the flooding lemma.

Lemma 6.38 (Inductive step). Let A be a probabilistic automaton with states Q and S0, T � Q.
Suppose that A is]-acyclic and T is limit-reachable from S0. Then either S0 � T or there exists
S1 6= S0 such that S1 is]-reachable from S0 in A and T is limit-reachable from S1.

6.5.]-acyclic Probabilistic Automata 99

u0

u1

un
S0 δ T

�

�

�

b

b

b

v1

v2

vn

w1

w2

wn

(δS0 � vn)!

Figure 6.16: Construction of a sharp word from a limit-path

Proof. We prove by induction on jQj. if jQj = 1, then there is nothing to prove. Assume by induction
that the result holds when jQj < n and assume that that jQj = n for some n 2 N. Let (un)n2N be
a limit-path from S0 to T . Let A0 = fa 2 A j S0 � a = S0g. For every n 2 N, let vn be the longest
prefix of un in A�0. Since every infinite subsequence of a limit-path is a limit-path, and since δQ is
compact, we can suppose w.l.o.g. that (δS0 � vn)n2N converges to some distribution δ 2 δQ.

Suppose first that Supp(δ) = S0. If un 2 A�0 for infinitely many n 2 N then S0 � T . Otherwise,
since A is finite we can suppose w.l.o.g. that there exists a letter a 2 A n A0 such that for every
n 2 N, vna is a prefix of un. Let also wn such that un = vnawn. Let S1 = S0 � a. Then S1 6= S0

because a 62 A0 and S1 is clearly]-reachable from S0. Moreover (wn)n2N is a limit-path from S1 to
T , this completes the proof.

Suppose now that Supp(δ) 6= S0. Let A[S0, A0] the probabilistic automaton obtained from A
by restriction to the alphabet A0 and to the state space S0. By definition of A0, A[S0, A0] is stable
and it is]-acyclic because A is. Either A[S0, A0] is]-stable or there exists an action a such that
S0 �a] 6= S0. In the latter case, let S1 = S0 �a], then S1 6= S0, S1 is]-reachable from S0, and because
S1 (S0 and T is limit-reachable from S it follows that T is limit-reachable from S1. If A[S0, A0]
is]-stable, then according to the flooding lemma, the only support limit-reachable from S0 is S0, it
follows that T is limit-reachable from S0. This completes the proof.

Using Lemma 6.38, one can construct inductively a path in the support graph between any pair
of limit-reachable supports and thus yields the following proposition.

Proposition 6.39. Let A be a probabilistic automaton with states Q and S0, T � Q. Suppose that
A is]-acyclic and T is limit-reachable from S0 in A. Then T is]-reachable from S0 in A.

Proposition 6.39 establishes the direct implication of Theorem 6.31 and thus the decidability of
the Value 1 Problem.

6.5.3 Complexity result

Theorem 6.40. The value 1 problem for]-acyclic automata is PSPACE-complete.

The proof of the above theorem follows from the following lemmata.

Lemma 6.41 (Upper bound). The value 1 for]-acyclic automata is PSPACE.

Proof. Using on-the-�y techniques, one can construct the support graph using an non deterministic
polynomial space, Savitch theorem [Sav70] terminates the proof.

100 Chapter 6. Probabilistic Automata

Problem 6.42 (Intersection of automata). Let A1, � � � ,An be a family of �nite state deterministic
automata over the same alphabet A, decide whether there exists w 2 A� such that w is accepted by
Ai for all 1 � i � n.

This problem is known to be PSPACE-complete [Koz77].

Lemma 6.43 (Hardness). The value 1 for]-acyclic automata is PSPACE-hard.

Proof. We reduce the problem of intersection of automata to the value 1 problem for]-acyclic
automata.

Let A1, � � � ,An be a family of finite state deterministic automata over the same alphabet A,
denote Qi the set of states of the automaton Ai and Fi the set of accepting states for the automaton
Ai for 1 � i � n. We construct the probabilistic automaton A such that

– The set of state is fq0g [
⋃n
i=1Qi,

– the set of actions is f$g [A,

– the set of accepting states is
⋃n
i=1 Fi,

– the transitions of A are the same of the transitions of Ai plus a fresh transition from q0 to qi0
with probability 1

n where qi0 is the initial state of the Ai for 0 � i � n.

We show that A has value 1 if and only if there exists w 2 A� such that w is accepted by each
Ai.

We show the direct implication. Assume thatA has value 1, since the only probabilistic transition
is from q0 to qi0 it follows that there exists a word w accepted with probability 1. By construction
of A we know that w = $u for some u 2 A� and u is accepted by each Ai.

We show the converse implication. Let w 2 A� such that w is accepted by each Ai. It follows
directly that the word $w is accepted with probability 1.

To establish the PSPACE-hardness, First notice that if each automaton Ai is]-acyclic then
the automaton A is. Second the PSPACE-completeness of Problem 6.42 holds even if the input
automata are]-acyclic .

6.6 Discussion

The automaton depicted in Fig 6.9 is]-acyclic . Moreover if the set of accepting state is f1, 2, 3, 4g,
the this automaton has value 1 for any choice of the initial state. This is consequence of the fact that
any computation will eventually reach the support f1, 2, 3, 4g and never leaves it. This property is
actually shared by all]-acyclic automata and it called the leaf property. Formally, a leaf is:

Definition 6.44 (Leaf). Let A be a probabilistic automaton with states Q. A non-empty subset
R � Q is called a leaf if for every letter a 2 A, R � a = R and R � a] = R.

Lemma 6.45 (Leaf property). Let A be a probabilistic automaton with states Q. Suppose that A
is]-acyclic . Then there exists a unique leaf]-accessible from Q. Every set limit-reachable from Q
contains this leaf.

6.7. Conclusion 101

Q

L

The largest circle depicts the state space of some]-acyclic
automaton denoted Q and the smallest one depicts the
leaf L. According to the leaf property, the leaf L is unique.
Moreover, the limit-reachable sets (dashed circles) contain
L and L is]-reachable from Q.

Figure 6.17: Illustration of the Leaf property

Proof. Since A is]-acyclic , there exists a leaf S]-reachable from Q. Let T be another leaf, we shall
prove that S = T .

We start with proving T � S. According to Proposition 6.33, there is a limit-path (un)n2N from
Q to S. A fortiori, (un)n2N is a limit-path from T to S. Moreover, since T is a leaf, it is a-stable
for every letter a thus (un)n2N is a limit-path from T to T \ S. Moreover, since T is a leaf, the
automaton A[T] obtained from A by restriction to T is]-acyclic and]-stable. According to the
flooding lemma applied to A[T], T = T \ S, thus T � S.

By symmetry, T = S. Now we prove that every set limit-reachable from Q contains the leaf.
Let R limit-reachable from Q and (un)n2N a limit-path from Q to R. Since for every a 2 A, s is
a-stable, then a fortiori (un)n2N is a limit-path from S to R \ S. According to the flooding lemma
applied to A[S], R = R \ S, thus R � S.

This last property of]-acyclic probabilistic automata concludes this section.

6.7 Conclusion

In this chapter we tackled two algorithmic problems for probabilistic automata. The first one is the
emptiness problem and the result obtained are the followings:

– a simplified proof of the undecidability of the emptiness problem,

– the undecidability holds already for automata with two probabilistic transitions.

The second problem is the value problem and the result obtained are:

– the undecidability of the value 1 problem,

– the value 1 problem is undecidable even for automata with one probabilistic transition,

– the introduction of]-acyclic probabilistic automata; a decidable sub class for the value 1
problem.

As far as we keep a game theoretic motivation for the study of probabilistic automata, interesting
research directions are as follow:

1. identify decidable sub classes for the emptiness problem,

2. extend the sub class of]-acyclic automata to a larger one,

3. extend the decidability result obtained for]-acyclic automata to other model such as partially
observable Markov decision processes.

102 Chapter 6. Probabilistic Automata

4. introduce decidable sub classes such that the answer to value 1 problem depends quantitatively
on the transition probabilities as opposed to]-acyclic automata.

The first research direction seems to be very challenging since even for]-acyclic automata the
emptiness problem remains undecidable.

For the second direction together with Nathaël fijalkow, we introduced a new decidable subclass
for the value 1 problem that subsumes the]-acyclic automata but also other classes such as hier-
archical automata [CSV09]. This new sub class is called Leaktight [FGO12] automata and decision
procedure relies on algebraic techniques especially the work of Simon namely the forest factorization
theorem [Sim90].

We also managed to extend the decidability result for]-acyclic automata to the case of partially
observable Markov decision processes, this result is presented in Chapter 7 where we present an
EXPTIME algorithm to solve the value 1 problem for the so called]-acyclic partially observable
Markov decision processes.

Chapter 7

Partially Observable Markov Decision
Processes

Contents
7.1 Introduction . 103

7.2 Partially Observable Markov Decision Processes 104

7.3]-acyclic Partially Observable Markov Decision Processes 107

7.3.1 Iteration of actions . 110

7.3.2]-acyclic POMDP . 112

7.4 Deciding the Value 1 . 113

7.4.1 The knowledge game . 113

7.4.2 Proof of Theorem 7.28 . 114

7.5 Conclusion . 118

Abstract We consider Partially Observable Markov Decision Processes (POMDP) with reacha-
bility objectives. Whereas the existence of an almost-sure or a positive strategy is decidable for
such POMDPs, the values are not computable and even the value 1 problem is undecidable. In this
problem one asks whether the supremum over all possible strategies the probability to achieve the
reachability objective is equal to 1. Our main result is to identify a class of POMDPs for which the
value 1 problem can be decided in EXPTIME.

7.1 Introduction

Partially Observable Markov Decision Processes are the natural extension of Markov deci-
sion processes to the setting of partial information games. In a partially observable Markov decision
process, the setting is the same as in Chapter 3 with the difference that each state is labeled with
a color. The decision maker cannot observe the states themselves but only their colors, thus if two
plays are colored the same way, its choice should be the same in both cases; in other words the
strategies for the controller are mappings from colors sequences to actions.

While in a fully observable Markov decision process ω-regular objectives such as parity games can
be solved in polynomial time [CY95, CJH04], in POMDP it is not the case and even deciding whether
the value of a POMDP with reachability objective is 1 or greater than 1

2 is not decidable [Paz71,
MHC03b, GO10]. We proved in the previous chapter that this undecidability result holds even if all
states are labeled with the same color i.e. for probabilistic automata (c.f. Chapter 6) and identify
a decidable subclass.

104 Chapter 7. Partially Observable Markov Decision Processes

Contribution and result We extend the decidability result of Chapter 6 to the case of POMDPs,
we consider a class of POMDPs called]-acyclic POMDPs and we show that the value 1 problem
is decidable for this class. The proof is based on the generalization of the operation of iteration
and The construction of a perfect information two-player game G that abstracts the behavior of a
]-acyclic POMDPM: the two-player game is won by the first player if and only ifM has value 1
as opposed probabilistic automata where the problem of the value one is reduced to a reachability
problem over graphs. Another difference holds in the complexity of the decision procedure used for
the two models. Indeed, while for]-acyclic probabilistic automata the value 1 problem is decided in
PSPACE, the value 1 problem for]-acyclic POMDP is decidable in EXPTIME.

Outline of the chapter

– In Section 7.2 we introduce POMDPs and notations related to this model.

– In Section 7.3 we introduce the class of the so called]-acyclic POMDPs and state our main
theorem.

– In Section 7.4 we define the so called knowledge game and prove the main result.

7.2 Partially Observable Markov Decision Processes

Definition 7.1 (POMDP). A Partially Observable Markov Decision Process (POMDP) is a tuple
M = (Q,A,O, p,Obs, δ0) where:

� Q is a �nite set of states,

� A is a �nite set of actions,

� O is a �nite set of observation,

� p is a function p : Q�A! ∆(Q),

� Obs is a function Obs : O ! 2Q,

� δ0 is an initial distribution in ∆(Q).

We assume that for (o, o0) 2 O we have Obs(o) \ Obs(o0) = ; () o 6= o0 and for a subset
S � Q, we write Obs�1(S) = o if S � Obs(o).

Remark 7.2. We assume that for every state q 2 Q and every action a 2 A the function p(q, a) is
de�ned, i.e. every action can be played from every state.

Example 7.3. Consider the POMDP depicted in Fig 7.1. The initial distribution is at random
between states 2 and 3 and the play is winning if it reaches >. The states with similar colors cannot
be distinguished.

Definition 7.4. Let S � Q be a support and a letter a, we de�ne Acc(S, a) as the following set of
states:

Acc(S, a) = fq 2 Q j 9s 2 S, p(s, a)(q) > 0g .

As opposed to probabilistic automata, in a POMDP the controller can refine its knowledge about
the play using the observations.

7.2. Partially Observable Markov Decision Processes 105

>

2 34 5

?

a, 1
4 a, 3

4

a, 1
4a, 3

4

a a

b

c b

c

�

�

Figure 7.1: Partially observable Markov decision process

Definition 7.5 (Outcome of actions). Let M be a POMDP, for a subset S � Q and an action
a 2 A we write

S � a = fR j 9o 2 O, R = Acc(S, a) \Obs(o)g ,

and for a collection of subsets R � 2Q we write

R � a =
⋃
S2R

S � a .

Remark 7.6. According to Remark 7.2 it follows that S � a is always nonempty.

Since the states are not fully observable, in order to ensure a given objective, the controller
chooses the next action to apply in function of the initial distribution, the sequence of action played,
and the sequence of observations observed. Such strategies are said to be observational. Formally,

Definition 7.7 (Observational strategy). An observational strategy is a function σ : O�O ! ∆(A).

In the very general case of stochastic two-player signal games the use of randomized strategy
(c.f Section 3.3) is necessary for the value to exist [BGG09]. In the case of POMDP according
to [Gim09, CDGH10] it is sufficient to use pure strategies (c.f Section 3.3).

For a given strategy σ : O�O ! A and an initial distribution δS , we define the measure PσδS (c.f.
Section 3.3). We also define the random variable On with values in O that gives the observation
after n steps:

On(s0a0s1a1 � � �) = Obs�1(sn) .

As usual Sn denotes the random variable that gives the current state at steps n and An denotes the
random variable that gives the action played at step n.

106 Chapter 7. Partially Observable Markov Decision Processes

Definition 7.8 (Knowledge). LetM be a POMDP and δ0 be an initial distribution, the knowledge
Kn is

K0 = Supp(δ0) ,

Kn+1 = Acc(Kn, An) \On+1 .

In the sequel we will concentrate on reachability objective, hence when referring to the value of
a POMDP it is implied that the objective is a reachability objective.

Problem 7.9 (Value 1 Problem). Let M be a POMDP, δ0 2 ∆(Q) be an initial distribution, and
T � Q be a subset of target states. Decide whether:

sup
σ
Pσδ0(9n 2 N, Sn 2 T) = 1 .

In the rest of the present chapter, for a POMDP M with initial distribution δ0 we use the
notation ValM to denote the value of M when the initial distribution is δ0 for the reachability
objective.

For technical reasons, we suppose that the states of the support of the initial distribution
are associated to the same observation. Formally, we suppose that there exists o 2 O such that
Supp(δ0) � Obs(o). This does not restrict the model since

Proposition 7.10. For every POMDP M there exists a POMDP M0 computable in polynomial
time such that:

ValM = 1 () ValM′ = 1 ,

9o 2 O, Supp(δ00) � Obs(o) .

Proof. LetM0 = (Q0, A0,O0, p0,Obs0, δ00) be the POMDP obtained as follows:

– Q0 = Q [fq$g,

– A0 = A [f$g,

– O0 = O [fo$g,

– p0 : Q0 �A0 ! ∆(Q0) such that p0(q$, $)(q) = δ0(q), p0(q, $)(q) = 1, and p0(q, a)(q) = p(q, a)(q)
for every q 2 Q and a 2 A.

– Obs0 : O0 ! 2Q
′ such that Obs(o$) = fq$g,

– δ00(q$) = 1.

Let us show the direct implication,
assume that for every ε > 0 there exists a strategy σ such that

Pσδ0(9n � 0, Sn 2 T) > 1� ε ,

we define the strategy σ0 that consists in playing $ when the observation o$ and then playing
accordingly to σ. The strategy ensures

Pσ
′

δ′0
(9n � 0, Sn 2 T) > 1� ε ,

7.3.]-acyclic Partially Observable Markov Decision Processes 107

since
8q 2 Supp(δ0), σ0(o$)(q) = δ0(q) .

Let us prove the converse implication, assume that for every ε > 0 there exists a strategy σ0 such
that

Pσ
′
δ0(9n � 0, Sn 2 T) > 1� ε ,

we define the strategy σ the following way:

8o 2 O�, σ(o) = σ(o$o) ,

using similar arguments as in the first part of the proof, one can see that σ satisfies

Pσδ0(9n � 0, Sn 2 T) > 1� ε .

Example 7.11. Consider the POMDP of Fig 7.1, the value of that game is 1 when the initial dis-
tribution is the uniform distribution over the set f2, 3g. Indeed, consider the strategy that plays long
sequences of a2 then compares the frequencies of observing o = Obs�1(f2, 3g) and o0 = Obs�1(f4, 5g);
If o was observed more than o0 then with high probability the initial state is 2 and by playing b state >
is reached with very high probability. Otherwise with high probability the play is in 3 and by playing
c again the play is winning very probability. Note that the controller can di�erentiate between state
2 and 3 with arbitrarily high probability as he can just play longer sequences of a2 but he cannot win
almost-surely since she always has to take a risk and chooses between actions b and c at sometime.
This example shows that the strategies ensuring the value 1 can be quite elaborated: the choice not
only depends on the time and the sequence of observations observed, but also depends on the empirical
frequency of the observations.

Remark 7.12. If the POMDP of Fig 7.1 we had p(2, a)(2) = p(3, a)(3) = 1
2 , then the value is

strictly less than 1. Hence the transition probabilities do matter.

7.3]-acyclic Partially Observable Markov Decision Processes

The value 1 problem is undecidable in general, our goal is to generalize the result obtained in
Chapter 6 and show that the value 1 problem is decidable for the so called]-acyclic POMDP. But
before, we introduce the notion of limit-reachability in order to state the value 1 problem in an
alternative way.

Definition 7.13 (Limit-reachability). Let S be a support and R be a collection of supports, we say
that R is limit-reachable from S if there exists a sequence of strategies (σn)n2N such that for every
ε > 0 there exists n 2 N which satis�es:

PσnδS

(
9m 2 N, 9R 2 R, PσnδS (Sm 2 R j O0A0 � � �Om) � 1� ε

)
� 1� ε .

The sequence (σn)n2N is called a limit-strategy.

For a POMDPM, if the target set of states is T , we consider the collection T that consists of
the nonempty subsets of T . Our decision procedure is based on the fact thatM has value 1 if and
only if T is limit-reachable from the support of the initial distribution.

108 Chapter 7. Partially Observable Markov Decision Processes

Definition 7.14 (Observable target). Let T be a set of target states, we say that T is observable if
there exists O0 � O such that for every state s we have

T =
⋃
o2O′

Obs(o) . (7.1)

When Equation (7.1) does not hold, we say that the set T is unobservable.

Proposition 7.15. Let M be a POMDP, δ0 and initial distribution. Assume that T is observable
then,M has value 1 if and only if T is limit-reachable from Supp(δ0).

Proof. Let σ a strategy, and assume w.l.o.g. that T is a singleton ftg, then T is as well. Since T is
observable we have:

Pσδ0(Sn 2 T j O0 � � �On) = 1On=Obs−1(ftg) = 1Sn2T .

And since 1Sn2T � 1� ε if and only if Sn 2 T it follows that for every ε > 0 and every strategy σ
we have:

PσδS

(
9m 2 N, PσδS (Sm 2 T j O0A0 � � �Om) � 1� ε

)
� 1� ε

() PσδS (9m 2 N, Sm 2 T) � 1� ε .

This terminates the proof.

1

> 3

4 >0

?

a, 0.5 a, 0.5

a a

a a

a

Figure 7.2: The value of this POMDP is 1 but T is not limit-reachable from Supp(δ0).

Fig 7.2 shows that Proposition 7.15 does not hold in the case where the objectives are not visible.
Indeed, assume that O = fog and that the target set is f>,>0g, then the value of this game is 1
since Paω1 (9n 2 N, Sn 2 f>,>0g) = 1, but f>,>0g is not limit-reachable from Supp(δ0), since for
every n 2 N we have:

Pa
ω

1

(
Sn 2

{
>,>0

})
� 1

2
.

7.3.]-acyclic Partially Observable Markov Decision Processes 109

Fortunately, for the value 1 problem there exists a construction such that for every POMDPM
with unobservable objective, there exists a POMDPM0 with observable objective such thatM has
value 1 if only ifM has value 1. Hence our decision procedure holds also for unobservable objectives.

Proposition 7.16. For every POMDP M, there exists a POMDP M0 computable in linear time
such that:

� the target set inM0 is observable.

� ValM = 1 () ValM′ = 1.

Proof. Let M be a POMDP and let T a set of target states. We construct M0 =
(Q0, A0,O0, p0,Obs0, δ00) such that:

– Q0 = (Q� f0, 1g) [f>,?g.

– A0 = A [f$g such that for every s 2 Q0, p0((s, 0), $)(?) = 1 and p0((s, 1), $)(>) = 1.

– p0 : Q0 �A0 ! ∆(Q) such that for every state q, t 2 Q, action a 2 A and i 2 f0, 1g we have:

p0((s, i), a)(t, 1) =

{
p(s, a)(t) if (s 2 T) _ (i = 1) ,

0 otherwise.

p0((s, i), a)(t, 0) =

{
p(s, a)(t) if (s 62 T) ^ (i = 0) ,

0 otherwise.

– O0 = O [fo>, o?g such that Obs(o>) = f>g and Obs(o?) = f?g.

– Obs0 : O0 ! 2Q
′ such that Obs0(o) = Obs(o)� f0, 1g.

– for every q 2 Q, δ00(q, 0) = δ0(q)

– T 0 = f>g

We show that ValM′ = 1 if and only if ValM = 1.
Assume that ValM′ = 1 and let σ0 and ε > 0 such that

Pσ
′

δ′0
(9n 2 N�, Sn�1 = >) � 1� ε ,

hence
Pσ
′

δ′0
(9n 2 N�, Sn�1 2 Q� f1g) � 1� ε .

Let σ : O�O ! O be the restriction σ0 defined on every history h such that h 2 O�O, then we
have

Pσδ′0
(9n 2 N�, Sn�1 2 Q� f1g) � 1� ε .

It follows that:
Pσδ0(9n 2 N, Sn 2 T) � 1� ε .

Assume that ValM = 1 and let σ and ε > 0 such that:

Pσδ0(9n 2 N, Sn 2 T) � 1� ε .

110 Chapter 7. Partially Observable Markov Decision Processes

Let σ0 be a strategy such that for every h 2 O�O we have

σ0(h) =

{
σ(h) if Pσδ0(Sn 2 Q� f1g j h) < 1� ε
$ if Pσδ0(Sn 2 Q� f1g j h) � 1� ε

Since by construction ofM0 we have

Pσδ′0
(9n 2 N, 8m � n, Sm 2 Q� f1g) � 1� ε ,

it follows that the action $ is chosen at sometime thus

Pσ
′

δ′0
(9n 2 N, Sn = >) � 1� ε ,

which terminates the proof.

In the sequel we consider only reachability objectives with observable target sets.
The following Proposition implies that the value 1 problem depends only the support of the

initial distribution.

Proposition 7.17. Let S � Q be a support, δ 2 ∆(S) be a distribution over S, R be a collection of
supports, and (σn)n2N be sequence of strategies. Assume that:

8ε > 0, 9n 2 N, Pσnδ
(
9m 2 N, 9R 2 R, Pσnδ (Sm 2 R j O0A0 � � �Om) � 1� ε

)
� 1� ε ,

then (σn)n2N is a limit-strategy from S to R

Proof. If δ = δS then there result is trivial. If not, the result follows from the fact that for every
E 2 (Q�A)ω, ε > 0, and n 2 N:(∑

s2S
δ(s)Pσns (E) � 1� ε

)
=)

(
1

jSj
∑
s2S

Pσns (E) � 1� jSj
mins2S fδ(s)g

ε

)
.

7.3.1 Iteration of actions

The key notion in the definition of]-acyclic POMDPs is the one of iteration of actions. As for
probabilistic automata, we define the operation of iteration of actions.

Definition 7.18 (Stability). Let S � Q be a support and a 2 A be an action, then S is a-stable if
S � a = fSg.

Definition 7.19 (a-recurrence). Let S � Q be a support and a 2 A be an action. Assume that S
is a-stable then a state r 2 S is a-reachable from s if there exists n > 0 such that p(s, an)(r) > 0. A
state s 2 S is a-recurrent if for any state r 2 S,

(r is a-reachable from s) =) (s is a-reachable from r) .

Let S be a support and a an action, S �a] is the collection of all possible outcomes after repeating
a an arbitrarily large number of time. Formally,

Definition 7.20 (Iteration). Let S and S0 be two supports and a an action such that

7.3.]-acyclic Partially Observable Markov Decision Processes 111

� S 2 S � a,

� S0 is the largest a-stable subset of S,

then
S � a] =

{
a-recurrent states of S0

}
[(S � a n fSg) .

Remark 7.21. Note that since S �a is always nonempty and since there exists always an a-recurrent
state the collection of sets S � a] is always nonempty.

Definition 7.22 (]-stability). Let S � Q be a support and a 2 A be a letter, then S is a]-stable if
fSg 2 S � a and S � a] = fSg.

Proposition 7.23. Assume S 2 S � a], then S is a]-stable.

Proof. Let S be a support, S0 the largest a-stable subset of S, and a 2 A an action. By Defini-
tion 7.20, if S 2 S � a] then S is the set of a-recurrent states in S0. Since S0 � S it follows that
S = S0 and by definition of S0, S is a-stable

In the rest of the chapter, we denote A] the set
{
a] j a 2 A

}
.

Proposition 7.24. Let S be a support and a 2 A an action, then S � a is limit-reachable from S.
Moreover if fSg 2 S � a, then S � a] is also limit-reachable from S.

Proof. Consider the constant sequence σn = σ such that σ(O�O) = a is a limit-strategy from S to
S � a, since we have:

PσδS (K1 2 S � a) = 1 .

And by definition of the knowledge:

PσδS (S1 2 K1 j O0A0O1) = 1 .

Hence
PσnδS

(
PσδS (S1 2 K1 j O0A0O1) = 1

)
= 1 .

Choosing m = 1 and R = K1 in Definition 7.13 finishes the prove of the first part.
Assume that fSg 2 S � a, we show that the sequence σn defined as follows

σn(ok) =

{
a if k � n ^Obs�1(S) = o ,

play anything otherwise.

is a limit-strategy from S to S � a] i.e. satisfies the equation of Definition 7.13. To show that σn is a
limit-strategy from S to S � a, denote o = Obs�1(S), S0 the largest a-stable support included in S,
and S00 the set of a-recurrent states in S0.

We show that

PσnδS

(
Sn+1 2 S00 j 80 � i � n, (Oi = o) ^ (Ai = a)

)
���!
n!1

1 . (7.2)

We distinguish between two cases.
If S n S0 6= ;, let x = mins2SnS′

∑
t62S p(s, a)(t), then since S n S0 6= ; we have x > 0, it follows

that:
PσnδS

(
Sn+1 2 S n S0 j (Sn 2 S n S0) ^ (An = a)

)
� (1� x) .

112 Chapter 7. Partially Observable Markov Decision Processes

Hence

PσnδS (Sn+1 2 S n S0 j 80 � i � n, (Oi = o) ^ (Ai = a))

= PσnδS (8k � n+ 1, Sk 2 S n S0 j 80 � i � n, (Oi = o) ^ (Ai = a)) � (1� x)n ���!
n!1

0 ,

=) PσnδS (Sn 2 S0 j 80 � i � n, (Oi = o) ^ (Ai = a)) ���!
n!1

1 . (7.3)

On the other hand, since (S0, a) induces a Markov chain, it follows that

PσnδS (Sn+1 2 S00 j (8m � i � n, Si 2 S0) ^ (80 � i � n, Ai = a)) ���!
n!1

1 .

Equation (7.2) follows.
In the case where S n S0 = ;, Equation (7.3) applies directly and Equation 7.2 follows.
To see that the sequence (σn)n is a limit-strategy from S to S �a, notice that while being consistent

with one of the strategies σn, either there exists 0 � i � n such that Oi 6= o hence Ki 2 S �a nS and

PσnδS (Si 2 Ki) = 1 ,

or for every 0 � i � n, Oi = o. Thus Ki = S, then by Equation (7.2):

Pσnδ0 (Sn 2 S00) ���!
n!1

1 ,

noticing that S00 2 S � a] terminates the proof.

7.3.2]-acyclic POMDP

Definition 7.25 (Knowledge graph). Let M be a POMDP, the knowledge graph GM of M is the
labelled graph obtained as follows:

� The states are the non empty subsets of Q,

� The triple (S, a, T) is an edge if fTg 2 S � a and the triple (S, a], T) is an edge if fSg 2 S � a
and fTg 2 S � a].

Example 7.26. In Fig 7.3(a) is depicted a POMDP, where the initial are states s and q cannot be
distinguished. In Fig 7.3(b) is the knowledge graph associated to it.

Definition 7.27 (]-acyclic POMDP). LetM be a POMDP and GM the associated knowledge graph.
M is]-acyclic if the only cycles in GM are self loops.

The main result is the following.

Theorem 7.28. Given a]-acyclic POMDPM and an initial distribution δ0, it is decidable whether
Val(Supp(δ0)) = 1. Moreover it depends only on the support of δ0.

To prove the main theorem we define a perfect information two-player game played on the
knowledge graph. We show that winning strategies exist if and only if the POMDP has value 1.
Details of the game and the proof of Theorem 7.28 are given in Section 7.4.

7.4. Deciding the Value 1 113

s q

t

?

>
a

aa

b

c

c

b

b, c

(a) A]-acyclic POMDP

fs, qg

ftgfsg

f>gf?g

a

a, a]a]

bcb c

b, c b, c

(b) The knowledge graph

Figure 7.3: A POMDP and its knowledge graph

7.4 Deciding the Value 1

Our goal is to show that we can decide whether a]-acyclic POMDP has value 1. We prove that
given a POMDPM, there exists a two-player (verifier and falsifier) perfect information game where
verifier wins if and only if ValM = 1.

7.4.1 The knowledge game

We first explain how to construct the game and how it is played. For a given POMDPM, an initial
distribution δ0, and a set of target states T . Let GM be the knowledge graph associated to M.
Assume that Supp(δ0) = S, the knowledge game is played on GM as follows:

– Verifier chooses either an action a 2 A or if fSg 2 S � a he can also choose an action a 2 A] ,

– falsifier chooses a successor R 2 S � a and R 2 S � a] in the second case.

– the play continues from the new state R.

Verifier wins if the game reaches a support R such that R � T .

Definition 7.29 (]-reachability). Let S and R be two supports, R is]-reachable from S if veri�er
has a strategy to reach R or one of its nonempty subsets from S in the knowledge game.

We say that a collection of supports R is]-reachable from a support S if there exists a strategy
for veri�er to reach a support in R against any strategy of falsi�er in the knowledge game.

Example 7.30. In the POMDP of Fig 7.3, assume that the initial distribution δ0 is at random
between state s and q. The value of the initial distribution is 1 because the controller can play long
sequences of a and if the only observation observed is red, then with probability arbitrarily close to 1
the play is in state s otherwise with probability 1 the game is in state q. On the other hand, veri�er
has a strategy to win from fs, qg. This strategy consists in choosing action a] from the initial state,
then playing action c if falsi�er’s choice is ftg and action b if falsi�er’s choice is fsg.

114 Chapter 7. Partially Observable Markov Decision Processes

7.4.2 Proof of Theorem 7.28

The proof of Theorem 7.28, is split into Proposition 7.31 and Proposition 7.33. The former propo-
sition establishes that if verifier has a winning strategy in the knowledge game GM, then ValM = 1.
This proposition not only proves the direct implication of Theorem 7.28, but also shows that direct
implication holds whether the POMDP is]-acyclic or not.

Proposition 7.31. LetM be a POMDP. Assume that veri�er has a winning strategy in GM, then
ValM = 1.

The proof of Proposition 7.31 follows from the next lemma.

Lemma 7.32. Let S be a support and T be a collection of supports such that T is]-reachable from
S then either S 2 T or there exists a collection of support R such that

i) R\ T = ;.

ii) R is]-reachable from S.

iii) T is limit-reachable from every support in R.

Proof. If S 2 T then there is nothing to prove. Assume that S 62 T and let σ be a positional
strategy for verifier that allows her to reach T from S in GM.

Let R be the collection of supports such that:

R =
{
R j 9a 2 A [A], (R � a � T) ^ (R 62 T)

}
.

This collection is nonempty since S /2 T and T is]-reachable from S. i) holds by choice of R. ii)
holds because Either s 2 R or since S is a winning support, the strategy σ allows verifier to reach R
from S in GM. iii) holds because according to Proposition 7.24 the collection S �a is limit-reachable
from S.

Proof of Proposition 7.31. Let M be a POMDP and δ0 be an initial distribution and assume that
T is]-reachable from Supp(δ0) in GM. By Lemma 7.32, we know that there exists R0 such that:

i) R0 \ T = ;.

ii) R0 is]-reachable from Supp(δ0).

iii) T is limit-reachable from every support in R0.

Since R0 is]-reachable from Supp(δ0), applying Lemma 7.32 again we can construct a collections
of supports R1 such that

i) R1 \R0 = ;.

ii) R1 is]-reachable from Supp(δ0).

iii) R0 is limit-reachable from every support in R1.

Since Supp(δ0) is a winning support, repeating this inductive construction, there exists n � 2Q

such that Supp(δ0) 2 Rn and since limit-reachability is a transitive property it follows that T is
limit-reachable from Supp(δ0), thus according to Proposition 7.15 it follows ValM = 1 and hence
the result.

7.4. Deciding the Value 1 115

Proposition 7.33. Let M be a]-acyclic POMDP and δ0 be an initial distribution. Assume that
Val(M) = 1 then, veri�er has a winning strategy.

The proof follows from Lemma 7.36.
In order to prove Lemma 7.36, we need the two following tool lemmata.

Lemma 7.34 (Shifting lemma). Let f : Qω ! f0, 1g be the indicator function of a measurable
event, δ 2 ∆(Q) an initial distribution, and σ a strategy. Then

Pσδ (f(S1, S2, � � �) = 1 j A0 = a ^O1 = o) = Pσ
′
δ′ (f(S0, S1, � � �) = 1) ,

where 8(q 2 Q), δ0(q) = Pσδ (S1 = q j A0 = a ^O1 = o), σ0(o2o3 � � � on) = σ(oo2o3 � � � on).

Proof. Using basic definitions, this holds when f is the indicator function of a union of events over
Sω, and the class of events that satisfy this property is a monotone class.

Lemma 7.35. Assume thatM is]-acyclic and that O is a singleton, thenM is a]-acyclic proba-
bilistic automaton.

Proof. The result follows for the fact that for any action a and support S, if the set O is a singleton
then S �a is a singleton as well, and thus the knowledge graph coincide with construction of previous
chapter, namely the support graph (c.f. Definition 6.5).

Lemma 7.36. Let S be a support and T is a collection of supports. Assume that T is limit-reachable
from S, then either S 2 T or there exists a collection of supports R such that

i) S 62 R,

ii) R is]-reachable from S,

iii) T is limit-reachable from every support in R.

Proof. If S 2 T , then there is nothing to prove. Assume that S 62 T and Obs�1(o) = S. Since T
is limit-reachable from S, there exists a sequence of strategies (σn)n2N such that is a limit-strategy
from S to T . For every n � 0, let

dn = min
k

{[
S 62 S � σn(ok)

]
_
[
S 2 S � σn(ok) ^ S 62 S � σn(ok)]

]}
,

and let
AS =

{
a 2 A j S � a] = fSg

}
.

Fig 7.4 shows the construction and the behavior of the sequence (dn)n2N. According to Proposi-
tion 7.23, we know that for every n � 0 and for every i < dn we have:

S � σn(oi)] = fSg .

Consider now the sequence (dn)n2N of integers induced by the limit-strategy (σn)n2N and denote
(un)n2N the sequence of words such that un = σn(o) . . . σn(odn�1).

Let us show that it is not possible that for infinitely many n, dn = 1. Assume towards a
contradiction that there exists infinitely many n such that dn =1. For every n consider the infinite
sequence of distributions (δS � σ(oi))i2N. Since ∆(Q) is compact, the sequence (δS � σn(oi))i2N
converges to some limit δn. Now because (σn)n2N is a limit-strategy from S to T and S 62 T ;

116 Chapter 7. Partially Observable Markov Decision Processes

there exists infinitely many n such that Supp(δn) 6= S. On the other hand, M[S,AS] induces
a probabilistic automaton (c.f. Chapter 6). Moreover, according to Lemma 7.35, the probabilistic
automaton induced byM[S,AS] is]-acyclic (c.f. Section 6.5), thus according to the flooding lemma
(c.f. Lemma 6.36) the unique limit-reachable support from S is S, thus Supp(δn) 6= S contradicts the
flooding lemma. Since dn is infinite for only finitely many n, we assume without loss of generalities
that for every n, dn < 1 and that the sequence (dn)n2N is increasing. Again using the flooding
lemma on the probabilistic automatonM[S,AS], we get that the support of the limit of the sequence
(δS � un)n2N where un = σn(o) . . . σn(odn�1) is exactly S. Since A is finite assume without loss of
generalities that σn(odn) is constant equal to a 2 A[A]. if S 62 S � σn(odn , then let R = S � a and if
S 62 S � σn(odn ^ S 62 S � σn(odn)] then let R = S � a]. i) holds because a does not (]-)stabilize S. ii)
holds because the strategy that plays a from S in GM allows Verifier to reach a support in R. Let
us show that iii) holds.

We show that for every R 2 R, the collection T is limit-reachable from R. m 2 N, ε > 0, T 2
T , σn, and δS we denote

Am(ε, T, σn, δS) = PσnδS (Sm 2 T j O0A0O1A1 � � �Om) � 1� ε .

By Definition 7.13 and since S 62 T we can write

8ε > 0, 9n 2 N, PσnδS (9m � dn, 9T 2 T , Am(ε, T, σn, δS)) � 1� ε . (7.4)

We first show that for every R 2 R we have:

PσnδS

(⋃
m>0

⋃
T2T

Am(ε, T, σn, δS) j

(
dn�1∧
i=0

(Oi = o ^Ai = a)

)
^
(
Odn = Obs�1(R)

))
���!
n!1

1 . (7.5)

Let ε > 0 and n 2 N such that Equation (7.4) holds. Denote Pn the left-hand side of Equa-
tion (7.4), Pn(R) the left-hand side of Equation (7.5), and α(R) the quantity

PσnδS

((
dn�1∧
i=0

(Oi = o ^Ai = a)

)
^
(
Odn = Obs�1(R)

))
,

for some R 2 R. Then we have by Equation (7.4):

Pn =
∑
R2R

α(R)Pn(R) .

Since R = S � a it follows that for every R 2 R, we have α(R) > 0 and
∑

R2R α(R) = 1. Thus
Equation (7.4) yields the following equation

Pn(R) ���!
n!1

1 ,

and Equation (7.5) follows.
Applying the shifting lemma to Equation (7.5) we obtain for every o2 � � � om 2 O� and every

R 2 R:

P
σ′n
δ′R

 ⋃
m�dn

⋃
T2T

P
σ′n
δ′R

(Sm�1 2 T j O0 = odn , A1 = adn+1, � � � , Om�1 = om) � 1� ε

 � 1� ε , (7.6)

7.4. Deciding the Value 1 117

where

8q 2 Q, δ0R(q) = P
σ′n
δS

(
S1 = q j

(
dn�1∧
i=0

(Oi = o ^Ai = a)

)
^
(
Odn = Obs�1(R)

))
,

and
8h 2 O�O, σ0n(h) = σn(odn�1Obs�1(R)h) .

According to Proposition 7.17, it follows that

P
σ′n
δR

 ⋃
m�dn

⋃
T2T

P
σ′n
δR

(Sm�1 2 T j O0 = odn , A1 = adn+1, � � � , Om�1 = om) � 1� ε

 ���!
n!1

1 .

(7.7)
This last equation terminates the proof iii) and yields Lemma 7.36.

σ0 σ1 σ2 � � � σn

o

o2

...
ok

� �
� �

d0
d1

d2 dn

Figure 7.4: Construction of the sequence (dn)n2N

Proof of Proposition 7.33. LetM be a]-acyclic POMDP and δ0 be an initial distribution. Assume
that Val(δ0) = 1 then by Proposition 7.15 we know that there exists a limit-strategy (σn)n2N
from the support Supp(δ0) to T a collection of supports that consists of subsets of T . Thanks to
Lemma 7.36, we know that from the support of the initial distribution, one can define a collection
of supports R0 and an action a such that R = Supp(δ0) � a and such that the items i), ii), and iii)
of Lemma 7.36 hold.

If R � T then the proof is done since the strategy that consists in playing the action a from
Supp(δ0) is winning for verifier.

If not we construct inductively a DAG whose nodes are the nonempty supports, the edges are
labelled by the actions, and the leafs are supports in T the following way:

– the root is labelled by Supp(δ0),

– for each node labelled with a nonempty support R either R 2 T and R is a leaf or there exists
an action a 2 A[A] such that the sons of R are the elements of the collection R � a where the
R � a is the collection constructed by Lemma 7.36 and the edges (R,R0) for every R0 in R � a
is labelled by a.

Now becauseM is]-acyclic , we know that this construction terminates in at most 2jQj steps and
that the DAG obtained is the unfolding of a winning strategy for verifier.

Proposition 7.31 and Proposition 7.33 lead the following theorem:

118 Chapter 7. Partially Observable Markov Decision Processes

Theorem 7.37. Given a]-acyclic POMDPM and an initial distribution δ0. Veri�er has a winning
strategy in the knowledge game GM if and only if Val(M) = 1.

Theorem 7.28 follows directly from Theorem 7.37 and from the fact that deciding the winner in
a perfect information reachability game is decidable.

Proposition 7.38 (Upper bound). The value 1 problem is EXPTIME.

Proof. It is consequence of the fact that deciding the value 1 problem reduces to solving a reachability
game of size exponential in the description of the POMDP.

7.5 Conclusion

In this chapter we extended the decidability result obtained for probabilistic automata to the frame-
work of partial observation Markov decision processes. We defined the class of]-acyclic POMDP
that extends]-acyclic automata to the case of partial observation. In order to decide the value 1
for this new class we generalize the operation of iteration and use perfect information reachability
games to abstract the asymptotic behavior of the automaton. The decision procedure obtained runs
in EXPTIME whereas the value 1 problem is decidable for the class of]-acyclic automata is decid-
able in PSPACE. We do not know whether our decision procedure for]-acyclic POMDP can run
in PSPACE since it needs to remember collection of support. Providing a lower bound for our the
]-acyclic POMDP is one research direction. We also believe that the class of]-acyclic POMDP can
be extended, this is one of our next goal. Finally, we highlight the fact]-acyclic POMDP depends
qualitatively on the transition probability, we believe that this class can be extend in a way such
that the decision procedure depends quantitatively on the transition probabilities.

Part IV

Conclusion and References

Chapter 8

Conclusion

Contents
8.1 Summary . 121
8.2 Discussion and Open Problems . 121

8.2.1 Markov Decision Process . 121
8.2.2 Stochastic Games . 122
8.2.3 Probabilistic Automata and Beyond . 122

8.1 Summary

In this thesis we studied and designed algorithms for solving the value 1 problem in two different
but yet related frame work.

In the first part we studied perfect information games equipped with boolean combination of
objectives. We first designed algorithm for parity and positive-average for Markov decision processes
and for stochastic games. Our algorithm construct the almost-sure region, this gives the set of states
with value 1 as we know by [GH10] that they coincide for stochastic games with tail objectives.
Second we designed an algorithm to solve boolean combination of positive-average objectives.

In the second part we studied reachability objectives for partial information games. This model is
known to be undecidable for many problems. Indeed the value problem is known to be undecidable
since the work of Paz [Paz71]. We solve the value 1 problem which was open since the work of
Bertoni [Ber74, BMT77]. Unfortunately this problem turned out to be undecidable. In order to
overcome this undecidability, we introduced sub classes of games for which the problem is decidable.

8.2 Discussion and Open Problems

In this section we discuss some of the results obtained in this thesis and future research directions.

8.2.1 Markov Decision Process

Regarding Markov decision processes, we started first by designing an algorithm that computes
the almost-sure region for the objective Par^Avg>0 in polynomial time, then we show that the
almost-sure strategy can be with finite memory. A direct consequence of the existence of finite
memory almost-sure strategies is that the same approach holds true for Par^Avg

>0
and that it can

be effectively used for control synthesis.
The other result we obtained concerns boolean combination of objectives. We give a constructions

for combination of positive-averages and we leave the case of boolean combination with parity and
positive-average open.

This open problem stated is solved in the special case of parity and positive-average with lim sup
semantics. The next step is to try to solve this problem in the case of parity and lim inf semantics,

122 Chapter 8. Conclusion

we believe that the solution of this problem has to go through a generalization of the equations of
Theorem 4.18 in order to satisfy the parity condition but we couldn't achieve this in this thesis.

8.2.2 Stochastic Games

In the case of stochastic games, we extended part of the results obtained for Markov decision pro-
cesses to the setting of stochastic games. Namely we give an algorithm that computes the almost-sure
region for the objective Par^Avg>0 in NP. This result raises some open questions:

– is there an algorithm that computes the value of state for the objective Par^Avg>0 lies in
NP\CoNP?

– can the memory requirement for the almost-sure strategies be bounded from above?

We believe that the answer for both questions is yes and we are currently investigating those prob-
lems.

8.2.3 Probabilistic Automata and Beyond

First, the decidability result obtained for POMDP shows that studying probabilistic automata in
order to understand the framework of partial information games was a fruitful approach. Indeed,
the techniques used to define the class of]-acyclic POMDP were generalization of the one used for
probabilistic automata.

Second, the study of probabilistic automata reveled some surprising results. For instance, the
result concerning automata with one probabilistic transition shows that the border of undecidability
is easily reached.

We believe that the following directions are interesting:

– Investigate interesting classes of automata for which the emptiness problem is decidable.

– Investigate interesting classes for which the value 1 is decidable and depends quantitatively on
the transition probabilities.

Bibliography

[BBC+11] Tomás Brázdil, Václav Brozek, Krishnendu Chatterjee, Vojtech Forejt, and Antonín
Kucera. Two views on multiple mean-payoff objectives in markov decision processes. In
LICS, pages 33–42, 2011. (Cited on pages 5 and 52.)

[BBE10a] Tomás Brázdil, Václav Brozek, and Kousha Etessami. One-counter stochastic games.
In FSTTCS, pages 108–119, 2010. (Cited on pages 18 and 57.)

[BBE+10b] Tomás Brázdil, Václav Brozek, Kousha Etessami, Antonín Kucera, and Dominik Wo-
jtczak. One-counter Markov decision processes. In SODA, pages 863–874, 2010. (Cited
on page 32.)

[BBG08] Christel Baier, Nathalie Bertrand, and Marcus Gröÿer. On decision problems for prob-
abilistic büchi automata. In FoSSaCS, pages 287–301, 2008. (Cited on page 87.)

[BCG05] Christel Baier, Frank Ciesinski, and Marcus Gröÿer. Probmela and verification of
markov decision processes. SIGMETRICS Performance Evaluation Review, 32(4):22–27,
2005. (Cited on page 21.)

[Ber74] A. Bertoni. The solution of problems relative to probabilistic automata in the frame of
the formal languages theory. In Proc. of the 4th GI Jahrestagung, volume 26 of LNCS,
pages 107–112. Springer, 1974. (Cited on pages 6, 78, 81, 86 and 121.)

[BGG09] Nathalie Bertrand, Blaise Genest, and Hugo Gimbert. Qualitative determinacy and
decidability of stochastic games with signals. In LICS, pages 319–328, 2009. (Cited on
page 105.)

[BL69] J. Richard Büchi and Lawrence H. Landweber. Definability in the monadic second-order
theory of successor. J. Symb. Log., 34(2):166–170, 1969. (Cited on page 3.)

[BMT77] Alberto Bertoni, Giancarlo Mauri, and Mauro Torelli. Some recursive unsolvable prob-
lems relating to isolated cutpoints in probabilistic automata. In Proceedings of the
Fourth Colloquium on Automata, Languages and Programming, pages 87–94, London,
UK, 1977. Springer-Verlag. (Cited on pages 6, 78, 81, 86 and 121.)

[Bor21] Émile Borel. La théorie du jeu et les équations intégrales à noyau symétrique. Comptes
Rendus de l’Académie des Sciences, 173:1304–1308, 1921. (Cited on page 1.)

[BS78] Dimitri P. Bertsekas and Steven E. Shreve. Stochastic Optimal Control: The Discrete-
Time Case. Academic Press, Inc., Orlando, FL, USA, 1978. (Cited on page 23.)

[CD10] Krishnendu Chatterjee and Laurent Doyen. Energy parity games. In ICALP (2), pages
599–610, 2010. (Cited on page 37.)

[CD11] Krishnendu Chatterjee and Laurent Doyen. Energy and mean-payoff parity markov
decision processes. In MFCS, pages 206–218, 2011. (Cited on pages 5 and 38.)

[CDGH10] Krishnendu Chatterjee, Laurent Doyen, Hugo Gimbert, and Thomas A. Henzinger.
Randomness for free. In MFCS, pages 246–257, 2010. (Cited on page 105.)

124 Bibliography

[CDHR10] Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François
Raskin. Generalized mean-payoff and energy games. CoRR, abs/1007.1669, 2010. (Cited
on page 37.)

[Cha07] Krishnendu Chatterjee. Concurrent games with tail objectives. Theor. Comput. Sci.,
388(1-3):181–198, 2007. (Cited on page 27.)

[CHJ05] Krishnendu Chatterjee, Tom Henzinger, and Marcin Jurdzinski. Mean-payoff parity
games. In LICS 05, June 2005. (Cited on pages 37, 38 and 61.)

[CJH03] Krishnendu Chatterjee, Marcin Jurdzinski, and Thomas A. Henzinger. Simple stochastic
parity games. In CSL, pages 100–113, 2003. (Cited on pages 31 and 42.)

[CJH04] Krishnendu Chatterjee, Marcin Jurdzi«ski, and Thomas A. Henzinger. Quantitative
stochastic parity games. In Proceedings of the �fteenth annual ACM-SIAM symposium
on Discrete algorithms, SODA '04, pages 121–130, Philadelphia, PA, USA, 2004. Society
for Industrial and Applied Mathematics. (Cited on pages 30 and 103.)

[CL89] Anne Condon and Richard J. Lipton. On the complexity of space bounded interactive
proofs (extended abstract). In Foundations of Computer Science, pages 462–467, 1989.
(Cited on page 78.)

[CL08] Thomas Colcombet and Christof Löding. The non-deterministic mostowski hierarchy
and distance-parity automata. In ICALP (2), pages 398–409, 2008. (Cited on page 2.)

[Cla08] Edmund M. Clarke. The birth of model checking. In 25 Years of Model Checking, pages
1–26, 2008. (Cited on page 3.)

[CMR07] Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. Lp distance and equivalence of
probabilistic automata. International Journal of Foundations of Computer Science,
18(4):761–779, 2007. (Cited on page 78.)

[CMRR08] Corinna Cortes, Mehryar Mohri, Ashish Rastogi, and Michael Riley. On the computation
of the relative entropy of probabilistic automata. International Journal of Foundations
of Computer Science, 19(1):219–242, 2008. (Cited on page 78.)

[Con92] Anne Condon. The complexity of stochastic games. Inf. Comput., 96(2):203–224, 1992.
(Cited on pages 28 and 61.)

[CSV09] Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan. Power of randomization
in automata on infinite strings. In International Conference on Concurrency Theory,
pages 229–243, 2009. (Cited on page 102.)

[CY90] C. Courcoubetis and M. Yannakakis. Markov decision processes and regular events. In
ICALP’90, volume 443 of LNCS, pages 336–349. Springer, 1990. (Cited on page 21.)

[CY95] Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic verifica-
tion. J. ACM, 42(4):857–907, 1995. (Cited on pages 30 and 103.)

[dAH00] Luca de Alfaro and Thomas A. Henzinger. Concurrent omega-regular games. In LICS,
pages 141–154, 2000. (Cited on pages 24, 31 and 42.)

Bibliography 125

[EJ91] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In FOCS, pages 368–377, 1991. (Cited on page 2.)

[FGO11] Nathanaël Fijalkow, Hugo Gimbert, and Youssouf Oualhadj. Pushing undecidability of
the isolation problem for probabilistic automata. April 2011. (Cited on page 88.)

[FGO12] Nathanaël Fijalkow, Hugo Gimbert, and Youssouf Oualhadj. Deciding the value 1
problem for probabilistic leaktight automata. In LICS, pages 295–304, 2012. (Cited
on pages 6 and 102.)

[GH82] Yuri Gurevich and Leo Harrington. Trees, automata, and games. In STOC, pages 60–65,
1982. (Cited on page 2.)

[GH10] Hugo Gimbert and Florian Horn. Solving Simple Stochastic Tail Games. page 1000, 01
2010. (Cited on pages 27, 63, 64 and 121.)

[Gil57] Dean Gillette. Stochastic games with zero stop probability. Contributions to the Theory
of Games, 3:179–187, 1957. (Cited on page 33.)

[Gim07] Hugo Gimbert. Pure stationary optimal strategies in Markov decision processes. In
STACS, pages 200–211, 2007. (Cited on page 44.)

[Gim09] Hugo Gimbert. Randomized Strategies are Useless in Markov Decision Processes. July
2009. (Cited on page 105.)

[GO10] Hugo Gimbert and Youssouf Oualhadj. Probabilistic automata on finite words: Decid-
able and undecidable problems. In International Colloquium on Automata, Languages
and Programming, pages 527–538, 2010. (Cited on pages 6, 78 and 103.)

[GTW02] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics and In�nite Games,
volume 2500 of LNCS. Springer, 2002. (Cited on page 29.)

[GZ06] Hugo Gimbert and Wieslaw Zielonka. Deterministic priority mean-payoff games as limits
of discounted games. In ICALP (2), pages 312–323, 2006. (Cited on page 37.)

[GZ07a] Hugo Gimbert and Wieslaw Zielonka. Limits of multi-discounted markov decision pro-
cesses. In LICS, pages 89–98, 2007. (Cited on page 37.)

[GZ07b] Hugo Gimbert and Wieslaw Zielonka. Perfect information stochastic priority games. In
ICALP, pages 850–861, 2007. (Cited on page 37.)

[KEY07] M. Vardi K. Etessami, M. Kwiatkowska and M. Yannakakis. Multi-objective model
checking of markov decision processes. In Proc of TACAS’07, volume 4424, pages 50–
65, 2007. (Cited on page 21.)

[KNP07] M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. In Formal
Methods for the Design of Computer, Communication and Software Systems: Perfor-
mance Evaluation (SFM’07), 2007. (Cited on page 21.)

[Koz77] Dexter Kozen. Lower bounds for natural proofs systems. In Proc. of 18th Symp. Foun-
dations of Comp Sci., pages 254–266, 1977. (Cited on pages 81 and 100.)

126 Bibliography

[LJ64] C. E. Lemke and Jr. Equilibrium Points of Bimatrix Games. Journal of the Society for
Industrial and Applied Mathematics, 12(2):413–423, 1964. (Cited on page 2.)

[LL69] T. A. Liggett and S. A. Lippman. Stochastic games with perfect information and time
average payoffs. SIAM Review, 11:604 – 607, 1969. (Cited on page 33.)

[Mar75] D. A. Martin. Borel determinacy. Annals of Mathematics, 102:363–371, 1975. (Cited
on page 63.)

[Mar98] Donald A. Martin. The determinacy of blackwell games. J. Symb. Log., 63(4):1565–1581,
1998. (Cited on page 63.)

[MHC03a] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic
planning and related stochastic optimization problems. Arti�cial Intelligence, 147:5–34,
2003. (Cited on pages 6 and 81.)

[MHC03b] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic
planning and related stochastic optimization problems. Arti�cial Intelligence, 147(1-
2):5–34, 2003. (Cited on pages 78 and 103.)

[Mor94] J.D. Morrow. Game Theory for Political Scientists. Princeton University Press, 1994.
(Cited on page 1.)

[MS] Maitra and Sudderth. Stochstic games with borel payoffs. A Maitra, W Sudderth
- Stochastic Games and Applications, NATO . . . , 2003 - ratio.huji.ac.il. (Cited on
page 63.)

[MS85] David E. Muller and Paul E. Schupp. The theory of ends, pushdown automata, and
second-order logic. Theor. Comput. Sci., 37:51–75, 1985. (Cited on page 2.)

[MS95] David E. Muller and Paul E. Schupp. Simulating alternating tree automata by nonde-
terministic automata: New results and new proofs of the theorems of rabin, mcnaughton
and safra. Theor. Comput. Sci., 141(1&2):69–107, 1995. (Cited on page 2.)

[Mye91] Roger B. Myerson. Game Theory: Analysis of Con�ict. Harvard University Press, 1991.
(Cited on page 1.)

[Nas50] John F. Nash. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences of the United States of America, 36(1):48–49, January 1950. (Cited
on page 1.)

[NM44] John Von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1944. (Cited on page 1.)

[Nor97] J. R. Norris. Markov chains. Cambridge University Press, 1997. (Cited on page 17.)

[OW96] Martin J. Osborne and Paul S. Walker. A note on �the early history of the theory of
strategic games from waldegrave to borel� by robert w. dimand and mary ann dimand.
History of Political Economy, 28(1):81–82, Spring 1996. (Cited on page 1.)

[Pap93] Christos H. Papadimitriou. Computational Complexity. Addison Wesley, November
1993. (Cited on page 81.)

Bibliography 127

[Paz71] Azaria Paz. Introduction to probabilistic automata (Computer science and applied math-
ematics). Academic Press, Inc., Orlando, FL, USA, 1971. (Cited on pages 6, 78, 81, 83,
103 and 121.)

[Put94] Martin L. Putterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley and Sons, New York, NY, 1994. (Cited on pages 18, 31, 33
and 71.)

[QS82] Jean-Pierre Queille and Joseph Sifakis. A temporal logic to deal with fairness in tran-
sition systems. In FOCS, pages 217–225, 1982. (Cited on page 3.)

[Rab63] Michael O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245,
1963. (Cited on pages 30, 77, 80 and 86.)

[Rab69] Michael O. Rabin. Decidability of Second Order Theories and Automata on Infinite
Trees. Transactions of the American Mathematical Society, 141:1–35, 1969. (Cited on
page 2.)

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. Syst. Sci., 4(2):177–192, 1970. (Cited on page 99.)

[Sch61] Marcel-Paul Schützenberger. On the definition of a family of automata. Information
and Control, 4, 1961. (Cited on page 78.)

[Sha53] L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences,
39(10):1095–1100, 1953. (Cited on page 2.)

[Sim90] Imre Simon. Factorization forests of finite height. Theoretical Computer Science,
72(1):65–94, 1990. (Cited on pages 2 and 102.)

[Smi82] J.M. Smith. Evolution and the Theory of Games. Cambridge University Press, 1982.
(Cited on page 1.)

[TAHW09] Maria Mateescu Thomas A. Henzinger and Verena Wolf. Sliding-window abstraction for
infinite markov chains. In Proc. of CAV’09, volume 5643, pages 337–352, 2009. (Cited
on page 21.)

[Tze92] Wen-Guey Tzeng. A polynomial-time algorithm for the equivalence of probabilistic
automata. SIAM Journal on Computing, 21(2):216–227, 1992. (Cited on page 78.)

[Vel11] Yaron Velner. The complexity of mean-payoff automaton expression. CoRR,
abs/1106.3054, 2011. (Cited on page 52.)

[Zer13] Ernst Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels.
In Proceedings of the Fifth International Congress Mathematics, pages 501–504, Cam
-bridge, 1913. Cambridge University Press. (Cited on page 1.)

[Zie98] Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998. (Cited on page 2.)

[Zie04] Wieslaw Zielonka. Perfect-information stochastic parity games. In FoSSaCS, pages
499–513, 2004. (Cited on page 38.)

	Introduction
	Background
	Context
	Outline and Contributions
	Outline
	Contributions

	I Prequel
	Markov Chains
	Basic Concepts
	Events
	Random Variables
	Probability
	Conditional probability

	Asymptotic Behavior
	Markov Chains
	Homogeneous Markov Chains
	Markov Chains with Reward

	Markov Decision Processes
	Introduction
	Markov Decision Processes and Plays
	Strategies and Measures
	Objectives and Values
	Reachability Objectives
	Parity Objectives
	Mean-payoff and Positive-average Objectives
	Mean-payoff Objectives
	Positive average objectives

	II Perfect Information Setting
	Multi Objectives Markov Decision Processes
	Introduction
	Computing the values
	Characterizing the Almost-sure Regions
	Algorithm

	Implementing optimal strategies with finite memory
	Existence of Finite Memory Optimal Strategies
	Sufficiency of Exponential Size Memory
	Exponential Size Memory is Necessary

	Solving Parity and Positive-average Objectives with liminf semantics
	Towards Boolean Formulae of Objectives
	Solving conjunction of Avg>0
	Solving conjunction of liminf
	Comparison between objectives
	Mixing liminf and limsup

	Conclusion

	Two-player ParAvg>0 Games
	Introduction
	Two-player Stochastic Games with Perfect Information
	A Polynomial Certificate
	Polynomial Size Certificate
	Checking the Certificate in Polynomial Time

	Computing the Values
	Conclusion

	III Partial Information Setting
	Probabilistic Automata
	Introduction
	Playing in the Dark
	Emptiness Problem for Probabilistic Automata
	New Proof of Undecidability
	Automata with Two Probabilistic Transitions

	Value 1 Problem
	Undecidability of the Value 1 Problem
	Automata with one Probabilistic Transition

	-acyclic Probabilistic Automata
	Subset construction for -acyclic automata
	Decidability of -acyclic automata
	Complexity result

	Discussion

	Partially Observable Markov Decision Processes
	Introduction
	Partially Observable Markov Decision Processes
	-acyclic Partially Observable Markov Decision Processes
	Iteration of actions
	-acyclic POMDP

	Deciding the Value 1
	The knowledge game
	Proof of Theorem 7.28

	Conclusion

	IV Conclusion and References
	Conclusion
	Summary
	Discussion and Open Problems
	Markov Decision Process
	Stochastic Games
	Probabilistic Automata and Beyond

	Bibliography

